
Implementacija jezičnog asistenta temeljenog na
umjetnoj inteligenciji za brodarsku industriju

Špoljar, Ivan

Master's thesis / Diplomski rad

2024

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of
Zagreb, Faculty of Electrical Engineering and Computing / Sveučilište u Zagrebu, Fakultet
elektrotehnike i računarstva

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:168:861629

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-03-31

Repository / Repozitorij:

FER Repository - University of Zagreb Faculty of
Electrical Engineering and Computing repozitory

https://urn.nsk.hr/urn:nbn:hr:168:861629
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.fer.unizg.hr
https://repozitorij.fer.unizg.hr
https://zir.nsk.hr/islandora/object/fer:12782
https://repozitorij.unizg.hr/islandora/object/fer:12782
https://dabar.srce.hr/islandora/object/fer:12782

UNIVERSITY OF ZAGREB

FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

MASTER THESIS No. 419

IMPLEMENTATION OF AN ARTIFICIAL

INTELLIGENCE-BASED CHATBOT FOR THE SHIPPING

INDUSTRY

Ivan Špoljar

Zagreb, June 2024

UNIVERSITY OF ZAGREB

FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

MASTER THESIS No. 419

IMPLEMENTATION OF AN ARTIFICIAL

INTELLIGENCE-BASED CHATBOT FOR THE SHIPPING

INDUSTRY

Ivan Špoljar

Zagreb, June 2024

UNIVERSITY OF ZAGREB
FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

Zagreb, 04 March 2024

MASTER THESIS ASSIGNMENT No. 419

Student: Ivan Špoljar (0036523646)

Study: Computing

Profile: Software Engineering and Information Systems

Mentor: assoc. prof. Marina Bagić Babac

Title: Implementation of an artificial intelligence-based chatbot for the shipping
industry

Description:

The goal of this thesis is the implementation of a chatbot based on artificial intelligence and adapted to the
specific needs of a shipping company, with a focus on answering questions relevant to its activity. The main task
is the application of large language models in the process of creating a functional chatbot. By adapting the
previously trained model and limiting access to only publicly available data of Croatian shipping companies, the
paper will demonstrate the practical application of theoretical concepts in the real world. The chatbot's
performance will be evaluated using appropriate metrics in order to assess its effectiveness and reliability in
providing relevant answers to the questions asked.

Submission date: 28 June 2024

SVEUČILIŠTE U ZAGREBU
FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA

Zagreb, 4. ožujka 2024.

DIPLOMSKI ZADATAK br. 419

Pristupnik: Ivan Špoljar (0036523646)

Studij: Računarstvo

Profil: Programsko inženjerstvo i informacijski sustavi

Mentorica: izv. prof. dr. sc. Marina Bagić Babac

Zadatak: Implementacija jezičnog asistenta temeljenog na umjetnoj inteligenciji za
brodarsku industriju

Opis zadatka:

Cilj ovog diplomskog rada je implementacija jezičnog asistenta temeljenog na umjetnoj inteligenciji prilagođenog
specifičnim potrebama brodarske tvrtke, s fokusom na odgovaranje na pitanja relevantna za njezinu djelatnost.
Glavni zadatak je primjena velikih jezičnih modela u procesu izrade funkcionalnog asistenta. Kroz prilagodbu
prethodno naučenog modela te ograničavanje pristupa samo javno dostupnim podacima hrvatskih brodarskih
tvrtki, rad će demonstrirati praktičnu primjenu teorijskih koncepta u stvarnom svijetu. Odgovarajućim metrikama
provest će se evaluacija performansi jezičnog asistenta kako bi se procijenila njegova učinkovitost i pouzdanost
u pružanju relevantnih odgovora na postavljena pitanja.

Rok za predaju rada: 28. lipnja 2024.

Contents

Introduction.. 1

1. Related works .. 2

1.1. AI Based Chatbot for Educational Institutions ... 2

1.2. Implementation of an NLP-Driven Chatbot and ML Algorithms for Career

Counseling ... 2

1.3. Iterative design and implementation of a chatbot for sexual and reproductive

health counseling in Peru .. 3

2. Methodology ... 4

2.1. Chatbot ... 4

2.2. Vectors .. 4

2.3. Embedding .. 5

2.4. Grounding ... 5

2.5. Large Language Models (LLM) ... 6

2.6. Retrieval-Augmented Generation (RAG) ... 9

2.7. Application architecture and used technologies .. 10

2.7.1. Large Language Models used.. 10

2.7.2. Evaluation metrics .. 13

3. Implementation ... 15

3.1. New knowledge insertion .. 15

3.1.1. Knowledge insertion ... 16

3.1.2. KernelMemoryService .. 16

3.2. Chatbot ... 18

3.2.1. Getting similar knowledge .. 19

3.2.2. Constructing prompt ... 21

3.2.3. Calling text generation model... 24

3.2.4. Chatbot page ... 29

3.2.5. Sources list .. 30

4. Results ... 31

4.1. Chatbots answers ... 31

4.1.1. Waiting for a reply .. 32

4.1.2. The answer from the chatbot ... 33

4.1.3. The answer from the context.. 36

4.1.4. The answer without relevant knowledge .. 38

4.2. Evaluation ... 39

Conclusion... 44

Bibliography ... 46

Abstract ... 49

Sažetak ... 50

Figures

Figure 2.1. (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of

several attention layers running in parallel (Vaswani et al., 2017) 7

Figure 2.2. The Transformer - model architecture (Vaswani et al., 2017) 8

Figure 2.3. LLama3 prompt template ... 11

Figure 2.4. Mistral prompt template ... 12

Figure 3.1. New knowledge insertion form .. 15

Figure 3.2. Kernel Memory Service ... 17

Figure 3.3. Chatbot diagram .. 18

Figure 3.4. Function for getting similar knowledge ... 20

Figure 3.5. System prompt .. 22

Figure 3.6. User prompt .. 23

Figure 3.7. Semantic Kernel Service ... 25

Figure 3.8. The initialization of chatbot .. 26

Figure 3.9. Function for calling text generation model ... 28

Figure 3.10. Initial appearance of Chatbot page.. 29

Figure 3.11. Example of the sources list .. 30

Figure 4.1. Waiting for a reply ... 32

Figure 4.2. The answer from the chatbot ... 33

Figure 4.3. The non-deterministic answer from the chatbot 1 34

Figure 4.4. The non-deterministic answer from the chatbot 2 34

Figure 4.5. The answer from the context ... 36

Figure 4.6. The answer without relevant knowledge ... 38

Figure 4.7. Average score grouped by metric .. 42

Tables

Table 2.1. Model name abbreviations ... 11

Table 4.1. Evaluation results.. 40

1

Introduction

 In this time which we live in, technology is more widespread than ever before,

and it just keeps going forward. The goal of this advancement is to make it easier for

people to use technology and to make technology that is human-like. It got to the point

where robots can imitate humans and computers can make conversations with them.

One of the popular and frequently used types of technology that has capability of

making conversations with people is the chatbot. As the interest of companies in

incorporating a chatbot in their business grows, in this paper, the process of developing

a chatbot is demonstrated.

 This paper presents and explains the basic terms and concepts related to the

creation of a chatbot, more precisely Vectors, Embedding, Grounding, LLM and RAG.

Additionally, two text embedding models and two text generation models are combined,

and the performances of their combinations are compared.

 The chatbot that is developed is restricted to answering only specific questions

about the shipping company and its activity and answers only in Croatian language.

This chatbot is implemented as a web application with two pages, home page

and page for inserting new knowledge. The home page contains a messaging interface

for communication with chatbot and a container for sources in which there are displayed

texts from which chatbot composed his answer. Page for inserting new knowledge

contains text area for inserting text, input field for web page URL, and file input field.

2

1. Related works

In this chapter, other papers related to implementation of a chatbot with a specific

purpose will be presented.

1.1. AI Based Chatbot for Educational Institutions

This paper is written by Oswalt Manoj S, Jason Jose P, Johans Olivia A, and

Katyayani T R to promote smooth interaction between users and educational

institutions, and to spread necessary information. Their chatbot can perform question

answering about academic programs, faculty details, and institutional policies. The

chatbot was developed by integrating web scraping, tokenization, vectorization, and

the large language model GPT-2. Their work proved that there is a potential in using

an AI to revolutionize educational environments and support systems. (S et al., 2024)

1.2. Implementation of an NLP-Driven Chatbot and ML Algorithms
for Career Counseling

In this paper, written by Anuja Deshpande, Aryan Dubey, Arya Dhavale, Ankita

Navatre, Uma Gurav, and Amit Kumar Chanchal, the chatbot for educational and career

selection is proposed. Their proposed system evaluates students’ strengths,

weaknesses, interests, and aptitudes to advise the student about the best choice that

would suit him based on interests, capabilities, and opportunities. They tried using

different machine learning algorithms among which the decision tree performed the

best and showed great potential for further development. (Deshpande et al., 2024)

3

1.3. Iterative design and implementation of a chatbot for sexual and
reproductive health counseling in Peru

This paper is written by Norma Leon Lescano, Eiriku Yamao, Elizabeth Xiomara

Valladares Sánchez, and Miguel Angel Pablo Estrella Santillan, with the purpose of

bringing reliable information about sexual and reproductive health to young people.

Their chatbot is designed to follow guidelines and tools from the Ministry of health in

Peru and the World Health Organization to counsel young people about sexual and

reproductive health. They conducted a survey about acceptance of the use of the

chatbot service for that subject and the acceptance rate was 65%, which they want to

increase. (Lescano et al., 2022)

4

2. Methodology

In this chapter, the basic terms and concepts needed to understand and develop a

functional chatbot are listed and explained. Also, the architecture of the application is

described, and the choice of used models is explained.

2.1. Chatbot

Chatbot is a computer program that simulates and processes human conversation

and makes it possible for humans to interact with digital devices as if they were

communicating with a real person. (Oracle, 2020) AI chatbot is a chatbot which uses

some sort of AI technology like NLP, ML or LLM.

2.2. Vectors

A vector is a mathematical structure with a size and a direction which represents a

point in space. In programming, a vector is an array containing numerical values.

(Schwaber-Cohen, 2023) Vectors are contained in a vector space which enables

performing certain operations on them, for instance, vector addition and scalar

multiplication. Vector space also provides a framework for studying vectors which gives

us the ability to manipulate their quantities, not just adding and subtracting, but also

comparing. It is precisely the comparison that enables us to perform similarity searches

on vectors. Similarity search is in fact search for the distance, smaller the distance,

higher the similarity. (Descartes, 2024)

5

2.3. Embedding

Embeddings are multi-dimensional representations, in numeric format, of words,

phrases, sentences, images, graphs, or any form that has meaning to humans. (Berger,

2023) Embeddings are basically functions that map other types of data to vectors.

(Descartes, 2024)

2.4. Grounding

Grounding is a process in which the responses from Large Language Models are

limited to the knowledge we want them to have. Large Language Models possess a

large amount of knowledge and have an understanding of sentence construction, it is

so because Large Language Models are trained on large sets of data, most of which is

irrelevant when we want them to have a specific use. Grounding Large Language

Models causes greater accuracy in giving answers and their better quality as it ensures

that the answers are relevant to a specific use for which we use them. The most

common techniques for grounding are Retrieval-Augmented Generation, which will be

explained and used in this paper, and Fine-tuning. (Berger, 2023)

6

2.5. Large Language Models (LLM)

A Large Language Model is a type of Artificial Intelligence which is able to

understand natural language and put meaningful sentences together. Language

Models work in the way they predict a probability for each possible next word which

makes them in fact statistical models. The most important part of using Large Language

Models is giving them good instructions, in a natural language, on how to generate an

answer, and that is called the prompt. The prompt is responsible for the behavior of

Large Language Models because it instructs them on what task they should do, which

knowledge they should use, and in what type and what format they should return the

answer. Large Language Models can perform various tasks, from text generation, text

classification, translating languages, generating embeddings, and some more. (Keng,

2023)

 Today’s Large Language Models use the transformer architecture, unlike earlier

Natural Language Processing Models which used to use convolutional neural network

and recurrent neural network. The transformer architecture is different because it

utilizes self-attention which enables parallel processing of different segments of the

input sequence and that causes the model to understand dependencies between

segments on different positions in a sequence. (Luo et al., 2023)

Self-attention is a mechanism which consists of two parts, scaled dot-product

attention and multi-head attention. Scaled dot-product attention is a function with the

use of which the calculated output contains values to which the corresponding weights

have been assigned, based input which consists of query vectors (Q), key vectors (K),

and value vectors (V). The process of calculating attention is as follows. First, the dot

product of query vectors and key vectors is calculated. Dot product is calculated as

shown in equation 𝑥 × 𝑦 = ∑ 𝑥𝑖 × 𝑦𝑖𝑖 . Next, the result of dot product is scaled to

ensure that attention weights don’t get too low or too high. Scaling is performed dividing

earlier calculated dot product with squared root of the dimension of key vectors (√𝑑𝑘).
After the scaled dot product is calculated, the softmax function is performed on it to

convert the dot product into probabilities which sum equals one. (Vaswani et al., 2017)

7

The softmax function is performed in three steps. First, each value in the result matrix

is used to raise the number e, i.e. Euler's number, to the power of that value. For each

value the function 𝑒𝑣𝑎𝑙𝑢𝑒 is performed and from that the new matrix is obtained. Next,

the sum of each column from matrix from the previous step is calculated. The final step

is to divide each value from the matrix with the sum of the column to which the value

belongs to. (Dey, 2024) The dot product of that new matrix and value vectors is then

calculated, and the result is the scaled dot-product attention. The function for scaled

dot-product attention can be written as 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝑄×𝐾𝑇√𝑑𝑘) × 𝑉 .

Multi-head attention is a set of scaled dot-product attentions being calculated in

parallel in each available head, with Q, K, and V divided into h parts. The function for

multi-head attention is 𝑀𝑢𝑙𝑡𝑖 − ℎ𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡 (ℎ𝑒𝑎𝑑1, … , ℎ𝑒𝑎𝑑ℎ) × 𝑊0 ,
where W0 is learned in the process, and concat signifies the sum of the results of each

head. (Vaswani et al., 2017)

Figure 2.1. (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several

attention layers running in parallel (Vaswani et al., 2017)

8

The transformer architecture consists of multiple encoders and decoders.

Encoders are used to retrieve properties from the input, and decoders are used to

generate the output. (Luo et al., 2023) The encoder consists of a stack of six equal

layers where each has two sub-layers. The first sub-layer is a multi-head mechanism

for self-attention, and the second sub-layer is a feed-forward network which captures

non-linear dependencies between input properties. Each sub-layer is normalized by

function 𝐿𝑎𝑦𝑒𝑟𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 (𝑥 + 𝑆𝑢𝑏𝐿𝑎𝑦𝑒𝑟𝑂𝑢𝑡𝑝𝑢𝑡 (𝑥)) . The decoder

consists of a stack of six equal layers where each has 3 sub-layers, the first sub-layer

is a multi-head mechanism like in encoder, but with difference that in this multi-head

mechanism the positions do not observe positions that come after them. The second

sub-layer is the output from the encoder, and the last sub-layer is a feed-forward

network. The encoder also normalizes outputs from each sub-layer. (Vaswani et al.,

2017)

Figure 2.2. The Transformer - model architecture (Vaswani et al., 2017)

9

2.6. Retrieval-Augmented Generation (RAG)

Retrieval-Augmented Generation is a primary technique for Grounding. That

technique is commonly used when a Large Language Model is used to answer

questions. It works in such a way that the knowledge is first found from another source

and then given with a prompt to a Large Language Model. (Berger, 2023) In more detail,

the first step is to prepare the knowledge base. It starts with finding the knowledge that

is relevant to the specific use we want. That knowledge is then divided into chunks of

a certain size and from those chunks, embeddings are calculated using a Large

Language Model and stored into the data store. When the question is received, its

embedding is calculated and that embedding is used to perform a similarity search on

the knowledge base from which top N relevant chunks are obtained. Those chunks are,

along with the initial question, appended to the prompt and sent to the Large Language

Model which returns the answer. (Keng, 2023)

10

2.7. Application architecture and used technologies

This application is a simple web application developed in the framework called

Blazor using C#. Bazor is a front-end web framework which enables building web

applications without using JavaScript but using C#. (Microsoft, 2024)

2.7.1. Large Language Models used

Large Language Models used in this project are open-source models downloaded

from Hugging Face. The Hugging Face is a platform with open source, and publicly

available models where people can upload their own models, try other people’s models,

and collaborate with other people. (Hugging Face, 2024) In this project, four Large

Language Models are used, two for calculating embeddings and two for text generation,

and their results will be evaluated and compared. All of used models use the

Transformer architecture.

As for embeddings, the two models chosen for this project are nomic-embed-text-

v1.5-Q5_K_M (SecondState, 2024), and snowflake-arctic-embed-m-long--Q5_K_M

(Azinn, 2024). Both embedding models return embedding vectors of dimension 768,

which means that embedding vector has 768 numerical values.

Other models used are for text generation. Text generation model is a model which

understands natural language, code, and images, and provides a meaningful response

to the received input, i.e. prompt. Two text generation models chosen for this project

are Meta-Llama-3-8B-Instruct-Q4_K_M, and mistral-7b-openorca-oasst_top1_2023-

08-25-v2.Q4_K_M. For easier reading the model names are abbreviated like in Table

2.1. below and these abbreviations will be used in the rest of the paper.

11

Table 2.1. Model name abbreviations

Nomic nomic-embed-text-v1.5-Q5_K_M

Arctic snowflake-arctic-embed-m-long--Q5_K_M

LLama3 Meta-Llama-3-8B-Instruct-Q4_K_M

Mistral mistral-7b-openorca-oasst_top1_2023-08-25-v2.Q4_K_M

LLama3 is a model using Transformer architecture with 8.03 billion parameters

learnt during training. LLama3 was trained on a set of 15 trillion tokens from various

domains and on different languages. The context length the LLama3 model has

available is 8 thousand tokens. The template for the prompt used by LLama3 is shown

below in Figure 2.3. (lmstudio-community, 2024)

<|begin_of_text|><|start_header_id|>system<|end_header_id|>

{system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|>

{prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|>

Figure 2.3. LLama3 prompt template

Mistral is a model using Transformer architecture with 7.24 billion parameters learnt

during training. Mistral has a context length of 8192 tokens. The prompt template used

by Mistral is shown below in Figure 2.4. (TheBloke, 2024)

12

<|im_start|>system

{system_message}<|im_end|>

<|im_start|>user

{prompt}<|im_end|>

<|im_start|>assistant

Figure 2.4. Mistral prompt template

To facilitate work and exploit more potential when working with Large Language

Models, the “Semantic Kernel” SDK is used. It is the software development kit

developed by Microsoft which has methods that communicate with Large Language

Models and gives them properties that determine their behavior. Semantic Kernel

allows the developer to define custom plugins and has the ability to automatically

orchestrate plugins. The main reason why Semantic Kernel is used in this project is

because it implements “ChatHistory” class which provides chat history and enables the

chatbot to understand context. (Microsoft, 2024)

The service called “Kernel Memory” is used to store knowledge. It is a service

developed by Microsoft which enables storing knowledge as vectors, and search of that

storage which can return answer and sources. It allows storing multiple data from

multiple data formats, such as Web pages, PDF, Images, Word, PowerPoint, Excel,

Markdown, Text, JSON, and HTML. (Microsoft, 2024)

To run LLMs locally, the “LLamaSharp” library is used. LLamaSharp is a library

which enables LLMs to be run on local devices and allows developers to choose if

models will be run on CPU or GPU by installing provided backends (CPU or Cuda

backend). This library also contains integrations for some other libraries, among others

Semantic Kernel and Kernel Memory. (SciSharp, 2024)

13

2.7.2. Evaluation metrics

For the evaluation of model performance, ROUGE and bleu metrics will be used.

ROUGE metrics are usually used to evaluate computer summaries which means

that ROUGE metrics look at how much of important content from expected summary is

expressed in computer summary. ROUGE is a set of 4 metrics, ROUGE-1, ROUGE-2,

ROUGE-L, and ROUGE-Lsum. ROUGE-1 is calculated considering recall and

precision. Recall measures how many words from computer summary match words in

expected summary and precision the ration of words in computer summary that match

words in expected summary. ROUGE-2 is measured by how many bigrams, i.e.

sequences of two words, are in both summaries and that number is divided by the total

number of bigrams in the expected summary. ROUGE-L takes the longest string of

words that are in the same order in both summaries and divides it by the total number

of words in the expected summary. ROUGE-Lsum is similar to ROUGE-L but the

difference is that ROUGE-L looks at the whole summary together, and ROUGE-Lsum

looks at each sentence separately and aggregates results. (Mamdouh, 2023)

The way ROUGE metrics work can be presented with math. ROUGE-1 can be

presented using three math functions. To get a ROUGE-1 score, recall and precision

need to be calculated first. A recall is calculated using the function 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑈𝑛𝑖𝑔𝑟𝑎𝑚 𝑚𝑎𝑡𝑐ℎ𝑒𝑠 𝑈𝑛𝑖𝑔𝑟𝑎𝑚𝑠 𝑖𝑛 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 , a precision is calculated using the function 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑈𝑛𝑖𝑔𝑟𝑎𝑚 𝑚𝑎𝑡𝑐ℎ𝑒𝑠 𝑈𝑛𝑖𝑔𝑟𝑎𝑚𝑠 𝑖𝑛 𝑜𝑢𝑡𝑝𝑢𝑡 , and finally a ROUGE-1 score is calculated using the

function 𝑅𝑂𝑈𝐺𝐸 − 1 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑅𝑒𝑐𝑎𝑙𝑙 .
ROUGE-2 is calculated using the same functions as ROUGE-1 just looking at

sequences of two words like it is described earlier.

ROUGE-L is again calculated using three functions, two of which are for recall and

precision. A recall is calculated using the function 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑜𝑛𝑔𝑒𝑠𝑡 𝑐𝑜𝑚𝑚𝑜𝑛 𝑠𝑡𝑟𝑖𝑛𝑔 𝑈𝑛𝑖𝑔𝑟𝑎𝑚𝑠 𝑖𝑛 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 , a precision is calculated using the function

14

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑜𝑛𝑔𝑒𝑠𝑡 𝑐𝑜𝑚𝑚𝑜𝑛 𝑠𝑡𝑟𝑖𝑛𝑔𝑈𝑛𝑖𝑔𝑟𝑎𝑚𝑠 𝑖𝑛 𝑜𝑢𝑡𝑝𝑢𝑡 , and finally a ROUGE-L score is again

calculated using function 𝑅𝑂𝑈𝐺𝐸 − 𝐿 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑅𝑒𝑐𝑎𝑙𝑙 . (Amanat, 2024)

Bleu metric measures the quality of generated text in comparison to references. It

is usually used to evaluate computer translations. The process of retrieving a Bleu

score is following. First, when preparing evaluation, the max_order parameter can be

defined, but default is 4. Max_order parameter determines to which level of grams, 1-

gram, 2-gram, 3-gram, 4-gram, etc. the evaluation program will observe. Here, modified

precision is calculated first. Modified precision takes into consideration the number of

occurrences of words in generated text and in reference. Modified precision is the sum

of all precisions calculated for each n-gram where for the generated text, the minimum

between occurrences in generated text and the number of occurrences in references

is taken and for the references the number of occurrences is taken. The function for

modified precision is 𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = ∑ min (𝑐𝑜𝑢𝑛𝑡(𝑛−𝑔𝑟𝑎𝑚𝑠), 𝑐𝑜𝑢𝑛𝑡(𝑛−𝑔𝑟𝑎𝑚𝑠 𝑖𝑛 𝑜𝑢𝑡𝑝𝑢𝑡))max _𝑜𝑟𝑑𝑒𝑟𝑛−𝑔𝑟𝑎𝑚 ∑ 𝑐𝑜𝑢𝑛𝑡(𝑛−𝑔𝑟𝑎𝑚𝑠 𝑖𝑛 𝑜𝑢𝑡𝑝𝑢𝑡)max _𝑐𝑜𝑢𝑛𝑡𝑛−𝑔𝑟𝑎𝑚

Next, the Brevity Penalty is calculated, it is a penalty if the generated text is shorter

than the reference. If the length of the generated text is greater than the length of the

reference, the Brevity Penalty is 1, otherwise it is calculated by the function 𝐵𝑟𝑒𝑣𝑖𝑡𝑦 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 = 𝑒(1− 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑡𝑒𝑥𝑡 𝑙𝑒𝑛𝑔𝑡ℎ𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑡𝑒𝑥𝑡 𝑙𝑒𝑛𝑔𝑡ℎ) . In function for Bleu score, each Modified

Precision is multiplied by the weight of the n-gram, and each n-gram holds the same

weight. That means that each weight is calculated like 𝑤 = 1max _𝑜𝑟𝑑𝑒𝑟 . Finally, the Bleu

metric score is calculated using the function 𝐵𝑙𝑒𝑢 = 𝐵𝑟𝑒𝑣𝑖𝑡𝑦 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 × exp(∑ (𝑤𝑛 ×max _𝑐𝑜𝑢𝑛𝑡𝑛=1 𝑙𝑜𝑔(𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑛)) .

(Madiraju, 2022)

15

3. Implementation

The process of developing a functional chatbot, with all requirements listed in the

introduction, is demonstrated in this chapter.

3.1. New knowledge insertion

To give the chatbot knowledge from which it gives answers to our questions, first

the page for knowledge insertion was developed. This page is a simple looking page

with text area for inserting text, input field for web page URL, and file input field. That

page looks as shown below in Figure 3.1.

Figure 3.1. New knowledge insertion form

16

3.1.1. Knowledge insertion

The new knowledge insertion works the way that it uses built in functions of

Kernel Memory. Kernel memory has implemented functions ImportTextAsync,

ImportDocumentAsync, and ImportWebPageAsync. ImportTextAsync expects only text

as a function parameter, and it stores received text as embedding vectors.

ImportDocumentAsync expects path to the document and optionally file name as

function parameters and stores the content of the document as embedding vectors.

ImportWebPageAsync expects the web page URL as a function parameter, it scrapes

the web page and stores the content as embedding vectors.

3.1.2. KernelMemoryService

To use those functions from Kernel Memory, the “KernelMemoryService” service

was built. KernelMemoryService was built using KernelMemoryBuilder class and

LLamaSharp extensions. KernelMemory requires embedding model, text generation

model, and data storage configurations. Additionally, text partitioning options were

passed to determine chunk size and overlap between chunks. It can be seen below in

Figure 3.2.

17

public KernelMemoryService(IConfiguration configuration)
{
 _kernelMemory = new KernelMemoryBuilder()

.WithLLamaSharpTextGeneration(new LLamaSharpConfig(@"<Path to text
generation model>"))
 .WithLLamaSharpTextEmbeddingGeneration(new LLamaSharpConfig(@"<Path
to text embedding model>"))
 .WithCustomTextPartitioningOptions(
 new TextPartitioningOptions
 {
 MaxTokensPerParagraph = 512,
 MaxTokensPerLine = 512,
 OverlappingTokens = 50
 })
 .WithSimpleVectorDb(new
Microsoft.KernelMemory.MemoryStorage.DevTools.SimpleVectorDbConfig()
 {
 StorageType =
Microsoft.KernelMemory.FileSystem.DevTools.FileSystemTypes.Disk
 }).Build();
}

Figure 3.2. Kernel Memory Service

18

3.2. Chatbot

In this segment, it is shown how a chatbot comes to the answers which he gives

to users. It uses the technique of Retrieval-Augmented Generation. In that technique

the first step is to generate embeddings from the user’s question and perform a

similarity search on the knowledge base using those embeddings. Obtained knowledge

chunks are then passed along with the prompt and user’s question to the text

generation model which returns an answer. This process is illustrated below in Figure

3.3.

Figure 3.3. Chatbot diagram

19

3.2.1. Getting similar knowledge

Figure 3.4. shows the function for getting similar knowledge. That function calls

a function from Kernel Memory to get relevant knowledge which matches given filters,

and those are that minimal relevance must be at least 75% and to take only top two

answers. In the background, that Kernel Memory function creates embedding vectors

from asked question using text embedding model, then performs a similarity search on

a previously loaded data store with those embeddings, and finally returns relevant

knowledge chunks. The function shown below in Figure 3.4. then takes relevant

information from obtained result, such as knowledge text and relevance, and returns

serialized value of that object list. Additionally, other information, which include file id,

partition number, knowledge text, and relevance, are put in a static object list which can

be accessed from any place in the project and will be used for accessing sources.

20

public async Task<string> AskQuestion(string question)
{
 try
 {
 var answer = await _kernelMemory.SearchAsync(question, minRelevance:
0.75, limit: 2);

 List<MemoryResponseDto> response = new();
 if (answer?.Results == null)
 {
 return "";
 }
 foreach (var answerItem in answer.Results) {
 if (answerItem == null)
 continue;
 foreach (var partition in answerItem.Partitions)
 {
 response.Add(new MemoryResponseDto(partition.Text.Trim(),
partition.Relevance));
 SourcesList.AddSource(new SourceDto { FileId =
answerItem.FileId, PartitionNumber = partition.PartitionNumber, Text =
partition.Text.Trim(), Relevance = partition.Relevance });
 }
 }
 return JsonSerializer.Serialize(response, new JsonSerializerOptions {
Encoder = JavaScriptEncoder.UnsafeRelaxedJsonEscaping });
 }
 catch
 {
 return "";
 }
}

Figure 3.4. Function for getting similar knowledge

21

3.2.2. Constructing prompt

 After obtaining chunks relevant to the question, a text generation model is being

called. For the text generation model to work a certain way, it must have good options

set and get detailed instructions on how to generate a good answer, i.e. good prompt.

For constructing a good prompt, it is important to write meaningful sentences

that are semantically well formed. It must be explained in detail what is expected of the

model to do and how the output is expected to look.

In this project, two prompts need to be constructed. First is the system prompt

which is passed to the text generation model with settings, and the other one is prompt

which is passed as a user message and contains the user question and the relevant

knowledge.

 In the system prompt, the knowledge input parameter is stated first, labeled as

Facts, that’s where the knowledge handed with user prompt will be injected. After that,

a few guidelines are stated. It is stated that the model must generate answers using

only knowledge it received in the prompt. Answers must be short and not contain

explanations and notes on how the answer was generated. It should give answers only

in Croatian language, and if it doesn’t have enough information to generate an answer,

it should respond with a text which it will also receive from user prompt. Finaly, there is

an input parameter where it receives the question the user has asked, and which is

also passed in the user prompt. The system prompt is shown below in Figure 3.5.

22

 var systemPrompt = $@"

 Facts: {{$facts}}

 Given ONLY the facts above, provide a short answer without explanations and notes.

 Give answers ONLY in Croatian language.

 You don't know where the knowledge comes from, just answer.

 If you don't have sufficient information, reply with '{{$notFound}}'.

 Question: {{$input}}

 Answer:

 ";

Figure 3.5. System prompt

 As for the user prompt, there are two possible prompts that can be used. Frist,

if the similar knowledge is found, prompt is given the asked question, similar knowledge

found, and two instructions. First one is that if there is no useful knowledge that it should

respond with “Ne znam odgovoriti na ovo pitanje.”, which translates to “I don’t know

how to answer this question” in Croatian. The second one says that it should use as

little words as possible in the response. As for the second possible prompt, it is used

when there is no similar knowledge found and it is given the asked question and an

instruction to try and answer the asked question from context, and if it can’t then it

should respond with “Ne znam odgovoriti na ovo pitanje.”. The user prompt is shown

below in Figure 3.6.

23

 var prompt = $@"

 Question: {askedQuestion}

 Facts:
 ====
 {memoryAnswer}

 ====

 If Facts are empty say 'Ne znam odgovoriti na ovo pitanje.', otherwise
 generate your answer from Facts.
 Use as little words as possible in response.
 ";

 if (JsonSerializer.Deserialize<List<MemoryResponseDto>>(memoryAnswer).Count() ==
 0)
 {
 prompt = $@"

 Question: {askedQuestion}

 Try answering from context, if you can't then say 'Ne znam odgovoriti na
 ovo pitanje.'.
 ";
 }

Figure 3.6. User prompt

24

3.2.3. Calling text generation model

Text generation model is being called using built in function of Semantic Kernel.

Semantic Kernel is also being used to provide Chat History. To use these functions and

classes across the project, the “SemanticKernelService” was built.

SemanticKernelService was built using Semantic Kernel Builder and LLamaSharp

extensions. SemanticKernel requires text generation model to run and that is where

LLamaSharp is used. LLamaSharp has predefined classes which help with running

models locally. First, the ModelParams class needs to be initialized with model path

passed as an input parameter, and optionally ContextSize, and GpuLayerCount. Next,

the LLamaWeights class needs to be initialized and needs to load model weights from

model params. After that, the LLamaContext class needs to be initialized with model

weights and model params passed as input parameters. With context passed as an

input parameter, class InteractiveExecutor is initialized. Now that the model executor is

set, Semantic Kernel can finally add IChatCompletionService as a service where

service key and service instance need to be passed as input parameters. Service

instance is initialized with LLamaSharpChatCompletion class where executor is passed

as an input parameter. SemanticKernelService is shown below in Figure 3.7.

25

 public SemanticKernelService(KernelMemoryService memoryService)
 {
 var modelPath = @"<Path to text generation model>";

 ModelParameters = new ModelParams(modelPath)
 {
 ContextSize = 4096,
 GpuLayerCount = 512
 };

 Model = LLamaWeights.LoadFromFile(ModelParameters);
 Context = new LLamaContext(Model, ModelParameters);
 Executor = new InteractiveExecutor(Context);

 var builder = Kernel.CreateBuilder();
 builder.Services.AddKeyedSingleton<IChatCompletionService>("local-bot", new
 LLamaSharpChatCompletion(Executor));
 builder.Services.AddLogging(c =>
 c.SetMinimumLevel(LogLevel.Trace).AddConsole().AddDebug());

 _kernel = builder.Build();
 }

Figure 3.7. Semantic Kernel Service

 When a user opens the page with chatbot few things happen. First, Chat History

gets initialized, as well as completion service from SemanticKernelService. Next, the

system prompt mentioned in paragraph 3.2.2. gets declared and passed to variable

setting among other options such as Temperature, FrequencyPenalty,

PresencePenalty, and TopP. Temperature controls hallucinations, i.e. how random are

words being chosen, lower values cause the model to be more consistent and

predictable. FrequencyPenalty controls the probability of choosing words that are more

frequent or rare in the generated text, and lower values cause the model to choose

more frequent words. PresencePenalty controls repeating of same words in generated

text, and higher values reduce the probability of repetition. TopP controls how many

possible words are being considered, and here high values cause more words to be

taken into consideration. Finally, the initial message from chatbot, which says

"Poštovanje, ja sam ChatBot za brodarsku tvrtku, pomoći ću vam sa svim pitanjima u

26

vezi s njom. Kako vam mogu pomoći danas?", gets sent. That message would translate

to "Regards, I'm a ChatBot for a shipping company, I'll help you with any questions

about it. How can I help you today?". That process is displayed below in Figure 3.8.

 protected override void OnInitialized()

 {
 base.OnInitialized();
 _chatHistory = new ChatHistory();
 _completionService =
 SemanticKernel._kernel.GetRequiredService<IChatCompletionService>();

 var systemPrompt = $@"

 Facts: {{$facts}}

 Given ONLY the facts above, provide a short answer without
 explanations and notes.
 Give answers ONLY in Croatian language.
 You don't know where the knowledge comes from, just answer.

 If you don't have sufficient information, reply with '{{$notFound}}'.
 Question: {{$input}}

 Answer:
 ";

 settings = new()

 {
 ChatSystemPrompt = systemPrompt,
 Temperature = 0.1,
 FrequencyPenalty = 0.0,
 PresencePenalty = 0.0,
 TopP = 1.0
 };

 conversation.Add(new(AuthorRole.Assistant,
 "Poštovanje, ja sam ChatBot za brodarsku tvrtku, pomoći ću vam sa svim
 pitanjima u vezi s njom. Kako vam mogu pomoći danas?",
 DateTime.Now.ToString("HH:mm")));
 }

Figure 3.8. The initialization of chatbot

27

When user sends his message, it is first checked if the message is empty, the

chatbot is called only if the message is not empty. Next, if it’s not empty, the static

objects list which is used for temporarily storing relevant sources, is cleared so that new

sources can be stored. After that, prompt is being constructed and added to the chat

history. Now everything is prepared for calling a text generation model. Calling a text

generation model is achieved by calling “GetStreamingChatMessageContentsAsync”

function from completion service, with parameters chat history, settings, and kernel,

passed as input parameters. Streaming in the function name signifies that the program

does not wait for the whole answer to be generated to return it, but it returns chunks of

answer as it gets generated. After generating the whole answer, sources get displayed

if they exist. If any exception gets thrown, the chatbot will return "Došlo je do pogreške

prilikom komunikacije. Molim Vas ponovite zadnji upit." as an answer, which translates

to "There was a communication error. Please repeat the last query." In Croatian.

 This process of calling the text generation model, that is described, is shown

below in Figure 3.9.

28

 try
 {
 if (string.IsNullOrEmpty(question)) return;

 sources = new ();
 _isBusy = true;
 StateHasChanged();

 conversation.Add(new(AuthorRole.User, question, DateTime.Now.ToString("HH:mm")));
 var askedQuestion = question;
 question = null;
 StateHasChanged();

 SourcesList.ResetSources();
 var memoryAnswer = await KernelMemory.AskQuestion(askedQuestion);

 //User Prompt from Figure 3.6.

 _chatHistory.AddUserMessage(prompt);

 var content = "...";
 conversation.Add(new(AuthorRole.Assistant, content, null));
 StateHasChanged();

 var stream = _completionService.GetStreamingChatMessageContentsAsync(_chatHistory, settings,
 SemanticKernel._kernel);

 content = "";
 await foreach (var contentPiece in stream)
 {
 if (string.IsNullOrEmpty(contentPiece.Content)) continue;
 if (contentPiece.Content.Equals("<|eot_id|>")) break;
 content += contentPiece.Content;
 conversation[conversation.Count - 1].message = content;
 StateHasChanged();
 }

 conversation[conversation.Count - 1].time = DateTime.Now.ToString("HH:mm");
 _chatHistory.AddAssistantMessage(content);
 if (SourcesList.Sources.Count > 0)
 {
 sources.AddRange(SourcesList.GetSources());
 }
 }
 catch (Exception e)
 {
 conversation[conversation.Count - 1].message = "Došlo je do pogreške prilikom komunikacije. Molim
 Vas ponovite zadnji upit.";
 conversation[conversation.Count - 1].time = DateTime.Now.ToString("HH:mm");
 }
 finally
 {
 _isBusy = false;
 StateHasChanged();
 }

Figure 3.9. Function for calling text generation model

29

3.2.4. Chatbot page

The Chatbot page consists of a message display, input field, and button for

calling chatbot. When the user writes his message and clicks on the “CallChatBot”

button, the function for calling the text generation model on the server is called. When

the function returns the answer, it is displayed in the message display. The initial

appearance of this page is shown below in Figure 3.10.

Figure 3.10. Initial appearance of Chatbot page

30

3.2.5. Sources list

Sources are displayed only when they are found and passed to model with

prompt. The sources list is positioned below the chat and consists of file id, partition

number, knowledge text, and relevance. An example of the sources list is shown below

in Figure 3.11.

Figure 3.11. Example of the sources list

31

4. Results

In this chapter, the use of the developed chatbot is demonstrated. All combinations

of used models were evaluated, and results are displayed and compared. The two

embedding models used, Nomic and Arctic, were tried in combination with both text

generation models used, LLama3 and Mistral.

4.1. Chatbots answers

In this segment, a few examples of answers given by chatbot are presented. For

example, it shows how it looks like to wait for a reply from a chatbot, how it looks like

to get a reply, how it looks like to get a reply from context, and how it looks like when

chatbot cannot give an answer due to lack of relevant knowledge.

32

4.1.1. Waiting for a reply

Here, in Figure 4.1., it is shown how it looks like when the user sends a message

and waits for the chatbot to generate an answer.

Figure 4.1. Waiting for a reply

The user asked “Kako se koriste otočne iskaznice?”, which translates to “How

are island cards used?”, and while the chatbot is generating an answer, “…” is

displayed.

33

4.1.2. The answer from the chatbot

The answer from chatbot to the question he knows the answer to, is shown in

this segment. The question which the chatbot was asked is “Smiju li ljubimci na brod”,

which translates to “Are pets allowed on board?”.

Figure 4.2. The answer from the chatbot

As it is seen above in Figure 4.2., the chatbot answered the asked question with

a meaningful answer. Comparing the answer with the listed used sources, it can be

concluded that the chatbot composed the answer from the knowledge he received in

the prompt.

Large Language Models are non-deterministic, which means that the output

results can be different for the same input and environment, and that will be shown in

the next two Figures.

34

Figure 4.3. The non-deterministic answer from the chatbot 1

Figure 4.4. The non-deterministic answer from the chatbot 2

35

 As it can be seen above in Figure 4.3. and Figure 4.4., the chatbot has been

asked the same question twice, and both times it got the same source, but each time

the response was different. The asked question was “Koja su moja prava kao vlasnika

otočne iskaznice?”, which translates to “What are my rights as an island card holder?”.

The first answer, shown above in Figure 4.3., says “Vlasnik sam otočne iskaznice/

studentske isprave (x-ice) ostvaruje pravo na povlašteni prijevoz sukladno Zakonu o

prijevozu u linijskom i povremenom obalnom pomorskom prometu. Svoja prava prilikom

kupovine karte može se ostvariti samo uz predodjenje važne otočne iskaznice. Istu ste

dužni predodjeti i prilikom ukrcaja. Ako ostvarujete pravo na besplatan prijevoz, može

se koristiti besplatno.”, which translates to “The holder of an island identity card/student

document (x-ice) is entitled to privileged transportation in accordance with the Act on

Transportation in Line and Occasional Coastal Maritime Traffic. You can exercise your

rights when buying a ticket only by presenting an important island identity card. You are

obliged to present the same when boarding. If you qualify for free transportation, it can

be used free of charge.”. The second answer, shown above in Figure 4.4., says “Vlasnik

otočne iskaznice/ studentske isprave (x-ice) ostvaruje pravo na povlašteni prijevoz

sukladno Zakonu o prijevozu u linijskom i povremenom obalnom pomorskom

prometu.”, which translates to “The holder of an island identity card/student document

(x-ice) has the right to privileged transportation in accordance with the Act on

Transportation in Line and Occasional Coastal Maritime Traffic.”. Both answers are

correct, but the first one is more detailed, and the second one is concise. Most of the

time when asked the same question, the chatbot will generate different responses.

36

4.1.3. The answer from the context

In this segment, it is shown that the chatbot can answer from the chat context.

As a continuation of question asked in the previous segment, in Figure 4.2., the chatbot

was asked “Znači mačke su dozvoljene?”, which translates to “So cats are allowed?”.

Figure 4.5. The answer from the context

37

As can be seen above in Figure 4.5., chatbot answered without received

knowledge, just based on the chat context. His first answer, from segment 4.1.2.,

among other things states that the transport of pets is allowed, namely dogs, cats, birds

and other small animals on ferries and ships with a mandatory stay on the open deck,

and from that he concluded that cats are allowed, so his answer was “Da, mačke su

dozvoljene”, which translates to “Yes, cats are allowed.”.

38

4.1.4. The answer without relevant knowledge

In this segment, it is shown how the chatbot answers when he gets asked a

question to which he doesn’t receive relevant knowledge.

Figure 4.6. The answer without relevant knowledge

 As expected, the chatbot was asked “Tko je Luka Modrić?”, which translates to

“Who is Luka Modrić?”, and that question is not contained in the knowledge so his

answer was “Ne znam odgovoriti na ovo pitanje.”, which translates to “I don’t know how

to answer this question” in Croatian.

39

4.2. Evaluation

In this chapter, the evaluation results calculated by ROUGE and bleu metrics

are presented and compared. The result table, Table 4.1., is divided into two pages,

where the first page contains results for the first 50 questions, the second one contains

results for the other 50 questions and average score per model, and both pages contain

headers. As can be seen from headers, the table is divided in such a way that for each

combination of models there are 4 columns, one for each evaluation metric result. The

first group of metric results is for the combination of Nomic and LLama3, the second

one is for the combination of Nomic and Mistral, the third one is for the combination of

Arctic and LLama3, and the last one is for the combination of Arctic and Mistral. Bold

values in the table represent the highest score achieved on a question.

40

Table 4.1. Evaluation results

 Nomic Arctic

 LLama3 Mistral LLama3 Mistral

 rouge1 rouge2 rougeL bleu rouge1 rouge2 rougeL bleu rouge1 rouge2 rougeL bleu rouge1 rouge2 rougeL bleu

1 0.6409 0.5698 0.6077 0.3424 0.8459 0.8375 0.8459 0.7387 0.6188 0.5140 0.5746 0.3204 0.9225 0.9219 0.9225 0.8676

2 0.9730 0.9143 0.9730 0.8378 0.2303 0.2209 0.2303 0.1111 0.9730 0.9143 0.9730 0.8378 0.1224 0.0000 0.1224 0.0000

3 0.6875 0.6000 0.6875 0.4405 1.0000 1.0000 1.0000 1.0000 0.6875 0.6000 0.6875 0.4405 1.0000 1.0000 1.0000 1.0000

4 0.2500 0.1818 0.2500 0.0071 0.7273 0.7097 0.7273 0.4312 0.7273 0.7097 0.7273 0.4312 0.7273 0.7097 0.7273 0.4312

5 0.2963 0.2785 0.2963 0.0134 0.9855 0.9706 0.9855 0.9777 0.2963 0.2785 0.2963 0.0134 1.0000 1.0000 1.0000 1.0000

6 0.2800 0.2041 0.2600 0.0106 1.0000 1.0000 1.0000 1.0000 0.0980 0.0200 0.0784 0.0023 0.1053 0.0179 0.0702 0.0127

7 0.7111 0.6977 0.7111 0.4724 1.0000 1.0000 1.0000 1.0000 0.7111 0.6977 0.7111 0.4724 1.0000 1.0000 1.0000 1.0000

8 0.3504 0.3259 0.3504 0.0230 1.0000 1.0000 1.0000 0.9918 0.0168 0.0000 0.0168 0.0000 0.1418 0.0000 0.0851 0.0094

9 0.5763 0.5614 0.5763 0.2298 0.9231 0.9213 0.9231 0.8557 0.5429 0.4706 0.4857 0.4010 0.9367 0.9351 0.9367 0.8497

10 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000 0.0426 0.0000 0.0426 0.0000

11 0.9834 0.9609 0.9834 0.9497 0.7133 0.7092 0.7133 0.3921 0.0952 0.0194 0.0571 0.0000 0.0826 0.0168 0.0661 0.0000

12 0.5029 0.4970 0.5029 0.1299 0.9922 0.9843 0.9922 0.9873 0.3026 0.2800 0.3026 0.0199 0.9922 0.9843 0.9922 0.9873

13 0.2353 0.1800 0.2353 0.0170 0.3507 0.1722 0.2085 0.1774 0.0870 0.0000 0.0870 0.0000 1.0000 1.0000 1.0000 1.0000

14 0.9429 0.9412 0.9429 0.8730 0.2469 0.0253 0.1481 0.0000 0.4400 0.2500 0.4000 0.1410 1.0000 1.0000 1.0000 1.0000

15 0.4486 0.3238 0.3551 0.0704 0.1573 0.1379 0.1573 0.0000 0.3400 0.3061 0.3400 0.0277 1.0000 1.0000 1.0000 1.0000

16 0.5000 0.2857 0.4091 0.2748 0.8235 0.8182 0.8235 0.6811 0.5909 0.3810 0.5455 0.3181 0.8235 0.8182 0.8235 0.6811

17 0.7714 0.7353 0.7714 0.7032 0.6167 0.6102 0.6167 0.4438 0.1127 0.0000 0.0563 0.0000 0.1149 0.0000 0.0460 0.0000

18 0.8780 0.7692 0.7805 0.6609 0.4872 0.4737 0.4872 0.3273 0.8108 0.6857 0.8108 0.6398 1.0000 1.0000 1.0000 1.0000

19 0.6977 0.5854 0.6977 0.5265 0.5610 0.5500 0.5610 0.3804 0.7442 0.6829 0.7442 0.5219 1.0000 1.0000 1.0000 1.0000

20 0.5714 0.5263 0.5714 0.3705 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000 0.0426 0.0000 0.0426 0.0000

21 1.0000 1.0000 1.0000 1.0000 0.1250 0.1139 0.1250 0.0725 1.0000 1.0000 1.0000 1.0000 0.3030 0.2813 0.3030 0.1899

22 0.6667 0.6000 0.6667 0.3857 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.2623 0.2373 0.2623 0.1168

23 0.8077 0.6000 0.6923 0.6320 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.5321 0.5234 0.5321 0.3413

24 0.2222 0.1311 0.2222 0.0067 0.8908 0.8889 0.8908 0.8182 0.3692 0.3175 0.3692 0.0381 0.8908 0.8889 0.8908 0.8182

25 0.4000 0.2308 0.3000 0.1006 0.6387 0.6349 0.6387 0.4286 0.7786 0.5736 0.5649 0.5921 0.6816 0.6780 0.6816 0.5246

26 0.5000 0.2727 0.4167 0.1353 0.2059 0.1940 0.2059 0.1223 0.6207 0.3704 0.5517 0.4140 0.3043 0.2889 0.3043 0.1870

27 0.4500 0.1053 0.4000 0.1214 0.5185 0.5094 0.5185 0.3503 0.3590 0.1622 0.3590 0.1451 0.8615 0.8571 0.8615 0.7333

28 0.5758 0.4375 0.5758 0.2364 0.7317 0.7273 0.7317 0.5613 0.7143 0.6765 0.7143 0.3921 0.8411 0.8381 0.8411 0.7311

29 0.4000 0.1852 0.3091 0.1112 0.9704 0.9701 0.9704 0.9379 0.2366 0.1978 0.2366 0.0046 1.0000 1.0000 1.0000 1.0000

30 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000 0.5217 0.4762 0.5217 0.3382 0.0213 0.0000 0.0213 0.0000

31 0.4317 0.3650 0.4173 0.3040 1.0000 1.0000 1.0000 1.0000 0.6753 0.6400 0.6753 0.3124 0.5698 0.5650 0.5698 0.4217

32 0.4846 0.3911 0.4670 0.1972 0.9940 0.9880 0.9940 0.9911 0.0800 0.0231 0.0457 0.0000 0.1475 0.0083 0.0902 0.0270

33 0.3390 0.1404 0.3390 0.2471 1.0000 1.0000 1.0000 1.0000 0.5714 0.3934 0.4762 0.4361 0.6667 0.6602 0.6667 0.4820

34 0.5618 0.5057 0.5393 0.4323 0.4553 0.3636 0.4228 0.3232 0.6207 0.4706 0.5057 0.4344 0.8932 0.8911 0.8932 0.8211

35 0.8611 0.7714 0.8333 0.8489 0.1488 0.0336 0.0992 0.0380 0.1404 0.0364 0.0702 0.0000 0.2326 0.0714 0.1860 0.0569

36 0.5143 0.4242 0.5143 0.4867 0.4638 0.4478 0.4638 0.2597 0.6875 0.5333 0.6875 0.6262 0.7442 0.7317 0.7442 0.5788

37 0.7250 0.6410 0.6750 0.6313 1.0000 1.0000 1.0000 1.0000 0.2456 0.0727 0.1754 0.0000 0.3243 0.0917 0.2162 0.0905

38 0.8000 0.5556 0.7000 0.3893 0.3200 0.3014 0.3200 0.1518 0.8000 0.5556 0.7000 0.3893 0.4528 0.4314 0.4528 0.2673

39 0.5915 0.4348 0.5070 0.2174 0.7273 0.7231 0.7273 0.5541 0.5000 0.3226 0.4688 0.1346 0.7500 0.7460 0.7500 0.5918

40 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.1667 0.0000 0.1667 0.0000 1.0000 1.0000 1.0000 1.0000

41 0.8276 0.8235 0.8276 0.6969 1.0000 1.0000 1.0000 1.0000 0.8046 0.7765 0.8046 0.6664 1.0000 1.0000 1.0000 1.0000

42 0.8571 0.8235 0.8571 0.7269 0.8732 0.8696 0.8732 0.7468 0.8571 0.8235 0.8571 0.7269 1.0000 1.0000 1.0000 1.0000

43 0.6111 0.5882 0.6111 0.4506 1.0000 1.0000 1.0000 1.0000 0.6111 0.5882 0.6111 0.4506 1.0000 1.0000 1.0000 1.0000

44 0.8056 0.8000 0.8056 0.6296 1.0000 1.0000 1.0000 1.0000 0.8056 0.8000 0.8056 0.6296 1.0000 1.0000 1.0000 1.0000

45 0.4000 0.3478 0.4000 0.2418 1.0000 1.0000 1.0000 1.0000 0.4000 0.3478 0.4000 0.2418 1.0000 1.0000 1.0000 1.0000

46 0.4740 0.3158 0.3121 0.1649 0.7158 0.7128 0.7158 0.5206 0.3473 0.1091 0.1796 0.0320 0.1958 0.0993 0.0979 0.0020

47 0.5455 0.4151 0.5455 0.3934 1.0000 1.0000 1.0000 1.0000 0.6885 0.6780 0.6885 0.5521 1.0000 1.0000 1.0000 1.0000

48 0.3436 0.2733 0.2822 0.0841 0.5089 0.5030 0.5089 0.1546 0.3436 0.2733 0.2822 0.0841 0.5089 0.5030 0.5089 0.1546

49 0.5484 0.5246 0.5484 0.3884 0.5512 0.5440 0.5512 0.3922 0.1250 0.0323 0.0938 0.0000 0.2000 0.0256 0.1000 0.0000

50 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.1333 0.0000 0.1333 0.0000 0.0667 0.0000 0.0667 0.0000

41

 Nomic Arctic

 LLama3 Mistral LLama3 Mistral

 rouge1 rouge2 rougeL bleu rouge1 rouge2 rougeL bleu rouge1 rouge2 rougeL bleu rouge1 rouge2 rougeL bleu

51 0.4324 0.3670 0.3964 0.0950 0.2158 0.0000 0.1439 0.0439 0.0645 0.0000 0.0645 0.0000 0.2080 0.0000 0.1120 0.0000

52 0.3462 0.0800 0.2308 0.1584 0.6512 0.6429 0.6512 0.4867 0.4737 0.2778 0.4211 0.0699 0.7778 0.7714 0.7778 0.6179

53 0.5909 0.3810 0.5455 0.3181 0.8235 0.8182 0.8235 0.6811 0.5909 0.3810 0.5455 0.3181 0.5833 0.5745 0.5833 0.3949

54 0.9643 0.9630 0.9643 0.9017 0.8286 0.8235 0.8286 0.7241 0.0976 0.0513 0.0976 0.0000 0.1468 0.0374 0.1284 0.0408

55 0.6545 0.6038 0.6545 0.3194 0.3423 0.1468 0.2162 0.1896 0.6545 0.5660 0.6182 0.3092 0.6549 0.6486 0.6549 0.4717

56 0.9841 0.9677 0.9841 0.8159 0.6176 0.6139 0.6176 0.4432 0.4048 0.1951 0.3333 0.0836 1.0000 1.0000 1.0000 1.0000

57 1.0000 1.0000 1.0000 1.0000 0.7692 0.7500 0.7692 0.5752 1.0000 1.0000 1.0000 1.0000 0.7692 0.7500 0.7692 0.5752

58 1.0000 1.0000 1.0000 1.0000 0.5217 0.4762 0.5217 0.3504 1.0000 1.0000 1.0000 1.0000 0.5455 0.5000 0.5455 0.3930

59 0.2388 0.1846 0.2388 0.0032 0.9077 0.9063 0.9077 0.8561 0.2388 0.1846 0.2388 0.0032 1.0000 1.0000 1.0000 1.0000

60 0.7273 0.6667 0.7273 0.6911 0.0800 0.0000 0.0800 0.0389 0.7273 0.6667 0.7273 0.6911 0.0385 0.0000 0.0385 0.0000

61 0.2667 0.2273 0.1556 0.0119 0.9317 0.9308 0.9317 0.8545 0.0000 0.0000 0.0000 0.0000 0.0652 0.0000 0.0652 0.0000

62 0.3158 0.2432 0.3158 0.0098 0.6774 0.6739 0.6774 0.4859 0.2740 0.2254 0.2740 0.0027 1.0000 1.0000 1.0000 1.0000

63 0.6977 0.4878 0.6512 0.3354 0.6022 0.5934 0.6022 0.4452 0.4865 0.1714 0.4324 0.0707 0.7273 0.7143 0.7273 0.4123

64 0.4286 0.3077 0.4286 0.1084 1.0000 1.0000 1.0000 1.0000 0.4286 0.3077 0.4286 0.1084 0.5373 0.4615 0.4776 0.3730

65 0.8571 0.8462 0.8571 0.7712 1.0000 1.0000 1.0000 1.0000 0.8571 0.8462 0.8571 0.7712 0.7500 0.7333 0.7500 0.6583

66 0.9318 0.9302 0.9318 0.8586 0.8919 0.8889 0.8919 0.8384 0.1639 0.0339 0.0984 0.0000 0.0842 0.0000 0.0421 0.0000

67 0.3200 0.3108 0.3200 0.0061 1.0000 1.0000 1.0000 1.0000 0.1176 0.0299 0.1029 0.0001 1.0000 1.0000 1.0000 1.0000

68 0.9048 0.9000 0.9048 0.8038 1.0000 1.0000 1.0000 1.0000 0.2500 0.1333 0.2500 0.1422 0.5672 0.5538 0.5672 0.3904

69 0.2687 0.2273 0.2388 0.0144 0.9700 0.9697 0.9700 0.9382 0.0650 0.0000 0.0488 0.0000 0.1184 0.0000 0.0921 0.0000

70 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0889 0.0000 0.0889 0.0000

71 0.8485 0.8387 0.8485 0.6754 0.5714 0.4681 0.5714 0.3305 0.4138 0.2222 0.4138 0.2532 0.1860 0.0000 0.1395 0.0000

72 0.5556 0.4615 0.5556 0.3404 0.5714 0.4815 0.5357 0.3430 1.0000 1.0000 1.0000 1.0000 0.5714 0.4815 0.5357 0.3430

73 0.3636 0.1849 0.3471 0.1386 0.9540 0.9535 0.9540 0.9162 0.1400 0.0408 0.1400 0.0029 0.1939 0.0368 0.1091 0.0885

74 0.6087 0.5714 0.6087 0.4897 0.6829 0.6667 0.6829 0.4513 0.3333 0.2727 0.3333 0.0000 0.1212 0.0313 0.0909 0.0000

75 0.4000 0.3158 0.4000 0.1286 0.8286 0.8235 0.8286 0.6867 0.3721 0.1951 0.3256 0.1628 0.5321 0.5234 0.5321 0.3413

76 0.5106 0.4130 0.4043 0.3181 0.8777 0.8759 0.8777 0.7748 0.2632 0.0811 0.2105 0.0417 0.6816 0.6780 0.6816 0.5294

77 0.0968 0.0000 0.0968 0.0000 0.1730 0.0109 0.0973 0.0323 0.0952 0.0000 0.0952 0.0000 0.1550 0.0000 0.1085 0.0000

78 0.0400 0.0000 0.0400 0.0000 0.1235 0.0000 0.0741 0.0000 0.0000 0.0000 0.0000 0.0000 0.1493 0.0000 0.0896 0.0000

79 0.7463 0.6769 0.7463 0.4706 0.8317 0.8081 0.8317 0.7078 0.4444 0.3846 0.4444 0.0483 0.5319 0.5000 0.5319 0.4532

80 1.0000 1.0000 1.0000 1.0000 0.0244 0.0000 0.0244 0.0000 0.1667 0.0000 0.1667 0.0000 0.0000 0.0000 0.0000 0.0000

81 0.2667 0.2326 0.2667 0.1600 0.3000 0.2632 0.3000 0.1994 0.3636 0.3226 0.3636 0.2274 0.4545 0.2000 0.2727 0.2236

82 0.8286 0.8235 0.8286 0.6867 0.8286 0.8235 0.8286 0.6867 0.5957 0.3556 0.4255 0.3162 0.8657 0.8615 0.8657 0.7600

83 0.2500 0.0339 0.1500 0.0000 0.2787 0.0833 0.1803 0.0298 0.1099 0.0674 0.0879 0.0000 0.1333 0.1136 0.1333 0.0000

84 0.8780 0.8500 0.8780 0.8392 0.8780 0.8500 0.8780 0.8392 0.2500 0.2174 0.2500 0.0184 1.0000 1.0000 1.0000 1.0000

85 0.1951 0.0250 0.1220 0.0000 0.1587 0.0000 0.1111 0.0000 0.1778 0.0000 0.1333 0.0000 0.1250 0.0645 0.1250 0.0628

86 0.8000 0.7692 0.8000 0.6051 0.9057 0.9038 0.9057 0.8286 0.5455 0.3750 0.4242 0.1532 1.0000 1.0000 1.0000 1.0000

87 0.0943 0.0000 0.0755 0.0000 0.0901 0.0000 0.0721 0.0000 0.0000 0.0000 0.0000 0.0000 0.0408 0.0000 0.0408 0.0054

88 0.1519 0.0128 0.1013 0.0000 0.1628 0.0118 0.1047 0.0378 0.0222 0.0000 0.0222 0.0000 0.1940 0.0000 0.1194 0.0523

89 0.5556 0.4607 0.5333 0.2375 0.6495 0.6146 0.6186 0.3998 0.0667 0.0000 0.0667 0.0000 0.1184 0.0000 0.0789 0.0000

90 0.0000 0.0000 0.0000 0.0000 0.6000 0.5556 0.6000 0.4472 0.1111 0.0000 0.1111 0.0000 0.0571 0.0000 0.0571 0.0000

91 0.8254 0.7869 0.8254 0.7162 0.5303 0.5231 0.5303 0.3678 0.2174 0.1364 0.1739 0.0311 0.1667 0.0000 0.0833 0.0000

92 0.2093 0.1190 0.2093 0.0609 0.2538 0.0821 0.1827 0.0981 0.1429 0.1176 0.1429 0.0054 0.1143 0.0000 0.0857 0.0000

93 0.2169 0.0247 0.0964 0.0000 0.2628 0.0593 0.1606 0.1090 0.2254 0.1449 0.1972 0.0023 1.0000 1.0000 1.0000 1.0000

94 0.0500 0.0000 0.0500 0.0000 0.2973 0.0278 0.2162 0.0000 0.1500 0.0526 0.1500 0.0000 0.2222 0.0000 0.1481 0.0000

95 1.0000 0.9091 0.5833 0.6667 0.4444 0.4231 0.4444 0.2263 0.8276 0.6667 0.4828 0.4629 0.2500 0.0526 0.1500 0.0000

96 0.0000 0.0000 0.0000 0.0000 0.1212 0.0000 0.1212 0.0000 0.4000 0.3333 0.4000 0.3271 0.0870 0.0000 0.0870 0.0000

97 0.3333 0.0500 0.1429 0.0668 0.0571 0.0000 0.0571 0.0000 0.3390 0.1053 0.1695 0.1438 0.2727 0.0000 0.1364 0.0000

98 0.6667 0.6316 0.6667 0.6606 0.3235 0.3030 0.3235 0.1705 1.0000 1.0000 1.0000 1.0000 0.4286 0.3500 0.4286 0.2575

99 0.0000 0.0000 0.0000 0.0000 0.0164 0.0000 0.0164 0.0000 1.0000 1.0000 1.0000 1.0000 0.3333 0.2857 0.3333 0.1903

100 0.0952 0.0000 0.0952 0.0000 0.0755 0.0000 0.0377 0.0000 1.0000 1.0000 1.0000 1.0000 0.0488 0.0000 0.0488 0.0000

AVG 0.5556 0.4773 0.5274 0.3770 0.6220 0.5851 0.6098 0.5155 0.4507 0.3622 0.4231 0.2800 0.5220 0.4675 0.5035 0.4161

42

As it can be seen from the table, the best score was achieved using the

combination of Nomic and Mistral models, and the worst score was achieved using the

combination of Arctic and LLama3 models. In conclusion, the best performing

combination of models is at least 10% better on average than the other combinations.

Looking at the table, the text generation models and embedding models can also

be compared separately. In the case of embedding models, the model Nomic provides

better results than Arctic regardless of its combination with text generation models. The

same way, the text generation model Mistral provides better results than LLama3

regardless of the embedding models with which it was combined. These conclusions

are graphically displayed using a bar chart in Figure 4.7.

Figure 4.7. Average score grouped by metric

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

rouge1 rouge2 rougeL bleu

Average score grouped by metric

LLama3 + Nomic Mistral + Nomic LLama3 + Arctic Mistral + Arctic

43

It is interesting to note that the combination of Arctic and Mistral models has

more of highest scores per question than the combination of Nomic and LLama3

models, but Nomic and LLama3 have better average scores. It should be emphasized

that most of the reference texts used in evaluation are references from knowledge.

When Arctic obtains good references, Mistral often returns the reference text without

changes, but when it doesn’t obtain good references, the evaluation score is low. Even

though Nomic obtains better results, LLama3 modifies the result so even if it’s a good

result, it doesn’t fully match the reference text used on evaluation, but still the evaluation

scores are higher than the ones Mistral gets with bad references.

44

Conclusion

AI technology is gaining more and more interest from the public and more and

more companies want to include it in their businesses. The most common and the most

convenient way for them to do it is to get a chatbot, and that is why in this paper there

was demonstrated how to develop a chatbot.

The essential terms and concepts, like Vectors, Embedding, Grounding, LLM

and RAG, were explained, as well as evaluation metrics.

This application is a simple Blazor web application. Using the application, the

user can add the new knowledge to the chatbot, ask him questions, and look at the

sources he used to generate his answer. To run the model locally, the “LLamaSharp”

library was used. The software development kit “Semantic Kernel” was used for

communication with the model and to provide “ChatHistory” class which makes it

possible for chatbot to understand context. For calculating embeddings and storing

embedding vectors into the data store, the “KernelMemory” service was used.

AI functionalities in this application have been achieved using Large Language

Models downloaded from Hugging Face, specifically text embedding models “Nomic”

and “Arctic”, and text generation models “LLama3” and “Mistral”. When adding new

knowledge to the chatbot, text embedding model is used to calculate embeddings.

When asking the chatbot a question, the text generation model is used to generate an

answer depending on the prompt.

 The chatbot is developed following the technique of Retrieval-Augmented

Generation and therefore is limited to answering only questions which can be answered

using only the knowledge stored in the data store. If the chatbot is asked other

questions, he will give predefined answer that further ensures he doesn't say something

he shouldn't.

Although all stated requirements are implemented, there is always room for

improvement. For instance, calling APIs could be built in. That would improve the

45

accuracy of the chatbot because he could access real time information. For example,

this chatbot which is used as an assistant for a shipping company could access their

sailing schedules and return the up-to-date departure time and the price. Next, the

chatbot could be upgraded so it that it can recommend tourist attractions for the place

tourists are sailing to. Furthermore, a chatbot could be implemented for internal use

where employees could use it for searching company documents. That way an

employee could say “give me a document which contains …” and the chatbot would tell

him which document contains what he is searching for and could give him references

to those documents.

This chatbot is developed to answer questions about a shipping company and

its activities only, but it can be easily repurposed for any other field a company is

invested in.

46

Bibliography

[1] S, O. M., P, J. J., A, J. O., R, K. T. AI Based Chatbot for Educational

Institutions. 2024 Ninth International Conference on Science Technology Engineering

and Mathematics (ICONSTEM), Chennai, India, 2024, pp. 1-7

[2] Deshpande, A., Dubey, A., Dhavale, A., Navatre, A., Gurav, U., Chanchal, A. K.

Implementation of an NLP-Driven Chatbot and ML Algorithms for Career Counseling.

2024 International Conference on Inventive Computation Technologies (ICICT),

Lalitpur, Nepal, 2024, pp. 853-859

[3] Lescano, N. L., Yamao, E., Sánchez, E. X. V., Santillan, M. A. P. E. Iterative

design and implementation of a chatbot for sexual and reproductive health counseling

in Peru. 2022 IEEE XXIX International Conference on Electronics, Electrical

Engineering and Computing (INTERCON), Lima, Peru, 2022, pp. 1-4

[4] Oracle. (2020, October). What is a chatbot?. Oracle.

https://www.oracle.com/chatbots/what-is-a-chatbot/

[5] Schwaber-Cohen, R. (2023, June). Vector Embeddings for Developers: The

Basics. Pinecone. https://www.pinecone.io/learn/vector-embeddings-for-developers/

[6] Descartes, N. (2024, February). Understanding Vector Databases.

CodeProject. https://www.codeproject.com/Articles/5377237/Understanding-vector-

databases

[7] Berger, E. (2023, June). Grounding LLMs. Microsoft.

https://techcommunity.microsoft.com/t5/fasttrack-for-azure/grounding-llms/ba-

p/3843857

[8] Keng, B. (2023, September). LLM Fun: Building a Q&A Bot of Myself. Bounded

Rationality. https://bjlkeng.io/posts/building-a-qa-bot-of-me-with-openai-and-

cloudflare/#large-language-models

https://www.oracle.com/chatbots/what-is-a-chatbot/
https://www.pinecone.io/learn/vector-embeddings-for-developers/
https://www.codeproject.com/Articles/5377237/Understanding-vector-databases
https://www.codeproject.com/Articles/5377237/Understanding-vector-databases
https://techcommunity.microsoft.com/t5/fasttrack-for-azure/grounding-llms/ba-p/3843857
https://techcommunity.microsoft.com/t5/fasttrack-for-azure/grounding-llms/ba-p/3843857
https://bjlkeng.io/posts/building-a-qa-bot-of-me-with-openai-and-cloudflare/#large-language-models
https://bjlkeng.io/posts/building-a-qa-bot-of-me-with-openai-and-cloudflare/#large-language-models

47

[9] Luo, Q., Zeng, W., Chen, M, Peng, G., Yuan, X., Yin, Q. Self-Attention and

Transformers: Driving the Evolution of Large Language Models, 2023 IEEE 6th

International Conference on Electronic Information and Communication Technology

(ICEICT), Qingdao, China, 2023, pp. 401-405

[10] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,

Kaiser, L., Polosukhin, I. Attention is all you need. Advances in neural information

processing systems, 2017, pp. 5998-6008

[11] Dey, S. (2024, April). Deep Dive into Self-Attention by Hand. Medium.

https://towardsdatascience.com/deep-dive-into-self-attention-by-hand-%EF%B8%8E-

f02876e49857

[12] Microsoft. (2024, March). Blazor | Build client web apps with C# | .NET.

Microsoft. https://dotnet.microsoft.com/en-us/apps/aspnet/web-apps/blazor

[13] Hugging Face. (2024, May). Hugging Face Hub documentation. Hugging Face.

https://huggingface.co/docs/hub/index

[14] SecondState. (2024, April). Nomic-embed-text-v1.5-Embedding-GGUF.

Hugging Face. https://huggingface.co/second-state/Nomic-embed-text-v1.5-

Embedding-GGUF

[15] ChristianAzinn. (2024, April). snowflake-arctic-embed-m-long-gguf. Hugging

Face. https://huggingface.co/ChristianAzinn/snowflake-arctic-embed-m-long-GGUF

[16] lmstudio-community. (2024, May). Meta-Llama-3-8B-Instruct-GGUF. Hugging

Face. https://huggingface.co/lmstudio-community/Meta-Llama-3-8B-Instruct-GGUF

[17] TheBloke. (2024, January). Mistral-7B-OpenOrca-oasst_top1_2023-08-25-v2-

GGUF. Hugging Face. https://huggingface.co/TheBloke/Mistral-7B-OpenOrca-

oasst_top1_2023-08-25-v2-GGUF

[18] Microsoft. (2024, May). semantic-kernel. GitHub.

https://github.com/microsoft/semantic-kernel

https://towardsdatascience.com/deep-dive-into-self-attention-by-hand-%EF%B8%8E-f02876e49857
https://towardsdatascience.com/deep-dive-into-self-attention-by-hand-%EF%B8%8E-f02876e49857
https://dotnet.microsoft.com/en-us/apps/aspnet/web-apps/blazor
https://huggingface.co/docs/hub/index
https://huggingface.co/second-state/Nomic-embed-text-v1.5-Embedding-GGUF
https://huggingface.co/second-state/Nomic-embed-text-v1.5-Embedding-GGUF
https://huggingface.co/ChristianAzinn/snowflake-arctic-embed-m-long-GGUF
https://huggingface.co/lmstudio-community/Meta-Llama-3-8B-Instruct-GGUF
https://huggingface.co/TheBloke/Mistral-7B-OpenOrca-oasst_top1_2023-08-25-v2-GGUF
https://huggingface.co/TheBloke/Mistral-7B-OpenOrca-oasst_top1_2023-08-25-v2-GGUF
https://github.com/microsoft/semantic-kernel

48

[19] Microsoft. (2024, May). kernel-memory. GitHub.

https://github.com/microsoft/kernel-memory

[20] SciSharp. (2024, May). LLamaSharp. GitHub.

https://github.com/SciSharp/LLamaSharp

[21] Mamdouh, M. (2023, October). Mastering ROUGE Matrix: Your Guide to Large

Language Model Evaluation for Summarization with Examples. Dev.

https://dev.to/aws-builders/mastering-rouge-matrix-your-guide-to-large-language-

model-evaluation-for-summarization-with-examples-jjg

[22] Amanat, M. U. (2024, January). LLM evaluation with Rouge. Medium.

https://medium.com/@MUmarAmanat/llm-evaluation-with-rouge-0ebf6cf2aed4

[23] Madiraju, P. (2022, November). Evaluation Metrics in Natural Language

Processing — BLEU. Medium. https://medium.com/@priyankads/evaluation-metrics-

in-natural-language-processing-bleu-dc3cfa8faaa5

https://github.com/microsoft/kernel-memory
https://github.com/SciSharp/LLamaSharp
https://dev.to/aws-builders/mastering-rouge-matrix-your-guide-to-large-language-model-evaluation-for-summarization-with-examples-jjg
https://dev.to/aws-builders/mastering-rouge-matrix-your-guide-to-large-language-model-evaluation-for-summarization-with-examples-jjg
https://medium.com/@MUmarAmanat/llm-evaluation-with-rouge-0ebf6cf2aed4
https://medium.com/@priyankads/evaluation-metrics-in-natural-language-processing-bleu-dc3cfa8faaa5
https://medium.com/@priyankads/evaluation-metrics-in-natural-language-processing-bleu-dc3cfa8faaa5

49

Abstract

Implementation of an artificial intelligence-based chatbot for the
shipping industry

 This paper was made to explain the essential terms and concepts needed to

understand how a simple chatbot works, to demonstrate its development, and to

compare performance of few selected Large Language Models.

 The chatbot was developed following the technique of Retrieval-Augmented

Generation. The Large Language Models used are downloaded from Hugging Face.

The models used for calculating text embeddings are “nomic-embed-text-v1.5-

Q5_K_M” and “snowflake-arctic-embed-m-long--Q5_K_M”. The models used for text

generation are “Meta-Llama-3-8B-Instruct-Q4_K_M” and “mistral-7b-openorca-

oasst_top1_2023-08-25-v2.Q4_K_M”. This application consists of a page for inserting

new knowledge and a page for calling a chatbot which also contains a container for

used sources.

Keywords: Chatbot; RAG; LLM; vectors; Semantic Kernel; Kernel Memory,

LLamaSharp

50

Sažetak

Implementacija jezičnog asistenta temeljenog na umjetnoj
inteligenciji za brodarsku industriju

 Ovaj diplomski rad izrađen je kako bi se objasnili osnovni pojmovi i koncepti

potrebni za razumijevanje kako radi jednostavan chatbot, da bi se demonstrirao njegov

razvoj te da bi se usporedile performanse nekoliko odabranih velikih jezičnih modela

(Large Language Models).

 Chatbot je razvijen slijedeći tehniku generiranja proširenog dohvaćanjem

(Retrieval-Augmented Generation). Korišteni veliki jezični modeli su preuzeti sa

Hugging Face-a. Modeli korišteni za računanje smještenja teksta (text embedding) su

“nomic-embed-text-v1.5-Q5_K_M” i “snowflake-arctic-embed-m-long--Q5_K_M”.

Modeli korišteni za generiranje teksta su “Meta-Llama-3-8B-Instruct-Q4_K_M” i

“mistral-7b-openorca-oasst_top1_2023-08-25-v2.Q4_K_M”. Ova aplikacija sastoji se

od stranice za unos novog znanja i stranice za pozivanje chatbot-a koja također sadrži

kontejner za korištene izvore.

Ključne riječi: Chatbot; RAG; LLM; vektori; Semantic Kernel; Kernel Memory,

LLamaSharp

