
Statistička analiza podataka o tlu

Habjanec, Petra

Undergraduate thesis / Završni rad

2024

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of 
Zagreb, Faculty of Electrical Engineering and Computing / Sveučilište u Zagrebu, Fakultet 
elektrotehnike i računarstva

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:168:116406

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-03-14

Repository / Repozitorij:

FER Repository - University of Zagreb Faculty of 
Electrical Engineering and Computing repozitory

https://urn.nsk.hr/urn:nbn:hr:168:116406
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.fer.unizg.hr
https://repozitorij.fer.unizg.hr
https://zir.nsk.hr/islandora/object/fer:12315
https://repozitorij.unizg.hr/islandora/object/fer:12315
https://dabar.srce.hr/islandora/object/fer:12315


UNIVERSITY OF ZAGREB

FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

BACHELOR THESIS No. 1569

STATISTICAL EXPLORATION AND INFERENCE ON THE

SOIL DATASET

Petra Habjanec

Zagreb, June 2024

 



UNIVERSITY OF ZAGREB

FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

BACHELOR THESIS No. 1569

STATISTICAL EXPLORATION AND INFERENCE ON THE

SOIL DATASET

Petra Habjanec

Zagreb, June 2024

 



UNIVERSITY OF ZAGREB
FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

Zagreb, 04 March 2024

BACHELOR THESIS ASSIGNMENT No. 1569

Student: Petra Habjanec (0036537979)

Study: Electrical Engineering and Information Technology and Computing

Module: Computing

Mentor: assoc. prof. Marina Bagić Babac

Title: Statistical exploration and inference on the soil dataset

Description:

Soil is a non-renewable resource that requires constant monitoring to prevent its degradation and promote its
sustainable management. The Land Use/Cover Area frame statistical Survey Soil (LUCAS Soil) is an topsoil
survey conducted across the European Union and the largest harmonized open-access dataset of topsoil
properties. The purpose of this thesis is to conduct a statistical descriptive and inferential analysis of the LUCAS
dataset, exploring all measured soil parameters and performing regression on selected variables. This approach
aims at better understanding how various factors influence soil properties and how this can impact land
management and environmental sustainability.

Submission date: 14 June 2024

 



SVEUČILIŠTE U ZAGREBU
FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA

Zagreb, 4. ožujka 2024.

ZAVRŠNI ZADATAK br. 1569

Pristupnica: Petra Habjanec (0036537979)

Studij: Elektrotehnika i informacijska tehnologija i Računarstvo

Modul: Računarstvo

Mentorica: izv. prof. dr. sc. Marina Bagić Babac

Zadatak: Statistička analiza podataka o tlu

Opis zadatka:

Tlo je neobnovljivi resurs koji zahtijeva stalno praćenje kako bi se spriječilo njegovo propadanje i promoviralo
održivo upravljanje. Land Use/Cover Area frame statistical Survey Soil (LUCAS Soil) je istraživački projekt tla
provođen diljem Europske unije te predstavlja najveći usklađeni otvoreni skup podataka o svojstvima
površinskog tla. Svrha ovog rada je provesti statističku deskriptivnu i inferencijsku analizu ovog skupa podataka,
istražujući izmjerene parametre tla i provodeći regresiju za odabrane varijable. Ovim pristupom teži se boljem
razumijevanju kako različiti čimbenici utječu na svojstva tla i kako to može utjecati na upravljanje zemljištem i
održivost okoliša.

Rok za predaju rada: 14. lipnja 2024.



  



Thanks to everyone who endured me whilst I was writing this paper. :) 

Thank you, Mare, for your greatly appreciated revisions. 



 

3 

Table of Contents  

Introduction ........................................................................................................................... 1 

1. Related work .................................................................................................................. 2 

1.1. Research Questions................................................................................................ 4 

2. Descriptive Analysis ...................................................................................................... 7 

2.1. Sample Collection.................................................................................................. 9 

2.2. Data Frame Description ......................................................................................... 9 

2.3. Cartographic Representation of Land Cover Types ............................................ 11 

2.4. Cartographic Representation of Land Use Types ................................................ 12 

2.5. Mapping and Visualizing Soil Properties ............................................................ 13 

2.6. Boxplots by Countries ......................................................................................... 17 

2.7. Dependencies of Values ...................................................................................... 19 

3. Methodology and Theoretical Framework .................................................................. 20 

3.1. Kruskal-Wallis Test ............................................................................................. 20 

3.2. Conover’s test ...................................................................................................... 20 

3.3. R-Squared – Coefficient of Determination .......................................................... 21 

3.4. Mean Squared Error............................................................................................. 21 

3.5. K-Nearest Neighbours Regressor Model ............................................................. 21 

3.6. Radius Neighbours Regressor ............................................................................. 22 

3.7. Ridge Regression ................................................................................................. 22 

3.8. Random Forest Regression .................................................................................. 23 

3.9. Multinominal Logistic Regression ...................................................................... 23 

4. Experimental Results ................................................................................................... 25 

4.1. Differences in Soil Properties Distribution for Different Land Cover Types ..... 25 

4.2. Differences in Soil Properties Distribution for Different Geographical Regions 28 



 

 

4.3. Predicting Electrical Conductivity of Soil Based on Soil Properties and 

Geographical Data ........................................................................................................... 33 

4.4. Predicting pH Measured in Calcium Chloride of Soil Based on Soil Properties 

and Geographical Data .................................................................................................... 34 

4.5. Predicting pH Measured in Water of Soil Based on Soil Properties and 

Geographical Data ........................................................................................................... 35 

4.6. Predicting Land Cover Type Based on Soil Properties ....................................... 36 

5. Appendix ..................................................................................................................... 37 

Conclusion ........................................................................................................................... 43 

Refences............................................................................................................................... 44 

Sažetak ................................................................................................................................. 47 

Summary .............................................................................................................................. 48 



 

1 

Introduction 

This paper represents a comprehensive and in-depth research study into the fascinating world 

of soil properties, their distribution across geographical regions, and their impact on the 

types of land cover. The LUCAS (Land Use/Cover Area frame Statistical survey) Soil 

Database, established in the EU, provides a comprehensive data on soil properties across 

Europe, including a variety of measurements such as pH levels, electrical conductivity, 

organic carbon content etc. Soil science is a field that focuses on the study as a natural 

resource, it encompasses the formation, classification, and mapping of soils, and it examines 

their physical, chemical, biological, and fertility properties.  

A key component of this research is the investigation into the relationship between these soil 

properties and the various land cover types including cropland, grassland, woodland and 

bare land. To successfully understand and predict these relationships, statistical tests and 

regression models are employed, each with its own set of strengths and limitations that have 

influenced the outcomes of the study. 

This paper more clearly explains methods adopted and the results derived in predicting soil 

properties and land cover types. Various models are used, such as the K-Neighbours 

Regressor, Ridge Regression, and Random Forest Regression, each of which have 

contributed with unique insights into our research. 

This research has not been limited to the soil properties alone. Spatial data is explored, using 

geo-spatial data to further enhance predictions and provide a wider view of the soil properties 

and their impact on land cover. 

The findings of this research could serve as a valuable resource for further environmental 

research and can potentially guide the development of effective policies related to land 

management and environmental conservation. By gaining a deeper understanding of the soil 

and its properties, we can work towards more sustainable agricultural practices, better land 

use planning, and ultimately, a healthier planet. 
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1. Related work  

Ballabio, et al. used [2] Gaussian process regression to map out LUCAS topsoil chemical 

properties. They made their study on the LUCAS data set from 2009-2012, selecting 

Gaussian processes regression mostly for its capacity for modelling uncertainty and the 

possibilities of adding prior knowledge in form of covariance to the model. Their goal was 

to make maps that would establish baselines that could help monitor soil quality and provide 

guidance for environmental research and help develop policies in the EU.   

Ballabio, et al. in 2015[3] made a paper discussing how the LUCAS dataset can be used for 

mapping soil properties on continental scale. They describe predictions of soil texture and 

derived physical properties. Among other variables, their models used MODIS sensor data, 

that allowed them to monitor changes in vegetation depending on soil properties. They also 

explored predictions of collinear variables like soil texture.   

In paper exploring Copper distribution in European soils, Ballabio, et al. [4] used 

Generalized Linear Models to investigate factors impacting copper distribution in EU soils. 

In regression analysis they found how important topsoil properties, land cover and climate 

are in predicting copper concentration in soil. They also found that, besides the traditional 

use of copper as fungicide, effects of soil properties, high pH, organic carbon and clay, 

combines with humid and wet conditions favoured copper accumulation in soil of vineyards 

and tree crops. Ballabio, et al. [4] also used Gaussian Process Regression (GPR) combined 

with kriging for mapping out concentrations of copper in topsoil. Their GPR model in 

combination with kriging accounted for 66% of Cu deviance. 

In 2014, Panagos et al. [5] explored the soil erodibility in Europe. They explored the K-

factor in soil erosion model, which is used for evaluating sensibility of soil to erode. Using 

the LUCAS soil survey from 2009, they calculated soil erodibility for LUCAS data points 

with nomograph of Wischemeier and Smith. With Cubist regression model, they tried 

correlating spatial data – latitude, longitude, and terrain features, they developed a high-

resolution soil erodibility map. Their produced data set compared well with the local and 

regional data, but the protective effect of surface stone cover resulted in an average 15% 

decrease of the K-factor. By not including this effect in their calculations, their results are 

likely to overestimate soil erosion, especially in Mediterranean countries (where there are 

observed high percentages of surface stone cover).  



 

3 

Also, using the LUCAS dataset in 2020 Gao Y. et al. [6] evaluated global land-cover 

products (GLC) for understanding the differences between these products. Evaluating three 

30-m GLC products based on the areal and spatial consistency using the LUCAS data set, 

they got that the GlobeLand30-2010 product accuracy was the best at the value of 88.90 ± 

0.68%, followed by GLC_FCS30-2015(84.33 ± 0.80%) and FROM_GLC2015(65.31 ± 

1.0%). They also discovered that the consistency between the GLC_FCD30-2015 and 

GlobeLand30-2010 is higher than the consistency between other products, also across the 

EU dominant land-cover types of forestry and cropland are more consistent across the three 

products, compared to the consistency for the bareland, grassland, shrubland, and wetland, 

which is relatively low.  

Karydas et al. [7] used the LUCAS data frame form 2009 as a reference for validating a Land 

Cover Map of Greece from 2007. They decomposed critical vegetation parameters – type, 

height, density, and composition, to investigate unconformities between the maps. Using the 

“automated” and “supervised” processes, they made non-square error matrix for both 

processes. For the “supervised” process, they designed a decision-tree with the critical 

vegetation parameters, allowing objective labelling of both systems. In the end they 

concluded that the LUCAS point database was found to be supportive, but not entirely 

efficient, for identifying various sources of error in land cover maps derived with remote 

sensing. Concluding that the high-resolution satellite images and air photos are absolutely 

necessary for validating accuracy, specifically in heterogenous environments.  

The study of Weigand et al. [8] evaluates the use of LUCAS in-situ reference data for 

classifying high-resolution Sentinel-2 imagery on a large scale, proposing a new pre-

processing scheme for automated national-level classification. Comparing different 

positioning and semantic selection approaches, their study that the positional correlation 

significantly enhances classification accuracy, with an average improvement of 3.7%. 

Newly developed pre-processing scheme achieves the highest overall accuracy of 93.1%, 

while other pre-processing schemes achieve over 80% of accuracy. It was concluded that the 

LUCAS in-situ data is suitable for reference information on a large-scale high-resolution LC 

mapping using Sentinel-2 imagery.  

In the paper Automatic classification of land cover from LUCAS in-situ landscape photos 

using semantic segmentation and a Random Forest model [9] they aimed to develop 

computer vision methodology to extract land cover information form the photos from the 

LUCAS data base. Using the selected representative 1120 photos covering different land 
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cover types, and for each figure they used the LUCAS land cover type, segmented objects 

and pixel count for each ADE20k class, using those as input features they trained Random 

Forest model to predict the land cover type of photos. Their model shows a mean F1 score 

of 89%, and if wetlands are not included the mean F1 score increases to 93%.  

Showing the importance of spatial data during the GIS summer school in Zagreb, Kliment 

et al. [10], groups have collected point features with data attributes for HILUCS land use 

and LUCAS land cover codes, together with photos representing the area. The product was 

a land use data set for Zagreb from 2014 stored on the GIS database, showing that INSPIRE 

and LUCAS approaches can be used to make a harmonized land use dataset from topological 

and fieldwork data.  

Also, demonstrating the importance of spatial data d’Andrimont et al. [11] harmonized the 

data collected during five LUCAS surveys, making the most comprehensive in-situ dataset 

on land cover and use in European Union, making it valuable for geo-spatial and statistical 

analysis though years.  

1.1. Research Questions 

There are several key research questions explored in subsequent sections. These questions 

include investigating differences in soil properties distribution across various land cover 

types, geographical regions, and countries within the same region. Research questions 

explored in this paper are:  

• RQ1. Are there differences in soil properties distribution between soil properties for 

different Land Cover types?   

• RQ2. Are there differences in soil properties distribution between different geographical 

regions?  

• RQ3. Prediction of electrical conductivity based on soil properties and geospatial data.  

• RQ4. Prediction of pH measured in calcium chloride based on soil properties and 

geospatial data. 

• RQ5. Prediction of pH measured in water based on soil properties and geospatial data. 

• RQ6. Predicting land cover type based on soil properties. 

From these research questions we explore the following hypotheses:  

• Ha. There is no significant difference in pH measured in calcium chloride for different 

land cover types. 



 

5 

• Hb There is no significant difference in pH measured in water for different land cover 

types. 

• Hc There is no significant difference in calcium carbonate content for different land cover 

types. 

• Hd There is no significant difference in electrical conductivity for different land cover 

types. 

• He There is no significant difference in extractable potassium for different land cover 

types. 

• Hf There is no significant difference in total nitrogen for different land cover types. 

• Hg There is no significant difference in organic carbon content for different land cover 

types. 

• Hh There is no significant difference in total phosphorus for different land cover types. 

• Hi. There is no significant difference in pH measured in calcium chloride for different 

geographical regions. 

• Hj There is no significant difference in pH measured in water for different different 

geographical regions. 

• Hk There is no significant difference in calcium carbonate content for different 

geographical regions. 

• Hl There is no significant difference in electrical conductivity for different geographical 

regions. 

• Hm There is no significant difference in bulk density in 0-10cm depth for different 

geographical regions. 

• Hn There is no significant difference in extractable potassium for different geographical 

regions. 

• Ho There is no significant difference in total nitrogen for different geographical regions. 

• Hp There is no significant difference in organic carbon content for different geographical 

regions. 
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• Hr There is no significant difference in total phosphorus for different geographical 

regions. 

• Hs There is no significant difference in bulk density in 10-20cm depth for different 

geographical regions. 
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2. Descriptive Analysis 

LUCAS data frame is an area frame statistical survey organized and managed by Eurostat, 

the Statistical office of the EU, to monitor the changes in land use (LU) and Land Cover 

(LC) over time.   

In 2018, soil sampling was carried out in all EU member states using the same set of 25,947 

locations that were targeted in 2015. In 65% of these locations, samples were to be taken 

following the standardized sample from a depth of 20 cm. In the remaining 35% of the 

locations (approximately 9,000 points), metallic rings were used to collect soil cores to 

determine bulk density from the depth of 0-10 and 10-20 cm2. Also, 1,000 fresh samples 

were also collected to assess biodiversity. In the end there are 18,984 soil samples in the 

LUCAS Soil frame from 2018. In this round of surveys, the number of sampled locations 

was lower compared to the previous surveys due to a range of issues – land ownership, 

meteorological conditions during the survey and difficulties in reaching the locations. Also, 

compared to previous years, the survey in 2018 included not only the physio-chemical 

properties of the soil, on some data points additional analysis of soil biodiversity, bulk 

density, and field measurements were obtained.   

At each LUCAS point, the surveyors documented agro-environment observations by filling 

out a field form and by taking photographs. The 2018 LUCAS Soil module comes with 

multiple files providing various aspects of soil data:  

• Basic LUCAS Soil – providing an insight into depths at which the samples were taken, 

basic soil data, oxalate extractable aluminium and iron, land use and land cover   

• LUCAS Soil Erosion  

• LUCAS Soil Organisms   

• LUCAS Soil Bulk Density   

This paper is focused on statistical analysis of LUCAS Soil and LUCAS Soil Bulk Density. 

In Tables 1.1 and 1.2 we can see the descriptions of data given in the data sets.  

Table 2.1 Fields in the file of basic soil properties in the 2018 LUCAS Soil Module 

Filed Description 

Depth Based on sample collected (e.g. 0-20cm, 0-10cm, 20-30cm) 
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POINTID LUCAS Point Identifier – link to Eurostat LUCAS Microdata 

pH_CaCl2 pH – measured in calcium chloride 

pH_H2O pH – measured in water 

EC Electrical conductivity (milli Siemens per meter – mS m-1) 

OC Organic carbon content (g kg-1) 

CaCO3 Calcium carbonate content (g kg-1) 

P Total phosphorus (g kg-1) 

N Total nitrogen (g kg-1) 

K Extractable potassium (g kg-1) 

OC (20-30cm) Organic carbon content (g kg-1) 

CaCO3 (20-30cm) Calcium carbonate content (g kg-1) 

Ox_Al Oxalate extractable Al (mg kg-1) 

Ox_Fe Oxalate extractable Fe (mg kg-1) 

NUTS_0, ..., NUTS_3 NUTS 0 Code, ..., NUTS 3 Code 

TH_LAT LUCAS POINT Theoretical Latitude 

TH_LONG LUCAS POINT Theoretical Longitude 

SURVEY_DATE Date of Survey 

Elev Elevation in meters from surveyor GPS 

LC Primary land cover 

LU Primary land use 

LC0_Desc Description of primary land cover 

LC1_Desc Description of secondary land cover 

LU1_Desc Description of primary land use 

Table 2.2 Fields in the file of Bulk Density of LUCAS Soil 2018 

POINT ID LUCAS Point Identifier 

BD 0-10 Measured Bulk Density for the depth 0-10 cm (g cm-3) 

BD 10-20 Measured Bulk Density for the depth 10-20 cm (g cm-3) 

BD 20-30 Measured Bulk Density for the depth 20-30 cm (g cm-3) - only Portugal 
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BD 0-20 Bulk Density for the depth 0-20 cm (g cm-3) - arithmetic mean based 

on values for 0-10 cm and 10-20 cm 

 

2.1. Sample Collection 

For common sampling procedure, samples of approximately 500g were taken at each 

LUCAS point. For each sample taken the subsamples of a geo-referenced location, and then 

four other subsamples each 2m in the cardinal directions and all of them mixed in a bucket. 

Before taking the samples, stones, vegetation residue, grass and litter were removed from 

the soil surface. Approximately 500g of the mixed soil was taken from the bucket, placed in 

a plastic bag, and labelled. Soil samples were allowed to air dry in the bags before they were 

sealed.[1]  

For determining bulk density, from the depths of 0 to 10 cm and 10 to 20 cm soil cores were 

collected. In Portugal, the soil cores were taken from the depths of 20 to 30 cm to test the 

implications of extending the sampling depths in the LUCAS Soil Module. Again, before 

taking the samples, vegetation residues, grass and litter were removed from the soil surface. 

Five coils were taken from 0 to 10 cm depth with a metallic ring od 100 cm3 at each LUCAS 

point. Again, the initial coil was taken from geo-referenced location and the other four coils 

were taken at 2m in each cardinal direction.[1]  

Lastly, assessment of soil biodiversity was carried out on the same subset of locations as 

for bulk density. Field moist samples were taken from a depth of 20 cm using the standard 

sampling procedure. The final sample was placed in a labelled jar and stored in a polystyrene 

box that was had been cooled with freezer packs, then the samples were sent to the JRC to 

preserve the biological characteristics. Samples were then frozen and stored at –20C at the 

JRC until their shipment to the laboratory for analysis.[1] 

2.2. Data Frame Description 

In this data analysis, two previously mentioned data frames have been used. When analysing 

the bulk density of the soil, the two data frames were merged by the point ids. Also, the 

outliers were removed based on the interquartile range, they were replaced with Nan values. 

In the Basic Soil Properties data frame, we have 18,984 data points, and in the Bulk Density 
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data frame, we have 6,172 data points. In Table 1.3, dispersion of each value in the data 

frame of Basic Soil Properties can be seen, and the same information for the merged Bulk 

Density with Basic Soil Properties in Table 1.4. 

Table 2.3 Descriptions of numerical data in Basic Soil Properties data frame 

 pH_CaCl2 pH_H20 EC OC CaCO3 P N K 

count 18,983 18,983 17,781 16,941 9,804 13,303 17,332 17,955 

mean 5.706 6.259 14.239 25.379 42.398 30.451 2.232 172.384 

std 1.398 1.319 8.005 17.857 75.332 17.928 1.311 115.193 

min 2.600 3.340 0.240 2.100 1.000 0.300 0.200 6.200 

25% 4.500 5.120 7.770 12.400 1.000 16.200 1.300 82.200 

50% 5.800 6.290 13.170 19.600 3.000 25.400 1.900 144.900 

75% 7.100 7.500 18.860 33.200 44.000 40.500 2.900 237.500 

max 9.800 10.43 39.340 87.100 306.000 85.100 6.500 525.000 

 CaCO3 (20-30 cm) Ox_Al Ox_Fe Elev    

count 14 2,313 2,374 18,459    

mean 288.857 0.928 2.128 397.843    

std 236.021 0,470 1.494 366.193    

min 1.000 0,000 0.100 -55.000    

25% 64.500 0,600 1.000 121.000    

50% 287.500 0,800 1.700 251.000    

75% 417.750 1.200 2,900 600.000    

max 702.000 2.300 6.700 1,478.000    

 

Table 2.4 Descriptions of numerical data in Bulk Denstity data frame 

 pH_CaC

l2 

pH_H20 EC OC CaCO3 P N K 

count 6,171 6,171 5,793 5,484 2,866 4,224 5,599 5,832 

mean 5.749 6.309 13.982 24.735 111.846 29.429 2.134 172.209 

std 1.404 1.354 7.526 17.717 152.626 16.652 2.248 115.135 

min 2.800 3.340 0.240 2.200 1.000 0.300 0.200 6.200 

25% 4.600 5.180 7.880 
 

12.100 
1.000 16.300 1.200 83.275 
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50% 5.800 6.350 13.210 19.000 20.000 24.700 1.800 144.250 

75% 7.100 7.590 18.470 31.800 195.750 39.000 2.700 236.225 

max 8.400 9.620 37.350 86.300 574.000 80.300 6.200 516.700 

 CaCO3 (20-30 cm) Ox_Al Ox_Fe Elev BD 0-10 BD   

10-20 

BD   

20-30 

count 14 794 814 6,059 5,908 5,390 189 

mean 288.857 0.974 2.054 422.287 1.052 1.164 1.201 

std 236.021 0.487 1.411 385.0.51 0.333 0.284 0.207 

min 1.000 0.100 0.100 -50.000 0.147 0.329 0.715 

25% 64.500 0.600 0.900 128.000 0.863 0.978 1.058 

50% 287.500 0.900 2.700 260.000 1.102 1.196 1.231 

75% 417.750 1.200 2.800 677.50 1.284 1.366 1.326 

max 702.000 2.500 6.500 1,569.00 1.950 1.972 1.661 

2.3. Cartographic Representation of Land Cover Types 

In Figure 1.1, different Land Cover types mapped out across the continent can be seen. It is 

clear from the figure that most of points were taken on the cropland surfaces, with 7430 

points. Second most points had the woodland land cover type, with 6092 points, next was 

the grassland type with 3988 points. There were 720 shrubland points, 638 bare land points, 

71 artificial land points, 40 wetland points, and lastly only 5 water points.   

It is observed that Scandinavian countries have a high concentration of woodland. Spain, 

France, and Italy have a high concentration of cropland, with Bulgaria, and Romania also 

having patches of high density of cropland. Also, worth mentioning is the high density of 

shrubland and bare land points in Spain, and high density of grassland points in Ireland.   
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Figure  2.1 Maps of description of Land Cover 

2.4. Cartographic Representation of Land Use Types 

In Figure 1.2, spatial distribution of Land Use types with more than 100 points can be seen, 

mostly because of many diverse types of Land Cover with low point count. Firstly, Land 

Cover type with most points is Agriculture (excluding fallow land and kitchen gardens), with 

10,931 points, then Forestry with 5,603 points, Semi-natural and natural areas not in use 

with 1,284 points, Fallow land with 737 points, and Other abandoned areas with 123 points.   

Following types are not included in the map representation:  Amenities, museum, leisure 

(e.g. parks, botanical gardens) (66 points), Electricity, gas and thermal power distribution 

(56 points), Residential (54 points), Road transport (35 points), Kitchen gardens (23 points), 

Mining and quarrying (12 points), Community services (8 points), Sport(8 points), Energy 

production (6 points), Abandoned residential areas (6 points), Protection infrastructures (6 

points), Construction (5 points), Other primary production (4 points), Railway transport (4 

points), Commerce (4 points), Water supply and treatment (2 points), Logistics and storage 

(2 points), Abandoned industrial areas (2 points), Water transport (1 point), Financial, 

professional and information service (1 point) and Abandoned transport areas (1 point).   
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Figure  2.2 Figure  Maps of description of Land Use 

2.5. Mapping and Visualizing Soil Properties 

Photos 1.3-1.11 explain distributions of oxalate extractable aluminum, oxalate extractable 

iron, electrical conductivity, extractable potassium, total nitrogen, total organic carbon 

content, total phosphorus, pH measured in calcium chloride, and pH measured in water.   
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Photos 2.3 and 2.4 show how oxalate aluminum and oxalate iron were taken in only a little 

bit over 10% of points, about 2,500 points out of 19,000 points. For oxalate aluminum it can 

be seen how most of the higher values reside in Scandinavian countries, southern Italy, and 

northwest France. Most of the lower values are in central Spain, Poland, and Germany. The 

spatial distribution of oxalate iron looks quite like that of oxalate aluminum. 

Figure 2.5 explains distribution of electrical conductivity through Europe. Some of the 

highest values lie in the UK, some parts of Spain, and in an area between Italy and Slovenia. 

The lowest values of electrical conductivity lie in Scandinavian countries.   

Figure  2.3 Map of oxalate 

aluminium distribution across a 

map 

Figure  2.4 Map of oxalate iron 

distribution across a map 

Figure  2.6 Map of electrical conductivity 

distribution across a map 

Figure  2.5Map of total potassium 

distribution across a map 
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Figure 2.6 shows that some of the highest values of extractable potassium are in 

Mediterranean parts of Spain and southern Italy, and the lowest values are in Scandinavia, 

northern parts of Germany, and Poland.   

Figure 2.7 shows distribution of total nitrogen. Some of the higher nitrogen values are in 

northern coastal parts of Spain, and southern part of Sweden, and Slovenia. Lower nitrogen 

values are in Spain, Poland, and northern parts of Scandinavia.   

Figure 2.8 is presenting distribution of total organic carbon, with higher values being in 

Slovenia, northern seaside part of Spain and southern parts of Scandinavia, lower values 

being in central Spain, and central Poland.   

Figure 2.9 shows distribution of total phosphorus, with high values being in Denmark, the 

Netherlands, Poland, and northeastern parts of France, and low values in Romania and 

central Italy.   

Figure 2.10 shows distribution of pH measured in CaCl2. Some of the higher values of pH 

lie in south and southeast parts of the Spain, Greece, and Adriatic parts of Italy. Some of the 

lowest values lie in Scandinavian countries. 

Figure 2.8 Map of total nitrogen 

distribution across a map 
Figure 2.7 Map of organic carbon 

content distribution across a map 
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Figure 2.11 shows distribution of pH measured in H2O, where the distribution is similar to 

the distribution of pH CaCl2.  

Figure 2.10 Map od total phosphorus 

distribution across a map 

Figure 2.9 Map of pH measured in calcium 

chloride distribution across a map 

Figure 2.11 Map of pH measured in water 

distribution across a map 
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2.6. Boxplots by Countries 

This part examines differences between the countries in measured values. Regarding the 

boxplots for oxalate extractable aluminum (Figure 5.1), there is a noticeable variability in 

oxalate extractable aluminum levels across countries. Some countries like Finland and 

Ireland exhibit higher median values, indicating richer aluminum oxalate content. Countries 

like Latvia, Belgium, and Slovakia show narrow IQRs, indicating low variability of values 

in these countries. Contrary to that, countries like Cyprus, the UK, and the Netherlands have 

wide IQRs showing great variability of values within those countries.  

Regarding boxplots for oxalate extractable iron (Figure 5.2), levels of oxalate extractable 

iron show substantial differences among countries. Ireland and the UK stand out with higher 

median values, reflecting higher iron oxide content. A considerable number of outliers are 

present in countries like Spain and Poland, indicating a wide range of iron oxalate 

concentrations. Countries such as Latvia, Lithuania, Ireland, Slovenia, and Spain show 

narrow IQRs, indicating low variance of values in those countries, while others like Finland, 

Italy, and Sweden have wider IQRs, signifying diverse iron oxide levels.   

Turning to the values of electrical conductivity across European countries (Figure 5.3). 

Countries like the UK, Italy, and Ireland have higher median values, indicating higher values 

of EC in their soil. There are numerous outliers in all countries, with Finland, Spain, and 

Sweden having especially high counts of outliers, suggesting considerable variation in 

electrical conductivity of soil. For IQRs, countries such as Finland and Luxembourg have 

narrower IQRs, whereas Ireland, Austria, Romania, and the UK exhibit broader IQRs 

indicating greater variation of EC across those countries.   

Looking at the distribution of pH measured in H2O (Figure 5.4), a substantial variability 

across countries is revealed. Sweden and Finland stand out as countries with by far most 

outliers, suggesting considerable variability. Countries like Hungary, and Czech Republic 

have wide IQRs, showing a wide variation, contrary to that Cyprus stands out with quite 

narrow IQR, showing small to no variation in soil pH. Looking at the pH measured in 

CaCl2(Figure 5.5), similar distribution of pH can be seen, with some of the biggest 

differences showing up for Hungary and Greece. Hungary for this measure of pH has a bit 

narrower IQR for CaCl2, and Greece having one major outlier lying in the pH of 10.   
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Looking at the distribution of calcium carbonate content, in Figure 5.6, there are quite a few 

outliers, showing that CaCO3 distribution in all countries is quite various. Countries like 

Spain and Italy have a wide IQRs, showing the wide variation of calcium carbonate content 

in those countries. Many countries show narrow IQRs and many outliers, showing great 

variation of values within those countries.  

Analysing the graph in Figure 5.7, distribution of extractable potassium is examined. Most 

of the countries have a wide spread of IQRs and many outliers, indicating a great variation 

of extractable potassium across most European countries. Only country jumping out is Malta 

because of only 2 readings in that country.  

Similar occurrence is observed in Figure 5.8 - widespread IQRs and many outliers with 

distribution of total nitrogen in soil. In this distribution, Cyprus has narrower IQR and a 

small number of outliers, showing a small variation of total nitrogen within the country’s 

soil.  

For distribution of organic carbon content (Figure 5.9), there is a similar pattern of countries 

having wide IQRs and many outliers, with Cyprus and Belgium standing out with a small 

number of outliers and narrow IQRs. Observing the graph in Figure 5.10, there is a similar 

pattern in the distribution of total phosphorus, many outliers and wide IQRs across many 

countries. The ones that stand out the most are Belgium, Luxemburg, Slovakia, and 

Netherlands with wide IQRs but not many outliers. This suggests that, although significant 

variation is present, values remain within a consistent range without extreme deviation.   

Lastly, bulk density for the depth of 0-10cm in Figure 5.11 is examined. Median values of 

bulk density values vary across countries, indicating differences in the central tendency of 

the data. Countries like Slovenia, Latvia, Estonia, Finland, and Sweden have wide IQRs and 

no outliers, indicating a wide variation of values, but still within certain limits. On the other 

hand, countries like Czech Republic, France, and Spain still have wide IQRs, but also 

outliers on each side indicating the presence of extreme values outside of a certain range. In 

Figure 5.12, for bulk density on depth of 10-20cm there is a continuation of a similar pattern.  
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2.7. Dependencies of Values 

Looking at Figure 2.12 it can be seen that there are correlations of basic soil properties from 

the database. Some of the highest values worth mentioning are correlation between pH 

measured in calcium chloride and pH measured in water with the correlation of 0.99, and 

correlation between organic carbon content and total nitrogen with the correlation of 0.83.  

  

Figure 2.12 Correlation of basic soil properties 
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3. Methodology and Theoretical Framework  

3.1. Kruskal-Wallis Test  

The Kruskal-Wallis test [12] is a nonparametric procedure for testing if the 𝑘 independent 

samples are from identical populations. For testing the null hypothesis, we compute the 

formula (1) where 𝑟𝑖  is the assumed value of 𝑅𝑖 , for 𝑖 = 1, 2, … , 𝑘. If ℎ falls in the critical 

region 𝐻 >  𝜒𝛼2  with 𝑣 = 𝑘 + 𝑖  degrees of freedom, we reject the 𝐻0  at the 𝛼 -level of 

significance, otherwise we fail to reject the 𝐻0. ℎ =  12𝑛(𝑛+1) σ 𝑟𝑖2𝑛𝑖 − 3(𝑛 + 1)𝑘𝑖=1                 (1) 

3.2. Conover’s test  

The Conover’s test [13] performs the post hoc pairwise multiple comparisons procedure 

appropriate to follow the rejection of Kruskal-Wallis test. Conover tests make 𝑚 = 𝑘(𝑘−1)2  

multiple pairwise comparisons based on the Conover-Iman t-test statistic for the rank-sum 

differences (2), where  𝐻 ∗ is defined like in (1), 𝑅𝑖ഥ  and 𝑅𝑗ഥ  are the mean ranks of groups 𝑖 
and 𝑗, 𝑠2 the variance of ranks defined like in (3), 𝑛 is the total number of observations, 𝑘 is 

the number of groups, 𝑛𝑖 and 𝑛𝑗 are the sizes of groups 𝑖 and 𝑗. Here we have null hypothesis 

that the distribution of group 𝑖 is equal to the distribution of group 𝑗. 

ห𝑅𝑖ഥ − 𝑅𝑗ഥ ห > 𝑡1−𝛼2;𝑛−𝑘ට𝑠2 ቂ𝑛−1−𝐻∗𝑛−𝑘 ቃ  1𝑛𝑖 + 1𝑛𝑗൨                (2) 

𝑠2 = 1𝑛−1 ቂσ 𝑅𝑖2 − 𝑛(𝑛+12 )2ቃ                (3) 

Here using the Holm p-value adjustment with the formula (4) where 𝑘 is the rank of the p-

value, and 𝑚 is the total number of comparisons.  𝑝 − 𝑣𝑎𝑙𝑢𝑒 = min (𝑝 × (𝑚 − 𝑘 + 1), 1)                (4) 
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3.3. R-Squared – Coefficient of Determination  

R2 is a coefficient of determination [14], it is a measure of the proportion of variability 

explained by the fitted model. Using the sum of squares (5) and the total corrected sum of 

squares (6). SSE values is the variation due to an error, or variation explained. Then 𝑅2 is 

values is calculated by the formula (7). If the fit is perfect, all residuals are zero, and then 𝑅2 = 1.0, but if 𝑆𝑆𝐸 is only slightly smaller than 𝑆𝑆𝑇, then we have 𝑅2 ≈ 0.0. A value of 𝑅2 ≈ 1.0 illustrates a good fit, and 𝑅2 ≈ 0 a poor fit.  𝑆𝑆𝐸 =  σ (𝑦𝑖 − 𝑦ො𝑖)2𝑛𝑖=1                 (5) 𝑆𝑆𝑇 = σ (𝑦𝑖 − 𝑦ത𝑖)2𝑛𝑖=1                 (6) 𝑅2 = 1 − 𝑆𝑆𝐸𝑆𝑆𝑇                (7) 

3.4. Mean Squared Error 

Mean squared error (MSE) [15] measures the amount of error in statistical models. It 

addresses the average squared difference between the observed and predicted values. The 

formula is as it states in (8), where 𝑦𝑖 is the i-th observed value, 𝑦ො𝑖 is the corresponding 

predicted value, and 𝑛 as the number of observations.  𝑀𝑆𝐸 =  σ(𝑦𝑖−𝑦ො𝑖)2𝑛                 (8) 

The calculations for the mean squared error are similar to the variance. Squaring increases 

the impact of larger errors. These calculations disproportionately penalize larger errors more 

than smaller errors.  

3.5. K-Nearest Neighbours Regressor Model  

The K-Nearest Neighbours (KNN) algorithm [16] is a non-parametric method used for 

regression. The model operates on the principle that similar instances exist in close proximity 

in the feature space. It predicts the value of a new data point based on the values of its k-

nearest neighbours in the training dataset.  

In this study, the Haversine metric (9) [17] is employed to measure the distance between 

points. It is used for calculating the great circle distance between two points on the Earth’s 

surface, providing an accurate measure of distance over spherical geometry. This is 
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particularly useful considering we are using distances measured along the earth surface, 

rather than the straight line.  

𝑑 = 2𝑟 sin−1 ቆටsin2(𝜙2−𝜙12 ) +  cos(𝜙1) cos(𝜙2) sin2(𝜆2−𝜆12 )ቇ                (9) 

Algorithm works by first calculating the distance, then the algorithm identifies the k-nearest 

neighbours to the query point on the calculated distance. For regression tasks, it calculates 

the predicted value for the query based on the mean of the values of its k-nearest neighbours. 

It takes two parameters, on we already mentioned is the distance metric where we use the 

Haversine metric. It also takes the k, number of neighbours considered for calculating.  

3.6. Radius Neighbours Regressor  

The Radius Neighbours Regressor [18] is an extension of the KNN model, but instead of 

fixed number of neighbours, it considers all neighbours within a specified radius r.  

For each test data point, all training data points within a specified radius r are identified using 

the Haversine distance (9) [17]. For predicting, the output value is computed as the mean of 

the target values of the neighbours within the radius.  

The radius within which neighbours are considered is critical parameter. Too small of a 

number might result in too few neighbours, while a large radius could include irrelevant 

neighbours.  

3.7. Ridge Regression  

Ridge Regression [19] is a technique used to address multicollinearity in linear regression 

models by adding a penalty term to the ordinary least squares (OLS) method, which helps in 

reducing the model’s complexity and preventing overfitting.  

It modifies the cost function of the linear regression model by adding a penalty proportional 

to the square of the magnitude of the coefficient. The goal is minimizing the sum of the 

squared residuals (RSS) while also shrinking the coefficients (10) where 𝜆  is the 

regularization parameter, and 𝛽𝑗  are the coefficients. 𝜆 σ 𝛽𝑗2𝑝𝑗=1  is a regularization term 

which introduces bias into the model. This bias helps to reduce the variance, leading to better 

performance on new data by avoiding overfitting.  
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𝑅𝑖𝑑𝑔𝑒 𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝑅𝑆𝑆 +  𝜆 σ 𝛽𝑗2𝑝𝑗=1                 (10) 

Process is, fitting a linear regression model to the data by minimizing the 𝑅𝑆𝑆 (11), where 𝑦𝑖 are the observed values and 𝑦ො𝑖 are the predicted values. Then adding the regularization 

term (12) to modify the cost function to include the penalty term.  𝑅𝑆𝑆 = σ (𝑦𝑖 − 𝑦ො𝑖)2𝑛𝑖=1                 (11) 𝐶𝑜𝑠𝑡 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝑅 σ (𝑦𝑖 − 𝑦ො𝑖)2𝑛𝑖=1 +  𝜆 σ 𝛽𝑗2𝑝𝑗=1                 (12) 

Ridge Regression introduces bias into the model to reduce variance, this trade-off is crucial 

in preventing overfitting, as a model with high variance in sensitive to small fluctuations in 

the training data.  

3.8. Random Forest Regression  

Random Forest Model [20] works by creating many decision trees, each built on a randomly 

chosen subset of the data. It uses an ensemble of decision trees to predict continuous target 

variables.  

When building a random forest regression model, firstly we make a number of randomly 

chosen bootstrapped subsets of the data, then from making decision trees from each one. 

Each subset can contain the same data row more times. So, then when the model is making 

predictions, it gets the outputs of each tree it created and based on the average of all the 

outputs from the forest of decision trees.  

This process has many advantages, it is less prone to overfitting than other linear models. 

These models are computationally efficient and require fitting fewer parameters compared 

to other algorithms.  

3.9. Multinominal Logistic Regression  

Multinominal Logistic regression [21] is an extension of logistic regression that allows for 

the inclusion of more than one independent variable. This methodology is particularly useful 

when the research involves a nominal dependent variable and two or more measurement 

independent variables. The primary goal of multiple logistic regressor is to model the 

relationship between these variables and to predict the probability of certain outcomes based 

on the values of the independent variables.  
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The model given the predictors 𝑋1, 𝑋2, … , 𝑋𝑛 models the probability of each 𝑗 of 𝑌 by (13), 

it implies that σ 𝑝𝑗(𝒙) = 1𝐽𝑗=1  and that there are (𝐽 − 1) × (𝑝 + 1)  coefficients. In the 

formula 𝛽0𝑗 is the intercept term for class j, 𝛽𝑖𝑗 are the coefficients for predictor 𝑋𝑖 for class 𝑘, 𝑛 is the number of predictors, and 𝐽is the number of classes.  

𝑝𝑗(𝒙) = ℙሾ𝑌 = 𝑗ȁ𝑿ሿ =  𝑒𝛽0𝑗+σ 𝛽𝑖𝑗𝑋𝑖𝑛𝑖=11+σ 𝑒𝛽0𝑙+σ 𝛽𝑖𝑙𝑋𝑖𝑛𝑖=0𝐽−1𝑙=1                 (13) 

 

When the model predicts the outcome the class with the highest predicted probability is 

chosen as the predicted class. This process allows logistic regression to be extended to handle 

multiple classes of data classification effectively.  
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4. Experimental Results  

The data was taken from a LUCAS Soil Database in 2018. Both basic soil properties and 

bulk density were used in this data analysis. Only for instances where the bulk density was 

used in the analysis, the merged data frame was used. Based on all the previous data. The 

aim was to answer research questions (RQ1 – RQ6).  

4.1. Differences in Soil Properties Distribution for 

Different Land Cover Types 

The purpose of this part is to answer if there is any difference in soil properties between 

different land cover types (RQ1). It is important to mention that this analysis only analyse 

the land cover types woodland, cropland, grassland and bare land, because the rest of the 

land cover types, including Shrubland, Artificial land, Wetland and Water, do not have 

enough data points for analysis.  

To explore if there are any significant differences in soil properties for land cover types, 

Kruskal-Wallis statistical test is performed, and data is shown in the Table 4.1. Considering 

small p-values, somewhere as small as 0(*), the differences are investigated more in-depth, 

with post-hoc Conover’s tests. In this part, only the Conover’s tests with noteworthy results 

are explored.   

Table 4.1 Results of Kruskal Wallis test for different land cover types 

property pH_CaCl2 pH_H2O CaCO3 EC 

statisic 6877.241 6941.469 1990.063 1543.069 

p-value 0.000* 0.000* 0.000* 0.000* 

Hypothesis Ha Hb Hc Hd 

Conclusion Reject Reject Reject Reject 

property K N OC P 

statisic 2597.263 1763.355 3753.436 473.035 
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p-value 0.000* 0.000* 0.000* 3.32E-102 

Hypothesis He Hf Hg Hh 

Conclusion Reject Reject Reject Reject 

Figure 4.1 shows the results for Conover’s test pairwise comparisons for electrical 

conductivity. The notable part is the value for a pair of cropland and bareland types with 

the p-value of 0.068, indicating notable similarity between types with the significance level 

of 0.05.  

 

Figure 4.1 Conover’s test pairwise comparisons for EC 

Examining the results of Conover’s test in Figure 4.2, small values between almost all pairs 

are seen, confirming the differences between the pairs. Pair of grassland and bareland being 

the outliers, with the p-value of 0.34 showing moderate similarity between the land cover 

types.   
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Figure 4.2 Conover’s test pairwise comparisons for total 

Looking at the results in Figure 4.3, small p-values between most of the pairs are observed, 

confirming the significant differences between land cover types. With p-values of 0.32, pair 

of bareland and cropland stand out, showing lack of significant difference and suggesting 

moderate similarity between the groups for measure of extractable potassium.  

 

Figure 4.3 Conover’s test pairwise comparisons for extractable potassium 
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4.2. Differences in Soil Properties Distribution for 

Different Geographical Regions 

This part aims to explore differences in soil properties in different geographical regions 

(RQ2). To divide the data into different regions we have used the geographical division, 

meaning data set has: the UK, Ireland, Luxembourg, Netherlands, Belgium, and France in 

Western Europe, Denmark, Sweden, Finland, Lithuania, Estonia, and Latvia in Northern 

Europe, Germany, Poland, Austria, Czech Republic, Slovenia, Croatia, Hungary, and 

Slovakia in Central Europe, Portugal, Spain, Italy, Cyprus, and Greece in Southern Europe, 

and Bulgaria, Romania and Malta in Southeastern Europe.  

To explore if there are any significant differences in soil properties trough geographical 

regions of Europe, Kruskal-Wallis statistical test is performed, and the following results are 

presented in the Table 4.2. Based on the low p-values for each of the soil properties, it can 

be concluded that there are differences in each soil property trough different geographical 

regions of Europe. Considering quite small p-values, it was decided to explore the 

differences between soil properties in each region a bit further with post-hoc Conover’s test. 

Next, some of the more interesting findings with the Conover’s test will be explored.    

Table 4.2 Results of Kruskal Wallis test for different geographical regions 

property pH_CaCl2 pH_H2O CaCO3 EC BD 0-10 

statisic 6007.982 5725.906 2598.151 1673.47 469.708 

p-value 0.000* 0.000* 0.000* 2.219E-284 2.381E-100 

Hypothesis Hi Hj Hk Hl Hm 

Conclusion Reject Reject Reject Reject Reject 

property K N OC P BD 10-20 

statisic 2612.642 1037.538 1344.514 808.526 274.0535 

p-value 0.000* 2.614E-223 7.425E-290 1.093E-173 3.359E-58 

Hypothesis Hn Ho Hp Hr Hs 

Conclusion Reject Reject Reject Reject Reject 

Firstly, regarding the pairwise comparison for pH measured in calcium chloride shown in 

the Figure 4.4, it can be seen that for most of the pairs the p-values is quite low, confirming 

significant difference between the regions. The standout p-value is the one between 
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Southeast and Western Europe, with the p-values of 0.43, indicating no significant difference 

between regions.   

 

Figure 4.4 Conover’s test pairwise comparison for pH measured in calcium chloride 

Secondly, regarding the results of the Conover’s test for pH measured in water (Figure 4.5), 

it can be seen that most pairs have a small p-values, confirming that there is a significant 

difference between pairs. We also have a standout p-value of 0.086 between Southeast and 

Western Europe, showing no significant difference between regions.   

 

Figure 4.5 Conover’s test pairwise comparison for pH measured in calcium chloride 

Continuing, regarding the Conover’s test for pairs based on the electrical conductivity, 

shown in Figure 4.6, the small values for all pairs can be seen, except for the pair of Western 

and Southern Europe with the p-value of 0.84. Where values lower than 0.05 indicate 

significant difference between pairs, and values higher than 0.05 indicating no significant 

difference between pairs.    
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Figure 4.6 Conover’s test pairwise comparison for electrical conductivity 

Regarding the results of Conover’s test for pairs depending on the organic carbon content of 

soil (Figure 4.7), it is noticed that most pairs have a low p-values indicating significant 

differences between pairs, excluding the p-value od 0.089 between pairs of Southeast and 

Central Europe, with the values indicating no significant difference between pairs.  

 

Figure 4.7 Conover’s test pairwise comparison for organic carbon content 

Looking at the results for the pairs depending on the calcium carbonate content, from 

Conover’s test (Figure 4.8), it can be seen once again that many p-values are lower than 0.05 

indicating significant differences between pairs in terms of the calcium carbonate content in 

soil. The p-value of 0.13 stands out for the pair of Southeast and Central Europe, indicating 

no significant difference in soils calcium carbonate content.  
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Figure 4.8 Conover’s test pairwise comparison for calcium carbonate content 

In terms of Conover’s test for total phosphorus in soil (Photos 4.9), it can be seen that most 

of the values indicate no significant difference between pairs, having values lower than 0.05, 

except for the pair of Western and Central Europe. Pair of Western and Central Europe has 

a p-value of 0.046 indicating sufficient evidence to say that there is a significant difference 

between pairs, but with a lower level of significance contrary could be concluded. 

 

Figure 4.9 Conover’s test pairwise comparison for total phosphorus 

Examining Figure 4.10, results of Conover’s test pairwise comparison for total nitrogen are 

explored. We see that most of pairs have small p-values indicating significant difference 

between pairs, excluding the pair of Southeast and Central Europe with the p-value of 0.088, 

showing that there is no significant difference between Southeast and Central Europe in 

terms of total nitrogen in soil. Also, the pair of Southeast and Northern Europe has a p-value 

of 0.13, also indicating that there’s no significant difference between regions.  
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Figure 4.10 Conover’s test pairwise comparison for total nitrogen 

Lastly, Figure 4.11 shows the results of Conover’s test for bulk density in depths of 10-

20cm. It can be seen that regions of Southeast and Northern Europe have low p-values for 

each of their parings, showing significant differences in bulk density between those regions 

all other regions. Looking at values between Western, Southern and Central Europe we can 

see that there is no significant difference between those regions for the significance level of 

0.05. For pairs Central and Southern Europe having a p-value of 0.54, Central and Western 

Europe having a p-value of 0.38. 

 
Figure 4.11 Conover’s test pairwise comparison for bulk density 10-20cm 

depth 
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4.3. Predicting Electrical Conductivity of Soil Based on 

Soil Properties and Geographical Data 

To predict electrical conductivity depending on the soil properties, few models, varying with 

levels of success were tried out, including K-Neighbours Regressor model, Radius 

Neighbours Regressor model, Ridge Regression and Random Forest Regression. First two 

models were only used with geographical data, and the other two with soil properties and 

geographical data.   

K-Neighbours Regressor model, which uses only geographical data, has an MSE of 0.296 

and R2 value of 0.250, meaning that approximately 25.0% of the variance in the electrical 

conductivity can be explained by geographical features alone. This relatively low R-squared 

value suggests that geographical data alone might not be sufficient for accurately predicting 

electrical conductivity. To make model’s predictions better we predicted logarithmic values 

of EC, which made the R2 much higher than with ordinary EC.  

Similarly, Radius Neighbours Regressor model, also utilizing only geographical data, 

performs slightly worse than the K-Neighbours model with an MSE of 0.276 and R2 value 

of 0.301, indicating that the radius-based approach might capture the underlying patterns in 

data a little more effectively than the K-Neighbours model. Here too we used logarithmic 

values of electrical conductivity to make the model better.   

Ridge Regression model, utilizing both soil properties and geographical data, has an R2 value 

of 0.446 and mean squared value of 33.165. R2 indicates that approximately 44.6% of the 

variance in electrical conductivity can be explained by the combined effects of soil 

properties and geographical features. The coefficients provide insight into the relationship 

between each feature and the electrical conductivity, considering the regularization effect 

imposed by Ridge Regression, coefficients can be seen in the Table 3.3.   

Table 4.3 Coefficients of features in Ridge Regression for electrical conductivity 

Feature OC CaCO3 N K TH_LAT TH_  

LONG 

Intercept 

Coefficient -3.481 1.747 5.436 1.959 -0.650 0.362 14.402 

The Random Forest Regression model, which incorporates both soil properties and 

geographical data, achieves mean square error of 26.902 and a higher R2 of 0.551. For 

predictions in this model, the best R2 measure was achieved using the organic carbon content, 
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calcium carbonate content, total nitrogen, extractable potassium, and geospatial data 

(longitude and latitude). This suggests that the Random Forest model provides a much better 

fit to the data than other models.   

4.4. Predicting pH Measured in Calcium Chloride of Soil 

Based on Soil Properties and Geographical Data 

In predicting pH measured in calcium chloride, the same approach to answer the research 

question RQ3 was used. Inspecting the predictions with K-Neighbours Regressor model, 

Radius Neighbours Regressor model, Ridge Regression and Random Forest Regressor 

model. In the first two we used only geospatial data for predictions, and geospatial data and 

soil features in second two approaches.  

In K-Neighbours Regressor model, using only geospatial data, value of mean square error is 

0.762 and R-squared is 0.622, meaning the model predicts about 62.2% of variance in pH 

measured in calcium chloride by only geospatial data.   

Using Radius Neighbours model, the value of mean squared error is 0.781, and R2 value is 

0.612. These values indicate that the model captures only about 61.2% of the actual pH 

values, meaning our model might not be capturing the whole picture.   

With Ridge Regression for predicting pH measured in calcium chloride, this time not using 

only geospatial data, but also soil properties, the value of R-squared is 0.639, and MSE is 

0.673. R2 value shows that the model correctly predicts about 63.9% of variance of pH. The 

coefficients provide us with an insight into impact of each feature on pH measured in calcium 

chloride, the specific coefficients can be seen in the Table 4.4, although they are regulated 

by the standard scaler necessary for Ridge Regression.   

Table 4.4 Coefficients of features in Ridge Regression for pH measured in CaCl2 

Feature OC CaCO3 P N K TH_LAT TH_  

LONG 

Intercept 

Coefficient -0.880 0.347 0.008 0.560 0.415 -0.287 0.043 6.095 

Lastly, Random Forest Regressor model was implemented, with the aim of predicting pH 

measured in calcium chloride based on organic carbon content, calcium carbonate content, 

total nitogren, extractable potassium, and geospatial data (longitude and latitude). With this 

model R2 value is 0.862 and mean MSE is 0.269, meaning the model predicts about 86.2% 
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in variance of pH. This makes this model best fit for predicting our pH measured in calcium 

chloride from our features. 

4.5. Predicting pH Measured in Water of Soil Based on 

Soil Properties and Geographical Data 

Trying to predict values of pH measured in water, several models were used, including K-

Neighbours Regressor model, Radius Neighbours Regressor model, Ridge Regression and 

Random Forest Regressor model. In predicting for first two only geospatial data was used, 

but in the second two both soil features and geospatial data for predicting pH values was 

used.   

Using the K-Neighbours Regressor model, the values for MSE is 0.691 and for R2 is 0.613, 

meaning that with only spatial data we can predict about 61.3% values correctly. In other 

instance of using only geospatial data – Radius Neighbours Regressor we get the values of 

0.700 as mean square error and 0.607 as R-squared, indicating that this model predicts only 

about 60.7% of variance in pH measured in water.   

Using Ridge Regression, the values of 0.630 and 0.615, for R-square and mean squared error 

respectively are received. R-squared error indicates that the model predicts about 61.3% of 

variance. In Table 4.5 we can see the coefficients but scaled by the standard scaler required 

for the Ridge Regressor model.   

Table 4.5 Coefficients of features in Ridge Regression for pH measured in water 

Feature OC CaCO3 P N K TH_LAT TH_  

LONG 
Intercept 

Coefficient -0.774 0.359 0.003 0.420 0.407 -0.241 0.0387 6.611 

In the end, the implementation with Random Forest Regressor for predicting the pH values 

measured in water was tried out. As features for predicting we got the best values using 

organic carbon content, calcium carbonate content, total nitrogen, extractable potassium, and 

geospatial data (longitude and latitude) as features. We got the value R2 of 0.870 and MSE 

value of 0.231. This model then predicts about 87.0% in variance of pH measured in water. 

This makes this model the best one made for predicting pH. 
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4.6. Predicting Land Cover Type Based on Soil Properties 

The logistic regression model was developed to predict land cover type based on soil 

properties. In Table 4.6, the performance metric of the model can be seen. An overall 

accuracy of this model is 78.2%. This model, which considers organic carbon content, 

calcium carbon content, total nitrogen, and extractable potassium as predictors, effectively 

discriminates between cropland, grassland, and woodland. The model exhibits high 

precision of 0.79 and recall of 0.92 for cropland, indicating its robustness in correctly 

identifying this land cover type. For woodland, recall and precision values are also quite 

good at 0.83 and 0.81, respectively. On the other side, model’s performance is less optimal 

for grassland, with a precision of 0.56 and recall of 0.30, suggesting room for improvement 

in this category. Still, despite this, the macro-average F1-score of 0.78 and the weighted-

average F1-score of 0.76 highlight the model’s overall efficiency. These results explain the 

potential of using soil properties in logistic regression models to predict land cover types.    

Table 4.6 Performance metrics of the logarithmic regression model for predictions of land cover 

type 

 Precision Recall f1-score Support 

Cropland 0.79 0.92 0.85 466 

Grassland 0.56 0.30 0.39 149 

Woodland 0.83 0.81 0.82 313 

Accuracy   0.78 928 

Macro average 0.73 0.68 0.69 928 

Weighted 

 average 

0.77 0.78 0.76 928 
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5. Appendix 

 

Figure 5.1 Box plots of oxalate extractable iron across countries 

 

Figure 5.2 Box plots of oxalate extractable iron across countries 
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Figure 5.3 Box plots of electrical conductivity across countries 

 

Figure 5.4 Box plots of pH measured in calcium chloride across countries 
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Figure 5.5 Box plots of pH measured in calcium chloride across countries 

 

Figure 5.6 Box plots of extractable potassium across countries 
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Figure 5.7 Box plots of extractable potassium across countries 

 

Figure 5.8 Box plots of total nitrogen across countries 
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Figure 5.9 Box plots of organic carbon content across countries 

 



 

42 

Figure 5.10 Box plots of total phosphorus across countries 

 

Figure 5.11 Box plots of bulk density countries for depth 0-10cm across countries 

 

Figure 5.12 Box plots of bulk density countries for depth 10-20cm across countries 
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Conclusion 

All in all, our comprehensive study sheds light on the relationships between soil properties, 

geographical location, and land cover types. Our findings have been supported by 

application of statistical tests such as Kruskal Wallis test, along with regression techniques. 

Kruskal Wallis test was used to explore if there are differences in soil properties across 

different land cover types and different geographical regions.  

Our findings are based on the application of statistical models and regression techniques. 

These methods, including K-Neighbours Regressor, Radius Neighbours Regressor, Ridge 

Regression, and Random Forest Regression models, have enabled us to generate predictions 

about these relationships. Each model provides us unique insight into understanding of the 

soil properties and their impact on land cover types and pH values. 

Outcomes of our research have potential implications for various fields, including 

environmental science, land management, and agricultural practices. Insight gained could 

serve as a foundation for further research, contributing to the development of effective 

policies related to land management and environmental conversion. By understanding the 

nature of our soil and how it interacts with different geographical features and land cover 

types, we can work towards more suitable agricultural practices and better land use planning.  

However, it is important to note that our study is not without its limits. While our models 

have been effective in predicting certain relationships, there is always a degree of uncertainty 

and room for improvement. Future research could focus on refining these models, including 

more diverse soil properties, or investigating different geographical regions. Further, it 

would be beneficial to integrate more contextual factors, such as climate data, to provide a 

more comprehensive understanding of the complex dynamics at play.  

Overall, our research represents a stepping stone in understanding the intricate relationships 

between soil properties, geographical data, and land cover types. We hope that the insights 

gained from this study will spark further research, leading to more sustainable and informed 

decisions for our planet’s future. 
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Sažetak 

Ovo istraživanje ispituje odnos između svojstava, njihovog zemljopisnog položaja i tipova 

pokrova zemljišta u Europi koristeći podatke iz LUCAS baze podataka o tlu. Korištenjem 

Kruskal-Wallis testova i Conoverovih post-hoc uparenih testova, istraženo je postoje li 

razlike u svojstvima tla između tipova pokrova zemljišta i između zemljopisnih regija. 

Različiti statistički modeli i tehnike, uključujući K-Neighbours regresor, Radius Neighbours 

regresor, Ridge regresiju i Random Forest regresiju, korišteni su za predviđanje ovih odnosa. 

Rezultati pokazuju da svojstva tla značajno utječu na tipove pokrova, dok geoprostorni 

podaci poboljšavaju robusnost predikcija. Analiza ima implikacije za istraživanje okoliša, 

upravljanje zemljištima i poljoprivrednim praksama te bi moglo usmjeriti razvoj politika za 

iste.  
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Summary 

This study examines the relationship between soil properties, geographical location and land 

cover types in Europe using the data from LUCAS Soil Database. Using Kruskal Wallis tests 

and post-hoc Conover’s pairwise tests we have explored if there are differences in soil 

properties between land cover types and between geographical regions. Various statistical 

models and regression techniques, including K-Neighbours Regressor, Radius Neighbours 

Regression, Ridge Regression, and Random Forest Regression were used to predict these 

relationships. The findings indicate that soil properties significantly influence land cover 

types. Geospatial data improved the robustness of the predictions. The study has implications 

for environmental research, land management, and agricultural practices and could guide the 

development of related policies.  


