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Introduction 

 

 In this time which we live in, technology is more widespread than ever before, 

and it just keeps going forward. The goal of this advancement is to make it easier for 

people to use technology and to make technology that is human-like. It got to the point 

where robots can imitate humans and computers can make conversations with them. 

One of the popular and frequently used types of technology that has capability of 

making conversations with people is the chatbot. As the interest of companies in 

incorporating a chatbot in their business grows, in this paper, the process of developing 

a chatbot is demonstrated.  

 This paper presents and explains the basic terms and concepts related to the 

creation of a chatbot, more precisely Vectors, Embedding, Grounding, LLM and RAG. 

Additionally, two text embedding models and two text generation models are combined, 

and the performances of their combinations are compared.  

 The chatbot that is developed is restricted to answering only specific questions 

about the shipping company and its activity and answers only in Croatian language. 

This chatbot is implemented as a web application with two pages, home page 

and page for inserting new knowledge. The home page contains a messaging interface 

for communication with chatbot and a container for sources in which there are displayed 

texts from which chatbot composed his answer. Page for inserting new knowledge 

contains text area for inserting text, input field for web page URL, and file input field. 
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1. Related works 

 

In this chapter, other papers related to implementation of a chatbot with a specific 

purpose will be presented. 

 

1.1. AI Based Chatbot for Educational Institutions 

 

This paper is written by Oswalt Manoj S, Jason Jose P, Johans Olivia A, and 

Katyayani T R to promote smooth interaction between users and educational 

institutions, and to spread necessary information. Their chatbot can perform question 

answering about academic programs, faculty details, and institutional policies. The 

chatbot was developed by integrating web scraping, tokenization, vectorization, and 

the large language model GPT-2. Their work proved that there is a potential in using 

an AI to revolutionize educational environments and support systems. (S et al., 2024) 

 

1.2. Implementation of an NLP-Driven Chatbot and ML Algorithms 
for Career Counseling 

 

In this paper, written by Anuja Deshpande, Aryan Dubey, Arya Dhavale, Ankita 

Navatre, Uma Gurav, and Amit Kumar Chanchal, the chatbot for educational and career 

selection is proposed. Their proposed system evaluates students’ strengths, 

weaknesses, interests, and aptitudes to advise the student about the best choice that 

would suit him based on interests, capabilities, and opportunities. They tried using 

different machine learning algorithms among which the decision tree performed the 

best and showed great potential for further development. (Deshpande et al., 2024)  
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1.3. Iterative design and implementation of a chatbot for sexual and 
reproductive health counseling in Peru 

 

This paper is written by Norma Leon Lescano, Eiriku Yamao, Elizabeth Xiomara 

Valladares Sánchez, and Miguel Angel Pablo Estrella Santillan, with the purpose of 

bringing reliable information about sexual and reproductive health to young people. 

Their chatbot is designed to follow guidelines and tools from the Ministry of health in 

Peru and the World Health Organization to counsel young people about sexual and 

reproductive health. They conducted a survey about acceptance of the use of the 

chatbot service for that subject and the acceptance rate was 65%, which they want to 

increase. (Lescano et al., 2022) 
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2. Methodology 

 

In this chapter, the basic terms and concepts needed to understand and develop a 

functional chatbot are listed and explained. Also, the architecture of the application is 

described, and the choice of used models is explained. 

 

 

2.1. Chatbot 

  

Chatbot is a computer program that simulates and processes human conversation 

and makes it possible for humans to interact with digital devices as if they were 

communicating with a real person. (Oracle, 2020) AI chatbot is a chatbot which uses 

some sort of AI technology like NLP, ML or LLM. 

 

 

2.2. Vectors 

 

A vector is a mathematical structure with a size and a direction which represents a 

point in space. In programming, a vector is an array containing numerical values. 

(Schwaber-Cohen, 2023) Vectors are contained in a vector space which enables 

performing certain operations on them, for instance, vector addition and scalar 

multiplication. Vector space also provides a framework for studying vectors which gives 

us the ability to manipulate their quantities, not just adding and subtracting, but also 

comparing. It is precisely the comparison that enables us to perform similarity searches 

on vectors. Similarity search is in fact search for the distance, smaller the distance, 

higher the similarity. (Descartes, 2024) 
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2.3. Embedding 

 

Embeddings are multi-dimensional representations, in numeric format, of words, 

phrases, sentences, images, graphs, or any form that has meaning to humans. (Berger, 

2023) Embeddings are basically functions that map other types of data to vectors. 

(Descartes, 2024) 

 

 

2.4. Grounding 

 

Grounding is a process in which the responses from Large Language Models are 

limited to the knowledge we want them to have. Large Language Models possess a 

large amount of knowledge and have an understanding of sentence construction, it is 

so because Large Language Models are trained on large sets of data, most of which is 

irrelevant when we want them to have a specific use. Grounding Large Language 

Models causes greater accuracy in giving answers and their better quality as it ensures 

that the answers are relevant to a specific use for which we use them. The most 

common techniques for grounding are Retrieval-Augmented Generation, which will be 

explained and used in this paper, and Fine-tuning. (Berger, 2023) 

 

 

 

 

 

 



 

6 
 

2.5. Large Language Models (LLM) 

 

A Large Language Model is a type of Artificial Intelligence which is able to 

understand natural language and put meaningful sentences together. Language 

Models work in the way they predict a probability for each possible next word which 

makes them in fact statistical models. The most important part of using Large Language 

Models is giving them good instructions, in a natural language, on how to generate an 

answer, and that is called the prompt. The prompt is responsible for the behavior of 

Large Language Models because it instructs them on what task they should do, which 

knowledge they should use, and in what type and what format they should return the 

answer. Large Language Models can perform various tasks, from text generation, text 

classification, translating languages, generating embeddings, and some more. (Keng, 

2023) 

 Today’s Large Language Models use the transformer architecture, unlike earlier 

Natural Language Processing Models which used to use convolutional neural network 

and recurrent neural network. The transformer architecture is different because it 

utilizes self-attention which enables parallel processing of different segments of the 

input sequence and that causes the model to understand dependencies between 

segments on different positions in a sequence. (Luo et al., 2023)  

Self-attention is a mechanism which consists of two parts, scaled dot-product 

attention and multi-head attention. Scaled dot-product attention is a function with the 

use of which the calculated output contains values to which the corresponding weights 

have been assigned, based input which consists of query vectors (Q), key vectors (K), 

and value vectors (V). The process of calculating attention is as follows. First, the dot 

product of query vectors and key vectors is calculated. Dot product is calculated as 

shown in equation  𝑥 × 𝑦 =  ∑ 𝑥𝑖  ×  𝑦𝑖𝑖  . Next, the result of dot product is scaled to 

ensure that attention weights don’t get too low or too high. Scaling is performed dividing 

earlier calculated dot product with squared root of the dimension of key vectors (√𝑑𝑘). 
After the scaled dot product is calculated, the softmax function is performed on it to 

convert the dot product into probabilities which sum equals one. (Vaswani et al., 2017) 
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The softmax function is performed in three steps. First, each value in the result matrix 

is used to raise the number e, i.e. Euler's number, to the power of that value. For each 

value the function 𝑒𝑣𝑎𝑙𝑢𝑒 is performed and from that the new matrix is obtained. Next, 

the sum of each column from matrix from the previous step is calculated. The final step 

is to divide each value from the matrix with the sum of the column to which the value 

belongs to. (Dey, 2024) The dot product of that new matrix and value vectors is then 

calculated, and the result is the scaled dot-product attention. The function for scaled 

dot-product attention can be written as 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉)  = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝑄×𝐾𝑇√𝑑𝑘 ) × 𝑉 .  

Multi-head attention is a set of scaled dot-product attentions being calculated in 

parallel in each available head, with Q, K, and V divided into h parts. The function for 

multi-head attention is 𝑀𝑢𝑙𝑡𝑖 − ℎ𝑒𝑎𝑑(𝑄, 𝐾, 𝑉)  = 𝐶𝑜𝑛𝑐𝑎𝑡 (ℎ𝑒𝑎𝑑1, … , ℎ𝑒𝑎𝑑ℎ) × 𝑊0 , 
where W0 is learned in the process, and concat signifies the sum of the results of each 

head. (Vaswani et al., 2017)  

 

 

Figure 2.1. (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several 

attention layers running in parallel (Vaswani et al., 2017) 
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The transformer architecture consists of multiple encoders and decoders. 

Encoders are used to retrieve properties from the input, and decoders are used to 

generate the output. (Luo et al., 2023) The encoder consists of a stack of six equal 

layers where each has two sub-layers. The first sub-layer is a multi-head mechanism 

for self-attention, and the second sub-layer is a feed-forward network which captures 

non-linear dependencies between input properties. Each sub-layer is normalized by 

function 𝐿𝑎𝑦𝑒𝑟𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 ( 𝑥 + 𝑆𝑢𝑏𝐿𝑎𝑦𝑒𝑟𝑂𝑢𝑡𝑝𝑢𝑡 ( 𝑥 )) . The decoder 

consists of a stack of six equal layers where each has 3 sub-layers, the first sub-layer 

is a multi-head mechanism like in encoder, but with difference that in this multi-head 

mechanism the positions do not observe positions that come after them. The second 

sub-layer is the output from the encoder, and the last sub-layer is a feed-forward 

network. The encoder also normalizes outputs from each sub-layer. (Vaswani et al., 

2017) 

 

Figure 2.2. The Transformer - model architecture (Vaswani et al., 2017) 
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2.6. Retrieval-Augmented Generation (RAG) 

 

Retrieval-Augmented Generation is a primary technique for Grounding. That 

technique is commonly used when a Large Language Model is used to answer 

questions. It works in such a way that the knowledge is first found from another source 

and then given with a prompt to a Large Language Model. (Berger, 2023) In more detail, 

the first step is to prepare the knowledge base. It starts with finding the knowledge that 

is relevant to the specific use we want. That knowledge is then divided into chunks of 

a certain size and from those chunks, embeddings are calculated using a Large 

Language Model and stored into the data store. When the question is received, its 

embedding is calculated and that embedding is used to perform a similarity search on 

the knowledge base from which top N relevant chunks are obtained. Those chunks are, 

along with the initial question, appended to the prompt and sent to the Large Language 

Model which returns the answer. (Keng, 2023) 
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2.7. Application architecture and used technologies 

 

This application is a simple web application developed in the framework called 

Blazor using C#. Bazor is a front-end web framework which enables building web 

applications without using JavaScript but using C#. (Microsoft, 2024)  

 

2.7.1. Large Language Models used 

 

Large Language Models used in this project are open-source models downloaded 

from Hugging Face. The Hugging Face is a platform with open source, and publicly 

available models where people can upload their own models, try other people’s models, 

and collaborate with other people. (Hugging Face, 2024) In this project, four Large 

Language Models are used, two for calculating embeddings and two for text generation, 

and their results will be evaluated and compared. All of used models use the 

Transformer architecture.  

As for embeddings, the two models chosen for this project are nomic-embed-text-

v1.5-Q5_K_M (SecondState, 2024), and snowflake-arctic-embed-m-long--Q5_K_M 

(Azinn, 2024). Both embedding models return embedding vectors of dimension 768, 

which means that embedding vector has 768 numerical values. 

Other models used are for text generation. Text generation model is a model which 

understands natural language, code, and images, and provides a meaningful response 

to the received input, i.e. prompt. Two text generation models chosen for this project 

are Meta-Llama-3-8B-Instruct-Q4_K_M, and mistral-7b-openorca-oasst_top1_2023-

08-25-v2.Q4_K_M. For easier reading the model names are abbreviated like in Table 

2.1. below and these abbreviations will be used in the rest of the paper. 

 



 

11 
 

Table 2.1. Model name abbreviations  

Nomic nomic-embed-text-v1.5-Q5_K_M 

Arctic snowflake-arctic-embed-m-long--Q5_K_M 

LLama3 Meta-Llama-3-8B-Instruct-Q4_K_M 

Mistral mistral-7b-openorca-oasst_top1_2023-08-25-v2.Q4_K_M 

 

LLama3 is a model using Transformer architecture with 8.03 billion parameters 

learnt during training. LLama3 was trained on a set of 15 trillion tokens from various 

domains and on different languages. The context length the LLama3 model has 

available is 8 thousand tokens. The template for the prompt used by LLama3 is shown 

below in Figure 2.3. (lmstudio-community, 2024) 

 

 

<|begin_of_text|><|start_header_id|>system<|end_header_id|> 

{system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|> 

{prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|> 

 

Figure 2.3. LLama3 prompt template 

 

Mistral is a model using Transformer architecture with 7.24 billion parameters learnt 

during training. Mistral has a context length of 8192 tokens. The prompt template used 

by Mistral is shown below in Figure 2.4. (TheBloke, 2024) 
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<|im_start|>system 

{system_message}<|im_end|> 

<|im_start|>user 

{prompt}<|im_end|> 

<|im_start|>assistant 

 

Figure 2.4. Mistral prompt template 

 

To facilitate work and exploit more potential when working with Large Language 

Models, the “Semantic Kernel” SDK is used. It is the software development kit 

developed by Microsoft which has methods that communicate with Large Language 

Models and gives them properties that determine their behavior. Semantic Kernel 

allows the developer to define custom plugins and has the ability to automatically 

orchestrate plugins. The main reason why Semantic Kernel is used in this project is 

because it implements “ChatHistory” class which provides chat history and enables the 

chatbot to understand context. (Microsoft, 2024) 

The service called “Kernel Memory” is used to store knowledge. It is a service 

developed by Microsoft which enables storing knowledge as vectors, and search of that 

storage which can return answer and sources. It allows storing multiple data from 

multiple data formats, such as Web pages, PDF, Images, Word, PowerPoint, Excel, 

Markdown, Text, JSON, and HTML. (Microsoft, 2024)  

To run LLMs locally, the “LLamaSharp” library is used. LLamaSharp is a library 

which enables LLMs to be run on local devices and allows developers to choose if 

models will be run on CPU or GPU by installing provided backends (CPU or Cuda 

backend). This library also contains integrations for some other libraries, among others 

Semantic Kernel and Kernel Memory. (SciSharp, 2024)  
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2.7.2. Evaluation metrics 

 

For the evaluation of model performance, ROUGE and bleu metrics will be used.  

ROUGE metrics are usually used to evaluate computer summaries which means 

that ROUGE metrics look at how much of important content from expected summary is 

expressed in computer summary. ROUGE is a set of 4 metrics, ROUGE-1, ROUGE-2, 

ROUGE-L, and ROUGE-Lsum. ROUGE-1 is calculated considering recall and 

precision. Recall measures how many words from computer summary match words in 

expected summary and precision the ration of words in computer summary that match 

words in expected summary. ROUGE-2 is measured by how many bigrams, i.e. 

sequences of two words, are in both summaries and that number is divided by the total 

number of bigrams in the expected summary. ROUGE-L takes the longest string of 

words that are in the same order in both summaries and divides it by the total number 

of words in the expected summary. ROUGE-Lsum is similar to ROUGE-L but the 

difference is that ROUGE-L looks at the whole summary together, and ROUGE-Lsum 

looks at each sentence separately and aggregates results. (Mamdouh, 2023)  

The way ROUGE metrics work can be presented with math. ROUGE-1 can be 

presented using three math functions. To get a ROUGE-1 score, recall and precision 

need to be calculated first. A recall is calculated using the function                              𝑅𝑒𝑐𝑎𝑙𝑙 =  𝑈𝑛𝑖𝑔𝑟𝑎𝑚 𝑚𝑎𝑡𝑐ℎ𝑒𝑠 𝑈𝑛𝑖𝑔𝑟𝑎𝑚𝑠 𝑖𝑛 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 , a precision is calculated using the function                𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑈𝑛𝑖𝑔𝑟𝑎𝑚 𝑚𝑎𝑡𝑐ℎ𝑒𝑠 𝑈𝑛𝑖𝑔𝑟𝑎𝑚𝑠 𝑖𝑛 𝑜𝑢𝑡𝑝𝑢𝑡 , and finally a ROUGE-1 score is calculated using the 

function 𝑅𝑂𝑈𝐺𝐸 − 1 =  2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑅𝑒𝑐𝑎𝑙𝑙  .  
ROUGE-2 is calculated using the same functions as ROUGE-1 just looking at 

sequences of two words like it is described earlier.  

ROUGE-L is again calculated using three functions, two of which are for recall and 

precision. A recall is calculated using the function                                                          𝑅𝑒𝑐𝑎𝑙𝑙 = 𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑜𝑛𝑔𝑒𝑠𝑡 𝑐𝑜𝑚𝑚𝑜𝑛 𝑠𝑡𝑟𝑖𝑛𝑔 𝑈𝑛𝑖𝑔𝑟𝑎𝑚𝑠 𝑖𝑛 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒  ,  a precision is calculated using  the function                
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑜𝑛𝑔𝑒𝑠𝑡 𝑐𝑜𝑚𝑚𝑜𝑛 𝑠𝑡𝑟𝑖𝑛𝑔𝑈𝑛𝑖𝑔𝑟𝑎𝑚𝑠 𝑖𝑛 𝑜𝑢𝑡𝑝𝑢𝑡  , and finally a ROUGE-L score is again 

calculated using function 𝑅𝑂𝑈𝐺𝐸 − 𝐿 =  2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑅𝑒𝑐𝑎𝑙𝑙  . (Amanat, 2024) 

Bleu metric measures the quality of generated text in comparison to references. It 

is usually used to evaluate computer translations. The process of retrieving a Bleu 

score is following. First, when preparing evaluation, the max_order parameter can be 

defined, but default is 4. Max_order parameter determines to which level of grams, 1-

gram, 2-gram, 3-gram, 4-gram, etc. the evaluation program will observe. Here, modified 

precision is calculated first. Modified precision takes into consideration the number of 

occurrences of words in generated text and in reference. Modified precision is the sum 

of all precisions calculated for each n-gram where for the generated text, the minimum 

between occurrences in generated text and the number of occurrences in references 

is taken and for the references the number of occurrences is taken. The function for 

modified precision is                         𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = ∑ min (𝑐𝑜𝑢𝑛𝑡(𝑛−𝑔𝑟𝑎𝑚𝑠),   𝑐𝑜𝑢𝑛𝑡(𝑛−𝑔𝑟𝑎𝑚𝑠 𝑖𝑛 𝑜𝑢𝑡𝑝𝑢𝑡))max _𝑜𝑟𝑑𝑒𝑟𝑛−𝑔𝑟𝑎𝑚 ∑ 𝑐𝑜𝑢𝑛𝑡(𝑛−𝑔𝑟𝑎𝑚𝑠 𝑖𝑛 𝑜𝑢𝑡𝑝𝑢𝑡)max _𝑐𝑜𝑢𝑛𝑡𝑛−𝑔𝑟𝑎𝑚  

Next, the Brevity Penalty is calculated, it is a penalty if the generated text is shorter 

than the reference. If the length of the generated text is greater than the length of the 

reference, the Brevity Penalty is 1, otherwise it is calculated by the function 𝐵𝑟𝑒𝑣𝑖𝑡𝑦 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 =  𝑒(1− 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑡𝑒𝑥𝑡 𝑙𝑒𝑛𝑔𝑡ℎ𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑡𝑒𝑥𝑡 𝑙𝑒𝑛𝑔𝑡ℎ) . In function for Bleu score, each Modified 

Precision is multiplied by the weight of the n-gram, and each n-gram holds the same 

weight. That means that each weight is calculated like 𝑤 =  1max _𝑜𝑟𝑑𝑒𝑟 . Finally, the Bleu 

metric score is calculated using the function                                                                                           𝐵𝑙𝑒𝑢 = 𝐵𝑟𝑒𝑣𝑖𝑡𝑦 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 × exp(∑ (𝑤𝑛 ×max _𝑐𝑜𝑢𝑛𝑡𝑛=1 𝑙𝑜𝑔(𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑛)) . 

(Madiraju, 2022) 
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3. Implementation 

 

The process of developing a functional chatbot, with all requirements listed in the 

introduction, is demonstrated in this chapter. 

 

3.1. New knowledge insertion 

 

To give the chatbot knowledge from which it gives answers to our questions, first 

the page for knowledge insertion was developed. This page is a simple looking page 

with text area for inserting text, input field for web page URL, and file input field. That 

page looks as shown below in Figure 3.1. 

 

Figure 3.1. New knowledge insertion form 
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3.1.1. Knowledge insertion 

 

The new knowledge insertion works the way that it uses built in functions of 

Kernel Memory. Kernel memory has implemented functions ImportTextAsync, 

ImportDocumentAsync, and ImportWebPageAsync. ImportTextAsync expects only text 

as a function parameter, and it stores received text as embedding vectors. 

ImportDocumentAsync expects path to the document and optionally file name as 

function parameters and stores the content of the document as embedding vectors. 

ImportWebPageAsync expects the web page URL as a function parameter, it scrapes 

the web page and stores the content as embedding vectors. 

 

3.1.2. KernelMemoryService 

 

To use those functions from Kernel Memory, the “KernelMemoryService” service 

was built. KernelMemoryService was built using KernelMemoryBuilder class and 

LLamaSharp extensions. KernelMemory requires embedding model, text generation 

model, and data storage configurations. Additionally, text partitioning options were 

passed to determine chunk size and overlap between chunks. It can be seen below in 

Figure 3.2. 
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public KernelMemoryService(IConfiguration configuration) 
{ 
    _kernelMemory = new KernelMemoryBuilder() 

.WithLLamaSharpTextGeneration(new LLamaSharpConfig(@"<Path to text 
generation model>")) 
        .WithLLamaSharpTextEmbeddingGeneration(new LLamaSharpConfig(@"<Path 
to text embedding model>")) 
        .WithCustomTextPartitioningOptions( 
            new TextPartitioningOptions 
            { 
                MaxTokensPerParagraph = 512, 
                MaxTokensPerLine = 512, 
                OverlappingTokens = 50 
            }) 
        .WithSimpleVectorDb(new 
Microsoft.KernelMemory.MemoryStorage.DevTools.SimpleVectorDbConfig() 
        { 
            StorageType = 
Microsoft.KernelMemory.FileSystem.DevTools.FileSystemTypes.Disk 
        }).Build(); 
} 

 

Figure 3.2. Kernel Memory Service 
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3.2. Chatbot 

 

In this segment, it is shown how a chatbot comes to the answers which he gives 

to users. It uses the technique of Retrieval-Augmented Generation. In that technique 

the first step is to generate embeddings from the user’s question and perform a 

similarity search on the knowledge base using those embeddings. Obtained knowledge 

chunks are then passed along with the prompt and user’s question to the text 

generation model which returns an answer. This process is illustrated below in Figure 

3.3. 

 

 

Figure 3.3. Chatbot diagram 
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3.2.1. Getting similar knowledge 

 

Figure 3.4. shows the function for getting similar knowledge. That function calls 

a function from Kernel Memory to get relevant knowledge which matches given filters, 

and those are that minimal relevance must be at least 75% and to take only top two 

answers. In the background, that Kernel Memory function creates embedding vectors 

from asked question using text embedding model, then performs a similarity search on 

a previously loaded data store with those embeddings, and finally returns relevant 

knowledge chunks. The function shown below in Figure 3.4. then takes relevant 

information from obtained result, such as knowledge text and relevance, and returns 

serialized value of that object list. Additionally, other information, which include file id, 

partition number, knowledge text, and relevance, are put in a static object list which can 

be accessed from any place in the project and will be used for accessing sources. 
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public async Task<string> AskQuestion(string question) 
{ 
    try 
    { 
        var answer = await _kernelMemory.SearchAsync(question, minRelevance: 
0.75, limit: 2); 
 
        List<MemoryResponseDto> response = new(); 
        if (answer?.Results == null) 
        { 
            return ""; 
        } 
        foreach (var answerItem in answer.Results) { 
            if (answerItem == null) 
                continue; 
            foreach (var partition in answerItem.Partitions) 
            { 
                response.Add(new MemoryResponseDto(partition.Text.Trim(), 
partition.Relevance)); 
                SourcesList.AddSource(new SourceDto { FileId = 
answerItem.FileId, PartitionNumber = partition.PartitionNumber, Text = 
partition.Text.Trim(), Relevance = partition.Relevance }); 
            } 
        } 
        return JsonSerializer.Serialize(response, new JsonSerializerOptions { 
Encoder = JavaScriptEncoder.UnsafeRelaxedJsonEscaping }); 
    } 
    catch  
    { 
        return ""; 
    } 
} 

 

Figure 3.4.  Function for getting similar knowledge 
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3.2.2. Constructing prompt 

 

 After obtaining chunks relevant to the question, a text generation model is being 

called. For the text generation model to work a certain way, it must have good options 

set and get detailed instructions on how to generate a good answer, i.e. good prompt.  

For constructing a good prompt, it is important to write meaningful sentences 

that are semantically well formed. It must be explained in detail what is expected of the 

model to do and how the output is expected to look.  

In this project, two prompts need to be constructed. First is the system prompt 

which is passed to the text generation model with settings, and the other one is prompt 

which is passed as a user message and contains the user question and the relevant 

knowledge. 

 In the system prompt, the knowledge input parameter is stated first, labeled as 

Facts, that’s where the knowledge handed with user prompt will be injected. After that, 

a few guidelines are stated. It is stated that the model must generate answers using 

only knowledge it received in the prompt. Answers must be short and not contain 

explanations and notes on how the answer was generated. It should give answers only 

in Croatian language, and if it doesn’t have enough information to generate an answer, 

it should respond with a text which it will also receive from user prompt. Finaly, there is 

an input parameter where it receives the question the user has asked, and which is 

also passed in the user prompt. The system prompt is shown below in Figure 3.5. 
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    var systemPrompt = $@" 

        Facts: {{$facts}} 

 

        Given ONLY the facts above, provide a short answer without explanations and notes. 

        Give answers ONLY in Croatian language. 

        You don't know where the knowledge comes from, just answer. 

 

        If you don't have sufficient information, reply with '{{$notFound}}'. 

        Question: {{$input}} 

        Answer: 

    "; 
 

Figure 3.5. System prompt 

 

 As for the user prompt, there are two possible prompts that can be used. Frist, 

if the similar knowledge is found, prompt is given the asked question, similar knowledge 

found, and two instructions. First one is that if there is no useful knowledge that it should 

respond with “Ne znam odgovoriti na ovo pitanje.”, which translates to “I don’t know 

how to answer this question” in Croatian. The second one says that it should use as 

little words as possible in the response. As for the second possible prompt, it is used 

when there is no similar knowledge found and it is given the asked question and an 

instruction to try and answer the asked question from context, and if it can’t then it 

should respond with “Ne znam odgovoriti na ovo pitanje.”. The user prompt is shown 

below in Figure 3.6. 
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    var prompt = $@" 

        Question: {askedQuestion} 

 
        Facts: 
        ==== 
        {memoryAnswer} 

        ==== 
 
        If Facts are empty say 'Ne znam odgovoriti na ovo pitanje.', otherwise       
    generate your answer from Facts. 
        Use as little words as possible in response. 
    "; 
 
    if (JsonSerializer.Deserialize<List<MemoryResponseDto>>(memoryAnswer).Count() ==  
        0) 
        {  
        prompt = $@" 

           Question: {askedQuestion} 

 
           Try answering from context, if you can't then say 'Ne znam odgovoriti na    
    ovo pitanje.'. 
        "; 
    } 

 

Figure 3.6. User prompt 
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3.2.3. Calling text generation model 

 

Text generation model is being called using built in function of Semantic Kernel. 

Semantic Kernel is also being used to provide Chat History. To use these functions and 

classes across the project, the “SemanticKernelService” was built. 

SemanticKernelService was built using Semantic Kernel Builder and LLamaSharp 

extensions. SemanticKernel requires text generation model to run and that is where 

LLamaSharp is used. LLamaSharp has predefined classes which help with running 

models locally. First, the ModelParams class needs to be initialized with model path 

passed as an input parameter, and optionally ContextSize, and GpuLayerCount. Next, 

the LLamaWeights class needs to be initialized and needs to load model weights from 

model params. After that, the LLamaContext class needs to be initialized with model 

weights and model params passed as input parameters. With context passed as an 

input parameter, class InteractiveExecutor is initialized. Now that the model executor is 

set, Semantic Kernel can finally add IChatCompletionService as a service where 

service key and service instance need to be passed as input parameters. Service 

instance is initialized with LLamaSharpChatCompletion class where executor is passed 

as an input parameter. SemanticKernelService is shown below in Figure 3.7.  

 



 

25 
 

  
    public SemanticKernelService(KernelMemoryService memoryService) 
    { 
        var modelPath = @"<Path to text generation model>"; 
 
        ModelParameters = new ModelParams(modelPath) 
        { 
            ContextSize = 4096, 
            GpuLayerCount = 512 
        }; 
 
        Model = LLamaWeights.LoadFromFile(ModelParameters); 
        Context = new LLamaContext(Model, ModelParameters); 
        Executor = new InteractiveExecutor(Context); 
 
 
        var builder = Kernel.CreateBuilder(); 
        builder.Services.AddKeyedSingleton<IChatCompletionService>("local-bot", new      
    LLamaSharpChatCompletion(Executor)); 
        builder.Services.AddLogging(c =>    
    c.SetMinimumLevel(LogLevel.Trace).AddConsole().AddDebug()); 
 
        _kernel = builder.Build(); 
    } 

 

Figure 3.7. Semantic Kernel Service 

 

 When a user opens the page with chatbot few things happen. First, Chat History 

gets initialized, as well as completion service from SemanticKernelService. Next, the 

system prompt mentioned in paragraph 3.2.2. gets declared and passed to variable 

setting among other options such as Temperature, FrequencyPenalty, 

PresencePenalty, and TopP. Temperature controls hallucinations, i.e. how random are 

words being chosen, lower values cause the model to be more consistent and 

predictable. FrequencyPenalty controls the probability of choosing words that are more 

frequent or rare in the generated text, and lower values cause the model to choose 

more frequent words. PresencePenalty controls repeating of same words in generated 

text, and higher values reduce the probability of repetition. TopP controls how many 

possible words are being considered, and here high values cause more words to be 

taken into consideration. Finally, the initial message from chatbot, which says 

"Poštovanje, ja sam ChatBot za brodarsku tvrtku, pomoći ću vam sa svim pitanjima u 
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vezi s njom. Kako vam mogu pomoći danas?", gets sent. That message would translate 

to "Regards, I'm a ChatBot for a shipping company, I'll help you with any questions 

about it. How can I help you today?". That process is displayed below in Figure 3.8. 

 

  
    protected override void OnInitialized() 

    { 
        base.OnInitialized(); 
        _chatHistory = new ChatHistory(); 
        _completionService =    
    SemanticKernel._kernel.GetRequiredService<IChatCompletionService>(); 
 
        var systemPrompt = $@" 

               Facts: {{$facts}} 

   
               Given ONLY the facts above, provide a short answer without    
    explanations and notes. 
               Give answers ONLY in Croatian language. 
               You don't know where the knowledge comes from, just answer. 
 
               If you don't have sufficient information, reply with '{{$notFound}}'. 
               Question: {{$input}} 

               Answer: 
            "; 
         
        settings = new() 

        { 
            ChatSystemPrompt = systemPrompt, 
            Temperature = 0.1, 
            FrequencyPenalty = 0.0, 
            PresencePenalty = 0.0, 
            TopP = 1.0 
        };  
 
        conversation.Add(new(AuthorRole.Assistant,  
            "Poštovanje, ja sam ChatBot za brodarsku tvrtku, pomoći ću vam sa svim  
    pitanjima u vezi s njom. Kako vam mogu pomoći danas?",  
            DateTime.Now.ToString("HH:mm"))); 
    } 

 

Figure 3.8. The initialization of chatbot 
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When user sends his message, it is first checked if the message is empty, the 

chatbot is called only if the message is not empty. Next, if it’s not empty, the static 

objects list which is used for temporarily storing relevant sources, is cleared so that new 

sources can be stored. After that, prompt is being constructed and added to the chat 

history. Now everything is prepared for calling a text generation model. Calling a text 

generation model is achieved by calling “GetStreamingChatMessageContentsAsync” 

function from completion service, with parameters chat history, settings, and kernel, 

passed as input parameters. Streaming in the function name signifies that the program 

does not wait for the whole answer to be generated to return it, but it returns chunks of 

answer as it gets generated. After generating the whole answer, sources get displayed 

if they exist. If any exception gets thrown, the chatbot will return "Došlo je do pogreške 

prilikom komunikacije. Molim Vas ponovite zadnji upit." as an answer, which translates 

to "There was a communication error. Please repeat the last query." In Croatian. 

 This process of calling the text generation model, that is described, is shown 

below in Figure 3.9.  
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   try 
    { 
        if (string.IsNullOrEmpty(question)) return; 
 
        sources = new (); 
        _isBusy = true; 
        StateHasChanged(); 
 
        conversation.Add(new(AuthorRole.User, question, DateTime.Now.ToString("HH:mm"))); 
        var askedQuestion = question; 
        question = null; 
        StateHasChanged(); 
 
        SourcesList.ResetSources(); 
        var memoryAnswer = await KernelMemory.AskQuestion(askedQuestion); 

 

        //User Prompt from Figure 3.6. 
 
        _chatHistory.AddUserMessage(prompt); 
 
        var content = "..."; 
        conversation.Add(new(AuthorRole.Assistant, content, null)); 
        StateHasChanged(); 
 
        var stream = _completionService.GetStreamingChatMessageContentsAsync(_chatHistory, settings,    
    SemanticKernel._kernel); 
  
        content = ""; 
        await foreach (var contentPiece in stream) 
        { 
            if (string.IsNullOrEmpty(contentPiece.Content)) continue; 
            if (contentPiece.Content.Equals("<|eot_id|>")) break; 
            content += contentPiece.Content; 
            conversation[conversation.Count - 1].message = content; 
            StateHasChanged(); 
        } 
 
        conversation[conversation.Count - 1].time = DateTime.Now.ToString("HH:mm"); 
        _chatHistory.AddAssistantMessage(content); 
        if (SourcesList.Sources.Count > 0) 
        { 
            sources.AddRange(SourcesList.GetSources()); 
        } 
    } 
    catch (Exception e) 
    { 
        conversation[conversation.Count - 1].message = "Došlo je do pogreške prilikom komunikacije. Molim   
    Vas ponovite zadnji upit."; 
        conversation[conversation.Count - 1].time = DateTime.Now.ToString("HH:mm"); 
    } 
    finally 
    { 
        _isBusy = false; 
        StateHasChanged(); 
    } 

 

Figure 3.9. Function for calling text generation model 
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3.2.4. Chatbot page 

 

The Chatbot page consists of a message display, input field, and button for 

calling chatbot. When the user writes his message and clicks on the “CallChatBot” 

button, the function for calling the text generation model on the server is called. When 

the function returns the answer, it is displayed in the message display. The initial 

appearance of this page is shown below in Figure 3.10. 

 

 

Figure 3.10. Initial appearance of Chatbot page 
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3.2.5. Sources list 

 

Sources are displayed only when they are found and passed to model with 

prompt. The sources list is positioned below the chat and consists of file id, partition 

number, knowledge text, and relevance. An example of the sources list is shown below 

in Figure 3.11. 

 

 

Figure 3.11. Example of the sources list 
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4. Results 

 

In this chapter, the use of the developed chatbot is demonstrated. All combinations 

of used models were evaluated, and results are displayed and compared. The two 

embedding models used, Nomic and Arctic, were tried in combination with both text 

generation models used, LLama3 and Mistral. 

 

 

4.1. Chatbots answers 

 

In this segment, a few examples of answers given by chatbot are presented. For 

example, it shows how it looks like to wait for a reply from a chatbot, how it looks like 

to get a reply, how it looks like to get a reply from context, and how it looks like when 

chatbot cannot give an answer due to lack of relevant knowledge. 
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4.1.1. Waiting for a reply 

 

Here, in Figure 4.1., it is shown how it looks like when the user sends a message 

and waits for the chatbot to generate an answer.  

 

 

Figure 4.1. Waiting for a reply 

 

The user asked “Kako se koriste otočne iskaznice?”, which translates to “How 

are island cards used?”, and while the chatbot is generating an answer, “…” is 

displayed. 
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4.1.2. The answer from the chatbot 

 

The answer from chatbot to the question he knows the answer to, is shown in 

this segment. The question which the chatbot was asked is “Smiju li ljubimci na brod”, 

which translates to “Are pets allowed on board?”.  

 

 

Figure 4.2. The answer from the chatbot 

 

As it is seen above in Figure 4.2., the chatbot answered the asked question with 

a meaningful answer. Comparing the answer with the listed used sources, it can be 

concluded that the chatbot composed the answer from the knowledge he received in 

the prompt. 

Large Language Models are non-deterministic, which means that the output 

results can be different for the same input and environment, and that will be shown in 

the next two Figures. 
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Figure 4.3. The non-deterministic answer from the chatbot 1 

 

 

Figure 4.4. The non-deterministic answer from the chatbot 2 

 



 

35 
 

 As it can be seen above in Figure 4.3. and Figure 4.4., the chatbot has been 

asked the same question twice, and both times it got the same source, but each time 

the response was different. The asked question was “Koja su moja prava kao vlasnika 

otočne iskaznice?”, which translates to “What are my rights as an island card holder?”. 

The first answer, shown above in Figure 4.3., says “Vlasnik sam otočne iskaznice/ 

studentske isprave (x-ice) ostvaruje pravo na povlašteni prijevoz sukladno Zakonu o 

prijevozu u linijskom i povremenom obalnom pomorskom prometu. Svoja prava prilikom 

kupovine karte može se ostvariti samo uz predodjenje važne otočne iskaznice. Istu ste 

dužni predodjeti i prilikom ukrcaja. Ako ostvarujete pravo na besplatan prijevoz, može 

se koristiti besplatno.”, which translates to “The holder of an island identity card/student 

document (x-ice) is entitled to privileged transportation in accordance with the Act on 

Transportation in Line and Occasional Coastal Maritime Traffic. You can exercise your 

rights when buying a ticket only by presenting an important island identity card. You are 

obliged to present the same when boarding. If you qualify for free transportation, it can 

be used free of charge.”. The second answer, shown above in Figure 4.4., says “Vlasnik 

otočne iskaznice/ studentske isprave (x-ice) ostvaruje pravo na povlašteni prijevoz 

sukladno Zakonu o prijevozu u linijskom i povremenom obalnom pomorskom 

prometu.”, which translates to “The holder of an island identity card/student document 

(x-ice) has the right to privileged transportation in accordance with the Act on 

Transportation in Line and Occasional Coastal Maritime Traffic.”. Both answers are 

correct, but the first one is more detailed, and the second one is concise. Most of the 

time when asked the same question, the chatbot will generate different responses. 
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4.1.3. The answer from the context 

 

In this segment, it is shown that the chatbot can answer from the chat context. 

As a continuation of question asked in the previous segment, in Figure 4.2., the chatbot 

was asked “Znači mačke su dozvoljene?”, which translates to “So cats are allowed?”. 

 

 

 

Figure 4.5. The answer from the context 
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As can be seen above in Figure 4.5., chatbot answered without received 

knowledge, just based on the chat context. His first answer, from segment 4.1.2., 

among other things states that the transport of pets is allowed, namely dogs, cats, birds 

and other small animals on ferries and ships with a mandatory stay on the open deck, 

and from that he concluded that cats are allowed, so his answer was “Da, mačke su 

dozvoljene”, which translates to “Yes, cats are allowed.”. 
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4.1.4. The answer without relevant knowledge 

 

In this segment, it is shown how the chatbot answers when he gets asked a 

question to which he doesn’t receive relevant knowledge. 

 

 

Figure 4.6. The answer without relevant knowledge 

 

 As expected, the chatbot was asked “Tko je Luka Modrić?”, which translates to 

“Who is Luka Modrić?”, and that question is not contained in the knowledge so his 

answer was “Ne znam odgovoriti na ovo pitanje.”, which translates to “I don’t know how 

to answer this question” in Croatian. 
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4.2. Evaluation 

 

In this chapter, the evaluation results calculated by ROUGE and bleu metrics 

are presented and compared. The result table, Table 4.1., is divided into two pages, 

where the first page contains results for the first 50 questions, the second one contains 

results for the other 50 questions and average score per model, and both pages contain 

headers. As can be seen from headers, the table is divided in such a way that for each 

combination of models there are 4 columns, one for each evaluation metric result. The 

first group of metric results is for the combination of Nomic and LLama3, the second 

one is for the combination of Nomic and Mistral, the third one is for the combination of 

Arctic and LLama3, and the last one is for the combination of Arctic and Mistral. Bold 

values in the table represent the highest score achieved on a question.  
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Table 4.1. Evaluation results 

  Nomic Arctic 

  LLama3 Mistral LLama3 Mistral 

  rouge1 rouge2 rougeL bleu rouge1 rouge2 rougeL bleu rouge1 rouge2 rougeL bleu rouge1 rouge2 rougeL bleu 

1 0.6409 0.5698 0.6077 0.3424 0.8459 0.8375 0.8459 0.7387 0.6188 0.5140 0.5746 0.3204 0.9225 0.9219 0.9225 0.8676 

2 0.9730 0.9143 0.9730 0.8378 0.2303 0.2209 0.2303 0.1111 0.9730 0.9143 0.9730 0.8378 0.1224 0.0000 0.1224 0.0000 

3 0.6875 0.6000 0.6875 0.4405 1.0000 1.0000 1.0000 1.0000 0.6875 0.6000 0.6875 0.4405 1.0000 1.0000 1.0000 1.0000 

4 0.2500 0.1818 0.2500 0.0071 0.7273 0.7097 0.7273 0.4312 0.7273 0.7097 0.7273 0.4312 0.7273 0.7097 0.7273 0.4312 

5 0.2963 0.2785 0.2963 0.0134 0.9855 0.9706 0.9855 0.9777 0.2963 0.2785 0.2963 0.0134 1.0000 1.0000 1.0000 1.0000 

6 0.2800 0.2041 0.2600 0.0106 1.0000 1.0000 1.0000 1.0000 0.0980 0.0200 0.0784 0.0023 0.1053 0.0179 0.0702 0.0127 

7 0.7111 0.6977 0.7111 0.4724 1.0000 1.0000 1.0000 1.0000 0.7111 0.6977 0.7111 0.4724 1.0000 1.0000 1.0000 1.0000 

8 0.3504 0.3259 0.3504 0.0230 1.0000 1.0000 1.0000 0.9918 0.0168 0.0000 0.0168 0.0000 0.1418 0.0000 0.0851 0.0094 

9 0.5763 0.5614 0.5763 0.2298 0.9231 0.9213 0.9231 0.8557 0.5429 0.4706 0.4857 0.4010 0.9367 0.9351 0.9367 0.8497 

10 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000 0.0426 0.0000 0.0426 0.0000 

11 0.9834 0.9609 0.9834 0.9497 0.7133 0.7092 0.7133 0.3921 0.0952 0.0194 0.0571 0.0000 0.0826 0.0168 0.0661 0.0000 

12 0.5029 0.4970 0.5029 0.1299 0.9922 0.9843 0.9922 0.9873 0.3026 0.2800 0.3026 0.0199 0.9922 0.9843 0.9922 0.9873 

13 0.2353 0.1800 0.2353 0.0170 0.3507 0.1722 0.2085 0.1774 0.0870 0.0000 0.0870 0.0000 1.0000 1.0000 1.0000 1.0000 

14 0.9429 0.9412 0.9429 0.8730 0.2469 0.0253 0.1481 0.0000 0.4400 0.2500 0.4000 0.1410 1.0000 1.0000 1.0000 1.0000 

15 0.4486 0.3238 0.3551 0.0704 0.1573 0.1379 0.1573 0.0000 0.3400 0.3061 0.3400 0.0277 1.0000 1.0000 1.0000 1.0000 

16 0.5000 0.2857 0.4091 0.2748 0.8235 0.8182 0.8235 0.6811 0.5909 0.3810 0.5455 0.3181 0.8235 0.8182 0.8235 0.6811 

17 0.7714 0.7353 0.7714 0.7032 0.6167 0.6102 0.6167 0.4438 0.1127 0.0000 0.0563 0.0000 0.1149 0.0000 0.0460 0.0000 

18 0.8780 0.7692 0.7805 0.6609 0.4872 0.4737 0.4872 0.3273 0.8108 0.6857 0.8108 0.6398 1.0000 1.0000 1.0000 1.0000 

19 0.6977 0.5854 0.6977 0.5265 0.5610 0.5500 0.5610 0.3804 0.7442 0.6829 0.7442 0.5219 1.0000 1.0000 1.0000 1.0000 

20 0.5714 0.5263 0.5714 0.3705 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000 0.0426 0.0000 0.0426 0.0000 

21 1.0000 1.0000 1.0000 1.0000 0.1250 0.1139 0.1250 0.0725 1.0000 1.0000 1.0000 1.0000 0.3030 0.2813 0.3030 0.1899 

22 0.6667 0.6000 0.6667 0.3857 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.2623 0.2373 0.2623 0.1168 

23 0.8077 0.6000 0.6923 0.6320 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.5321 0.5234 0.5321 0.3413 

24 0.2222 0.1311 0.2222 0.0067 0.8908 0.8889 0.8908 0.8182 0.3692 0.3175 0.3692 0.0381 0.8908 0.8889 0.8908 0.8182 

25 0.4000 0.2308 0.3000 0.1006 0.6387 0.6349 0.6387 0.4286 0.7786 0.5736 0.5649 0.5921 0.6816 0.6780 0.6816 0.5246 

26 0.5000 0.2727 0.4167 0.1353 0.2059 0.1940 0.2059 0.1223 0.6207 0.3704 0.5517 0.4140 0.3043 0.2889 0.3043 0.1870 

27 0.4500 0.1053 0.4000 0.1214 0.5185 0.5094 0.5185 0.3503 0.3590 0.1622 0.3590 0.1451 0.8615 0.8571 0.8615 0.7333 

28 0.5758 0.4375 0.5758 0.2364 0.7317 0.7273 0.7317 0.5613 0.7143 0.6765 0.7143 0.3921 0.8411 0.8381 0.8411 0.7311 

29 0.4000 0.1852 0.3091 0.1112 0.9704 0.9701 0.9704 0.9379 0.2366 0.1978 0.2366 0.0046 1.0000 1.0000 1.0000 1.0000 

30 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000 0.5217 0.4762 0.5217 0.3382 0.0213 0.0000 0.0213 0.0000 

31 0.4317 0.3650 0.4173 0.3040 1.0000 1.0000 1.0000 1.0000 0.6753 0.6400 0.6753 0.3124 0.5698 0.5650 0.5698 0.4217 

32 0.4846 0.3911 0.4670 0.1972 0.9940 0.9880 0.9940 0.9911 0.0800 0.0231 0.0457 0.0000 0.1475 0.0083 0.0902 0.0270 

33 0.3390 0.1404 0.3390 0.2471 1.0000 1.0000 1.0000 1.0000 0.5714 0.3934 0.4762 0.4361 0.6667 0.6602 0.6667 0.4820 

34 0.5618 0.5057 0.5393 0.4323 0.4553 0.3636 0.4228 0.3232 0.6207 0.4706 0.5057 0.4344 0.8932 0.8911 0.8932 0.8211 

35 0.8611 0.7714 0.8333 0.8489 0.1488 0.0336 0.0992 0.0380 0.1404 0.0364 0.0702 0.0000 0.2326 0.0714 0.1860 0.0569 

36 0.5143 0.4242 0.5143 0.4867 0.4638 0.4478 0.4638 0.2597 0.6875 0.5333 0.6875 0.6262 0.7442 0.7317 0.7442 0.5788 

37 0.7250 0.6410 0.6750 0.6313 1.0000 1.0000 1.0000 1.0000 0.2456 0.0727 0.1754 0.0000 0.3243 0.0917 0.2162 0.0905 

38 0.8000 0.5556 0.7000 0.3893 0.3200 0.3014 0.3200 0.1518 0.8000 0.5556 0.7000 0.3893 0.4528 0.4314 0.4528 0.2673 

39 0.5915 0.4348 0.5070 0.2174 0.7273 0.7231 0.7273 0.5541 0.5000 0.3226 0.4688 0.1346 0.7500 0.7460 0.7500 0.5918 

40 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.1667 0.0000 0.1667 0.0000 1.0000 1.0000 1.0000 1.0000 

41 0.8276 0.8235 0.8276 0.6969 1.0000 1.0000 1.0000 1.0000 0.8046 0.7765 0.8046 0.6664 1.0000 1.0000 1.0000 1.0000 

42 0.8571 0.8235 0.8571 0.7269 0.8732 0.8696 0.8732 0.7468 0.8571 0.8235 0.8571 0.7269 1.0000 1.0000 1.0000 1.0000 

43 0.6111 0.5882 0.6111 0.4506 1.0000 1.0000 1.0000 1.0000 0.6111 0.5882 0.6111 0.4506 1.0000 1.0000 1.0000 1.0000 

44 0.8056 0.8000 0.8056 0.6296 1.0000 1.0000 1.0000 1.0000 0.8056 0.8000 0.8056 0.6296 1.0000 1.0000 1.0000 1.0000 

45 0.4000 0.3478 0.4000 0.2418 1.0000 1.0000 1.0000 1.0000 0.4000 0.3478 0.4000 0.2418 1.0000 1.0000 1.0000 1.0000 

46 0.4740 0.3158 0.3121 0.1649 0.7158 0.7128 0.7158 0.5206 0.3473 0.1091 0.1796 0.0320 0.1958 0.0993 0.0979 0.0020 

47 0.5455 0.4151 0.5455 0.3934 1.0000 1.0000 1.0000 1.0000 0.6885 0.6780 0.6885 0.5521 1.0000 1.0000 1.0000 1.0000 

48 0.3436 0.2733 0.2822 0.0841 0.5089 0.5030 0.5089 0.1546 0.3436 0.2733 0.2822 0.0841 0.5089 0.5030 0.5089 0.1546 

49 0.5484 0.5246 0.5484 0.3884 0.5512 0.5440 0.5512 0.3922 0.1250 0.0323 0.0938 0.0000 0.2000 0.0256 0.1000 0.0000 

50 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.1333 0.0000 0.1333 0.0000 0.0667 0.0000 0.0667 0.0000 
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  Nomic Arctic 

  LLama3 Mistral LLama3 Mistral 

  rouge1 rouge2 rougeL bleu rouge1 rouge2 rougeL bleu rouge1 rouge2 rougeL bleu rouge1 rouge2 rougeL bleu 

51 0.4324 0.3670 0.3964 0.0950 0.2158 0.0000 0.1439 0.0439 0.0645 0.0000 0.0645 0.0000 0.2080 0.0000 0.1120 0.0000 

52 0.3462 0.0800 0.2308 0.1584 0.6512 0.6429 0.6512 0.4867 0.4737 0.2778 0.4211 0.0699 0.7778 0.7714 0.7778 0.6179 

53 0.5909 0.3810 0.5455 0.3181 0.8235 0.8182 0.8235 0.6811 0.5909 0.3810 0.5455 0.3181 0.5833 0.5745 0.5833 0.3949 

54 0.9643 0.9630 0.9643 0.9017 0.8286 0.8235 0.8286 0.7241 0.0976 0.0513 0.0976 0.0000 0.1468 0.0374 0.1284 0.0408 

55 0.6545 0.6038 0.6545 0.3194 0.3423 0.1468 0.2162 0.1896 0.6545 0.5660 0.6182 0.3092 0.6549 0.6486 0.6549 0.4717 

56 0.9841 0.9677 0.9841 0.8159 0.6176 0.6139 0.6176 0.4432 0.4048 0.1951 0.3333 0.0836 1.0000 1.0000 1.0000 1.0000 

57 1.0000 1.0000 1.0000 1.0000 0.7692 0.7500 0.7692 0.5752 1.0000 1.0000 1.0000 1.0000 0.7692 0.7500 0.7692 0.5752 

58 1.0000 1.0000 1.0000 1.0000 0.5217 0.4762 0.5217 0.3504 1.0000 1.0000 1.0000 1.0000 0.5455 0.5000 0.5455 0.3930 

59 0.2388 0.1846 0.2388 0.0032 0.9077 0.9063 0.9077 0.8561 0.2388 0.1846 0.2388 0.0032 1.0000 1.0000 1.0000 1.0000 

60 0.7273 0.6667 0.7273 0.6911 0.0800 0.0000 0.0800 0.0389 0.7273 0.6667 0.7273 0.6911 0.0385 0.0000 0.0385 0.0000 

61 0.2667 0.2273 0.1556 0.0119 0.9317 0.9308 0.9317 0.8545 0.0000 0.0000 0.0000 0.0000 0.0652 0.0000 0.0652 0.0000 

62 0.3158 0.2432 0.3158 0.0098 0.6774 0.6739 0.6774 0.4859 0.2740 0.2254 0.2740 0.0027 1.0000 1.0000 1.0000 1.0000 

63 0.6977 0.4878 0.6512 0.3354 0.6022 0.5934 0.6022 0.4452 0.4865 0.1714 0.4324 0.0707 0.7273 0.7143 0.7273 0.4123 

64 0.4286 0.3077 0.4286 0.1084 1.0000 1.0000 1.0000 1.0000 0.4286 0.3077 0.4286 0.1084 0.5373 0.4615 0.4776 0.3730 

65 0.8571 0.8462 0.8571 0.7712 1.0000 1.0000 1.0000 1.0000 0.8571 0.8462 0.8571 0.7712 0.7500 0.7333 0.7500 0.6583 

66 0.9318 0.9302 0.9318 0.8586 0.8919 0.8889 0.8919 0.8384 0.1639 0.0339 0.0984 0.0000 0.0842 0.0000 0.0421 0.0000 

67 0.3200 0.3108 0.3200 0.0061 1.0000 1.0000 1.0000 1.0000 0.1176 0.0299 0.1029 0.0001 1.0000 1.0000 1.0000 1.0000 

68 0.9048 0.9000 0.9048 0.8038 1.0000 1.0000 1.0000 1.0000 0.2500 0.1333 0.2500 0.1422 0.5672 0.5538 0.5672 0.3904 

69 0.2687 0.2273 0.2388 0.0144 0.9700 0.9697 0.9700 0.9382 0.0650 0.0000 0.0488 0.0000 0.1184 0.0000 0.0921 0.0000 

70 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0889 0.0000 0.0889 0.0000 

71 0.8485 0.8387 0.8485 0.6754 0.5714 0.4681 0.5714 0.3305 0.4138 0.2222 0.4138 0.2532 0.1860 0.0000 0.1395 0.0000 

72 0.5556 0.4615 0.5556 0.3404 0.5714 0.4815 0.5357 0.3430 1.0000 1.0000 1.0000 1.0000 0.5714 0.4815 0.5357 0.3430 

73 0.3636 0.1849 0.3471 0.1386 0.9540 0.9535 0.9540 0.9162 0.1400 0.0408 0.1400 0.0029 0.1939 0.0368 0.1091 0.0885 

74 0.6087 0.5714 0.6087 0.4897 0.6829 0.6667 0.6829 0.4513 0.3333 0.2727 0.3333 0.0000 0.1212 0.0313 0.0909 0.0000 

75 0.4000 0.3158 0.4000 0.1286 0.8286 0.8235 0.8286 0.6867 0.3721 0.1951 0.3256 0.1628 0.5321 0.5234 0.5321 0.3413 

76 0.5106 0.4130 0.4043 0.3181 0.8777 0.8759 0.8777 0.7748 0.2632 0.0811 0.2105 0.0417 0.6816 0.6780 0.6816 0.5294 

77 0.0968 0.0000 0.0968 0.0000 0.1730 0.0109 0.0973 0.0323 0.0952 0.0000 0.0952 0.0000 0.1550 0.0000 0.1085 0.0000 

78 0.0400 0.0000 0.0400 0.0000 0.1235 0.0000 0.0741 0.0000 0.0000 0.0000 0.0000 0.0000 0.1493 0.0000 0.0896 0.0000 

79 0.7463 0.6769 0.7463 0.4706 0.8317 0.8081 0.8317 0.7078 0.4444 0.3846 0.4444 0.0483 0.5319 0.5000 0.5319 0.4532 

80 1.0000 1.0000 1.0000 1.0000 0.0244 0.0000 0.0244 0.0000 0.1667 0.0000 0.1667 0.0000 0.0000 0.0000 0.0000 0.0000 

81 0.2667 0.2326 0.2667 0.1600 0.3000 0.2632 0.3000 0.1994 0.3636 0.3226 0.3636 0.2274 0.4545 0.2000 0.2727 0.2236 

82 0.8286 0.8235 0.8286 0.6867 0.8286 0.8235 0.8286 0.6867 0.5957 0.3556 0.4255 0.3162 0.8657 0.8615 0.8657 0.7600 

83 0.2500 0.0339 0.1500 0.0000 0.2787 0.0833 0.1803 0.0298 0.1099 0.0674 0.0879 0.0000 0.1333 0.1136 0.1333 0.0000 

84 0.8780 0.8500 0.8780 0.8392 0.8780 0.8500 0.8780 0.8392 0.2500 0.2174 0.2500 0.0184 1.0000 1.0000 1.0000 1.0000 

85 0.1951 0.0250 0.1220 0.0000 0.1587 0.0000 0.1111 0.0000 0.1778 0.0000 0.1333 0.0000 0.1250 0.0645 0.1250 0.0628 

86 0.8000 0.7692 0.8000 0.6051 0.9057 0.9038 0.9057 0.8286 0.5455 0.3750 0.4242 0.1532 1.0000 1.0000 1.0000 1.0000 

87 0.0943 0.0000 0.0755 0.0000 0.0901 0.0000 0.0721 0.0000 0.0000 0.0000 0.0000 0.0000 0.0408 0.0000 0.0408 0.0054 

88 0.1519 0.0128 0.1013 0.0000 0.1628 0.0118 0.1047 0.0378 0.0222 0.0000 0.0222 0.0000 0.1940 0.0000 0.1194 0.0523 

89 0.5556 0.4607 0.5333 0.2375 0.6495 0.6146 0.6186 0.3998 0.0667 0.0000 0.0667 0.0000 0.1184 0.0000 0.0789 0.0000 

90 0.0000 0.0000 0.0000 0.0000 0.6000 0.5556 0.6000 0.4472 0.1111 0.0000 0.1111 0.0000 0.0571 0.0000 0.0571 0.0000 

91 0.8254 0.7869 0.8254 0.7162 0.5303 0.5231 0.5303 0.3678 0.2174 0.1364 0.1739 0.0311 0.1667 0.0000 0.0833 0.0000 

92 0.2093 0.1190 0.2093 0.0609 0.2538 0.0821 0.1827 0.0981 0.1429 0.1176 0.1429 0.0054 0.1143 0.0000 0.0857 0.0000 

93 0.2169 0.0247 0.0964 0.0000 0.2628 0.0593 0.1606 0.1090 0.2254 0.1449 0.1972 0.0023 1.0000 1.0000 1.0000 1.0000 

94 0.0500 0.0000 0.0500 0.0000 0.2973 0.0278 0.2162 0.0000 0.1500 0.0526 0.1500 0.0000 0.2222 0.0000 0.1481 0.0000 

95 1.0000 0.9091 0.5833 0.6667 0.4444 0.4231 0.4444 0.2263 0.8276 0.6667 0.4828 0.4629 0.2500 0.0526 0.1500 0.0000 

96 0.0000 0.0000 0.0000 0.0000 0.1212 0.0000 0.1212 0.0000 0.4000 0.3333 0.4000 0.3271 0.0870 0.0000 0.0870 0.0000 

97 0.3333 0.0500 0.1429 0.0668 0.0571 0.0000 0.0571 0.0000 0.3390 0.1053 0.1695 0.1438 0.2727 0.0000 0.1364 0.0000 

98 0.6667 0.6316 0.6667 0.6606 0.3235 0.3030 0.3235 0.1705 1.0000 1.0000 1.0000 1.0000 0.4286 0.3500 0.4286 0.2575 

99 0.0000 0.0000 0.0000 0.0000 0.0164 0.0000 0.0164 0.0000 1.0000 1.0000 1.0000 1.0000 0.3333 0.2857 0.3333 0.1903 

100 0.0952 0.0000 0.0952 0.0000 0.0755 0.0000 0.0377 0.0000 1.0000 1.0000 1.0000 1.0000 0.0488 0.0000 0.0488 0.0000 

AVG 0.5556 0.4773 0.5274 0.3770 0.6220 0.5851 0.6098 0.5155 0.4507 0.3622 0.4231 0.2800 0.5220 0.4675 0.5035 0.4161 
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As it can be seen from the table, the best score was achieved using the 

combination of Nomic and Mistral models, and the worst score was achieved using the 

combination of Arctic and LLama3 models. In conclusion, the best performing 

combination of models is at least 10% better on average than the other combinations. 

Looking at the table, the text generation models and embedding models can also 

be compared separately. In the case of embedding models, the model Nomic provides 

better results than Arctic regardless of its combination with text generation models. The 

same way, the text generation model Mistral provides better results than LLama3 

regardless of the embedding models with which it was combined. These conclusions 

are graphically displayed using a bar chart in Figure 4.7. 

 

 

Figure 4.7. Average score grouped by metric 
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It is interesting to note that the combination of Arctic and Mistral models has 

more of highest scores per question than the combination of Nomic and LLama3 

models, but Nomic and LLama3 have better average scores. It should be emphasized 

that most of the reference texts used in evaluation are references from knowledge. 

When Arctic obtains good references, Mistral often returns the reference text without 

changes, but when it doesn’t obtain good references, the evaluation score is low. Even 

though Nomic obtains better results, LLama3 modifies the result so even if it’s a good 

result, it doesn’t fully match the reference text used on evaluation, but still the evaluation 

scores are higher than the ones Mistral gets with bad references.   
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Conclusion 

 

AI technology is gaining more and more interest from the public and more and 

more companies want to include it in their businesses. The most common and the most 

convenient way for them to do it is to get a chatbot, and that is why in this paper there 

was demonstrated how to develop a chatbot.  

The essential terms and concepts, like Vectors, Embedding, Grounding, LLM 

and RAG, were explained, as well as evaluation metrics.  

This application is a simple Blazor web application. Using the application, the 

user can add the new knowledge to the chatbot, ask him questions, and look at the 

sources he used to generate his answer. To run the model locally, the “LLamaSharp” 

library was used. The software development kit “Semantic Kernel” was used for 

communication with the model and to provide “ChatHistory” class which makes it 

possible for chatbot to understand context. For calculating embeddings and storing 

embedding vectors into the data store, the “KernelMemory” service was used.  

AI functionalities in this application have been achieved using Large Language 

Models downloaded from Hugging Face, specifically text embedding models “Nomic” 

and “Arctic”, and text generation models “LLama3” and “Mistral”. When adding new 

knowledge to the chatbot, text embedding model is used to calculate embeddings. 

When asking the chatbot a question, the text generation model is used to generate an 

answer depending on the prompt.  

 The chatbot is developed following the technique of Retrieval-Augmented 

Generation and therefore is limited to answering only questions which can be answered 

using only the knowledge stored in the data store. If the chatbot is asked other 

questions, he will give predefined answer that further ensures he doesn't say something 

he shouldn't. 

Although all stated requirements are implemented, there is always room for 

improvement. For instance, calling APIs could be built in. That would improve the 
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accuracy of the chatbot because he could access real time information. For example, 

this chatbot which is used as an assistant for a shipping company could access their 

sailing schedules and return the up-to-date departure time and the price. Next, the 

chatbot could be upgraded so it that it can recommend tourist attractions for the place 

tourists are sailing to. Furthermore, a chatbot could be implemented for internal use 

where employees could use it for searching company documents. That way an 

employee could say “give me a document which contains …” and the chatbot would tell 

him which document contains what he is searching for and could give him references 

to those documents.  

This chatbot is developed to answer questions about a shipping company and 

its activities only, but it can be easily repurposed for any other field a company is 

invested in. 
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Abstract 
 

Implementation of an artificial intelligence-based chatbot for the 
shipping industry 

 

 This paper was made to explain the essential terms and concepts needed to 

understand how a simple chatbot works, to demonstrate its development, and to 

compare performance of few selected Large Language Models. 

 The chatbot was developed following the technique of Retrieval-Augmented 

Generation. The Large Language Models used are downloaded from Hugging Face. 

The models used for calculating text embeddings are “nomic-embed-text-v1.5-

Q5_K_M” and “snowflake-arctic-embed-m-long--Q5_K_M”. The models used for text 

generation are “Meta-Llama-3-8B-Instruct-Q4_K_M” and “mistral-7b-openorca-

oasst_top1_2023-08-25-v2.Q4_K_M”. This application consists of a page for inserting 

new knowledge and a page for calling a chatbot which also contains a container for 

used sources. 

 

Keywords: Chatbot; RAG; LLM; vectors; Semantic Kernel; Kernel Memory, 

LLamaSharp 
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Sažetak 

 

Implementacija jezičnog asistenta temeljenog na umjetnoj 
inteligenciji za brodarsku industriju 

 

 Ovaj diplomski rad izrađen je kako bi se objasnili osnovni pojmovi i koncepti 

potrebni za razumijevanje kako radi jednostavan chatbot, da bi se demonstrirao njegov 

razvoj te da bi se usporedile performanse nekoliko odabranih velikih jezičnih modela 

(Large Language Models). 

 Chatbot je razvijen slijedeći tehniku generiranja proširenog dohvaćanjem 

(Retrieval-Augmented Generation). Korišteni veliki jezični modeli su preuzeti sa 

Hugging Face-a. Modeli korišteni za računanje smještenja teksta (text embedding) su 

“nomic-embed-text-v1.5-Q5_K_M” i “snowflake-arctic-embed-m-long--Q5_K_M”. 

Modeli korišteni za generiranje teksta su “Meta-Llama-3-8B-Instruct-Q4_K_M” i 

“mistral-7b-openorca-oasst_top1_2023-08-25-v2.Q4_K_M”. Ova aplikacija sastoji se 

od stranice za unos novog znanja i stranice za pozivanje chatbot-a koja također sadrži 

kontejner za korištene izvore. 

 

Ključne riječi: Chatbot; RAG; LLM; vektori; Semantic Kernel; Kernel Memory, 

LLamaSharp 

 


