
Implementacija jezičnog asistenta za statističke
analize korištenjem velikih jezičnih modela

Krišković, Filip

Master's thesis / Diplomski rad

2024

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of
Zagreb, Faculty of Electrical Engineering and Computing / Sveučilište u Zagrebu, Fakultet
elektrotehnike i računarstva

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:168:792771

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-04-01

Repository / Repozitorij:

FER Repository - University of Zagreb Faculty of
Electrical Engineering and Computing repozitory

https://urn.nsk.hr/urn:nbn:hr:168:792771
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.fer.unizg.hr
https://repozitorij.fer.unizg.hr
https://zir.nsk.hr/islandora/object/fer:12447
https://repozitorij.unizg.hr/islandora/object/fer:12447
https://dabar.srce.hr/islandora/object/fer:12447

UNIVERSITY OF ZAGREB

FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

MASTER THESIS No. 478

IMPLEMENTATION OF A LANGUAGE ASSISTANT FOR

STATISTICAL ANALYSIS USING LARGE LANGUAGE

MODELS

Filip Krišković

Zagreb, June 2024

UNIVERSITY OF ZAGREB

FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

MASTER THESIS No. 478

IMPLEMENTATION OF A LANGUAGE ASSISTANT FOR

STATISTICAL ANALYSIS USING LARGE LANGUAGE

MODELS

Filip Krišković

Zagreb, June 2024

UNIVERSITY OF ZAGREB
FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

Zagreb, 04 March 2024

MASTER THESIS ASSIGNMENT No. 478

Student: Filip Krišković (0036523534)

Study: Computing

Profile: Computer Science

Mentor: assoc. prof. Marina Bagić Babac

Title: Implementation of a language assistant for statistical analysis using large
language models

Description:

This thesis investigates the need and process of creating a language assistant that provides answers to user
queries related to CSV files. User queries are transformed from natural to programming language in order to
make it possible to perform statistical calculations on the entered data and provide the user with answers in
natural language. To implement the assistant, large open source language models should be used, adapted to
the user's requirements using deep learning techniques and natural language processing. The language
assistant's performance will be evaluated using appropriate metrics in order to assess its effectiveness and
reliability in providing answers to the questions posed.

Submission date: 28 June 2024

SVEUČILIŠTE U ZAGREBU
FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA

Zagreb, 4. ožujka 2024.

DIPLOMSKI ZADATAK br. 478

Pristupnik: Filip Krišković (0036523534)

Studij: Računarstvo

Profil: Računarska znanost

Mentorica: izv. prof. dr. sc. Marina Bagić Babac

Zadatak: Implementacija jezičnog asistenta za statističke analize korištenjem velikih
jezičnih modela

Opis zadatka:

Ovaj diplomski rad istražuje potrebu i proces izrade jezičnog asistenta koji pruža odgovore na upite korisnika
vezane uz CSV datoteke. Korisnički upiti se transformiraju iz prirodnog u programski jezik kako bi se omogućilo
izvođenje statističkih izračuna nad unesenim podacima te korisniku pružili odgovori u prirodnom jeziku. Za
implementaciju asistenta treba koristiti velike jezične modele otvorenog koda, prilagođene zahtjevima korisnika
pomoću tehnika dubokog učenja i obrade prirodnog jezika. Odgovarajućim metrikama evaluirati performanse
jezičnog asistenta kako bi se procijenila njegova učinkovitost i pouzdanost u pružanju odgovora na postavljena
pitanja.

Rok za predaju rada: 28. lipnja 2024.

Table of Contents

1. Introduction .. 1

2. Related work .. 1

3. Methodology .. 9

3.1 Dataset Description .. 9

3.2 Implementation ... 10

3.3 Theoretical Framework .. 23

4. Results .. 28

4.1 Examples overview .. 28

4.2 Metrics overview .. 30

4.3 Example discussion .. 32

4.4 Results conclusion .. 72

5. Discussion .. 79

5.1 Theoretical implications ... 79

5.2 Practical implications ... 79

5.3 Conclusions .. 80

5.4 Limitations and future research .. 81

6. References .. 82

1

1. Introduction

 In today’s age of fast improving technologies, the ability to derive meaningful
conclusions from vast datasets is more important than ever. To get the most out of the available

resources is paramount for growth and development, and statistical analysis or artificial

intelligence can significantly help with such information extraction. However, due to the

complexity of traditional statistical tools, programming languages and the knowledge required

to use artificial intelligence, to most people, extracting new data from datasets poses a

challenge. As a result, there exists a need for an intuitive and user-friendly solution that can

seamlessly interact with the data, transcending the intricacies of code and syntax. With this in

mind, this paper delves into the development and implementation of a language assistant

capable of processing natural language and doing statistical analysis by leveraging the power

of large language models. Large language models have significantly improved human-

computer interaction due to the advances in natural language processing. These models are

capable of understanding and generating natural language not because of their complexity, but

rather the vast amount of data that was used for their training. Such models can be applied to a

variety of general tasks or even fine-tuned to execute a more specific request more accurately.

The inspiration for this paper came from [1], where they created an autonomous GIS system,

powered by AI. Their implementation used gpt-4, and later updated with gpt-4o, which isn’t
available to free OpenAI users. Therefore this thesis focuses on using the power of free open-

source models to create a whole language assistant that excels at interpreting user queries

expressed in natural language and translating them into executable code for statistical analysis.

The focus of this research lies in providing users with an intuitive interface to interact with data

in CSV (Comma-Separated Values) format, a ubiquitous data interchange format commonly

used for storing tabular data and that is accessible to everyone. This assistant serves to bridge

the gap between human communication and data analytics, without the need for users to know

any statistical analytics or programming languages. By understanding and processing queries

in natural language, the assistant enables users to perform a wide array of statistical calculations

on their data with ease. By translating user queries into programming language constructs, the

assistant facilitates the execution of statistical operations on the provided dataset, subsequently

delivering the results in a comprehensible and accessible manner. Lastly, the models that are

used as the brain of the system are evaluated based on the understanding of the natural language

as well as the accuracy of the generated code, it’s execution and the provided result. The
ultimate goal of this paper is to contribute to the ongoing development surrounding the fusion

of natural language processing and data analytics and making statistical analysis more

accessible and more usable.

2. Related work

As mentioned, this research paper was inspired by the autonomous GIS paper by [1], in

it, the authors proposed that an autonomous GIS “requires five critical modules, including
decision-making (LLM as the core), data collecting, data operating, operation logging, and

history retrieval” [1]. These modules are crucial for any GIS to achieve “five autonomous goals:
self-generating, self-organizing, self-verifying, self-executing, and self-growing” [1].

2

Figure 1, Autonomous goals and modules of autonomous GIS [1]

In their prototype, the LLM-Geo, they implemented decision-making and data operating which

ensured three autonomous goals, i.e., self-generating, self-organizing, and self-executing, with

other modules in development. This paper also follows this approach and contains both solution

generation, as well as solution execution, with additional checks. The following flowchart

shows the process that LLM-Geo goes through when answering user queries.

Figure 2, The overall workflow of LLM-Geo

“The process begins with the user inputting the spatial question along with associated data
locations” [1], these can be URLs, REST services, APIs or even local paths. After that, the

LLM generates a solution in a form of a directed acyclic graph that contains operation nodes

and data nodes. “A data node refers to an operation's input data or output data, consisting of

three types: input data node, intermediate data node, and output data node” [1]. “An operation
node is a process to manipulate data with input and output. Its inputs can be the input data nodes

or intermediate data nodes from the ancestor operation nodes” [1]. Based on this, the LLM gets

the necessary information about each operation node, to begin the operation implementation

step. Per operation node, this step consists of gathering the nodes that precede and follow the

current operation node, as well as the original user question, the data sources, and the whole

graph from the previous step. “The current version of LLM-Geo generates a Python function

for each operation; the function definition and return data (i.e., names of functions and function

3

input/output variables) are pre-defined in the solution graph. This strategy is used to reduce the

uncertainty of code generation” [1]. After each operation was generated, LLM-Geo gathers

them and delivers them to the Operation assembly, where the LLM generates an assembly code

that connects all of the operations together into a final solution that is then executed and

provided back to the user.

Figure 3, Implementation workflow of LLM-Geo with GPT-4 API [1]

“Human problem-solving often employs a divide-and-conquer strategy when facing complex

tasks. By adopting this approach in the design of LLM-Geo, it is intended to address spatial

analysis tasks by breaking complex problems into smaller, more manageable sub-problems that

LLMs can handle” [1]. Even though the test examples that they displayed in their paper are

straightforward, in a sense that a model like gpt-4o can generate a correct solution straight away,

for more complex question it would be more beneficial for the LLM itself to first make a plan

of action and then implement it, so that it would yield better results.

An effective technique for “enhancing the accuracy and reliability of generative AI models with

facts fetched from external sources” [2] is Retrieval augmented generation (RAG). This is what

fills the gaps of how LLMs work and give them a deep understanding of the knowledge inside

of data, also known as parameterized knowledge [2]. Same as with this paper’s system, RAG
allows users to, relatively easily, “have a conversation with data repositories” [2]. The way

RAG works is by building a vector knowledge base and converting a user query into an

embedding vector that can essentially be cross-referenced and searched in the vector database.

This allows for a fast and reliable way of looking up information that way already verified,

processed and stored. Pairing this with an LLM, instead of having an LLM search the web for

answers through an API, RAG allows a faster fetching of data that is more relevant to the

existing role of a system it is implemented in. With the retrieved information, an LLM is then

able to simply form an answer, and present it to the user, and potentially even citing the sources

the information was obtained from [2].

Additionally, “the embedding model continuously creates and updates machine-readable

indices – vector databases, for new and updated knowledge bases as they become available”
[2].

4

Here is a simplified view of how RAG and LLMs are combined to provide more accurate

information with their answers:

Figure 4, a generic RAG architecture [3]

“The quality of retrieved content, in RAG systems, determines the information that is fed into
the generators” [3]. A lower quality of the information degenerates the system to the

hallucination-prone one, that does not use RAG at all. [3] introduce some effective methods to

enhance the effectiveness of information retrieval. These include recursive retrieval, chunk

optimization, retriever finetuning, hybrid retrieval, re-ranking, retrieval transformation, and

others. As the name suggests, recursive retrieval is “performing multiple searches to retrieve

richer and higher-quality contents” [3]. Chunk optimizations adjust the chunk sizes for

“improved retrieval results” [3]. Retrieval finetuning focuses on fine-tuning the embedding

model, as a proficient embedding model is the most important part of any quality RAG system,

as it is the core to fetching relevant and related content to the generator. Hybrid retrieval aims

to either extract data from multiple sources, for more accurate results, or use different retrieval

methodologies at the same time to achieve the same result. Re-ranking focuses on “reordering

the retrieved content in order to achieve greater diversity and better results” [3], and retrieval

transformation is used to rephrase the content that the retriever obtained, to better suit the

generator and produce improved output. Among other methods, [3] suggest meta-data filtering,

that enable processing of the metadata for enhanced performance.

A very useful tool for “chaining together LLMs, embedding models and knowledge bases” is
LangChain [2].

[4] also explained how a RAG is very beneficial to large language models as “the factual
knowledge that the LLMs store inside their parameters, to achieve state-of-the-art results when

fine-tuned on down-stream NLP tasks, is very limited”. This is most noticeable when the

models are tasked with knowledge-intensive tasks [4]. This is a substantial downside as models,

in these scenarios, are susceptible to hallucinations. [4] suggest the use of hybrid models, that

“combine parametric memory with non-parametric (i.e., retrieval-based) memories” can more

5

effectively tackle this problem and revise, expand, inspect and interpret the knowledge that they

provide [4]. [4] propose two models that “marginalize over the latent documents in different
ways to produce a distribution over generated text”. The two approaches include RAG-

sequence and RAG-Token models. The first model is able to predict each target token using the

same document, while the second model predicts each token on a different document. In more

detail, “the RAG-Sequence model uses the same retrieved document to generate the complete

sequence” [4]. It treats the retrieved document as a single latent variable [4], and the top K

documents retrieved are fed into the generator to produce the output sequence probability for

each document and are then marginalized. With the RAG-token model, different latent

documents can be drawn for “each target token and marginalized accordingly” [4]. The retrieval

component is based on DPR, which follows a bi-encoder architecture, and the generator can be

modelled with any encoder-decoder model, and [4] use BART-large.

A similar concept to this paper’s assistant is Pandas AI. “Pandas AI is a Python library that uses

generative AI models to supercharge pandas capabilities” [5]. “PandasAI is a popular data

analysis and manipulation tool. It is designed to be used in conjunction with pandas, and is not

a replacement for it” [6]. It can be used in a similar way, a data frame is loaded, and pandas

enables users to “summarize data, plot complex visualization, manipulate dataframes and
generate business insights” [5] using natural language, i.e. user queries. It can provide answers

even with “language prompts that resemble SQL searches” [7]. Here are some examples of how

it works on examples. Before the user query testing, a SmartDataframe needs to be initialized,

and a model prepared, as demonstrated in [8]:

import pandas as pd

from pandasai import SmartDataframe

from pandasai.llm.openai import OpenAI

llmodel = OpenAI(api_token='<YOUR OPENAI KEY>')

sdf = SmartDataframe(data, config={"llm": llmodel})

For these examples:

sdf.chat("Return the top 5 countries by GDP")

sdf.chat("What's the sum of the gdp of the 2 unhappiest countries?")

sdf.chat("Plot a chart of the gdp by country")

6

it provides accurate and to the point results:

Figure 5, PandasAI simple example results [7]

The main model that supports this system is OpenAI’s GPT-3.5 turbo or GPT-4, and it requires

the user’s API key to operate, but it also provides the option of using open-source models like

Starcoder, Falcon and GooglePalm. As with many such systems, PandasAI isn’t perfect and
still need human verification, which is insignificant compared to the amount of time it saves on

“cleaning, exploring, and visualizing data and many other of these repetitive tasks” [5].

Another significant approach to problem solving that inspired some methods used in this paper

are shown in [9], [10], [11], [12], [13], [14]. Among these there is Plan-and-Solve approach that

is a base for LangChain’s agents, including plan-and-execute, llm-compiler and rewoo. [9]

introduce plan-and-solve prompting, which is a “new zero-shot CoT prompting method” that
helps the LLMs think of a step-by-step plan to solving a given question, and “generate the

intermediate reasoning process before predicting the final answer” [9]. This is done in two

steps: Prompting for Reasoning Generation and Prompting for Answer Extraction. In the first

step, the prompt “makes an inference using the proposed prompting template to generate the

reasoning process and the answer to a problem” [9] and in the second step, PS extracts the

answer and evaluates it. The first step aims to get the templates to follow certain criteria: “The

templates should elicit LLMs to deter mine subtasks and accomplish the subtasks” and “The

templates should guide LLMs to pay more attention to calculations and intermediate results and

to ensure that they are correctly performed as much as possible” [9]. For the second step, a new

prompt is devised to “extract the final numerical answer from the reasoning text generated in

Step 1” [9]. The answer extraction instruction is appended to this prompt, that is then followed

by “the LLM generated reasoning text” [9].

As mentioned, inspired by this concept, LangChain came up with a plan-and-execute agent that

“accomplish an objective by first planning what to do, then executing the sub tasks” [11]. “The

planning is almost always done by an LLM” and the execution is taken over by a separate agent
that is additionally equipped with other tools [10]. Normally, LLM agents have three main steps

in which they operate: Propose action, Execute action and Observe [10]. A typical example of

such agent would be the ReAct agent [10], that takes advantage of the Chain-of-though

prompting. This produces some shortcomings: “it requires an LLM call for each tool

7

invocation” and “the LLM only plans for 1 sub-problem at a time” [10], which plan-and-execute

agent tries to overcome. This is also done in two steps, one which uses an LLM “to create a

plan to answer the query with clear steps” and then “uses an embedded traditional Action Agent

to solve each step” [11]. Even though this idea is meant to improve the quality of agent’s

responses by simplifying bigger tasks into smaller subproblems, in turn this give the agent a

higher latency compared to Action Agents [11].

The advantages of the plan and execute agent compared to the ReAct style agent is “explicit
long term planning” and the “ability to use smaller/weaker models for the execution step“ as
the important part of solution planning is done by larger/better models [13]. This is then done

iteratively until the planning agent is satisfied with the implementation of the steps, and the user

receives a response from the system.

Reasoning without Observation “propose an agent that combines a multi-step planner and

variable substitution for effective tool use” [14]. This approach aims to improve the ReAct

architecture with: “reducing token consumption and execution time by generating the full chain

of tools used in a single pass” and by simplifying the finetuning process [14]. ReWOO consists

of three modules: the planner, the worker and the solver. The planner generates a plan in a given

format [14]:
Plan: <reasoning>
#E1 = Tool[argument for tool]
Plan: <reasoning>
#E2 = Tool[argument for tool with #E1 variable substitution]
...

Then the worker runs provided tools with set arguments and the solver “generates the answer

for the initial task based on the tool observations” [14].

Finally, the LLMCompiler is designed to “speed up the execution of agentic tasks by eagerly-

executed tasks within a DAG” [12]. The planner here streams a DAG of tasks, then a Task

Fetching Unit “schedules and executes the tasks as soon as they are executable” [12] and the

Joiner is responsible for providing the user with the answer or initializing re-planning. The

details that boost runtime are: the fact that the “planner outputs are streamed”, the “task fetching
schedules tasks once all the dependencies are satisfied” and “task arguments can be variables
which lets the agent work faster” [10].

When it comes to large language models, the ones that capture the most attention are models

like GPT-4 or Claude, “due to their power and versatility” [15]. Models like these aren’t open
source, meaning their code isn’t publicly available. In addition, there are some models that are
open source and produce high quality results. These models include Llama, Falcon and Mistral

[15]. However, these models still don’t display their training, fine-tuning or evaluation

processes, as well as their trained parameters, which “limits the ability of the broader AI

research community to study, replicate, and innovate upon advanced LLMs” [15].

“Transparent, comprehensive access to LLM resources is essential for advancing the field in

healthcare AI” [16]. In their paper, [15] introduce LLM360, a framework where all LLMs are

“published with the full training data, model details, all model checkpoints and full disclosure
of all data used in pre training” [15]. The two models that were implemented in this framework

are Amber 7B and CrystalCoder 7B with plans to integrate more. Hippocrates framework is

another example of such a transparent LLM framework that [16] developed. They introduce

Hippo, that was fine-tuned based on Mistral and Llama 2. The Hippocrates framework contains

four critical phases to ensure that the models are “precisely tailored and rigorously tested for

the medical domain” [16]. These phases include “continued pre-training, supervised fine-

8

tuning, reinforcement learning from AI-generated feedback, and the comprehensive evaluation

pipeline” [16].

Another model that was developed for biomedical domain and was aimed to be open source is

BioMistral from [17]. It was derived from Mistral 7B Instruct v0.1 and “further pre-trained on

PubMed Central” [17]. The training was done using AdamW, the model’s architecture is based
on the standard transformer architecture from Mistral, and the model also inherits Sliding

Window Attention and Rolling Buffer Cache from Mistral’s implementation as well as
Grouped-Query Attention [17].

Following the same narrative of accessible models, [18] developed Orion-14B, a collection of

open source multilingual large language models. “We make the Orion14B model family and its

associated code publicly accessible, aiming to inspire future research and practical applications

in the field” [18]. Another example is the CodeFuse-13B [19], an open source model

“specifically designed for code-related tasks with both English and Chinese prompts and

supports over 40 programming languages” [19].

The models used in this paper were selected by the amount of resources required for their

execution. Additionally, among those models, the models that were selected were those with a

higher number of parameters as, following the scaling law, those models should produce better

results. This law, as explained in [20] and further tested in [21], indicates that the size of the

model should increase proportionally to the amount of training data. However, [22] developed

TinyLlama, a model with 1.1B parameters to test if an inference-oriented model could

outperform the compute-optimal models that the scaling law suggests. The “inference-optimal

language models aim for optimal performance within specific inference constraints” [22]. This

is possible if the models are trained on more tokens than “recommended”. TinyLlama’s
architecture is based on Llama 2, as well as its tokenizer. It was trained on a mixture of natural

language and code data, primarily on SlimPajama and the training data from StarCoder [22].

The architecture consists of positional embeddings, pre-norm and RMSNorm, SwiGLU and

grouped-query attention [22]. TinyLlama managed to “surpasses both OPT-1.3B and Pythia-

1.4B in various downstream tasks” [22]. TinyLlama is also open source, as the authors aim to

improve accessibility “for researchers in language model research” [22].

Much like how the size of the models can be less relevant depending on the amount of training

data used, another important aspect is the length of the models’ contexts. [23] explain, and

introduce a test suite called LongEval, that “evaluates the long-range retrieval ability of LLMs

at various context lengths” [23]. This is useful as models with longer context lengths can

support longer interactive chat sessions. [23] also introduce LongChat models that can hold

conversation with up to 16k tokens. These chatbots are done in two steps: Condensing rotary

embeddings and Fine-tuning on Curated Conversation Dataset. Condensing rotary embeddings

is simply achieved by dividing the position id with a certain ratio, and can be done in one line

of code, as demonstrated in [23]:

query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
cos, sin, position_ids / ratio)

Fine-tuning on the curated conversation dataset is done by taking the ShareGPT dataset.

“Concretely, we select the examples responded by GPT-4 and mix them with truncated long

examples (>16384 tokens) responded to by GPT-3.5” [23].

In the survey, conducted by [21], they discovered that “key factors contributing to the success

of large language models for NL2Code are Large Size, Premium Data, Expert Tuning” [21], by

comparing different models’ performance on the HumanEval benchmark. When it comes to

9

model size, “recent LLMs for NL2Code exhibit larger sizes and superior performance” [21],

which is consistent with other studies. Additionally, they found that the models they tested

could be improved further with an even greater number of parameters. Even though this wasn’t
the case for the TinyLlama [22], it can be argued that they compensated for the lack of model’s
size with a very quality training data. This further highlights the importance of “selecting and

pre-processing high-quality data” [21]. Lastly, [21] found that almost all models were optimized

using Adam or some of its variants. Also, “initializing with other natural language models yields

no noticeable gain compared to training from scratch, except for accelerating convergence”
[21].

3. Methodology

 This research paper investigates the comparative performance of various large language

models (LLMs) in implementing a language assistant designed to aid in statistical analysis. The

LLMs utilized in this study are pretrained models, publicly accessible via the Hugging Face

hub (https://huggingface.co/models). The goal is to develop and implement an assistant that can

aid in statistical analysis. The primary objective is to develop an assistant capable of assisting

users, who possess knowledge of statistics but lack programming skills, in performing statistical

queries and analysis.

The assistant is designed to understand the dataset by preloading a CSV file and interpreting its

metadata. Based on the user's statistical inquiry, the LLM can generate appropriate responses

in the form of numbers, text, tables, or graphs. This study aims to evaluate the effectiveness of

different LLMs in accurately interpreting and responding to statistical queries, thereby

identifying the most suitable model for this application.

By focusing on the implementation and comparison of LLMs, this research paper contributes

to the development of user-friendly tools that make advanced statistical analysis more

accessible, ultimately enhancing productivity and accuracy in data-driven decision-making.

3.1 Dataset Description

For this research the LUCAS Soil dataset, from 2018 was used. The dataset that was

chosen for the examples isn’t important since the large language models used can understand

any csv files that the user provides. This was confirmed during development by testing the

models on different datasets, and the datasets never posed a problem. This file was chosen for

its simplicity and because it contains latitude and longitude specifically for geo-queries and

map plotting.

LUCAS Soil 2018

The LUCAS Soil dataset from 2018 consists of 18983 examples of various points all around

Europe where soil characteristics have been tested and measured. The features include:

Depth, POINTID, pH_CaCl2, pH_H2O, EC, OC, CaCO3, P, N, K, OC (20-30 cm), CaCO3

(20-30 cm), Ox_Al, Ox_Fe, NUTS_0, NUTS_1, NUTS_2, NUTS_3, TH_LAT, TH_LONG,

SURVEY_DATE, Elev, LC, LU, LC0_Desc, LC1_Desc, LU1_Desc.

Here are 5 examples of the data:

10

Depth POINTID pH_CaCl2 pH_H2O EC OC CaCO3 P N K

OC

(20-30

cm)

CaCO3

(20-30

cm)

0-20 cm 47862690 4,1 4,81 8,73 12,4 3 < LOD 1,1 101,9

0-20 cm 47882704 4,1 4,93 5,06 16,7 1 < LOD 1,3 51,2

0-20 cm 47982688 4,1 4,85 12,53 47,5 1 12,3 3,1 114,8

0-20 cm 48022702 5,5 5,80 21,1 28,1 3 < LOD 2 165,8

0-20 cm 48062708 6,1 6,48 10,89 19,4 2 < LOD 2,2 42,1

Ox_Al Ox_Fe NUTS_0 NUTS_1 NUTS_2 NUTS_3 TH_LAT TH_LONG SURVEY_DATE

 AT AT1 AT11 AT113 47,15023795 16,13421178 06/07/18

 AT AT1 AT11 AT113 47,27427248 16,17535859 06/07/18

 AT AT1 AT11 AT113 47,1232602 16,28969291 02/06/18

 AT AT1 AT11 AT113 47,24569335 16,35750603 06/07/18

 AT AT1 AT11 AT113 47,29637182 16,41678159 05/07/18

 AT AT1 AT11 AT111 47,48881664 16,52059488 18/06/18

Elev LC LU LC0_Desc LC1_Desc LU1_Desc

291 C23 U120 Woodland Other coniferous woodland Forestry

373 C21 U120 Woodland Spruce dominated coniferous woodland Forestry

246 C33 U120 Woodland Other mixed woodland Forestry

305 C22 U120 Woodland Pine dominated coniferous woodland Forestry

335 C22 U120 Woodland Pine dominated coniferous woodland Forestry

232 B18 U111 Cropland Triticale

Agriculture (excluding fallow land and kitchen

gardens)

Some more notable parameters are pH_CaCl2, pH_H2O, NUTS_0, TH_LAT, TH_LONG,

SURVEY_DATE, Elev and LC0_Desc.

They represent the pH values measured, the Alpha-2 codes for countries in which the

measurement took place, the latitude and the longitude of the measurement, the date, the

elevation and the type of land, respectively. These are some useful features that can be used as

a filter condition in user queries.

3.2 Implementation

The implementation of this paper focused on comparing different language models by

creating an even “architecture” that the models can run. This required same instructions for all
models, same data and same preprocessing or postprocessing features. The models couldn’t be
fine-tuned because of the limited resources, and there wasn’t a smart way to fine-tune them on

csv files. Making models from scratch wasn’t the focus of the paper, but rather to use the already
available models and algorithms to make a working assistant. One way the output was improved

was with data preprocessing, self-correction, double checking and steps planning.

Before discussing the code that was used for the results, during research for this paper, a

complete GIS methodology was implemented, the same way it is described in [1], also

11

explained in chapter 2. There were three key parts that need to be implemented in order to

essentially replicate their findings, and those are graph generation (planning step), code

generation (implementation step) and assembly code generation (execution step). Their code

couldn’t be copied since their GIS system used gpt-4o which not only wasn’t available for this
paper, but more importantly, it’s goal was to replace it. This paper’s implementation of the GIS
system is available in “GIS-like_step_gen” folder, divided into 4 distinct files. Firstly, the
“main.py”, which is used to initialize the model pipeline, set a task, set the data locations (which
can be URLs, APIs, or local paths, the same as in the original paper) and, by calling other

functions, generate and return the solution to the user. The first function that needs to be called

is the “generate_graph” from “graph_gen.py”, which generates a network graph that represents
the step-by-step solution to the aforementioned task. This is simply achieved by feeding a large

set of instructions to the LLM that were all taken from the original implementation, as explained

in section 2. The most important feature of the generated graph is the two distinct types of

nodes: operation nodes, and data nodes. The operation nodes are extracted from the graph, and

passed on to the “code_gen.py”, so that each operation can be implemented into a function. For

this to work, function metadata is needed (description, name, return type, arguments), as well

as context surrounding the function (ancestor operations, descendant operations, data nodes that

precede and follow the operation node). All this, paired with another set of specific instructions

allows the LLM to generate correct and precise code implementation of all given operation

nodes. Finally, these implementations are then forwarded to the section where an assembly code

needs to be generated. Along with the implemented functions, the LLM, requires another set of

instructions, the initial task and the initial data locations, for it to produce a correct and coherent

assembly code, that can successfully solve the problem. The reason this approach wasn’t
continued, but rather modified and simplified is due to the fact that many models weren’t able
to comprehend so many instructions at once, and often ignored the instructions for graph

generation and headed straight for the final solution generation. During testing of some example

tasks from the paper, the Starcoder model managed to generate some results for the tasks. It is

worth noting that the code that Starcoder generated wasn’t correct straight away but had to be

fixed slightly to work. The examples that this was tested on were the following:

Task1 = """

Generate a graph (data structure) only, whose nodes are (1) a series of consecutive steps and

(2) data to solve this question:

1) Find out Census tracts that contain hazardous waste facilities, then compute and print out

the population living in those tracts. The study area is North Carolina (NC), US.

2) Generate a population choropleth map for all tract polygons in NC, rendering the color by

tract population; and then highlight the borders of tracts that have hazardous waste facilities.

Please draw all polygons, not only the highlighted ones. The map size is 15*10 inches.

"""

Task2 = """

For each zipcode area in South Carolina (SC), calculate the distance from the centroid of the

zipcode area to its nearest hospital, and then create a choropleth distance map of zipcode area

polygons (unit: km), also show the hospital.

"""

12

The first question in task1 was incorrect, but the choropleth map from the second question was

correctly generated, which was ultimately the aim:

Figure 6, choropleth map of areas with hazardous waste facilities (South Carolina)

Second task was also correctly plotted:

Figure 7, distance to the nearest hospital in South Carolina

13

This was important to mention, as this methodology inspired the whole paper and had an

influence on its development.

There are eight total models to choose from. With the chosen model, a transformers’ pipeline
is created, and a corresponding csv file is loaded. After that, a set of instructions is written that

the model will follow while generating an answer. These instructions can also help guide the

models to generate a more desirable solution. Next, a user query is written, this is the problem

that the model will try to solve. This query is then put into the whole message context that is

understood by these models since all models are Instruct versions, meaning that they take their

queries as instructions or chat messages, alternating between user and assistant messages. There

are two sets of instructions that the LLM needs to generate an answer, and those are instructions

for the steps generation and for the code implementation. Here are the examples:

############# STEP GENERATION #############

<|endoftext|>You are an exceptionally intelligent coding assistant that
consistently delivers accurate and reliable responses to user instructions.

Instruction

For the given objective: Generate a heatmap where each point is weighted by
'pH_CaCl2', in Europe. Don't merge these shapefiles just plot them. use geopandas.
save the result as a png.

and these files:

You are working with a GeoDataFrame that is located in
/home/fkriskov/diplomski/datasets/geo_dataframe.shp.

These are the columns of the dataframe:['Depth', 'POINTID', 'pH_CaCl2', 'pH_H2O',
'EC', 'OC', 'CaCO3', 'P', 'N', 'K', 'OC (20-30 cm)', 'CaCO3 (20-30 cm)', 'Ox_Al',
'Ox_Fe', 'NUTS_0', 'NUTS_1', 'NUTS_2', 'NUTS_3', 'TH_LAT', 'TH_LONG',
'SURVEY_DATE', 'Elev', 'LC', 'LU', 'LC0_Desc', 'LC1_Desc', 'LU1_Desc']

This is the head of the dataframe: Depth POINTID pH_CaCl2 pH_H2O EC
OC CaCO3 P ... TH_LONG SURVEY_DATE Elev LC LU LC0_Desc
LC1_Desc LU1_Desc

0 0-20 cm 47862690 4.1 4.81 8.73 12.4 3.0 0.0 ... 16.134212
06-07-18 291 C23 U120 Woodland Other coniferous woodland Forestry

1 0-20 cm 47882704 4.1 4.93 5.06 16.7 1.0 0.0 ... 16.175359
06-07-18 373 C21 U120 Woodland Spruce dominated coniferous woodland Forestry

2 0-20 cm 47982688 4.1 4.85 12.53 47.5 1.0 12.3 ... 16.289693
02-06-18 246 C33 U120 Woodland Other mixed woodland Forestry

3 0-20 cm 48022702 5.5 5.80 21.10 28.1 3.0 0.0 ... 16.357506
06-07-18 305 C22 U120 Woodland Pine dominated coniferous woodland Forestry

4 0-20 cm 48062708 6.1 6.48 10.89 19.4 2.0 0.0 ... 16.416782
05-07-18 335 C22 U120 Woodland Pine dominated coniferous woodland Forestry

[5 rows x 27 columns]

Plot the Europe shapefile that is located in
/home/fkriskov/diplomski/datasets/Europe_coastline_shapefile/Europe_coastline.shp.

These are the columns of the Europe Shapefile:Index(['Shape_Leng', 'geometry'],
dtype='object')

14

You cannot merge these shapefiles,just plot them.

set marker='.' and figsize (10,10)

come up with a simple step by step plan. This plan should involve individual tasks,
that if executed correctly will yield the correct answer. Do not add any
superfluous steps. The result of the final step should be the final answer. Make
sure that each step has all the information needed - do not skip steps. Steps
should be clearly noted by having 'Step X:' written before the step itself, where X
is the step number. DO NOT WRITE ANY CODE!!!!!

Figure 8, Language model’s instructions for Step generation on Geo 6

############# CODE IMPLEMENTATION #############

<|endoftext|>You are an exceptionally intelligent coding assistant that
consistently delivers accurate and reliable responses to user instructions.

Instruction

"files needed are You are working with a GeoDataFrame that is located in
/home/fkriskov/diplomski/datasets/geo_dataframe.shp.

These are the columns of the dataframe:['Depth', 'POINTID', 'pH_CaCl2', 'pH_H2O',
'EC', 'OC', 'CaCO3', 'P', 'N', 'K', 'OC (20-30 cm)', 'CaCO3 (20-30 cm)', 'Ox_Al',
'Ox_Fe', 'NUTS_0', 'NUTS_1', 'NUTS_2', 'NUTS_3', 'TH_LAT', 'TH_LONG',
'SURVEY_DATE', 'Elev', 'LC', 'LU', 'LC0_Desc', 'LC1_Desc', 'LU1_Desc']

This is the head of the dataframe: Depth POINTID pH_CaCl2 pH_H2O EC
OC CaCO3 P ... TH_LONG SURVEY_DATE Elev LC LU LC0_Desc
LC1_Desc LU1_Desc

0 0-20 cm 47862690 4.1 4.81 8.73 12.4 3.0 0.0 ... 16.134212
06-07-18 291 C23 U120 Woodland Other coniferous woodland Forestry

1 0-20 cm 47882704 4.1 4.93 5.06 16.7 1.0 0.0 ... 16.175359
06-07-18 373 C21 U120 Woodland Spruce dominated coniferous woodland Forestry

2 0-20 cm 47982688 4.1 4.85 12.53 47.5 1.0 12.3 ... 16.289693
02-06-18 246 C33 U120 Woodland Other mixed woodland Forestry

3 0-20 cm 48022702 5.5 5.80 21.10 28.1 3.0 0.0 ... 16.357506
06-07-18 305 C22 U120 Woodland Pine dominated coniferous woodland Forestry

4 0-20 cm 48062708 6.1 6.48 10.89 19.4 2.0 0.0 ... 16.416782
05-07-18 335 C22 U120 Woodland Pine dominated coniferous woodland Forestry

[5 rows x 27 columns]

Plot the Europe shapefile that is located in
/home/fkriskov/diplomski/datasets/Europe_coastline_shapefile/Europe_coastline.shp.

These are the columns of the Europe Shapefile:Index(['Shape_Leng', 'geometry'],
dtype='object')

You cannot merge these shapefiles,just plot them.

set marker='.' and figsize (10,10)"

"'NUTS_0' is Alpha-2 code."

"for the given file locations and for these solution steps:

15

Here is the step-by-step plan to generate a heatmap of 'pH_CaCl2' in Europe:

1. Step 1: Load the GeoDataFrame and the Europe shapefile

2. Step 2: Filter the GeoDataFrame to include only the points in Europe

3. Step 3: Create a basemap of Europe using the Europe shapefile

4. Step 4: Create a heatmap of 'pH_CaCl2' using the filtered GeoDataFrame

5. Step 5: Save the heatmap as a PNG file

"generate a complete python code that follows these steps and answers this user
query:Generate a heatmap where each point is weighted by 'pH_CaCl2', in Europe.
Don't merge these shapefiles just plot them. use geopandas. save the result as a
png."

1. Convert the query to executable Python code using Pandas.

2. The solution should be a Python expression that can be called with the `exec()`
function, inside '```python ```'.

3. The code should represent a solution to the query.

4. If not instructed otherwise, print the final result variable.

5. If you are asked to plot something, save it as a plot.png.

6. Don't explain the code.

Figure 9, Language model’s instructions for Code implementation on Geo 6

As already mentioned, having a step generation before the code implementation step helps with

the distribution of responsibility, and enables the LLM to focus on either planning or generating.

The way this is implemented in this paper is by having the models generate the steps for solving

the query, and for that, they are provided with the file locations and the question itself. Next,

those steps are extracted and then sent to the steps implementation process, which is also

provided with the whole context, including the file locations and the query. This is in parallel

with how [1] implemented their GIS system, and how each step was provided with the full

picture so that the context and coherence is kept throughout the whole process.

This is enough for most models to generate an accurate and correct code as an answer to the

query. For better understanding, the instructions include the path to the csv file, but also the

columns that the file consists of, as well as the head of the dataframe (of the csv) so that the

models get an understanding of the types of data. This proved to be a better instruction set that

simply telling the models that the csv file has already been loaded into a pandas dataframe and

that it can be accessed through a variable, because weaker models kept ignoring that instruction

and tried to load the csv themselves. Also, the part where columns and first few examples are

displayed is crucial for the models to understand which features they can use to successfully

manipulate the data and generate a code that works and does what it’s required to do. In the
instruction, as mentioned, are some guidelines and restrictions that the models will try and

follow. Some models do this better than others, as can be seen in chapter 4. Some more notable

instructions include suggesting the usage of pandas, since in these cases that can provide the

simplest and most effective answers, then, the instruction to generate a code inside ```python

``` brackets so that the postprocessing code can extract the solution and execute it with an exec() 

function, and lastly, instructions that tell the models to print and/or save the solution as a png if 

necessary. 



 

16 

 

When an initial code is generated, the LLM will be asked to double check the generated 

solution. It is provided with the generated code, the instructions that were given, as well as 

additional instructions to check if the generated code matches all the instructions. If some of 

these instructions are overlooked by the LLM, it is likely that an execution error might occur in 

which case the LLM will be provided with the faulty code and the error message itself and be 

instructed to try and fix it. Often, LLMs are able to identify the error that the message is 

referring to and successfully generate a new code that not only fixes the error but also solves 

the problem correctly. 

Here is how the prompt for double checking was written: 

    checkmessages = [ 

    { 

        "role": "user", 

        "content": f"""You generated this code: {code} 

based on these rules: 

{messages[0]["content"]} 

 

If there is something you think should be different, change it, if not, don't 
generate any code. 

""" 

    }, 

And here is how the prompt for error fixing looks like: 

    messages = [ 

    { 

        "role": "user", 

        "content": f"""You generated this code: {code} 

And this code gives out this error message: {error} 

Fix the code 

""" 

    }, 

In both examples, variable “code” stores the previously generated code, the “messages” 
contains the original instructions mentioned above, and the “error” contains the most recent 
error message that occurred while running the most recent generated code. 

Here are the examples of how the models successfully managed to fix some code errors, as well 

as recognized when the generated code didn’t follow the given instructions. 
Running Double Check... 

 

<|endoftext|>You are an exceptionally intelligent coding assistant that 
consistently delivers accurate and reliable responses to user instructions. 

 

### Instruction 

You generated this code: 



 

17 

 

import geopandas as gpd 

import matplotlib.pyplot as plt 

 

df = gpd.read_file('/home/fkriskov/diplomski/datasets/geo_dataframe.shp') 

europe = 
gpd.read_file('/home/fkriskov/diplomski/datasets/Europe_coastline_shapefile/Europe_
coastline.shp') 

 

result = df[(df['LC0_Desc'] == 'Woodland') & (df['pH_CaCl2'] < 6)] 

 

fig, ax = plt.subplots(figsize=(15, 10)) 

europe.plot(ax=ax, color='lightgray') 

result.plot(ax=ax, marker='.', color='red') 

plt.savefig('result.png') 

 

based on these rules: 

 

"You are working with a GeoDataFrame that is located in 
'/home/fkriskov/diplomski/datasets/geo_dataframe.shp'." 

"Plot the Europe shapefile that is located in 
'/home/fkriskov/diplomski/datasets/Europe_coastline_shapefile/Europe_coastline.shp'
." 

"You cannot merge these shapefiles,just plot them." 

"set marker='.' and figsize (10,10)" 

"These are the columns of the dataframe:" 

['Depth', 'POINTID', 'pH_CaCl2', 'pH_H2O', 'EC', 'OC', 'CaCO3', 'P', 'N', 'K', 'OC 
(20-30 cm)', 'CaCO3 (20-30 cm)', 'Ox_Al', 'Ox_Fe', 'NUTS_0', 'NUTS_1', 'NUTS_2', 
'NUTS_3', 'TH_LAT', 'TH_LONG', 'SURVEY_DATE', 'Elev', 'LC', 'LU', 'LC0_Desc', 
'LC1_Desc', 'LU1_Desc'] 

"These are the columns of the Europe Shapefile:" 

Index(['Shape_Leng', 'geometry'], dtype='object') 

 

"'NUTS_0' is Alpha-2 code." 

"The possible NUTS_0 codes are: ['SE', 'DE', 'CY', 'BE', 'BG', 'LV', 'ES', 'DK', 
'HU', 'NL', 'PT', 'IE', 'EE', 'LU', 'SK', 'EL', 'UK', 'FI', 'HR', 'CZ', 'AT', 'PL', 
'FR', 'LT', 'MT', 'RO', 'SI', 'IT']" 

"And this is the head of the dataframe:" 

"     Depth   POINTID  pH_CaCl2  pH_H2O     EC    OC  CaCO3     P  ...    TH_LONG  
SURVEY_DATE  Elev   LC    LU  LC0_Desc                              LC1_Desc  
LU1_Desc 

0  0-20 cm  47862690       4.1    4.81   8.73  12.4    3.0   0.0  ...  16.134212     
06-07-18   291  C23  U120  Woodland             Other coniferous woodland  Forestry 

1  0-20 cm  47882704       4.1    4.93   5.06  16.7    1.0   0.0  ...  16.175359     
06-07-18   373  C21  U120  Woodland  Spruce dominated coniferous woodland  Forestry 

2  0-20 cm  47982688       4.1    4.85  12.53  47.5    1.0  12.3  ...  16.289693     
02-06-18   246  C33  U120  Woodland                  Other mixed woodland  Forestry 



 

18 

 

3  0-20 cm  48022702       5.5    5.80  21.10  28.1    3.0   0.0  ...  16.357506     
06-07-18   305  C22  U120  Woodland    Pine dominated coniferous woodland  Forestry 

4  0-20 cm  48062708       6.1    6.48  10.89  19.4    2.0   0.0  ...  16.416782     
05-07-18   335  C22  U120  Woodland    Pine dominated coniferous woodland  Forestry 

Figure 10, double check instructions with mismatch in code and original instructions 

If there is something you think should be different, change it, if not, don't 
generate any code. 

 

### Response 

Here's how you can implement this in Python: 

 

```python 

import geopandas as gpd

import matplotlib.pyplot as plt

df = gpd.read_file('/home/fkriskov/diplomski/datasets/geo_dataframe.shp')

europe =
gpd.read_file('/home/fkriskov/diplomski/datasets/Europe_coastline_shapefile/Europe_
coastline.shp')

result = df[(df['LC0_Desc'] == 'Woodland') & (df['pH_CaCl2'] < 6)]

fig, ax = plt.subplots(figsize=(10, 10))

europe.plot(ax=ax, color='lightgray')

result.plot(ax=ax, marker='.', color='red')

plt.savefig('result.png')

``` 

Running Code... 

Figure 11, double check – corrected code 

In this example, the mismatch between the generated code and the original set of instructions 

was minimal. The only difference was in the figsize, namely, expected figsize was (10,10), and 

the generated code had figsize set to (15,10), which “double check” managed to correct. 

This next figure shows an example when double check decided that no modifications were 

necessary, as the generated code followed all the instructions: 

### Response 

Here's how you can implement this in Python using Pandas: 

 

```python 

import pandas as pd

df = pd.read_csv('/home/fkriskov/diplomski/datasets/lucas-soil-2018-v2/lucas-soil-
2018 copy.csv')

south_eu = ['PT', 'ES', 'IT', 'GR', 'MT', 'HR', 'SI', 'CY']

south_eu_df = df[df['NUTS_0'].isin(south_eu)]

19

avg_ph = south_eu_df['pH_CaCl2'].mean()

print(avg_ph)

``` 

------------------GREAT SUCCESS!!!------------------ 

import pandas as pd 

 

df = pd.read_csv('/home/fkriskov/diplomski/datasets/lucas-soil-2018-v2/lucas-soil-
2018 copy.csv') 

south_eu = ['PT', 'ES', 'IT', 'GR', 'MT', 'HR', 'SI', 'CY'] 

south_eu_df = df[df['NUTS_0'].isin(south_eu)] 

avg_ph = south_eu_df['pH_CaCl2'].mean() 

print(avg_ph) 

------------------REZULTAT!!!------------------ 

Running Double Check... 

No changes neccessary. 

Running Code... 

 

6.498798489529695 

Figure 12, double check – no changes necessary 

 

The following is an example where the generated code had some error during runtime, and had 

to be corrected. This was much more common than the mismatch with the original instructions. 

import pandas as pd 

 

df = pd.read_csv('/home/fkriskov/diplomski/datasets/lucas-soil-2018-v2/lucas-soil-
2018 copy.csv') 

south_eu = ['PT', 'ES', 'IT', 'GR', 'MT', 'HR', 'SI', 'CY'] 

avg_ph = df.groupby('NUTS_0')['pH_CaCl2'].mean().loc[south_eu].mean() 

print(avg_ph) 

 

error occured:  "['GR'] not in index" 

 

Running Error Code Fixer... 

 

<|endoftext|>You are an exceptionally intelligent coding assistant that consistently 
delivers accurate and reliable responses to user instructions. 

 

### Instruction 

You generated this code:  

import pandas as pd 

 



 

20 

 

df = pd.read_csv('/home/fkriskov/diplomski/datasets/lucas-soil-2018-v2/lucas-soil-
2018 copy.csv') 

south_eu = ['PT', 'ES', 'IT', 'GR', 'MT', 'HR', 'SI', 'CY'] 

avg_ph = df.groupby('NUTS_0')['pH_CaCl2'].mean().loc[south_eu].mean() 

print(avg_ph) 

 

And this code gives out this error message: "['GR'] not in index" 

Fix the code 

Figure 13, error during runtime 

In this example, a KeyError occurred with the message "['GR'] not in index," indicating that 

Greece (GR) was not available in the data. The model attempted to include Greece in the final 

solution, but failed, triggering the error fixer module. This module successfully identified the 

error, explained the reason behind it, and then resolved it, ultimately calculating the correct 

result. 

### Response 

The error message indicates that the index of the DataFrame does not contain the value 
'GR'. This can be due to several reasons, such as a typo in the code or a mistake in 
the data. 

 

To fix the code, you can first check if the value 'GR' is present in the index of the 
DataFrame. If it is not, you can modify the code to use a different value that is 
present in the index. 

 

Here's an example of how you can fix the code: 

 

```python 

import pandas as pd

df = pd.read_csv('/home/fkriskov/diplomski/datasets/lucas-soil-2018-v2/lucas-soil-
2018 copy.csv')

south_eu = ['PT', 'ES', 'IT', 'GR', 'MT', 'HR', 'SI', 'CY']

if 'GR' in df.index:

 avg_ph = df.groupby('NUTS_0')['pH_CaCl2'].mean().loc[south_eu].mean()

 print(avg_ph)

else:

 south_eu = ['PT', 'ES', 'IT', 'MT', 'HR', 'SI', 'CY']

 avg_ph = df.groupby('NUTS_0')['pH_CaCl2'].mean().loc[south_eu].mean()

 print(avg_ph)

``` 

 

------------------FIXED!!!------------------ 

import pandas as pd 

 



 

21 

 

df = pd.read_csv('/home/fkriskov/diplomski/datasets/lucas-soil-2018-v2/lucas-soil-
2018 copy.csv') 

south_eu = ['PT', 'ES', 'IT', 'GR', 'MT', 'HR', 'SI', 'CY'] 

if 'GR' in df.index: 

    avg_ph = df.groupby('NUTS_0')['pH_CaCl2'].mean().loc[south_eu].mean() 

    print(avg_ph) 

else: 

    south_eu = ['PT', 'ES', 'IT', 'MT', 'HR', 'SI', 'CY'] 

    avg_ph = df.groupby('NUTS_0')['pH_CaCl2'].mean().loc[south_eu].mean() 

    print(avg_ph) 

------------------REZULTAT!!!------------------ 

 

6.313491673294531 

Figure 14, error fixer successfully fixed the error and return the correct final result 

This whole process can be repeated if the user would like to ask some follow-up questions or 

suggest corrections to the code, utilizing a “User Feedback Loop”. In this loop, a new message 
prompt is generated, which includes the messages from the previous “conversation”. This 
prompt contains the generated code, the data locations, the user query, and the steps that the 

code is based on. The old messages are used in both the step generation and code 

implementation steps, to give the LLM a full understanding of the context and ensure accurate 

and relevant assistance. Here is an example of how an LLM generated a code for a query, and 

is then asked to change the colour of an element in the graph, which it successfully does: 

------------------GREAT SUCCESS!!!------------------ 

import geopandas as gpd 

import matplotlib.pyplot as plt 

 

geo_dataframe = gpd.read_file('/home/fkriskov/diplomski/datasets/geo_dataframe.shp') 

europe_shapefile = 
gpd.read_file('/home/fkriskov/diplomski/datasets/Europe_coastline_shapefile/Europe_
coastline.shp') 

 

geo_dataframe_subset = geo_dataframe[['pH_CaCl2']] 

 

fig, ax = plt.subplots(figsize=(10, 10)) 

europe_shapefile.plot(ax=ax, color='white', edgecolor='black') 

geo_dataframe_subset.plot(ax=ax, column='pH_CaCl2', legend=True, cmap='coolwarm') 

 

plt.savefig('heatmap.png') 

------------------REZULTAT!!!------------------ 

Running Double Check... 

No changes neccessary. 

Running Code... 

 



 

22 

 

Is there something else you want to ask? Ask away: change the color to gray 

Figure 15, initial code generation for a prompt, and a follow-up question 

------------------GREAT SUCCESS!!!------------------ 

import pandas as pd 

import geopandas as gpd 

import matplotlib.pyplot as plt 

 

geo_dataframe = gpd.read_file('/home/fkriskov/diplomski/datasets/geo_dataframe.shp') 

europe_shapefile = 
gpd.read_file('/home/fkriskov/diplomski/datasets/Europe_coastline_shapefile/Europe_
coastline.shp') 

 

geo_dataframe_subset = geo_dataframe[['pH_CaCl2']] 

 

fig, ax = plt.subplots(figsize=(10, 10)) 

europe_shapefile.plot(ax=ax, color='gray', edgecolor='black') 

geo_dataframe_subset.plot(ax=ax, column='pH_CaCl2', legend=True, cmap='coolwarm') 

 

plt.savefig('plot.png') 

------------------REZULTAT!!!------------------ 

Figure 16, generated code for the follow-up question 

 

Models 

The models used in the comparisons are all available through Hugging Face: 

 Mistral v0.2 (mistralai/Mistral-7B-Instruct-v0.2) 

 Zephyr (HuggingFaceH4/zephyr-7b-beta) 

 OpenHermes Mistral (teknium/OpenHermes-2.5-Mistral-7B) 

 SOLAR (upstage/SOLAR-10.7B-Instruct-v1.0) 

 Mistral v0.3 (mistralai/Mistral-7B-Instruct-v0.3) 

 Meta Llama (meta-llama/Meta-Llama-3-8B-Instruct) 

 Gradient Llama (gradientai/Llama-3-8B-Instruct-Gradient-1048k) 

 Starcoder (bigcode/starcoder2-15b-instruct-v0.1) 

Some models have more parameters than other, as can be seen from their names. For example, 

Meta Llama as well as Gradient Llama have 8 billion parameters, and Starcoder has 12 billion, 

while all the other models have 7 billion. This has a great impact on the performance of the 

models as well as their complexity and speed, even though, in testing, all these models had 

similar execution speeds despite the differences in parameter count. This can be due to some 

optimizations within the models itself, that enables the model to not use all the parameters if it 

is not needed. 



 

23 

 

 

3.3 Theoretical Framework 

 In this chapter, a theoretical background of the models is provided. 

Llama is a popular language model based on the transformer architecture. The difference can 

be seen on the following figure. 

 

Figure 17, Difference between Transformers and Llama architecture [24] 

Mainly, the difference is best explained through three parts: Pre-normalization (GPT3), 

SwigGLU activation function (PaLM) and Rotary Embeddings (GPTNeao) [24]. By using the 

RMSNorm normalizing function, [25] improve the training stability and normalize the input of 

each transformer sub-layer. They do this instead of only normalizing the output. This is what 

pre-normalization refers to. Secondly, instead of using a regular ReLU activation function, they 

used a different non-linear activation function called SwiGLU to improve the performance [26]. 

Lastly, instead of positional embeddings, rotary positional embeddings are used (RoPE), at each 

layer of the network.  

 

Mistral is based on a transformer architecture. As explained in [27], compared with Llama 

model, the Mistral models introduce some changes. These changes include Sliding Window 

Attention that utilizes the stacked layers of a transformer for attending information outside the 

window size. 



 

24 

 

 

Figure 18, Sliding window attention [27] 

The number of operations in the original attention is quadratic of sequence length, and memory 

increase is linear with the number of tokens. “At inference time, this incurs higher latency and 

smaller throughput due to reduced cache availability” [27].  To avoid this, a sliding window 

attention is used, in which, each token is responsible for at most W tokens from the previous 

layer, in this example, W=3 [27]. At each layer, information can move up to W token, which 

means that, after k number of layers, information can move by up to k*W tokens. 

The second change is the Rolling Buffer Cache, which is a cache memory with a fixed size. 

Here is an example of a rolling buffer cache with a fixed size of 4. 

 

Figure 19, Rolling Buffer Cache [27] 

Here, each new token is placed on the first free position inside the cache, and once the cache 

fills up, the next token is placed on the beginning of the cache “row”. Essentially based on the 
token’s position in a sentence i, the token’s position inside the cache will be i mod W. By doing 

this on a sequence with the length of 32k tokens, the cache memory usage is reduced 8 times, 

without impacting the model’s performance [27]. 

And thirdly, Pre-fill and chunking. This is referring to pre-filling the cache by chunking longer 

sequences to limit memory usage [27]. Here is an example of how this works: 



 

25 

 

 

Figure 20, Pre-fill and Chunking [27] 

“We process a sequence in three chunks, “The cat sat on”, “the mat and saw”, “the dog go to”. 
The figure shows what happens for the third chunk (“the dog go to”): it attends itself using a 
causal mask (rightmost block), attends the cache using a sliding window (center block), and 

does not attend to past tokens as they are outside of the sliding window (left block)” [27]. 

 

Zephyr uses the mentioned Mistral 7B as a starting point because of its performance [28]. To 

improve upon Mistral, [28] used three methods: Distilled Supervised Fine-Tuning (dSFT), AI 

Feedback through Preferences (AIF) and Distilled Direct Preference Optimization (dDPO). 

Distilled Supervised Fine-Tuning is training the model by having it generate instructions and 

responses, instead of having access to a teacher language model for a traditional supervised 

learning. 

AI Feedback through Preferences refers to having the teacher model give preferences on the 

generated outputs from other models, instead of the usual human feedback loop. 

Distilled Direct Preference Optimization has a goal “to refine the πdSFT by maximizing the 

likelihood of ranking the preferred yw over yl in a preference model” [28]. This preference 

model is “determined by a reward function that utilizes the student language model” [28]. 

These methods were carried out on two datasets: UltraChat and UltraFeedback, which contain 

self-refinement, multi-turn dialogues generated by gpt-3.5-turbo and prompts that contain LLM 

responses that were rated by the gpt-4 model according to some criteria. 

 

OpenHermes also has Mistral as a base, and it is “a state of the art Mistral Fine-tune” [29]. 

From training, OpenHermes managed to significantly increase the overall net gain on several 

non-code benchmarks that include TruthfulQA, AGIEval, and GPT4All suite. The only reduced 

benchmark score was from BigBench. It was trained on primarily GPT-4 generated data, and 

other high quality data from open datasets, totalling to 1 million entries. This iteration of the 

model outperformed all past Nous-Hermes and OpenHermes models and currently surpasses 

most of other Mistral finetunes. Here is a graph showing the average scores across all 

benchmarks that compares the performance of Mistral models. OpenHermes 2.5 has the highest 

scores among the 7B models, only topped by the 70B model based on Llama 2. 



 

26 

 

 

Figure 21, Average scores comparison 

 

SOLAR is a Llama 2 based model. This architecture was selected, although any n-layered 

transformer architecture could’ve been used in its place. The Llama 2 architecture was 
initialized with “pretrained weights from Mistral 7B, as it is one of the top performers 

compatible with the Llama 2 architecture” [30]. The methods used atop the base model to 

achieve SOLAR’s functionalities include Depthwise scaling, Continued pretraining and 

methods. 

Depthwise scaling is a process that involves duplicating the base model of n layers and 

subtracting the final m layers from the original and the first m layers from the duplicate. These 

reduced models are then concatenated to form a scaled model with s = 2·(n−m) layers [30]. 



 

27 

 

 

Figure 22, Depth up-scaling for the case with n = 32, s = 48, and m = 8 [30] 

After the concatenation, continued training needs to be applied since the depthwise scaled 

model experiences a drop in performance in comparison to the base model. This helps the 

models rapidly recover from performance-wise as tested in [30]. An alternative to depthwise 

scaling would be “to just repeat its layers once more, i.e., from n to 2n layers” [30], which 

would in turn increase the maximum layer distance at the seam, which “may be too significant 

of a discrepancy for continued pretraining to quickly resolve” [30]. The core to the success of 

depth up-scaling lies in reducing these discrepancies both in depthwise scaling and continued 

training. 

Compared to other up-scaling models, depthwise scaled models “do not require additional 

modules” [30] and special CUDA kernels are also not needed as a DUS model can “seamlessly 

integrate into existing training and inference frameworks while maintaining high efficiency” 
[30]. 

 

Gradient is another model that is based on a Llama architecture or has a Llama model as a base 

for fine-tuning. It extends the Llama-3 8B’s context length from 8k to 1040k [31]. “It 

demonstrates that SOTA LLMs can learn to operate on long context with minimal training by 

appropriately adjusting RoPE theta” [31]. The approach, as stated in [31], is divided into three 

points, having meta-llama as a base, NTK-aware interpolation “to initialize an optimal schedule 

for RoPE theta, followed by empirical RoPE theta optimization” and progressive training on 
increasing context lengths [31].  

 

Starcoder2 model “significantly outperforms other models of comparable size 

(CodeLlama13B), and matches or outperforms CodeLlama-34B” [32]. It even matches 

DeepSeekCoder-33B on low-resource languages and if code execution or mathematics are 

considered as benchmarks, it outperforms the DeepSeekCoder-33B. As meta-llama and 

Gradient, Starcoder also uses rotary positional embeddings. Another change to the 

StarCdoerBase is the replacement of Multi-Query Attention with Grouped Query Attention 

[32]. However, the “the number of key-value heads is kept relatively low to prevent 

significantly slowing down inference” [32]. Here are two tables that show different Starcoder 

models’ architecture details and training details: 



 

28 

 

 

Figure 23, Model architecture details of the StarCoder2 models [32] 

 

Figure 24, Training details of StarCoder2 base models [32] 

 

4. Results 

4.1 Examples overview 

 Language model comparison was based on 24 different examples. Different models 

responded to the queries in different ways. All the models were provided with the same 

instructions and the same datasets. Test examples consisted of questions from descriptive and 

inferential statistics, and various geographical inquiries. Here are the examples that were used 

to test the models: 

Descriptive statistics 

desc 1:    Which land type (LC0_Desc) has the highest 'pH_H2O'. 

desc 2:    Plot the average ‘OC’ for each land type (LC0_Desc). save it as a png. 

desc 3:    Calculate the average pH for south EU. 

desc 4:    Calculate the average pH for Austria, from the mentioned csv. 

desc 5:    Calculate the max value of 'N' for Slovenia, from the mentioned csv. 

desc 6:    Calculate the summary statistics for all numerical columns in the dataset. 

desc 7:    Generate a correlation matrix of these columns: EC, pH_CaCl2, pH_H2O, OC, 

 CaCO3, P, N, K and visualize it using a heatmap. 

desc 8:    Plot the distribution of 'K' with a KDE overlay. save it as a png. 

desc 9:    Calculate the average 'K' for rows where 'EC' is greater than 10. 

desc 10:  Find the sum of 'K' for each unique value in the 'LC0_Desc' column. print the result. 



 

29 

 

 

Inferential statistics 

infer 1: Is there a significant relationship between land type (LC0_Desc) and pH_H2O? Use 

  chi square from scipy. 

infer 2: Is there a significant difference between 'N' in Austria and France? Use ANOVA from 

scipy. 

infer 3: Which parameter has the strongest correlation with EC among {pH_CaCl2, pH_H2O, 

OC, CaCO3, P, N, K}? 

infer 4:  Perform a t-test to compare 'K' between Grassland and Cropland. 

infer 5:  Plot a linear regression analysis to see the relationship between 'pH_H2O' and 

'K'. 

infer 6: Construct a 95% confidence interval for the mean 'OC' content in the dataset. 

infer 7: Using the Central Limit Theorem, simulate the sampling distribution of the mean  

 'pH_H2O' for sample sizes of 30. Plot the distribution and compare it to the normal 

 distribution. 

infer 8: Calculate the z-scores for 'EC' and identify any outliers (z-score > 3 or < -3). 

infer 9: Perform a hypothesis test to determine if the mean 'K' content in the entire dataset is 

 significantly different from 2%. Use a t-test for the hypothesis test. 

infer 10: Calculate the p-value for the correlation between 'P' and 'K'. Determine if the 

 correlation is statistically significant. 

 

Geo-information 

geo 1:  Plot all the points that have pH_CaCl2 > 6. use geopandas. save the image as a png. 

geo 2:  Plot all the points with LC0_Desc=Woodland in Europe. Save the result as a png. Use 

geopandas. 

geo 3:  Plot all the points with LC0_Desc=Woodland & pH<6 in Europe. Save the result as a 

png. Use geopandas. 

geo 4:  Perform KMeans clustering on the TH_LAT and TH_LONG data to identify 3 clusters 

and plot them on a map. save it as a png. 

geo 5:  Create a map with markers for all locations where 'K' is above its median value, in 

Europe. use geopandas. save the result as a png. 

geo 6:  Generate a heatmap where each point is weighted by 'pH_CaCl2', in Europe. Don't 

merge these shapefiles just plot them. use geopandas. save the result as a png. 

geo 7:  Create a map with markers for points where 'K' is in the top 10 percentile, in Europe. 

Don't merge these shapefiles just plot them. use geopandas. save the result as a png. 



 

30 

 

geo 8:  Plot clusters of points with 'pH_H2O'>5 and 'pH_H2O'<5 in Europe. 

 

geo 9:  Create a map displaying the distribution of soil types ('LC0_Desc') across Europe. Each 

 soil type should be represented by a different color. Use geopandas and save the map as 

 a png. 

geo 10:  Plot all the LC0_Desc='Grassland' and LC0_Desc='Woodland' points where 'OC'>20. 

 Use geopandas and save the map as a png. 

 

4.2 Metrics overview 

For model evaluation, some popular metrics were used, which include METEOR 

(Metric for Evaluation of Translation with Explicit ORdering), ROUGE (Recall-Oriented 

Understudy for Gisting Evaluation), BLEU (Bilingual Evaluation Understudy), cosine 

similarity, AST (Abstract Syntax Tree) Comparison and the Levenshtein distance. The model 

performance was measured by comparing the reference code with the final generated code of 

each model, for each test example. In this comparison, comments inside the codes were ignored, 

as well as any extra spaces and empty lines, as those do not bring any value to the final result 

and only make the metric scores worse. 

METEOR is calculated using the following formulas: 

Precision: 𝑃 = 𝑚𝑤𝑡 

Recall: 𝑅 = 𝑚𝑤𝑟 

 𝐹𝑚𝑒𝑎𝑛 = 10𝑃𝑅𝑅 + 9𝑃 𝑝 = 0.5 ( 𝑐𝑢𝑚)3
 𝑀 = 𝐹𝑚𝑒𝑎𝑛(1 − 𝑝) 

where m is the number of unigrams in the candidate (generated text) also found in the reference 

(actual sentence), w_t is the number of unigrams in the candidate, and w_r is the number of 

unigrams in the reference. p is the chunk penalty, and a chunk is a set of consecutive words. c 

is the number of chunks in the candidate and U_m is the number of unigrams in the candidate. 

If the candidate and the reference were identical, there would only be one chunk. Finally M is 

the METEOR score. A high METEOR score indicates that the generated code is very similar 

to the reference code in terms of vocabulary and sequence. It evaluates both precision and recall, 

and takes into account stemming, synonyms and the arrangement of words, which makes this 

metric a reliable measure of “similarity”. Specifically, for the generated code, it means that the 
code uses similar terms and structure and maintains a level of semantic similarity and 

readability that closely resembles the reference code. 

ROGUE is also using recall, precision and F1, but they are calculated by the number of 

overlapping n-grams. For example, ROGUE-1 uses 1-grams (words), ROGUE-2 uses 2-grams 

(sequential word pairs), and ROGUE-L uses a longest common subsequence (LCS) that appear 

both in the candidate and the reference, while maintaining the order of words. So, a high 

ROUGE-L score indicates a large overlap in the longest common subsequence between the 



 

31 

 

generated and reference code. More importantly, this suggests that the generated code follows 

the same logic and order of operations as the reference code. 𝑅𝑙𝑐𝑠 = 𝐿𝐶𝑆(𝑋, 𝑌)𝑚  𝑃𝑙𝑐𝑠 = 𝐿𝐶𝑆(𝑋, 𝑌)𝑛  𝐹𝑙𝑐𝑠 = (1 + 𝛽2)𝑅𝑙𝑐𝑠𝑃𝑙𝑐𝑠𝑅𝑙𝑐𝑠 + 𝛽2𝑃𝑙𝑐𝑠  

BLEU is calculated using a geometric average precision, which looks at all the precision scores 

of n-grams, where n < N. 𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑁) = exp (∑ 𝑤𝑛 log 𝑝𝑛𝑁
𝑛=1 ) 

= ∏ 𝑝𝑛𝑤𝑛𝑁
𝑛=1  

= (𝑝1)14 ∗ (𝑝2)14 ∗ (𝑝3)14 ∗ (𝑝4)14 

Then, it calculates a brevity penalty, and combines these two results to calculate the final score. 𝐵𝑟𝑒𝑣𝑖𝑡𝑦 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 = {1,                      𝑖𝑓 𝑐 > 𝑟 𝑒(1−𝑟 𝑐⁄ ), 𝑖𝑓 𝑐 ≤ 𝑟  

c is the number of words in the candidate, and r is the number of words in the reference. 𝐵𝑙𝑒𝑢(𝑁) = 𝐵𝑟𝑒𝑣𝑖𝑡𝑦 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 ∙ 𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑆𝑐𝑜𝑟𝑒𝑠 (𝑁) 

A high BLEU score indicates that the n-grams in the generated code align well with those in 

the reference code. This signifies that the generated code closely resembles the reference code 

in terms of short token sequences, suggesting strong syntactic similarity. This is crucial for 

adhering to proper coding standards and syntax. It is important to note that BLEU emphasizes 

precision rather than recall. This means it scores highly when all sequences present in the 

generated code are also found in the reference code, but it does not penalize for sequences that 

are in the reference code but missing from the generated code. 

Cosine similarity is a straightforward method for comparing two vectors. It measures how 

similar they are by calculating the cosine of the angle between them. In the context of text and 

code comparison, this involves first converting the text or code into embeddings. These 

embeddings are numerical representations of the words or expressions in the text or code. This 

process transforms the text or code into a series of numbers, or a vector. With the calculated 

vectors, the cosine similarity can easily be calculated to determine how similar the two pieces 

of text or code are. 



 

32 

 

Abstract Syntax Tree (AST) comparison is used for various tasks for code analysis and 

understanding. It can be used for syntax analysis, code similarity and clone detection, code 

refactoring, code metrics and quality analysis, semantic analysis, code transformation and 

debugging and profiling. The AST itself is the code’s representation with a tree. This way, a 
computer can have a much easier understanding of the code, and its comparison with other 

source codes. Here is an example of how trees represent some simple operations like 10 — [(5 

/ 4 ) + 1] and [10 — (5 / 4)] + 1, which have equalling results: 

 

Figure 25, Syntax tree of expression 1 and expression 2, respectively [33]. 

Based on these tree structures, AST comparison allows the comparison of two source codes 

through their corresponding trees. In this paper, this was used to check if the generated code is 

the same as the reference code, which is denoted by a 1 (True), as opposed to a 0 (False) 

otherwise. 

Levenshtein Distance (Edit Distance) is the number of single-character edits, that include 

insertions, deletions, and substitutions required to modify one string to the other. This is a more 

straightforward way of determining similar two source codes are on a character level. Here, it 

was used in the exact same way, a smaller number indicating that a lower number of 

modifications is needed to get the reference code from the generated code.  

 

4.3 Example discussion 

 The following table represents the success of each model's answer. Since some 

questions had more than one correct answer (i.e., there can be two different codes that provide 

the same answer), it is necessary to display the final calculations of each model, even if the 

models used different codes to arrive at the solution. If the models correctly answered the user 

query, either by outputting the correct number or drawing the correct map plot, the table cell 

will display "y"; otherwise, it will display "n" if it failed to provide the correct answer. 

 



 

33 

 

  
model 

 starcoder gradient llama mistral3 solar openhermes zephyr mistral2 

desc 1 y y y y y y n y 

desc 2 y y y y y y y y 

desc 3 y n y n y y y n 

desc 4 y y y y y y y y 

desc 5 y y y y y y n y 

desc 6 y y y y y y y y 

desc 7 y y y y y y y y 

desc 8 y y y y y y y y 

desc 9 y y y y y y y y 

desc 10 y y y y y y y y 

geo 1 y y y y y y y y 

geo 2 y y y y y y n n 

geo 3 y y y n y y n y 

geo 4 y n y n n n n n 

geo 5 y n y n n y n n 

geo 6 y n n y n n n n 

geo 7 y n y n n n n n 

geo 8 y y y n n n n n 

geo 9 y y y n n n n n 

geo 10 y y y n n n y n 

infer 1 y n y y y y y n 

infer 2 y n y y y y y y 

infer 3 y y n n n n n n 

infer 4 y y y y y y y y 

infer 5 y n y n n y y n 

infer 6 y y y y n n n n 

infer 7 y y n y n n n n 



 

34 

 

  
model 

 starcoder gradient llama mistral3 solar openhermes zephyr mistral2 

infer 8 y y y y n y y y 

infer 9 y n n y y y n n 

infer 10 y y y y n y y y 

Figure 26, Results Table 

 

In this section, results for each test example will be discussed. First is the table containing the 

previously described metrics for each of the models per example. After that, a user query and a 

correct (reference) code is written, which was used as a comparison base for the metrics. 

Alongside the reference code, the correct query result is display. This code was used as a 

comparison base for the metrics and the results were used for the Results Table. Lastly, the 

generated codes, results or graphs are shown to present the solutions that the models came up 

with, along with some result discussion. 

 

Desc 1 

Models\Metrics meteor rouge r rouge p rouge f bleu cossim AST levenshtein 

gradient 0,5037 0,5882 0,7143 0,6452 0,275 0,8796 0 81 

llama 0,73 0,6471 0,7857 0,7097 0,4408 0,8852 0 59 

openhermes 0,9997 1 1 1 1 1 1 0 

mistral3 0,5254 0,45 0,6429 0,5294 0,2452 0,9247 0 86 

starcoder 0,5133 0,4091 0,6429 0,5 0,2108 0,8279 0 137 

solar 0,5091 0,2128 0,7143 0,3279 0,1127 0,7559 0 267 

mistral2 0,5604 0,6 0,6429 0,6207 0,262 0,9262 0 26 

zephyr 0,0446 0,4444 0,2857 0,3478 0 0,7861 0 154 

User Query: Which land type (LC0_Desc) has the highest 'pH_H2O'. 

Here is the reference code: 

import pandas as pd 
 
df = pd.read_csv("/home/fkriskov/diplomski/datasets/lucas-soil-2018-
v2/lucas-soil-2018 copy.csv") 
 
result = df.groupby('LC0_Desc')['pH_H2O'].mean().idxmax() 
print(result) 

The correct answer: Water 

This was the first example that the models were tested on during development. This is the type 

of task that this paper aimed for the models to solve. It requires the model to think in steps, 

which is something all models accomplished, except for Zephyr. Even though the metrics don’t 
show a perfect score for each model, that is simply because there are more possible ways of 



 

35 

 

coding the solution. This is best seen from the cosine similarity, as the major parts of all 

solutions are the same, therefore the cosine similarity is high compared to other metrics. Here 

are some other examples of how the models handled this task: 
result = 
df.groupby('LC0_Desc')['pH_H2O'].mean().sort_values(ascending=False).head(1
) 
print(result.index[0]) 
 

And here is what Zephyr did that was incorrect: 
grouped = df.groupby('LC0_Desc')['pH_H2O'].mean() 
print(grouped.idx[grouped.values.argmax()]) 

 

Desc 2 

Models\Metrics meteor rouge r rouge p rouge f bleu cossim AST levenshtein 

gradient 0,2667 0,5385 0,8235 0,6512 0,1259 0,8709 0 185 

llama 0,7648 0,5172 0,8824 0,6522 0,2962 0,8696 0 150 

openhermes 0,7163 0,5 0,8235 0,6222 0,3526 0,8816 0 142 

mistral3 0,6344 0,4194 0,7647 0,5417 0,2858 0,8613 0 178 

starcoder 0,9998 1 1 1 1 1 1 0 

solar 0,9178 0,8947 1 0,9444 0,4464 0,9201 0 104 

mistral2 0,7025 0,5357 0,8824 0,6667 0,2792 0,8967 0 164 

zephyr 0,8155 0,6818 0,8824 0,7692 0,5654 0,948 0 72 

User Query: Plot the average ‘OC’ for each land type (LC0_Desc). save it as a png. 
Here is the reference code: 

import pandas as pd 
import matplotlib.pyplot as plt 
 
df = pd.read_csv('/home/fkriskov/diplomski/datasets/lucas-soil-2018-
v2/lucas-soil-2018 copy.csv') 
 
df.groupby('LC0_Desc')['OC'].mean().plot(kind='bar') 
 
plt.savefig('plot.png') 



 

36 

 

The correct answer: 

 

Figure 27, Desc 2 solution 

This is another example of what was expected from the model – the ability to plot graphs. All 

models successfully created the correct graph and same as the previous example, the codes 

differed a bit from the reference. The important line was the one where the descriptions are 

grouped by the ‘OC’ and then averaged: 

df.groupby('LC0_Desc')['OC'].mean().plot(kind='bar') 

which all models did perfectly.  

 

Desc 3 

Models\Metrics meteor rouge r rouge p rouge f bleu cossim AST levenshtein 

gradient 0,4332 0,5882 0,4 0,4762 0,2896 0,88 0 95 

llama 0,4344 0,4167 0,4 0,4082 0,1753 0,941 0 128 

openhermes 0,5761 0,5357 0,6 0,566 0,2287 0,9639 0 55 

mistral3 0,4368 0,7059 0,48 0,5714 0,3293 0,9293 0 106 

starcoder 1 1 1 1 1 1 1 0 

solar 0,4033 0,6471 0,44 0,5238 0,3215 0,9451 0 106 

mistral2 0,4177 0,6471 0,44 0,5238 0,2228 0,9284 0 93 

zephyr 0,3811 0,4348 0,4 0,4167 0,2101 0,9493 0 81 

User Query: Calculate the average pH for south EU. 

Here is the reference code: 

import pandas as pd 
 
df = pd.read_csv('/home/fkriskov/diplomski/datasets/lucas-soil-2018-



 

37 

 

v2/lucas-soil-2018 copy.csv') 
south_eu = ['PT', 'ES', 'IT', 'GR', 'MT', 'HR', 'SI', 'CY'] 
south_eu_df = df[df['NUTS_0'].isin(south_eu)] 
avg_ph = south_eu_df['pH_H2O'].mean() 
print(avg_ph) 

The correct answer: 7.022787504291109 

The only problems the models encountered here were determining what countries are in 

southern Europe and how can they filter these countries out. This question could be better 

defined with question specific instructions as mentioned in [1]. In this example, question 

specific instructions would involve either defining all countries present in the dataset, or to 

simply list the south European countries in the question itself. If we leave out the identification 

of south European countries, the models managed to solve this without a problem. 

 

Desc 4 

Models\Metrics meteor rouge r rouge p rouge f bleu cossim AST levenshtein 

gradient 0,5754 0,5882 0,6667 0,625 0,2205 0,9639 0 45 

llama 0,9998 1 1 1 1 1 1 0 

openhermes 0,4438 0,4706 0,5333 0,5 0,1647 0,9647 0 44 

mistral3 0,5357 0,6 0,6 0,6 0,2272 0,9508 0 46 

starcoder 0,5754 0,5882 0,6667 0,625 0,2205 0,9639 0 46 

solar 0,5754 0,5294 0,6 0,5625 0,2205 0,9573 0 47 

mistral2 0,4438 0,4706 0,5333 0,5 0,1647 0,9683 0 63 

zephyr 0,5795 0,5625 0,6 0,5806 0,1761 0,9694 0 47 

User Query: Calculate the average pH for Austria, from the mentioned csv. 

Here is the reference code: 

import pandas as pd 
 
data = pd.read_csv('/home/fkriskov/diplomski/datasets/lucas-soil-2018-
v2/lucas-soil-2018 copy.csv') 
austria_pH = data[data['NUTS_0'] == 'AT']['pH_CaCl2'].mean() 
print(austria_pH) 

The correct answer: 5.302227171492205 

For this and the following two examples, models generally had no problems. This is best seen 

from the cosine similarity column, as all similarities are very high. And the llama model 

generated the exact same solution as the reference, which confirms the AST column.  

 

 

 

 

 

 



 

38 

 

Desc 5 

Models\Metrics meteor rouge r rouge p rouge f bleu cossim AST levenshtein 

gradient 0,6167 0,6471 0,6471 0,6471 0,2426 0,9641 0 27 

llama 0,9999 1 1 1 1 1 1 0 

openhermes 0,484 0,5294 0,5294 0,5294 0,1884 0,9578 0 31 

mistral3 0,4927 0,6667 0,5882 0,625 0,221 0,8998 0 66 

starcoder 0,6167 0,6471 0,6471 0,6471 0,2426 0,9606 0 37 

solar 0,4898 0,625 0,5882 0,6061 0,2217 0,954 0 58 

mistral2 0,484 0,5294 0,5294 0,5294 0,1884 0,9549 0 25 

zephyr 0,5388 0,55 0,6471 0,5946 0,1624 0,9204 0 56 

User Query: Calculate the max value of 'N' for Slovenia, from the mentioned csv. 

Here is the reference code: 

import pandas as pd 
 
data = pd.read_csv('/home/fkriskov/diplomski/datasets/lucas-soil-2018-
v2/lucas-soil-2018 copy.csv') 
slovenia_data = data[data['NUTS_0'] == 'SI'] 
max_n_value = slovenia_data['N'].max() 
print(max_n_value) 

The correct answer: 22.7 

Much like the previous example, Llama managed to generate a perfect solution while mistral3, 

openhermes and solar got very similar solutions. Despite this, all models managed to calculate 

the correct answer except zephyr, that added some hallucinations in its result, as was often the 

case with this particular model: 

 
slovenia_data = df[(df['NUTS_0'] == 'SI') & (df['Depth'] == '0-20 cm')] 

 

Desc 6 

Models\Metrics meteor rouge r rouge p rouge f bleu cossim AST levenshtein 

gradient 0,83 0,8333 0,8333 0,8333 0,6704 0,9576 0 12 

llama 0,7397 0,7143 0,8333 0,7692 0,5761 0,8824 0 48 

openhermes 0,5033 0,7 0,5833 0,6364 0,4209 0,8969 0 26 

mistral3 0,83 0,8333 0,8333 0,8333 0,6704 0,9126 0 14 

starcoder 0,83 0,8333 0,8333 0,8333 0,6704 0,9315 0 14 

solar 0,6939 0,5294 0,75 0,6207 0,4561 0,7225 0 106 

mistral2 0,5765 0,5833 0,5833 0,5833 0,4336 0,9464 0 27 

zephyr 0,6191 0,3571 0,8333 0,5 0,2237 0,7762 0 204 

User Query: Calculate the summary statistics for all numerical columns in the dataset. 

 

 



 

39 

 

Here is the reference code: 

import pandas as pd 
 
df = pd.read_csv('/home/fkriskov/diplomski/datasets/lucas-soil-2018-
v2/lucas-soil-2018 copy.csv') 
 
summary = df.describe() 
 
print(summary) 

The correct answer: 

            POINTID      pH_CaCl2        pH_H2O            EC            OC  ...        Ox_Al        
Ox_Fe        TH_LAT       TH_LONG          Elev 

count  1.898400e+04  18983.000000  18983.000000  18976.000000  18983.000000  ...  2510.000000  
2510.000000  18984.000000  18984.000000  18984.000000 

mean   4.277080e+07      5.706427      6.259460     18.388995     47.520021  ...     1.171474     
2.547171     48.689184     10.330166    613.188211 

std    8.350827e+06      1.398586      1.319465     25.560305     81.602546  ...     1.243111     
2.431786      7.779195     11.192492   1461.681637 

min    2.652197e+07      2.600000      3.340000      0.000000      0.000000  ...     0.000000     
0.100000     34.690270    -10.149099    -55.000000 

25%    3.492293e+07      4.500000      5.120000      8.090000     13.100000  ...     0.600000     
1.000000     42.229369     -0.745365    124.000000 

50%    4.466391e+07      5.800000      6.290000     13.950000     21.800000  ...     0.900000     
1.900000     47.338688     12.078146    261.000000 

75%    4.992278e+07      7.100000      7.500000     20.600000     42.600000  ...     1.300000     
3.300000     53.424240     20.647825    666.250000 

max    6.498167e+07      9.800000     10.430000   1295.600000    723.900000  ...    34.700000    
35.800000     69.956515     34.029660  11464.000000 

All models completed this task perfectly. 

 

Desc 7 

Models\Metrics meteor rouge r rouge p rouge f bleu cossim AST levenshtein 

gradient 0,8089 0,5263 0,9524 0,678 0,3232 0,9124 0 214 

llama 0,7119 0,5152 0,8095 0,6296 0,353 0,9352 0 164 

openhermes 0,6822 0,5517 0,7619 0,64 0,3624 0,9315 0 103 

mistral3 0,6289 0,5 0,7143 0,5882 0,3192 0,9009 0 108 

starcoder 0,7422 0,5455 0,8571 0,6667 0,3331 0,9455 0 199 

solar 0,5719 0,4242 0,6667 0,5185 0,3181 0,9162 0 160 

mistral2 0,6261 0,5 0,7143 0,5882 0,3162 0,9267 0 123 

zephyr 0,7282 0,5862 0,8095 0,68 0,452 0,9329 0 107 

User Query: Generate a correlation matrix of these columns: EC, pH_CaCl2, pH_H2O, 

OC, CaCO3, P, N, K and visualize it using a heatmap. 

Here is the reference code: 

import seaborn as sns 
import matplotlib.pyplot as plt 



 

40 

 

 
df = pd.read_csv('/home/fkriskov/diplomski/datasets/lucas-soil-2018-
v2/lucas-soil-2018 copy.csv') 
 
corr_matrix = df.corr() 
 
sns.heatmap(corr_matrix, annot=True, cmap='coolwarm') 
plt.title('Correlation Matrix') 
plt.show() 

The correct answer: 

 

Figure 28, Correlation matrix as the correct answer to desc 7 

All models generated a correct correlation matrix. The metrics on this example are all even. 

 

Desc 8 

Models\Metrics meteor rouge r rouge p rouge f bleu cossim AST levenshtein 

gradient 0,6338 0,68 0,85 0,7556 0,2898 0,9182 0 134 

llama 0,5647 0,3137 0,8 0,4507 0,1124 0,6112 0 389 

openhermes 0,5993 0,65 0,65 0,65 0,4432 0,9636 0 36 

mistral3 0,6436 0,6667 0,7 0,6829 0,4862 0,9407 0 81 

starcoder 0,61 0,7647 0,65 0,7027 0,4185 0,8075 0 58 

solar 0,6471 0,7 0,7 0,7 0,51 0,9206 0 74 

mistral2 0,6367 0,6087 0,7 0,6512 0,4448 0,9361 0 107 

zephyr 0,578 0,6667 0,7 0,6829 0,4068 0,9046 0 87 

User Query: Plot the distribution of 'K' with a KDE overlay. save it as a png. 

Here is the reference code: 

import seaborn as sns 
import matplotlib.pyplot as plt 



 

41 

 

 
df = pd.read_csv('/home/fkriskov/diplomski/datasets/lucas-soil-2018-
v2/lucas-soil-2018 copy.csv') 
 
sns.histplot(df['K'], kde=True) 
plt.title('Distribution of K') 
plt.savefig('plot.png') 

The correct answer: 

 

Figure 29, a graph showing the distribution of ‘K’ 

This is another example of models doing a good job. Some models generated different types of 

graphs, but all were created with the correct data: 

 

 

Desc 9 

Models\Metrics meteor rouge r rouge p rouge f bleu cossim AST levenshtein 

gradient 0,3355 0,6111 0,3333 0,4314 0,1549 0,828 0 351 

llama 0,3596 0,4483 0,3939 0,4194 0,2066 0,9349 0 270 

openhermes 0,4526 0,6957 0,4848 0,5714 0,2698 0,9501 0 222 

mistral3 0,4011 0,4815 0,3939 0,4333 0,229 0,9252 0 221 



 

42 

 

starcoder 0,5201 0,6538 0,5152 0,5763 0,3518 0,9269 0 198 

solar 0,4568 0,5161 0,4848 0,5 0,2912 0,8723 0 226 

mistral2 0,5109 0,7391 0,5152 0,6071 0,3358 0,8682 0 278 

zephyr 0,4649 0,6071 0,5152 0,5574 0,2477 0,9518 0 195 

User Query: Calculate the average 'K' for rows where 'EC' is greater than 10. 

Here is the reference code: 

import pandas as pd 
 
df = pd.read_csv('/home/fkriskov/diplomski/datasets/lucas-soil-2018-
v2/lucas-soil-2018 copy.csv') 
 
df_filtered = df[df['EC'] > 10] 
avg_K = df_filtered['K'].mean() 
 
print(avg_K) 

The correct answer: 251.37874575467976 

This is another example when all models got the correct result, what can be observed from the 

table. 

 

Desc 10 

Models\Metrics meteor rouge r rouge p rouge f bleu cossim AST levenshtein 

gradient 0,458 0,5714 0,4848 0,5246 0,2897 0,9524 0 246 

llama 0,3354 0,4483 0,3939 0,4194 0,095 0,936 0 251 

openhermes 0,4067 0,52 0,3939 0,4483 0,2442 0,9397 0 236 

mistral3 0,4689 0,5161 0,4848 0,5 0,2718 0,9599 0 231 

starcoder 0,5625 0,7143 0,6061 0,6557 0,3632 0,9775 0 151 

solar 0,48 0,5862 0,5152 0,5484 0,2954 0,8634 0 229 

mistral2 0,4127 0,3846 0,4545 0,4167 0,1565 0,8876 0 403 

zephyr 0,2294 0,1905 0,2424 0,2133 0,0528 0,7687 0 697 

User Query: Find the sum of 'K' for each unique value in the 'LC0_Desc' column. print 

the result. 

Here is the reference code: 

import pandas as pd 
 
df = pd.read_csv('/home/fkriskov/diplomski/datasets/lucas-soil-2018-
v2/lucas-soil-2018 copy.csv') 
result = df.groupby('LC0_Desc')['K'].sum() 
print(result) 

The correct answer: 

LC0_Desc 

Artificial land  14210.40 

Bareland             155188.10 

Cropland            1866712.70 



 

43 

 

Grassland            825297.50 

Shrubland            158150.75 

Water                   276.10 

Wetlands               8277.20 

Woodland             845113.80 

Name: K, dtype: float64 

In this example, three models managed to get perfect scores, while all the others were very 

similar. Among these descriptive statistics tasks, this one was among the simpler ones, so it’s 
no wonder all models did so well. These descriptive statistics tasks were generally quite simple 

and short, and while some models still hadn’t managed to get the correct results, these examples 
were only introductory, and the following queries will be a bit more challenging. 

 

Geo 1 

Models\Metrics meteor rouge r rouge p rouge f bleu cossim AST levenshtein 

gradient 0,2492 0,5 0,3421 0,4062 0,0844 0,9138 0 342 

llama 0,2245 0,3947 0,3947 0,3947 0,1352 0,9214 0 332 

openhermes 0,3695 0,5172 0,3947 0,4478 0,1857 0,9296 0 244 

mistral3 0,3538 0,4194 0,3421 0,3768 0,1853 0,8806 0 288 

starcoder 0,4919 0,4634 0,5 0,481 0,3446 0,939 0 314 

solar 0,492 0,5714 0,5263 0,5479 0,2895 0,9604 0 203 

mistral2 0,3193 0,3667 0,2895 0,3235 0,1781 0,8895 0 308 

zephyr 0,2599 0,4643 0,3421 0,3939 0,0938 0,9058 0 372 

User Query: Plot all the points that have pH_CaCl2 > 6. use geopandas. save the image as 

a png. 

Here is the reference code: 

import geopandas as gpd 
import matplotlib.pyplot as plt 
 
geo_df_path = '/home/fkriskov/diplomski/datasets/geo_dataframe.shp' 
geo_df = gpd.read_file(geo_df_path) 
 
europe_shapefile_path = 
'/home/fkriskov/diplomski/datasets/Europe_coastline_shapefile/Europe_coastl
ine.shp' 
europe_shapefile = gpd.read_file(europe_shapefile_path) 
 
filtered_geo_df = geo_df[geo_df['pH_CaCl2'] > 6] 
 
fig, ax = plt.subplots(figsize=(10, 10)) 
europe_shapefile.plot(ax=ax, color='lightgrey') 
filtered_geo_df.plot(ax=ax, marker='.', color='blue', markersize=5) 
 
plt.savefig('plot.png') 



 

44 

 

The correct answer: 

 

Figure 30, plot of all the points with pH > 6 

Surprisingly, this first geo-spatial task was successfully completed by all models. Even models, 

such as zephyr, which are very prone to hallucinations managed to generate a correct map. With 

these tasks, the result grading was slightly more lenient, because some models never managed 

to plot the Europe coastline shapefile, which resulted in a plot that contained only dots that 

resembled the shape of Europe. This will appear as a common theme among all geo-spatial 

examples: 



 

45 

 

 

Figure 31, llama geo 1 result 

 

Geo 2 

Models\Metrics meteor rouge r rouge p rouge f bleu cossim AST levenshtein 

gradient 0,4956 0,4889 0,5366 0,5116 0,2841 0,905 0 387 

llama 0,6155 0,6757 0,6098 0,641 0,4831 0,9355 0 324 

openhermes 0,3834 0,3462 0,439 0,3871 0,1886 0,8561 0 525 

mistral3 0,3659 0,3778 0,4146 0,3953 0,1758 0,78 0 644 

starcoder 0,6011 0,7059 0,5854 0,64 0,4163 0,9113 0 298 

solar 0,4064 0,4615 0,439 0,45 0,2086 0,8198 0 455 

mistral2 0,5438 0,3729 0,5366 0,44 0,2707 0,8383 0 449 

zephyr 0,4993 0,3443 0,5122 0,4118 0,2375 0,905 0 440 

User Query: Plot all the points with LC0_Desc=Woodland in Europe. Save the result as a 

png. Use geopandas. 

Here is the reference code: 

import geopandas as gpd 
import matplotlib.pyplot as plt 
 
geo_df_path = '/home/fkriskov/diplomski/datasets/geo_dataframe.shp' 
geo_df = gpd.read_file(geo_df_path) 
 
europe_shapefile_path = 
'/home/fkriskov/diplomski/datasets/Europe_coastline_shapefile/Europe_coastl
ine.shp' 
europe_shapefile = gpd.read_file(europe_shapefile_path) 



 

46 

 

 
woodland_geo_df = geo_df[geo_df['LC0_Desc'] == 'Woodland'] 
 
fig, ax = plt.subplots(figsize=(10, 10)) 
europe_shapefile.plot(ax=ax, color='lightgrey') 
woodland_geo_df.plot(ax=ax, marker='.', color='green', markersize=5) 
 
plt.savefig('plot.png') 

The correct answer: 

 

Figure 32, plot of all the points that are Woodlands 

Taking into consideration how well the models managed the previous example where they 

needed to plot points based on one parameter, here, where it was required to plot the points 

based on a different parameter, some models unexplainably struggled. In this following code, 

it can be seen how some models stubbornly ignored instructions about not joining the two 

GeoDataFrames, but rather only plotting them using subplots. These were the instructions given 

for these plotting tasks: 
"You are working with a GeoDataFrame that is located in 
'/home/fkriskov/diplomski/datasets/geo_dataframe.shp'." 
 
"Plot the Europe shapefile that is located in 
'/home/fkriskov/diplomski/datasets/Europe_coastline_shapefile/Europe_coastl
ine.shp'." 
 
"Don't merge these shapefiles just plot them." 
"set marker='.' and figsize (10,10)" 



 

47 

 

And here is what zephyr and mistral2 generated: 
woodland_points = geo_dataframe[geo_dataframe['LC0_Desc'] == 'Woodland'] 
 
# Merge Europe shapefile with the filtered points 
result = eu_shapefile.sjoin(woodland_points, op='intersects') 

Despite the clear, question specific instructions, as suggested by [1], some models don’t have 
enough capacity and power to respect the constraints. 

 

Geo 3 

Models\Metrics meteor rouge r rouge p rouge f bleu cossim AST levenshtein 

gradient 0,373 0,4444 0,4848 0,4638 0,2082 0,8221 0 247 

llama 0,3366 0,5862 0,5152 0,5484 0,1935 0,9048 0 202 

openhermes 0,6488 0,5789 0,6667 0,6197 0,4775 0,9108 0 243 

mistral3 0,3238 0,2712 0,4848 0,3478 0,1144 0,9085 0 406 

starcoder 1 1 1 1 1 1 1 0 

solar 0,5574 0,55 0,6667 0,6027 0,3211 0,91 0 267 

mistral2 0,4259 0,6667 0,5455 0,6 0,2224 0,9041 0 239 

zephyr 0,5226 0,3696 0,5152 0,4304 0,2477 0,8909 0 331 

User Query: Plot all the points with LC0_Desc=Woodland & pH<6 in Europe. Save the 

result as a png. Use geopandas. 

Here is the reference code: 
import geopandas as gpd 
import matplotlib.pyplot as plt 
 
geo_df_path = '/home/fkriskov/diplomski/datasets/geo_dataframe.shp' 
geo_df = gpd.read_file(geo_df_path) 
 
europe_shapefile_path = 
'/home/fkriskov/diplomski/datasets/Europe_coastline_shapefile/Europe_coastl
ine.shp' 
europe_shapefile = gpd.read_file(europe_shapefile_path) 
 
filtered_geo_df = geo_df[(geo_df['LC0_Desc'] == 'Woodland') & 
(geo_df['pH_CaCl2'] < 6)] 
 
fig, ax = plt.subplots(figsize=(10, 10)) 
europe_shapefile.plot(ax=ax, color='lightgrey') 
filtered_geo_df.plot(ax=ax, marker='.', color='green', markersize=5) 
 
plt.savefig('woodland ph6.png') 



 

48 

 

The correct answer: 

 

Figure 33, plot of all the points that have pH<6 and are Woodlands 

With a slight increase in complexity (by incrementing the number of parameters the data needs 

to be filtered on), the results had a noticeable drop in quality. Some models managed to draw 

the desired map perfectly (starcoder, solar, gradient and llama), some didn’t display the Europe 
borders (mistral2 and openhermes) and some couldn’t generate a working code at all (zephyr 
and mistral3) because of dataframe joining. The reason why these dataframes cannot be joined, 

then filtered and then plotted is simply because they don’t have any shared columns that can 
serve as keys for the join. Another thing that was tried during development on this example was 

to pass the names of columns of both dataframes to the llm so that the llm can figure out that 

the join isn’t possible on its own. In the end, that idea hasn’t worked. 
 

Geo 4 

Models\Metrics meteor rouge r rouge p rouge f bleu cossim AST levenshtein 

gradient 0,3387 0,5455 0,3429 0,4211 0,1867 0,8912 0 279 

llama 0,4589 0,6538 0,4857 0,5574 0,297 0,9355 0 218 

openhermes 0,3726 0,5 0,4286 0,4615 0,2146 0,8326 0 220 

mistral3 0,4121 0,6538 0,4857 0,5574 0,2383 0,9485 0 253 

starcoder 0,635 0,75 0,6857 0,7164 0,4651 0,9571 0 116 

solar 0,4403 0,4286 0,5143 0,4675 0,2685 0,8289 0 373 



 

49 

 

mistral2 0,4673 0,3878 0,5429 0,4524 0,2278 0,8185 0 478 

zephyr 0,3862 0,4375 0,4 0,4179 0,229 0,9031 0 333 

User Query: Perform KMeans clustering on the TH_LAT and TH_LONG data to identify 

3 clusters and plot them on a map. save it as a png. 

Here is the reference code: 
import pandas as pd 
import geopandas as gpd 
import matplotlib.pyplot as plt 
from sklearn.cluster import KMeans 
 
gdf = gpd.read_file('/home/fkriskov/diplomski/datasets/geo_dataframe.shp') 
 
kmeans = KMeans(n_clusters=3) 
gdf['cluster'] = kmeans.fit_predict(gdf[['TH_LAT', 'TH_LONG']]) 
 
plt.figure(figsize=(10, 10)) 
base = 
gpd.read_file('/home/fkriskov/diplomski/datasets/Europe_coastline_shapefile
/Europe_coastline.shp') 
base.plot(ax=plt.gca(), color='white', edgecolor='black') 
gdf.plot(ax=plt.gca(), marker='.', column='cluster', cmap='viridis', 
legend=True) 
 
plt.title('KMeans Clustering of GeoDataFrame') 
plt.savefig('clusters.png') 

The correct answer: 

 

Figure 34, three-point cluster of all points from the dataset 



 

50 

 

With this example begins a set of tasks that proved to be more challenging for most LLMs as 

this particular example was only succeeded by two models, starcoder and llama. As before, 

these two models generated a correct graph, but without the borders, while all other models 

failed to generate any working code. The other models either generated a blank map, or some 

code that display all the point in the same colour, or, most commonly, had some sort of errors 

in the code execution itself. 

 

Geo 5 

Models\Metrics meteor rouge r rouge p rouge f bleu cossim AST levenshtein 

gradient 0,5265 0,625 0,5682 0,5952 0,2373 0,9171 0 314 

llama 0,501 0,75 0,5455 0,6316 0,2707 0,9231 0 298 

openhermes 0,3088 0,35 0,3182 0,3333 0,2287 0,7423 0 528 

mistral3 0,4192 0,5526 0,4773 0,5122 0,2045 0,8107 0 403 

starcoder 0,4444 0,6 0,4773 0,5316 0,2864 0,9313 0 311 

solar 0,218 0,2979 0,3182 0,3077 0,0906 0,8226 0 490 

mistral2 0,413 0,6562 0,4773 0,5526 0,2396 0,9173 0 314 

zephyr 0,3502 0,3409 0,3409 0,3409 0,2399 0,7626 0 426 

User Query: Create a map with markers for all locations where 'K' is above its median 

value, in Europe. use geopandas. save the result as a png. 

Here is the reference code: 
import geopandas as gpd 
import pandas as pd 
import matplotlib.pyplot as plt 
 
geo_df = 
gpd.read_file('/home/fkriskov/diplomski/datasets/geo_dataframe.shp') 
europe_df = 
gpd.read_file('/home/fkriskov/diplomski/datasets/Europe_coastline_shapefile
/Europe_coastline.shp') 
 
median_k = geo_df['K'].median() 
locations = geo_df[geo_df['K'] > median_k] 
 
fig, ax = plt.subplots(figsize=(10, 10)) 
europe_df.plot(ax=ax, color='gray') 
locations.plot(ax=ax, marker='.', color='red') 
plt.savefig('plot.png') 



 

51 

 

The correct answer: 

 

Figure 35, plot of all the points with value ‘K’ above its median value 

Much like the previous example, the only successful models were starcoder, llama and 

openhermes. Other models failed to generate anything, even though they were close to the 

solution. Here is solar’s code as an example: 
import geopandas as gpd 
import pandas as pd 
import matplotlib.pyplot as plt 
from shapely.geometry import Point 
 
geo_dataframe = 
gpd.read_file('/home/fkriskov/diplomski/datasets/Europe_coastline_shapefile
/Europe_coastline.shp') 
 
europe_coastline = 
gpd.read_file('/home/fkriskov/diplomski/datasets/geo_dataframe.shp') 
 
median_k = pd.Series(geo_dataframe['K']).median() 
 
above_median_k = geo_dataframe['K'] > median_k 
 
marker_points = geo_dataframe.loc[above_median_k, 'POINTID'].apply(Point) 
 
fig, ax = plt.subplots(figsize=(10,10)) 
europe_coastline.plot(ax=ax, color='None', edgecolor='black') 
marker_points.plot(ax=ax, markersize=10, marker='.') 
 
plt.savefig('plot.png') 



 

52 

 

This code is very similar to the reference code, which gives high scores on some metrics like 

rouge and cosine similarity, but it has some obvious mistakes. For example, it loaded the files 

into wrong variables and while filtering the dataframe values above the median, didn’t return 
them. Also the line with the marker_points is completely unnecessary. These errors would be 

obvious to someone familiar with programming and graph plotting, but in this case, it’s not 
acceptable as the users this system is designed for, wouldn’t know what’s wrong, nor would 
they know how to fix it. This is what the result would be if these mistakes were fixed: 

 

Figure 36, geo 5 result for fixed solar code 

 

Geo 6 

Models\Metrics meteor rouge r rouge p rouge f bleu cossim AST levenshtein 

gradient 0,2725 0,5172 0,3191 0,3947 0,1207 0,8767 0 413 

llama 0,3203 0,4571 0,3404 0,3902 0,1461 0,8675 0 384 

openhermes 0,2842 0,4571 0,3404 0,3902 0,1054 0,8365 0 391 

mistral3 0,2794 0,4571 0,3404 0,3902 0,1211 0,8835 0 479 

starcoder 0,3289 0,5882 0,4255 0,4938 0,1628 0,9122 0 345 

solar 0,2601 0,35 0,2979 0,3218 0,1259 0,8546 0 494 

mistral2 0,299 0,4146 0,3617 0,3864 0,1463 0,8978 0 450 

zephyr 0,2704 0,28 0,2979 0,2887 0,1234 0,8312 0 624 

User Query: Generate a heatmap where each point is weighted by 'pH_CaCl2', in Europe. 

Don't merge these shapefiles just plot them. use geopandas. save the result as a png. 



 

53 

 

Here is the reference code: 
import pandas as pd 
import geopandas as gpd 
import matplotlib.pyplot as plt 
 
gdf = gpd.read_file('/home/fkriskov/diplomski/datasets/geo_dataframe.shp') 
 
europe_shapefile = 
gpd.read_file('/home/fkriskov/diplomski/datasets/Europe_coastline_shapefile
/Europe_coastline.shp') 
 
fig, ax = plt.subplots(figsize=(10, 10)) 
europe_shapefile.plot(ax=ax, color='white', edgecolor='black') 
 
gdf.plot(ax=ax, marker='.', column='pH_CaCl2', cmap='hot', legend=True, 
markersize=gdf['pH_CaCl2']) 
 
plt.title('Heatmap of pH_CaCl2 in Europe') 
plt.savefig('plot.png') 

The correct answer: 

 

Figure 37, heatmap of pH of all the points 

This example had the same low success rate despite being a simple request. The key parts here 

were plotting the Europe border, and then plotting the pH data. Some models tried to 

unnecessarily generate their own colour scheme which didn’t work, openhermes’ code was one 

line away from the correct solution, which explains his very high metric scores. Here, only 

starcoder and mistral3 generated a correct heatmap. 



 

54 

 

 

Geo 7 

Models\Metrics meteor rouge r rouge p rouge f bleu cossim AST levenshtein 

gradient 0,5169 0,5172 0,5556 0,5357 0,3038 0,8648 0 225 

llama 1 1 1 1 1 1 1 0 

openhermes 0,4886 0,2545 0,5185 0,3415 0,1617 0,9054 0 387 

mistral3 0,5647 0,625 0,5556 0,5882 0,3706 0,9327 0 223 

starcoder 0,4491 0,2222 0,5185 0,3111 0,1373 0,8925 0 568 

solar 0,3136 0,3636 0,4444 0,4 0,2255 0,813 0 313 

mistral2 0,4463 0,2381 0,5556 0,3333 0,1331 0,9017 0 458 

zephyr 0,491 0,3158 0,6667 0,4286 0,1117 0,7683 0 441 

User Query: Create a map with markers for points where 'K' is in the top 10 percentile, in 

Europe. Don't merge these shapefiles just plot them. use geopandas. save the result as a 

png. 

Here is the reference code: 
import pandas as pd 
import geopandas as gpd 
import matplotlib.pyplot as plt 
 
gdf = gpd.read_file('/home/fkriskov/diplomski/datasets/geo_dataframe.shp') 
 
top_10_percentile = gdf['K'].quantile(0.90) 
 
top_k_points = gdf[gdf['K'] > top_10_percentile] 
 
europe_shapefile = 
gpd.read_file('/home/fkriskov/diplomski/datasets/Europe_coastline_shapefile
/Europe_coastline.shp') 
 
fig, ax = plt.subplots(figsize=(10, 10)) 
europe_shapefile.plot(ax=ax, color='gray', edgecolor='black') 
 
top_k_points.plot(ax=ax, marker='.', color='red', markersize=5) 
 
plt.title('Top 10 Percentile of K Values in Europe') 
plt.savefig('plot.png') 



 

55 

 

The correct answer: 

 

Figure 38, plot of all the points where value ‘K’ is in the top 10 percentile 

Same as Geo 5 example, only llama and starcoder managed to generate the correct maps for 

this example. All these examples follow the same three step solution recipe; load the data, filter 

the data by the given parameters and then plot that data, but models still manage to solve some 

tasks and fail others. 

 

Geo 8 

Models\Metrics meteor rouge r rouge p rouge f bleu cossim AST levenshtein 

gradient 0,2725 0,5172 0,3191 0,3947 0,1207 0,8767 0 413 

llama 0,3203 0,4571 0,3404 0,3902 0,1461 0,8675 0 384 

openhermes 0,2842 0,4571 0,3404 0,3902 0,1054 0,8365 0 391 

mistral3 0,2794 0,4571 0,3404 0,3902 0,1211 0,8835 0 479 

starcoder 0,3289 0,5882 0,4255 0,4938 0,1628 0,9122 0 345 

solar 0,2601 0,35 0,2979 0,3218 0,1259 0,8546 0 494 

mistral2 0,299 0,4146 0,3617 0,3864 0,1463 0,8978 0 450 

zephyr 0,2704 0,28 0,2979 0,2887 0,1234 0,8312 0 624 

User Query: Plot clusters of points with 'pH_H2O'>5 and 'pH_H2O'<5 in Europe. 



 

56 

 

Here is the reference code: 

import geopandas as gpd 
import matplotlib.pyplot as plt 
 
gdf_points = 
gpd.read_file('/home/fkriskov/diplomski/datasets/geo_dataframe.shp') 
 
gdf_europe = 
gpd.read_file('/home/fkriskov/diplomski/datasets/Europe_coastline_shapefile
/Europe_coastline.shp') 
 
high_ph = gdf_points[gdf_points['pH_H2O'] > 5] 
low_ph = gdf_points[gdf_points['pH_H2O'] < 5] 
 
fig, ax = plt.subplots(figsize=(10, 10)) 
 
gdf_europe.plot(ax=ax, color='lightgrey', edgecolor='black') 
high_ph.plot(ax=ax, marker='.', color='blue', markersize=5, label='pH_H2O > 
5') 
low_ph.plot(ax=ax, marker='.', color='red', markersize=5, label='pH_H2O < 
5') 
 
plt.legend() 
plt.title('Clusters of Points with pH_H2O > 5 and pH_H2O < 5 in Europe') 
 
plt.savefig('ph_h2o_clusters.png', dpi=300, bbox_inches='tight') 

The correct answer: 

 

Figure 39, correct solution for Geo 8 



 

57 

 

This example required the models to plot the same parameter on two different criteria, with 

different colours. This is on par with the previous examples which require data filtering 

followed by data plotting. This task was successfully completed by Starcoder, Gradient and 

Llama, while other models either encountered an execution error or tried merging the 

dataframes which resulted in blank graphs. In this example, Llama’s solution was only partial: 

 

Figure 40, Llama solution for Geo 8 

 

Geo 9 

Models\Metrics meteor rouge r rouge p rouge f bleu cossim AST levenshtein 

gradient 0,5169 0,5172 0,5556 0,5357 0,3038 0,8648 0 225 

llama 1 1 1 1 1 1 1 0 

openhermes 0,4886 0,2545 0,5185 0,3415 0,1617 0,9054 0 387 

mistral3 0,5647 0,625 0,5556 0,5882 0,3706 0,9327 0 223 

starcoder 0,4491 0,2222 0,5185 0,3111 0,1373 0,8925 0 568 

solar 0,3136 0,3636 0,4444 0,4 0,2255 0,813 0 313 

mistral2 0,4463 0,2381 0,5556 0,3333 0,1331 0,9017 0 458 

zephyr 0,491 0,3158 0,6667 0,4286 0,1117 0,7683 0 441 

User Query: Create a map displaying the distribution of soil types ('LC0_Desc') across 

Europe. Each soil type should be represented by a different colour. Use geopandas and 

save the map as a png. 



 

58 

 

Here is the reference code: 

import geopandas as gpd 
import matplotlib.pyplot as plt 
 
df = gpd.read_file('/home/fkriskov/diplomski/datasets/geo_dataframe.shp') 
 
europe = 
gpd.read_file('/home/fkriskov/diplomski/datasets/Europe_coastline_shapefile
/Europe_coastline.shp') 
 
fig, ax = plt.subplots(figsize=(10,10)) 
europe.plot(ax=ax, color='lightblue', edgecolor='black') 
 
df.plot(ax=ax, column='LC0_Desc', categorical=True, markersize=5, 
marker='.', legend=True) 
 
plt.savefig('soil_types_map.png') 

The correct answer: 

 

Figure 41, correct solution for Geo 9 

Same as the previous example, the models that were successful are Starcoder, Gradient and 

Llama, while other models failed to generate anything. Here is how Gradient and Llama graphs 

looked like: 

 



 

59 

 

 

Figure 42, Gradient and Llama solutions for Geo 9 

 

Geo 10 

Models\Metrics meteor rouge r rouge p rouge f bleu cossim AST levenshtein 

gradient 0,5169 0,5172 0,5556 0,5357 0,3038 0,8648 0 225 

llama 1 1 1 1 1 1 1 0 

openhermes 0,4886 0,2545 0,5185 0,3415 0,1617 0,9054 0 387 

mistral3 0,5647 0,625 0,5556 0,5882 0,3706 0,9327 0 223 

starcoder 0,4491 0,2222 0,5185 0,3111 0,1373 0,8925 0 568 

solar 0,3136 0,3636 0,4444 0,4 0,2255 0,813 0 313 

mistral2 0,4463 0,2381 0,5556 0,3333 0,1331 0,9017 0 458 

zephyr 0,491 0,3158 0,6667 0,4286 0,1117 0,7683 0 441 

User Query: Plot all the LC0_Desc='Grassland' and LC0_Desc='Woodland' points where 

'OC'>20. Use geopandas and save the map as a png. 

Here is the reference code: 

import geopandas as gpd 
import matplotlib.pyplot as plt 
 
geo_dataframe = 
gpd.read_file('/home/fkriskov/diplomski/datasets/geo_dataframe.shp') 
europe_shapefile = 
gpd.read_file('/home/fkriskov/diplomski/datasets/Europe_coastline_shapefile
/Europe_coastline.shp') 
 
filtered_geo_dataframe = geo_dataframe[(geo_dataframe['LC0_Desc'] == 
'Grassland') | (geo_dataframe['LC0_Desc'] == 'Woodland')] 
filtered_geo_dataframe = 
filtered_geo_dataframe[filtered_geo_dataframe['OC'] > 20] 
 



 

60 

 

fig, ax = plt.subplots(figsize=(10, 10)) 
europe_shapefile.plot(ax=ax, color='gray') 
filtered_geo_dataframe.plot(ax=ax, marker='.', color='red') 
plt.savefig('plot.png') 

The correct answer: 

 

Figure 43, correct solution for Geo 10 

In this final geo-spatial example, along with Starcoder, Gradient and Llama, the correct result 

was also provided by Zephyr. All four models had very similar codes, and executed all the 

aspects of correctly, while the other models failed to generate anything. Here are some examples 

of other models’ solutions: 



 

61 

 

 

 

Figure 44, Zephyr, Llama and Gradient solutions for Geo 10 

Infer 1 

Models\Metrics meteor rouge r rouge p rouge f bleu cossim AST levenshtein 

gradient 0,4274 0,64 0,4706 0,5424 0,2177 0,8308 0 359 

llama 0,4907 0,5405 0,5882 0,5634 0,2587 0,8625 0 257 

openhermes 0,1187 0,25 0,2059 0,2258 0,0691 0,8293 0 279 

mistral3 0,4164 0,4286 0,4412 0,4348 0,2282 0,9102 0 260 

starcoder 1 1 1 1 1 1 1 0 

solar 0,4714 0,5714 0,5882 0,5797 0,3159 0,9491 0 324 

mistral2 0,1459 0,4074 0,3235 0,3607 0,0803 0,8505 0 288 

zephyr 0,4958 0,5135 0,5588 0,5352 0,3007 0,9239 0 238 



 

62 

 

User Query: Is there a significant relationship between land type (LC0_Desc) and 

pH_H2O? Use chi square from scipy. 

Here is the reference code: 

import pandas as pd 
from scipy.stats import chi2_contingency 
 
# Load the dataset 
df = pd.read_csv('/home/fkriskov/diplomski/datasets/lucas-soil-2018-
v2/lucas-soil-2018 copy.csv') 
 
# Create a contingency table for LC0_Desc and pH_H2O 
contingency_table = pd.crosstab(df['LC0_Desc'], df['pH_H2O']) 
 
# Perform the chi-square test 
chi2, p, _, _ = chi2_contingency(contingency_table) 
 
# Print the results 
print("Chi2:", chi2) 
print("P-value:", p) 

The correct answer: 13418.924895244883 

This was the first example of an inferential statistics question, which all but two models 

calculated correctly. The incorrect solutions were by Gradient and Mistral2: 

df['LC0_Desc'] = df['LC0_Desc'].astype('category') 
df['pH_H2O'] = df['pH_H2O'].astype(float) 
chi2, p, dof, expected = stats.chisquare(df['pH_H2O'], df['LC0_Desc']) 

 

chi2, pvalue, dof, expected = 
stats.chi2_contingency(pd.get_dummies(df['LC0_Desc']).values, 
pd.get_dummies(df['pH_H2O'] > 5).values) 

 

Infer 2 

Models\Metrics meteor rouge r rouge p rouge f bleu cossim AST levenshtein 

gradient 0,4079 0,5909 0,52 0,5532 0,2162 0,8547 0 163 

llama 0,7071 0,7826 0,72 0,75 0,4895 0,9646 0 83 

openhermes 0,5004 0,5 0,48 0,4898 0,3665 0,8982 0 142 

mistral3 0,735 0,7826 0,72 0,75 0,5912 0,9733 0 71 

starcoder 0,7417 0,6552 0,76 0,7037 0,5072 0,9742 0 66 

solar 0,5344 0,6522 0,6 0,625 0,4419 0,9576 0 119 

mistral2 0,3318 0,5 0,48 0,4898 0,2003 0,9207 0 161 

zephyr 0,5067 0,3824 0,52 0,4407 0,3147 0,8705 0 194 

User Query: Is there a significant difference between 'N' in Austria and France? Use 

ANOVA from scipy. 

Here is the reference code: 
import pandas as pd 
from scipy.stats import f_oneway 
 



 

63 

 

file_path = '/home/fkriskov/diplomski/datasets/lucas-soil-2018-v2/lucas-
soil-2018 copy.csv' 
df = pd.read_csv(file_path) 
 
austria_N = df[df['NUTS_0'] == 'AT']['N'] 
france_N = df[df['NUTS_0'] == 'FR']['N'] 
 
anova_result = f_oneway(austria_N.dropna(), france_N.dropna()) 
 
print("F-statistic:", anova_result.statistic) 
print("p-value:", anova_result.pvalue) 

The correct answer: F-statistic: 257.14892962811507, p-value: 1.0339087114935148e-55 

This was another successful task, except for gradient. Gradient tried to use statsmodels module 

which wasn’t installed, but even with the module available, it gives an execution error. 
import pandas as pd 
import statsmodels.api as sm 
 
df = pd.read_csv('/home/fkriskov/diplomski/datasets/lucas-soil-2018-
v2/lucas-soil-2018 copy.csv') 
 
grouped_df = df.groupby('NUTS_0')['pH_CaCl2'].mean() 
 
anova_results = sm.stats.anova_lm(grouped_df) 
 
print(anova_results) 

 

Infer 3 

Models\Metrics meteor rouge r rouge p rouge f bleu cossim AST levenshtein 

gradient 0,2354 0,4211 0,2759 0,3333 0,0798 0,7796 0 232 

llama 0,4361 0,4333 0,4483 0,4407 0,1914 0,85 0 186 

openhermes 0,4808 0,6087 0,4828 0,5385 0,1988 0,9329 0 157 

mistral3 0,4117 0,5652 0,4483 0,5 0,1479 0,8732 0 180 

starcoder 0,2754 0,3571 0,3448 0,3509 0,1015 0,7875 0 203 

solar 0,4741 0,4643 0,4483 0,4561 0,2458 0,9336 0 147 

mistral2 0,4042 0,3548 0,3793 0,3667 0,1441 0,8541 0 178 

zephyr 0,2191 0,1765 0,3103 0,225 0,0519 0,8343 0 352 

User Query: Which parameter has the strongest correlation with EC among {pH_CaCl2, 

pH_H2O, OC, CaCO3, P, N, K}? 

Here is the reference code: 
import pandas as pd 
 
file_path = '/home/fkriskov/diplomski/datasets/lucas-soil-2018-v2/lucas-
soil-2018 copy.csv' 
df = pd.read_csv(file_path) 
 
parameters = ['pH_CaCl2', 'pH_H2O', 'OC', 'CaCO3', 'P', 'N', 'K'] 
 
correlations = df[parameters + ['EC']].corr()['EC'].drop('EC') 
 



 

64 

 

strongest_correlation = correlations.idxmax() 
correlation_value = correlations.max() 
 
print("Parameter with the strongest correlation with EC:", 
strongest_correlation) 
print("Correlation value:", correlation_value) 

The correct answer: 

Parameter with the strongest correlation with EC: pH_CaCl2 

Correlation value: 0.217453954161236 

This example was correctly solved by only starcoder and gradient. The two main ways to solve 

this problem was to either generate a full correlation matrix, drop the ‘EC’ row, and find the 
argmax of the matrix with the ‘EC’ parameter, or, to directly calculate the correlations with the 

‘EC’: 
import pandas as pd 
 
df = pd.read_csv('/home/fkriskov/diplomski/datasets/lucas-soil-2018-
v2/lucas-soil-2018 copy.csv') 
parameters = ['pH_CaCl2', 'pH_H2O', 'OC', 'CaCO3', 'P', 'N', 'K'] 
correlations = df[parameters].corrwith(df['EC']) 
strongest_correlation = correlations.abs().idxmax() 
print(f"The parameter with the strongest correlation with EC is 
{strongest_correlation}.") 

Other models either didn’t exclude the correlation of ‘EC’ with itself, which resulted in the 
maximum correlation to be 1, or failed to generate the correct code, which resulted in the wrong 

parameter as the answer. 

 

Infer 4 

Models\Metrics meteor rouge r rouge p rouge f bleu cossim AST levenshtein 

gradient 0,5055 0,6333 0,4872 0,5507 0,2568 0,9456 0 194 

llama 0,3114 0,48 0,3077 0,375 0,1105 0,8772 0 270 

openhermes 0,3257 0,5417 0,3333 0,4127 0,1382 0,7851 0 279 

mistral3 0,2647 0,55 0,2821 0,3729 0,0798 0,7941 0 309 

starcoder 0,5628 0,6667 0,5641 0,6111 0,3937 0,9542 0 160 

solar 0,3376 0,3939 0,3333 0,3611 0,1917 0,836 0 255 

mistral2 0,3257 0,5 0,3333 0,4 0,1382 0,8205 0 250 

zephyr 0,398 0,3784 0,359 0,3684 0,2219 0,7825 0 252 

User Query: Perform a t-test to compare 'K' between Grassland and Cropland. 

Here is the reference code: 

import pandas as pd 
from scipy.stats import ttest_ind 
 
df = pd.read_csv('/home/fkriskov/diplomski/datasets/lucas-soil-2018-
v2/lucas-soil-2018 copy.csv') 
 
Grassland = df[df['LC0_Desc'] == 'Grassland']['K'] 
Cropland = df[df['LC0_Desc'] == 'Cropland']['K'] 



 

65 

 

 
t_statistic, p_value = ttest_ind(Grassland, Cropland) 
 
print(f"T-statistic: {t_statistic}, p-value: {p_value}") 

The correct answer: T-statistic: -9.99983103191002, p-value: 1.9061232022286383e-23 

All models managed to correctly calculate this t-test. Starcoder once again had the best solution.  

 

Infer 5 

Models\Metrics meteor rouge r rouge p rouge f bleu cossim AST levenshtein 

gradient 0,1437 0,3636 0,24 0,2892 0,118 0,5755 0 382 

llama 0,2167 0,5714 0,32 0,4103 0,1307 0,686 0 372 

openhermes 0,3306 0,5116 0,44 0,4731 0,2227 0,6526 0 308 

mistral3 0,3211 0,5641 0,44 0,4944 0,1777 0,6325 0 376 

starcoder 0,1139 0,3095 0,26 0,2826 0,1136 0,667 0 414 

solar 0,0599 0,35 0,14 0,2 0,0145 0,4255 0 460 

mistral2 0,2643 0,3962 0,42 0,4078 0,253 0,6603 0 426 

zephyr 0,2274 0,5667 0,34 0,425 0,1644 0,6353 0 340 

User Query: Plot a linear regression analysis to see the relationship between 'pH_H2O' 

and 'K'. 

Here is the reference code: 

import pandas as pd 
import seaborn as sns 
import matplotlib.pyplot as plt 
from sklearn.linear_model import LinearRegression 
import numpy as np 
 
df = pd.read_csv('/home/fkriskov/diplomski/datasets/lucas-soil-2018-
v2/lucas-soil-2018 copy.csv') 
 
X = df[['pH_H2O']].values 
y = df['K'].values 
 
model = LinearRegression() 
model.fit(X, y) 
 
print(f"Intercept: {model.intercept_}, Coefficient: {model.coef_[0]}") 
 
sns.scatterplot(x='sepal_width', y='petal_width', data=df) 
plt.plot(df['pH_H2O'], model.predict(X), color='red') 
plt.title('Linear Regression: pH_H2O vs K') 
plt.savefig('linreg.png') 



 

66 

 

The correct answer: 

 

Figure 45, Linear regression between pH_H2O and K 

With the geo-spatial examples, the goal was to check models’ map drawing capabilities by 
understanding geographical coordinates and data filtering. This example’s aim was to check the 
models’ capabilities in drawing scatter graphs with some meaningful information about the data 
shown. Linear regression is a very common, and very useful machine learning algorithm, that 

shows the relationship between two variables by fitting a linear equation to the observed data. 

Scatter plots with linear regression lines help in visualizing how well the model fits the data 

and in understanding the nature of the relationship between the variables, such as its strength 

and direction. This is useful for tasks like predicting outcomes, identifying trends, and making 

data-driven decisions. 

In this example, gradient, mistral3, solar and mistral2 were unsuccessful. 

 

Infer 6 

Models\Metrics meteor rouge r rouge p rouge f bleu cossim AST levenshtein 

gradient 0,477 0,4167 0,5556 0,4762 0,2045 0,8709 0 248 

llama 0,3419 0,3714 0,3611 0,3662 0,1724 0,7951 0 206 

openhermes 0,3323 0,375 0,4167 0,3947 0,2031 0,8366 0 238 

mistral3 0,2588 0,4375 0,3889 0,4118 0,1884 0,7675 0 237 

starcoder 0,3993 0,3824 0,3611 0,3714 0,1762 0,887 0 166 

solar 0,3748 0,4524 0,5278 0,4872 0,1575 0,8966 0 255 

mistral2 0,2575 0,3421 0,3611 0,3514 0,1508 0,8881 0 259 

zephyr 0,5202 0,3725 0,5278 0,4368 0,1784 0,8998 0 283 



 

67 

 

User Query: Construct a 95% confidence interval for the mean 'OC' content in the dataset. 

Here is the reference code: 

import pandas as pd 
import scipy.stats as stats 
import numpy as np 
 
df = pd.read_csv('/home/fkriskov/diplomski/datasets/lucas-soil-2018-
v2/lucas-soil-2018 copy.csv') 
 
mean_oc = df['OC'].mean() 
sem_oc = stats.sem(df['OC'], nan_policy='omit') 
 
confidence_interval = stats.t.interval(0.95, len(df['OC'].dropna()) - 1, 
loc=mean_oc, scale=sem_oc) 
 
print("95% Confidence Interval for mean 'OC':", confidence_interval) 

The correct answer: 95% Confidence Interval for mean 'OC': (46.356662130276014, 

48.67837263584283) 

Looking at the metrics table for this example, it could be concluded that the results are very 

similar across all models, which is only partially true since Starcoder, Gradient, Llama and 

Mistral3 managed to calculate the correct solutions, while the other models generated 

seemingly correct codes which didn’t calculate the interval correctly. Here is the code that 

Zephyr generated, that had the highest cosine similarity to the reference code, but was incorrect: 
import pandas as pd 
import numpy as np 
import scipy.stats as stats 
 
df = pd.read_csv('/home/fkriskov/diplomski/datasets/lucas-soil-2018-
v2/lucas-soil-2018 copy.csv') 
oc_values = df['OC'].values 
n, mean_oc, var_oc = np.size(oc_values), np.mean(oc_values), 
np.var(oc_values) 
std_error = np.sqrt(var_oc / n) 
confidence_level = 0.95 
t_value = stats.t.ppf(confidence_level / 2, n-1) 
lower_bound = mean_oc - t_value * std_error 
upper_bound = mean_oc + t_value * std_error 
print(f'95% confidence interval for mean "OC" content: [{lower_bound:.2f}, 
{upper_bound:.2f}]') 

Infer 7 

Models\Metrics meteor rouge r rouge p rouge f bleu cossim AST levenshtein 

gradient 0,4274 0,64 0,4706 0,5424 0,2177 0,8308 0 359 

llama 0,4907 0,5405 0,5882 0,5634 0,2587 0,8625 0 257 

openhermes 0,1187 0,25 0,2059 0,2258 0,0691 0,8293 0 279 

mistral3 0,4164 0,4286 0,4412 0,4348 0,2282 0,9102 0 260 

starcoder 1 1 1 1 1 1 1 0 

solar 0,4714 0,5714 0,5882 0,5797 0,3159 0,9491 0 324 

mistral2 0,1459 0,4074 0,3235 0,3607 0,0803 0,8505 0 288 

zephyr 0,4958 0,5135 0,5588 0,5352 0,3007 0,9239 0 238 



 

68 

 

User Query: Using the Central Limit Theorem, simulate the sampling distribution of the 

mean 'pH_H2O' for sample sizes of 30. Plot the distribution and compare it to the normal 

distribution. 

Here is the reference code: 

import pandas as pd 
import numpy as np 
import matplotlib.pyplot as plt 
import seaborn as sns 
 
# Load the dataset 
df = pd.read_csv('/home/fkriskov/diplomski/datasets/lucas-soil-2018-
v2/lucas-soil-2018 copy.csv') 
 
# Set the sample size 
sample_size = 30 
n_simulations = 1000 
 
# Simulate the sampling distribution of the mean 'pH_H2O' 
sample_means = [df['pH_H2O'].sample(sample_size, replace=True).mean() for _ 
in range(n_simulations)] 
 
# Plot the sampling distribution and compare to a normal distribution 
sns.histplot(sample_means, kde=True, stat='density', color='blue', 
label='Sample Means') 
sns.kdeplot(np.random.normal(np.mean(sample_means), np.std(sample_means), 
n_simulations), color='red', label='Normal Distribution') 
plt.xlabel('Mean pH_H2O') 
plt.ylabel('Density') 
plt.title('Sampling Distribution of the Mean pH_H2O') 
plt.legend() 
plt.savefig('plot.png') 
plt.show() 

The correct answer: 

 

Figure 46, sample distribution of the mean pH_H2O 



 

69 

 

This example required the models to generate a graph of pH_H2O samples versus a normal 

distribution. Among the correct models, the best one was Starcoder, but Mistral3 had the highest 

scores. Except Starcoder, other correct models generated generated partially correct solutions, 

either containing only parts of the reference solution or resembling the reference solution. Other 

graphs had neither of those things, so those didn’t count towards being correct: 

 

Figure 47, llama and mistral2 graphs for Infer 7 

 

Infer 8 

Models\Metrics meteor rouge r rouge p rouge f bleu cossim AST levenshtein 

gradient 0,4274 0,64 0,4706 0,5424 0,2177 0,8308 0 359 

llama 0,4907 0,5405 0,5882 0,5634 0,2587 0,8625 0 257 

openhermes 0,1187 0,25 0,2059 0,2258 0,0691 0,8293 0 279 

mistral3 0,4164 0,4286 0,4412 0,4348 0,2282 0,9102 0 260 

starcoder 1 1 1 1 1 1 1 0 

solar 0,4714 0,5714 0,5882 0,5797 0,3159 0,9491 0 324 

mistral2 0,1459 0,4074 0,3235 0,3607 0,0803 0,8505 0 288 

zephyr 0,4958 0,5135 0,5588 0,5352 0,3007 0,9239 0 238 

User Query: Calculate the z-scores for 'EC' and identify any outliers (z-score > 3 or < -3). 

Here is the reference code: 

import pandas as pd 
import scipy.stats as stats 
 
# Load the dataset 
df = pd.read_csv('/home/fkriskov/diplomski/datasets/lucas-soil-2018-
v2/lucas-soil-2018 copy.csv') 
 
# Calculate the z-scores for 'EC' 
df['EC_zscore'] = stats.zscore(df['EC'], nan_policy='omit') 
 
# Identify outliers (z-score > 3 or < -3) 
outliers = df[(df['EC_zscore'] > 3) | (df['EC_zscore'] < -3)] 
 
# Print the outliers 
print(outliers[['POINTID', 'EC', 'EC_zscore']]) 



 

70 

 

The correct answer: 

        POINTID      EC  EC_zscore 

58     47502772  145.60   4.977129 

175    46222728  123.50   4.112474 

256    47482734   96.50   3.056107 

284    47722698  172.60   6.033496 

388    45662730  129.30   4.339397 

...         ...     ...        ... 

18942  35403664  109.48   3.563945 

18958  31823598  119.76   3.966147 

18976  32583640   95.80   3.028720 

18978  32603672   98.51   3.134748 

18983  33023682  141.70   4.824543 

In this example, the correct solution was provided by all models except solar. However, most 

models needed a small adjustment, by adding the nan_policy='omit' line inside the z score 

calculations. As can be seen from the table, all models have a very high cosine similarity, while 

the lowest expectedly belongs to Solar, which is a high 90%.  

 

Infer 9 

Models\Metrics meteor rouge r rouge p rouge f bleu cossim AST levenshtein 

gradient 0,4274 0,64 0,4706 0,5424 0,2177 0,8308 0 359 

llama 0,4907 0,5405 0,5882 0,5634 0,2587 0,8625 0 257 

openhermes 0,1187 0,25 0,2059 0,2258 0,0691 0,8293 0 279 

mistral3 0,4164 0,4286 0,4412 0,4348 0,2282 0,9102 0 260 

starcoder 1 1 1 1 1 1 1 0 

solar 0,4714 0,5714 0,5882 0,5797 0,3159 0,9491 0 324 

mistral2 0,1459 0,4074 0,3235 0,3607 0,0803 0,8505 0 288 

zephyr 0,4958 0,5135 0,5588 0,5352 0,3007 0,9239 0 238 

User Query: Perform a hypothesis test to determine if the mean 'K' content in the entire 

dataset is significantly different from 2%. Use a t-test for the hypothesis test. 

Here is the reference code: 

import pandas as pd 
import scipy.stats as stats 
 
# Load the dataset 
df = pd.read_csv('/home/fkriskov/diplomski/datasets/lucas-soil-2018-
v2/lucas-soil-2018 copy.csv') 
 
# Perform a t-test to determine if the mean 'K' content is significantly 
different from 2% 
t_stat, p_value = stats.ttest_1samp(df['K'].dropna(), 2) 
 
# Print the results 
print("T-statistic:", t_stat) 
print("P-value:", p_value) 



 

71 

 

The correct answer: T-statistic: 134.4303152369844, P-value: 0.0 

This example was correctly solved by Starcoder, Mistral3, Solar and Openhermes, while other 

models either had execution error or filtered incorrect data for the t-test, meaning they returned 

an incorrect result. Here is Llama’s code that used the wrong t-test from scipy, which resulted 

in NaN values: 
import pandas as pd 
from scipy.stats import ttest_ind 
 
df = pd.read_csv('/home/fkriskov/diplomski/datasets/lucas-soil-2018-
v2/lucas-soil-2018 copy.csv') 
 
k_mean, _ = df['K'].mean(), df['K'].std() 
t_stat, p_val = ttest_ind(df['K'], [2], equal_var=False) 
 
print(t_stat, p_val) 

 

Infer 10 

Models\Metrics meteor rouge r rouge p rouge f bleu cossim AST levenshtein 

gradient 0,4274 0,64 0,4706 0,5424 0,2177 0,8308 0 359 

llama 0,4907 0,5405 0,5882 0,5634 0,2587 0,8625 0 257 

openhermes 0,1187 0,25 0,2059 0,2258 0,0691 0,8293 0 279 

mistral3 0,4164 0,4286 0,4412 0,4348 0,2282 0,9102 0 260 

starcoder 1 1 1 1 1 1 1 0 

solar 0,4714 0,5714 0,5882 0,5797 0,3159 0,9491 0 324 

mistral2 0,1459 0,4074 0,3235 0,3607 0,0803 0,8505 0 288 

zephyr 0,4958 0,5135 0,5588 0,5352 0,3007 0,9239 0 238 

User Query: Calculate the p-value for the correlation between 'P' and 'K'. Determine if 

the correlation is statistically significant. 

Here is the reference code: 

import pandas as pd 
import scipy.stats as stats 
 
df = pd.read_csv('/home/fkriskov/diplomski/datasets/lucas-soil-2018-
v2/lucas-soil-2018 copy.csv') 
 
correlation_coefficient, p_value = stats.pearsonr(df['P'], df['K']) 
 
print(p_value) 

The correct answer: 

Correlation coefficient: 0.2226117821588154 

P-value: 8.231555984710444e-212 

The final example the models were tested on, was correctly solved by all models except solar. 

Llama and Mistral3 models had the exact correct solution. Solar encountered a KeyError. The 

common problem with this example was that the models were asked to calculate the p-value, 

but often returned the correlation coefficient, which was correct, but not what was asked for. 



 

72 

 

 

4.4 Results conclusion 

To summarize, the models often provided solutions that were very close to the correct reference 

code, typically fixable by someone knowledgeable in programming. However, this paper's 

focus is on users unfamiliar with programming. Based solely on correct results, Starcoder 

emerges as the best model among the eight evaluated. As detailed in subsequent sections of this 

chapter, Starcoder not only solved all examples but also achieved the highest metric scores most 

frequently. In some instances, Starcoder even produced near-perfect solutions, while other 

models struggled to generate any viable solution. It's worth noting that achieving these results 

sometimes required multiple reruns of the models until a correct solution was obtained. This 

process can be time-consuming and problematic if there's no reliable way to verify the 

correctness of the generated results. Additionally, between these reruns, some models exhibited 

significant differences in the content they generated without any changes to settings (like 

temperature) or instructions. This variability adds a layer of complexity and uncertainty to the 

evaluation process. 

 

Figure 48, graph of total number of correct results 

This chart summarizes the results table from the beginning of section 4.3. Starcoder stands out 

as the most successful model, correctly solving all test examples. Notably, llama, openhermes, 

gradient and mistral3 also demonstrate impressive performance, especially considering that all 

four have half the number of parameters compared to Starcoder. This next graph shows the total 

number of correct results by example categories. As explained in section 4.1, example groups 

are divided into descriptive statistics (Desc), inferential statistics (Infer) and geo-spatial tasks 

(Geo). Looking at that graph, it can be concluded that all models are proficient in solving Desc 

tasks as those are the simplest to implement, as well as solvable in multiple ways. The worst 

was zephyr, which incorrectly solved only 2 examples. The Geo and Infer questions had a much 

lower solving success rate, as those examples required multi-step solution. For those examples, 

models usually hallucinated and were generating unnecessary lines of code, with little to no 

value for the final solution. Llama was especially successful, alongside Starcoder, with the geo-

30

21

26

20

17

21

16
15

0

5

10

15

20

25

30

35

starcoder gradient llama mistral3 solar openhermes zephyr mistral2



 

73 

 

spatial examples, while being on the lower end with the questions in inferential statistics. 

Another interesting observation from these graphs is the fact that openhermes proved to be 

better or equal in all categories than mistra3, a model it was based on. But, on the other hand, 

gradient was based on meta-llama, and was worse than llama on all examples. 

 

Figure 49, graph of total number of correct results by example category 

 

The following graph compares two metrics across different models for all examples: the number 

of times a model achieved the highest score in any metric ("Top model") and the number of 

times a model's score was within 5% of the highest score ("Over 95%"). For instance, if 

Starcoder had the highest cosine similarity score of 0.9313 for a specific example like Geo 7, it 

would be counted in the "Top model" category. Conversely, if models such as Gradient or 

Llama had scores of 0.9171 and 0.9231 respectively for the same metric and example, these 

would not count towards the "Top model" category but would be included in the "Over 95%" 

category since their scores are within 5% of the top score of 0.9313. 

starcoder gradient llama mistral3 solar openhermes zephyr mistral2

Desc 10 9 10 9 10 10 8 9

Geo 10 6 9 3 3 4 2 2

Infer 10 6 7 8 4 7 6 4

10

9

10

9

10 10

8

9

10

6

9

3 3

4

2 2

10

6

7

8

4

7

6

4

0

2

4

6

8

10

12

Desc Geo Infer



 

74 

 

 

Figure 50, Comparison between the count of Top Model and Over 95% of Top Model 

The percentages displayed on the red columns represent the increase in the number of 

instances where a model's score was within 5% of the top score ("Over 95%") compared to the 

instances where the model achieved the highest score ("Top Model"). This graph highlights the 

models that achieved the best performance most frequently, with Starcoder leading, followed 

by Llama, Mistral3, and Gradient. These results align with previous graphs showing correct 

results, except for OpenHermes, which, although rarely the top model, often had correct 

solutions. The graph emphasizes this scenario where a model rarely had the best overall metric 

but frequently had very good results. 

The most significant differences are seen in Mistral2 (+475.0%), Mistral3 (+103.6%), and 

OpenHermes (+123.8%), while Starcoder shows the smallest difference (+23.1%). This small 

difference for Starcoder is expected since it has the most top results. In contrast, models with 

high differences had good scores often but were frequently outperformed by the top models. 

Displaying results this way is crucial as it provides a clearer picture of how often models 

performed well in comparison to others. This indicates that the “Top Model” metric might not 
be the best indicator of a model's overall quality. Instead, considering the “Over 95%” category 
offers a more comprehensive comparison of model performance. 

The following three graphs represent the "Top Model" count grouped by three example 

categories. These comparisons provide insight into each model’s performance across different 
example groups, highlighting their strengths and weaknesses. 

From the graphs, the Gradient model excels in descriptive statistics, ranking in the top 3 

alongside Llama and Starcoder, but performs significantly worse in geo-spatial and inferential 

examples. The most consistent models are Starcoder, Llama, and Solar, maintaining a similar 

ratio of "Top Model" counts across all categories. In contrast, OpenHermes and Mistral3, like 

Gradient, perform well in statistical tasks but show a notable decline in geo-spatial examples. 

It is also impressive that the Mistral3 model had almost the same number of “Top Models” as 
Starcoder in inferential statistics, which was to be expected since Mistral3 solved eight out of 

ten Infer examples. 



 

75 

 

 

Figure 51, count of top performers in Desc examples 

 

 

Figure 52, count of top performers in Geo examples 

 

 

Figure 53, count of top performers in Infer examples 



 

76 

 

Another way to represent the performance and quality of the tested models is by analysing 

their metric scores. The following figures display graphs showing the median, highest, 

and lowest metric scores, as well as the average of the highest and lowest scores for each 

model, categorized by example type. The best and worst metric scores illustrate the range 

within which the models’ scores fall. By comparing the median and the average, we can 
gauge which models generally performed well and which did not. The difference between 

the median and the average, indicated by the numbers above the models' names, reveals 

how many scores were in the top quantile. A higher score suggests that more metric scores 

were among the best, indicating better overall performance. The metrics that were chosen 

for these comparisons are METEOR and cosine similarity, as these give the best 

representation of how good the solutions were. METEOR is considered particularly 

accurate since it takes into account both precision and recall of the reference code and the 

generated code. 

 

Figure 54, Difference in Median vs Average for METEOR with Desc examples 

As seen from this first graph, all models except openhermes and solar had their median values 

above the average value, or very close to it, and the best range of METEOR scores would belong 

to starcoder, llama, solar and openhermes. Despite having all correct solutions for all the 

descriptive statistics tasks, the low scores from openhermes and solar in this category is due to 

there being multiple correct solutions in this category. For example, mistral2 had mostly the 

same solutions as the reference code, but its highest metrics score is still low, but it has the 

second highest median to average distance of 0.09. The highest median to average distance 

belongs to Zephyr, this could signify that the minimum is an outlier. 



 

77 

 

 

Figure 55, Difference in Median vs Average for METEOR with Geo examples 

This second graph focuses on the same metric, specifically within the Geo category, revealing 

that the models generally produced lower scores compared to the previous category. The highest 

scores are notably modest, with Starcoder and Llama standing out as exceptions. However, the 

difference between the highest and lowest scores is smaller across models, indicating greater 

consistency in performance. Most models show medians that are lower than their averages, with 

higher differences among Solar, Mistral2 and Zephyr. Despite Solar achieving good scores 

overall, it correctly solved only three out of ten geo-spatial examples. This suggests that while 

Solar's code was generally accurate, it occasionally failed to generate the correct answer. As 

discussed in section 4.3, many generated codes exhibited issues that might not trouble a 

programmer but could present challenges for non-programmers, as these issues are not easily 

fixable without programming knowledge. It is also worth noting that even though Llama 

generated an exact code in one or two examples, its median is significantly lower than the 

average meaning that generally Llama performed poorly on geo-spatial examples. 

 

Figure 56, Difference in Median vs Average for METEOR with Infer examples 

Finally, this graph displays METEOR scores for inferential examples. Similar to geo-spatial 

tasks, all scores are generally lower compared to Starcoder, but most are around or above their 

respective averages, except for Llama, Openhermes and Mistral2.Mistral3, Llama and 

Openhermes achieved the most correct solutions, with eight and seven out of ten, following 

closely behind Starcoder, which achieved all ten correct solutions. Mistral3 and Gradient stand 



 

78 

 

out as the most consistent performers, maintaining scores close to their averages. However, 

Solar shows the largest gap between its median and average scores. 

The following three graphs depict model comparisons across categories using cosine similarity. 

Across all examples, cosine similarity tends to yield higher scores compared to other metrics, 

likely due to its simplicity. This is because even when two source codes differ in solving an 

example, they may share common sequences such as for loops, data loading, result printing, 

and plot initialization, which contribute to a high cosine similarity score. 

The highest and lowest values for all models are generally high, even in cases where the median 

is below the average, such as with Starcoder in the Geo category. Despite this, the medians 

themselves are quite high, indicating strong performance overall. Therefore, a lower median 

relative to the average does not necessarily indicate poorer performance in these instances. It is 

also interesting to note that all models achieved positive median-average distance on the Infer 

examples, even though not all models solved all inferential examples successfully. This just 

means that all generated solutions were really close to the correct answer, but incorrect, and 

probably with a small mistake, that a user couldn’t fix himself. 

 

Figure 57, Difference in Median vs Average for COSSIM with Desc examples 

 

Figure 58, Difference in Median vs Average for COSSIM with Geo examples 



 

79 

 

 

 

Figure 59, Difference in Median vs Average for COSSIM with Infer examples 

 

5. Discussion 

5.1 Theoretical implications 

The importance of this paper lies in the fact that the system initially knows nothing 

about the loaded csv file and is nevertheless able to extract valuable information that the user 

requests. This implies that the loaded file isn’t important, and that the system isn’t dependent 

on it, which signifies that any other file could be inputted in the system, and it would work the 

same way. This would mean that an assistant like this can help people answer questions about 

a text file, in a form of a pdf, write its summaries, answer specific questions, find citations, look 

for pictures that contain captions or hidden alternative texts. It could probably be helpful even 

with video files, or image files, helping with subtitles, or even visual editing. This scalability 

implies that the system could adapt to handle large datasets and more complex queries without 

changing its core processes, which makes it a robust tool with large number of practical 

applications. 

 

5.2 Practical implications 

A system like the one described in this paper could significantly improve the workflow 

of expert data analysts by streamlining many of the tedious tasks associated with data 

processing. The system’s ability to work with different file types without prior knowledge of 
the data could improve productivity and efficiency by allowing the user to only think about the 

information that is needed from the data, and not about the way the data can be extracted. This 

is especially beneficial when routine data processing tasks are needed to even start the 

information extraction and analysis. An example of this would be transferring one data file 

format into some other programme that specializes in data analysis. A system like this could 

take in the data and transform it and output it as a file that other applications could instantly use 

allowing the user to start analysing the data faster. Other workflow improvements would 

include the enhancement of data exploration, improved accuracy and versatility, and time and 

cost saving. 



 

80 

 

5.3 Conclusions 

This research paper discussed and presented how to implement a language assistant for 

statistical analysis using large language models. The goal was to implement a system that would 

help people who are familiar with statistics, but aren’t familiar with programming, to generate 
code, and execute it based on the user’s question regarding a preloaded csv file. Based on [1], 

an autonomous agent such as this one should achieve five distinct objectives: self-generating, 

self-organizing, self-verifying, self-executing, and self-growing. This papers’ assistant 
implemented self-generating and self-executing. This was achieved by testing different large 

language models capabilities as the brains of the system. Eight different models were tested and 

evaluated based on the correctness of their results as well as the quality of their results compared 

to a reference code. There were 30 different examples that the models were tested on, which 

were divided into three categories: descriptive statistics, inferential statistics and geo-spatial 

tasks. The most successful model was Starcoder (bigcode/starcoder2-15b-instruct-v0.1) from 

Hugging Face (https://huggingface.co/bigcode/starcoder2-15b-instruct-v0.1). A big part of this 

model’s success lies in the fact that Starcoder was the model with the highest number of 
parameters, somewhere around 15 billion, which is significantly larger than other models with 

half as much. This is one of this paper’s conclusions; bigger models produce better results. 
There are also some other aspects to this, but the number of parameters plays a huge role in the 

model’s performance. The reason why bigger models weren’t tested to further analyse this 
assumption is because of resource limitations. More parameters means bigger models, and 

bigger models require more virtual memory on a graphics card to properly function or function 

at all. Another conclusion is that the models are very susceptible to the way user queries and 

instructions are formed, and their output is heavily influenced by even a small change in the 

provided context. With that in mind, the models are very prone to hallucinations, some more 

than others. At times, models listen to every instruction and rule, and use all the available 

information to generate the most accurate results, while, on the other hand, they can as easily 

generate a solution with a syntax error, empty solution graph or a code that is against the 

provided instructions. This also means that, providing the same set of instructions is given and 

no changes are made to the initial parameters, the models generate very different results 

between two executions. Finally, the test examples show that the models are more efficient at 

solving simpler problems, rather than the ones that require step-by-step solutions. This was 

somewhat fixed with the implementation of a step generation process, that is followed by a 

separate code generation process. This, in theory, should partly solve the problem of complex 

queries and allow models to more accurately generate correct and quality results even for more 

difficult tasks. The reason this only partly solves the problem is because, even though the steps 

are generated, as mentioned above, the models won’t necessarily follow them. Another 
important observation, as seen in [1], is that it is more beneficial to give the language models a 

full context when translating steps into code, rather than giving them one step to implement at 

a time. This improves the coherence between steps, especially is the steps require an 

implementation of a function, a full context is needed so that the function arguments, and 

function’s return type is correctly defined. This should be the case for any upgrades to the 

system and any additional processes - providing the full context, generated steps and the 

generated code.  

 



 

81 

 

5.4 Limitations and future research 

One of the primary limitations encountered in this study was the hardware capacity, 

specifically the amount of VRAM available on the graphics cards. This significantly 

constrained the size of the models that could be utilized. Since the models were executed using 

CUDA, the VRAM capacity directly influenced the number of parameters that could be loaded 

simultaneously. Consequently, this restricted the selection of models, preventing some larger 

models, such as “meta-llama/Meta-Llama-3-70B-Instruct”, from being loaded into the VRAM 

due to their extensive parameter size. 

Another critical aspect influenced by these hardware restrictions was the ability to fine-tune the 

models. Fine-tuning could significantly improve the model's understanding of specific rules and 

instructions, leading to more accurate results. However, due to VRAM limitations, fine-tuning 

was not feasible for larger models. This often resulted in models disregarding some instructions 

or restrictions, opting for simpler but incorrect solutions. Similarly, building and training a 

model from scratch were also hindered by the hardware constraints. 

As discussed in 4.3, in the Geo 2 example, some models lacked the capacity to adhere to 

constraints and instructions, resulting in solutions that conflicted with the set restrictions. A 

potential improvement for future work could involve guiding the model's solution rather than 

imposing restrictions for the models to navigate around. This approach might yield better results 

by encouraging the models to inherently think of a certain solution without considering other 

possibilities, provided they receive appropriate guidance. 

Another thing that could be improved is the way the double check works. Currently, it receives 

the complete code and the complete instructions and tries to identify all instances where the 

code does not follow the instructions. Having the model check a rule at a time could prove to 

be better in terms of finding conflicts in the code, on the other hand, instead of checking the 

rules, checking lines of code one at a time could produce similar effects. This would probably 

function significantly better with the help of fine-tuning, which would require a dataset, that 

doesn’t necessarily have to be large. This dataset would have to contain a code, a set of rules, 

and identified lines that need to be changed for the code to work. Additionally, since rules don’t 
change a lot within the same group of questions, this could prove to be even more effective. 

An effective method that was seen both in this paper and in [1] is the implementation of a step 

generation process. The steps generation could be improved upon by implementing a clever 

agent or an LLM that specializes in solving problems in steps. If such model is fine-tuned or 

instructed to have in mind a problem solution that can be executed in code, that would 

significantly improve the steps generation process and would yield better results. Additionally, 

such agent could be trained or encouraged to use some pre-determined steps that the code 

generation model can easily implement. These pre-determined steps could be some simple 

operations that would include preparation of graph drawing, immediate base map drawing 

(Europe shapefile) or data filtering preparation. The code generation model would treat these 

operations like function calls, by either calling the pre-implemented function that provides the 

requested functionality or by being fine-tuned to implement such a functionality once requested 

to implement a specific pre-defined step. 



 

82 

 

With the mention of other models taking over certain steps in the system, another improvement 

that could be made is a model that would be in charge of coming up with instructions and rules 

for the step generation or code generation processes. This could help expand the assistant and 

enable it to process some other forms of input files and answer different types of questions that 

are specific to the type of file provided. 

 

6. References 

 

[1]  Li Z, Ning H. Autonomous GIS: the next-generation AI-powered 

GIS. International Journal of Digital Earth. 2023;16(2):4668-4686. doi: 

10.1080/17538947.2023.2278895 

[2]  R. Merritt, “What Is Retrieval-Augmented Generation, aka RAG?,” NVIDIA, 15 
November 2023. [Online]. Available: https://blogs.nvidia.com/blog/what-is-retrieval-

augmented-generation/. 

[3]  Zhao, P., Zhang, H., Yu, Q., Wang, Z., Geng, Y., Fu, F., ... & Cui, B. (2024). 

Retrieval-augmented generation for ai-generated content: A survey. arXiv preprint 

arXiv:2402.19473. https://doi.org/10.48550/arXiv.2402.19473 

[4]  Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., ... & Kiela, 

D. (2020). Retrieval-augmented generation for knowledge-intensive nlp 

tasks. Advances in Neural Information Processing Systems, 33, 9459-9474. 

https://doi.org/10.48550/arXiv.2005.11401 

[5]  A. A. Awan, “An Introduction to Pandas AI,” Datacamp, January 2023. [Online]. 

Available: https://www.datacamp.com/blog/an-introduction-to-pandas-ai. 

[6]  P. Krampah, “Chat With Your CSV File With PandasAI,” Medium, 26 September 

2023. [Online]. Available: https://medium.com/aimonks/chat-with-your-csv-file-with-

pandasai-22232a13c7b7. 

[7]  Sudarshan, “Introduction to PandasAI Part 1,” Medium, 23 March 2024. [Online]. 

Available: https://medium.com/@sudarshan.gamakaai/introduction-to-pandasai-part-

1-a7bc8721a3f3. 

[8]  S. Dey, “PandasAI: Simplifying Data Analysis through Generative AI,” Medium, 
10 March 2024. [Online]. Available: 

https://medium.com/@soumava.dey.aig/pandasai-simplifying-data-analysis-through-

generative-ai-980b73a410ff. 

[9]  Wang, L., Xu, W., Lan, Y., Hu, Z., Lan, Y., Lee, R. K. W., & Lim, E. P. (2023). 

Plan-and-solve prompting: Improving zero-shot chain-of-thought reasoning by large 

language models. arXiv preprint arXiv:2305.04091. 

https://doi.org/10.48550/arXiv.2305.04091  

[10]  LangChain, “Plan-and-Execute Agents,” LangChain, 13 February 2024. [Online]. 

Available: https://blog.langchain.dev/planning-agents/. 



 

83 

 

[11]  LangChain, “Plan and execute,” LangChain, 2024. [Online]. Available: 
https://js.langchain.com/v0.1/docs/modules/agents/agent_types/plan_and_execute/. 

[12]  LangChain, “langgraph examples llm-compiler,” Github, 2024. [Online]. 

Available: https://github.com/langchain-ai/langgraph/blob/main/examples/llm-

compiler/LLMCompiler.ipynb. 

[13]  LangChain, “langgraph examples plan-and-execute,” Github, 2024. [Online]. 

Available: https://github.com/langchain-ai/langgraph/blob/main/examples/plan-and-

execute/plan-and-execute.ipynb. 

[14]  LangChain, “langgraph examples rewoo,” Github, 2024. [Online]. Available: 

https://github.com/langchain-ai/langgraph/blob/main/examples/rewoo/rewoo.ipynb. 

[15]  Liu, Z., Qiao, A., Neiswanger, W., Wang, H., Tan, B., Tao, T., ... & Xing, E. P. 

(2023). Llm360: Towards fully transparent open-source llms. arXiv preprint 

arXiv:2312.06550. https://doi.org/10.48550/arXiv.2312.06550  

[16]  Acikgoz, E. C., İnce, O. B., Bench, R., Boz, A. A., Kesen, İ., Erdem, A., & Erdem, 
E. (2024). Hippocrates: An Open-Source Framework for Advancing Large Language 

Models in Healthcare. arXiv preprint arXiv:2404.16621.  

https://doi.org/10.48550/arXiv.2404.16621 

[17]  Labrak, Y., Bazoge, A., Morin, E., Gourraud, P. A., Rouvier, M., & Dufour, R. 

(2024). Biomistral: A collection of open-source pretrained large language models for 

medical domains. arXiv preprint arXiv:2402.10373.  

https://doi.org/10.48550/arXiv.2402.10373 

[18]  Chen, D., Huang, Y., Li, X., Li, Y., Liu, Y., Pan, H., ... & Han, K. (2024). Orion-

14b: Open-source multilingual large language models. arXiv preprint 

arXiv:2401.12246. https://doi.org/10.48550/arXiv.2401.12246 

[19]  Di, P., Li, J., Yu, H., Jiang, W., Cai, W., Cao, Y., ... & Zhu, X. (2024, April). 

Codefuse-13b: A pretrained multi-lingual code large language model. In Proceedings 

of the 46th International Conference on Software Engineering: Software Engineering 

in Practice (pp. 418-429). https://doi.org/10.1145/3639477.3639719  

[20]  Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya, E., Cai, T., Rutherford, E., 

... & Sifre, L. (2022). Training compute-optimal large language models. arXiv 

2022. arXiv preprint arXiv:2203.15556, 10. 

https://doi.org/10.48550/arXiv.2203.15556 

[21]  Zan, D., Chen, B., Zhang, F., Lu, D., Wu, B., Guan, B., ... & Lou, J. G. (2022). 

Large language models meet nl2code: A survey. arXiv preprint arXiv:2212.09420. 

https://doi.org/10.48550/arXiv.2212.09420 

[22]  Zhang, P., Zeng, G., Wang, T., & Lu, W. (2024). Tinyllama: An open-source small 

language model. arXiv preprint arXiv:2401.02385.  

https://doi.org/10.48550/arXiv.2401.02385 

[23]  Li, D., Shao, R., Xie, A., Sheng, Y., Zheng, L., Gonzalez, J., ... & Zhang, H. (2023). 

How Long Can Context Length of Open-Source LLMs truly Promise?. In NeurIPS 



 

84 

 

2023 Workshop on Instruction Tuning and Instruction Following.  

https://openreview.net/forum?id=LywifFNXV5 

[24]  Z. Keita, “Llama.cpp Tutorial: A Complete Guide to Efficient LLM Inference and 
Implementation,” Datacamp, November 2023. [Online]. Available: 
https://www.datacamp.com/tutorial/llama-cpp-tutorial. 

[25]  Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M. A., Lacroix, T., ... 

& Lample, G. (2023). Llama: Open and efficient foundation language models. arXiv 

preprint arXiv:2302.13971. https://doi.org/10.48550/arXiv.2302.13971  

[26]  Naveed, H., Khan, A. U., Qiu, S., Saqib, M., Anwar, S., Usman, M., ... & Mian, A. 

(2023). A comprehensive overview of large language models. arXiv preprint 

arXiv:2307.06435. https://doi.org/10.48550/arXiv.2307.06435 

[27]  Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D. S., Casas, D. 

D. L., ... & Sayed, W. E. (2023). Mistral 7B. arXiv preprint arXiv:2310.06825.  

https://doi.org/10.48550/arXiv.2310.06825 

[28]  Tunstall, L., Beeching, E., Lambert, N., Rajani, N., Rasul, K., Belkada, Y., ... & 

Wolf, T. (2023). Zephyr: Direct distillation of lm alignment. arXiv preprint 

arXiv:2310.16944. https://doi.org/10.48550/arXiv.2310.16944 

[29]  teknium, “huggingface.co/teknium/OpenHermes-2.5-Mistral-7B,” Huggingface, 
2023. [Online]. Available: https://huggingface.co/teknium/OpenHermes-2.5-Mistral-

7B. 

[30]  Kim, D., Park, C., Kim, S., Lee, W., Song, W., Kim, Y., ... & Kim, J. Solar 10.7 b: 

Scaling large language models with simple yet effective depth up-scaling. arXiv 

2023. arXiv preprint arXiv:2312.15166. https://doi.org/10.48550/arXiv.2312.15166 

[31]  gradientai, “huggingface.co/gradientai/Llama-3-8B-Instruct-Gradient-1048k,” 
Huggingface, 2024. [Online]. Available: https://huggingface.co/gradientai/Llama-3-

8B-Instruct-Gradient-1048k. 

[32]  Lozhkov, A., Li, R., Allal, L. B., Cassano, F., Lamy-Poirier, J., Tazi, N., ... & de 

Vries, H. (2024). Starcoder 2 and the stack v2: The next generation. arXiv preprint 

arXiv:2402.19173. https://doi.org/10.48550/arXiv.2402.19173 

[33]  J. L. Espejel, “Basic understanding of Abstract Syntax Tree (AST),” Medium, 2 
January 2023. [Online]. Available: https://medium.com/@jessica_lopez/basic-

understanding-of-abstract-syntax-tree-ast-d40ff911c3bf. 

 

 

  



 

85 

 

Implementation of a language assistant for 

statistical analysis using large language 

models 

 
 

Abstract 
 

This thesis investigates the need and process of creating a language assistant that provides answers to 

user queries related to CSV files. The implementation of the assistant relies on the use of available open 

source large language models adapted to the user's requirements. User queries are transformed from 

natural to programming language in order to make it possible to perform statistical calculations on the 

entered data and provide the user with answers in natural language. The language assistant's performance 

will be evaluated using appropriate metrics in order to assess its effectiveness and reliability in providing 

answers to the questions posed. 

 

Keywords – Natural Language Processing; chatbots; code generation; transformers; Statistical 

Analysis; Spatial Analysis 

Paper Type – Research paper 

  



 

86 

 

Implementacija jezičnog asistenta za statističke 
analize korištenjem velikih jezičnih modela 

 
 

Sažetak 
 

Ovaj diplomski rad istražuje potrebu i proces izrade jezičnog asistenta koji pruža odgovore na upite 
korisnika vezane uz CSV datoteke. Implementacija asistenta se oslanja na korištenje dostupnih velikih 
jezičnih modela otvorenog koda, prilagođenih zahtjevima korisnika. Korisnički upiti se transformiraju 
iz prirodnog u programski jezik kako bi se omogućilo izvođenje statističkih izračuna nad unesenim 
podacima te korisniku pružili odgovori u prirodnom jeziku. Odgovarajućim metrikama provest će se 
evaluacija performansi jezičnog asistenta kako bi se procijenila njegova učinkovitost i pouzdanost u 
pružanju odgovora na postavljena pitanja. 

 

Ključne riječi – Obrada Prirodnog Jezika; chatbotovi; generiranje koda; transformeri; Statistička 
analiza; Prostorna analiza 

Vrsta rada – istraživački rad 

 


