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1 Introduction

Attention is a critical cognitive process that significantly influences other behavioral and

cognitive functions. Understanding the complex mechanisms that comprise attention is

essential for uncovering how these mechanisms change throughout development and

aging. Attention is notably affected in various neurological and developmental disor-

ders. It is therefore imperative to deepen our understanding of attention to provide better

support and interventions for affected individuals.

Attention is also a crucial mechanism in artificial intelligence and robotics. When

faced withmultiple sensory inputs (visual, auditory, tactile, etc.), it is essential for agents

to selectively focus on a subset of these inputs to minimize processing load and enhance

speed and performance. By prioritizing relevant information and filtering out distrac-

tions, attention mechanisms enable agents to operate more efficiently and effectively in

dynamic environments. This selective focus is vital for tasks such as object recognition,

navigation, and human-robot interaction, where timely and accurate responses are crit-

ical.

The goal of this thesis was to develop an active inference model of visual attention,

which is directed by its sensory input to focus on simple objects in the environment. The

model also needed to be able to shift attention from one object to another, depending on

needs sensed from the environment. This thesis begins with a theoretical background

of the free-energy principle, predictive coding and active inference in Chapter 2. Chap-

ter 3 explains the methods used in the development of the model, giving an overview of

the key parts. The implementation of the developed model is explained in Chapter 4,

after which we present the results of multiple trials examining the behavior of the im-

plemented model in Chapter 5. Finally, Chapter 6 discusses the different behaviors of

the model, alongside the effects certain variables have and the model’s shortcomings.
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2 Theoretical Background

2.1 The Bayesian Brain Hypothesis

Biological agents, including humans, must deal with sensory uncertainty while existing

in the world. This uncertain sensory information is generated by hidden states of the en-

vironment in which the agent exists and acts, and these states are unknown to the agent

[1]. The Bayesian brain hypothesis proposes that biological agents possess an internal

model of the world. This model maintains internal beliefs about the causes of sensory

inputs and their relationships, which correspond to the hidden states of the world [2, 3].

Since these causes in the world are hierarchical in nature, the brain adopts a hierarchical

model as well, with causes at multiple levels of the hierarchy. Through this generative

model, the top-most beliefs about the causes influence the causes at lower levels, prop-

agating downward and ultimately generating sensory predictions[4]. According to the

Bayesian brain hypothesis, the human brain constantly predicts expected sensory input

based on its internal prior beliefs and compares these predictions with the actual sen-

sory input. When there is a mismatch, or prediction error, the brain updates its beliefs

to minimize future errors, thereby continuously refining its model of the world.

Under this hypothesis, the brain does not passively receive sensory information to

calculate the next best action, but actively generates perceptual predictions based on

prior knowledge and current sensory input. These perceptual predictions might differ

from the actual state of the world, explaining phenomena such as optical illusions and

hallucinations, where the brain’s predictions can override actual sensory inputs [5]. This

means that, under normal neurotypical functioning, the brain optimally weighs the con-

tributions of prior beliefs and current sensory input. For example, in a dark room, we

reduce our reliance on visual input and instead depend more on our internal prior be-

liefs about the room’s layout and other sensory modalities, such as touch. In this way,

5



the brain operates in an approximately Bayes-optimal manner [1, 2].

However, the hypothesis has been criticised for its unclear definition[6]. Some au-

thors refer to it in an "as if" nature: the brain behaves as if it has a generative model

and uses Bayes’ theorem, without literally implementing these. Others refer to it in a

"realist" sense: the brain actually has the generative model and applies Bayes’ theorem,

despite there being no direct evidence that this is the case. This thesis merely considers

it a theoretical possibility.

2.1.1 Predictive Coding

As mentioned previously, the internal beliefs of the brain are updated based on the pre-

diction errors that occur when there is a mismatch between the predictions of the gener-

ative model and the actual sensory input. This belief update is carried out by predictive

coding, through bottom-up and top-down message passing [7, 8]. Lower parts of the hi-

erarchical model predict sensory information, while higher parts predict the causes of

those sensations. Prediction errors are calculated at each level and sent from lower lev-

els upwards (bottom-up) to inform higher levels about discrepancies. Simultaneously,

predictions from higher levels are sent downwards (top-down) to refine processing at

lower levels. This bidirectional flow of information ensures that the brain continuously

updates and refines its internal model, leading to more accurate and efficient sensory

processing.

By minimizing prediction errors at each level of the hierarchy, the model learns the

hierarchical causal structure of the world [9]. This continuous process of error mini-

mization allows the brain to adapt to new experiences and learn over time. Predictive

coding explains how perception is an active process, where the brain constantly antici-

pates sensory input and adjusts its predictions to align with reality. Instead of encoding

and passing sensory input upwards, the brain focuses on prediction errors, enabling it to

prioritize areas with the highest discrepancies. This mechanism of focusing on predic-

tion errors implements bottom-up attention, directing cognitive resources to unexpected

or significant stimuli [10]. Furthermore, inaccuracies in predictive coding may explain

certain developmental and neurological disorders, such as schizophrenia, autism, anxi-

ety disorders, and PTSD. In these conditions, the brain’s ability to accurately weigh prior
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beliefs against sensory input may be impaired, leading to distorted perceptions and mal-

adaptive behaviors.

2.1.2 Variational Bayes

The brain’s hierarchical model is not static and evolves with experience. Themechanism

of this evolution through experience, or learning, is explained with Bayes’ theorem. If

latent variables 𝒛 represent the agent’s belief about its internal states and the states in the

world, then the agent can update its beliefs using the prior distribution of those latent

states and the likelihood of the sensory data 𝒔. The posterior beliefs about the world

𝑝(𝒛|𝒔) are updated with regards to the product of prior beliefs 𝑝(𝒛) and the likelihood of
the observed sensory input 𝑝(𝒔|𝒛) as follows:

𝑝(𝒛|𝒔) = 𝑝(𝒔|𝒛)𝑝(𝒛)
𝑝(𝒔)

=
𝑝(𝒔, 𝒛)

𝑝(𝒔)
(2.1)

Because the calculation of themarginal distribution 𝑝(𝒔) = ∫ 𝑝(𝒔, 𝒛)𝑑𝒛 is intractable
because of the integration over the joint density 𝑝(𝒔, 𝒛), the posterior is approximated

with a recognition distribution 𝑞(𝒛) ≈ 𝑝(𝒛|𝒔). This recognition distribution is the prod-
uct of inverting the generative model, in other words the inference of the causes of sen-

sory data [2]. This approximation is done through the minimization of the Kullback-

Leibler (KL) divergence between the two distributions:

𝐷𝐾𝐿[𝑞(𝒛)||𝑝(𝒛|𝒔)] =∫
𝒛

𝑞(𝒛) ln
𝑞(𝒛)

𝑝(𝒛|𝒔) 𝑑𝒛 (2.2)

Which, with equation 2.1, can be rewritten as:

𝐷𝐾𝐿[𝑞(𝒛)||𝑝(𝒛|𝒔)] =∫
𝒛

𝑞(𝒛) ln
𝑞(𝒛)𝑝(𝒔)

𝑝(𝒔, 𝒛)
𝑑𝒛

= ln𝑝(𝒔) −∫
𝒛

𝑞(𝒛) ln
𝑝(𝒔, 𝒛)

𝑞(𝒛)
𝑑𝒛

= ln𝑝(𝒔) −ℒ(𝑞)

(2.3)

Where ℒ(𝑞) is the evidence lower bound, or ELBO. It serves as a lower bound on the
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log evidence ln𝑝(𝒔) because the KL divergence is always nonnegative, therefore ℒ(𝑞) ≤
ln𝑝(𝒔). So, to achieve the best approximation of 𝑝(𝒛|𝒔) we need to minimize the KL
divergence, which is equivalent to maximizing the ELBO.

2.2 The Free-Energy Principle

According to the free-energy principle, systems adapt and act in a way that minimizes

their free-energy [4]. Free-energy is a term borrowed from physics, statistics and infor-

mation theory that bounds the surprise on a sample of data, given a generative model.

This principle explains how biological systems resist the natural tendency to disorder,

and how it influences action and perception [2]. One of the definitions for free-energy

is energy minus entropy:

𝐹(𝒛, 𝒔) = − ⟨ln𝑝(𝒔, 𝒛)⟩𝑞 + ⟨ln 𝑞(𝒛)⟩𝑞 (2.4)

Where ⟨⋅⟩𝑞 indicates expectation under density 𝑞. This definition shows that free-
energy can be evaluated by an agent if it has a probabilistic generative model, which is

expressed in terms of a likelihood and prior: 𝑝(𝒔, 𝒛) = 𝑝(𝒔|𝒛)𝑝(𝒛) [11]. If this definition
were to be reformulated, it shows that free-energy is equivalent to the negative ELBO:

𝐹(𝒛, 𝒔) = −∫
𝒛

𝑞(𝒛) ln𝑝(𝒔, 𝒛)𝑑𝒛 +∫
𝒛

𝑞(𝒛) ln 𝑞(𝒛)𝑑𝒛

=∫
𝒛

𝑞(𝒛) ln
𝑞(𝒛)

𝑝(𝒔, 𝒛)
𝑑𝒛

= −ℒ(𝑞)
= 𝐷𝐾𝐿[𝑞(𝒛)||𝑝(𝒛|𝒔)] − ln𝑝(𝒔)

(2.5)

Here, minimizing the free-energy is equivalent to maximizing the ELBO: the KL di-

vergence between the recognition density 𝑞(𝒛) and posterior density 𝑝(𝒛|𝒔) is reduced.
The negative log probability of an outcome (here, − ln𝑝(𝒔)) is defined as surprise. Free-

energy is the upper bound on surprise, so minimizing it minimizes the surprise of a

certain sampling of sensory input. Under variational Bayes, this is done by changing the

internal states 𝒛 of the model [11]. This minimization is far simpler to perform by the
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system than the minimization of the KL divergence, as it only relies on the approximate

posterior and the generative model of the system.

Under the free-energy principle, all of the variables of a system will change so that

free-energy is minimized [4]. A biological system must constantly keep it self in a set of

states inwhich it is kept alive and inwhich it can oppose disorder [3], and thismeans that

surprise about its states, or the upper bound of that surprise, must be minimal. One way

this is accomplished is by perceptual inference, where the most plausible hidden states 𝒛,

are those which minimize free-energy:

𝒛 = argmin
𝒛

𝐹(𝒛, 𝒔) (2.6)

With the assumptions [12] that:

• under the mean-field approximation, the recognition density can be partitioned

into independent distributions: 𝑞(𝒛) =
∏

𝑖
𝑞(𝒛𝑖), and that

• each of these partitions is Gaussian: 𝑞(𝒛𝑖) = 𝒩(𝝁𝑖,𝚷
−1
𝑖 ), under the Laplace ap-

proximation,

systems can approximate the environment, which is defined as a dynamical system

with additive random effects[11]:

𝒔 = 𝒈(𝒛) +𝒘𝑠

𝒛̇ = 𝒇(𝒛) +𝒘𝑧

(2.7)

with their own model:

𝒔 = 𝑔(𝒛) +𝒘𝑠

𝒛̇ = 𝑓(𝒛) +𝒘𝑧

(2.8)

Because of the assumption that each partition of the recognition density is Gaussian,

free-energy does not depend on the hidden states 𝒛, but on their most probable hypothe-

ses, beliefs 𝝁, and their precision matrices𝚷𝑖. Now, free-energy becomes:
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𝐹(𝝁, 𝒔) = − ln𝑝(𝒔,𝝁) + 𝐶 = − ln𝑝(𝒔|𝝁) − ln𝑝(𝝁) + 𝐶 (2.9)

where C is a constant. Then, the internal model of the environment becomes:

𝒔̃ = 𝑔(𝝁̃) +𝒘𝑠

𝐷𝝁̃ = 𝑓(𝝁̃) +𝒘𝜇

(2.10)

Here, 𝝁̃ indicates generalized coordinates of beliefs with multiple temporal orders,

𝝁̃ = ı𝝁,𝝁′,𝝁′′,⋯#, which allow for finer approximation of the environment. 𝐷⋅ is the

differential shift operator: 𝐷𝝁̃ = ı𝝁′,𝝁′′,⋯#, in the generalized equation of system dy-

namics 𝑓(𝝁̃).

In this way, perception optimizes predictions of the generative model [2]. Once we

learnwhat the causes to our sensations are, we cannot be surprisedwhenwhatwe expect

actually happens.

Belief update

With the generalized coordinates of sensory data and beliefs, the likelihood and prior

distributions in Eq. 2.9 also become generalized and can be partitionedwithin and across

temporal orders 𝑑, respectively:

𝑝(𝒔̃|𝝁̃) =∏
𝑑

𝑝(𝒔[𝑑]|𝝁[𝑑])
𝑝(𝝁̃) =

∏
𝑑

𝑝(𝝁[𝑑+1]|𝝁[𝑑]) (2.11)

These partitions are assumed to be Gaussian, as mentioned previously:

𝑝(𝒔[𝑑]|𝝁[𝑑]) = 𝚷𝒔√
(2𝝅)

𝐿

exp (−1
2
𝒆
[𝑑]
𝑠

𝑇

𝚷𝒔𝒆
[𝑑]
𝑠 )

𝑝(𝝁[𝑑+1]|𝝁[𝑑]) = 𝚷𝝁√
(2𝝅)

𝑀

exp (−1
2
𝒆
[𝑑]
𝜇

𝑇

𝚷𝝁𝒆
[𝑑]
𝜇 )

(2.12)
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where 𝐿 and𝑀 are the respective dimensions of sensory data and internal beliefs.

In these variational probability distributions, 𝒆[𝑑]𝑠 and 𝒆[𝑑]𝜇 are sensory and system dy-

namics prediction errors:

𝒆
[𝑑]
𝑠 = 𝒔[𝑑] − 𝑔[𝑑](𝝁[𝑑]) = 𝒔[𝑑] − 𝒑[𝑑] (2.13)

𝒆
[𝑑]
𝜇 = 𝝁[𝑑+1] − 𝑓[𝑑](𝝁[𝑑]) (2.14)

Because the Gaussians are smooth and differentiable, gradients can be easily com-

puted and gradient descent performed tractably over the generalized coordinates by chang-

ing the belief 𝝁̃ at every temporal order:

̇̃𝝁 − 𝐷𝝁̃ = −𝜕𝜇̃𝐹(𝝁̃, 𝒔̃) (2.15)

Now, with Eq. 2.9, the belief update becomes:

̇̃𝝁 = 𝐷𝝁̃ +
𝜕𝑔

𝜕𝝁̃

𝑇

𝚷̃𝑠𝒆̃𝑠 +
𝜕𝑓

𝜕𝝁̃

𝑇

𝚷̃𝜇𝒆̃𝜇 − 𝐷𝑇𝚷̃𝜇𝒆̃𝜇 (2.16)

The three terms that comprise the belief update are:

•
𝜕𝑔

𝜕𝝁̃

𝑇

𝚷̃𝑠𝒆̃𝑠 : likelihood error computed at the sensory level, representing the free-

energy gradient of the likelihood relative to the belief 𝝁̃[𝑑], in Eq. 2.13

•
𝜕𝑓

𝜕𝝁̃

𝑇

𝚷̃𝜇𝒆̃𝜇 : backward error from the next temporal order, representing the free-

energy gradient relative to the belief 𝝁̃[𝑑+1] in Eq. 2.14

• −𝐷𝑇𝚷̃𝜇𝒆̃𝜇 : forward error coming from the previous temporal order, representing

the free-energy gradient relative to the belief 𝝁̃[𝑑] in Eq. 2.14

To summarize, the predictions generated by the model are constantly compared to

the sensory input, which generates prediction errors. These prediction errors consist of

11



sensory errors and errors across different temporal orders of the internal belief, which

together update the internal belief and drive it towards a point which minimizes free-

energy, and by proxy surprise.

2.3 Active Inference

Just learning about the causes of sensations is not enough. For example, learning that

touching hot things causes pain is not enough to keep us from touching them. States that

are compatible with survival are called attractors, and systems tend to stay around them

once close, even under small perturbations [2]. These attractors have evolved through

time and they influence systems’ beliefs and therefore their expectations about the state

of the world. To actively bring about these expectations from beliefs, systems must ac-

tively sample the sensory space in a way that minimizes surprise, or prediction errors.

In this way, optimal action is inferred by minimizing free-energy:

𝒂 = argmin
𝒂

𝐹(𝝁, 𝒔) (2.17)

Since motor control is only dependent on sensory information, the action update be-

comes:

𝒂̇ = −𝜕𝒂𝐹(𝝁̃, 𝒔̃) = −
𝜕𝐹

𝜕𝒔̃

𝜕𝒔̃

𝜕𝒂
= −

𝜕𝒔̃

𝜕𝒂

𝑇

𝚷̃𝑠𝒆̃𝑠 (2.18)

This enables the system to update belief with likelihood contributions from each sen-

sory modality. However, it requires knowing the inverse mapping from exteroceptive

sensory data to action. Nevertheless, it is through this action that systems can actively

inhabit a set of states that promote the greatest chances of survival. Active inference

was shown to possibly explain biological behaviours, such as saccadic and smooth pur-

suit eye movements [13], binocular depth estimation [14], the rubber hand illusion [15]

and motor learning [16]. It has also been proposed as an alternative to reinforcement

learning or control theory when optimizing behaviour [11] and successfully applied to

robotics [17, 18].
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2.3.1 Attention

Attention can be both goal-directed and stimulus-driven. The former is influenced by

top-down selection of stimuli, meaning that it is shaped by an agent’s goals, expectations,

and prior knowledge, directing its focus towards specific aspects of its environment that

are relevant to its current tasks or objectives. In contrast, stimulus-driven attention is

governed by bottom-up stimulus properties, which capture agents’ attention due to their

inherent characteristics, such as suddenmovement, bright colors, or loudnoises,making

them stand out in the sensory landscape [10, 19].

It is this bottom-up surprise that attracts attention to those parts of the sensory space

that are most unexpected. When something in the environment deviates from what the

system expects, it creates a form of sensory surprise that compels the system to focus on

it, often as a potential sign of something important or needing immediate response[20].

This mechanism is akin to active inference[21, 22], where surprise drives the belief sys-

tem towards a state that best explains the sensory information received and therebymin-

imizes future surprise. Attention has also been examined from a Bayesian perspective

[22, 23, 24, 20, 25], examining how attention balances expected goal-directed influences

and unexpected stimulus-driven influences.

The top-down goal-directed selection of stimuli is dependent on the functioning of

higher areas of the brain, particularly the prefrontal cortex (PFC)[10, 26]. The PFC is

crucial for executive functions such as planning, decision-making, and moderating so-

cial behavior, and it plays a significant role in controlling attention by prioritizing stimuli

that align with our goals and suppressing those that are irrelevant. This dual mechanism

of attention — balancing the influence of immediate sensory inputs with higher-level

cognitive processes — ensures that we can effectively navigate and respond to our com-

plex and ever-changing environment.

2.4 Flexible Intentions

In their 2023 paper[26], Priorelli and Stoianov introduced the theory of flexible intentions

in the context of active inference. This theory posits that for an agent to adapt to a chang-

ing environment and adjust its goals accordingly, it must utilize dynamic attractors that
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influence its actions in real-time. For instance, an agent might encode within its belief

system the states of multiple moving objects within a scene. In tasks such as grasping

or gazing, these objects represent affordances that the agent can select from, with each

belief state corresponding to the successful completion of a different affordance acting

as a distinct attractor. These attractors influence the system’s dynamics and actions ac-

cording to the current goals, each exerting varying degrees of influence. Priorelli and

Stoianov suggest that this process of weighing different attractors and directing actions

based on goals is managed by the posterior parietal cortex (PPC), through a mechanism

of intention coding.

The agent manipulates its beliefs of the current state of itself and the world to con-

struct representations of future states - intentions, which act as priors to the current

belief[26]. Intentions 𝒉
(𝑘)

are constructed from current beliefs 𝝁 to act as future goal

states, with 𝐾 different intention functions 𝒊
(𝑘)
(𝝁) ∈ ℝ𝑀:

𝒉
(𝑘)
= 𝒊

(𝑘)
(𝝁) (2.19)

These intentions and their prediction errors later influence the belief update and by

proxy action. Instead of simply updating the belief based on the sensory prediction error

to match the current sensory state, like the likelihood error in Eq. 2.16, they push the

belief toward the desired goal states.

2.5 Variational Autoencoders

Variational Autoencoders (VAEs) are a type of generative model that combines neural

networks and probabilistic inference to generate new data similar to a given training

set. Being a generative model, they learn the joint distribution 𝑝(𝒔, 𝒛), and can generate

new data from the approximated input distribution, given a prior distribution 𝑝(𝒛). Un-

like traditional autoencoders that encode an input into a deterministic latent space and

decode it back to the original input, VAEs encode the input into a probabilistic latent

space. This is achieved by encoding the input as a distribution over the latent variables,

typically assuming a Gaussian distribution. This distribution is called the encoder distri-

bution 𝑞(𝒛|𝒔), which is the recognition distribution in variational Bayes:
14



𝑞(𝒛|𝒔) =𝒩(𝒛|𝝁𝜙,𝚺𝜙) (2.20)

The other distribution comprising VAEs is the decoder distribution 𝑝(𝒔|𝒛) which is
the generative model that generates new sensory data from the latent encodings:

𝑝(𝒔|𝒛) =𝒩(𝒔|𝝁𝜃,𝚺𝜃) (2.21)

During training, VAEsminimize the difference between the input and its reconstruc-

tion, while also ensuring that the latent space approximates the desired prior distribu-

tion, usually a standard normal distribution. This dual objective is realized through the

use of the Kullback-Leibler divergence and reconstruction loss (minimized through the

maximization of the sensory data expected log likelihood 𝑝(𝒔|𝒛) ). These two compo-
nents constitute the ELBO, which is maximized during training:

ℒ(𝑞) = 𝔼𝑞(𝒛|𝒔)[log𝑝(𝒔|𝒛)] − 𝛽 ⋅ 𝐷𝐾𝐿(𝑞(𝒛|𝒔) ∥ 𝑝(𝒛)) (2.22)

Where 𝛽 ≥ 1 is the regularization hyperparameter that promotes disentanglement,

balancing between reconstruction of data and the restriction of the capacity of the latent

channel [27, 28]. The latter enables different dimensions of the latent space to encode for

specific properties of the input space (e.g. coordinates of objects in image plane), which

helps with interpretability of the latent space.
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3 Methods

In this section we first give an overview of the active inference model developed for this

thesis. After that we cover the beliefs and intentions, going into detail of how they are

maintained and updated. Later we explain how the simple attention mechanism oper-

ates and finally overview the active inference algorithm.

3.1 Model Overview

The developed active inference model can be seen in Fig. 3.1. At the center of the model

are the beliefs the agent holds about its internal states and the state of the environment.

These internal states hold information about the different intrinsic causes of sensations,

like the proprioceptive sensations from the agent’s joints and actuators, different phys-

iological sensations like hunger, thirst etc. The states of the environment explain the

causes to exteroceptive sensations, like sight, touch, sound etc. These beliefs are passed

both upwards and downwards, influencing the agent’s attention and goals, as well as its

perception and actions.

3.1.1 Downwards Perception

The beliefs are passed down into the generative models of the different sensory modali-

ties. In our case these are the necessitative (𝑔𝑛), proprioceptive (𝑔𝑝) and visual (𝑔𝑣) gen-

erative models, responsible for predicting sensations of the agent’s internal needs, body

position and visual input respectively. The model can be easily upgraded with more sen-

sory modalities by expanding its beliefs and adding more generative models.

These generative models create sensory predictions 𝒑𝒏,𝒑𝒑 and 𝒑𝒗 that are compared

with the actual sensory input 𝒔𝒏,𝒔𝒑 and 𝒔𝒗, producing the sensory prediction errors 𝒆𝒔
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Figure 3.1: The active inference model

(Eq. 2.13). These sensory prediction errors are then either passed up to drive the belief

update, or down to drive the action, through the action update shown in Eq. 2.18.

The mapping from sensory data to actions
𝜕𝒔̃

𝜕𝒂
in the action update can be expressed

through the gradients of the generative models, so the action update becomes:

𝒂̇ = −
𝜕𝒔̃

𝜕𝒂

𝑇

𝚷̃𝑠𝒆̃𝑠 = − (𝜕𝑔
𝜕𝝁̃

𝜕𝝁̃

𝜕𝒂
)𝑇 𝚷̃𝑠𝒆̃𝑠 = −

𝜕𝝁̃

𝜕𝒂

𝑇
𝜕𝑔

𝜕𝝁̃

𝑇

𝚷̃𝑠𝒆̃𝑠 (3.1)
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Where
𝜕𝑔

𝜕𝝁̃

𝑇

𝚷̃𝑠𝒆̃𝑠 is the likelihood error computed at the sensory level, also used in the

belief update in Eq. 2.16. The inverse model from belief to actions is:

𝜕𝝁̃

𝜕𝒂
=
𝜕𝝁̃

𝜕𝑞

𝜕𝑞

𝜕𝒂
(3.2)

Since actions are already in the proprioceptive domain, and are defined in terms of

joint velocities, the inverse proprioceptive model becomes:

𝜕𝝁̃

𝜕𝒂
=

𝜕𝝁̃

𝜕𝑔𝑝

𝜕𝑔𝑝

𝜕𝒂
≈ ∆𝑡

𝜕𝑔𝑝

𝜕𝝁̃

−1

(3.3)

Where ∆𝑡 approximates
𝜕𝑔𝑝

𝜕𝒂
. The inverse model from visual belief to actions requires

the mapping of visual belief to proprioception to be known, which becomes easier if

the latent space of the visual generative model is assumed to be continuous and highly

disentangled:
𝜕𝝁̃

𝜕𝒂
=

𝜕𝝁̃

𝜕𝑔𝑣

𝜕𝑔𝑣
𝜕𝒂

(3.4)

To simplify, this inverse visual model converts the visual likelihood error into the

proprioceptive domain (e.g. from pixels into angles), and helps drive action. The contri-

bution of internal needs to action is not considered in this thesis, because the complex

inverse mapping from needs to actions requires higher level mechanisms and is highly

dependent on the current state of the environment. This is in a way achieved by atten-

tion.

3.1.2 Upwards Intentions and Attention

The beliefs are also passed onto the intention module that produces static and dynamic

intentions or attractors that drive the belief update. This is done through the intention

prediction errors 𝑬𝒊 defined as the differences between every intention and the current

belief:

𝑬(𝑖) = [(𝒉
(0)
− 𝝁)⋯ (𝒉

(𝐾)
− 𝝁)] = [𝒆𝑖,0⋯ 𝒆𝑖,𝐾] (3.5)

These intention errors update the belief through the generalized equations of system
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dynamics, with the gain 𝑘:

𝑓(𝑙)(𝝁) = 𝑘𝒆𝑖,𝑙 +𝒘
(𝑙)
𝜇 (3.6)

These errors serve as attractors toward which the belief is pulled, where the pull is

proportional to the error.

Attention weighs the different intentions through the intention weights vector 𝚪. In

this thesis, these weights are set to be mutually exclusive, that is, only one of the inten-

tions can be active at one time, to avoid attractor conflict. 𝚪 is determined from current

beliefs 𝝁, and takes into account the most adequate attractor to satisfy internal needs,

while also considering the feasibility of achieving that goal - for example, how close an

object is.

3.2 Belief

Since the belief needs to hold the internal states of the agent and the states of the envi-

ronment, it is organized as 𝝁 = [𝝁𝑛𝑒𝑒𝑑𝑠,𝝁𝑝𝑟𝑜𝑝𝑟𝑖𝑜𝑐𝑒𝑝𝑡𝑖𝑣𝑒,𝝁𝑣𝑖𝑠𝑢𝑎𝑙]. A graphical representation

can be seen in Fig. 3.2.

Figure 3.2: The model belief structure

The ’needs’ part represents the internal physiological needs, which in our case is sim-

plified to needs for certain types of objects. These needs act as indicators as towhat object

is needed, and the magnitude of that need. The proprioceptive part represents the body

position of the agent, in our case the pitch and yaw angles of the camera. These are

set in the global coordinate system. The visual part is the representation of the state of

the environment, that is, the belief over the field of vision. In our case, it holds easily

interpretable pixel coordinates of the objects in the image.

Each of these parts feeds into their respective generative model, with the visual part

19



having a restriction that it needs to be easily interpretable, as in Fig. 3.2. This is achieved

with VAE dissentanglement, where the first 𝑛 latent variables represent the attributes of

the first possible object, the second 𝑛 represent the attributes of the second and so on,

while the remaining latent variables are free to adapt to other phenomena in the visual

field (e.g. if objects overlap each other, or if one ormore objects is not visible). This thesis

only considers two possible objects in the environment: a red ball and a blue ball.

3.2.1 Belief Update

In this thesis, the belief has three temporal orders, 𝝁, 𝝁′ and𝝁′′. FromEq. 2.16we further

derive the update for the individual orders1:

̇̃𝝁 = 𝐷𝝁̃ − 𝜕𝜇̃𝐹(𝝁̃, 𝒔̃)

=
⎡⎢⎢⎣
𝝁′ + 𝑮

𝑇
(𝝅 ⊙ 𝑬𝒔) + (𝑭 ⊙ 𝑬(𝑓))𝜸𝑇

𝝁′′ − 𝑬(𝑓)𝜸𝑇

⎤⎥⎥⎦
(3.7)

Where the prediction errors of the dynamics functions 𝑬(𝑓) and sensory prediction

errors 𝑬𝒔 are defined as:

𝑬(𝑓) = 𝝁′ − 𝑬(𝑖)

𝑬𝒔 = 𝒔 − 𝒑
(3.8)

Here 𝑮 represents all gradients of the sensory generative models, 𝑭 represents gradi-

ents of the dynamics functions and 𝝅 and 𝜸 represent sensory and intention precisions,

respectively. Most state-of-the-art implementations ignore the 0th order backward er-

ror as the attractor, which simplifies computation as calculating the dynamics functions

gradients becomes unnecessary. The belief update can then be approximated as:

̇̃𝝁 ≈
⎡⎢⎢⎣
𝝁′ + 𝑮

𝑇
(𝝅 ⊙ 𝑬𝒔)

𝝁′′ − 𝑬(𝑓)𝜸𝑇

⎤⎥⎥⎦
=
⎡⎢⎢⎣
𝝁′ + 𝝐𝑠

𝝁′′ − 𝝐 (𝑖)

⎤⎥⎥⎦
(3.9)

Where 𝝐𝑠 and 𝝐
(𝑖) are the precision-weighed sensory and prediction error contribu-

tions.

1The 2nd temporal order 𝝁′′ is not updated and is constant at 𝟎
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3.2.2 Precisions

Precisions play a major role in predictive coding, determining how much a certain sen-

sory modality or intention contributes to the belief update. In the case of sensory preci-

sions 𝝅, each of them represents how much each sensory modality can be trusted. For

example, we tend to trust our vision less in a dark room, or our sense of touchwhenwear-

ing oven mitts. The precisions for the individual modalities are also regulated with the

variable 𝛼, which determines the relationship between the twomodalities that influence

action (proprioceptive and visual). The final precisions for the modalities are then:

𝝅𝑛𝑒𝑒𝑑𝑠 = 𝝅 ′
𝑛𝑒𝑒𝑑𝑠

𝝅𝑝𝑟𝑜𝑝𝑟𝑖𝑜𝑐𝑒𝑝𝑡𝑖𝑣𝑒 = 𝛼𝝅 ′
𝑝𝑟𝑜𝑝𝑟𝑖𝑜𝑐𝑒𝑝𝑡𝑖𝑣𝑒

𝝅𝑣𝑖𝑠𝑢𝑎𝑙 = (1 − 𝛼)𝝅 ′
𝑣𝑖𝑠𝑢𝑎𝑙

(3.10)

The intention precisions regulate the strength with which intentions affect the belief

update. They could be different for each modality part in the intentions, and different

for each intention, so they are organized in a matrix 𝑩. The final intention precisions 𝜸

for all intentions are then regulated by the intention weight vector 𝚪 which selects one

intention, and represses others:

𝜸 = 𝚪𝑩 (3.11)

Another one of the precision variables is the gain 𝑘, serving as a gain to intention

errors in the system dynamics functions (Eq. 3.6). How changes to these precisions

affect the behavior of the system will be discussed in Chapter 6.

3.3 Intentions

Intentions drive the belief from above, generating attractors towards goal states which

the agent tries to accomplish. In our case there is an intention for each object that can

appear in the agents field of view. Intentions are derived from the current belief (enabling

dynamic/flexible intentions) and static goal states. Since intentions are future beliefs,

they have the same shape and are divided into the same parts (needs, proprioceptive and
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visual) as beliefs.

The ’needs’ part remains unchanged and is copied from the current belief:

𝒉
(𝑘)

𝑛𝑒𝑒𝑑𝑠 = 𝝁𝑛𝑒𝑒𝑑𝑠 (3.12)

This way, the ’needs’ part is only updated from the sensory input. The proprioceptive

part of the intentions is dynamic and depends not only on the current proprioceptive

belief but on the dynamic visual part. With our visual belief being easily interpretable,

we can extract the pixel coordinates of each object in the scene. If we assume that the

intrinsic matrix of the camera is known, we can easily determine where the objects are

located in the image in terms of relative pitch and yaw angles2. These relative angles are

then added to the current proprioceptive belief to get proprioceptive intentions of each

object, represented in the global angle positions:

𝒉
(𝑘)
𝑝𝑟𝑜𝑝𝑟𝑖𝑜𝑐𝑒𝑝𝑡𝑖𝑣𝑒 = 𝝁𝑝𝑟𝑜𝑝𝑟𝑖𝑜𝑐𝑒𝑝𝑡𝑖𝑣𝑒 + 𝑝𝑖𝑥𝑒𝑙𝑠_𝑡𝑜_𝑎𝑛𝑔𝑙𝑒𝑠(𝑒𝑥𝑡𝑟𝑎𝑐𝑡_𝑝𝑖𝑥𝑒𝑙𝑠(𝝁𝑣𝑖𝑠𝑢𝑎𝑙)) (3.13)

The 𝑒𝑥𝑡𝑟𝑎𝑐𝑡_𝑝𝑖𝑥𝑒𝑙𝑠() function trivially extracts the object representations from the

visual belief. However, this could be a complex function that extracts object representa-

tions from an entangled latent space, which is not explored here for simplicity.

The visual part is derived both statically and dynamically. The static goal is simply

the mean latent representation of all of the training images in which the desired object

is in the center of the image:

𝒉
(𝑘)

𝑣𝑖𝑠𝑢𝑎𝑙 = 𝑚𝑒𝑎𝑛(𝒄𝑘) (3.14)

Where 𝒄𝑘 is the array of latent representations where object 𝑘 is in the center. The dy-

namic goal is the latent representation of an image with the goal object centered, which

is closest to the current belief. This pushes the goal object towards the center, while pre-

serving the states of other objects. Assuming a continuous latent space, the visual part

of the intention is calculated as the one with the smallest Euclidean distance:

2The angles are relative to the center of the image so that when the agent moves accordingly, the se-
lected object will be centered.
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𝒉
(𝑘)

𝑣𝑖𝑠𝑢𝑎𝑙 = 𝑐𝑙𝑜𝑠𝑒𝑠𝑡(𝒄𝑘) (3.15)

These intentions are calculated for each object and weighted with weights 𝚪 from the

attention module.

3.4 Algorithm

The active inference algorithm can be written as:

Algorithm 1: Active inference agent with visual attention

Require: 𝒄, 𝑺, 𝜸 ,𝝅,∆𝑡

1: 𝝁̃← 𝑖𝑛𝑖𝑡𝐵𝑒𝑙𝑖𝑒𝑓()
2: while 𝑡 ≤ 𝑇 do
3: 𝑷← 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠(𝝁)
4: 𝑯 ← 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐼𝑛𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑠(𝝁, 𝒄) ⊳ from belief and centered representations
5: 𝚪← 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝝁) ⊳ intention weights from attention

6: 𝑬(𝑖)
← 𝑯 − 𝝁

7: 𝑬(𝑓)
← 𝝁′ − 𝑘𝑬(𝑖) ⊳ dynamics prediction errors

8: 𝑬𝑠 ← 𝑺 − 𝑷 ⊳ sensory prediction errors
9: 𝝐𝑠 ← 𝑮

𝑇
(𝝅 ⊙ 𝑬𝒔) ⊳ weighted sensory errors

10: 𝝐 (𝑓) ← 𝑬(𝑓)𝜸𝑇 ⊳ weighted intention errors
11: 𝝁̇← 𝝁′ + 𝝐𝑠 ⊳ belief update
12: 𝝁̇

′
← 𝝁′′ − 𝝐 (𝑓)

13: 𝒂̇← −𝜕𝑎𝝁𝝐𝑠 ⊳ action update
14: 𝝁̃← 𝝁̃ + ∆𝑡 ̇̃𝝁 ⊳ update beliefs and action
15: 𝒂← 𝒂 + ∆𝑡𝒂̇
16: end while
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4 Implementation

In this section we will go over the implementation of the active inference model. The

model was implemented in Python and ROS2, using Gazebo as the simulation environ-

ment. The active inference code was modified from [26] and the VAE training code from

[29]. The code is open source and available at https://github.com/TinMisic/AIF---

visual-attention.git. In this implementation the task of the active inference model

is to pay attention to two balls, one red and the other blue. It must also change focus

from one object to another, depending on the sensory input.

4.1 Simulation

We will first go over the world used in the simulation and give an overview of the most

important ROS Nodes in the simulation. After that each of the sensory modalities will

be explained as well as the nature of the sensory data used.

4.1.1 World and Nodes

The world contains a camera object located at coordinates [0.0, 0.0, 1.0], and which is

pointed so that it looks in the direction of the positive 𝑥 axis. There are also four invisible

collision walls whose function is to limit the movement of the balls along the 𝑦𝑧 plane

within the ranges of −5 < 𝑦 < 5,−4 < 𝑧 < 6. Movement along the 𝑥 axis is fixed at 4.

The two balls are spawned into the world and given random velocity vectors in the 𝑦𝑧

plane. The simulation environment with the camera and balls can be seen in Fig. 4.1.

The nodes active during the simulation can be seen in Fig. 4.2.
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Figure 4.1: The simulation environment

Figure 4.2: Node graph during simulation

/sim and /cam nodes

The /sim and /cam nodes are nodes crated by Gazebo and they provide model states and

images, respectively. The /model_states topic holds messages with the information

of object positions and orientations. This is important for both controlling the camera

orientation and knowing the object projections needed for the /needs_publisher. Note

that the /active_inference node also subscribes to the /object_projections topic.

However, this is only for logging purposes and the object projections are not used during

inference.
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/cam_orientation_control node

The /cam_orientation_control node is taskedwith controlling the camera orientation

by subscribing to the /cam_orientation_setter topic and publishing the orientation

angles to the /actual_cam_orientation topic, which serves as the proprioceptive input

to the /active_inference node. The /cam_orientation_control node receives the

wanted camera orientation and interpolates the cameramovement by a constant velocity

until the desired orientation is reached.

/active_inference node

The /active_inference node is the main computational node of the whole simulation.

It is subscribed to the /needs, /actual_cam_orientation and /cam/camera1/image_raw

topics, which serve as the needs, proprioceptive and visual sensory inputs respectively.

It is also subscribed to the /object_projections topic, but only for logging purposes.

It’s only output is the action command in the form of the desired camera orientation sent

to the /cam_orientation_setter topic.

4.1.2 Sensory Data

Needs

As previously stated, the needs array represents bodily needs that influence the agent’s

actions and behaviour. In our case the needs array is an array of floating point numbers

with a size of 2, one floating point number for each object. The values of the needs array

are limited between 0 and 1, and represent how much a specific object is desired.

The needs array can be set by a single message sent to the /needs topic, or gener-

ated by the /needs_publisherwhich generates values from a random sinusoidal curve,

and which also takes into account the distance of the object from the center. Even if the

desire for an object is high, it will be decreased if it is close to the center of the image.

This acts as a kind of reward, decreasing the need for an object once at the center. The

/needs_publisher publishes messages at a frequency of 20 Hz. Model training by rein-

forcement learning is possible, but is not considered in this thesis and is left for future

work.
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Proprioceptive input

The proprioceptive input represents the camera orientation and is in quaternion form. It

is assumed that the camera only has the control over pitch and yaw angles, and those are

extracted within the /active_inference node and are the sensory input for the model.

The camera orientation is limited to −
𝜋

2
≤ 𝜃, 𝜙 ≤ 𝜋

2
. The orientation messages are also

published at 20Hz.

Visual input

The raw image output from the camera object in Gazebo is an RGB image with the di-

mensions 32 × 32 × 3, with a horizontal field of viw of 1.396 radians or 80◦. The images

are scaled between 0 and 1 and passed on to the active inference agent. Examples can be

seen in Fig. 4.3. They feature a gray background with possible red or blue balls. Images

are also published at a frequency of 20Hz.

Figure 4.3: Visual input examples

Training examples for the VAE trainingwere gathered by capturing images of the two

objects scanning across the field of view, to get the best possible coverage of the scene.

For each image an object projection array was saved, to aid with VAE disentanglement.

4.2 Generative Models

The generative models for the needs and proprioceptive input are trivial identity matri-

ces, since the beliefs for those modalities are in the same space. The generative models

are:

27



𝑝𝑛𝑒𝑒𝑑𝑠 =
⎡⎢⎢⎣
1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

⎤⎥⎥⎦
𝝁

𝑝𝑝𝑟𝑜𝑝𝑟𝑖𝑜𝑐𝑒𝑝𝑡𝑖𝑣𝑒 =
⎡⎢⎢⎣
0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

⎤⎥⎥⎦
𝝁

(4.1)

The last six elements of the belief belong to the latent space of the VAE. The first four

elements of the latent space represent the pixel coordinates of the two objects, while the

other two are free variables to accommodate invisible objects and overlapping.

4.2.1 VAE Architecture

The encoder component architecture is visible in Fig. 4.4. It’s input is an image and it’s

outputs are the mean 𝜇 and standard variation 𝜎, which are resampled into the sample

𝑧.

Figure 4.4: Encoder architecture

The decoder component architecture is visible in Fig. 4.5. It’s input is a vector of

length 10 and it’s output is the visual sensory prediction. Only the decoder is used as the

generative visual model during inference.

4.2.2 VAE Training

The VAEwas trained in a semi-supervisedmanner. Asmentioned previously, alongwith

each image we have saved the object projections in that image. This enables us to force

the latent space to take on a disentangled form, learning that specific latent variables

code for pixel positions in the image. This is done through the KL divergence for each
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Figure 4.5: Decoder architecture

sample in the dataset. The object projections, along with the free variables set to 0, act

as the prior distribution which the VAE tries to learn.

The VAE was trained on a dataset of 47,000 images and their respective projections,

with a batch size of 1024 over 250 epochs. The original images and their reconstructions

in the first 5 and last 5 epochs are visible in Fig. 4.6. The VAE also successfully learns to

disentangle the latent space, within an average projection error of ±2 pixels.

Figure 4.6: VAE reconstruction history. The first column are the original images, while the rest
are reconstructions in the first 5 and last 5 epochs

4.3 Active Inference Agent

In this section we go over themost important functions within the active inference agent

implementation, mainly the /active_inference node.
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Attention module

The attentionmodule simply checkswhich of the values in the needs belief is largest, and

sets the according intention weights to the respective row of the 𝑩matrix, while setting

all other weights to 0. The attention regulation by distance is done by proxy through the

/needs_publisher, whichwill automatically lower the need if the object is at the center.

This is only the case if /needs_publisher is running, and attention to one object can be

sustained by simply publishing a constant needs message to the /needs topic.

Intention mode switching

How visual intentions are calculated is determined by the intention mode, which can

either be closest or mean. closest picks the latent representation of a centered image

closest to the current belief, while mean calculates the mean representation of all the

images with the desired object in the center. These modes are changed every 𝜏 steps to

utilize the advantages of each mode. How these different modes affect the behaviour of

the agent will be discussed later.

POV display

During operation, the node displays the current visual sensory input, as well as the visual

prediction and intention vectors, as can be seen in Fig. 4.7.

Figure 4.7: Visual sensory input and visual prediction with intention vectors for each object at
the start of one trial
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5 Results

In this chapter we present the results of multiple trials examining the model’s perfor-

mance and behaviour under different conditions. The following metrics were used to

asses the model:

• 𝐿2 distance: 𝐿2 distance of object projections and estimations across simulation

steps

• Perception error of occluded object: Perception error of object out of field of

vision (FOV) across simulation steps

• Reach error: 𝐿2 distance of the target object projection from the image center at

the end of the trial

• Reach time: time until the target object projection is first centered (within 1.5

pixels from the center)

• Reach stability: standard deviation of 𝐿2 distance from target reach until end of

trial

• Perception error: 𝐿2 distance between the true object projection and estimated

target position at the end of trial

• Perception stability: standard deviation of distance between object projections

and estimations

• Object permanencemetric: Simple metric indicating how well an occluded ob-
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ject is preserved in belief. Calculated as:

𝑂𝑃𝑀 =
1

𝑇

𝑇∑
𝑡

1||𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑡 − 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛𝑡|| (5.1)

The variable values for each trial are available in Appendix A.

5.1 Focus

In this section we examine the model’s ability to choose and focus on an object. We first

examine focus on static objects, assessing also the object permanence of the unfocused

object once it goes out of field of vision. After that we examine focus on a moving object.

5.1.1 Static Objects

Unfocused object in FOV

Here we examine focusing on both the red and the blue ball and how the unfocused ball

is preserved in belief. The starting sensory input is similar to the one in Fig. 4.7, with the

distance between the two objects being 2 units in 3D space. For these trials, the needs

are constant and do not change during the length of the trial.

When focusing on the red ball, the trial resulted in object projections and estimations

seen in Fig. 5.1.

Figure 5.1: Focus on the red ball. The blue ball stays in sight upon focus on red.
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We can see that the model successfully focuses on the red ball after around 100 sim-

ulation steps. It also successfully maintains perceptions of the two balls, with the blue

perception being incorrect by about 2 pixels. The blue ball is still in sight, so the percep-

tion does not diverge.

Similar results are achieved when focusing on the blue ball, as seen in Fig. 5.2.

Figure 5.2: Focus on the blue ball. The red ball stays in sight upon focus on blue.

Unfocused object outside FOV

Here we examine focusing on one ball when the two are further apart (by 5 units). Upon

focusing on one, the other is projected outside the FOV.

Focusing on the red ball, the projections and estimations are those in Fig. 5.3. We

can see that the belief over the blue ball is somewhat maintained, even after it is out of

sight (around step 50 of the trial), but it slowly diverges from the true projection. The

true sensory input and perceived visual stimulus at step 50 can be seen in Fig. 5.4. Even

though the blue ball is not actually visible, the model still maintains a belief over its

direction. This permanence of belief is helpful when changing attention to objects out

of sight.

The belief over the blue ball is almost constant for 100 steps, which can be seen more

clearly in Fig. 5.5, where the difference between the perceived blue ball and its actual

projection is indicated in pixels.
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Figure 5.3: Focus on the red ball. The blue ball goes out of sight upon focus on red.

Figure 5.4: Actual sensory input and perceived sensory input at simulation step 50. Belief over
the blue ball is held even after it is no longer visible.

Figure 5.5: Permanence of belief over the blue balls position. Horizontal lines indicate moments
in time when the blue ball is occluded and red ball is reached.
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5.1.2 Moving Objects

When focusing on amoving object, the agent needs to bothmaintain the focused object at

the center despite its movement, andmaintain belief over the other moving object in the

scene. The objects aremoving horizontally from left to right in opposite directions. They

change directions once they reach 𝑦 = ±1.5 in 3D units. The projections and estimations

can be seen in Fig. 5.6.

Figure 5.6: Focusing on moving red ball while maintaining belief over blue ball.

We can see that the model successfully maintains focus on the selected object and

belief over the other objects position.

5.2 Attention Shift

Onekey ability of biological organisms is tomaintain belief overmany objects in the envi-

ronment and to change focus between themwhen needed. In this section we explore the

model’s attention shifting ability on both static objects (in and out of FOV) and moving

objects. For the sake of simplicity, the needs that guide attention are not semi-randomly

generated by the /needs_publisher, but are changed every 𝑡 simulation steps from one

object to the other.

5.2.1 Static Objects in FOV

In this trial we examined the attention shifting ability when starting from focusing on

red. The period of attention shift is 𝑡 = 100 simulation steps. The projections and esti-
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mations can be seen in Fig. 5.7.

Figure 5.7: Attention shifting between static red and blue objects that are in the FOV at all times.
The background color indicates the object currently being focused on.

The model successfully shifts attention from the red ball to the blue one, and then

back to red once more. It successfully reaches red the first time, but it could not reach

the blue one in time before the attention changed back to red.

5.2.2 Static Objects out of FOV

When the other object is out of sight, maintaining a belief over its location is crucial to

be able to shift focus on it once needed. Here we examined a situation where the two

objects are far enough so the unfocused object is not always in sight (5 units of distance).

As before, attention is shifted every 𝑡 = 100 steps, starting with focus on the red object.

The projections and estimations are in Fig. 5.8.

We can see that the model successfully shifts attention to the blue ball, but struggles

tomaintain its belief, andwould notmanage another attention shift after the second one.

The decay of the belief over the blue balls position can be seen more clearly in Fig. 5.9.

The difference between the projection and estimation increases greatly after the second

attention shift.

5.2.3 Moving Objects

Attention shift onmoving objects is amore challenging problem, but themodel fairs well

with the right precision settings, as seen in Fig. 5.10. This trial’s attention shift period is
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Figure 5.8: Attention shifting between static red and blue objects that are not in the FOV at all
times.

Figure 5.9: Permanence of belief over the blue balls position.

𝑡 = 300. Both of the objects’ beliefs are well maintained even after the attention shift.

5.3 Intention mode difference

As mentioned previously, visual intentions can be calculated in two ways:

1. either by choosing the saved latent representation closest to the current belief (Eq.

3.15), or

2. by choosing the mean latent representation of the object at center (Eq. 3.14).

In this section we analyze the model’s behaviour in these two modes, as well as how
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Figure 5.10: Attention shifting on moving objects during a longer trial.

it behaves when a ratio of these modes is used during inference. These differences are

explored in the case of static objects, with focus on one without attention shifts.

5.3.1 Using only the closestmode

When using only the closestmodewith objects constantly in FOV, we get the following

results in Fig. 5.11.

Figure 5.11: Focusing on red ball with mode closest, and the blue ball constantly in sight.

We can see that the model successfully focuses on the red ball, but begins to drift as

its belief over the red ball is not perfectly centered. Due to already "locking in" to the red

ball in its perception, it remains at the center while the true projection drifts.
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When considering the case where the objects are not constantly in FOV, the model

performs better. As seen in Fig. 5.12, having the unfocused object out of sight maintains

its belief, while also reducing the drift over the focused red ball.

Figure 5.12: Focusing on red ball with mode closest, and the blue ball falls out of sight.

An advantage of the closest mode is that it holds beliefs over unfocused objects

fairly well, while its disadvantage is that it tends to drift it’s belief over the focused ball.

5.3.2 Using only the meanmode

When considering objects constantly in vision, the results for the meanmode are shown

in Fig. 5.13.

Figure 5.13: Focusing on red ball with mode mean, and the blue ball remains in sight.
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We can see that the meanmode maintains beliefs over both objects fairly well. How-

ever, when considering objects that are not constantly in sight, the model falls short, as

shown in Fig. 5.14.

Figure 5.14: Focusing on red ball with mode mean, and the blue ball falls out of sight.

The belief over the red ball is maintained very well, without drift, but the blue ball

belief quickly deteriorates after it is out of sight. The model explains its visual input by

assuming the blue ball is somehow "hidden" behind the red ball, as seen in Fig. 5.15.

Figure 5.15: Visual prediction at end of trial. The absence of the blue ball is explained by it
"merging" with or "hiding" behind the red ball.

The meanmodemaintains belief over objects in sightwithout drift, but quickly forgets

about the object out of sight. From both of these previous scenarios - using one of the

modes exclusively -we can see that a better strategy is needed to accomplish amore stable
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behavior. Table 5.1 shows the two modes compared by previously mentioned metrics.

Table 5.1: Exclusive mode comparison

mean closest
visible invisible visible invisible

Reach error 2.52 1.84 24.67 10.63
Reach time 45 107 64 100
Reach stability 0.82 0.55 6.78 2.84
Perception error (red) 0.03 0.5 23.34 9.62
Perception error (blue) 5.17 22.37 4.73 0.09
Perception stability (red) 0.5 0.15 6.52 2.29
Perception stability (blue) 1.68 5.07 1.84 3.06
OPM 0.38 0.12 0.29 0.69

We can see that mean is generally more stable in both its perceptions and reach, and

that it does not experience drift at the end of trial. However, when it comes to perception

error, stability and object permanence of an invisible object, the closestmode performs

better. To utilize the positive aspects of each mode, a balance must be made. Different

ratios of these modes during inference have been Appendix B. The ratio that achieves

the best compromise between stability, accuracy and object permanence is 20%, that is -

mode mean is used every fifth step, while closest is used for the rest.

5.4 Inference precisions and variables

The tuning of precisions - 𝛼, 𝛽, 𝜋𝑣𝑖𝑠𝑢𝑎𝑙 and 𝑘 - is vital for successful operation of the

model. We have considered the effects of these precisions on the focus task where model

must focus on the red ball, while the blue ball falls out of sight. The baseline settings for

all trials are in Appendix A, and the trial results in Appendix B. The configuration that

showed itself best during trials is the baseline of 𝛼 = 0.5, 𝛽 = 1 ⋅ 10−1, 𝜋 = 6 ⋅ 10−3 and

𝑘 = 6 ⋅ 10−2.
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6 Discussion

6.1 Model behaviour

The active inference attention model developed in this thesis accomplishes multiple

functions of visual attention. In this section we summarize the results and analyze the

behavior of the model under different tasks.

Direction and maintenance of focus

Themodel is capable ofmaintaining belief over objects it sees in the environment and can

direct its gaze on either of them depending on its sensory input. When focusing on one

object, it maintains the belief over the other, even showing behaviour similar to object

permanence. If an object goes out of sight, the model maintains belief over its location

in the environment for some time. Direction and maintenance of focus is possible even

when the objects are moving, provided that the agent can catch up to them.

Maintenance of the model’s belief is highly dependant on the precisions from the

downwards sensory input and from the upwards intentions. The mode of intention gen-

eration dictates how well an object out of sight is perceived. The mode closest success-

fully maintains belief over the invisible object, but causes a deterioration of the belief of

the visible object and a drifting in the agent’s action. The mode mean, on the other hand,

quickly forgets about the invisible objects true location, but maintains the belief over the

visible object. Using a correct balance of these twomodes enables the model to maintain

a good belief over an invisible object, while having a stable focus.
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Shifting attention

Another key function that themodel accomplishes is the ability to shift its focus fromone

object to the other, even when the other is out of sight. When considering static objects,

the model successfully shifts its attention in the case where both objects are visible. In

the case of one object going out of sight upon focusing on the first one, the model is

capable of shifting focus - but its belief over the second object deteriorates after multiple

shifts.

Themodel is more successful when holding focus for longer before an attention shift,

which was the case in the trial with moving objects. The perceived locations of both

objects were very close to the true ones, enabling better attention shifts. Once again,

choosing a correct intention generationmode is crucial inmaintaining beliefs over other

objects in the environment.

6.2 Effects of precisions

This section discusses the effects of varying precisions. As before, we consider𝛼, 𝛽,𝜋𝑣𝑖𝑠𝑢𝑎𝑙

and 𝑘.

Sensory ratio 𝜶

The variable 𝜶 is responsible for regulating the sensory precision weights 𝝅 . It deter-

mines howmuch each sensorymodality contributes to the belief update and action. Dur-

ing trials inwhich the objects are static, varying 𝜶 does not change themodel’s behaviour

signifiantly. However, in trials with moving objects, an 𝜶 which favors the visual input

more (𝜶 < 0.5) than the proprioceptive performs better. This is because of the more

dynamic visual input, so the visual update needs to be "stronger".

Increasing 𝜶 to 1.0 completely shuts of the belief and action update from the pro-

prioceptive input, which leads to drastic and unstable belief and action updates. This is

because the visual gradients affecting action are quite noisy. This drastic fall in accuracy

and stability can be seen in all trials with 𝜶 close or equal to 1.
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Intention multiplier 𝜷 and gain 𝑘

The intention multiplier does not play a major role in action accuracy, but serves as a

stabilizer of belief and either suppresses belief update through intentions or increases

the intention attractions. The gain 𝑘 plays a similar function in the equations of system

dynamics, because the errors 𝑘multiplies act as attractors to the belief update. From the

trials w can conclude that these variables play a minor role in accuracy, but a bigger role

in object permanence.

Visual sensory precision 𝝅𝒗𝒊𝒔𝒖𝒂𝒍

The main purpose of 𝝅𝒗𝒊𝒔𝒖𝒂𝒍 is to lesser the magnitude of visual gradients from the de-

coder network. The trials show that a high 𝝅𝒗𝒊𝒔𝒖𝒂𝒍 produces unstable behaviours because

of the gradient magnitude, while a lower 𝝅𝒗𝒊𝒔𝒖𝒂𝒍 leads to the model failing to adapt to the

changing environment.

6.3 Shortcomings

One shortcoming of the developed model is that it is capable of encoding belief for only

two objects in the environment. A more complex model would be able to handle mul-

tiple objects, even when they are of the same type. This would require a more complex

encoding than used here, but would enable more complex attention mechanisms.

Another shortcoming is the shape of the visual belief, which is the latent space of

the VAE. In our case this space was forced to have a certain structure that is easily in-

terpreted, but it required semi-supervised training of the VAE. A positive of this inter-

pretable structure is that the mapping from visual sensory input to action is trivial and

does not have to be learned, whereas an unsupervised latent space would require learn-

ing this mapping. A more complex model with more sensory modalities would need to

have labeled data for every modality, which is hard to gather when the agent is not in

simulation.
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7 Conclusion

The goal of this thesis was to develop and implement an active inference model of visual

attention. The developedmodel uses the decoder part of a VAE as a generative model for

the visual sensory input, while simple generative models were used for proprioceptive

input and needs. The model is capable of holding belief over two objects in the environ-

ment and can generate intentions that guide its focus on those objects. A simple attention

mechanism is responsible for the choice of object.

The model, implemented in Python and ROS, was capable of directing and main-

taining focus on both static and moving objects in the environment. It was also able to

shift its focus from one object onto the other, also in the cases of static and moving ob-

jects. One ability that emerged is not unlike the phenomenon of object permanence - the

model maintains belief over objects that are out of sight for some time, which enables it

to shift attention to an object it previously saw, but does not see now.

Future goals might be to implement more complex attention that would choose ob-

jects based on multiple features (color, shape, velocity, etc.), as well as integrating more

sensorymodalities that could influence attention between each other. Unsupervised and

reinforcement learning would be used for easier model training.
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Abstract

Goal-directed visual attention using a deep active inference

model

Tin Mišić

Visual attention is a complex cognitive process that depends on both the internal

state of an agent and the external environment. The agent must actively select parts of

the sensory space to focus on to satisfy its internal needs. In this thesis we developed a

deep learning model that uses visual and proprioceptive sensory input, directing atten-

tion to objects in the environment based on internal needs, thereby achieving complex

goals. The model’s development relies on the free-energy principle, utilizing predictive

coding to predict sensory input and active inference for motor control and action execu-

tion. A generative model was implemented using a variational auto-encoder to predict

visual sensory data. Extensive training and testing were conducted in a simulated envi-

ronment to evaluate the model’s performance. The results demonstrated that the model

consistently directed attention to objects that satisfied its current needs and goals and

could dynamically shift focus as the needs changed. With specific precision tunings, a

behaviour similar to object permanence emerged. Furthermore, themodel’s architecture

allows for the integration of additional sensory modalities, such as auditory or tactile in-

puts, which can enhance its ability to prioritize attention based on a broader range of

sensory information.

Keywords: active inference; visual attention; variational auto-encoder
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Sažetak

Ciljno-usmjerena vizualna pažnja koristeći duboki model

aktivnog zaključivanja

Tin Mišić

Vizualna pažnja je složenkognitivni proces koji ovisi kako ounutarnjem stanju agenta,

tako i o stanju okoline. Agent mora aktivno odabrati dijelove senzornog prostora na koje

će se usmjeriti kako bi zadovoljio svoje unutarnje potrebe. U ovom radu razvili smo mo-

del dubokog učenja koji koristi vizualne i proprioceptivne senzorne ulaze, usmjeravajući

pažnju na objekte u okruženju na temelju unutarnjih potreba, čime postiže složene ci-

ljeve. Razvoj modela oslanja se na princip slobodne energije, koristeći prediktivno ko-

diranje za predviđanje senzornog unosa i aktivno zaključivanje za motoričku kontrolu

i izvođenje akcija. Generativni model je implementiran korištenjem varijacijskog auto-

enkodera za predviđanje vizualnih senzorskih podataka. Opsežno treniranje i testiranje

provedeni su u simuliranom okruženju kako bi se procijenila učinkovitost modela. Re-

zultati su pokazali da je model dosljedno usmjeravao pažnju na objekte koji su zadovo-

ljavali njegove trenutne potrebe i ciljeve te jemogao dinamičkimijenjati fokus kako su se

potrebe mijenjale. S određenim podešavanjima preciznosti, pojavilo se ponašanje slično

trajnosti objekta. Nadalje, arhitektura modela omogućuje integraciju dodatnih senzor-

nihmodaliteta, kao što su slušni ili taktilni ulazi, štomože poboljšati njegovu sposobnost

prioritiziranja pažnje na temelju šireg spektra senzornih informacija.

Ključne riječi: aktivno zaključivanje; vizualna pažnja; varijacijski auto-enkoder
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Appendix A: Trial setups

Focus on static objects

𝜶 𝜷 𝝅 k Int. Mode Length Attn. Period
0.5 1 ⋅ 10−1 6 ⋅ 10−3 6 ⋅ 10−2 50% 300 N/A

Focus on moving objects

𝜶 𝜷 𝝅 k Int. Mode Length Attn. Period
0.1 7 ⋅ 10−2 6 ⋅ 10−3 6 ⋅ 10−2 closest 300 N/A

Note: Objects are moving at a speed of 1 unit per 5 seconds.

Attention shift on static objects

𝜶 𝜷 𝝅 k Int. Mode Length Attn. Period
0.5 1 ⋅ 10−1 6 ⋅ 10−3 6 ⋅ 10−2 closest 300 100

Attention shift on moving objects

𝜶 𝜷 𝝅 k Int. Mode Length Attn. Period
0.25 7 ⋅ 10−2 6 ⋅ 10−3 6 ⋅ 10−2 50% 600 300

Note: Objects are moving at a speed of 1 unit per 5 seconds.

closest and mean comparison

𝜶 𝜷 𝝅 k Int. Mode Length Attn. Period
0.5 1 ⋅ 10−1 6 ⋅ 10−3 6 ⋅ 10−2 varies 400 N/A

Precision values comparison - baseline

𝜶 𝜷 𝝅 k Int. Mode Length Attn. Period
0.5 1 ⋅ 10−1 6 ⋅ 10−3 6 ⋅ 10−2 50% 400 N/A
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Appendix B: Mode and precision trial results

B.1 Mode ratios

We have explored using a ratio of these modes, where𝑚 represents the ratio of steps that

use mode mean over steps that use mode closest. We examined the model’s behavior

for the cases𝑚 ∈ ı0.1, 0.1429, 0.2, 0.25, 0.5#. The trial results can be seen in Fig. B.1.

B.2 Inference precisions and variables

All of the trials use the baseline values in Appendix A, with only the target variable

changing.

B.2.1 Reach

The reach time for the different values of the variables can be seen in Fig. B.4.

We can see that the reach error is large for the higher values of all variables, but stays

fairly constant for the lower values. The exception is 𝜋𝑣𝑖𝑠𝑢𝑎𝑙, which also grows the lower

its value. This can be explained by the model putting less weight on the visual input and

therefore trusting its current belief more, which prevents it from reaching the target.

The higher values make increase the gradients and attractive forces, making the model

behave erratically, which prevents accurate reach.

Similar results are achieved for reach stability (Fig. B.3), while reach time stays fairly

consistent and is mainly dependant on the speed of turning of the agent (Fig. B.4.
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(a) OPM (b) Reach time

(c) Reach error (d) Reach stability

(e) Perception error (red) (f) Perception stability (red)

(g) Perception error (blue) (h) Perception stability (blue)

Figure B.1: Mode ratio trial results
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(a) 𝜶 (b) 𝜷

(c) 𝝅𝑣𝑖𝑠𝑢𝑎𝑙 (d) 𝒌

Figure B.2: Reach error for different values of 𝛼, 𝛽, 𝜋𝑣𝑖𝑠𝑢𝑎𝑙 and 𝑘

B.2.2 Perception

Perception errors for the red ball (the one being focused on) under varying precisions

can be seen in Fig. B.5. Perception errors for the blue ball (the one that goes out of sight)

are in Fig. B.6.

We can see that the perception error for the red ball is very similar to the reach error,

while the perception of the blue ball remains fairly constant. The object permanence

metric, however, varies from value to value, and can be seen in B.7.
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(a) 𝜶 (b) 𝜷

(c) 𝝅𝑣𝑖𝑠𝑢𝑎𝑙 (d) 𝒌

Figure B.3: Reach stability for different values of 𝛼, 𝛽, 𝜋𝑣𝑖𝑠𝑢𝑎𝑙 and 𝑘
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(a) 𝜶 (b) 𝜷

(c) 𝝅𝑣𝑖𝑠𝑢𝑎𝑙 (d) 𝒌

Figure B.4: Reach time for different values of 𝛼, 𝛽, 𝜋𝑣𝑖𝑠𝑢𝑎𝑙 and 𝑘
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(a) 𝜶 (b) 𝜷

(c) 𝝅𝑣𝑖𝑠𝑢𝑎𝑙 (d) 𝒌

Figure B.5: Perception error of red ball for different values of 𝛼, 𝛽, 𝜋𝑣𝑖𝑠𝑢𝑎𝑙 and 𝑘
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(a) 𝜶 (b) 𝜷

(c) 𝝅𝑣𝑖𝑠𝑢𝑎𝑙 (d) 𝒌

Figure B.6: Perception error of blue ball for different values of 𝛼, 𝛽, 𝜋𝑣𝑖𝑠𝑢𝑎𝑙 and 𝑘
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(a) 𝜶 (b) 𝜷

(c) 𝝅𝑣𝑖𝑠𝑢𝑎𝑙 (d) 𝒌

Figure B.7: Object permanence metric for different values of 𝛼, 𝛽, 𝜋𝑣𝑖𝑠𝑢𝑎𝑙 and 𝑘
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