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1 Introduction

Large Language Models (LLMs) have revolutionized the landscape of natural language

processing (NLP). Benefitting from the unprecedented scales of model size and train-

ing data, many LLMs have emerged, both open-soruce, like LLaMa [1] and Mistral [2]

and closed-source, like ChatGPT [3] and PaLM [4]. Unlike traditional machine learn-

ing systems, which are usually trained for a specific task and then exclusively applied to

that task, LLMs demonstrate proficiency across a plethora of tasks, both traditional NLP

challenges and novel, unanticipated tasks, despite not being explicitly trained for them.

Question Answering (QA) stands as one of the fundamental tasks in NLP, aiming to

construct systems capable of autonomously responding to human inquiries in natural

language. Historically, QA systems predominantly relied on extractive methodologies,

where a question and corresponding context is provided, and a span of text extracted from

the context is the anticipated answer. However, with the advent of LLMs, the QA tasks

have broadened to include closed-book QA, multi-hop reasoning QA, conversational QA

andmore. Furthermore, tasks that evaluate other elements of LLMs, such as truthfulness

or bias are often also framed as QA tasks.

LLMs have also revolutionized the area of machine learning by introducing new

learning paradigms, namely in-context learning. In-context learning refers to the ca-

pabilities of LLMs to learn from examples provided during inference, without changing

any of the model weights. On the other hand, traditional machine learning methods are

still used in improving LLM performance on downstream tasks, such as fine-tuning. Re-

cent studies [5], [6], [7] have shown the efficacy of fine-tuning with a small set of high

quality data, a process termed instruction tuning.

One persistent problem in LLM development is the lack of coverage for languages

3



other than English. This includes both pretraining data, which is usually mostly English

and a lack of evaluation of model performance on non-English tasks. Some efforts have

beenmade [8] [9] to transfer the capabilities of LLMs to other languages, but the domain

is still left largely unexplored.

The aim of this thesis is to investigate the state-of-the-art of question answering in

the age of large language models, specifically in the context of QA systems based on a

language other than English, namely German. Both mentioned approaches, in-context

learning and fine-tuning are explored as possibilities for adapting the base model of

Llama-2 to German.
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2 Background and Preliminaries

This chapter introduces the concepts and techniques required for understanding the do-

main of question-answering systems using large languagemodels. First, an outline of the

question-answering task is given, followed by an introduction to large language models

and techniques used to improve them, namely in-context learning and fine-tuning. Then

the topic of LLM evaluation is presented followed by an overview of models and datasets

used in the thesis.

2.1 Question Answering

Question answering (QA) is a fundamental task in the field of Natural Language Pro-

cessing (NLP), where the goal is to build systems that can automatically answer ques-

tions posed by humans in natural language. It has a direct application in systems such

as search engines, virtual assistants and information retrieval systems. However, it can

also be used as a benchmark for measuringmachine language understanding for models

that will later be used for different downstream tasks.

Oneway to categorizeQA tasks is according to theway themodel formulates answers:

1. Extractive QA - The model answers the question by extracting relevant parts of

the context.

2. Generative QA - The model generates free text as an answer.

It is worth mentioning that, as generative QA is a relatively recent QA subtask in the

field of NLP, historically, most QA benchmarks were developed with extractive question

answering in mind. This means that to compare both extractive and generative models

on the same benchmark it is often necessary to constrain generative models to answer
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only with context extractions. This results in the generative model being evaluated on

both the task of instruction-following and question-answering at the same time which

can confound the results. One possible way of dealing with this is presented in chapter

2.5.

Another way of QA task categorization is according to the availability of context for

the given question:

1. Open-bookQA - Context is provided to themodel and themodel uses is to answer

the given question.

2. Closed-book QA - No context is provided, the model must answer the question

using knowledge it already has.

3. Retrieval Augmented Generation (RAG) - Similarly to open-book QA, RAG

systems use context to answer a question. However, they have the ability to work

with much larger context sizes, such as a whole database of context. They first

retrieve a set of relevant documents from the given source (eg. often a vector

database) and use the retrieved documents to answer the question.

Asmentioned, extractiveQA tasks aremore suited formodel architectures other than

decoder-only based LLMs, which are the main focus of this thesis. On the other hand,

RAG systems typically utilize larger model architectures beyond the scope of this thesis.

Therefore, further focus will be on the investigation of generative open-book and closed-

book QA tasks.

2.2 Large Language Models

Language models (LMs) are probabilistic models of natural language. They are used for

determining the probability of the next word in a sequence and the probability of the

whole sequence. This is formalized in equation 2.1.

𝑃(𝑤1, 𝑤2, ..., 𝑤𝑛−1, 𝑤𝑛) = 𝑃(𝑤𝑛
1 ) (2.1)

The most rudimentary language models, word n-gram language models are purely
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statistical models of language. They are based on the assumption that the probability of

the next word in a sequence depends only on a fixed size (n) window of previous words.

This is formalized in equation 2.2. The model relies on the frequency of word sequences

in large corpora.

𝑃(𝑤𝑛
1 ) =

𝑛∏
𝑘=1

𝑃(𝑤𝑘|𝑤𝑘−1
𝑘−𝑁+1

) (2.2)

With the advent of neural networks, the landscape of language models shifted dra-

matically. Implementing a simple feed-forward neural network as a languagemodel was

first presented in [10], while later advancements include the use of RecurrentNeuralNet-

works (RNNs)with Long Short-termMemory (LSTM) [11] and theGated Recurrent Unit

(GRU) [12].

The next significant milestone was the introduction of the transformer architecture,

presented in [13]. The transformer marked the advancement of LanguageModels (LMs)

to Large Language Models (LLMs). Since the transformer is the backbone of the main

model that is used in this thesis, a more through look into its architecture is presented

in 2.2.1.

2.2.1 The Transformer

Transformers, introduced in [13], have revolutionized the field of natural language pro-

cessing with their unique architecture. The core idea behind transformers is the use of

self-attention mechanisms that directly compute the relationship between all words in

a sentence, regardless of their positions. This step enabled parallel instead of sequential

processing of the input sequence which was a huge speed-up compared to RNNs. This

speed-up inmodel architecture, aided by improved hardware and the availability and use

of huge volumes of data facilitated the move from Language Models to Large Language

Models.

The Architecture

The architecture proposed in the original paper is visualized infigure 2.1 and is composed

of the following parts:
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Figure 2.1: The Transformer - model architecture. Image source: [13]

Encoder: The encoder is a stack of 6 identical layers. Each layer consists of a multi-

head self-attentionmechanismandof a simple, position-wise fully connected feed-forward

network. A residual connection is employed around the two sub-layers followed by layer

normalization.

Decoder: The decoder again consists of 6 identical layers stacked on top of each

other. It again employs the same sub-layers as the encoder, but with an addition of

a third sub-layer which performs multi-head attention over the output of the encoder

stack. Residual connections are also employed around each sub-layer followed by layer

normalization. The self-attention sub-layer is modified so that it doesn’t attend to sub-

sequent positions.

Attention: An attention function can be described as mapping a query and a set of

key-value pairs to an output, where the query, keys, values, and output are all vectors.

The output is computed as a weighted sum of the values, where the weight assigned to

each value is computed by a compatibility function of the query with the corresponding

key [13]. The formal definition is given in equation 2.3. In practice, the transformer

doesn’t use only one attention function, but instead the queries, keys and values are lin-

early projected ℎ times with learned linear projections. This mechanism is called multi-

head attention and it allows the model to jointly attend to information from different
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representation subspaces at different positions.

Attention(𝑄,𝐾,𝑉) = softmax (𝑄𝐾𝑇√
𝑑𝑘
)𝑉 (2.3)

Positional Encoding: Since the attention mechanism doesn’t take into account se-

quence order, the information about the token position is injected by using "positional

encodings". Theyhave the samedimension as the embeddings so that they can be summed.

The original paper uses sine and cosine functions of different frequencies to encodeword

positions.

Architecture Variations

The original transformermodel consists of an encoder to process the input and a decoder

to generate the output, whichwas the case formost neural sequence transductionmodels

at the time. Later augmentations of this architecture include using only the encoder or

decoder part to process input and generate an output.

Encoder-Only Transformers: Encoder-only transformers, such as BERT (Bidirec-

tional Encoder Representations from Transformers) [14] and RoBERTa (A Robustly Op-

timized BERT Pretraining Approach) [15], are designed to process input data and gen-

erate a meaningful representation of it. These models are usually used for tasks that

require understanding of input text, such as sentence classification, named entity recog-

nition, and semantic similarity assessment. They work by reading the entire input all

at once and are optimized to encode the context around each word, leading to a deep

bidirectional context understanding.

Decoder-Only Transformers: Decoder-only transformers, like GPT (Generative

Pretrained Transformer) [16] and its successors, are predominantly used for generative

tasks where the goal is to produce new text based on the given input. These models are

auto-regressive, meaning they generate an output one part at a time and use their own

predictions as part of the input for subsequent steps. This design is ideal for tasks like

language generation, story completion, and any scenariowhere the flowof text continues

from an initial prompt.
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Encoder-Decoder Transformers: The original transformer model and those like

T5 (Text-to-Text Transfer Transformer) [17] employ both an encoder and a decoder. These

types of transformers are versatile, being suitable for a wide range of tasks that involve

both understanding the input and generating an output based on that understanding.

They are particularly powerful in tasks like machine translation, where the encoder pro-

cesses the source language and the decoder generates the target language, or in sum-

marization tasks where the encoder comprehends the full document and the decoder

produces a concise summary.

The task of question-answering is currently best solved by using decoder-only trans-

former architectures, so they are the focus of this thesis.

2.2.2 Large Language Model Training

There are three main stages used in LLM training of state-of-the-art decoder-only LLMs:

1. Pretraining: LLM pretraining is done using self-supervised learning, where the

model is trained on next token prediction of vast amounts of text data. Given a large

corpus𝒟 the training objective is to minimize the following loss:

ℒpretrain =
∑
𝑥∈𝐷

∑
𝑖

log𝑝𝜃(𝑥𝑖|𝑥1,… , 𝑥𝑖−1), (2.4)

2. Supervised fine-tuning: Supervised fine-tuning is the process of aligning an

LLM to downstream tasks. Instruction tuning is a widely used version of fine-tuning

which attempts to bridge the gap between the next token prediction task and user in-

structions. It is described in more detail in section 2.3.

3. Reinforcement learning from human feedback: RLHF is a model training

procedure that is applied to a fine-tuned languagemodel to further alignmodel behavior

with human preferences and instruction following.
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2.3 Supervised Fine-Tuning

Supervised fine-tuning consists of training a model on input-output pairs for a partic-

ular task. This task is again framed as next token prediction, but this time, instead of

unlabeled text, the data is formatted as (INPUT, OUTPUT) pairs. The most common

example of this is instruction tuning, introduced in [18], which aims to enhance zero-

shot learning abilities of LLMs through fine-tuning on a collection of tasks described via

instructions. This process can also be described as aligning LLM behaviour to human

intent.

Formally, given an instruction dataset𝒟′ = (𝐼, 𝑌), where 𝐼 represents a task instruc-

tion and 𝑌 the desired response, the training objective is to minimize the following loss:

ℒins = − log𝑝𝜃(𝑌|𝐼) (2.5)

2.3.1 Parameter Efficient Fine-tuning

At inference time, all of the LLM’s weights need to be loaded onto the GPU. This already

poses a problem, as LLMs are, as their name suggests, large. For fine-tuning however,

the memory requirements are roughly doubled, as both the model parameters and their

respective gradients need to be stored at the same time. These requirements are often

prohibitively costly. Therefore, great efforts are being made to make fine-tuning LLMs

less resource intensive.

Parameter-Efficient Fine-Tuning (PEFT) methods enable efficient adaptation of pre-

trained language models to various downstream applications without fine-tuning all the

model’s parameters. This decreases the computational and storage costs. State-of-the-art

PEFT techniques achieve performance comparable to that of full fine-tuning.

Some of the popular methods include:

Prefix-Tuning: Introduced in [19], prefix tuning is a PEFTmethod which freezes all

LLM parameters and instead optimizes a sequence of continuous tasks-specific vectors

which are added as a prefix to the normal task prompt. While this saves a lot of resources,

the method is difficult to optimize and effectively shortens the usable input sequence
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length.

Adapters: Introduced in [20], adapters are small layers added to every Transformer

block. These layers are then trained, while the rest of the parameters stay the same. The

problem arises, because even though the adapters themselves are very small, they can’t

be parallelized on hardware and therefore introduce a noticeable latency.

Low-rank Adaptation: Introduced in [21], Low-Rank Adaptation (LoRA) freezes

the model weights and injects trainable rank decomposition matrices into each layer of

the Transformer architecture. Since this is the method used in this thesis, it is described

in more detail in section 2.3.1.

Low-Rank Adaptation

Low-Rank Adaptation (LoRA) [21] is currently one of the most widespread PEFT meth-

ods.

Figure 2.2: Reparametrization used in LoRA. Image source: [21]

Instead of modifying all model weights, LoRA freeezes the original model weights

and adds a separate set of weights. These weights, after fine-tuning, represent the differ-

ence that needs to be added to the originalmodel weights to improvemodel performance

on the fine-tuning task. This separate set of weights uses low-rank decomposition by rep-

resenting the original matrix with two matrices 𝐴 and 𝐵, which are both smaller than

the original weight matrix. If the original matrix is of size 𝑑𝑥𝑘, matrix 𝐵 is of size 𝑑𝑥𝑟

and matrix 𝐴 is of size 𝑟𝑥𝑘. The actual intrinsic rank of the weight matrix is unknown,
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so 𝑟 is a hyperparameter. The matrix 𝐴 is initialized from a normal distribution and 𝐵

with zero and backpropagation is used to determine the final values. The figure 2.2 visu-

alizes the described decomposition. The new forward pass is formally written down in

equation 2.6.

ℎ =𝑊0𝑥 + ∆𝑊𝑥 =𝑊0𝑥 + 𝐵𝐴𝑥 (2.6)

One of the great advantages of LoRA is that there is no additional latency at infer-

ence time, as the LoRA adapter can be merged into the original model so the number of

parameters stays the same. This is an improvement over the already mentioned other

adapter methods.

It is worth mentioning that the requirements for fine-tuning LLMs can be brought

down even more by using model quantization. Model quantization is a technique to re-

duce computational and memory costs by representing the weights and activations with

low-precision data types like 8-bit integers instead of the usual 32-bit floating points.

QLoRA is a version of LoRA that allows for efficient finetuning of quantized LLMs, pre-

sented in [22]. However, since the available hardware resources were sufficient for un-

quantized fine-tuning, QLoRA was not used in this thesis.

2.4 In-context Learning

In-context learning (ICL) is a new paradigm inmachine learning that refers to the ability

of models to learn andmake predictions based on the context provided during inference,

rather than solely relying on pre-training. This is a significant departure from traditional

machine learningwheremodels could only solve problems theywere specifically trained

on.

The concept of in-context learning was first defined in [23]: In-context learning is a

paradigm that allows language models to learn tasks given only a few examples in the form

of demonstration. This behaviour was demonstrated on GPT-3 where it achieved strong

performance on many classic NLP tasks, such as translation and question-answering,

as well as some tasks that require on-the-fly reasoning such as unscrambling words or
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using a novel word in a sentence.

The figure 2.3 presents the process of in-context learning. A small number of labeled

data is modified using a template and turned into demonstration examples. These exam-

ples are then prepended to the unlabeled sample that we want the model to label. This

prompt is then input into themodel which processes it without changing any parameters

and generates an answer.

Figure 2.3: Visualization of in-context learning. Image source: [24]

2.4.1 Related Concepts

Prompt learning: According to [24] in-context learning can be regarded as a subclass

of prompt learning. Prompt learning, as defined in [25] is taking the original input 𝑥 and

modifying it using a template into a string prompt 𝑥′. This prompt is fed into a language

model which probabilistically fills in missing information in the prompt and outputs a

final string 𝑥̂. From this string the output 𝑦 is derived (usually by some postprocessing

technique). This is different from traditional machine learning where the input 𝑥 is used

to predict the output 𝑦 as 𝑃(𝑦|𝑥).
Examples of prompt learning include Chain-of-Thought (CoT) prompting [26] and

Zero-Shot Chain-of-Thought (CoT) prompting [5]. Both approaches find that prompting

LLMs to think step by step improves their complex reasoning abilities. In [26] the authors

prompt the model by first providing examples of questions which are answered with the

CoT process and then posing the actual question. In [5] the authors achieve similar

results by leveraging a simple prompt augmentation: they append the words "Let’s think

step by step." to the first line of the answer.
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Fewshot learning: Another related concept to in-context learning is that of fewshot

learning. Fewshot learning is a machine learning paradigm where a model is trained to

make accurate predictions with only a small number of examples per class. This dif-

fers from in-context learning, as in-context learning is performed directly on pretrained

LLMs and doesn’t require parameter updates.

2.5 Evaluation

Evaluating Large Language Models (LLMs) presents a complex challenge. Unlike tradi-

tional machine learning approaches, where amodel is trained and tested on tasks within

similar data distributions, LLMs deviate from this norm. These models are typically

trained on a vast corpus of data through tasks like next token prediction, and are then

expected to excel in diverse tasks that may involve significantly different data distribu-

tions. This divergence makes it challenging to encapsulate an LLM’s proficiency across

varied tasks within a single, or even a limited set of performance metrics. Moreover,

the generative aspect of LLMs complicates quantitative assessment. Traditional evalua-

tion metrics, such as F1, BLEU [27] or ROUGE [28], which measure string overlap, are

somewhat effective in conventional settings where the output is a direct extraction from

provided context. However, in the context of generative models, the spectrum of valid

outputs expands dramatically, rendering these metrics less effective. Additionally, the

quality of an LLM’s output is not solely determined by quantitative content accuracy but

also by the qualitative format and coherence of the generated text, adding another layer

of complexity to the evaluation process.

Among the challenges connected to the format and coherence of the generated re-

sponse, we can identify several key problems that frequently arise in the generation of

LLM responses:

1. Hallucination - Generating responses which are linguistically sound but are fac-

tually incorrect, misleading or entirely fictional.

2. Incorrect output formatting - Generating responses in an unexpected format.

This can greatly lower the usability of LLMs in downstream tasks.

3. Wrong tone - Generating responses in a tone that is not appropriate for the desired
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use case.

4. Overly toxic or overly cautious responses - Generating responses which are

inappropriate or refusing the generate a response for fear of being inappropriate.

5. Repetitiveness - Generating responses that repeatwords or phrases, or that rephrase

the same piece of information many times without saying anything new.

In assessing the performance of LLMs, several approaches can be employed, each

with its own set of advantages and limitations. Specifically, the following methodologies

are commonly utilized in the field:

1. Human evaluation: This involves the assessment of LLM outputs by human

evaluators, who can provide nuanced judgments on the quality and relevance of

responses. Although this approach is often considered the gold standard for its ac-

curacy in capturing human-like understanding, it is typically expensive and chal-

lenging to scale, making it less feasible for large datasets or continuous evaluation.

2. LLM based evaluation: In this method, other LLMs, such as the state-of-the-

art GPT-4, are used to evaluate the outputs of the target LLM. This approach can

reduce costs compared to human evaluation and offers a degree of scalability, but

it may still incur significant expenses and introduces the risk of propagating biases

or errors inherent in the evaluating LLMs.

3. Automated testing: This approach leverages predefined tests and benchmarks

to assess LLM performance. Automated testing is highly scalable and provides

consistent, objective metrics for evaluation. However, it is not without challenges,

particularly in capturing the subtleties of language understanding and generation

that human evaluators or other LLMs might notice. As this thesis focuses on au-

tomated testing, the subsequent section will delve into the specifics of these tests

and discuss the inherent challenges in greater detail.

2.5.1 Automated Testing

Automated testing is historically the most used method for evaluating machine learn-

ing models. For QA tasks specifically, measures of string overlap, such as exact match
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and F1 are employed, mostly on answers formulated through context extractions. Many

traditional QA datasets are constructed to be used in this setting. This poses a problem

for generative QA which can produce many variations of the correct answer, making it

difficult to encapsulate the correct answer within the answer labels.

One of the ways question answering evaluation can be adapted for generative models

is using multiple-choice datasets. Instead of open-ended questions the model gets asked

a question with a set number of choices and is expected to output the letter of the correct

answer. Assuming the model is at least good enough to understand the task and fol-

low the given instruction, it becomes easier to conduct generative evaluation. However,

differences in implementation of this method are still possible.

In general LLMswork by ingesting a prompt and generating a probability distribution

over the vocabulary. The next token is then chosen according to this distribution, for

example by choosing the most probable next token. This token is then fed back into the

model and used to generate the next token and so on.

The two most common approaches used in evaluation are the intrinsic and extrinsic

evaluation, both of which are described in continuation.

Intrinsic Evaluation

Intrinsic evaluation relies on loglikelihood of different answer options. For each answer

option, the probabilities of its tokens are gathered in one score and then compared to

each other. As LMs actually produce a probability distribution over their vocabulary,

this method directly evaluates this distribution, hence it is referred to in this thesis as

intrinsic evaluation.

The procedure for calculating the score can be formally written down as follows:

1. For every output option 𝑗:

(a) Set𝑚𝑗 = 0.

(b) For every word 𝑤𝑖 in the data point 𝑗:

i. Feed 𝑤𝑖’s preceding context, which after the first few words will be the
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sequence 𝑤1, 𝑤2,… , 𝑤𝑖−1, into the language model as input.

ii. Let 𝑝 be the probability that the languagemodel assigns to𝑤𝑖 (the correct

next word).

iii. Add − log(𝑝) to𝑚𝑗.

(c) For normalized accuracy divide𝑚𝑗 by the number of tokens𝑁, otherwise the

score is𝑚𝑗.

2. The final answer is the answer with the highest 𝑚𝑗. If this is the correct answer

the model gets a point, if not no point is given.

This process is visualized in figure 2.4. There are also two versions of this evaluation

method:

Cloze prompting: The input prompt is formatted only with the question and one of

the answer options: (QUESTION, ANSWER). This is repeated for each answer option,

and the probabilities for each question-answer pair are compared. This means that the

answers are not directly compared except through the final probability. Normalization

is recommended, as different answer options can have different lengths.

Multiple choice prompting: The input prompt is formatted with the question, all

of the possible answers and the one of the answer options: (INPUT,OPTIONS, ANSWER

LETTER). This is repeated for each option, and again the probabilities are compared.

This version of prompting compares the answer options to each other more directly, as

each prompt is aware of the other answer options. Normalization is not required as the

length of all of the answers is the same, which is just the letter of the answer.

Pros: The intrinsic quality of the model is measured, there is no confounding factor

of the format of the model response. This also allows the evaluation to be fully auto-

mated, and requires no model specific pre- or post-processing.

Cons: Access to the probability distribution over the vocabulary is required for this

approach, which is not always the case. Furthermore, it is further away from the pro-

duction setting of a question-answering system.
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Figure 2.4: Visualization of the intrinsic evaluation procedure. Image source: [29]

Extrinsic Evaluation

This approach to evaluating LLMs is based on feeding the prompt into the model and

letting themodel generate the response. This response is then evaluated compared to the

correct answer. This process is visualized in figure 2.5. If themodel response corresponds

to the correct answer, the model gets a point, and if it doesn’t, the model gets no points.

Figure 2.5: Visualization of the extrinsic evaluation procedure. Image source: [29]

Pros: The approach doesn’t require the model to provide the probability distribu-

tion over the vocabulary, but can be treated as a black box instead. Furthermore, this

approach is good for evaluating the LLM as a question answering system, as it is more

straightforward and closer to how it would be used in a production setting. If there are

𝑛 answer choices it is also 𝑛 times faster, as every prompt is processed only once, instead

of 𝑛 times as is the case in intrinsic evaluation.

Cons: The resulting score can be confounded by the format of the model response.
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For example, if the model in figure 2.5 had produced a slightly higher probability for

the word "Zygote", instead of the letter "D", the output would have been the word "Zy-

gote". This answer would be considered incorrect and the model would not get a point

for it. This is problematic because if we are trying to gauge the knowledge capacity of the

model, and not its instruction following capabilities, this score would not represent the

real situation. To mitigate this problem, model specific prompt engineering and answer

post-processing can be conducted, but this can be time consuming, and lowers the extent

of automatization of the test method.

Data Contamination

Model developers often don’t disclose the data they used to pretrain or fine-tune amodel.

Even when amodel is supposedly open-source, while the weights of the model are freely

available, the training procedure and data used are most often not disclosed. Previous

work has shown that many widely used LLMs have been trained on copyrighted books

and personal information [30]. While many model developers try to prevent the model

from memorizing or at least regurgitating memorized texts, novel attacks are developed

all the time which result in extracting vast amounts of training data [31], including sen-

sitive information.

The most widely used testing sets for evaluating LLMs are available on the Internet

in plain text form with both the question and the solution. With the rise of models using

crawled data for training and closed APImodels using requests sent to it as training data,

data contamination has become widespread [32]. Combined with the aforementioned

proven ability of LLMs to memorize huge portions of text, this poses a problem as it is

considered a data leak for testing.

While some models go to lengths to prevent data contamination [7], many models

don’t provide any information on their training data or procedure, even when they are

open-source. This significantly lowers the reliability of the most widely used bench-

marks.

One of the recently proposed solutions to this problem is presented in [33]. The

method is built on a straightforward hypothesis: an unobserved example is more likely

to have a few outlier words with low probabilities under the LLM, while a recognized
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example is less inclined to contain words with such reduced probabilities. The method

doesn’t require any insight into the training data and is already beginning to be used in

leaderboards such as the OpenLLMLeaderboard [34].

2.6 Models

This section goes into more detail about three open-source models relevant to this the-

sis: Llama-2, Platypus and LeoLM, while table 2.1 presents some of the state-of-the-art

models.

Table 2.1: Overview of state-of-the-art models.

Model Parameters Creator Source Architecture
GPT-4 1760B OpenAI Closed Decoder-only
GPT-3.5 175B OpenAI Closed Decoder-only
Llama-2 70B Meta Open Decoder-only
Mixtral 46.7B MistralAI Open Decoder-only
PaLM 540B Google AI Closed Decoder-only
BERT 340M Google AI Open Encoder-only
T5 3B Google AI Open Encoder-decoder

Llama-2

Llama-2 is a series of open-access large language models introduced by Meta in [1]. It

represents an evolved iteration of its predecessor, LLaMA. Enhancements include amore

robust data cleaning process, an expanded mix of publicly available pretraining data,

resulting in a 40% increase in size, an extended context length, and the integration of

grouped-query attention to optimize inference efficiency. It is available in three variants:

7B, 13B, and 70B parameters. Table 2.2 presents an overview of themodels specifications.

Table 2.2: Overview of the Llama 2 model specifications.

Model size Pretraining tokens Context length
7B, 13B, 70B 2 trillion 4096

Training corpus: The training corpus of Llama-2 models includes CommonCrawl,

c4, GitHub code, Wikipedia, Books and ArXiv papers, amounting to around 2 trillion

tokens.
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Language limitation: Table 2.3 presents a summary of the languages utilized in

the pretraining process. It is evident that the training corpus primarily comprises of

English, with the second category labeled as "unknown" encompassing content such as

code. Moreover, all performance and safety evaluations documented upon the model’s

release are exclusively in English. This focus underscores the predominance of English

within the LLM’s development and assessment stages.

Language Percent Language Percent
en 89.70% uk 0.07%
unknown 8.38% ko 0.06%
de 0.17% ca 0.04%
fr 0.16% sr 0.04%
sv 0.15% id 0.03%
zh 0.13% cs 0.03%
es 0.13% fi 0.03%
ru 0.13% hu 0.03%
nl 0.12% no 0.03%
it 0.11% ro 0.03%
ja 0.10% bg 0.02%
pl 0.09% da 0.02%
pt 0.09% sl 0.01%
vi 0.08% hr 0.01%

Table 2.3: Language distribution in pretraining data with percentage >= 0.005%. Source: [1]

Platypus

The Platypus model, introduced in [7], is an open-source model based on Llama-2 13B

and 70Bmodels that achieved the top position onHuggingFace’sOpenLLMLeaderboard

[34] at the time of its release. The main contributions from the paper include:

1. Open-PlatypusDataset: Platypus relies on theOpen-Platypus dataset, a carefully

curated subset of open datasets released to the public.

2. Fine-Tuning and Merging LoRA Modules: Platypus uses LoRA modules for

fine-tuning andmerging, preserving pretraining priorswhile incorporating domain-

specific knowledge.

3. Test Data Leak Detection: Platypus undergoes rigorous testing to detect and

address potential test data leaks and contamination, ensuring reliable performance

metrics.
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Platypus demonstrates strong quantitative performance across various metrics and

model sizes, despite using less fine-tuning data and computational resources compared

to other models. For example, a 13B Platypus model was trained on a single A100 GPU

using 25k questions in just 5 hours. This is the reason the Platypus model is used as a

significant inspiration for the fine-tuning part of the thesis.

LeoLM

LeoLM(Linguistically EnhancedOpenLanguageModel) [9] is a suite ofGerman-language

foundation language models based on Llama-2. The training procedure for LeoLM con-

sists of stage 2 pretraining and fine-tuning. Stage 2 pretraining refers to continued train-

ing of the full Llama-2 model on a German text corpus of 65 billion tokens. They also

take care in hyperparameter choice to minimize the risk of forgetting already existing

knowledge. For fine-tuning they take partial inspiration from the Platypus model, men-

tioned in section ?? and translate the OpenPlatypus dataset into German, along with an

assortment of other high quality datasets.

2.7 Datasets

This section covers datasets used for fine-tuning Llama-2 and evaluating the fine-tuned

models.

ARC

TheARC (AdvancedReasoningChallenge) dataset, presented in [35], consists of natural,

grade-school science questions. It is partitioned into an Easy and Challenge Set, where

the Challenge Set contains only questions answered incorrectly by both a retrieval-based

algorithm and a word co-occurence algorithm. For the purposes of this thesis only the

Challenge Set is used. The questions are multiple choice with one correct answer. An

example question can be found in 2.6

MMLU

The MMLU (Massive Multitask Language Understanding) dataset, introduced in [36],

covers 57 tasks including elementary mathematics, US history, computer science, and
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Which property of a mineral can be determined just by looking at it?
(A) luster
(B) mass
(C) weight
(D) hardness

Figure 2.6: Example from the ARC Challenge task.

more. The questions are multiple choice with one correct answer. An example question

can be found in figure 2.7.

One of the reasons that the government discourages and regulates monopolies
is that
(A) producer surplus is lost and consumer surplus is gained.
(B) monopoly prices ensure productive efficiency but cost society allocative ef-
ficiency.
(C) monopoly firms do not engage in significant research and development.
(D) consumer surplus is lost with higher prices and lower levels of output.

Figure 2.7: Example from the Microeconomics MMLU task.

HellaSwag

The HellaSwag dataset, introduced in [37], comprises of sentences along with multi-

ple potential follow-up sentences for each. The objective is to select the most probable

follow-up sentence. An example question can be found in 2.8

A woman is outside with a bucket and a dog. The dog is running around trying
to avoid a bath. She. . .
(0) rinses the bucket off with soap and blow dry the dog’s head.
(1) uses a hose to keep it from getting soapy.
(2) gets the dog wet, then it runs away again.
(3) gets into a bath tub with the dog.

Figure 2.8: Example from the HellaSwag task.

OpenPlatypus

The OpenPlatypus dataset, introduced in [7], is a small-scale dataset of curated sub-

selection of public text datasets. The dataset is focused on improving LLMs’ STEM and

logic knowledge. It consists of mainly human-designed questions with only 10% of the

questions being generated by an LLM.
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An important aspect of the dataset is the contamination check which aims to prevent

benchmark test questions frombeing part of the training data. As presented in 2.5.1, data

contamination is a common problem in LLM training. To manage potential leaks, they

crafted heuristics for manually filtering questions from Open-Platypus with over 80%

cosine embedding similarity to benchmark questions.

INSTRUCTION:
Erika, who is 14 years old, flips a fair coin whose sides are labeled 10 and 20,
and then she adds the number on the top of the flipped coin to the number she
rolls on a standard die. What is the probability that the sum equals her age in
years? Express your answer as a common fraction.
OUTPUT:
The only way for the sum to be a 14 is for her coin flip to be a 10 and for her roll

to be a 4. This can only occur in
1

2
⋅
1

6
=

1

12
.

Figure 2.9: An example of an instruction and output pair from the OpenPlatypus dataset.

HotpotQA

HotpotQA is a question answering dataset, presented in [38]. It consits of 113kWikipedia-

based question-answer pairs. The key features of the dataset are: (1) the questions re-

quire finding and reasoning overmultiple supporting documents to answer; (2) the ques-

tions are diverse and not constrained to any pre-existing knowledge bases or knowledge

schemas (3) the dataset also provides sentence-level supporting facts required for rea-

soning.

QUESTION:
Which magazine was started first Arthur’s Magazine or First for Women?
CONTEXT:
First for Women is a woman’s magazine published by Bauer Media Group in
the USA. The magazine was started in 1989. It is based in Englewood Cliffs,
New Jersey. In 2011 the circulation of the magazine was 1,310,696 copies.
Arthur’s Magazine (1844–1846) was an American literary periodical published
in Philadelphia in the 19th century. Edited by T.S. Arthur, it featured work
by Edgar A. Poe, J.H. Ingraham, Sarah Josepha Hale, Thomas G. Spear, and
others. In May 1846 it was merged into ĺGodey’s Lady’s Bookĺ.
ANSWER:
Arthur’s Magazine

Figure 2.10: An example of a question with context from the HotpotQA dataset.
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German Translations

The German translations of the ARC, MMLU, HellaSwag and OpenPlatypus datasets

were done by theLAION team1. TheyusedGPT-3.5-turbo to translate the original prompts

and manually fixed the broken examples. Using GPT-3.5-turbo ensures that the context

between prompts and responses remains intact and that complex instructions are accu-

rately translated.

The translation of HotpotQA was done using Google TranslateAPI. This option was

chosen because of the availability of this resource, although it turned out GPT-3.5-turbo

would have been a better option. The issues encountered are discussed in more detail in

3.3.3.

1https://laion.ai/
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3 Experiments and Results

This chapter begins with an overview of prior research on language capability trans-

fer, followed by a brief examination of feasibility of German language transfer and an

overview of the experimental framework. Then, it delves into the detailed description

and presentation of results for the two primary approaches investigated in this thesis:

the in-context learning approach and the fine-tuning approach.

3.1 Previous Works

Even though themajority of LLMs are predominately trained and tested inEnglish,many

of them can comprehend input and generate output in other languages to some extent as

well. This ability is greatly dependant on the amount of training data from that language

and the script of the language (where the Latin and Cyrillic scripts are usually better

represented).

Previous efforts in transferring language capability have mainly focused on three ap-

proaches:

1. Vocabulary extension: Extending themodel vocabulary with tokens of the target

language to enhance the encoding expressiveness of that language.

2. Further pretraining: Continuing the pretraining stage of an LLM to enhance

language capabilities in the target language. Usually the scale this is done on is

in the order of billions of tokens which is much less then the trillions used for the

original pretraining.

3. Instruction tuning: Performing only instruction tuning in the target language to

enhance instruction-following capabilities in that language.
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Both vocabulary extension and further pretraining are very resource intensive. The

focus of this thesiswill be on less resource intensive approaches, namely in-context learn-

ing and instruction tuning in the target language.

3.2 German Capability Transfer Feasibility

Since this thesismainly focuses on enhancingLLM’sGerman capabilities using theLlama-

2 model, the focus of the language capabilities transfer exploration is the transfer to the

German language. As mentioned in 2.6, while Llama-2 has been trained on an over-

whelmingly English corpus, the second most represented language in the training data

is German. Thismeans that if language transfer is possible, German is the best candidate.

One of the first aspects to consider when trying to transfer capabilities of a languge

model to another language is the vocabulary of the pretrained model. Since the vocab-

ulary is fixed at the beginning of the pretraining process, if it doesn’t allow meaningful

tokenization it would be expected for an LLM to not work well in that language, at least

without a vocabulary extension. However, since German uses the same script as En-

glish and is in the same linguistic group it is reasonable to expect that the vocabulary of

Llama-2 will be sufficiently compatible with German.

A good indicator of vocabulary compatibility is the number of tokens aword gets split

into. A well fitted vocabulary is good at recognizing meaningful word subparts.

Figure 3.1: Example of Llama-2 tokenization of the same sentence: "The curious feline observes
the serene landscape." in English, German and Greek.

Asdemonstrated in the example 3.1, the Llama-2 tokenizermanages to identifymean-

ingful word subcomponents within both English and German sentences. However, for

Greek, the segmentation into individual letters indicates a poor fit with the existing vo-

cabulary. Since expanding the vocabulary necessitates substantial volumes of data to

integrate new tokens into an established LLM, such expansion is out of the scope of this

thesis and is also likely unnecessary anyway.
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3.3 Experimental Setup

This section goes over the specifics of the setup used in both in-context learning and

fine-tuning experiments.

3.3.1 Hardware

All experiments conducted in this thesis are done on a Google Cloud Compute Engine

using 8 NVIDIA L4 GPUs, with 24GB of RAM each.

3.3.2 vLLM

To speed up inference during evaluation, the vLLM library1 is used. This library incorpo-

rates the PagedAttention algorithm to tackle the issue of memory waste in the key-value

cache (KV cache) of existing systems. Suchwaste, often caused by fragmentation and du-

plication, restricts batch sizes. The PagedAttention algorithm, drawing inspiration from

virtual memory and paging methods in operating systems, enables vLLM to minimize

waste in KV cache memory significantly. Moreover, it facilitates the flexible allocation

and sharing of KV cache both within and across different requests. Consequently, vLLM

enhances the throughput of popular LLMs by 2 to 4 times.

3.3.3 Data Preprocessing

The datasets used in the training and evaluation are presented in section 2.7. As already

mentioned, most datasets were already freely available on the Internet so they are used

in their original form with minimal pre-processing.

The pre-processing procedure used was as follows:

1. If there are multiple categories of data in a dataset (such as the subjects in MMLU)

bin the samples from the same category together.

2. Randomly sample an equal sample from each bin, such that the total amount of

samples is 500 (for intrinsic evaluation) and 1000 (for extrinsic evaluation).

1https://docs.vllm.ai/
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The reason for using subsamples of the original datasets is that some of the original

datasets are huge in size (HotpotQA for example has over 100k samples) and would take

an enormous amount of time to process. This is both infeasible and unnecessary [39].

ForHotpotQAnopublicly availableGerman translationwas found. Therefore a trans-

lated version of the dataset is created using Google Translate API. Preliminary tests were

conducted in which it was assured that named entities got proper translation into the

German language. For example, the book/movie series "The Hunger Games" is correctly

translated to "Die Tribute von Panem" as this is the correct translation in German, even

though it is not a direct translation.

It is important to note however, that while this method was employed because of the

availability of the resource, in hindsight it would have been better to use chatgpt-3.5-

turbo API to translate the dataset. This is because the consistency between the entities

in the question, context and answer is better preserved by correctly prompting an LLM.

Figure 3.2 presents an example of a broken translation. While some of these examples

were fixed by hand, it is certain that many of them have remained broken. However,

as the most likely outcome is that none of the models will correctly answer the broken

samples, the score is skewed but evaluation can still be valuable.

QUESTION:
Wie heißt das Kampflied der Universität, deren Hauptcampus in Lawrence,
Kansas liegt und deren Zweigcampusse im Großraum Kansas City liegen?
CONTEXT:
Kansas Song (We’re From Kansas) ist ein Kampflied der University of Kansas...
ANSWER:
Kansas-Lied

Figure 3.2: An example of broken translation. While in the context, the name of the song is kept
in the original English language, in the answer the name of the song is translated to German.
This is because the answer was translated separately from the context so the translator model
didn’t have the necessary context cues to infer that the answer is actually an entity.

3.3.4 Base Model Choice

The base model used in this thesis is Llama-2 13B model by Meta, described in more de-

tail in section 2.6. Llama-2 models are some of the strongest open-source models avail-

able today, so they are a good base for further improvements. The 13B version was cho-

sen over the 7B because the available hardware allowed for a larger model, while the 70B
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model was too large.

3.3.5 Evaluation Frameworks

As explained in section 2.5 there are generally two approaches to evaluating an LLM.

While loglikelihood based evaluation is measuring the intrinsic quality of the model,

the topic of this thesis is using LLMs as question answering systems. The goal of the

evaluations conducted in this thesis is assessing both the intrinsic quality of the models

in German and the quality of the model in the extrinsic setting of a German question

answering system. Therefore, both evaluation methods were employed.

LM Evaluation Harness

Intrinsic model evaluation relies on the LM Evaluation Harness [40], accessible through

a public code repository. This repository also serves as the foundation for one of themost

popular LLM leaderboards, the Open LLM Leaderboard [34] hosted on HuggingFace.

Task configurations for evaluating both English and German models remain unaltered,

with dataset paths being the only parameters adjusted to accommodate subsampled ver-

sions. The metric used in this evaluation approach is the intrinsic evaluation method,

described in more detail in section 2.5.1. For the ARC and HellaSwag tasks, normalized

cloze prompting is used, while MMLU uses multiple choice prompting.

Custom Evaluation Framework

The custom evaluation framework generates model outputs, followed by a postprocess-

ing stage to obtain the final answer. In initial testing, a compilation of phrases that typi-

cally precede model answers was created. The full list of these phrases is provided in the

appendix A.2. The postprocessing procedure is outlined as follows:

1. Retrieve the model output.

2. Eliminate leading and trailing whitespace.

3. Determine the presence of a common answer prefix within the model’s response.

(a) For tasks involvingmultiple choice formats (i.e. ARC,HellaSwag, andMMLU):

If a prefix is identified, extract the first non-whitespace character following
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the prefix. Otherwise, extract solely the initial non-whitespace character from

the output.

(b) For extractive question-answering tasks (i.e. HotpotQA): If a prefix is de-

tected, extract the text following the prefix up to two consecutive newline

characters (or up to the end of the string if none are present). If absent, ex-

tract the text from the beginning of the output up to two consecutive newline

characters.

This approach was devised after initial tests and attempts to ensure the accurate ex-

traction of model responses across various task formats. While it is not exhaustive in its

approach and both false positives and false negatives are possible, it presents a setting

that would be feasible in production. The metrics used in this evaluation setting were

quasi-exact match for multiple choice questions and both quasi-exact match and F1 for

open answer questions. These metrics are described in more detail in the appendix A.2.

3.4 In-context Learning Approach

In-context learning is a more straightforward and resource-efficient approach compared

to fine-tuning. This section explores the experiments conducted within the domain of

in-context learning, beginning with preliminary tests that lay the groundwork for amore

in-depth analysis of the in-context learning results.

3.4.1 Preliminary Tests

Asmentioned in 2.4, in-context learning can be considered a subclass of prompt learning.

Table 3.1 gives an overview of the prompts used for the experiments, while table 3.1

presents their results.

As depicted in Table 3.2, both the Zero-shot CoT and the Base prompt in English

exhibit inferior performance compared to random guessing, particularly noticeable in

HellaSwag, wheremodel generationswere so unrelated to the task that no scorewas gen-

erated. This discrepancy may stem from the inherent similarity between the HellaSwag

task of sentence continuation and the LLM pretraining objective, where introducing a

CoT prompt confused the model. A similar scenario unfolded with the English prompt,
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Table 3.1: Overview of prompts used in preliminary tests. The answer prefix refers to the string
"Antwort:".

Prompt name Description
Base prompt Task description in German followed by the question, choices

(each choice is presented in a new line) or context and the
answer prefix.

Zero-shot CoT The same as Base prompt, with the first line of the answer
being "Denken wir Schritt für Schritt." (engl. Let’s think step by
step.).

Base prompt - EN The same as Base prompt with the task description and key-
words written in English.

Random baseline Since all multiple choices datasets have 4 answer choices, the
random guess would achieve 25% accuracy. HotpotQA ques-
tions are open ended, so there is no random baseline.

Base prompt - DE
- one line

The same as Base prompt but with all the choices being pre-
sented in one line.

Llama-2 chat
prompt

The same as Base prompt but uses the recommended Llama-2
prompt style provided in A.1 with no answer prefix.

Few-shot (3-shot) No task description is provided, only three examples of the
task with the correct answers before the actual task.

resulting in answers that mixed English and German, failing to yield coherent outputs.

However, HotpotQA stands as an exception, albeit with a relatively low score.

In comparing the Base prompt in German, where all options in the multiple-choice

question are presented in the same line, with the prompt in which every option is in a

new line, we observe an average 7% decrease in the score, signifying a notable difference.

This variation serves as a good demonstration of the delicate nature of LLM prompting

strategies.

The best overall strategy proved to be few-shot prompting with the exception of Hel-

laSwagwhere the best resultwas achieved using the recommendedLlama-2 chat prompt.

This again underscores the importance of testing different prompts for each specific task.

Another notable distinction among the various prompting strategies is the consis-

tency of answer formats. The most consistent responses were obtained through the few-

shot prompting approach, as the model typically generated correct answers at the begin-

ning of the output, using the same format as the few-shot prompts and didn’t require

additional postprocessing. Conversely, prompts that performed below a random base-

line typically lacked a standardized structure in their responses, consequently lowering
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their scores. The Llama-2 chat prompt tended to render the model excessively verbose,

resulting in answers that, while often accurate and containing some common prefixes,

frequently veered off-topic unnecessarily.

Table 3.2: Preliminary results. The metric for ARC_de, MMLU_de, HellaSwag_de is quasi-exact
match, and for HotpotQA_de both quasi-exact match and F1 are displayed.

ARC_de MMLU_de HellaSwag_de HotpotQA_de
Zero-Shot CoT 22.75 12.0 x 1.0 | 11.05
Base prompt - EN 24.55 13.1 23.9 10.6 | 24.34
Random baseline 25.0 25.0 25.0 N/A
Base prompt - DE - one line 43.88 34.9 23.2 N/A
Llama-2 chat prompt 46.53 37.4 44.1 6.0 | 20.79
Base prompt - DE 48.67 41.8 32.6 10.0 | 30.0
Few-shot (3-shot) 59.11 46.0 36.1 30.3 | 43.84

3.4.2 Results

Asdemonstrated in section 3.4.1, few-shot prompting proved to be the overall bestmethod

for question-answering, in both the accuracy and consistency of the answer format. There-

fore, a more in-depth search of the hyperparameter space is conducted.

Table 3.3: In-context learning results. The metric for ARC_de, MMLU_de, HellaSwag_de is
quasi-exact match, and for HotpotQA_de both quasi-exact match and F1 are displayed.

0-shot 1-shot 2-shot 3-shot 4-shot 5-shot
ARC_de 52.86 56.03 54.83 59.11 57.82 58.76
MMLU_de 44.1 43.9 44.1 46.0 45.4 44.8
Hellaswag_de 25.6 26.4 29.6 32.6 40.2 35.0
HotpotQA_de x 25.9 | 41.36 29.9 | 43.61 30.3 | 43.84 30.8 | 44.60 29.8 | 43.0

Table 3.3 presents the results using 0- to 5-shot prompts for each test set. As can be

seen, the best results were obtained using 3- or 4-shot prompts. For 0-shot HotpotQA_de

no score was generated as the outputs were completely unrelated to the task. The results

suggest thatwhile adding the examples in the prompt increases the score, largely through

unifying the model output format, there is a limit on howmuch a score can be improved

using this technique.

3.5 Fine-tuning Approach

The fine-tuning process, althoughmore resource-demanding than in-context learning, is

far less demanding than further pretrainig or building a foundationalmodel. Therefore it
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holds promise for enhancingmodel performance and adaptability in a resource-efficient

manner. This section describes the fine-tuning experiments done in the scope of this

thesis.

3.5.1 Previous Work

The experimental setup of the fine-tuning approach takes inspiration from the following

works:

LIMA:Less IsMore forAlignment paper: The authors of [6] fine-tune the LLaMa

languagemodelwith only 1000 carefully curated prompts and achieve remarkably strong

performance. They argue that almost all knowledge in large language models is learned

during pretraining and only limited instruction tuning is necessary to teach models to

produce high quality output.

LLaMA Beyond English: An Empirical Study on Language Capability Trans-

fer paper: The paper [8] conducts extensive investigation of language transfer abilities

based on LLaMa. They demonstrate that state-of-the-art transfers can be achieved using

less than 1% of the pretraining data, both in terms of knowledge alignment and response

quality.

Platypus: Quick, Cheap, and Powerful Refinement of LLMs paper: The paper

[7] is described in more detail in section 2.6.

Various community GitHub repositories: Various GitHub repositories such as:

Cabrita2, an attempt at fine-tuning Llama-2 7B for Portuguese and Zicklein3, an attempt

at doing the same in German.

In prior research, there is evidence of the potential of LLMs to align effectively with

limited data, thereby enhancing model performance across diverse tasks. While much

of this research has primarily focused on English tasks, this thesis aims to investigate

whether comparable performance enhancements can be attained through language fine-

tuning techniques.

2https://github.com/22-hours/cabrita
3https://github.com/avocardio/Zickleinzicklein-a-german-finetuned-instruction-llama-
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3.5.2 Experimental Setup

Table 3.4: Overview of fine-tuning hyperparameters.

Hyperparameter Value
learning rate 4e-4
batch size 64
warmup steps 100
epochs 1
lr scheduler cosine
lora alpha 16
lora rank 16
lora dropout 0.05
lora target modules gate_proj, up_proj, down_proj
group by length True
train on inputs True

Table 3.4 gives an overview of the hyperparameters used for fine-tuning of the final

model. They are largely inspired by the hyperparameters used in the Platypus paper

[7], with a notable exception being that while they didn’t train on inputs, preliminary

tests showed that better convergence for German fine-tuning is achieved by also training

on inputs. Additionally, the inputs were grouped by length as this proved beneficial,

accelerating the training process without inducing any unusual loss curves (which was

the reason why the Platypus paper didn’t use this hyperparameter). Figure 3.3 presents

the prompt used for formatting the fine-tuning instructions. The fine-tuning was done

using the LoRA PEFT method, described in 2.3.1.

Nachfolgend finden Sie eine Anweisung, die eine Aufgabe beschreibt.
Schreiben Sie eine Antwort, die die Anfrage angemessen vervollständigt.

### Anweisung:
{instruction}

### Antwort:
{answer}

Figure 3.3: Fine-tuning prompt.

Figure 3.4 presents the training loss. There is a sharp initial fall in loss, which is

typical for instruction-tuning, followed by a slow but steady decline. This usually cor-

responds to the model essentially learning the instruction prompt format from the first

few hundred examples.
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Figure 3.4: Fine-tuning loss

The fine-tuning was done in around 5 hours using the 8 NVIDIA L4 GPUs.

3.5.3 Results

The model is evaluated in two parts: using intrinsic and extrinsic evaluation metrics.

Intrinsic Evaluation Results

Table 3.5 presents the results of the intrinsic evaluation of the fine-tuned model, in both

German and English. The results are also compared to the baseline Llama-2 13B model

and the LeoLM model. The fine-tuned model scores better than the baseline but is out-

performed by the LeoLMmodel, which is not suprising as LeoLM has been trained with

significantly more data. The biggest difference can be observed with the HellaSwag task,

which is natively the task which is the most similar to next token prediction. A big im-

provement on this task might mean that the model does understand the intrinsic struc-

ture of the German language a lot more.

Regarding the English part of the assessment, as expected some degradation in results

is present. Since the fine-tuned model was only fine-tuned in German, even though its

weights are changed much less than LeoLM, it experiences more English performance

degradation. This underscores the speed at which the model can forget and shows the

importance of joint learning that helps prevent English degradation.
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Table 3.5: Fine tuning results - intrinsic evaluation

Average ARC HellaSwag MMLU

DE
Llama 2 13B 49.87 47.70 55.40 47.20
Fine-tuned 13B 51.00 48.80 57.20 47.00
LeoLM 13B 54.73 48.60 65.80 49.80

EN
Llama 2 13B 62.00 59.80 74.00 52.20
Fine-tuned 13B 58.86 52.60 71.60 52.40
LeoLM 60.80 57.60 73.20 51.60

Extrinsic Evaluation Results

Table 3.6 presents the results of extrinsic evaluation. The setting used for evaluation

was 3-shot prompting, which showed promising results in preliminary tests of the in-

context learning experiments 3.4.1. The extrinsic results paint a starkly different picture

to the intrinsic results. The fine-tunedmodel scores worse than both the original Llama-

2 chat model and the LeoLM on all tasks except HotpotQA_de where it is better than

LeoLM. LeoLM on the other hand scores better then the original Llama-2 chat, however

the margins are very small, and is considerably worse on the HotpotQA_de task.

Table 3.6: Fine tuning results - extrinsic evaluation using 3-shot prompting.

ARC_de MMLU_de HellaSwag_de HotpotQA_de
Llama-2 chat 59.11 46.0 32.6 30.3 | 43.84
Fine-tuned 13B 55.68 44.1 32.2 24.8 | 35.44
LeoLM 60.39 46.3 32.8 19.0 | 27.88

The increase in performance in the LeoLM model is mostly expected, while the de-

crease in performance for the fine-tuned model is somewhat disappointing. A possible

explanation for this behaviour may be that there is insufficient training data to actually

improve German capabilities but there is enough data to disrupt the existing alignment.

Interestingly, even with a lot more training, LeoLM manages to improve the score on

three out of four tasks only by a slight margin.

3.6 Discussion

While the results of the fine-tuning approach are disappointing, they can give insights

about the state of other languages in LLMs trained predominately in English.

As explained in section 2.3, the goal of instruction-tuning is improving zero-shot
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model performance. While the main evaluation presented in section 3.5.3 was done

using few-shot prompting as it produced the best results in preliminary tests in sec-

tion 3.4.1, a comparison of zero-shot model performance is given in table 3.7. The re-

sults point to the fact that the fine-tuned model did learn something, as it outperforms

the other two models in a zero-shot setting in all tasks except HellaSwag_de. The Hel-

laSwag_de achieves the best score on LeoLM, outperforming even the few-shot evalua-

tion setting. This is analogous to the results for Llama-2 chat in the preliminary experi-

ments in section 3.4.1 where the best results for HellaSwag_de were achieved using the

recommended model prompt.

Table 3.7: Zero-shot model performance comparison.

ARC_de MMLU_de HellaSwag_de HotpotQA_de
Llama-2 chat 46.53 37.4 44.1 6.0 | 20.79
Fine-tuned 47.73 39.4 32.5 27.7 | 39.58
LeoLM 41.91 36.7 60.0 17.0 | 31.93

As was seen in experiments conducted in 3.5.3 intrinsic and extrinsic evaluation can

give quite different results. Intrinsic LLMevaluation, which is the backbone of one of the

most popular LLM leaderboards, the OpenLLMLeaderboard [34], is a good indicator of

general model quality, but it tells only a small part of the story. Every LLM task can have

nuances that are best discovered by evaluating the LLM directly on the specific task.

While there is a lot of overlap between the question answering task and general LLM

model evaluation as it usually gets framed as a question answering task, differences can

prove vital in a production setting.

Finally, even the supposedly open-source models don’t always disclose their training

corpus, and even if they did and all information about LLM training was disclosed, it

would still be impossible (at the current stage of LLM development and understanding)

to clearly trace why an LLM produces one output over another. Therefore, while there

are some general trends that can be observed, LLMs still require extensive experimenting

to maximize their performance.
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3.7 Future Work

As explained in 3.2, German is the second most prevalent language after English in the

Llama-2 pretraining corpus and is also linguistically very similar to English. A possi-

ble direction for future work would be to use languages which are less present in the

pretraining corpus and observe if they can achieve better increases in performance with

small amounts of training data.

This thesis dedicated significant attention to the formatting of answers. The reason

for this was that incorrectly formatted answers or answers with hard to parse outputs

both lower the LLM score and are inconvenient for use in production settings. So far, no

significant research was done in quantifying the correctness of answer formatting, even

though this would prove beneficial when evaluating the quality of LLMs. This is another

possible direction for future work.

Furthermore, while some prior research exists on mitigating forgetting in LLM fine-

tuning,more investigation into preventing language-specific forgetting, particularlywhen

fine-tuning with small high-quality datasets, presents a possible research topic.

Finally, this thesis was done using the 13B version of Llama-2. While observations on

smaller models can often be extended to bigger ones, increasing model size sometimes

results in unexpected changes of model behaviour. Additionally, the continual release of

open-source LLM architectures presents an opportunity to explore language capabilities

of models other than Llama-2.
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4 Conclusion

The aim of this thesis was to explore the state-of-the-art of question answering systems,

specifically based on LLMs. Special focus was given on systems based on a non-English

language, namely German.

For assessing the quality of QA systems a custom evaluation framework for extrin-

sic QA performance was implemented spanning three closed-book and one open-book

QA task. Intrinsic evaluation was used for assessing the raw model quality and under-

standing of German. For this, the LM Evaluation Harness [40] code was employed and

evaluated on three tasks with a loglikelihood based metric.

Two main low-resource approaches were used for enhancing the German question

answering capabilities of the chosen base model, Llama-2 chat: in-context learning and

fine-tuning.

Prompt learning and its sub-technique, in-context learning, are techniques which

enable the model to learn from context without updating the model weights. The ex-

periments conducted in the scope of this approach revealed that the few-shot prompts,

especially the 3- and 4-shot prompts produced the best results overall, both in terms of

quality and output formatting consistency. However, there was a notable exception for

one of the tasks, in which the recommended prompt achieved the best result, which

reinstates the importance of testing different prompting techniques for a each specific

task.

The fine-tuning approach was done using a small high quality dataset [7] that in En-

glish produced excellent results with a very short training time. The German version of

this dataset was used. While the intrinsic evaluation revealed that themodelmanaged to

learn some structure of the German language, the extrinsic evaluation using few-shot in-
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context learning showed that the fine-tunedmodel was outperformed by the base model

for the QA downstream task. Interestingly, while few-shot prompting was the best ap-

proach overall andwas used for evaluating the fine-tunedmodel for this reason, a deeper

analysis of results revealed that fine-tuning didmanage to improve zero-shot and answer

formatting capabilities of the model. The results were also compared to LeoLM, a model

that underwent continued pretraining in German, alongside fine-tuning. This model

outperformed both the fine-tuned and baseline model on both intrinsic and extrinsic

few-shot evaluation.

The described experiments show that while some trends in LLM prompting exist, it

is still important to test different prompting techniques and their effects on both answer

quality and formatting. Additionally, while fine-tuning might not be feasible for lan-

guage transfer in LLMs, it could still enhance zero-shot capabilities, even in non-English

languages.
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Abstract

Question Answering Systems Based on Large Language Models

Eva Jagodić

Large Language Models (LLMs) have revolutionized the field of Natural Language

Processing (NLP). Unlike traditional machine learning systems, which are trained on a

specific task and then applied exclusively to this task, LLMs demonstrate proficiency on

a wide variety of tasks, both traditional and novel. Question answering (QA) is one of

the fundamental NLP tasks that has experienced notable changes with the development

of LLMs. This thesis explores the state-of-the-art of question answering systems based

on LLMs and attempts to address one of the significant limitations of these models: the

language limitation. Most LLMs are English-centered, in both their pretraining corpus

and in their evaluation. Therefore, the focus of the thesis is on trying to adapt a pow-

erful open-soruce model, Llama-2, to German. To achieve this, a German evaluation

framework is constructed, and two low-resource enhancement techniques are explored,

namely in-context learning and parameter efficient instruction tuning. The results reveal

that while significant improvement can be achieved using simple few-shot prompting,

fine-tuning proves to be insufficient for further improvements of the model’s German

QA capabilities.

Keywords: large language models; question answering; multilingual models; in-

context learning; instruction-tuning
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Sažetak

Sustavi pitanja i odgovora zasnovani na velikim jezičnim

modelima

Eva Jagodić

Veliki jezični modeli označili su revoluciju u području obrade prirodnog jezika. Za

razliku od tradicionalnih sustava strojnog učenja, koji su trenirani na jednom zadatku i

potom korišteni isključivo na tom istom zadatku, veliki jezični modeli postižu dobre re-

zultate na velikom rasponu zadataka, kako tradicionalnih tako i potpuno novih. Zadatak

pitanja i odgovora jedan je od osnovnih zadataka obrade prirodnog jezika koji je također

doživio promjene razvojem velikih jezičnih modela. Ovaj rad istražuje najsuvremenije

sustave pitanja i odgovora zasnovane na velikim jezičnim modelima i pokušava riješiti

jedan od značajnih ograničenja tih modela: jezično ograničenje. Naime, većina modela

usmjerena je na engleski jezik, i u korpusu za treniranje i u evaluaciji. Stoga je fokus

ovog rada na prilagodbi modela Llama-2 na njemački jezik. U ovu svrhu konstruiran je

okvir za evaluaciju na njemačkom i istražene su dvije tehnike poboljšanja s niskim zah-

tjevima na računalne resurse: učenje iz konteksta i fino podešavanje instrukcijama na

parametarski učinkovit način. Rezultati ukazuju na to da dok se značajno poboljšanje

može postići korištenjem jednostavnih few-shot instrukcija, fino podešavanje nedovoljno

je za dodatna poboljšanja njemačkih sposobnosti.

Ključne riječi: veliki jezični modeli; sustavi pitanja i odgovora; višejezični modeli;

učenje iz konteksta; fino podešavanje instrukcijama
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Appendix A: The Code

A.1 Prompts

Llama-2 chat prompt

<s>[INST] <<SYS>>

{{ system_prompt }}

<</SYS>>

{{ user_message }} [/INST]

Fine-tuned model prompt

### Anweisung:

{instruction}

### Antwort:

{answer}

LeoLM prompt

<|im_start|>system

{system_message}<|im_end|>

<|im_start|>user

{prompt}<|im_end|>

<|im_start|>assistant
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A.2 Metrics

Quasi-exact match The correctness condition is based on exact match after postpro-

cessing. The exact postprocessing procedure is described in 3.3.5. The full list of common

prefixes is given here:

list_of_common_prefixes = [

"die beste fortsetzung des gegebenen kontextes ist:",

"richtige Antwort:",

"Antwort ist:",

"Antwort:",

"Antwort lautet:",

"Antwort ist",

"Antwort lautet"

"richtige Antwort",

"Antwort"

]

F1 Unlike exact match methods, the correctness condition for F1 is more nuanced,

allowing for partial string overlap rather than being strictly all-or-nothing. This is done

following the works of [41].
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