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Assistant Professor Jörgen Ahlberg, Ph.D.

Zagreb, 2024



FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA
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Ahlberg, for providing support throughout the entire process of writing this thesis, as their

expertise and guidance were essential for this accomplishment. Moreover, I am thankful for

their guidance in challenging life circumstances, helping me keep moving in the right direction.
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Abstract

This thesis explores the intricate task of facial age estimation with a focus on the role of data in

the design of machine-learning-based systems. Supervised machine learning algorithms rely on

large amounts of labeled data to learn a mapping between the input data (e.g., facial images or

videos) and associated labels (e.g., age or gender). Due to difficulties related to biometric data

collection, facial image datasets with biometric trait labels are scarce and frequently limited

in terms of size and sample diversity. Web-scraping approaches for automatic data collection

can produce large amounts of heterogeneous but weakly labeled and noisy data. The portion

of erroneous samples in such data can be automatically reduced by the proposed unsupervised

biometric data filtering method. The problem of data scarcity is further addressed by designing

a new public facial image dataset. The proposed derived dataset is thoroughly compared to

various state-of-the-art datasets with very favorable results and interesting insights about the

significance of data. Video sequences can capture many spatiotemporal dynamic cues related to

age progression. However, video-based age estimation is an understudied research field. This

may be caused by a lack of well-defined and publicly accessible video benchmark protocols,

as well as the absence of video-oriented training data. The former issue was addressed by

proposing a carefully designed video age estimation benchmark protocol and making it publicly

available. The latter issue was addressed by designing a video-specific age estimation method

that leverages pseudo-labeling and semi-supervised learning. The experimental results indicate

that using video data unlocks great potential in the age estimation research field.

Keywords: face analysis, age estimation, deep learning, data filtering, dataset design, semi-

supervised learning, temporal models



Prošireni sažetak

Biometrijsko unapred̄enje skupova podataka za procjenu dobi iz slika lica

Doktorski rad fokusiran je na algoritme za procjenu ljudske dobi na temelju slika lica. Procjena

dobi ima razna potencijalna područja primjene. Istraživanja pokazuju da ljudi prilikom procjene

dobi u prosjeku griješe za 5 do 7 godina. Kako bi se tehnologija procjene dobi mogla uspješno

primjenjivati u uvjetima stvarnog svijeta (engl. in-the-wild), modeli za automatsku procjenu

dobi trebaju nadmašiti ljudske sposobnosti. Suvremeni algoritmi strojnog učenja omogućili su

nadmašivanje ljudskih sposobnosti u srodnim područjima istraživanja kao što su raspoznavanje

lica i klasifikacija objekata.

Brojna istraživanja ukazuju na to da nedostajuća karika za daljnje poboljšanje modela za

procjenu dobi leži u podacima za učenje. Javno dostupni podaci za učenje nisu adekvatni.

Ručno skupljani podaci za učenje su pouzdani, no sadrže relativno mali broj uzoraka i ne pokri-

vaju raznolikost uvjeta stvarnog svijeta u dostatnoj mjeri. Skupovi za učenje prikupljani s inter-

net izvora (engl. web-scraped) imaju veliki broj uzoraka i dobru raznolikost, no imaju nepouz-

dane oznake dobi. Nadalje, većinski udio metoda za procjenu dobi oslanja se na korištenje

pojedinačnih slika lica, no istraživanja pokazuju da korištenje video podataka za analizu lica

krije veliki potencijal.

Kako bi se osiguralo da modeli imaju dobre sposobnosti generalizacije i dostatnu točnost

procjene u stvarnim uvjetima, potrebno ih je evaluirati na testnim skupovima podataka koji u

dobroj mjeri preslikavaju stvarne uvjete. Nadalje, potrebno je koristiti javno dostupne i precizno

definirane evaluacijske protokole kako bi se dobiveni rezultati mogli reproducirati, a izvedeni

zaključci verificirati.

Doprinosi doktorskog rada fokusirani su na rješavanje prethodno navedenih problema s cil-

jem poboljšanja rada sustava za automatsku procjenu dobi. Preciznije, usmjereni su na dizajn

metoda za pročišćavanje skupova podataka za učenje, dizajn protokola za evaluaciju, istraži-

vanje potencijala video podataka i učenje modela na neoznačenim podacima. Doktorski rad

podijeljen je na sedam poglavlja, sažetih u nastavku.

Prvo poglavlje - Uvod

Ljudski vizualni i kognitivni sustavi omogućavaju nam da obavljamo vrlo kompleksne zadatke,

često i na nesvjesnoj razini. Čak i nakon vrlo kratkog pogleda na nečije lice, u mogućnosti

smo s lakoćom procijeniti odgovarajuću dobnu skupinu, spol, etnicitet, emocionalno stanje

i mnoge druge značajke. U današnjem svijetu, digitalne kamere postaju sveprisutna pojava,

a mogućnosti elektroničkih ured̄aja rastu impresivnom brzinom, time stvarajući plodno tlo za

razvoj sustava računalnog vida. Već desetljećima, istraživačke skupine iz akademskih i industri-

jskih krugova ulažu velike napore kako bi replicirali spomenute ljudske sposobnosti metodama



računalnog vida. Ovaj doktorski rad usmjeren je na automatsku procjenu dobi iz dva glavna ra-

zloga. Prvo, tehnologija automatske procjene dobi ima brojna potencijalna područja primjene.

Drugo, automatska procjena dobi predstavlja značajan istraživački izazov. Procjena dobi jedan

od najzahtjevnijih problema u području automatske analize lica.

Potencijalna područja primjene automatske procjene dobi uključuju biometrijske sigurnosne

sustave, sustave za interakciju čovjeka i računala, sustave za kontrolu pristupa, sustave za anal-

izu prividne dobi, sustave za elektroničko upravljanje odnosima s kupcima i brojne druge. Una-

toč velikom potencijalu, primjena ove tehnologije u mnogim od spomenutih područja ograničena

je nedovoljnom preciznošću modela za procjenu dobi. Čak i ljudi značajno griješe kod procjene

dobi nepoznatih osoba. Prema istraživanjima, ljudi u prosjeku griješe za 5 do 7 godina. Razlog

za to leži u kompleksnosti procesa starenja i brojnim intrinzičnim i ekstrinzičnim faktorima koji

utječu na njega. Intrinzični faktori uključuju faktore vezane uz ljudski organizam, kao što su

spol, rasa, struktura mišićnog tkiva i kostiju, zdravlje te brojne druge genetičke predispozicije.

Ekstrinzični faktori uključuju razne životne uvjete i navike kao što su izloženost suncu i vjetru,

korištenje duhanskih proizvoda, prehrana te izloženost stresu. Uz to, estetska kirurgija, ko-

rištenje šminke i raznih drugih proizvoda za prikrivanje dobi u velikoj mjeri utječu na prividnu

dob. Navedeni faktori otežavaju razvoj sustava za preciznu procjenu dobi iz slika lica.

Današnji sustavi za automatsku procjenu dobi temelje se na metodama strojnog učenja.

Takve metode zahtijevaju velike količine podataka za učenje, no podaci koji uključuju slike lica

i osobne informacije poput dobi i spola su teško dostupni. Brojna istraživanja ukazuju na to

da su podaci za učenje najbitnija komponenta današnjih sustava za automatsku procjenu dobi.

Nadalje, istraživanja ukazuju i da video podaci sadrže više informacija od pojedinačnih slika.

Unatoč tome, korištenje videa za automatsku procjenu dobi nije dovoljno istraženo, prven-

stveno zbog manjka podataka za učenje i nedostupnosti precizno definiranih javnih protokola

za evaluaciju. Glavni doprinosi ovog rada, usmjereni na rješavanje tih problema, su slijedeći:

•Nenadzirana biometrijska metoda za filtriranje podataka iz slikovnih baza lica i njezina

primjena na state-of-the-art baze za procjenu dobi.

•Strategija za podržavanje i unapre d̄enje procesa povezivanja baza lica temeljena na biometri-

jskom filtriranju, koja rezultira u novoj izvedenoj bazi nazvanoj Biometrically Filtered

Famous Figure Dataset (B3FD).

•Analiza utjecaja korištenja predstavljene B3FD baze lica na pet metoda za procjenu dobi.

•Protokol za procjenu dobi temeljen na video zapisima ( CCMiniVID) koji omogućuje

adekvatnu usporedbu metoda temeljenih na video zapisima u stvarnim uvjetima i kroz

više skupova podataka.

•Djelomi čno nadzirana metoda procjene dobi temeljena na video zapisima koja nadilazi

nedostatak označenih podataka za učenje i nadmašuje referentnu metodu baziranu na

slikama.
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Drugo poglavlje - Osnove strojnog učenja

Strojno učenje jedan je od centralnih problema u području umjetne inteligencije. To je grana

računalne znanosti koja proučava algoritme i statističke modele koji mogu izvršavati odred̄ene

zadatke bez eksplicitnog programiranja. Drugim riječima, algoritmi strojnog učenja su algo-

ritmi koji imaju mogućnost učenja iz podataka. Drugo poglavlje daje pregled osnovnih kon-

cepata i algoritama iz područja strojnog učenja koji se direktno koriste u ovom radu.

Algoritmi strojnog učenja mogu se kategorizirati na različite načine, a granice izmed̄u tih

kategorija je ponekad teško precizno definirati. Glavne kategorije algoritama strojnog učenja su

nadzirano učenje, nenadzirano učenje i podržano učenje. Djelomično nadzirano učenje kom-

binira komponente nadziranog i nenadziranog učenja.

Suvremeni sustavi za automatsku procjenu dobi često su temeljeni na nadziranom učenju

neuronskih mreža. Neuronske mreže dizajnirane su za učenje direktno iz podataka, bez potrebe

za ručnom izradom algoritama za izlučivanje značajki. Konvolucijske neuronske mreže su

popularna kategorija neuronskih mreža posebno dizajniranih za rade sa slikovnim podacima.

Duboke konvolucijske neuronske mreže osnova su dubokog učenja. Metode dubokog učenja

koriste veliki broj jednostavnih nelinearnih modula za učenje značajki na više razina, pri čemu

se svakim dodanim modulom uče značajke na sve višoj razini apstrakcije, što ujedno omogućuje

i efikasno učenje vrlo kompleksnih nelinearnih funkcija.

Metode za procjenu, kako dobi tako i brojnih drugih atributa, mogu se podijeliti na klasi-

fikacijske, regresijske i napredne metode. Cilj klasifikacijskih metoda je odred̄ivanje funkcije

preslikavanja ulaznih podataka na konačni skup kategorija oznaka, regresijske metode pres-

likavaju ulazne podatke na oznake s kontinuiranim numeričkim vrijednostima, dok velik broj

metoda kombinira klasifikacijski i regresijski pristup na napredne načine.

Uz algoritme strojnog učenja, arhitekture neuronskih mreža i metode za procjenu, veliku

ulogu u području strojnog učenja imaju sami podaci. Podaci za procjenu dobi sastoje se od slika

lica i pripadnih oznaka dobi. Drugo poglavlje zaključeno je diskusijom o značaju podataka,

uključujući podatke za predučenje, učenje i testiranje. Neki od glavnih problema u području

procjene dobi proizlaze iz prikupljanja slika u suviše kontroliranom okruženju, netočnih oznaka

dobi i nebalansiranih demografskih distribucija.

Treće poglavlje - Automatska analiza lica

Kod velikog dijela metoda za automatsku analizu lica mogu se prepoznati četiri glavna slijedna

koraka. To su detekcija lica, predprocesiranje, izlučivanje značajki i predikcija. Detekcija lica

rezultira informacijom o poziciji i veličini lica u slici. Cilj predprocesiranja je pripremiti po-

datke u konzistentnom i što informativnijem obliku za nadolazeće korake. Najčešće metode

predprocesiranja uključuju izrezivanje lica iz slike, promjenu veličine i normalizaciju vrijed-
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nosti u slici. Izlučivanje značajki je korak u kojem je cilj izlučiti informativne, diskriminativne

i kompaktne vektore značajki koji se mogu učinkovito koristiti u posljednjem koraku, odnosno

predikciji. Cilj samog koraka predikcije je odrediti ciljani atribut ulaznog uzorka (npr. dob ili

spol) na temelju izlučenog vektora značajki. Predikcija se najčešće provodi metodama klasi-

fikacije ili regresije. Važno je napomenuti da se koraci izlučivanja značajki i predikcije u suvre-

menim metodama baziranim na neuronskim mrežama i dubokom učenju najčešće optimiziraju

zajednički prilikom procesa učenja.

Zadatak automatske procjene dobi može se formulirati na tri glavna načina. To su procjena

dobne skupine, procjena kronološke dobi i procjena prividne dobi. Procjena dobne skupine

najjednostavniji je zadatak jer je potrebno odrediti okvirnu dob i kategorizirati uzorak u kon-

ačni i relativno mali broj dobnih skupina. Osnovni primjer je binarna klasifikacija maloljetnih i

odraslih osoba. U literaturi se najčešće provodi kategorizacija na 7 ili 8 dobnih skupina. Zadatak

procjene kronološke dobi najzahtjevniji je jer zahtjeva odred̄ivanje precizne numeričke vrijed-

nosti koja predstavlja stvarnu dob osobe. Procjena prividne dobi takod̄er zahtijeva odred̄ivanje

precizne numeričke vrijednosti, no ta vrijednost predstavlja prividnu dob baziranu na izgledu

osobe.

Četvrto poglavlje - Povezani radovi

Automatska procjena dobi iz slika lica istražuje se već tri desetljeća. Ovo plodno istraživačko

područje rezultiralo je velikim brojem predloženih algoritama, metoda i skupova podataka.

Kako bi se proveo sustavni pregled područja, predložena je taksonomija koja organizira dizajn

sustava za procjenu dobi prema vrsti ulaznih podataka, tipu značajki i algoritmu procjene. Iako

većina metoda koristi pojedinačne slike kao ulazne podatke, odred̄eni broj metoda koristi video

sekvence umjesto slika. Veliki broj metoda baziran je na ručno dizajniranim značajkama, dok

se većina suvremenih metoda bazira na učenim značajkama, često dobivenim konvolucijskim

neuronskim mrežama. Najčešće korišteni algoritmi procjene su regresija i klasifikacija, no u

literaturi se navodi i veliki broj naprednijih algoritama za procjenu kao što su redno rangiranje

i učenje distribucija. Uz velik broj metoda za procjenu dobi, literatura navodi i brojne skupove

podataka. Slikovni skupovi podataka su značajno zastupljeniji u odnosu na video skupove po-

dataka, kojih je javno dostupno samo nekoliko. Glavni zaključci pregleda područja navedeni su

u nastavku.

Konsolidirano je uvjerenje da duboko učenje nudi ogromne prednosti u odnosu na metode

temeljene na ručno izrad̄enim značajkama i klasičnim algoritmima učenja. Istraživanja pokazuju

da korištenje video podataka za procjenu dobi krije veliki potencijal, no ta grana istraživanja nije

dovoljno istražena. Potencijalni uzrok ovog problema je nedostatak javno dostupnih podataka

za učenje, kao i precizno definiranih protokola za evaluaciju. Iako se značajan udio literature

bavi razvojem samih metoda za procjenu, konsenzus oko najprikladnije metode za procjenu
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dobi nije postignut.

Novija istraživanja ističu brojne probleme vezane uz postojeće javno dostupne evaluacijske

protokole. Glavni problemi proizlaze iz pristranosti skupova podataka za evaluaciju i nepre-

cizno definiranih protokola. Uz to, doprinos svih bitnih komponenti u sustavu najčešće nije

definiran. Validnost konvencionalnih usporedbi metoda za procjenu dobi stoga se sve češće

dovodi u pitanje. Nova istraživanja ukazuju na to da prikladnost i veličina skupa podataka za

učenje igraju najbitniju ulogu u dizajnu sustava za procjenu dobi. Pokazano je i da arhitek-

tura neuronske mreže i način predprocesiranja slika lica mogu značajnije doprinositi od odabira

same metode za procjenu dobi. Iz tih razloga, doprinosi ovog rada fokusirani su prvenstveno na

probleme iz područja procjene dobi vezane uz same podatke.

Peto poglavlje - Nenadzirano biometrijsko filtriranje podataka za unapred̄enje procjene
dobi

U usporedbi s ručno prikupljenim skupovima podataka za procjenu biometrijskih atributa iz

slika lica, skupovi podataka dobiveni automatskim metodama prikupljanja s interneta (engl.

web-scraped) daleko su napredniji u pogledu količine i raznolikosti uzoraka, no karakterizira ih

i nepouzdanost oznaka.

Predložena metoda za nenadzirano biometrijsko filtriranje podataka može automatski sman-

jiti broj pogrešnih uzoraka u skupovima podataka prikupljenim s interneta, kombiniranjem samo

nekoliko općih algoritama. Temeljna ideja predložene metode je automatsko grupiranje slika sa

sličnim biometrijskim značajkama u grupe slika iste osobe, te zadržavanje samo najveće grupe.

Implementirani filtracijski sustav rezultirao je drastičnim smanjenjem broja uzoraka na dva na-

jznačajnija skupa podataka prikupljenih s interneta, pri čemu je odbačeno do 52% uzoraka.

Detaljno testiranje pokazalo je da modeli koji se temelje na filtriranim podacima u značajnoj

mjeri nadmašuju modele koji se temelje na sirovim i konvencionalno obrad̄enim podacima, što

ukazuje na manji broj pogrešno označenih uzoraka i poboljšanu dosljednost oznaka. Testiranje

sposobnosti generalizacije na podacima prikupljenim u stvarnim uvjetima takod̄er je pokazalo

da raznolikost podataka nije narušena, unatoč drastičnom smanjenju broja uzoraka.

Rezultati dobiveni predloženom metodom filtriranja prošireni su dodatnom strategijom bio-

metrijskog filtriranja koja je osmišljena kako bi ojačala i usavršila proces spajanja javno dostup-

nih skupova podataka prikupljenih putem interneta. Predloženi proces spajanja triju različitih

izvora podataka prikupljenih putem interneta rezultirao je novim slikovnim skupom podataka.

Predloženi B3FD skup podataka (engl. Biometrically Filtered Famous Figure Dataset) eksper-

imentalno je validiran i uspored̄en s trenutno najboljim javno dostupnim skupovima podataka.

B3FD je dosljedno nadmašio sve evaluirane skupove podataka te je učinjen javno dostupnim.

Opsežna eksperimentalna evaluacija istaknula je važnost kvalitete podataka i dosljednosti

oznaka. Rezultati modela treniranih na podskupovima podataka dobivenim predloženim meto-
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dama filtriranja nadmašili su rezultate modela treniranih na većim skupovima podataka. Do-

datno, pokazano je da korištenje prikladnijih podataka za učenje doprinosi više od korištenja

naprednijih metoda za procjenu dobi.

Šesto poglavlje - Put prema procjeni dobi temeljenoj na video podacima

Šesto poglavlje usredotočeno je na rješavanje dva istaknuta problema u području automatske

procjene dobi iz video podataka. To su nedostatak precizno definiranog i javno dostupnog eval-

uacijskog protokola za metode temeljene na video podacima te nemogućnost nadziranog učenja

modela za procjenu dobi iz video podataka zbog nedostatka označenih podataka za učenje.

Kako bi se riješio prvi od spomenutih problema, dizajniran je novi evaluacijski protokol

baziran na video podacima. Postojeći javno dostupni skup video podataka proširen je meta-

podacima dobivenim komercijalnim sustavom za praćenje lica i pročišćen polu-automatskim

filtriranjem. Predloženi protokol učinjen je javno dostupnim, zajedno sa svim potrebnim meta-

podacima i odgovarajućom programskom podrškom.

U svrhu rješavanja drugog spomenutog problema u ovom području, predložena je nova

metoda koja svladava problem nedostupnosti označenih podataka za učenje te ujedno poboljšava

točnost modela za procjenu dobi. Predložena metoda za procjenu dobi iz video podataka temel-

jena je na pseudo-oznakama i djelomično nadziranom učenju. Predloženi model kombinira 2D

konvolucijsku neuronsku mrežu za izlučivanje značajki i temporalnu konvolucijsku mrežu za

temporalno modeliranje. Testiranja na predloženom protokolu za evaluaciju na video podacima

pokazala su da je greška procjene dobi umanjena za više od 15%, dok je stabilnost procjene

poboljšana za čak više od 50%. Time je pokazano da je model dobiven djelomično nadziranim

učenjem na video podacima nadmašio referentni model učen na slikama, odnosno model koji

je korišten za dobivanje samih pseudo-oznaka.

Sedmo poglavlje - Zaključci

Procjena kronološke dobi iz slika lica jedan od najkompleksnijih problema u području au-

tomatske analize lica. Glavni razlog za to je personalizirana i stohastička priroda procesa

starenja na kojeg utječu mnogi intrinzični i ekstrinzični faktori. Kako bi se sustavi za au-

tomatsku procjenu dobi mogli uspješno koristiti u brojnim potencijalnim područjima primjene,

potrebno ih je usavršiti do razine naprednije od ljudskih sposobnosti.

Glavni doprinosi ovog rada usmjereni su na podatke za učenje i evaluaciju modela za proc-

jenu dobi. Točnost i robusnost modela strojnog učenja uvelike ovise o količini i kvaliteti ko-

rištenih podataka za učenje. Valjanost i provjerljivost rezultata istraživanja izravno ovise o

dostupnosti i kvaliteti javnih protokola za evaluaciju. Brojna istraživanja ukazuju na posto-

janost problema u javno dostupnim skupovima podataka. U eri naprednih algoritama strojnog
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učenja, kompleksnih modela i impresivnih mogućnosti elektroničkih ured̄aja, ključ za razvi-

janje sustava za procjenu dobi koji su zaista robusni u uvjetima stvarnog svijeta leži u samim

podacima.

Ključni pojmovi: analiza lica, procjena dobi, duboko učenje, filtriranje podataka, dizajn

skupova podataka, djelomično nadzirano učenje, temporalni modeli
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Chapter 1

Introduction

Human visual and cognitive systems allow us to perform many incredibly complex tasks ef-

fortlessly. By taking even the briefest look at someone’s face, we can extract a plethora of

information. Who is this person? Does this person look like a male or a female? How old does

this person look like? What is the ethnicity of this person? How does this person feel? We can

often answer most of these questions with ease [1]. This type of information plays a pivotal role

in face-to-face social interactions [2].

Today’s omnipresence of digital cameras, along with recent advancements in the computa-

tional capabilities of electronic devices, provide fertile ground for the development of advanced

computer vision systems. For more than three decades, researchers have aspired to replicate

human face analysis capabilities with automated, vision-based systems. Not only does this

make for an interesting research field that helps us to understand human nature better, but ac-

curate and robust automatic age estimation can enable a variety of application fields, such as

human-computer interaction, access control, electronic customer relationship management, and

biometric security [3].

Aging is a personalized, stochastic, uncontrollable, inevitable, and irreversible process [4].

It causes visually observable changes to the human body that enable us to estimate a subject’s

age based solely on visual cues. Facial chronological age estimation is the process of estimating

the number of years elapsed from one’s birth to a certain point in life using visual artifacts

on the face [4]. This is one of the most challenging tasks from the face analysis research

field [1] due to the personalized nature of the aging process and many intrinsic and extrinsic

factors that influence it [5]. Despite years of research and devotion from both academia and

industry towards aging process modeling, estimation algorithm design, data collection, and

defining testing protocols, we are yet to reach age estimation accuracy sufficient for many of

the advanced application fields [2, 4].
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1.1 Motivation

The focus of this thesis is human age estimation based on visual facial information. Cues

useful for age estimation can be extracted from many different physical characteristics and

behavioral traits, such as teeth [6], fingerprints [7], bones [8], hands [9], irises [10], voice

[11], gait [12], and even head movement [13] and keystroke dynamics [6]. While humans often

combine modalities to estimate the age of other people, this thesis focuses on the single modality

that provides the most visual cues related to aging progression and can enable unintrusive,

automated, computer-vision-based estimation even from a single image or video frame.

Visual analysis of human faces can facilitate the estimation of many other useful informa-

tion, such as identity [14], facial expression [15], eye gaze [16], gender [17], ethnicity [18], and

numerous other soft biometric traits [19]. Our motivation to focus on age estimation is twofold.

As a famous person once said, we are not doing this because it is easy but because it is hard.

Age estimation is one of the most challenging computer vision tasks [20]. Reliable, unintru-

sive, and automated age estimation is the basis for many interesting application fields with vast

potential. We explore these statements in the following sections.

Figure 1.1: Commercial application of face analysis algorithms by the company Visage Technologies.
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1.1.1 Application fields

Contemporary computer vision systems enable automatic face analysis from images or videos,

often with real-time processing capabilities. Automatic age estimation technology has many

application scenarios, either as a standalone feature or as a supporting feature in more complex

face analysis systems. Figure 1.1 shows an example of a commercial application of face analysis

technology.

Biometrics and security

Age is a soft biometric attribute. Biometrics refers to the problem of subject identification based

on a certain unique physical characteristic. Biometric systems can be based on face, iris, hand

geometry, and fingerprint recognition [21]. Soft biometric attributes are traits such as gender,

height, and eye color that provide some useful information about the subject but are not distinc-

tive enough for identification [17]. The intrusiveness of biometric systems based on fingerprint

or iris recognition reduces their applicability compared to systems based on facial image anal-

ysis that do not require physical contact, subject cooperation, or attention. The accuracy and

robustness of biometric systems, often used in security applications, can be improved by the use

of age estimation [4, 21]. The security of many everyday systems can also be improved by the

direct use of automatic age estimation: age can be useful information in ATM fraud monitoring

[21], vehicle in-cabin systems can be designed to monitor if a child is left unattended by mis-

take [22], and surveillance camera footage processed by an age estimation system can be used

in demographics analysis for crime prevention [22].

Human-Computer Interaction (HCI)

Around 93% of information in human communication is conveyed nonverbally [23]. Face-based

Human-Computer Interaction systems can be designed to leverage this nonverbal information.

HCI is rapidly becoming an omnipresent phenomenon in our daily lives. HCI interface, vo-

cabulary, and services can automatically be selected to best suit the users’ age because many

preferences, such as linguistics, aesthetics, and consumption habits, change with age [23].

Access control

Many products and services require access control based on customer age. Automatic age

estimation can be useful for underage purchasing restrictions of alcoholic and tobacco products

[23, 24]. Access to certain age-restricted websites can automatically be managed [23]. TV

sets equipped with cameras, such as contemporary smart TVs, can limit streaming outputs to

prevent children from accessing unwanted content [4]. Access to dangerous or inappropriate

rides can be automatically regulated in amusement parks [25].

3
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Figure 1.2: Access control system (right) in a smart store (left) preventing minors from entering the
section containing age-restricted products (i.e., alcoholic beverages).

Electronic customer relationship management (ECRM)

Businesses often benefit from a personalized approach to customers. Preferences and expecta-

tions related to products and services change with age [26]. Market trends can be monitored so

that products and services are customized to accommodate different age groups [4]. Electronic

customer relationship management (ECRM) leverages algorithmic approaches for establishing

individualized relationships with customers [25]. Age estimation can play an important role

in such a management strategy: instead of building complex customer databases and storing

sensitive personal data, customer relationships can be improved by estimating age information

in real time, during the interaction with the customer.

Other use cases

The employment process can be enhanced by automatically estimating the age of recruits [4].

Age estimation can help to detect victims and suspects during investigations of child sex abuse

materials [27]. Identification of missing persons can be aided by age simulation systems [4].

Applications for apparent age estimation, as reviewed in [28], include medical diagnosis [29,

30], facial beauty product development [31, 32], movie role casting [31, 32], and analysis of the

effects of plastic surgery [21, 33] and anti-aging treatments [29, 32].
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1.1.2 Challenges

As the applicability of age estimation systems is evident from the review in the previous section,

we continue by analyzing challenges that make the design of accurate age estimation systems

such a difficult task. Human visual and cognitive systems allow us to perform many incred-

ibly complex tasks effortlessly. However, estimating chronological age from unknown faces

based only on visual cues is a challenging task, even for humans. Han et al. [34] carried out

crowdsourcing experiments with 10 workers on FG-NET [35] and PSCO [34] age estimation

benchmark datasets. On average, they misestimated age by 4.7 and 7.2 years, respectively.

Gang et al. [36] performed a similar experiment with 29 volunteers on a subset of the FG-NET

benchmark dataset, resulting in an error of 6.23 years on average. Agustsson et al. [30] experi-

mentally tested the wisdom of the crowd by using crowdsourcing and collecting nearly 300,000

votes on 7,591 images from their Appa-Real benchmark. 38 votes per image were cast on av-

erage, resulting in an apparent age label for each of their images. Those labels were wrong

by 4.57 years on average on their test set, compared to the actual chronological age labels.

These error rates are too high for many of the aforementioned application fields, meaning that

automatic age estimation systems should aim to surpass human performance by a considerable

margin. The following sections cast some light on why age estimation is so challenging, both

for humans and machines.

Figure 1.3: The influence of sun exposure on aging progression. The images show twins that are 61
years old. The twin on the right side had ≈ 10 hours per week more sun exposure. The difference in the
perceived age is 11.25 years. Reprinted from [37] with permission from Wolters Kluwer Health, Inc.
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Facial aging progression

The human face conveys many features that can indicate aging progression, such as skin texture

(wrinkles, age spots, freckles), bone structure (face shape, cranium size, yaw shape), and facial

hair (presence, amount, and color) [6]. The nature of the aging process, which causes changes

in those features, is stochastic, uncontrollable, inevitable, and irreversible [4]. We age from the

moment we are born to the end of our lives. In childhood, the most obvious facial appearance

changes are related to craniofacial growth, as the cranium shape changes from circular to oval.

The forehead slopes back, creating more space for the mouth, nose, eyes, and ears to expand,

while the chin becomes more protrusive [4]. In adulthood, some minor face shape changes

are observable, but the most obvious aging progression indications come from skin texture

changes [4]. The natural aging process involves a decrease in collagen and elastin production,

the disappearance of fat cells, skin losing the ability to retain moisture, lower turnover of new

skin cells, and slowdown of dead skin cell shedding [38]. The deterioration of facial bones also

affects the skin texture [39]. All this makes the skin less elastic, thinner, and sagging, causing

wrinkles and skin to appear leathery. Damage to melanin-producing cells, happening over time

primarily due to UV rays, causes freckles, age spots, and non-uniform skin tone [4, 39].

Figure 1.4: The influence of smoking on aging progression. The images show twins that are 52 years
old. The twin on the left side had 20 years longer smoking history. The difference in the perceived age
is 6.25 years. Reprinted from [37] with permission from Wolters Kluwer Health, Inc.

Some of the major influences on aging progression are gravity, exposure to ultraviolet (UV)

rays, facial muscular activities, bone restructuring, and maturing of soft tissue [4, 40]. These

factors are usually categorized into intrinsic or extrinsic [4, 5, 22, 41]. We review them in more

detail in the following sections, while the effects of some of these factors are depicted in Figures

1.3, 1.4, 1.5, 1.6, and 1.7.
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Intrinsic aging factors

Intrinsic aging factors are related to the human body and its nature, such as genetics, bone

structure, muscular activity, gender, and race. Genetic makeup is the primary dependency of

individual aging patterns [42]. Gender, race, and facial expressions directly affect aging patterns

[43]. Male aging pattern differences include changes in facial hair, facial vascularity, sebaceous

content, and bone and fat absorption rates, while females tend to develop more deep wrinkles

around the eyes as their skin contains a far lower number of appendages [38]. Muscular activity

related to some facial expressions, such as smiling, frowning, and surprise, can cause wrinkle-

like changes on facial skin [4]. Certain skin diseases can change facial skin appearance and

make age estimation more difficult [41].

Extrinsic aging factors

Extrinsic aging factors include factors external to the human body that influence aging progres-

sion, such as environment, lifestyle, and occupation. Environmental factors that advance aging

progression include exposure to UV rays [44], wind [45], and air pollution [46]. Some of the

lifestyle and occupational factors that can expedite aging are smoking, drug use, and psycho-

logical stress [45]. Even an unhealthy diet can haste aging [4], while scratches and burns may

appear as signs of aging [41]. This means that aging can manifest itself very differently based

on the subject’s life choices, circumstances, and environment, even for individuals with very

similar genetic and demographic predispositions.

Figure 1.5: The influence of psychological stress and malnutrition on aging progression. The images
show a soldier before and after 4 years of war (1941-1945). The images are exhibited in the Andrei
Pozdeev Museum (http://mus-pozdeyev.ru/p82).

7



Introduction

Appearing younger

Aging is an irreversible process. However, people often use anti-aging products and treatments

to appear younger than they really are. Makeup, beauty care products, and cosmetic surgeries

can decrease signs of facial aging [25]. This makes visual age estimation even more challenging

[22]. Makeup is often used to alter a person’s perceived age by concealing age spots, brightening

wrinkle-induced shadows, and highlighting and coloring cheeks [47]. Aesthetic facial surgery

causes a significant and consistent reduction in perceived age, as a study shows that perceived

age in plastic surgery patients was reduced by more than 7 years on average [48].

Figure 1.6: The influence of facial makeup on perceived age. Reprinted from [25] with permission from
the author.

Imaging and data challenges

Not all automatic age estimation challenges are directly related to facial appearance. For an age

estimation system to work correctly, input images must be of sufficient quality. The texture,

wrinkles, and other visual cues can be lost due to diminished image quality [50]. Some of the

usual causes of insufficient image quality are camera distance, low camera resolution, motion

blur, inadequate lighting, and occlusions. All these are present in most real-world use case

scenarios.

Even when the system receives high-quality inputs, it can easily fail if it is not trained

using a sufficient number of samples covering all age groups and all the aforementioned aging

variations. Due to challenges related to the collection of data with precise age labels, it is

very difficult to cover all variations with appropriate and sufficient samples, even when using

the internet [3, 22]. This causes most age estimation benchmark datasets to have imbalanced

distributions [3].

8



Introduction

Figure 1.7: The influence of facial rejuvenation surgery on perceived age. The images show a 42-year-
old patient before and after the surgery. The difference in the perceived age is 14.2 years. Reprinted from
[49] with permission from Elsevier.

1.2 About the thesis

This thesis is an outcome of years of academic research made in collaboration with the indus-

try. This work was supported by the face tracking and analysis company Visage Technolo-

gies. While academic curiosity motivated us to review many novel, advanced, and experimental

methods, industry insights guided us to focus on aspects of system development that are of-

ten overlooked in purely academic work: model generalization capabilities and performance in

real-world conditions.

While our initial efforts were directed towards the development of advanced age estimation

methods, with a special focus on the design of novel neural network architectures and age es-

timation algorithms, we repeatedly encountered two big obstacles. The first one was the lack

of sufficient and adequate training data. In the literature review and the subsequent experi-

mental sections, we argue that training data is the most important component in the design of

contemporary age estimation systems. The second frequently emerging obstacle was the lack

of a properly designed cross-dataset benchmark protocol, required to fairly compare different

systems and their abilities to generalize in real-world conditions. In addition to the data-related

obstacles, we observed that the majority of age estimation research is focused on image-based

approaches. Unlike still images, video sequences offer spatiotemporal dynamic information

that contains many cues related to age progression. The contributions of this thesis are focused

on solving the two aforementioned data-related obstacles while also exploring the potential of

videos and video-based methods for the refinement of automatic facial age estimation.
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1.2.1 Contributions

Many hurdles in the facial age estimation field are directly related to training data issues. Web-

scraping methods can generate very large but noisy datasets. Large amounts of erroneously

labeled samples present in the frequently used web-scraped facial image datasets can impair

performance of face analysis algorithms. The first objective of our research was to refine the

performance of face analysis methods using a data-driven approach based on the automatic fil-

tering of facial image datasets. An unsupervised biometric filtering method was developed and

used to create improved versions of relevant public web-scraped datasets. The main idea of that

method is to automatically group images with similar biometric metadata into clusters of images

of the same person, and only to keep the largest cluster. The second objective of our work was to

create a new age estimation image dataset suitable to train deep learning models. We proposed a

biometric filtering strategy to reinforce and refine the merging process of multiple facial datasets

and derived the new Biometrically Filtered Famous Figure Dataset (B3FD). We demonstrated

B3FD’s superiority over existing state-of-the-art age estimation datasets with respect to both

real and apparent age estimation performance in the cross-dataset setting. We made the dataset

publicly available. The final objective of our research was to explore the options for leveraging

spatiotemporal dynamic cues for age progression extracted from video streams. We designed a

new video-based age estimation benchmark from an existing public dataset, extended the meta-

data using a commercial face tracking system, and made the benchmark protocol, metadata, and

video processing framework publicly available. To overcome the lack of labeled training data,

we designed a semi-supervised video age estimation method that relies on pseudo-labeling. The

proposed method outperformed its image-based counterpart, thus setting baseline results on the

proposed benchmark. The main contributions of this work are summarized as follows:

•An unsupervised biometric data filtering method for facial image datasets and its appli-

cation to state-of-the-art age estimation datasets.

•A biometric filtering strategy for the reinforcement and refinement of the merging process

of facial datasets resulting in the newly derived Biometrically Filtered Famous Figure

Dataset (B3FD).

•Analysis of the impact of using the proposed B3FD dataset on five age estimation meth-

ods.

•A video-based age estimation benchmark protocol (CCMiniVID) that enables fair com-

parison of video-based methods in real-world conditions and cross-dataset settings.

•A semi-supervised video-based age estimation method that overcomes the lack of labeled

training data and outperforms the image-based baseline.
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1.2.2 Organization of the thesis

The rest of the thesis is organized as follows. Chapter 2 introduces fundamental machine learn-

ing concepts used in the thesis, such as learning methods, estimation methods, and the concept

of deep learning, while also reflecting on the significance of data in machine learning. Chapter

3 introduces the basics of the general face analysis framework, with a special focus on the age

estimation framework and relevant metrics. Related work, including image-based and video-

based datasets and methods, is reviewed in Chapter 4. The proposed unsupervised biometric

data filtering method and the newly derived image-based age estimation dataset are described in

Chapter 5, while Chapter 6 presents the new video-based benchmark protocol and the proposed

semi-supervised video-based age estimation method. Finally, Chapter 7 concludes the findings

of this thesis.
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Chapter 2

Machine learning foundations

Machine learning is a subfield and one of the central problems of Artificial Intelligence (AI). It

is a branch of computer science that studies algorithms and statistical models that can perform

a specific task without explicit programming [51]. In other words, machine learning algorithms

are algorithms that can learn from data [52]. In some ways, the goal of machine learning

algorithms is to mimic the human learning process. From the algorithmic perspective, the

learning process needs to be formally defined. Referring to [53], let us assume experience

E, a class of tasks T , and performance measure P. A model is said to learn from experience E

if its performance at task T , measured by P, improves with experience E. As stated in [52], it

is difficult to formally define the wide variety of possible experiences, tasks, and performance

measures. Giving an exhaustive overview would surpass the scope of this thesis. Instead,

this chapter provides a brief overview of fundamental machine learning concepts and specific

algorithms used throughout the thesis, while extensive overviews of the field are given in [52,

53, 54, 55].

2.1 Learning algorithms

While machine learning algorithms can be categorized in many different ways and while it is

often difficult to define clear boundaries between the categories, a consolidated approach is to

classify learning algorithms into Supervised Learning, Unsupervised Learning, and Reinforce-

ment Learning. Along with the main three categories, there are many popular hybrid learning

algorithms, such as Semi-Supervised Learning, Self-Supervised Learning, and Multi-Instance

Learning. However, the boundaries of these categories can be somewhat unclear. For example,

according to [52], Supervised Learning and Unsupervised Learning are not formally defined

terms and some machine learning technologies can be utilized to perform both of these tasks.

Nevertheless, we continue by introducing some common formal definitions for the three basic

learning algorithms used in our work.
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2.1.1 Supervised learning

Supervised learning algorithms aim to learn a function that maps inputs to outputs based on a set

of predefined exemplary input-output pairs [51]. In this setting, the outputs are often referred to

as targets or labels. The term supervised originates from the view that the labels are provided by

a teacher or instructor who is therefore supervising the learning process [52]. Referring to [56],

we define supervised learning as follows. Assume availability of a dataset D = {(xi,yi)}i∈1,...,N ,

consisting of N pairs of d-dimensional inputs xi ∈ Rd and labels yi ∈ Y , where Y can represent

a finite set of categories (Y ∈ {0,1, . . . ,K}) or continuous values (Y ∈ R). Based on the dataset

D , the supervised algorithm aims to find a function f : Rd → Y that performs the mapping of

inputs to outputs and can be used to correctly predict outputs from previously unseen inputs.

This function can be defined as yi = f (xi), and the ability to perform beyond the training set D

is called generalization. Generalization capabilities are evaluated on a test set: samples that do

not appear in the training set D , but come from the same underlying distribution. It is common

practice to use only a part of the initial set D for training, while the rest of the samples are held

out for validation and testing.

The two most common supervised learning algorithms are classification and regression.

The choice depends on the learning task T and the type of labels yi ∈ Y in the dataset D .

Classification is used to map inputs to a finite set of label categories (Y ∈ {0,1, . . . ,K}), while

regression is used to map inputs to continuous values (Y ∈ R).

2.1.2 Unsupervised learning

While supervised learning algorithms require a dataset D defined in a way that every sample xi

has a corresponding label yi, unsupervised learning algorithms can extract information directly

from samples xi, without relying on labels. These algorithms are left to their own devices to

discover and present the underlying data structure and interesting patterns [51]. Without labels,

the learning process is not guided by a supervisor, hence making unsupervised learning a fitting

name for this category of algorithms.

According to [54], the most common use cases of unsupervised learning are clustering,

density estimation, and visualization. The goal of clustering is to discover groups of similar

data, density estimation aims to determine the distribution of data within the input space, while

the purpose of visualization algorithms is to project the data from a high-dimensional space

down to two or three dimensions, aiding interpretability.

Of special focus for our work are clustering algorithms. The main principle of clustering is

to automatically create groups of samples based on certain similarity criteria in such a way that

the elements within the same group are similar while also being dissimilar to elements of other

groups [56]. The K-means algorithm is one of the simplest and frequently used unsupervised
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learning algorithms. Referring to [52, 56], we define it as follows. Given the number of clusters

k and the training samples xi, the algorithm initializes k centroids {µ1, . . . ,µk} with different

random training samples. Each of the remaining samples is assigned to cluster j, where j is

the index of the most similar centroid µ j. Then, each centroid µ j is updated to the mean of all

training examples xi assigned to the cluster j. These steps are repeated until the centroids stop

changing.

Some other relevant examples of unsupervised learning algorithms are Principal Component

Analysis (PCA) [57], Chinese Whispers Clustering [58], Affinity Propagation Clustering [59],

and Mean Shift Clustering [60].

2.1.3 Semi-supervised learning

Semi-supervised learning can be seen as a combination of supervised and unsupervised learning

[51]. In general, information associated with one of these tasks is used to improve the perfor-

mance of the other [61]. For example, in a supervised classification setting, additional unlabeled

data can be used to aid the classification process; in an unsupervised clustering setting, the clus-

tering procedure might benefit from the information that some samples belong to the same class

[61].

Figure 2.1: Taxonomy of semi-supervised classification. Reprinted from [61] under CC BY-SA 4.0
license.

A very practical aspect of semi-supervised learning is the ability to utilize unlabeled data in

the supervised setting. For many machine learning tasks, unlabeled data is plentiful, and labeled

data is scarce. Semi-supervised learning aims to improve the accuracy of a model trained with

supervision by exploiting information in unlabeled data [55]. Following [61], we can formally
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define the labeled set as DL = ((xi,yi))
l
i=1 and the unlabeled set as DU = (xi)

l+u
i=l+1, where l

and u are the numbers of labeled and unlabeled samples, respectively. There is a great deal

of methods with the goal of improving a model trained on DL based on data from DU . These

methods fall under the Inductive category in the taxonomy of self-supervised methods, shown

in Figure 2.1. Whereas inductive methods yield a model that can be used to make predictions

on unseen data, the transductive methods produce only the predictions directly.

One of the simplest approaches to semi-supervised learning, and also the most relevant ap-

proach for our work, is inductive learning based on wrapper methods. As described in [61],

wrapper methods rely on a model trained with supervision on labeled data DL to generate

pseudo-labels on the unlabeled data DU . The model can then be retrained using a purely su-

pervised approach, using a combination of the labeled and pseudo-labeled data, unaware of the

distinction between the two, to attain the updated inductive model. The pseudo-labeling can be

done with one or more supervised base models, and the process can be iteratively repeated to

label more data and further improve the model. This basic approach can be extended in many

ways. More details on wrapper methods are available in a comprehensive review in [62].

2.2 Deep learning

To improve the performance of conventional machine learning methods, early efforts in pat-

tern recognition and machine learning fields were devoted to the design of novel and effective

discriminant features [20]. Based on human ingenuity and often inspired by the human visual

cortex, researchers designed a plethora of so-called handcrafted features. However, handcrafted

features require considerable domain expertise and careful engineering to transform raw data

to suitable representation [63]. Moreover, these methods are frequently designed for a specific

task, and the ability to use them across different tasks and domains is very limited [20].

A novel approach, designed to mimic human neural systems with the goal of processing

data in their raw form, was discovered independently by several research groups in the 1970s

and 1980s [63]. The approach was based on Artificial Neural Networks and the Backpropa-

gation algorithm [64, 65]. Despite its potential and success in some fields, this approach was

largely dismissed in the 1990s due to feasibility concerns. Based on the concept of artificial

neural networks, some of the main principles of Deep Learning (DL) were proposed in 2006 in

a breakthrough work introducing the Deep Belief Network [66]. This was the basis for a new

surge of development in the field. In general, deep learning methods are representation learn-

ing methods that start with the raw inputs (such as image pixel values) and obtain multi-level

representations by simple but non-linear modules that each transform the representation at one

level to a slightly more abstract representation at a higher level, facilitating the learning of very

complex functions [63]. As reviewed in [56], the monumental success of deep learning methods
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was boosted by the introduction of very large datasets, new training strategies (including new

optimization and regularization algorithms), breakthroughs in computing power (GPU, NPU,

TPU), the design of deep architectures, and transfer learning techniques, all based on the ability

to learn from raw data.

We continue by introducing the basics of Artificial Neural Networks and the widely adopted

Convolutional Neural Network. We conclude this section with a review of transfer learning, as

it is one of the most significant deep learning concepts in our field of work.

2.2.1 Artificial Neural Network

The basic building block of the Artificial Neural Network (ANN) is the neuron. The neuron

takes a set of inputs xi and applies a set of weights W and a constant bias term b to form a linear

function that approximates the input data [56]. The central idea of ANNs is to learn parameters

W and b automatically based on the input data.

z =

(
n

∑
i=1

wixi

)
+b (2.1)

The output of the neuron is denoted as z and calculated from the inputs, weights, and bias ac-

cording to Equation 2.1. Output z is used to calculate the activation a = σ(z), where σ is the

activation function. The primary purpose of the activation function is to introduce non-linearity,

allowing the modeling of complex input-output relationships. Some common options for acti-

vation functions are the hyperbolic tangent function (tanh) and the sigmoid function. The pre-

dominant option in the deep learning field, however, is the Rectified Linear Unit (ReLU) [67],

simply defined as σ(z) = max(0,z), as it is computationally efficient and it helps in the learn-

ing process of deep networks that often suffer from the so-called vanishing gradient problem

[68, 69]. Figure 2.2 depicts the described processing steps in the neural network architecture.

Figure 2.2: Data processing in neural network architecture. Reprinted from [70] under CC BY-SA 4.0
license.
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It is common practice to group neurons into layers, to stack the layers successively, and

to process them in a feedforward fashion. This forms the basis of the Multilayer Perceptron

(MLP) architecture, depicted in Figure 2.3. MLP is referred to as the foundation architecture of

deep neural networks (DNN) [71] and as the quintessential deep learning model [52]. A typical

MLP consists of an input layer that takes the data, an output layer that provides the predictions,

and a number of so-called hidden layers between the two, where the neurons are typically fully

connected [71]. As formulated in [52], a feedforward network has the goal of approximating

function y = f (x) by learning the parameters θ and defining an optimal mapping y = f (x;θ).

The basis of deep models is the multi-layered approach where function f is a chain function,

e.g. f (x) = f (3)( f (2)( f (1)(x))), where f (1), f (2), and f (3) are the first, second, and third layer

of the network, respectively. The number of layers d in f (d) defines the depth of the model.

This type of network is called feedforward because the information flows from input x to output

y through components that define f without any feedback connections, usually used in some

other architecture types such as Recurrent Neural Networks (RNN) [52].

Figure 2.3: Multilayer Perceptron topology. Reprinted from [72] under CC BY-SA 4.0 license.

2.2.2 Convolutional Neural Network

Convolutional Neural Networks (CNN) are broadly defined as ANNs that have at least one

layer where convolution operation is used instead of general matrix multiplication [52]. The

idea of using deep multi-layered networks precedes CNN. The success of CNNs was built upon
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three additional principles: local connections, shared weights, and pooling [63]. These design

principles were motivated by visual neuroscience studies and the visual cortex [73].

Figure 2.4: 2D convolutional operator. Reprinted from [74] with permission from Elsevier.

First, consider the convolutional operator, shown in Figure 2.4. The first argument in this

operation is the input, the second argument is called the kernel, and the output is referred to as

the feature map. Instead of connecting the input to the output with a fully connected network,

CNNs use relatively small kernels with shared weights that are being shifted across the input to

generate elements of the output feature map [73]. Since the weights are shared and the kernel

is shifted, this design choice allows for the same local pattern to be detected in different input

locations. The weight sharing also reduces the number of parameters, facilitating the design

of deeper networks. The third design principle, referred to as pooling, is designed to reduce

the dimensions of feature maps while aiming to merge semantically similar features [63]. The

two most frequently utilized pooling operators are called max pooling and average pooling.

Both these operators reduce the size of the feature map by splitting the input into a grid of

local patches and by calculating a single output for each of the patches in the grid. To get a

single value based on patch elements, simple maximum or average operations can be applied,

according to the pooling operator type. The pooling operations support translation invariance,

reduce computational complexity, and mitigate some of the issues associated with deep network

training, such as overparameterization and overfitting.

The first popular CNN architecture, dubbed LeNet [73], was introduced in 1998 by LeCun

et al. to classify handwritten digits. It was followed by some other popular architectures, such

as LeNet-5 [76], AlexNet [77], and VGGNet [78]. While being very different with respect to

the number of convolutional blocks, kernel sizes, activation functions, the pooling approach,

and many other parameters, all these architectures follow a similar design pattern. The input

image is processed by several convolutional blocks operating on different feature map sizes.

Each block starts with one or more sequential convolutional layers paired with an activation

function and ends with a pooling layer that reduces the feature map size. The feature maps,

therefore, become progressively smaller and capture more and more abstract features. Finally,
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Figure 2.5: Architecture of the VGG-16 CNN. Reprinted from [75] under CC BY-NC-ND 4.0 license.

the flattened output of the last feature map is processed by a fully connected neural network

to get the prediction vector. Figure 2.5 presents the architecture of the VGG-16 CNN. It starts

with a 224×224 RGB image, followed by five convolutional blocks operating at different fea-

ture map sizes, and concluded by three fully connected layers, resulting in a vector containing

probabilities for K classes.

More recent design concepts, such as global average pooling, identity mapping, residual

connection, squeeze and expand module, and depthwise separable convolution, have enabled

the design of many advanced architectures, such as GoogLeNet [79], ResNet [80], SqueezeNet

[81], Xception [82], MobileNet [83], and MobileFaceNet [84]. Moreover, while CNNs are

predominantly used for 2D data (e.g., images), they can also be used to process 1D data (e.g.,

temporal series) and 3D data (e.g., volumetric data). A relevant example of a CNN designed for

temporal data processing is the Temporal Convolutional Network (TCN) [85].

2.2.3 Transfer learning

Deep CNNs were shown to have the ability to learn from vast amounts of data and perform com-

plex tasks. One prominent example is the ImageNet Challenge [86], where models are trained

using more than one million images to classify samples into 1,000 classes. However, training

deep networks from scratch (i.e., starting with randomly initialized weights) is not trivial. Due

to their depth and a large number of learnable parameters, deep networks require large amounts

of training data and computationally-complex, time-consuming training procedures. A popular

technique developed for the mitigation of this problem, called transfer learning, is based on

knowledge transfer across domains, tasks, or distributions.

A common occurrence is that the target dataset DT has a much lower amount of samples than

some other available dataset DP. Although the dataset DP might be sampled from a different

distribution than DT , the model can learn some transferable information, such as how to handle
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geometric and lighting changes or how to detect edges and blobs [52]. This can be useful

across domains, so pretraining a model on DP and then finetuning it on DT can improve its

generalization capabilities. Moreover, pretrained model weights can be found online for a large

number of popular CNN architectures and some common pretraining datasets, such as ImageNet

[87] and VGGFace [88]. This allows researchers to finetune models on the target data DT much

quicker, even with very limited computational resources. A popular pretraining dataset in the

facial age estimation field is the IMDB-WIKI dataset [89].

2.3 Estimation methods

After introducing the most relevant machine learning methods and the basic deep learning ar-

chitectures and concepts, we continue by formally defining relevant estimation methods. Once

more, we narrow our scope and focus on estimation methods relevant to our work. Namely,

deep learning methods based on the supervised learning scheme. The two predominant esti-

mation method categories from this field are classification and regression. Advanced methods

often blur the line between those two categories. In this section, we revisit the basic formulation

introduced in Section 2.1.1 and use it to define the most relevant methods.

Formally, in a dataset D = {(xi,yi)}i∈1,...,N with N samples, let xi ∈Rh×w×c denote i-th im-

age sample where h, w, and c are the image height, width, and number of channels, respectively.

Assume that yi ∈ {0,1, . . . ,K} is the corresponding label with a range from 0 to K. Parameters

of the deep learning model are denoted as θ while zi ∈ RK represents the model output feature

vector, where zi is obtained as zi = f (xi;θ).

As the focus of our work is age estimation, let us consider a special case where yi can be

treated as a category from a limited set of K ordered classes or a discrete number limited to the

[0,K] range. As reviewed in [20], it should be taken into account that the order relationship of

age labels is intrinsically defined due to the nature of the age estimation problem. Treating age

labels as unrelated categorical values is a flawed approach. For example, if the ground truth age

is 30, predicting 50 should be considered more erroneous than predicting 31.

2.3.1 Classification

Classification refers to the category of algorithms that aim to map the inputs xi to a finite set

of label categories Y ∈ {0,1, . . . ,K}. The most widely used approach in the deep learning field

relies on the Softmax function and Cross Entropy Loss. This method is commonly referred to

as the Softmax method. The Softmax function is applied to the model output zi to obtain the

estimated probability distribution p̂i ∈ RK . The p̂i, j is calculated as:
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p̂i, j =
ezi, j

∑
K
k=0 ezi,k

, (2.2)

for j ∈ {0,1, . . . ,K}. To optimize the model parameters θ , we can utilize Cross Entropy Loss

defined as:

LS =
1
N

N

∑
i=1

−yi log p̂i,yi (2.3)

The prediction, belonging to a finite set of categories Y ∈ {0,1, . . . ,K}, is then calculated as:

ŷi = argmax
j

(p̂i, j) (2.4)

2.3.2 Regression

Regression is the second widely adopted category of estimation algorithms. Regression algo-

rithms aim to map the inputs xi to a continuous label value, meaning that the model needs

to output a single value ŷi ∈ R1. To accommodate the previously formalized setting, we can

calculate the prediction ŷi based on the model output vector zi as

ŷi =
K

∑
j=0

j ∗ p̂i, j, (2.5)

where p̂i, j once again denotes the estimated Softmax distribution from Equation 2.2. To opti-

mize the model parameters θ , we can adopt the widely used Mean Square Error Loss (MSE),

defined as:

LR =
1
N

N

∑
i=1

(yi − ŷi)
2 (2.6)

The most common alternative to the MSE loss for regression is Mean Absolute Error Loss

(MAE). MSE loss discourages outlier predictions with huge errors, as the squaring term mag-

nifies the error. This can be advantageous, but can also put too much attention on outliers and

potentially faulty labels. On the other hand, all the errors calculated by MAE are weighted

equally. MAE is defined as:

LA =
1
N

N

∑
i=1

|yi − ŷi| (2.7)

2.3.3 Advanced estimation methods

Regression and classification algorithms can be combined and modified in many ways, resulting

in a multitude of methods originating in many different machine learning fields. We conclude
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this section with four advanced methods that originated, or are proven to excel, in the age

estimation field.

Deep Expectation

Similar to the Softmax method, the Deep Expectation (DEX) method [89] uses the Softmax

function from Equation 2.2 and Cross Entropy Loss defined by Equation 2.3 to optimize model

parameters θ . However, contrary to the Softmax method, estimated probability distributions

are used at inference time to calculate a continuous value as a weighted average defined by

Equation 2.5. This method uses classification-based learning and regression-based inference.

Mean-Variance

The second advanced method extends the DEX idea introduced in [89] by enhancing the basic

Softmax Loss with two additional components: Mean Loss and Variance Loss. The Mean-

Variance Loss [90] is defined as:

LMV =
1
N

N

∑
i=1

(
−yi log p̂i,yi +

λ1

2
(yi − ŷi)

2+

λ2

K

∑
j=0

pi, j ∗ ( j− ŷi)
2

)
,

(2.8)

where factor λ1 controls the contribution of the Mean Loss component, while λ2 controls

the contribution of the Variance Loss. This advanced method combines classification and

regression-based components with an additional distribution-oriented variance component at

training time. The predictions are calculated according to Equation 2.5.

Deep Label Distribution Learning

The third advanced method deemed relevant for our work is DLDL-v2 [91]. This label-distribution-

based method trains the model parameters θ by utilizing a loss function defined as:

LLD =
1
N

N

∑
i=1

(
K

∑
j=0

−pi, j log p̂i. j +λ | yi − ŷi |

)
, (2.9)

where pi denotes an approximated ground truth label distribution. The aforementioned distri-

bution is calculated based on the ground truth age label yi as:

pi, j =
1

σ
√

2π
e−

( j−yi)
2

2σ2 (2.10)
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for j ∈ {0,1, . . . ,K}. The rationale for representing age labels as distributions lies in the ordered

nature of age labels, as the degree to which sample xi is described by labels neighboring to

yi (e.g., yi − 1 or yi + 1) should be higher than for some more distant labels (e.g., yi − 10 or

yi + 10). This advanced method combines the distribution-based Kullback-Leibler Divergence

Loss and regression-based MAE Loss. The parameter λ controls the balance between the loss

components. The method predicts continuous values ŷi ∈ R1, once again calculated according

to Equation 2.5.

Ordinal ranking

The final method in this review is based on the ordinal ranking approach. The previously in-

troduced methods rely on regression, classification, or an advanced combination of the two

approaches. The differences between those methods can be boiled down to forming different

label representations and defining more or less complex loss functions to accommodate different

optimization objectives. On the other hand, the ordinal ranking methods rely on a framework

based on aggregation of multiple binary classifiers, as proposed in [92]. The Cross Entropy

Loss, defined in Equation 2.3 and also used in the regular multi-class classification approach,

can be used to optimize each of the binary classifiers in this framework. In fact, any type of

binary classifier can be employed. The task of mapping inputs xi to a finite set of label cate-

gories Y ∈ {0,1, . . . ,K} is approached by a set of K binary classifiers, where k-th classifier is

optimized to simply estimate if the label associated with the input xi is higher than k or not.

Given a ground truth label yi ∈ {0,1, . . . ,K}, the first yi classifiers are trained to produce a pos-

itive answer, while the rest are trained to produce a negative answer. According to this, the

prediction ŷi is equal to the rank r (xi), which can be calculated as:

ŷi = r (xi) =
K−1

∑
k=0

JOk (xi > 0)K (2.11)

Here, Ok is the output of the k-th ordered binary classifier, and J·K is 1 if the enclosed condition

is true, and 0 otherwise. This formulation is designed to divide a complex task into a series

of simpler sub-tasks and also to take into account the relative order of the labels. This is very

much appropriate for the age estimation task, as the nature of the task entails ordered labels.

2.4 Significance of data

We conclude this chapter by briefly reviewing the role of data in machine learning. Advance-

ments in learning algorithms and model architectures, along with large amounts of available

data and computing infrastructure, have enabled researchers to design methods that surpass

human performance on difficult tasks such as image classification [93] and face recognition
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[94]. The main remaining barrier to solving many similar tasks is the lack of sufficient labeled

data. While transfer learning is frequently utilized to mitigate this problem and achieve state-

of-the-art results, training with small numbers of task-specific samples can still result in domain

overfitting, questionable generalization capabilities, and unsatisfying performance in an uncon-

strained environment. For these reasons, the acquisition of a suitable training set is considered

to be the most critical step in the development of a machine learning model [42].

As discussed in Section 2.1.1, the supervised learning approach requires large amounts of

labeled data. Collecting labeled data can be a laborious process, requiring manual annotation

and a priori knowledge or even domain expertise. Although using manual annotation and expert

knowledge leads to great results, this approach is often not scalable. In the case of facial data

collection, privacy concerns related to biometric data storage and processing also need to be

taken into account. To support generalization in unconstrained conditions, facial datasets need

to capture variability with respect to age, gender, ethnicity, head pose, recording environment,

lighting conditions, occlusion level, recording quality, and so forth. Due to all these challenges,

the collection of a perfect dataset is often deemed unfeasible and public datasets frequently

suffer from unbalanced sample distributions and data disparity [42].

Male
84.60%

Female
15.40%

Gender

African

77.25%

Asian

0.28% European

19.15%

Hispanic3.21%
Other0.11%

Ethnicity

0-19
13.55%

20-39
57.46%

40-59

28.38%

60-690.61%

Age

Figure 2.6: MORPH-II benchmark dataset [95] sample distribution across gender, ethnicity, and age.

As most research groups don’t have the resources to carry out complex data collection

projects, public data can be considered the backbone of the machine learning research field.

Public benchmarks allow researchers to design, evaluate, and fairly compare methods on com-

mon data, thus stimulating the growth of related research fields [20]. A benchmark protocol

consists of benchmark data, performance metrics, and the evaluation protocol determining how

to calculate the defined metrics on the given data. The benchmark dataset (i.e., test set) must

be independent of the training data to evaluate generalization capabilities on unseen data. A

good benchmark dataset is also a well-balanced representative of the target real-world envi-

ronment, sufficiently covering its variability. Using loosely defined benchmark protocols with

inappropriate test data can lead to faulty or biased conclusions. To illustrate the problem of

24



Machine learning foundations

imbalanced data in our field, Figure 2.6 shows gender, ethnicity, and age distributions for the

most frequently used age estimation benchmark dataset. This benchmark protocol proposes the

use of different folds from the dataset for both training and testing. It is reasonable to conclude

that even a high-performing model developed and evaluated on this data can have very bad gen-

eralization to real-world data. Data imbalance and quality issues related to training data can,

to some extent, be mitigated by contemporary training techniques. However, in the case of test

sets used for benchmarking, it is of utmost importance to use high-quality data and to make it

publicly available, as this enables researchers to draw valid and verifiable conclusions based on

transparently comparable results.
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Chapter 3

Automatic face analysis

Research on automatic face analysis includes many topics, such as face recognition [14], age

estimation, [3], gender classification [17], ethnicity identification [18], expression recognition

[15], and eye gaze analysis [16]. While humans tend to analyze faces with a holistic approach,

where identity, age, gender, and ethnicity are simultaneously taken into account, researchers

usually focus on designing algorithms that tackle each of those tasks separately. While single-

task algorithms show superior performance in some cases, studies also suggest a strong inter-

action between facial attributes. Some multi-task approaches combine age and gender [96], age

and expressions [97], age and ethnicity [22], and age with both ethnicity and gender [19] or

both expressions and gender [98]. Studies also indicate that learning age jointly with gender,

ethnicity, or expressions is a more challenging task than learning age independently [43].

The literature introduces various approaches for each of the aforementioned face analysis

tasks. However, most of them share a very consistent general face analysis framework. We

implement this face analysis framework in our own research and focus on single-task facial

age estimation, following the motivation presented in Section 1.1. Details on the general face

analysis framework, followed by the specifics of the facial age estimation framework, are given

in the following sections. This chapter builds upon our previous work on automatic image-based

face analysis from [99].

3.1 General face analysis framework

The general face analysis framework can be described as a pipeline consisting of four consec-

utive processing steps. Since this generic framework is utilized by a vast majority of published

face analysis methods, similar processing patterns were already identified and described in some

relevant face analysis reviews [2, 3, 20]. As in many other image analysis frameworks, the first

step is object (e.g., face) detection, followed by preprocessing, feature extraction, and attribute

prediction steps. The pipeline is presented in Figure 3.1.
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Figure 3.1: The four steps of the general face analysis pipeline.

3.1.1 Face detection

The face analysis pipeline starts with the face detection step. This step results only in very basic

face location and scale information, usually provided via a facial bounding box. As this step

seems fairly trivial, it is often not highlighted. Nevertheless, different versions of face detectors

can be trained with differently defined bounding boxes, and can result in inconsistent detections,

thus introducing bias and propagating error to the rest of the pipeline. To some extent, this can

be mitigated using the preprocessing techniques described in the following section. However, in

case of false positive or false negative detections, the impact on performance can not be avoided.

The most widely used face detection systems are based on the work of Viola and Jones [100],

and, more recently, deformable parts models [101], cascaded CNN detectors [102], single shot

detectors [103], region proposal CNNs [104], and detectors based on Feature Pyramid Networks

[105]. Of special interest is the RetinaFace detector [106], which simultaneously predicts the

face bounding box and five facial landmark points. This additional output can be very useful in

later processing steps. More details on face detection methods can be found in [107, 108, 109].

3.1.2 Preprocessing

Depending on the implemented face analysis method, the preprocessing step can be as trivial as

image cropping based on the detected facial bounding box. Additional minimal preprocessing

techniques include resizing the face crop image and color space conversions. However, studies

show that more advanced preprocessing steps can significantly improve the final performance

[2]. The main goal of preprocessing is to provide consistent inputs and capture important infor-

mation for the downstream pipeline steps (i.e., feature extraction and attribute prediction).

The primary sources of input inconsistencies are face detector inaccuracies and variations in

head pose angles. Several pose normalization and image alignment techniques have been pro-

posed to improve input consistency. The most basic method relies on face detection confidence.

The input image is rotated by a small angle multiple times, and the version with the highest de-

tection confidence is used. Although computationally expensive, this simple method does not

introduce any new components to the pipeline, as the existing face detection system is reused,
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and in some cases results with satisfying performance [89], [110]. The more frequently used

method does introduce an additional component to the pipeline, as it relies on face landmark de-

tection. Systematic overviews of face landmark detection methods are given in [111, 112, 113].

Given a set of detected landmark points, in-plane rotation and scaling can be performed based

on eye points [114], [115]. A fitted 3D face model can be used to align faces along multiple

axes [116]. The most frequently adopted landmark-based method aligns the face by computing

an affine transformation which puts the eyes, nose, and mouth into canonical coordinates [20],

as shown in Figure 3.2.

Figure 3.2: Affine transformation aligning the eyes, nose, and mouth into canonical coordinates.

Another source of input inconsistencies are variations related to lighting and imaging con-

ditions. Basic preprocessing often includes intensity standardization or normalization. To deal

with low contrast and brightness problems, techniques such as Difference of Gaussians [117]

and Contrast Limited Adaptive Histogram Equalization (CLAHE) [118] are sometimes incor-

porated.

3.1.3 Feature extraction

It is well known that any model is only as good as the data it works with. Accordingly, feature

extraction is the most emphasized step in many publications. The goal of the feature extraction

step is to extract informative, discriminative, and compact feature vectors that can be efficiently

used in the final attribute prediction step.

Before the advent of learnable feature extractors, a lot of focus was put on the design of

handcrafted features. Local Binary Patterns (LBP) [119], Biologically Inspired Features (BIF)

[120], Histogram of Oriented Gradients (HOG) [121], and Speeded up Robust Features (SURF)

[122] are some of the most popular options in the face analysis field. Combinations of different

types of features can be used, but this can lead to impractical feature sizes. To alleviate this

problem, dimensionality reduction methods such as Principal Component Analysis (PCA) [57]

and Linear Discriminant Analysis (LDA) [123] are often used. Despite all the efforts put into

the development of handcrafted feature representations, their expressiveness remained quite

limited and they are deemed adequate mostly for small datasets and constrained frontal faces.
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More recently, Deep Learning has become the dominant paradigm in the face analysis field,

as it is a consolidated conviction that it offers overwhelming superiority over dated methods

based on handcrafted features in general [20]. Deep Learning feature extractors are optimized

to learn discriminative representations directly from raw pixels [2] and often based on millions

of images, as opposed to feature extractors that were designed manually, and based on human

ingenuity and intuition. More details on handcrafted and learning-based feature extractors are

given in Section 4.3.

3.1.4 Attribute prediction

The goal of the attribute prediction step is to infer estimates related to the target face analysis

task based on feature vectors extracted in the previous step. Depending on the face analysis task,

the expected output can be a class from a predefined set (e.g., gender or ethnicity estimation)

or a continuous value (e.g., age estimation). The prevalent attribute prediction algorithms for

those two types of estimation are classification and regression, respectively. Classification can

be binary (e.g., basic gender estimation) or multi-class (e.g., ethnicity estimation). Interestingly,

some tasks can be formulated both as classification and regression problems. For example, the

age value can be estimated directly with the regression method or indirectly with the classi-

fication method, where the classes are defined to cover some predefined age range (e.g., 101

classes for ages from 0 to 100). Moreover, there are some more advanced estimation methods,

often combining classification and regression. Some more details on advanced approaches for

attribute prediction are given in Section 2.3.3.

The classic machine learning approaches, where feature extraction is primarily based on

handcrafted features, often perform attribute prediction utilizing some of the classic regression

and classification methods. Support Vector Machines (SVM) [124], Support Vector Regressors

(SVR) [125], Random Forests [126], K-Nearest Neighbors (KNN) [127] or boosting algorithms

such as AdaBoost [128] are frequent choices from an otherwise extensive list of options.

Contemporary face analysis methods are primarily based on the Deep Learning paradigm

and Convolutional Neural Networks. One of the main advantages of this approach is the ability

to perform a so-called end-to-end optimization where feature extraction and attribute prediction

steps are optimized jointly. Deep learning methods can be designed both as classification and

regression methods, but the deep learning paradigm also offers more flexibility in the design

of the estimation task and the optimization method. This enables many advanced attribute

prediction approaches, often built upon work from other machine learning fields. A review of

the advanced estimation approaches for age estimation is given in Section 4.2.3.

Due to the prevalence of end-to-end learning in contemporary methods, the feature extrac-

tion and attribute prediction steps are often not distinguished as separate steps. Recent works

usually emphasize only the preprocessing details and the design of the deep learning method.
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3.2 Age estimation framework

The rudimentary facial age estimation framework is very well aligned with the general face

analysis framework described in the previous section. A pattern with the same four consecutive

steps, including face detection, preprocessing, feature extraction, and attribute prediction, is

identifiable in most of the reviewed age estimation methods. Specifics of the age estimation

framework covered in this section are mainly related to the attribute prediction step. The main

focus of our work is chronological age estimation. Related research fields include apparent age

estimation and age group classification. For completeness, we briefly discuss all three attribute

prediction approaches, with a special focus on the related age estimation metrics.

3.2.1 Chronological age estimation

Chronological age estimation is the process of estimating the number of years elapsed from

one’s birth to a certain point in life [4]. It is the most challenging type of age estimation. Com-

pared to the apparent age estimation, it is more difficult due to the personalized and stochastic

nature of the aging process, and the influence of intrinsic and extrinsic factors on facial appear-

ance, as elaborated in Section 1.1.2. Moreover, while chronological age estimation requires the

estimation of a continuous age value or a precise age category (e.g., 100 categories), the goal of

the age group estimation is a prediction of the age category from a more limited set. Intuitively,

it is easier to estimate if the subject is a child or an adult than it is to estimate its exact age.

Chronological age estimation is also a type of age estimation that has the greatest coverage in

literature, and is a requirement for most of the application fields described in Section 1.1.1.

Along with the term chronological, this type of estimation is also referred to as real or actual

age estimation.

Formally, in a set with N samples, let xi ∈ Rh×w×c denote i-th facial image sample where

h, w, and c are the image height, width, and number of channels, respectively. For the chrono-

logical age estimation task, each image sample in such a set requires a corresponding ground

truth chronological age label yi ∈ {0,1, . . . ,K}, assuming an age range from 0 to K. The age

is estimated either as a continuous value ŷi ∈ R or as a precise age category ŷi ∈ {0,1, . . . ,K},

depending on the type of the estimation algorithm.

To measure how far estimate ŷi as from ground truth yi, regardless of whether it is too high

or too low, we make use of the Absolute Error (AE) metric, defined as:

AEi = |yi − ŷi| (3.1)

The most frequently used metric for chronological age estimation is Mean Absolute Error
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(MAE). It is defined as the average of absolute errors calculated over N test samples:

MAE =
1
N

N

∑
i=1

AEi =
1
N

N

∑
i=1

|yi − ŷi| (3.2)

Good performance is indicated by a low MAE score. MAE is a good choice of a metric in cases

where the set has missing samples [2], meaning that the set doesn’t have a dense distribution

covering the complete age range. This formulation does not provide performance for specific

ages, but only general performance. To further analyze performance with respect to specific

ground truth age, a modification of the MAE metric can be defined. Similarly to [4], we denote

one specific age with k and calculate MAE over all samples that have the ground truth age label

yi equal to k. Given that nk denotes the total number of samples where yi is equal to k, MAEk is

defined as:

MAEk =
1
nk

nk

∑
i=1

|k− ŷi| (3.3)

Cumulative Score (CS) is another metric appropriate for measuring overall age estimation

performance. Given that nAE≤T is the number of samples where the age estimation absolute

error (AE) is no higher than a predefined threshold of T years, and N is the total number of

samples in the set, CS is defined as:

CS(T ) =
nAE≤T

N
×100% (3.4)

Good performance is indicated by a high CS score. This metric is most suitable when the set

has samples for every age [2] (i.e., when the set has a dense distribution). As CS is a function

of threshold T , the results for this metric can be given as curves changing with respect to T .

3.2.2 Apparent age estimation

Apparent age estimation is an estimation of age perceived by other humans. When estimating

chronological age, the model needs to learn to compensate for various intrinsic and extrinsic

factors that influence facial appearance. On the other hand, the goal of apparent age estimation

is to estimate how old the subject in the image appears to be, without trying to estimate its real

age. This makes it a considerably easier task. According to the experiments in [30], apparent

age correlates better with the face image, as MAE was reduced by more than 25% when chrono-

logical age labels were replaced by apparent age labels. Figure 3.3 depicts differences between

apparent and chronological age labels. Apparent age estimation is also referred to as perceived

age estimation.

Compared to chronological age, apparent age datasets also have different labeling require-

ments. For a set with N samples, formally defined in the previous section, a set of human votes
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Figure 3.3: Differences in the chronological and apparent age labels in the Appa-Real dataset [30].

(i.e., age estimates) is required for each sample xi. The votes are used to calculate mean age

µi and standard deviation σi for each sample. Even though a single vote can be used as the

apparent age label, more votes result in a more reliable ground truth, reflecting the so-called

wisdom of the crowd. µi and σi are used as the ground truth for the i-th sample. While apparent

age MAE can be calculated by substituting yi with µi in Equation 3.2, the prevalent metric in

the apparent age estimation field is the ε-error [29], formally defined as:

εi = 1− e
− (ŷi−µi)

2

2σ2
i (3.5)

The value of the ε-error can be between 0 and 1, with good performance being indicated by a

low score. This metric also considers the difficulty of each of the samples. In particular, the

samples with high standard deviation contribute less to the error score. A high standard devi-

ation shows that there is a high level of inconsistency in the collected human votes, indicating

that it was difficult for the voters to estimate age correctly. Such samples will likely be difficult

for the estimation models as well. ε-error is also referred to as ε-score or Normal Score.

3.2.3 Age group estimation

Subjects whose real age falls within a predefined age range are said to belong to the same age

group [4]. The limits and the number of age groups can be defined arbitrarily. The simplest

example is based on just two age groups: minors and adults. The literature usually proposes a

larger number of age groups (e.g., 7 [129] or 8 [130]) that are asymmetrical in size and cover

some distinguishable stages of life. While age group estimation is linked to the chronological

age in [4], labels for age groups are often estimated manually [129, 130]. This means that, in

some cases, the age group labels are actually apparent age group labels. Therefore, age group

estimation is a special category of age estimation that can be related either to apparent age or to

chronological age estimation, depending on label type.

The most common metric for age group estimation is classification accuracy (ACC), defined
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as the ratio between the number of correctly classified samples and the total number of samples:

ACC =
n
N
×100% (3.6)

Here, n represents the number of samples that are categorized in the correct age group, while N

once again denotes the total number of samples in the set. In addition to this, literature related

to age group estimation, as well as to many other classification-based fields, defines the 1-off

metric as:

1−off =
na

N
×100% (3.7)

For this metric, na represents the number of samples that are categorized into the correct age

group or an adjacent (1-off) group. Hence, this metric is more tolerant and results in higher

scores than the standard ACC metric. For both of these metrics, a higher score naturally indicates

better performance.
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Related work

The generalized age estimation framework, discussed in the previous chapter, consists of face

detection, preprocessing, feature extraction, and attribute prediction steps. While face detection

and preprocessing are integral parts of the processing pipeline, these steps are usually not em-

phasized in the age estimation literature. Most of the reviewed work puts focus on the design

of effective feature extractors and novel attribute prediction algorithms. To systematically re-

view the related work, we first propose a taxonomy of age estimation system design choices.

The choices related to the feature representation and estimation algorithm are, therefore, the

two main factors in the proposed taxonomy. Due to recent advancements in the exploration

of video-based methods, we add the input data type as another top-level dividing factor in the

hierarchy. The proposed taxonomy is presented in Figure 4.1.

Figure 4.1: The taxonomy of age estimation system design choices.
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The importance of data in the machine learning field is briefly discussed in Section 2.4.

As data is a foundational component required for the design and evaluation of all age estima-

tion methods, we start our review by introducing the most important age estimation datasets

and benchmarks. Considering the proposed taxonomy, we continue by reviewing methods ac-

cording to the used estimation algorithm. Finally, we review methods based on the feature

representation approach, both for image-based and video-based methods.

4.1 Datasets and benchmarks

As discussed in Section 3.2, chronological age estimation is the task of estimating a subject’s

actual age, as opposed to apparent age estimation, which refers to the estimation of age as hu-

mans perceive it, based on physical appearance. A dataset can be annotated with chronological

or apparent age or both. Whereas early research was primarily focused on chronological age

estimation, apparent age estimation recently started to gain traction. Moreover, some datasets

provide precise age labels, while others only provide age groups. Besides that, early work was

mostly focused on age estimation in a controlled environment, while contemporary work shifted

towards the more difficult task of age estimation in unconstrained in-the-wild conditions. The

terms in-the-wild and unconstrained are used when data is collected without predefined limita-

tions related to head pose, occlusions, background, lighting, image quality, and other relevant

properties. This section introduces the most important image and video-based datasets, focusing

on label type, collection procedure, dataset size, and sample distribution.

4.1.1 Image-based datasets

Early research on automatic facial biometric trait estimation was conducted on small manually

collected image datasets, often having less than 100 samples [131, 132]. The introduction

of larger datasets, such as FG-NET and MORPH, initiated an increase of interest in research

related to age estimation, making it into an established research field over the past two decades

[133]. The majority of datasets used in this field are image-based datasets. Samples taken from

the most widely used datasets are presented in Figure 4.2, while Table 4.1 summarizes the main

properties of the reviewed datasets.

Manually collected datasets

The majority of age estimation research is based on manually collected data. Manual data

collection can ensure precise age labels and high-quality images. However, it often implies a

controlled environment, limited data size, and constrained data distribution. The following are

the most relevant examples of manually collected datasets used in the field.
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The Face and Gesture Recognition Research Network Dataset (FG-NET) [35] was one

of the first publicly available datasets for facial age estimation, initially introduced for studying

facial appearance changes caused by aging. Over the years, it has supported a large volume

of research from many fields, such as age-invariant face recognition, age progression, and age

estimation, as reviewed in [133]. It is a cross-age dataset comprising 1,002 images of 82 subjects

from different ethnic groups. This amounts to around 12 age-separated images per subject.

To collect the dataset, subjects were asked to scan their personal photo collections, including

childhood photos. The nature of this data collection process caused the images to be of varying

quality, as it depended on the condition of the photographic paper, camera type, and scanning

equipment. This dataset is considered an in-the-wild dataset since the images display variability

in terms of resolution, clarity, illumination, head-pose orientation, facial expression, and facial

occlusion (e.g., hats, eyewear, and facial hair). Although small in size, this manually collected

dataset was a difficult challenge and an important steppingstone for the early age estimation

research.

The Craniofacial Longitudinal Morphological Face Database (MORPH) [95] is another

important building block in the contemporary facial age estimation research, created by the Face

Aging Group at the University of North Carolina. The dataset was collected in a correctional

facility over a period of 4 years. The images are collected in a controlled setting, and the

image quality and resolution are rather poor. Its popular, publicly available subset (MORPH-II)

consists of 55,134 images from 13,000 subjects. It provides annotations for age, gender, and

race. Even though the images were collected in a highly controlled environment and the dataset

has an unbalanced distribution of samples across gender (85% male), age (80% between 20 and

50 years, no children or elderly subjects), and race (77% African American), it increased the

number of publicly available samples for age estimation research by a factor of 55 and made

a great impact in the field. According to [28], MORPH-II is by far the most frequently used

dataset for chronological age estimation.

The Appa-Real Dataset [30] is a more recent manually collected dataset, related to data

from CLAP 2015 [29] and CLAP 2016 [134] challenges. The authors designed a data collection

and labeling web application and utilized the Facebook API and the Amazon Mechanical Turk

platform to get diversified data. The Appa-Real dataset consists of 7,591 unconstrained in-

the-wild samples with age range from 0 to 95. Whereas the ChaLearn LAP datasets provided

only apparent age labels, the Appa-Real dataset is extended with real (i.e., chronological) age

labels, making it the only dataset that provides highly reliable labels for both real and apparent

age. The authors utilized their platform to collect almost 300,000 apparent age votes, which

amounts to approximately 38 votes per image. Having less than 8,000 samples, this dataset can

be considered a small dataset in the era of deep learning. However, according to [20], it is the

most challenging and well-rounded benchmark option.
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The AgeDB Dataset [135], as the title of the reference paper claims, is a manually collected

in-the-wild dataset. While the images and metadata originate from web sources, the data is

collected manually. The Google Image Search* platform was used to collect images of famous

people with information related to the exact age of the subject explicitly mentioned in the image

caption. The dataset comprises 16,488 images from 568 subjects, covering an age range from 1

to 101 years. The dataset also provides gender and identity labels.
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Figure 4.2: Aligned face crops based on images from the four most popular age estimation datasets. The
FG-NET dataset consists of scanned album photos, the MORPH-II dataset is collected under controlled
conditions in a correctional facility, Appa-Real is a crowdsourced dataset, while IMDB-WIKI contains
web-scraped images of celebrities.

Web-scraped datasets

The most prominent technique for collecting large in-the-wild facial datasets available to the

research community is called web scraping. Web scraping refers to the automatized collection

of data (in this case, face images and related metadata) from web sources. We continue by de-

scribing the most relevant examples of datasets constructed with this data collection technique.

The Images of Groups Dataset (GROUPS) [129] is a web-scraped collection of images

containing groups of people, curated for the study of social context and contextual features. The

web-scraping procedure consisted of querying the Flickr† image hosting search engine with

search terms that have a high probability of yielding images of social groups (e.g., weddings

and family portraits). Age and gender information were unknown, so the authors manually

estimated age and gender categories. Age was categorized into seven groups: 0-2, 3-7, 8-12,

13-19, 20-36, 37-65, and 66+. The age distribution is not balanced, with the most represented

*https://images.google.com/
†https://www.flickr.com/search/
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age groups being 20-36, while the gender distribution is fairly balanced. The collected dataset

consists of 5,080 group images containing 28,231 faces. Images are collected in completely

unconstrained conditions, offering a variety of head poses, facial expressions, occlusions, and

lighting conditions. One of the big downsides is that the median face is very small, with only

18.5 pixels between the eye centers. Moreover, as the age group is manually estimated based

on facial appearance, it represents the apparent age group rather than chronological age.

The Adience Dataset [130] was web-scraped to create a challenging in-the-wild age and

gender estimation benchmark. In this case, Flickr was searched for mobile device photos with

the Creative Commons (CC) license. Although the authors emphasize that this is an uncon-

strained collection of images, they discarded images of faces with estimated yaw head pose an-

gles greater than 45◦, as well as many challenging faces undetected by the simple Viola-Jones

face detector [100]. Gender, apparent age group, and identity were manually labeled based on

the images and the available contextual metadata related to them (e.g., image tags, captions,

and image album information). Age was categorized into eight apparent age groups: 0-2, 4-6,

8-13, 15-20, 25-32, 38-43, 48-53, and 60+. The dataset contains 26,580 images of 2,284 sub-

jects. This is one of the few datasets with good distribution across age groups, including young

subjects.

The Cross-Age Celebrity Dataset (CACD) [139] was the first public large-scale web-

scraped dataset with chronological age annotations, initially introduced for cross-age face recog-

nition. The goal was to create a large-scale dataset with good sample variety concerning age.

The list of target subjects was created based on two main criteria: (1) the subjects should have

varying ages, and (2) they must have large numbers of images available on the web. According

to that, the authors decided to collect images of celebrities born in a 40-year period. They used

the popular online movie database IMDb‡ to find the 50 most popular celebrities born in each

year from 1951 to 1990, totaling 2,000 subjects. The Google Image Search engine was used to

scrape images. Search phrases combined celebrity names and specific years to collect samples

with varying ages. The years from the search phrases were used in combination with the date of

birth (DoB) information collected from the IMDb to automatically produce the age labels. This

resulted in more than 160,000 samples. Although the authors admit that this simple approach

produces a lot of noisy labels, the collected dataset was far superior to the existing ones in terms

of size and sample variety.

The Asian Face Age Dataset (AFAD) [138] is another web-scraped dataset of similar size

to CACD, with 164,432 images scraped from the RenRen Social Network (RSN), widely used

by Asian students and graduates. The authors collected date of birth information provided by

the users and images from special albums containing so-called selfie pictures, often contain-

ing only the user’s face. The difference between the date of upload and the DoB was used as

‡www.imdb.com
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chronological age ground truth. This approach relies on the assumption that the date of upload

matches the date the photo was taken, that the users provided correct DoB information, and that

selfie albums contain only single-subject photos of users. Being aware of this, the authors em-

ployed workers to manually filter out some obvious mistakes. Since most users were students,

the age range is limited to 15 to 40. Moreover, the dataset contains only subjects from Asia,

making it very biased and unsuitable for real-world generalization. The dataset also provides

gender labels, with a female-to-male ratio of roughly 2:3.

The UTKFace Dataset [137] was initially collected by selecting images from the MORPH

and CACD datasets and by filling in the distribution gaps for very young and elderly subjects

with web-scraped images from Bing and Google search engines. The labels were obtained

either from image captions or based on automatic age estimation of the DEX model [140].

This unconventional approach combines automatic apparent age estimation, web scraping, and

manual involvement. Contrary to the 10,670 samples with uniform age and gender distribution

mentioned in the reference paper, the publicly available version contains 23,708 samples and

mentions only the web as the source of images. This in-the-wild dataset also provides labels

for two gender and five ethnicity groups. The usability of this dataset heavily depends on the

quality of pseudo labels generated by the automatic age estimation model.

The IMDB-WIKI Dataset [89] was collected with a similar approach to CACD, based on

scraping images of famous people. The authors managed to collect more than 500,000 images

with age and gender labels from IMDb and Wikipedia§, making it the single largest public

dataset for age and gender estimation to date. The authors used the IMDb to obtain a list of the

100,000 most famous actors and crawled images directly from their IMDb profiles, along with

gender and DoB information. Additionally, they collected Wikipedia profile pictures with the

same meta-data. After removing all the images that did not list the year they were taken, they

used the listed years and the DoB from subjects’ profiles to automatically obtain age labels. In

the case of images with multiple face detections, they decided to keep only the images where

all secondary face detection confidences were under a certain threshold. Similar to CACD, the

authors note that they cannot vouch for the accuracy of the assigned age and gender information.

The MegaAge Dataset [136] is another example of a dataset consisting of images scraped

from the Flickr platform. The dataset is made of samples randomly selected from the large

in-the-wild MegaFace face recognition dataset [141] and the YFCC100M dataset [142]. Both

MegaFace and YFCC100M are based on images scraped from the Flickr platform. The dataset

consists of 41,941 images with age posterior distribution labels. The labels were obtained

by manually comparing images to multiple annotated images from FG-NET. Annotators were

asked to estimate if the person in the image appeared younger or older than the person in the

reference image. The posterior reflects the apparent age with an estimated uncertainty range.

§https://en.wikipedia.org/
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4.1.2 Video-based datasets

Similar to how essential FG-NET and MORPH datasets were for the progress of image-based

age estimation research, publicly available video data is required to support the development of

video-specific methods. Unfortunately, video datasets with age labels are far more scarce.

The UvA-NEMO Smile Dataset was initially introduced to study differences between

spontaneous and posed smiles in [143]. Dibeklioğlu et al. used it for age estimation in [144] and

defined an evaluation protocol. The dataset consists of 597 spontaneous and 643 posed smile

recordings, totaling 1,240 videos. The videos were collected from 400 volunteers (185 female

and 215 male) aged 8 to 76 years. Subjects were primarily Caucasian. The recordings were

done in a controlled environment, with constrained illumination and high-resolution cameras.

They used funny video clips to elicit spontaneous smiles, while instructional videos were used

for posed smiles. Trained annotators selected and segmented a balanced number of genuine

and posed smiles. Each segment starts with a neutral expression and transitions to a smiling

expression.

The UvA-NEMO Disgust Dataset [145] was collected concurrently with the UvA-NEMO

Smile Dataset, following the same recording setup. 324 volunteers (152 female, 172 male) were

recorded posing disgust facial expressions. 313 of them also participated in the UvA-NEMO

Smile Dataset collection. Similar to the Smile version of the dataset, age varies from 8 to 76

years, and the subjects are primarily Caucasian. Trained annotators selected 518 disgust video

segments, where every segment once again starts with a neutral expression and transitions to a

disgusted expression.

The UvAge Dataset [146] was created specifically for age estimation from videos. It con-

sists of 6,898 videos from 516 subjects. They proposed a web-scraping technique to obtain

videos with precise chronological age annotations. The approach was based on a collection

of videos of celebrities with birth information available on Wikipedia. To get a reliable video

recording time, they used traceable public events such as the Academy Awards or the G20

Summit. The videos were manually verified and segmented into sequences containing only one

subject. The proposed celebrity web-scraped data collection approach resulted in a larger and

more difficult in-the-wild dataset compared to the UVA-NEMO datasets. Along with age labels,

each video was also annotated with identity, gender, ethnicity, and occupation.

The Casual Conversations Dataset (CC) [147] is a recently published video dataset from

Facebook AI (now Meta AI) designed for measuring fairness of computer vision and audio

models across a diverse set of ages, genders, apparent skin tones and ambient lighting condi-

tions. It consists of 45,186 high-quality videos collected from 3,011 subjects. According to the

authors, a distinguishing feature of this video dataset is the precise chronological age and gender

annotations provided by the subjects themselves. Additionally, they labeled low ambient light

videos while apparent skin tone is annotated by a group of trained annotators according to the
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Table 4.2: Overview of the video-based age estimation datasets with chronological age labels.

Dataset Subjects Videos Age range Demographics Head pose Illumination

UvA-NEMO Smile [143] 400 1,240 8 - 76 unbalanced mostly frontal constrained

UvA-NEMO Disgust [145] 324 518 8 - 76 unbalanced mostly frontal constrained

UvAge [146] 516 6,898 16 - 83 unconstrained unconstrained unconstrained

Casual Conversations [147] 3,011 45,186 18 - 85 balanced unconstrained unconstrained

Casual Conversations Mini [147] 3,011 6,022 18 - 85 balanced unconstrained balanced

Casual Conversations v2 [149] 5,567 26,467 18 - 81 balanced unconstrained unconstrained

Fitzpatrick scale [148]. Another distinguishable quality of this dataset is its permissiveness; the

dataset is collected from consenting subjects and is publicly available for evaluation purposes

of both academic and commercial models. The authors also proposed a well-balanced subset

of the CC dataset, denoted as Casual Conversations Mini (CCMini). The subset was formed by

selecting one dark and one bright video per subject (when possible) to have a balanced lighting

distribution, with a total of 6,022 videos.

The Casual Conversations v2 Dataset (CCv2) [149] was collected to improve the ro-

bustness and fairness of audio, computer vision, and speech models. It is a follow-up to the

original CC dataset, curated with a special focus on geographical diversity. 5,567 subjects from

7 countries were paid to participate in data collection, whereas all participants in the original

CC dataset originated from the same country (i.e., USA). The 26,467 collected videos amount

to 320 hours of scripted and 354 hours of non-scripted conversations. Some of the labels, such

as age, gender, language/dialect, disability, physical adornments/attributes, and geo-location,

were self-provided by the participants. Trained annotators were used to additionally label for

Fitzpatrick Skin Type [148], Monk Skin Tone [150], voice timbre, recording setup, and per-

second activity. The dataset is designed primarily for evaluation purposes but can also be used

for model training. However, it is noted that certain labels, such as age, gender, disability, and

physical adornments/attributes, can not be used for training.

A summary of the reviewed datasets is presented in Table 4.2. Our efforts to receive access

to UvA-NEMO Smile, UvA-NEMO Disgust, and UvAge datasets were unsuccessful, making

the Casual Conversation datasets the only publicly accessible resource for video-based age es-

timation research. However, note that the CC datasets do not permit the training of age models.
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4.2 Age estimation algorithms

Formal definitions of the most relevant estimation algorithms are given in Section 2.3. Fol-

lowing those definitions and the taxonomy presented in Figure 4.1, we continue by reviewing

relevant work according to the age estimation algorithm type.

4.2.1 Regression

Regression is the most overt age estimation algorithm. It treats both age labels and predictions

as continuous values and aims to learn the mapping directly. Due to its simplicity, it is one

of the two most widely utilized algorithms, along with multi-class classification. However, it

implies the goal of estimating age with the precision of a single year, making it a very difficult

task.

Work presented by Lanitis et al. [35] is often cited as the first age estimation algorithm based

on regression. The authors represented the aging pattern by a quadratic function and proposed

multiple approaches for determining suitable aging functions for estimating age from unseen

images. The best-performing approach was named the Weighted Person Specific (WPS) ap-

proach. However, this approach relied on various external information, such as gender, health,

and living style. A purely appearance-based approach, named the Weighted Appearance Spe-

cific (WAS) approach, used the Mahalanobis distances between training and test images as

weights and calculated the weighted sum of known aging functions to estimate age from unseen

faces.

Another early work by Zhou et al. [151] presented a general algorithm for image-based re-

gression. Its effectiveness was demonstrated on three image-based tasks, including age estima-

tion. They considered three data-driven regression methods: Nonparametric Kernel Regression

(NPR) [152], Kernel Ridge Regression (KRR) [152], and Support Vector Regression (SVR)

[152]. The age-related evaluation was performed on the FG-NET dataset. The SVR method

performed the best of the three baseline methods, while the proposed Image-based Regression

(IBR) method outperformed all of them.

Yan et al. [153] formulated a regression problem utilizing Semi-definite Programming

(SDP) and compared the performance of the proposed approach to Quadratic Regression (QR)

[154] and Multilayer Percepton (MLP) [65]. According to experiments on FG-NET, the SDP

approach outperforms QR and MLP. However, this approach is computationally expensive and

not suitable for large datasets.

Suo et al. [155] proposed an age estimation framework that utilizes a hierarchical face

model and specially designed sparse features. Their framework was evaluated in combina-

tion with four different age regression methods: Age-group-specific Linear Regression (ALR),

Multilayer Perceptron (MLP), Support Vector Regression (SVR), and Logistic Regression (LR).
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The experiments carried out on the FG-NET dataset showed that MLP outperforms the other

considered methods.

Considering work based on classic machine learning and handcrafted features, many other

noteworthy regression-based approaches were proposed. Guo et al. [156] proposed the Locally

Adjusted Robust Regressor (LARR) and compared its performance to SVM and SVR. Fu et al.

[157] and Fu and Huang [158] used manifold learning and framework based on the Multiple

Linear Regression problem [159]. Guo and Mu [160] presented the Kernel Partial Least Squares

(KPLS) regression model, Chao et al. [161] introduced age-oriented local regression algorithm

that combines K Nearest Neighbors and SVR (KNN-SVR), while Cai et al. [162] proposed

model based on Gaussian Process Regression (GPR). An abundance of proposed age regression

algorithms is evident. The Support Vector Regression algorithm seems to be the most popular

choice, as it was considered in many relevant works, such as [151, 155, 156, 161, 163, 164, 165].

Even though a multitude of age regression algorithms was presented over the years, most

of the early results were overshadowed by the superior performance of methods based on deep

learning. The well-established deep learning regression method leverages Mean Square Error

Loss and provides much better results, as reported in [166, 167, 168]. A less frequently used

option is to rely on Mean Absolute Error Loss, yielding comparable performance in [168]. A

combination of deep models and classic regression algorithms is explored in [169] and [170].

The former used a CNN combined with an SVR regressor, while the latter used deep features

and fusion of Random Forest (RF) [171] and SVR outputs to estimate age.

4.2.2 Classification

Compared to regression, the classification approach offers more flexibility with respect to the

expected level of precision. The age classification problem can be formulated as a binary prob-

lem where, for example, the model only needs to distinguish minors from adults. On the other

hand, the precision of a single year can be facilitated by covering some predefined age range

with an appropriate number of classes (e.g., 101 classes for an age range from 0 to 100). We re-

fer to the latter formulation as exact age estimation, while formulations with sub-year precision

can be referred to as age group classification. Section 3.2 explains this categorization in more

detail.

As exact age estimation is a challenging task even for contemporary methods, early research

was focused on age group classification with a very limited number of classes. In a very early

work by Kwon and Lobo [172], published almost three decades ago, age classification was

formulated as the task of distinguishing three age groups: babies, young adults, and senior

adults. In later work by Dehshibi et al. [173], age was categorized into four groups. More recent

work on age group classification is built around the GROUPS and Adience datasets. Gallagher

and Chen [129] proposed classification to 7 age groups in the GROUPS dataset, while Eidinger
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et al. [130] defined 8 age groups for the Adience dataset.

The multi-class classification formulation can be applied to many different tasks from vari-

ous research fields, resulting in diverse classification algorithms. An early comparison of clas-

sifiers for automatic age estimation was carried out by Anitis et al. [154]. They considered the

Quadratic Model, Shortest Distance Classifier, MLP, and the Kohonen Self-Organising Map.

The Quadratic and MLP approaches were performing best on a small private dataset. Ha-

jizadeh and Ebrahimnezhad [174] applied the Probabilistic Neural Network (PNN) to the age

classification problem, Wang et al. [175] utilized the Furthest Nearest-Neighbor (FNN) algo-

rithm, Han et al. [176] used a multi-class AdaBoost algorithm [128], while Sawant et al. [177]

considered Gaussian Process Classifier (GPC). Similar to how we identified SVR as the most

frequently utilized approach in the case of classic regression methods based on handcrafted fea-

tures, Support Vector Machine (SVM) seems to be the predominant choice for age classification

[140, 165, 178, 179, 180].

Although CNN models were combined with SVM in [181] and [182], the deep learning

method based on Cross Entropy Loss and Softmax seems to be the contemporary method of

choice for age classification [137, 183, 184, 185]. Deep learning also enabled the use of some

more complex methods, which are reviewed in the following section.

4.2.3 Advanced estimation algorithms

Based on various works reviewed in this section, neither regression nor classification is the

optimal choice for the exact age estimation task. Regression is often claimed to be sensitive

to outliers and errors in the data, while standard multi-class classification does not take into

account the ordinal nature of age labels. Classification error will be the same regardless of

whether the predicted class is adjacent to the ground truth class or if the prediction is very distant

from it. For example, given that the ground truth is 20 years, predicting 19 and 80 results in

equal classification error. The advanced methods reviewed in this work aim to solve these issues

by combining regression and classification in various ways, by improving label representation

and loss function formulation, or by designing more complex estimation frameworks.

Label distribution learning

Label distribution learning (LDL) methods aim to improve alignment with the ordinal nature

of age labels by modifying label representations and loss function formulations. In the case of

standard age classification, labels are formulated as basic one-hot vectors. For regression, the

age label is simply a continuous value. The basis for label distribution learning algorithms lies in

modifying label representation in a way that each training sample is not associated with a single

label but with a distribution of labels. Each value in such distribution represents the degree to
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which the corresponding label describes the training sample. This value should be highest for

the ground truth label, while it gradually decreases as we move away from the ground truth. The

difference between such modified label representation and conventional label representations is

shown in Figure 4.3. This approach is also referred to as soft classification.

Figure 4.3: Label encoding for regression (RVAE), classification (0/1-CAE), and label distribution
(LDAE), where t denotes the resulting encoding and σ is a LDAE hyper-parameter. Reprinted from
[186] with permission from Elsevier.

Geng et al. [36] introduced the LDL concept to the age estimation field and considered the

Triangle and Gaussian distributions to formulate labels. Their method was named IIS-LLD,

where IIS stands for Improved Iterative Scaling algorithm [187]. According to them, switching

from one-hot vectors to label distributions also improves training on smaller datasets, especially

in case of gaps in ground truth age label distribution. Since the label distribution covers the

ground truth class and its adjacent classes, one face sample also contributes to the training of its

neighboring classes. They carried out experiments on the FG-NET dataset and compared the

single-label, Triangle distribution, and Gaussian distribution approaches, concluding that the

Gaussian LDL performs best. Their results on FG-NET were outperformed by the PLS-LLD

method proposed by Zeng et al. [188]. The IIS algorithm was replaced by partial least squares

regression (PLS) to perform multivariate multiple regression analysis.

Yang et al. [189] were the first to combine deep learning with label distribution learning and

proposed the Deep Label Distribution Learning method. Their method shares some similarities

with [36]. Namely, they utilized Gaussian label distributions and used Kullback-Leibler Diver-

gence to formulate the loss function. However, their method relies on a multi-stream CNN-

based architecture, and they modified the parameters of Gaussian distribution for each sample

in the training set according to the standard deviation of apparent age votes. Their method was

ranked 4th on the ChaLearn LAP 2015 apparent age challenge [29].

Work from [189] was extended for the ChaLearn LAP 2016 apparent age challenge [134]

and dubbed Deep Age Distribution Learning (DADL). The LDL method mainly remained un-

changed, while most changes were related to the deep learning model architecture and the en-

sembling approach. The DADL method was ranked 2nd on the challenge. Furthermore, Gao

et al. [190] additionally extended the Deep Label Distribution Learning approach and dubbed
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this method DLDL. They evaluated DLDL on age estimation, head pose estimation, multi-label

classification, and semantic segmentation tasks, empirically demonstrating the robustness of the

method. The label distribution method, however, remained mostly the same.

An age-difference-based approach was presented by Hu et al. [115]. Performance of a

CNN-based age estimator trained on standard age datasets was improved by additional training

on web-collected data with age difference information. The age difference was labeled as the

difference between years when images were taken. The initial estimator was trained using the

LDL approach. The loss was formulated as a combination of the entropy loss, cross-entropy

loss, and K-L divergence distance to force the probability distribution of age predictions to have

one single peak around the correct age.

To alleviate inconsistency between the training objectives and evaluation metrics in the

DLDL framework, Gao et al. [91] extended it with an expectation regression module. The

LDL and expectation regression modules are combined with a light-weight CNN and trained

in an end-to-end manner, forming the DLDL-v2 method depicted in Figure 4.4. The proposed

method was shown to outperform metric regression, ranking, deep expectation, and standard

DLDL algorithms.

Later, Li et al. [191] argued that fixed-form age distribution is not suitable to represent

complicated facial image domains. To mitigate this problem, He et al. [192] constructed label

distributions by learning the cross-age correlation between context-neighboring samples, while

Li et al. [191] proposed a label distribution refinery that adaptively learned the continuous age

distribution.

Figure 4.4: The framework of the DLDL-v2 method, combining label distribution learning and expec-
tation regression. Reprinted from [193] with permission from Springer Nature.

Ordinal ranking

Another category of algorithms that aim to improve alignment with the ordinal nature of age

labels is called ordinal ranking. The main idea of such algorithms is to divide a complex task

into a series of simpler sub-tasks while taking into account the relative order of the labels.

Predominantly, this is done using a series of binary classifiers that simply answer whether the

age associated with the input xi is higher than some threshold age k or not. In practice, this is
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accomplished by another special type of label encoding and aggregation of K binary classifiers,

assuming age range [0,K]. In such encoding, the first k values in the encoding vector are set to

1, while the rest is set to 0. This is visualized in the Figure 4.5, part (b). The age can then be

calculated according to Equation 2.11.

The first to introduce such an algorithm to the age estimation field were Chang et al.

[194, 195], building on the reduction framework from [196]. They reduced the inference prob-

lem to a set of simple cost-sensitive binary sub-problems and utilized the ordinal hyperplane

ranking (OHRank) algorithm to solve it. They demonstrated the superiority of the proposed

ranking method over multiple regression and classification methods on FG-NET and MORPH-

II benchmarks. In their later work [197], they carried out a theoretical analysis covering the cost

of each individual binary classifier and adopted a translation-invariant and deformation-stable

scattering transform to extract facial features. Li et al. [198] adopted the OHRank algorithm

and proposed a semi-supervised version in order to incorporate information embedded in un-

labeled images and to further improve the OHRank performance. The used low-dimensional

aging representation was learned to maximally preserve ordinal information of facial images

and the underlying local structure information.

Yang et al. [199] were the first to combine the ordinal ranking approach with deep learn-

ing. They proposed combining extraction of facial features through a 3-layer scattering network

(ScatNet), dimensionality reduction with PCA, and age prediction via a category-wise ranker.

The encoding for each ranker was formulated as a combination of the category labels and the

ordinal age rank. This allows the category-wise rankers to consider joined high-level represen-

tations while learning age prediction. They coined this approach as DeepRank+.

Figure 4.5: Label encoding in case of label distribution learning (a), hard ranking (b), and soft ranking
(c) for value k = 50. Reprinted from [200] under CC BY 4.0 DEED license.

Later, Niu et al. [138] proposed OR-CNN, an end-to-end deep ranking method that jointly

optimizes the feature selection and age prediction tasks. They used a multiple-output CNN that

collectively solves a series of binary classification sub-problems. Their experiments demon-

strated superior performance over CNN-based regression and OHRank methods on MORPH-II

and the newly introduced AFAD datasets. Contrary to the single multi-output CNN approach

from [138], Chen et al. [201] used a series of basic CNNs, each serving as a binary classifier for
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a specific age rank. Their experiments demonstrated superior performance over the OR-CNN

method on the MORPH-II dataset.

To combine the benefits of ordinal information and correlation between adjacent ages (lever-

aged by the LDL algorithms), Zeng et al. [200] proposed the Soft-ranking method. To achieve

their goal, they introduced a novel age encoding method, depicted in Figure 4.5, part (c). They

performed experiments on MORPH-II, AgeDB, CLAP 2015, and CLAP 2016 datasets, consis-

tently outperforming other ranking methods.

Hybrid methods

There is a plethora of research that either combines some of the previously reviewed estimation

algorithms or proposes fundamentally different algorithms that don’t fall under any of the re-

viewed categories. We continue by briefly reviewing some of the hybrid algorithms that made

a significant impact in the field.

There are a lot of instances where regression and classification were directly combined. Han

et al. [34] evaluated the informativeness of different facial components and compared their re-

sults with human performance. Their hierarchical approach used a binary decision tree based

on SVM to perform age group classification. Within each age group, a separate age regressor

was trained to predict the final age. The regressors were trained with overlapping age ranges to

mitigate the age estimation errors due to incorrect age group classification. Li et al. proposed

AgeNet [202], a method that averages outputs of regression and classification subsystems. For

this purpose, they used two separate CNNs. One network was trained with a combination of

label distribution and modified Softmax Loss, while the regressor CNN utilized a Sigmoid layer

and Euclidean Loss. An interesting way of combining distribution learning and classification

systems was proposed by Antipov et al. [110]. To deal with low performance on ages under

12 years, a separate specialized CNN-based children age classifier was trained, while the main

CNN used LDL-based training. If the output of the main CNN was below 12, they employed

the CNN specialized for children. Otherwise, they used the expected value calculated from

probabilities predicted by the main CNN. The use of expected values was introduced by Rothe

et al. [89] in their Deep Expectation (DEX) method. The DEX networks were trained for classi-

fication with 101 output neurons for ages from 0 to 100, but the final continuous age predictions

were regressed as a weighted average of the 101 Softmax outputs. According to experiments on

the CLAP 2015 benchmark, this hybrid method outperformed both classification and regression

counterparts.

As both ranking and label distribution learning methods were shown to be very successful,

a lot of advanced variations that blur the lines between those algorithms were also proposed. A

method proposed by Pan et al. [90] was based on a newly introduced loss formulation, coined

Mean-Variance (MV). Although this approach does not rely on LDL-based label encoding, they
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combined regression-based and distribution-oriented components in the loss function. They

compared the performance of the MV loss to the classification-based Softmax and regression-

based Euclidean loss on the MORPH-II dataset and concluded that a combination of Softmax

and MV loss is performing best. A method that blurs lines between ordinal ranking and label

distribution learning was proposed by Diaz and Marathe [203]. Their method is based on la-

bel encoding named Soft Ordinal vectors (SORD). The proposed method was tested on image

quality ranking, age estimation, horizon line regression, and monocular depth estimation tasks,

showing good generalization capabilities. Li et al. [204] proposed the use of an adaptive LDL

approach (ALDL). Whereas the label distribution is predetermined and fixed in the standard

LDL approach, their goal was to learn the distribution with an instance-aware adaptive tech-

nique. They argued that the MV loss, while also falling under the ALDL category, results in

undesirable multimodal distributions due to the joint use of the Softmax and MV losses without

required constraints. They proposed a novel Unimodal-Concentrated loss formulation that was

shown to outperform Mean-Variance on the MORPH-II benchmark.

4.3 Image-based age estimation methods

To further review age estimation methods, we focus on image-based methods and review them

according to the feature representation approach. As proposed by the taxonomy in Figure 4.1,

there are two fundamentally different approaches to feature extraction. Early efforts in the field

were oriented toward the manual design of novel discriminant features. These handcrafted fea-

ture extraction algorithms relied on domain expertise and careful engineering to transform the

raw data to a suitable representation [63]. Contrary to the handcrafted features based on man-

ual design and human ingenuity, feature extractors based on learning are optimized to extract

discriminative representations directly from raw data without explicit instructions and engi-

neering. Deep learning has become the dominant paradigm in recent years due to the ability

to learn multi-level representations and very complex functions from millions of samples, thus

achieving superior generalization performance.

4.3.1 Handcrafted feature representation

Conventionally, five distinctive approaches to feature representation modeling are placed under

the umbrella of handcrafted features. Those are anthropometric representations, active appear-

ance models, aging pattern subspace, age manifold, and texture representations. The parameters

of these feature extractors are usually manually tweaked to extract as much age-related infor-

mation as possible, including head shape, wrinkles, and skin texture. Generally, handcrafted

models are less complex than their deep-learning counterparts and thus require less data and
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computational power to achieve good results. However, models based on handcrafted features

are usually restricted to frontal head poses, can not efficiently leverage large amounts of images,

and are generally less accurate.

Anthropometric representations

Anthropometric measurements are used to quantify the overall structure of the human body and

dimensions of its features such as bones and muscles [42]. The study of measuring proportions

and sizes of human faces is called face anthropometry. Farkas [205] relied on 57 facial landmark

points to define five measurements: shortest distance, axial distance, tangential distance, angle

between locations, and angle of inclination, resulting in a total of 132 facial measurements. To a

limited extent, face anthropometry measurements can help us distinguish different age groups.

Kwon and Lobo [131, 172], often cited as authors of the first work on automatic age estima-

tion, used anthropometric measurements and density of wrinkles to distinguish babies, young

adults, and senior adults. Six distance ratios between facial landmarks were used to separate ba-

bies from adults, while snakelets were used to extract wrinkle patterns from skin areas in order

to separate young adults from senior adults. Similarly, Horng et al. [206] used a combination

of geometric and wrinkle features to classify subjects into four age groups, including babies,

young adults, middle-aged adults, and old adults. They used two neural networks, where the

first one used geometric features to determine if the subject was a baby or not, while the second

one used wrinkle features obtained by Sobel filtering to classify the subject into one of the three

adult groups. Dehshibi and Bastanfard [173] further relied on a combination of distance ratios

between landmarks and a back propagation neural network to classify subjects into four age

groups. Ramanathan and Chellappa [207] proposed a craniofacial growth model based on eight

distance ratios defined over facial landmark points to model age progression in minors under 18.

Turaga et al. [208] further explored the role of geometry in age estimation. The space of facial

landmarks was interpreted as a Grassmann manifold and the exact age estimation problem was

posed as a problem of function estimation on the manifold. The same geometric features were

used by Thukral et al. [209], where a hierarchical approach was used to first divide subjects

into various age groups and then regress the exact age based on group-specific regressors. Al-

Shannaq et al. [3] note that anthropometric features are not appropriate for non-frontal facial

images and that relying solely on geometry dismisses important appearance features (e.g., skin

texture) that are more appropriate in the case of adult subjects.

Active appearance models

Active appearance models (AAM) are statistical models introduced by Cootes et al. [210]. This

image representation, commonly used for facial images, combines anthropometric and texture-

based model descriptors. The shape and texture features are extracted by a dimensionality
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reduction algorithm based on a set of images. Commonly, PCA is used to produce a parametric

face model. Lanitis et al. [35, 154] introduced AAM to the age estimation field. They first

extended AMM to the age estimation problem and observed a correlation between 50 raw face

model parameters and the actual age in [35], then evaluated different types of classifiers based

on AAM features in [154]. Later, Yan et al. [211] used AAM to explore a ranking approach with

uncertain labels, Chen et al. [212] used AAM in combination with a novel cumulative attribute

concept for regression learning in case of sparse and imbalanced data, while Feng et al. [213]

used it to explore age estimation by cost-sensitive label ranking and trace norm regularization.

According to Angulu et al. [4], AAM has a clear advantage over anthropometric models

that consider shape features only, as additional texture features make AAM appropriate for age

modeling at all stages of life. However, ElKarazle et al. [42] note that dimensionality reduction

required for the AAM approach can still lead to important aging features, such as wrinkles,

going unnoticed.

Aging pattern subspace

Geng et al. [23, 214] based their work on AAM and introduced the Aging Pattern Subspace

(AGES) method. The AGES method defines the aging pattern as a sequence of sorted face

images belonging to a single subject. As such aging patterns are often incomplete, AGES

compensates for missing elements in the sequence by learning a subspace representation of the

subject’s images. The age is estimated by positioning an unseen image at various locations in

the pattern and selecting the aging subspace that has minimal image reconstruction error. PCA

is used to obtain the subspace representations, and reconstruction error is minimized by iterative

expectation maximization (EM). Geng et al. [23, 214] evaluated this approach on the task of

exact age estimation on the FG-NET benchmark and reported superior performance. However,

Angulu et al. [4] note that the applicability of AGES is hindered by the need for datasets with

face images at several different ages for every subject. Moreover, as AGES relies on AAM,

it shares the same drawbacks in terms of not utilizing some important aging features such as

wrinkles.

Age manifold

Whereas AGES finds a specific pattern for each person, the age manifold method, introduced

by Fu et al. [157], finds a trend for multiple subjects at different ages. Moreover, this method is

more flexible than AGES as it allows for a subject representation to be based either on a single

image or multiple images at different ages, thus simplifying the data collection problem. The

age manifold method learns the common low-dimensional pattern from multiple faces at every

age. Fu and Huang [158] formulated a manifold using Conformal Embedding Analysis (CEA),

while age was estimated using multiple linear regression. Scherbaum et al. [215] applied
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manifold learning to a 3D morphable model, where a manifold was formed by isosurfaces

of nonlinear SVR function. Guo et al. [163] replaced PCA dimensionality reduction with

Orthogonal Locality Preserving Projections (OLPP), which is a supervised manifold learning

algorithm. Yan et al. [216] proposed Synchronized Submanifold Embedding (SSE), where

manifold learning is dually supervised by subject identity and 3D head pose. Experiments on

FG-NET indicated superiority over conventional regression and unsupervised manifold learning

algorithms. More recently, Cai et al. [162] proposed the Discriminative Gaussian Process Latent

Variable Model (DGPLVM), an effective probabilistic model for manifold learning, where the

mapping between low-dimensional representations and ages was found by Gaussian process

regression.

Texture representations

The texture-based models are appearance models that directly depend on the pixel values of

facial images. These models rely on various texture operators to extract skin features related

to aging, such as spots, lines, or edges. Local Binary Patterns (LBP) [119] are one of the most

effective and frequently used texture descriptors, utilized for age estimation by [217, 218, 219],

among many. Here, every pixel in the image is simply represented by a binary code formed by

comparing the intensity of a central pixel to its surrounding pixels, making it computationally

efficient. Gao and Ai [220] extracted Gabor features of 3 scales and 4 orientations. The re-

sulting 12 magnitude images were used as raw features, while fuzzy LDA was used to classify

age. They reported performance superior to raw pixels and LBP. Guo et al. [165] proposed an

age estimation method based on Biologically Inspired Features (BIF) [221], a popular type of

feature inspired by the primate visual cortex. They used a variation of BIF particularly designed

for age estimation, utilizing Gabor filters to model receptive fields and MAX and STD opera-

tions as sources of nonlinearity. El Dib et al. [222] extended the BIF approach from [165] by

incorporating fine detailed facial features, automatic initialization using Active Shape Models

(ASM), and analyzing the complete facial area, including the forehead details. Instead of ex-

tracting BIF from a holistic face like in [165], Han et al. [34] also extracted BIF features from

individual facial components, such as forehead, eyebrows, eyes, nose, and mouth. An impor-

tant advantage of BIF features is that they can effectively handle small translations, rotations,

and scale changes [3]. In addition to these popular options, several other handcrafted texture

features were successfully applied to the age estimation problem. A feature descriptor called

Spatially Flexible Patch (SFP) was utilized by Hayashi et al. [223] and Belver et al. [224]. Zhou

et al. [151] used Haar-like feature extractors, Histograms of Oriented Gradients (HOG) features

were used by Hajizadeh and Ebrahimnezhad [174], while scattering transform descriptors were

evaluated by Chang and Chen [197]. According to ElKarazle et al. [42], the texture-based

models are more apt to perform well on images taken in uncontrolled conditions.
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4.3.2 Learned feature representation

While there are many ways in which feature representations can be learned, the prevailing ap-

proach used in the age estimation field is to learn representations directly from the raw texture

(i.e., image pixel intensities). This is similar to the use of handcrafted texture representations

described in the previous sections. However, learning feature representations is a fundamentally

different approach, as the representation is discovered directly from the data. The Multilayer

Perceptron (MLP) was one of the first methods used to directly learn from the raw pixel data.

The potential of this approach was not fully discovered during the early adoption years and

was widely abandoned. However, another category of neural network architectures was later

introduced specifically to address the problem of learning feature representation directly from

images: Convolutional Neural Networks (CNN). The introduction of CNNs to the age estima-

tion field resulted in consistent improvements across the field, making CNN architectures the

dominant design choice in the deep learning era. Huerta et al. [166] were the first to apply deep

learning to age estimation and compare the results to the traditional approaches under the same

experimental settings. In an exhaustive set of experiments, HOG, LBP, and SURF handcrafted

feature extractors were compared to a simple LeNet [73] CNN architecture variant, demon-

strating the clear superiority of the CNN-based model. According to Al-Shannaq et al. [3],

the performance differences exhibited by the CNN-based models are related to two factors: the

choice of CNN architecture and the choice of pretraining procedure. While CNN models can

be initialized with random weights and trained directly on the target data (i.e., from scratch),

the full potential of deep learning models is unlocked by the transfer learning technique, briefly

introduced in Section 2.2.3. In line with this, we continue reviewing deep-learning-based age

estimation methods according to the choice of CNN architecture and the type of pretraining

procedure.

Neural network architectures

CNN is the most popular deep learning architecture, widely used across different computer

vision fields. Various advanced CNN architectures have been proposed over the last decade, and

many of them have been successfully adopted in the age estimation field. Bianco et al. [225]

performed an in-depth benchmark analysis of 20 prominent deep neural network architecture

families. For a detailed overview of the CNN architecture choices, we refer readers to this study

while we continue by briefly discussing the most popular choices in the age estimation field.

The earliest example of a CNN feature extractor used for age estimation is LeNet [73].

This very simple architecture, based on only two convolutional and two fully connected layers,

was used in early work by Huerta et al. [166], and later by Dong et al. [226]. The AlexNet

[77] architecture gained its reputation as the first winner of the ImageNet challenge [86]. This
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slightly deeper network, consisting of 5 convolutional layers and 3 fully connected layers, was

successfully utilized for age estimation in [181, 227, 228, 229]. The next network architec-

ture to gain popularity was VGGNet [78], along with its many variants: VGG-11, VGG-13,

VGG-16, and VGG-19. These architectures were designed to be much deeper, with the premise

that more nonlinearities can be modeled with an increased number of layers. The most popular

version, VGG-16, has 13 convolutional and 3 fully connected layers. Along with VGG-Face,

a specialized version pretrained on almost 1,000,000 face images for person identification, it is

the most widely used architecture family in the age estimation field [20]. It was used for age

estimation by [32, 90, 91, 110, 189, 203, 204, 230], among many. The same year as VGGNet

was introduced, Google introduced GoogLeNet [79]. This is an even deeper architecture, with

up to 22 convolutional layers, but with much fewer parameters due to the removal of heavy,

fully connected layers. Based on its newly introduced inception module, this network is also

referred to as Inception-v1, while several additional Inception versions were introduced in sub-

sequent years. GoogLeNet was utilized for age estimation in [170, 202, 231]. While the trend

of stacking more and more convolutional layers was obvious, a limitation related to the vanish-

ing gradient problem emerged, requiring a novel approach. ResNet [80] architectures proposed

an answer to this obstacle, based on residual blocks with skip connections that enable gradient

propagation in very deep networks. While this enabled training of networks with more than

200 layers, the ResNet-50 variant turned out to be the most popular one. ResNets were used

for age estimation in [232, 233, 234]. MobileNet [83] is a more recent family of architectures

oriented towards achieving comparable performance under limited computational resources.

The main difference, compared to the ResNet architecture, was the introduction of efficient

depthwise separable convolutions. MobileNets were used for age in [235, 236]. In addition to

these popular CNN architectures, some less popular but specialized networks were also used

for age estimation, including ScatNet [237] in [199], C3AE in [238], SSR-Net in [236], and

ThinAgeNet and TinyAgeNet in [91].

While the CNN architecture is undoubtedly the dominant choice in the field, it is also impor-

tant to note that other types of neural networks are being successfully used for age estimation.

For example, Zhang et al. [239] combined traditional CNN backbones with the Long Short-

Term Memory (LSTM) network architecture to extract local features of age-sensitive regions.

Recently, the Visual Transformer (ViT) architecture, originating and widely used in the natu-

ral language processing (NLP) field, showed excellent results compared to the well-established

CNN architecture. Paplhám and Franc [240] compared the FaRL backbone [241], based on a

ViT-B-16 model [242], to the popular VGG-16, ResNet-50, and EfficientNet-B4 CNNs under

a unified framework, concluding that no backbone emerges as universally best across all age

estimation datasets.
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Pretraining procedure

While the deep networks described in the previous section enable impressive results, they also

require large training data. Deep networks have great capacity and can model very complex

nonlinear functions. However, in the case of a small and unbalanced training dataset, this can

easily lead to overfitting issues, meaning that the learned nonlinear function closely fits the

training set but does not generalize well to unseen samples. In case of a sufficient amount

of task-specific data, the models can be trained from scratch without the use of external data

and pretraining steps. If the target task-specific dataset is not sufficiently large, pretraining and

transfer learning techniques can mitigate the overfitting issues and improve the generalization

performance.

Due to the above issues, a relatively few researchers trained their networks from scratch.

LeNet is a very simple architecture, utilizing only two convolutional and two fully connected

layers. Huerta et al. [166] were able to train it from scratch based on relatively small datasets.

Yan et al. [243] designed a 5-layer network and trained it from scratch for several tasks, includ-

ing age estimation. However, they did not manage to outperform a method based on handcrafted

BIF features. To prevent overfitting issues, Levi and Hassner [185] also proposed a shallow

CNN architecture, utilizing only 3 convolutional layers. Moreover, they inflated the training set

by applying cropping augmentations. Wan et al. [244] also relied on shallow networks with

3 convolutional layers, organized in cascades to use auxiliary demographic information in age

estimation, and trained them from scratch. We can see that in the case of training done from

scratch and based on relatively small datasets, only shallow networks seem to be successfully

utilized.

Three common pretraining techniques were proposed to fully leverage the potential of deep

networks by using large amounts of external data, as reviewed in [20]. The first technique is

called general task pretraining (GT), where the model is pretrained on some general task un-

related to age estimation or even to faces. The most popular option for GT pretraining is the

ImageNet [86] dataset. A typical ImageNet pretraining includes classification training with

1,000 classes and more than a million training images. Due to the nature of deep learning, the

initial hidden layers learn generic low-level features, such as points, edges, and contours. The

hidden layers of GT pretrained networks are not optimized for age estimation but are general

enough to be useful in the age-specific finetuning step. The ImageNet GT pretraining was used

for age estimation in many publications, such as [186, 189, 231, 245, 246]. The second tech-

nique is called face recognition pretraining (FR). Instead of learning to classify general objects,

the FR pretrained models are trained to recognize identity from facial images, thus learning

face-specific representations. The most popular dataset for FR pretraining is the VGGFace2

dataset [247], consisting of more than 3 million images. Another popular option is the CASIA-

WebFace dataset [248], consisting of about 500,000 facial images. The FR pretraining was used

56



Related work

for age estimation in [170, 181, 183, 202, 230, 245, 249]. The third technique is called age es-

timation pretraining (AE). Here, models are pretrained on large facial datasets designed for age

estimation. This option best suits the task at hand as it enables models to learn very specialized

features. However, it requires a large dataset with age labels, which is difficult to acquire. The

IMDB-WIKI dataset, introduced specifically for the purpose of AE pretraining by Rothe et al.

[89], consists of more than 500,000 web-scraped weakly labeled noisy samples. Even though

the quality of this dataset is very poor, it enabled considerable performance improvements in

[32, 110, 140, 244, 250]. Antipov et al. [186] performed a comparison of GT and FR pretraining

techniques and concluded that FR is more suited for the age estimation task. Carletti et al. [20]

further commented that AE pretraining shows the greatest potential, especially if better-suited

AE pretraining datasets become available.

4.4 Video-based age estimation methods

One of the main premises of this thesis is that facial videos provide extensive information that is

useful for age estimation. However, compared to the fruitful image-based research field, there

is only a handful of published work that leverages video information to improve age estimation.

As described in an early work focused on analyzing facial behavioral features from videos by

Hadid et al. [251], there are two main strategies for video-based face analysis. The simplest

strategy is to apply image-based methods to all video frames or a set of sampled frames from a

video. Individual frame results are then fused over the sequence. The more elaborate strategy

involves leveraging both face appearance and face dynamics information through spatiotempo-

ral modeling. We review video-based methods with a focus on spatiotemporal modeling and

with respect to the type of used feature representations.

4.4.1 Handcrafted feature representation

To compare the aforementioned strategies, Hadid et al. [251] implemented two baseline meth-

ods. The image-based baseline used Local Binary Pattern (LBP) features [252, 253] extracted

from static images, followed by SVM classification. A similar video-based method combined

Volume-LBP features [254] selected using AdaBoost and SVM classification, with the goal

of using both static facial information and facial dynamics. They trained and tested their age

classifiers on a set of 2,000 web-scraped videos that were manually annotated with apparent

age labels. Age estimation was treated as a classification task with 5 age classes. Although

their experiments indicated that the video-based approach can improve performance for face

recognition, gender classification, and ethnicity classification tasks, their image-based method

outperformed the video-based counterpart in the case of age estimation.
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A similar line of exploration was done by Dibeklioğlu et al. [144], with a focus on the

discriminative power of smile dynamics for age estimation. They leveraged movement features

of facial key points, such as speed, acceleration, and amplitude, to complement appearance-

based cues and improve estimation accuracy. Facial dynamic features were combined with

LBP features extracted from a single frame and fed into SVM classifiers and regressors. Their

experiments were based on the UvA-NEMO Smile Database [143], which contains 1,240 videos

from 400 subjects. Each video shows a single subject’s transition from a neutral expression

to a posed or spontaneous smile. Their extensive experimentation demonstrated significant

performance improvement over the baseline image-based method, as well as compared to the

video-based method from Hadid et al. [251].

Dibeklioğlu et al. extended their work on face dynamics for age estimation in [145]. In

addition to LBP appearance features, they considered Intensity-based Encoded Ageing Features

(IEF) [255], Gradient-based Encoded Ageing Features (GEF) [255], and Biologically-inspired

Ageing Features (BIF) [165]. Surface area features based on a mesh model were used instead

of facial key-point movement features. Appearance and dynamic features were selected and

combined in different ways, followed by a newly introduced two-level classifier, where the age

ranges for classifiers were adaptively selected. Along with the previously used UvA-NEMO

Smile dataset, they introduce the UvA-NEMO Disgust dataset. Their experiment showed that

video-based methods that leverage face dynamic features significantly outperform the image-

based baseline on both Smile and Disgust versions of the UvA-NEMO datasets.

4.4.2 Learned feature representation

Instead of handcrafted features used in [144, 145, 251], a combination of CNN, RNN, and at-

tention modules was used by Pei et al. [256] to improve performance of age estimation from

facial expression videos. The proposed Spatially-Indexed Attention Model (SIAM), depicted in

Figure 4.6, used a CNN for appearance modeling, a spatial attention module for the detection

of salient facial regions, an RNN model for capturing facial dynamics, and a temporal attention

module for temporal saliency. The model is trained in an end-to-end manner. To train and vali-

date their method, UvA-NEMO Smile and UvA-NEMO Disgust datasets were once again used,

following the protocol from [145]. Their experiments demonstrated that the proposed neural-

network-based approach outperforms previous methods based on handcrafted features on the

UvA-NEMO Smile dataset. However, those improvements were not successfully replicated on

the smaller UvA-NEMO Disgust dataset. The authors attribute this to a relatively small size

of the UvA-NEMO Disgust datasets, arguing that neural-network-based methods require larger

amounts of data in general.

Ji et al. [257] pointed out that deploying image-based age estimation models directly to

videos often suffers from estimation stability issues. To address this, they proposed a combina-
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Figure 4.6: Spatially-Indexed Attention Model (SIAM) for video-based age estimation. Reprinted from
[256] with permission from IEEE (© 2020 IEEE).

tion of CNN-based feature extraction and attention-based feature aggregation modules, sharing

some similarities with [256]. Their model was not trained in an end-to-end manner, as the

CNN was initially trained on images, followed by attention module training. Along with the

commonly used MSE loss, their loss function for the attention module included a component

for estimation stability based on mean estimation calculated on the sequence level. The feature

extraction module was trained on the MORPH-II [95] image dataset. To train the feature aggre-

gation module, they built a video dataset comprising 18,282 frames from a single twelve-minute

facial video of one subject, noting that there are no available age facial video datasets. Their

experimental results demonstrated improvements concerning both age estimation accuracy and

stability.

To attenuate the effect of head-pose on video-based age estimation, Han et al. [146] based

their method on pose-invariant uv texture maps reconstructed from video frames by a Wasserstein-

based GAN. They introduced the UvAge dataset consisting of 6,898 videos from 516 subjects

and used it both for training and evaluation. The proposed AgeGAN method, which simultane-

ously inpaints the partial uv maps and estimates age from them, was shown to perform better

than methods based on original 2D face images and methods based on different types of in-

painting modules. Even though video data was used in their experiments, the proposed method

was focused on achieving robustness to head pose changes without exploiting any temporal

information from videos.

Zhang et al. [258] also focused their work on mitigating the negative effect of head-pose

variation on age estimation from videos. The proposed method relies on multiloss CNN for

head-pose estimation [259] and Deep Regression Forests (DRF) [260] for age estimation. They

trained the head-pose estimation model on the 300W-LP dataset [261] and used it to create mul-

tiple subsets of the CACD [262] and AFAD [138] datasets based on different angle thresholds.

The selected subsets were subsequently used to train DRFs for age estimation. After selecting

the best threshold, CACD and AFAD datasets were divided into frontal and non-frontal subsets.

The performance of models trained and tested on frontal subsets was shown to be significantly
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better. They proceeded by collecting two 12-minute facial videos from two subjects for evalua-

tion purposes, also noting that no video datasets are available for age estimation model training.

The head-pose estimation was used to cherry-pick frames with near-frontal faces from video

sequences, while non-frontal faces were ignored. Their experiments showed that this frame

cherry-picking step improves both age estimation accuracy and stability. Similar to the work

from Han et al. [146], their method was focused on mitigating head-pose-related performance

drop without exploiting any temporal information from videos.

4.5 Discussion

We conclude this section with a holistic overview of the current state of the age estimation

field. As this is a very fruitful research field, a plethora of datasets, algorithms, and methods

were proposed, many of which were reviewed in this section. The taxonomy of age estimation

system design choices, presented in Figure 4.1, helps us grasp the diversity of the proposed

solutions. When performing such a review, a common goal is to try to determine the strengths

and weaknesses of different algorithms and methods and, finally, the best-performing option

for the task at hand. Typically, we should also aim to discover potential gaps in the field and

opportunities for novel contributions. We continue by summarizing the benefits and drawbacks

of the reviewed approaches, discussing the options for the state-of-the-art comparison, and

commenting on what motivated us to pursue our contributions presented in Chapters 5 and 6.

As reviewed by Carletti et al. [20], it is a consolidated conviction that deep learning of-

fers overwhelming superiority over dated methods based on handcrafted features and classic

learning algorithms. When considering the use of video inputs instead of images, we can con-

clude that the benefits of leveraging spatiotemporal dynamic information are evident. However,

one needs to take into account that video-based age estimation is an understudied field with a

certain lack of available public data. The question of the best estimation algorithm type is the

most difficult one to answer, as there is a large variety of choices to consider, each having some

distinctive downsides. Classification and regression are indeed the simplest and most popular

choices. However, regression formulates the aging process as a linearly growing dependence

while also being sensitive to outliers and data errors. Classification, on the other hand, does

not take into account the ordinal nature of age labels and is prone to overfitting issues in the case

of gaps in data distributions. The basic ranking algorithm was reported to be suboptimal due to

inconsistency in the training objective and the evaluation metric. While this is not definitive,

and there are many advanced methods that blur the line between these algorithm categories, the

label distribution learning methods are often reported to have the most competitive performance

[2, 110, 186, 240]. The strengths and weaknesses of different algorithm types are reviewed in

more detail in [28].
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Conventionally, researchers pursue a state-of-the-art (SOTA) comparison to determine what

is the best performing method for a certain task. This is usually done by compiling results

reported in various publications while trying to put them under a common denominator, thus

facilitating a fair comparison. Extensive SOTA reviews are compiled in [2, 3, 4, 20, 43, 263].

A prerequisite for a fair comparison is a well-defined and publicly-available benchmark. As

discussed in Section 2.4, a benchmark protocol consists of benchmark data, performance met-

rics, and the evaluation protocol determining how to calculate the defined metrics on the given

data. The protocol needs to be defined in a way that makes training and testing data fully in-

dependent. Moreover, the test data should ideally be a well-balanced representative of the tar-

get real-world environment. Problematically, this is not the case for the most frequently used

benchmarks: FG-NET and MORPH-II. The demographic distribution of the MORPH-II dataset

is presented in Figure 2.6).

Over the years, we have put a lot of effort into the reproduction of various methods and,

more often than not, faced reproduction issues. Many of the issues originated from ill-defined

benchmark protocols. Important protocol details, especially regarding data splits, are often left

out. Furthermore, as stated at the beginning of this chapter, details of the complete age es-

timation framework, including face detection, preprocessing, feature extraction, and attribute

prediction, are in many cases not fully disclosed. While analyzing various reproduction issues,

we formed the opinion that details regarding the used data and the early data processing steps

play a role that is too significant to be overlooked. Interestingly, this is fully aligned with the

conclusions of the recent work by Agbo et al. [28]. As details of these steps are frequently

left unspecified, we question the feasibility of carrying out a genuinely fair SOTA comparison.

This opinion was further corroborated by inconclusive method comparisons, reviewed in [20].

More significantly, Zeng et al. [200] empirically proved that the problem of overlapping iden-

tities between the training and testing data in popular age benchmarks gives rise to misleading

results.

A very recent study from 2024 by Paplhám and Franc [240], accepted for publication in the

most prestigious conference in the field (Conference on Computer Vision and Pattern Recog-

nition), focuses solely on a call to reflect on the evaluation practices for age estimation. In

this unconventional work, a comparative analysis of SOTA methods was performed under a

unified framework designed to facilitate fair comparison. They isolated the influence of the

tested method by keeping other relevant components in the system, such as data collection,

data processing, model design, training, and evaluation, constant. They compared 9 estima-

tion methods over 7 datasets in the cross-dataset evaluation setting. Unexpectedly, the findings

showed that performance differences between various methods introduced over the last decade

are almost negligible, even though gradual and consistent improvements were reported in the

related literature. Their experiments showed that the improvements are, in fact, stemming from
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other factors, such as the amount of data used for pretraining, image resolution, model archi-

tecture, face alignment approach, and the amount of facial context used in the pipeline. They

identified two trivial yet persistent issues. First, the reviewed benchmark protocols do not use

standardized and publicly available data splits in most cases. Even more troubling is the find-

ing that only ≈ 10% of reviewed papers used the subject-exclusive protocol on the MORPH-II

benchmark, meaning that some subjects were used both in training and testing in the majority

of publications. Secondly, a clear mapping between the reported performance gains and var-

ious modifications in the estimation system often does not exist, as multiple components are

changed simultaneously. Due to this, the authors of this study deem regular SOTA comparisons

meaningless.

Interestingly, even though this was not our main objective in Chapter 5, the evaluation setup

and the captured results of our exploration across 5 methods and 10 dataset versions are aligned

with findings from [240]. Moreover, Paplhám and Franc identified the amount of the pretrain-

ing data as the most influential factor on model performance. This supports our decision to

focus our contributions to image-based age estimation (Chapter 5) on the design of a new, large

training dataset, instead of pursuing method improvements directly. The review also states that

the CLAP 2016 dataset, which is used for the recent Appa-Real benchmark, is the only pub-

lic option with standardized data splits and reliable labels suitable for age estimation. This is

aligned with our own decision to use it as our main image-based benchmark. On a similar note,

our contributions to video-based age estimation (Chapter 6) are further focused on solving data

issues. Specifically, we focused on establishing a well-defined, publicly available benchmark

protocol for video-based age estimation, and mitigating the issue of video training data short-

age via a semi-supervised learning approach.
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Chapter 5

Unsupervised biometric data filtering for
refined age estimation

Years of research in the field have led us to believe that data is the cornerstone for the design of

robust age estimation models with good generalization capabilities. As biometric data collection

becomes an increasingly sensitive issue, the research community struggles with the collection

of large amounts of reliable data for biometric tasks such as gender, age, and ethnicity estima-

tion. For over a decade, image-based face analysis research relied on small, manually collected

datasets, ranging from 1,000 to 50,000 samples. Geng et al. [36] stated that the lack of sufficient

training data is one of the main challenges of facial age estimation, also highlighting problems

in the collection of data with a wide age range. Carletti et al. [20] pointed out that the currently

available datasets are not yet ready for real-world exploitation. They state that the disparity

of performance in the cross-dataset setting is symptomatic of the fact that the datasets are not

representative of real-world complexity. They also state that the collection of actual age labels

for real-world data is a difficult task. A very recent evaluation of SOTA methods under a unified

framework, carried out by Paplhám and Franc [240], has shown that performance differences

across various age estimation methods are negligible compared to performance gains obtained

by the use of pretraining on large amounts of data. In fact, they concluded that pretraining data

is the most influential factor in the design of an age estimation system.

Several research groups have recently utilized automatic web-scraping methods to success-

fully collect large amounts of noisy but heterogeneous data, and improve the state-of-the-art

facial analysis algorithms [89, 115, 264, 265]. Today, the majority of researchers rely on large

and noisy, web-scraped datasets [20]. Although a small amount of noise in the training data is

not considered to be a problem for modern deep learning algorithms and can, in some cases,

even help to reduce overfitting problems, large amounts of noise can reduce the smoothness of

the cost function hyperplane, lower the convergence rate, and impair the final performance.
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This chapter is based on our work from [266]* and [267]†, focusing on picking out the bad

apples from facial image datasets. The goal of this work is to automatically reduce the level of

label noise in web-scraped facial datasets by filtering out the wrongly labeled or otherwise faulty

samples in order to improve the resulting face analysis algorithms. Again, we are focusing on

the age estimation task, as it is one of the most difficult face analysis problems [134]. The

contributions of the work presented in this chapter are summarized as follows:

•We present an efficient unsupervised method for biometric data filtering that can signif-

icantly reduce label noise in facial image datasets. It is an automatic and parameter-free

method for facial dataset filtering that does not require supervised training of dataset-

specific systems but utilizes only general-purpose, off-the-shelf algorithms and models.

•We apply the proposed filtering method to two state-of-the-art, web-scraped datasets,

and demonstrate its benefits to 5 different age estimation methods, and with respect to

generalization capabilities in unconstrained conditions.

•We propose a biometric filtering strategy to reinforce and refine the merging process of

multiple facial datasets and derive the new Biometrically Filtered Famous Figure Dataset

(B3FD). We demonstrate B3FD’s superiority over existing state-of-the-art age estima-

tion datasets with respect to both real and apparent age estimation and make the dataset

publicly available.

•We highlight the importance of training data quality compared to the training data quan-

tity and demonstrate that the proposed refinements of the training data result in a larger

margin of improvement than the utilization of more advanced age estimation methods.

The rest of the chapter is organized as follows. Building on the related work review pre-

sented in Chapter 4, Section 5.1 reiterates relevant web-scraping techniques and reviews the

most relevant dataset filtering methods. Further, Section 5.2 describes the proposed method for

unsupervised biometric data filtering and provides experimental validation of its effectiveness.

Section 5.3 describes the design strategy of the new famous figure age estimation dataset and

provides a comparison with the state-of-the-art. Section 5.4 discusses the findings of this work.

5.1 Filtering web-scraped facial data

A review of work related to facial age estimation is presented in Chapter 4, with a special focus

on web-scraped data in Section 4.1.1. To reiterate, web scraping refers to the automatized data

collection from web sources. In this specific case, it refers to the collection of face images

and related metadata. Section 4.1.1 introduced many relevant web-scraped datasets, such as

GROUPS [129], Adience [130], CACD [139], AFAD [138], UTKFace [137], IMDB-WIKI

*Reproduced with permission from SciTePress.
†Reproduced with permission from Springer Nature.

64



Unsupervised biometric data filtering for refined age estimation

[89], and MegaAge [136]. Their most important properties are summarized in Table 4.1. Design

principles for all these datasets are fairly similar, with some nuances described as follows.

The main component of a facial age estimation dataset is the image data. For the aforemen-

tioned web-scraped datasets, images were collected via the Flickr platform in [129, 130, 136],

Google Image Search in [137, 139], Bing search engine in [137], Internet Movie Database

(IMDb) in [89], Wikipedia in [89], and RenRen Social Network in [138]. The second and

equally important component of a dataset is the labels. Several different approaches for auto-

matic label collection were proposed. When using image search engines, images are collected

by querying the engine with search phrases. In [139], such search phrases combined celebrity

names and specific years. The specified year was used in combination with the date of birth

(DoB) information collected from IMDb to produce the age labels automatically. This tech-

nique relies on the assumption that queries will result only in images taken in the specified

year. In the case of the AFAD dataset, collected from the RenRen Social Network in [138],

self-provided DoB was used in combination with the date of image upload, expecting that this

date also matches the date when the image was taken. In the case of the IMDB-WIKI dataset

[89], the authors used a large list of famous actors from IMDb and scraped data directly from

their IMDb profiles, including images, gender, and DoB information. They also used Wikipedia

profile pictures with the same metadata. By using only images that listed the year in which they

were taken, they were able to automatically obtain age labels by subtracting the DoB informa-

tion from the listed year. All these techniques also rely on the assumption that the person of

interest will be the only (or the main) subject in the scraped image.

Additional two examples of facial data web-scraping that did not result in a publicly avail-

able dataset followed similar basic principles. A very simple yet effective method for the auto-

matic collection of a sizeable web-scraped gender dataset was presented in [264]. By querying

search engines with a list of gender-specific names, the authors collected 4 million weakly

labeled samples and demonstrated the importance of large-scale datasets for in-the-wild gen-

der estimation. To avoid the need for large-scale public datasets with exact age annotations, a

method for web-based collection of samples with age difference labels was proposed in [115].

To build their dataset, the authors used the Flickr platform and names from the LFW dataset

[268] to crawl large amounts of images along with descriptions containing dates of image ac-

quisition. Although they did not collect the actual age information, pretraining their network

for age-difference estimation improved their final age estimation results.

Web-scraped datasets such as CACD and IMDB-WIKI were shown to be superior to the

manually collected datasets in terms of size and sample variety, but their overall quality is

undermined by the high amounts of label noise. We continue by reviewing efforts made toward

cleaning noisy web-scraped facial datasets.

An early example of an automatic facial dataset filtering method was presented in [265].
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In an attempt to design a robust and universal age estimator, the authors used image search

engines and a set of age-related queries to collect a large facial dataset with weak age labels.

To reduce the label noise levels, they designed a simple two-step filtering approach. In the

first step, they used parallel face detection based on multiple state-of-the-art face detectors. To

remove non-facial images and dismiss misaligned detections, they only retained samples with

multiple detections overlapping more than 90%. To further reduce the number of false positive

detections and to reduce the number of faces not correctly corresponding to the search-query

age, they applied PCA to all images collected for a certain age and dismissed images with large

reconstruction errors.

The age-specific PCA filtering step was intended to remove age-category outliers based on

their apparent age, but the largest reconstruction errors were actually caused by face occlusions

and non-frontal head poses, thus removing samples crucial for training a robust age estimator.

Furthermore, due to the strict criterion for multiple face detection overlap, an additional large

number of valuable difficult samples was discarded.

Even though the benefits of pre-training on the large and noisy IMDB-WIKI dataset were

clearly demonstrated in [89], a cleaned version could further improve their age estimation re-

sults. In order to create a cleaned version of the dataset, a combination of automatic and manual

processing steps was used in [110]. In the first step, all the images with multiple face detections

were removed to increase the probability of the detected face corresponding to the provided age

label. In the second step, a subset of the remaining multi-face images was manually filtered via

a crowdsourcing annotation process.

The authors state that the first step ensures the correctness of the age labels. Still, both

false positive and false negative detections induce considerable amounts of label noise, even

in single-detection images. In the manual step, the annotators were asked to pair the provided

annotation with one of the faces in the image. A study on human performance showed that

the average annotator estimates age with a high mean absolute error of 4.7 - 7.2 years [34],

indicating that even this seemingly trivial step can produce additional noisy outcomes.

Compared to a limited amount of work presented on age data filtering, several more ad-

vanced approaches for facial dataset filtering were proposed in the facial recognition field, as it

has become one of the most data-hungry image analysis fields in general.

A data-driven approach for cleaning large face datasets was presented by authors of the

FaceScrub dataset [269]. To identify the faces to be removed from their dataset, they exploited

the observations that the same person should appear at most once per image, have the same gen-

der, and look similar. The task of outlier detection was formulated as a query-specific quadratic

programming (QP) problem based on a combination of terms related to those observations. As-

suming that falsely detected faces form only a small portion of the detected set, they were able

to train a one-class SVM and use its output as a score for the false positive term. To enforce
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a gender term, they trained a two-class linear SVM for gender classification with query-based

gender labels. Similar to the false detection term, the outputs of its decision function were used

as gender scores. A similarity term was encouraged by graph regularization based on the nor-

malized graph Laplacian, and an additional prior term was used to encode the assumption that

most faces are correct.

By manually annotating a part of their dataset, the authors assessed their algorithm and

demonstrated that their QP formulation outperforms the naive approach where the classifiers

were used separately. However, the discussed benefit of manual workload reduction was some-

what impaired by the need for the dataset-specific classifier trainings.

The more recent large-scale web-scraped facial recognition dataset, named VGGFace2 [247],

adopted and improved a multi-step semi-automatic approach from the original VGGFace paper

[88]. To achieve their goal of a 96% pure dataset, their efforts included more than three months

of manual annotations. The majority of that time was spent on the initial name list filtering.

The annotation team reduced the initial list from 500,000 to only 9,244 names by dismissing

all subjects for whom the top 100 Google Image Search results were not at least 90% pure.

After applying a relatively strict face detection step, a set of 1-vs-rest classifiers was trained

to discriminate between the 9,244 subjects. The threshold was selected by manually checking

results for 500 subjects, and all samples with scores below the chosen threshold were dismissed.

The next step, designed to remove near-duplicate images, used VLAD descriptor clustering and

retained only one image per cluster. To detect overlapping subjects (names referring to the same

person), an additional classifier was trained to generate a confusion matrix and remove classes

mostly confused with others. The final, partially manual step consisted of iterative retraining of

the 1-vs-rest classifiers with an annotator team manually filtering only part of the samples based

on the classification scores.

To reach their target in terms of data purity, the authors of the VGGFace2 trained several

versions of more than 9,000 1-vs-rest classifiers, trained an additional classifier for overlap

detection, performed manual threshold search and substantial amounts of manual filtering. This

impressive data filtering effort resulted in a state-of-the-art face recognition dataset.

5.2 Unsupervised biometric data filtering

To design an efficient filtering method, an overview of which is given in Figure 5.1, we analyzed

the common sources of label noise in the current state-of-the-art biometric facial datasets.

Due to the nature of the commonly used web-scraping approaches described in Section 5.1,

there are two main sources of label noise. The first problem is the unreliability of the automatic

age annotation process itself. Although the date of birth (DoB) information is mostly correct,

the year of image acquisition can be inaccurate or misleading. For example, Rothe et al. [89]
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Figure 5.1: The proposed unsupervised biometric filtering pipeline for the IMDB subject Jim Carrey. (a)
Samples are grouped into subject-specific galleries based on the provided identity metadata. Every image
in the subject-specific gallery contains the gallery owner (e.g., Jim Carrey). Still, many also contain other
subjects that can be mismatched with the gallery owner’s biometric labels (e.g., age and gender). (b) Face
detection and alignment of faces in the image gallery. Most of the detected faces belong to the gallery
owner, while others are sources of label noise. (c) CNN-based face recognition descriptor extraction
from all detected faces. (d) Graph-based clustering of the extracted facial descriptors. Clusters are
formed based on identity matching. The gallery owner’s cluster is the largest because their face appears
most frequently in the image gallery. (e) Samples belonging to the largest cluster are retained, while
those from the other clusters are discarded as noise.

mention that a large number of images are actually movie screenshots annotated with the year

of the movie release, while some movies have production time spanning over several years.

This problem usually causes only minor age annotation errors.

A much more serious issue, causing large discrepancies for age and other biometrics labels,

is mismatched identities. In case of multi-person images, face detector failures, or bad image

search results, the metadata can be paired with a face detection of a wrong subject. Let’s

consider an image containing a famous actress and her son, where the metadata is linked to

the actress. If the son’s face gets detected as the primary face, potentially due to the actress’s

face being partially occluded or recorded under a difficult angle, the sample will end up with a

wrongly assigned gender label and a high age annotation error. (i.e., up to several decades).

Figure 5.2 shows examples of correctly paired and mismatched images for one subject ap-

pearing in both CACD and IMDB-WIKI datasets. Compared to typically constrained manually

collected data, the top-row (i.e., correct) samples exhibit superior variation concerning many

important aspects such as head pose, facial expression, lighting, and background. On the other

hand, the bottom-row (i.e., mismatched) samples greatly impair the overall quality and usability

of the dataset.

In order to reduce the number of labeled samples with erroneously matched facial images

and to mitigate this most detrimental source of label noise, we propose a filtering method de-

scribed in the next section.
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Figure 5.2: Web-scraping noise in IMDB-WIKI and CACD data for subject Gal Gadot. For each dataset,
the top row shows valid samples, while the bottom row shows image samples that have been wrongly
paired with Gal Gadot’s metadata.

5.2.1 Proposed filtering method

The main idea of the unsupervised filtering method is to automatically group samples from

subject-specific image galleries (i.e., images with the same identity metadata) into clusters of

samples with matching biometric descriptors and to keep only the samples from the largest

cluster while all other samples get discarded. This way, the samples of the most frequently

appearing subject in the image gallery can be retained, while samples erroneously matched

with that subject’s metadata are removed. This fundamental idea is expanded as follows.

A prevalent approach for automatically grouping samples based on a certain property is

to utilize clustering algorithms. A number of clustering algorithms can perform the required

grouping efficiently and without supervision, but regardless of the type of the clustering algo-

rithm, the clustering performance will greatly depend on how the sample’s grouping property is

represented numerically.

For good performance, numerical representations should be compact and highly descriptive

of the property of interest (e.g., the subject’s identity). In the case of facial image data, a favor-

able option for the task is the facial recognition algorithms. Facial recognition algorithms are

specifically designed to project high-dimensional facial image data to a highly discriminative

low-dimensional biometric feature vector (i.e., face descriptor) that encodes the subject’s iden-

tity. However, note that the proposed method is not restricted to descriptors obtained by facial
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recognition algorithms, as other biometric or image descriptors can be utilized.

To reduce the undesired effects of feature extraction from misaligned and inconsistent detec-

tions, we propose to employ a two-step detection procedure consisting of regular object (face)

detection followed by feature point detection that allows precise calculation of bounding box

position and scale, as well as in-plane image alignment.

For the approach to be completely parameterless and unsupervised, the descriptor grouping

should be done with a clustering method capable of automatically discovering the number of

underlying groups (i.e., identities). For this purpose, a number of clustering algorithms, such as

Chinese Whispers Clustering [58], Affinity Propagation Clustering [59] or Mean Shift Cluster-

ing [60], can be used.

The aforementioned outlines the basic concepts of the proposed unsupervised biometric

filtering method, while the following section gives the implementation details of the designed

filtering pipeline.

Implementation details

Based on the previously described concepts, we implemented a filtering system consisting of

five main consecutive steps. A graphical summary of the proposed filtering pipeline is given in

Figure 5.1, depicting the five steps for one specific subject. The implementation details of the

presented steps are as follows.

Subject-specific gallery. Firstly, according to the provided identity metadata (e.g., subject

name or ID), the datasets are reorganized into a series of subject-specific galleries. Each gallery

contains all images collected for one specific subject. While the gallery owner should be present

in all images in the gallery, many other subjects may appear as well, but less frequently.

Detection and alignment. The second step amounts to detecting and aligning all faces in

the subject-specific image galleries. Although the information on the bounding box is usually

provided, the given bounding boxes lack consistency concerning the bounding box scale and po-

sitioning. To ensure more consistent inputs to the following descriptor extraction step, we first

utilize a face detection algorithm based on DLIB’s‡ CNN face detector to redetect faces and

then use a facial alignment algorithm robust to bounding box imprecisions [270] to precisely

determine bounding box position and scale based on the detected facial landmark points. More-

over, the facial landmark points are used to perform in-plane image alignment. The bounding

box information provided by the dataset is used only in the rare cases of face detection failure,

and even then, it is corrected by the face alignment step.

Descriptor extraction. The third step is the extraction of face descriptors for all the faces

detected in the previous step. We utilized the DLIB’s powerful facial recognition model based

on the ResNet architecture [80] to extract compact 512-dimensional identity descriptors. By

‡http://dlib.net
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calculating distances between the extracted face descriptors, the probability of two descrip-

tors representing the same subject (i.e., identity) can be efficiently estimated, and by using

DLIB’s default descriptor similarity threshold, a reliable identity matching can be achieved.

Well-performing face recognition systems offer reliable identity matching regardless of facial

expression, orientation, and even occlusion to some extent, as well as environmental factors

such as lighting and background.

Identity-based clustering. The fourth step aims to distinguish the samples of the gallery

owner from other faces coincidentally present in the gallery, which may be incorrectly paired

with the gallery owner’s metadata. This step groups facial images based on their biometric

features (i.e., identity) by applying a clustering algorithm to facial descriptors extracted from

all the detected faces. Since the number of identities in the gallery is unknown, we utilize

the Chinese Whispers clustering; an efficient graph-based parameter-free clustering algorithm

introduced in [58], which discovers the number of clusters in a simple iterative process.

Output. For each subject-specific gallery, the pipeline is finalized by retaining facial sam-

ples and associated labels only from the largest identity cluster. All other samples, belonging to

clusters associated with subjects appearing less frequently than the gallery owner, are discarded.

The designed filtering pipeline is completely parameterless and utilizes only generic off-

the-shelf models and algorithms. This approach does not require supervised training of dataset-

specific models or any type of manual effort.

5.2.2 Dataset filtering

The proposed filtering pipeline is applied to the two largest publicly available facial age estima-

tion datasets: the CACD dataset and the IMDB-WIKI dataset. In this section, we discuss the

method’s prerequisites, data preprocessing, and the results of the dataset filtering based on the

proposed method.

Prerequisites

There are two prerequisites that need to be satisfied for the proposed filtering method to be

applicable:

1.There must be multiple images of every subject.

2.For each subject-specific image gallery, the number of appearances of the gallery owner’s

face must exceed the number of appearances of any other subject.

As we can see from Table 4.1, the average number of images per subject is 81.72 for the CACD

and 22.71 for the IMDB dataset, indicating that the method’s first prerequisite is satisfied for

the majority of subjects. The WIKI subset of the IMDB-WIKI dataset has only one image per

subject, so we will omit it from the filtering.
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The probability of a well-defined image search producing more bad than good results is very

low, especially for famous subjects. The probability of a subject not being the most frequently

appearing person on its IMDb/Wikipedia profile photos is even lower. Therefore, the second

prerequisite is satisfied intrinsically for the majority of samples from the CACD and IMDB-

WIKI datasets.

Preprocessing

Although the training data can, in some cases, be used in its raw form for the supervised training

of machine learning models, in most cases, a set of initial processing steps is applied to the

data. Initial processing of the image data typically consists of image cropping, alignment, and

filtering according to attainable image properties. Based on the label data, samples can also be

filtered to remove invalid labels, improve sample distribution, etc. The goal of this section is to

distinguish the three versions of data used in our experiments: raw, processed, and filtered.

Raw data (R). Both CACD and IMDB-WIKI datasets provide pre-cropped facial images

with associated age labels. As face detection and cropping are the minimal preprocessing steps

in typical face analysis systems, we consider this the raw data. This data consist of loose, un-

aligned face crops of varying quality and resolution, produced based on face detections obtained

by the dataset’s authors. The associated labels are most likely the direct product of the auto-

matic labeling procedures, so invalid labels are likely to be present in the data. To make this

raw data compatible with our training framework, we apply center-cropping to the non-square

images, resize all images to the same resolution, and limit the age labels to the [0,100] range

by applying function age = min(max(age,0),100). None of the samples are discarded. This

results in CACD-R, IMDB-R, and WIKI-R dataset variants.

Processed data (P). The processed data refers to the outcome of the typical automatic pre-

processing steps, designed to improve the raw data quality and remove some of the obvious

outliers that disrupt the learning process. Whereas the originally provided face detections are

used in the raw data (R), the processed data (P) consist of re-detected, aligned, and re-cropped

samples. The detection and alignment procedure is described in Section 5.2.1. Images that

were damaged, had very low resolution, or in any other way caused the described detection,

alignment, and cropping pipeline to fail were discarded. Additionally, a small number of sam-

ples that had age labels with biologically impossible (i.e., negative) or highly improbable (i.e.,

greater than 100) values were also discarded since they are most probably the result of failed

automatic labeling procedures.

Filtered data (F). The filtered data are the data obtained by applying the proposed filtering

method described in Section 5.2.1 to the previously described processed versions of the CACD

and IMDB datasets (i.e., CACD-P and IMDB-P). This way, the filtered data (i.e., CACD-F and

IMDB-F) is directly comparable to the processed data, and the impact of the proposed filtering
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method is unambiguously observable.

Data augmentations, such as random cropping and image flipping, are not considered part

of the initial processing as the same augmentation techniques are applied to all three versions

of the data (i.e., R, P, and F) during the training procedure.

Filtering results

The raw versions of the CACD and IMDB datasets have 163,446 and 460,723 samples, respec-

tively. By applying the initial processing, described in the previous section, we produced the

CACD-P dataset with 150,383 samples and the IMDB-P dataset with 451,571 samples. After

the proposed filtering method was applied to the processed data, 130,571 samples were retained

from the CACD-P dataset (13.2% reduction), and only 216,595 samples from the IMDB-P

dataset (52.0% reduction), giving us the final CACD-F and IMDB-F dataset versions. As we

can see in Figure 5.3, the sample distributions of the filtered subsets of the CACD and IMDB

datasets remained similar to the raw and processed versions, while the number of samples was

greatly reduced.
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Figure 5.3: Age label distributions for the raw (R), processed (P), and filtered (F) versions of the CACD
and IMDB datasets.

Several subject-specific galleries were manually inspected to examine the filtering results

more closely and showed consistent results. Figure 5.4 shows the results of a statistical analysis

of filtering outputs for one of the subjects from the IMDB dataset. The figure contains a his-

togram of the top five sample clusters and a chart representing the cluster sizes. The 48% of the

samples that were grouped into the largest cluster were kept, while 52% of the samples were
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48%

27%
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Figure 5.4: Clustering results for the IMDB subject Danny DeVito. Images on the left show representa-
tive samples for the top 5 clusters, horizontal bars contain all cluster samples (best viewed in electronic
version with extreme zoom), and the chart on the right shows cluster size distribution with the empha-
sized part representing all clusters containing 1 to 3 samples [266].

filtered out. The analysis showed that the second largest cluster (9%) grouped primarily non-

facial images caused by false-positive detections, and the subsequent clusters contained facial

images of actors with whom the subject is most frequently associated. The emphasized part of

the chart in Figure 5.4 represents all clusters with only 1 to 3 samples (1 to 3 occurrences per

identity), grouping the less frequently appearing outliers.

5.2.3 Experimental evaluation

The proposed filtering pipeline described in Section 5.2.1 resulted in strong sample count reduc-

tion, as presented in Section 5.2.2. To validate that the resulting subsets of the original datasets

have higher proportion of valid samples and that the proposed automatic filtering approach ben-

efits the datasets’ applicability to the facial biometric task they were designed for, we perform

an extensive set of age estimation experiments.

Good generalization capabilities, crucial for real-world in-the-wild applications, often di-

rectly depend on the training data size and diversity. To validate that our aggressive sample

reduction does not impair the generalization capabilities of the trained models, we performed

cross-dataset testing on the unconstrained, manually collected Appa-Real benchmark. Accord-

ing to [20, 240], this is currently the most suitable benchmark for age estimation, as it offers

reliable labels, heterogeneous images, and well-defined data splits. To validate if the benefits

are method-invariant, we perform the evaluation based on two frequently used and three more
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advanced age estimation methods, as described in the following section.

Age estimation methods

To perform unbiased evaluation of different age estimation methods, we used an identical CNN

feature extraction model for all methods, thus supporting each of the methods with the same

number of learnable parameters. The models were designed to output 101-dimensional feature

vectors intended to facilitate the estimation of 101 age values ranging from 0 to 100. Based

on this setup, we implemented five relevant age estimation methods, formally introduced in

Section 2.3. Those methods are the MSE-based regression, the Softmax-based classification,

the Deep Expectation (DEX) method from [89], the Mean-Variance (MV) method from [90],

and the Deep Label Distribution Learning (DLDL-v2) method from [91].

In addition to the formal definitions of these methods from Section 2.3, it is important to

specify certain hyperparameters related to two of those methods. In Equation 2.8, related to the

Mean-Variance method, the factor λ1 controls the contribution of the Mean Loss component,

while λ2 controls the contribution of the Variance Loss. Following the setup from [90], we set

λ1 and λ2 to 0.2 and 0.05, respectively. The DLDL-v2 method combines the distribution-based

Kullback-Leibler Divergence Loss and the regression-based L1 Loss. The parameter λ from

Equation 2.9, which controls the balance between the DLDL-v2 loss components, was set to 1

in all experiments. The Equation 2.10 is used to calculate the distribution-based label encoding

from the ground truth label. The σ hyperparameter, controlling the shape of the distribution,

was set to 2.

Experimental setup

To compare results before and after the proposed filtering method was applied, we train the

models on the processed (P) and the resulting filtered (F) versions of the datasets under identical

conditions. Additionally, we train the baseline models on the raw data (R) under the same setup.

A set of image data augmentations, consisting of randomized horizontal flipping (i.e., image

mirroring), bounding box perturbations, and in-plane rotations, was applied to training subsets

of all three versions of the dataset. Random in-plane rotations were limited to [−10◦,10◦] range.

The bounding box perturbations were achieved by resizing the image to 110× 110 pixels and

performing random cropping to 96×96, effectively obtaining perturbations of up to 15% of the

bounding box scale.

The model selected for this extensive evaluation was a simple 9-layer CNN model based

on the open-source architecture Tiny DarkNet§. This minimalistic 1M-parameter architecture,

proposed for real-time performance in [271], was pretrained on the face recognition task and

§https://pjreddie.com/darknet/tiny-darknet/
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Table 5.1: Results of the 5-fold validation of the raw (R), processed (P), and filtered (F)
versions of the CACD and IMDB datasets. The testing and fine-tuning were performed
on the Appa-Real benchmark. R-MAE and A-MAE denote mean absolute errors for real
and apparent age estimation, respectively.

Validation Testing Fine-tuning

Dataset Images R-MAE R-MAE A-MAE R-MAE A-MAE

CACD-R 163,446 5.56 ± 0.03 14.60 ± 0.58 13.15 ± 0.67 9.11 ± 0.59 7.39 ± 0.72

CACD-P 150,383 4.66 ± 0.01 13.61 ± 0.13 12.30 ± 0.15 7.64 ± 0.17 5.78 ± 0.13

CACD-F 130,571 3.46 ± 0.01 11.83 ± 0.26 10.60 ± 0.26 7.17 ± 0.13 5.46 ± 0.15

IMDB-R 460,723 8.11 ± 0.03 11.14 ± 0.11 9.51 ± 0.08 9.84 ± 0.37 8.12 ± 0.37

IMDB-P 451,571 7.70 ± 0.02 8.51 ± 0.18 7.20 ± 0.14 6.73 ± 0.20 5.20 ± 0.34

IMDB-F 216,595 5.07 ± 0.01 6.83 ± 0.13 5.63 ± 0.14 6.31 ± 0.06 4.72 ± 0.10

further modified to take low-resolution 3×96×96 RGB inputs and produce 101 outputs, corre-

sponding to age values from 0 to 100. All models were trained for 100 epochs with a batch size

of 64 and optimized based on the widely adopted Adadelta optimization algorithm [272] with

a learning rate set to 10−1. To calculate the estimation errors, we adopted the mean absolute

error measure (MAE, Eq. 3.2).

5-fold validation. The first set of experiments was based on 5-fold validation and the most

common age estimation method (i.e., the MSE regression method). The datasets were randomly

divided into 5 equally-sized parts, and for each of the 5 folds, a different part was used for

validation, while the rest of the data was used for training. This way, 5 different 80-20 training-

validation splits were created and used to achieve robust verification based on a mean and

standard deviation of the 5 runs. To further show that the proposed filtering method is beneficial

even in the case of highly specialized transfer learning, we performed additional fine-tunings

on the training part of a separate benchmark dataset. The fine-tunings were performed for 500

epochs with SGD optimization [76] and a relatively low learning rate (10−5). Separate models

were trained based on real and apparent age labels.

5-method validation. The second set of experiments was designed to evaluate if consistent

performance gains are obtainable for each of the 5 age estimation methods specified in the

previous section. This would indicate that the benefits of the proposed filtering are method-

invariant. As mentioned in the previous section, an identical CNN backbone model was used

for all methods. 80% of the data from the evaluated dataset was used for training and 20% for

validation, while testing was performed on a separate unconstrained benchmark dataset.
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Evaluation results

The results of the 5-fold evaluation are presented in Figure 5.5 and Table 5.1. Figure 5.5 shows

the average training and validation MAEs over 100 training epochs for the 6 different dataset

variations. In addition to the benefits of standard data processing, the graphs show that the

proposed data filtering introduces a further large reduction in training and validation errors.

The results presented in Table 5.1 further support the proposed filtering. Compared to the

processed CACD and IMDB data, the respective filtered data 5-fold results were improved by

1.20 and 2.63 years for the validation MAE, 1.78 and 1.68 years for the real age testing MAE,

and 1.70 and 1.57 years for the apparent age testing MAE. Even after the specialized fine-

tunings, versions pretrained on the filtered data consistently yielded improved results of up to

0.48 years, regardless of the type of age estimation task. Note that the high CACD testing errors

were caused by the lack of young and older people in the CACD dataset, as shown in Figure

5.3, and were greatly reduced after the Appa-Real finetunings. Compared to the baseline raw

data, the performance improved by up to 4.31 years.

The results of the 5-method evaluation are presented in Table 5.2. The results demonstrate

considerable performance gains regardless of the age estimation method. Compared to the
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Figure 5.5: Average training and validation MAEs for the first 100 epochs of 5-fold trainings on the raw,
processed, and filtered versions of the CACD and IMDB datasets. The first row presents results for the
CACD dataset variants (CACD-R, CACD-P, and CACD-F), while the second row presents results for the
IMDB dataset variants (IMDB-R, IMDB-P, and IMDB-F).
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Table 5.2: Results of the 5-method validation of the raw (R), processed (P), and
filtered (F) versions of the CACD and IMDB datasets. The testing was performed
on the Appa-Real benchmark. The values represent real age mean absolute error
(MAE).

Dataset Images Softmax Regression DEX [89] MV [90] DLDL-v2 [91]

CACD-R 163,446 15.787 14.730 14.513 14.164 14.886

CACD-P 150,383 14.045 13.605 13.420 12.988 13.338

CACD-F 130,571 12.545 11.390 11.854 11.453 11.589

IMDB-R 460,723 11.547 11.109 11.650 11.160 10.938

IMDB-P 451,571 9.667 8.568 9.338 8.503 8.491

IMDB-F 216,595 7.807 7.080 7.349 6.771 6.787

processed version, the filtered version of the CACD dataset improved the results by between

1.50 and 2.21 years. In the case of the IMDB dataset, the improvement was similar, ranging

between 1.49 and 1.99 years. Compared to the baseline raw data, the performance improved by

up to 4.39 years.

For both datasets and both types of age estimation tasks, the robust 5-fold and diverse 5-

method validations demonstrated the advantages of using versions of the datasets filtered by the

proposed method. Expectedly, the raw versions of the dataset resulted in the worst-performing

age estimation models. The standard simple data processing techniques resulted in significant

performance gains. Furthermore, the direct subsets of the processed data, obtained by the pro-

posed filtering method, resulted in additional substantial performance gains, thus demonstrating

the benefits of the proposed method and highlighting that the data quality is more important than

the data quantity. Interestingly, the results also demonstrate that training data processing and

filtering can result in a larger margin of improvement than using more advanced age estimation

methods.

5.3 Biometrically filtered famous figure dataset

This section presents the designed strategy undertaken to derive a new age estimation dataset,

extensive evaluation results, and the comparison with state-of-the-art.

In Section 5.2.3, we demonstrated that the application of the unsupervised biometric filter-

ing method, introduced in Section 5.2.1, produced superior versions of the IMDB and CACD

datasets, respectively denoted as IMDB-F and CACD-F. To create a new famous figures dataset

with improved properties, we explore options for combining and further filtering the publicly

available web-scraped data from IMDB-F, CACD-F, and WIKI datasets.
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5.3.1 Dataset design

As the first step in dataset design, we analyze the interrelation between the IMDB-F, CACD-

F, and WIKI datasets. Since all three datasets were collected by scraping images of famous

figures, and they all provide the subjects’ names in the metadata, we decided to analyze the

identity overlaps of the three datasets.

For the purpose of identity overlap analysis, we convert the originally provided names from

plain Unicode versions to a representation that contains only lower-case ASCII alphabetic sym-

bols. This step helps us to mitigate name-matching failures by eliminating potentially ambigu-

ous white-space, diacritic, and other special symbols. Figure 5.6 visualizes obtained identity

overlaps between the three datasets.
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Figure 5.6: Identity overlaps for the WIKI, IMDB-F, and CACD-F datasets.

By combining information from Table 4.1 and Figure 5.6, we observe that the WIKI dataset,

although having the lowest number of samples, has the highest number of unique identities. In

fact, the WIKI dataset contains only one image per sample. Compared to the WIKI dataset,

IMDB and CACD datasets have lower numbers of unique identities but have large average

numbers of samples per subject, thus enabling us to apply the proposed filtering method from

Section 5.2.1. While IMDB-F and CACD-F datasets can contribute with large amounts of

filtered samples and substantial dataset depth, adding samples from the WIKI dataset can po-

tentially increase the overall number of unique identities by 280%, hence greatly improving the

dataset breadth.

We apply the initial processing described in Section 5.2.2 to the raw WIKI data to produce

the WIKI-P dataset version. To further enhance the WIKI-P dataset, we take advantage of the

observation from Section 5.2.2 and Figure 5.4; non-facial images (i.e., false positive detections)

tend to form clusters in the face recognition descriptor feature space. We exploit this finding to

design a simple false positive detection filtering method.
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Finally, leveraging the interrelation between the three datasets, we design an additional

majority voting filtering approach that takes advantage of the dataset identity overlaps.

Biometric false positive detection filtering

Once again, we pick out the bad apples by designing a biometric clustering approach similar to

the method proposed in Section 5.2.1, but applicable to the WIKI data. This simplified version

of the aforementioned method does not require multiple images of the same subject, as the

formed clusters are not subject-based. The method consists of 3 main steps: feature extraction,

sample clustering, and elimination of the bad clusters containing false positive detections.

For the feature extraction step, we retain the face recognition descriptor extraction step that

provides a compact and highly descriptive numerical representation of facial images with a

tendency to cluster non-facial samples, as observed in Section 5.2.2. Whereas we chose to use

a graph-based clustering approach to implement the filtering method proposed in Section 5.2.1,

the distance-based K-means clustering algorithm is a better fitting choice for this filtering step,

as it also provides cluster centers useful in the final cluster elimination step. The K-means

clustering is described in more detail in Section 2.1.2. The candidate clusters are formed by

applying K-means clustering with an arbitrary set K. Figure 5.7 shows four representative

cluster samples obtained on the WIKI-P data with K set to 64.

C1

C2

C3

C4

Figure 5.7: Representative WIKI dataset samples from 4 clusters (C1, C2, C3, and C4) obtained by
K-means clustering with K set to 64. While clusters C1, C3, and C4 contain similar samples w.r.t. face
recognition descriptors, cluster C2 groups mostly non-facial samples.

To identify clusters with false positive detections, we choose a single seed false positive

detection sample and compare its face recognition descriptor with the central descriptor of each
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of the K-means clusters. The second row in Figure 5.7 shows representative samples from a

WIKI-P false positive detection cluster identified by this automatic approach.

This method can be applied to detect non-facial outliers in any type of facial image dataset.

We further apply it to CACD-F and IMDB-F datasets to achieve an additional level of data

refinement.

Majority vote filtering

To avoid conflicting labels that could emerge in the process of merging the IMDB-F, CACD-F,

and WIKI-P data, we leverage the identity overlaps shown in Figure 5.6 to implement a majority

vote filtering method that further refines the data.

Once again, we base our filtering method on face recognition descriptors. Additionally, we

rely on name-based identifiers, formed as described at the beginning of Section 5.3.1. Algorithm

1 delineates our majority vote filtering approach, while Figure 5.8 shows representative outlier

samples identified by the described algorithm.

S1

S2

S3

IMDB-F WIKI-P CACD-F

Figure 5.8: Outliers detected by majority vote filtering for subjects S1, S2, and S3 from datasets IMDB-
F, WIKI-P, and CACD-F. Outliers are placed on the main diagonal and marked with red frames (best
viewed in color).

Assuming that in Algorithm 1 A,B ∈ [I,C,W ] denotes a dataset from a set including IMDB-

F, CACD-F and WIKI-P datasets, IA represents set of identities in the dataset A, Sid
A represents

set of samples from the dataset A corresponding to the specific identity id, and Did
A represents

the mean descriptor for all samples in Sid
A . Furthermore, Did

A ≈ Did
B denotes that descriptors

for identity id from datasets A and B are similar, while mean(Did
A ,D

id
B ) represents the mean

descriptor for descriptors Did
A and Did

B .

Mean descriptors are calculated by simple averaging. Cosine similarity is used as the sim-

ilarity measure, with the similarity threshold set to 0.25. This relatively loose threshold, along
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Algorithm 1: Majority vote filtering
Input: II , IC, IW , DI , DC, DW , SI , SC, SW
for id ∈ (II ∪ IC ∪ IW ) do

if id ∈ (II ∩ IC ∩ IW ) then
if Did

I ≈ Did
C and Did

W ̸≈ mean(Did
I ,D

id
C )) then

remove Sid
W ;

end
if Did

C ≈ Did
W and Did

I ̸≈ mean(Did
C ,Did

W )) then
remove Sid

I ;
end
if Did

I ≈ Did
W and Did

C ̸≈ mean(Did
I ,D

id
W )) then

remove Sid
C ;

end
else if id ∈ (II ∩ IC) then

if Did
I ̸≈ Did

C then
if |Sid

I |< |Sid
C | then

remove Sid
I ;

else
remove Sid

C ;
end

end
else if id ∈ (IW ∩ IC) then

if Did
W ̸≈ Did

C then
if |Sid

W |< |Sid
C | then

remove Sid
W ;

else
remove Sid

C ;
end

end
else if id ∈ (IW ∩ II) then

if Did
W ̸≈ Did

I then
if |Sid

W |< |Sid
I | then

remove Sid
W ;

else
remove Sid

I ;
end

end
end

end
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with the mean descriptor comparison approach, reduces the chances of important, difficult facial

samples being removed.

5.3.2 Dataset properties

By combining the proposed filtering methods from Sections 5.2.1, 5.3.1, and 5.3.1, and merging

the refined IMDB, CACD, and WIKI data, we produce a new derived facial age estimation

dataset dubbed Biometrically Filtered Famous Figure Dataset or B3FD in short. The dataset

has been made publicly available¶.
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Figure 5.9: Age label distributions for the proposed B3FD dataset and its components (i.e., IMDB-F,
CACD-F, and WIKI-P datasets).

B3FD contains 375,592 facial image samples with corresponding age labels. It has 53,759

unique subjects, which amounts to 6.99 samples per subject on average. The age labels are rang-

ing from 0 to 100. The distribution of age labels for the B3FD dataset and its main components

(i.e., IMDB-F, CACD-F, and WIKI-P) is shown in Figure 5.9. Our combined filtering efforts

resulted in the removal of 310,905 samples, which makes 45.29% of the originally available

data.

The B3FD dataset is composed of two main subsets determined by the data origin: the

IMDB-WIKI subset (i.e., B3FD-IWS) and the CACD subset (i.e., B3FD-CS). B3FD-IWS con-

sists of 245,204 processed samples from the IMDB-WIKI dataset with 53,568 unique subjects,

which amounts to 4.58 samples per subject on average. B3FD-CS consists of 130,388 processed

samples from the CACD dataset with 1,831 unique subjects, which amounts to 71.21 samples

per subject. These subsets can be useful in case of constraints based on data origin (e.g., only

IMDB-WIKI data can be used).
¶https://github.com/kbesenic/B3FD
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Table 5.3: Architectural details of the used MobileFaceNet-based model. Following the MobileFaceNet
notation from [84], rows describe a sequence of operators repeated n times with c output channels. The
stride of the first layer in each sequence is denoted by s while t represents the expansion factor applied
to the input size.

Input Operator t c n s

1282 ×3 conv3x3 − 64 1 2

642 ×64 depthwise conv3x3 − 64 1 1

642 ×64 bottleneck 2 64 5 2

322 ×64 bottleneck 4 128 1 2

162 ×128 bottleneck 2 128 6 1

162 ×128 bottleneck 4 128 1 2

82 ×128 bottleneck 2 128 2 1

82 ×128 conv1x1 − 512 1 1

82 ×512 linear GDConv8x8 − 512 1 1

12 ×512 linear conv1x1 − 101 1 1

5.3.3 Comparison with the state of the art

This section provides an extensive evaluation of the B3FD dataset and its subsets presented in

Section 5.3.2. The evaluation is performed by comparing the performance of models trained

on the B3FD dataset variations and the previous state-of-the-art age estimation datasets with

respect to real and apparent age estimation accuracy. To demonstrate the generalization capa-

bilities of the models trained on evaluated datasets, the comparison is once again facilitated by

a separate unconstrained in-the-wild age estimation benchmark with real and apparent age la-

bels. Furthermore, to show that performance gain is method-invariant, we perform an evaluation

based on 5 different age estimation methods, introduced in Section 5.2.3.

Experimental setup

To facilitate this extensive evaluation, we chose to use a CNN architecture from MobileFaceNet

family [84] designed specifically for efficient face analysis. Table 5.3 describes the used model

architecture in detail. The standard MobileFaceNet architecture was slightly modified to use

128×128 RGB inputs, output 101 values corresponding to ages 0 to 100, and pretrained on the

face recognition task. The model has 1M parameters with an inference-time computational cost

of 0.99 GFLOPs.

The conventional data processing, explained in Section 5.2.2, was applied to all evaluated

datasets. A set of image data augmentations, consisting of randomized horizontal flipping,

bounding box perturbations, and in-plane rotations, described in Section 5.2.3, was applied to

all training sets, with the only difference being the resulting image resolution (i.e., 128×128).
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Table 5.4: Performance of age estimation models trained on different datasets with Softmax and
Regression age estimation methods and evaluated on the Appa-Real test set w.r.t. mean absolute
error for real and apparent age, along with vote-distribution-based ε-error. R-MAE and A-MAE
denote mean absolute errors for real and apparent age, respectively.

Softmax Regression

Dataset Images R-MAE A-MAE ε-error R-MAE A-MAE ε-error

Appa-Real [30] 7,591 7.252 6.295 0.453 8.287 6.984 0.517

AgeDB [135] 16,488 9.851 9.259 0.545 10.847 9.988 0.563

MegaAge [136] 41,941 9.588 8.434 0.587 10.404 9.364 0.633

MORPH [95] 55,134 13.787 12.478 0.667 13.467 11.698 0.642

CACD [139] 163,4461 13.369 12.448 0.631 12.667 11.707 0.636

IMDB-WIKI [89] 523,0512 6.509 6.393 0.434 7.294 6.323 0.432

IMDB-WIKI + CACD [89, 139] 686,4973 6.986 6.981 0.449 7.819 6.921 0.449

B3FD-CS [ours] 130,388 11.143 10.164 0.592 11.327 10.239 0.598

B3FD-IWS [ours] 245,204 5.423 5.275 0.408 5.828 5.238 0.408

B3FD [ours] 375,592 5.547 5.532 0.415 5.707 5.186 0.409

1 The processed subset of the data (P) with 150,383 samples was used as it was shown to be superior to the raw data in Section 5.2.3.
2 The processed subset of the data (P) with 494,158 samples was used as it was shown to be superior to the raw data in Section 5.2.3
3 The sum of used samples from IMDB-WIKI and CACD is 644,541 for reasons explained in preceding notes.

All evaluated models were trained for 50 epochs with a batch size of 64 and SGD optimiza-

tion [76]. We set the weight decay parameter to 10−4 and the momentum to 0.9. A learning rate

scheduler was used to reduce the learning rate by a factor of 10 every 15 epochs. The initial

learning rate was set to 10−3.

A random 90-10 training-validation split was used for all datasets except Appa-Real, where

the predefined validation set was used, and MegaAge, where the predefined test set was used as

the validation set. The models used for dataset evaluation were chosen based on the validation

set MAE. All models were evaluated on the Appa-Real test set, as it is the only age estimation

dataset providing real and apparent age labels for unconstrained in-the-wild facial images.

We evaluate if the performance gains are indifferent to the type of age estimation task by

providing MAE values for both real and apparent age. To additionally evaluate if the perfor-

mance gains are indifferent to the type of evaluation metric, we also report ε-error [29] based

on the distribution of apparent age votes. Formal definitions of these metrics are available in

Section 3.2.
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Evaluation results

The results of the experimental evaluation of the proposed B3FD dataset are presented in tables

5.4 and 5.5. Table 5.4 presents evaluation results for the two most frequently used age estimation

methods: the classification-based Softmax method and the MSE regression method. Table 5.5

presents results for three additional advanced age estimation methods described in Section 2.3:

DEX, Mean-Variance, and DLDL-v2.

To validate if the proposed B3FD dataset outperforms its main components, we evaluated

the CACD and IMDB-WIKI datasets under identical conditions. Furthermore, to validate the

proposed merging strategy from Section 5.3.1, we also evaluated the performance of the naively

merged IMDB-WIKI + CACD dataset. To validate if B3FD provides better generalization

capabilities than manually collected data, we evaluated the performance of the largest manually

collected dataset (i.e., MORPH) and the more recent in-the-wild AgeDB dataset. To validate if

B3FD outperforms the largest in-the-wild dataset for apparent age estimation, we evaluated the

performance of the MegaAge dataset. Finally, to validate if the proposed dataset outperforms

manually collected domain-specific data, we evaluated models trained on the training part of

the evaluation Appa-Real benchmark.

The results show that the models based on the proposed B3FD dataset outperformed models

trained on the other evaluated datasets by a notable margin, without exception. The experiments

demonstrated that the performance is improved regardless of the used age estimation method,

type of age estimation task, or metric. Compared to the naive combination of all evaluated

web-scraped data, our derived B3FD dataset provided MAE reduction between 1.44 and 2.38

years for real age and between 1.45 and 2.06 years for apparent age. Compared to the MORPH

dataset, the MAE reductions ranged from 6.15 to more than 8 years, most probably due to the

constraints and biases associated with manual data collection. The most recent in-the-wild man-

ually collected AgeDB dataset outperformed the larger manually collected MORPH dataset but

still fell behind the proposed B3FD data by between 4.30 and 5.14 years for real age and 3.73

and 4.82 years for apparent age. The proposed B3FD dataset also outperformed the MegaAge

dataset by a similar margin for both real and, more importantly, apparent age, despite MegaAge

providing apparent age labels, while B3FD provides real age labels. Even in the case of the

domain-specific manually collected in-the-wild data from Appa-Real, the performance was im-

proved by a considerable margin of up to 2.58 years. B3FD-CS outperformed its corresponding

CACD superset by up to 2.62 years for real and 2.64 for apparent age, while B3FD-IWS out-

performed its corresponding IMDB-WIKI superset by up to 1.81 years for real and 1.60 years

for apparent age. B3FD-IWS even partially outperformed its B3FD superset, presumably due

to the age distribution and identity number constraints of the CACD data.

Once again, the results highlighted that the training data quality is more important than the

training data quantity and that the performance gains obtained by applying more advanced age
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estimation methods can be fairly less significant than the performance gains obtained by utiliz-

ing more adequate and filtered training data. This becomes more obvious in our experimental

setup, where all age estimation methods are based on the same feature extraction backbone

model. For example, the difference between the worst and the best-performing age estimation

method on the combined IMDB-WIKI and CACD data is 0.83 years, while using the corre-

sponding filtered B3FD dataset reduces the real age MAE by up to 2.38 years.

5.4 Discussion

Compared to the manually collected facial datasets for biometric trait estimation, datasets col-

lected by automatic web-scraping methods are far superior regarding the sample count and

variety, but have a significant downside in terms of label noise. The filtering methods for label

noise reduction often require dataset-specific trainings and manual efforts.

The proposed method for unsupervised biometric data filtering can automatically reduce the

number of erroneous samples in facial web-scraped datasets by combining only a few general-

purpose algorithms. The implemented filtering pipeline resulted in strong sample count reduc-

tion on two state-of-the-art web-scraped facial datasets as up to 52% of samples were discarded.

The robust 5-fold and diverse 5-method validations with cross-dataset testing both demonstrated

that the models based on the filtered data outperform the models based on raw and convention-

ally processed data by a considerable margin, indicating lower amounts of faulty samples and

improved label consistency. The testing of generalization capabilities on the in-the-wild data

also indicated that the data diversity is not impaired by the proposed filtering method, despite

the strong sample count reduction.

The results obtained by the proposed filtering method were extended by an additional bio-

metric filtering strategy devised to reinforce and refine the merging process of the publicly

available web-scraped datasets. The proposed merging process of three different web-scraped

data sources resulted in a newly derived, in-the-wild age estimation dataset. The introduced

Biometrically Filtered Famous Figure Dataset (B3FD) was experimentally evaluated and com-

pared to both manually collected and web-scraped state-of-the-art datasets. The B3FD dataset

consistently outperformed all the evaluated datasets with respect to both real and apparent in-

the-wild age estimation. B3FD has been made publicly available.

The extensive experimental evaluation also highlighted the importance of training data qual-

ity and label consistency, as the results of models trained on the dataset subsets produced by the

proposed filtering methods were superior to the results of models trained on larger datasets, as

well as to models trained with more advanced age estimation methods.
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Chapter 6

Towards video-based age estimation

Humans and ML models can estimate chronological age from a single image with comparable

accuracy. However, when humans are not confident in their estimation, they tend to take a

better look by examining the subject for a longer period of time and from different viewpoints.

This observation is supported by Hadid [251], stating that psychological and neural studies

[273, 274, 275, 276] indicate that head-pose and facial expression changes provide important

cues for face analysis. Existing image-based methods can be applied directly to video frames.

However, Ji et al. [257] point out that deploying image-based age estimation models directly

to videos leads to estimation stability issues, while Hadid [251] states that the image-based

approach exploits the abundance of frames in videos but ignores useful temporal correlations

and facial dynamics. To explore the potential of videos in the age estimation field in more detail,

we require a sufficient amount of appropriate video data and a method that is able to leverage

video-specific information.

A recurring topic in the reviewed work from Section 4.4 is the lack of publicly available

video data with age annotations, suitable for model training and evaluation. For the development

and testing of almost every reviewed method, the authors needed to resort to data collection.

However, the collected data was not made publicly available in [251, 257, 258]. Moreover,

manual data collection often results in very small datasets. Ji et al. [257] proposed a single-

subject, single-video dataset, and used it both for attention module training and for video-based

testing, making their conclusions questionable. Similarly, Zhang et al. [258] used a two-subject,

two-video dataset for their model evaluation. Dibeklioğlu et al. [144] based their initial work on

a larger video dataset but used it for both training and evaluation. A very specific nature of the

used data, where every subject transitions from neutral to smiling facial expression, potentially

caused their model to overfit this specific type of data. Even when they introduced a dataset

related to a different facial expression (disgust, in [145]), they did not perform cross-dataset

testing to verify the generalization capabilities of their models. Pei et al. [256] also followed

their evaluation protocol without performing a cross-dataset evaluation. Ji et al. [257], Han et
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al. [146], and Zhang et al. [258] did not perform a comparison with previous video-based age

estimation methods. The lack of a large, in-the-wild, video-based age estimation benchmark

undermines the credibility of some of the reviewed findings, as well as the ability to fairly

compare different algorithms and methods. Moreover, the lack of video training data presents a

significant hurdle in the development of a method that truly harnesses video information.

This chapter is based on our work from [277]* that takes a better look at the potential

of videos and video-based methods to refine automatic facial age estimation. We focus on

resolving two prominent issues in this field of research: the lack of a well-defined, publicly

accessible, benchmark and the inability to train video-based models due to an absence of labeled

training data. The main contributions of this work are summarized as follows:

•We reproduce the recent frame-based age estimation benchmark from [147], achieve

state-of-the-art results on their protocol, and make the missing benchmark metadata pub-

licly available.

•We design a new, video-based age estimation benchmark that utilizes data from [147],

extend the metadata by using a commercial face tracking system, perform an exploratory

analysis, and make the benchmark protocol, along with all the required metadata and

video processing frameworks, publicly available.

•We design a semi-supervised video age estimation method that overcomes the lack of

labeled training data and outperforms its image-based counterpart, thus setting baseline

results on the proposed benchmark.

The rest of the chapter is organized as follows. As it is a prerequisite for any insightful and

fairly comparable research, we first tackle the design of the video age estimation benchmark

dataset and protocol in Sections 6.1 and 6.2, respectively. Section 6.3 describes our path to-

wards a video-based age estimation method. First, it explores the potential of videos and some

conventional video-based methods. It continues by describing the generation of pseudo-labeled

data, the design of a semi-supervised video method, and the obtained benchmark results. Fi-

nally, our conclusions are discussed in Section 6.4.

6.1 Video age estimation benchmark data

As reviewed in Section 4.1.2, Casual Conversations are the only publicly accessible video-based

datasets suitable for facial age estimation. Moreover, they were curated with a special focus on

ethical data collection and demographical fairness. They are also the largest video datasets with

precise age annotations, and their licenses allow for the evaluation of both academic and com-

mercial models†. All this makes them great candidates for a video age estimation benchmark.

*Reproduced with permission from SciTePress.
†For specific conditions, please refer to the CC license agreements.
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Figure 6.1: CCMiniVID video processing framework. All faces are tracked with a commercial tracking
system. The metadata of multi-subject videos is manually filtered to contain only data related to the
subject of interest. The framework extracts aligned face crop sequences using the raw CC videos and the
produced tracking data.

The authors of the CC dataset explored its potential for age estimation evaluation by per-

forming a set of baseline experiments. For that purpose, they used CCMini; a well-balanced

subset of the CC dataset. For further reference, we dub this image set as CCMiniIMG. Al-

though this initial effort towards a CC-based age estimation benchmark motivated our work, we

continue by discussing the adequacy of the proposed evaluation protocol for video-based age

estimation.

6.1.1 CCMiniIMG

The CCMiniIMG benchmark was made available in the form of pre-extracted raw video frames,

where 100 frames are provided for each of the 6,022 videos. However, the authors did not

provide face detection metadata or clear information on the frame sampling procedure. The

lack of face detection metadata prevents the exact reproduction of their evaluation protocol, as

some frames contain multiple subjects. The lack of information on the frame sampling method

and the fact that the protocol relies only on frames rather than continuous sequences prevents

the evaluation of video-based age estimation methods that leverage temporal information.

6.1.2 CCMiniVID

To design a video benchmark dataset for age estimation based on the CC data, we follow

CCMiniIMG and select 6,022 well-balanced videos from the CCMini subset. All videos were

recorded at 30 FPS, and the mean video duration is 64.44±13.56 seconds, with 99% of videos

lasting for at least 20 seconds. We set our target to extract sequences with 20 seconds of con-

tinuous face presence from each video, where possible. We utilize a commercial face tracking
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system from Visage Technologies‡ to produce high-quality frame-level tracking data compris-

ing 75 facial landmark points, apparent pitch, yaw, and roll head angles, tracking quality, and

face scale. We proceed with semi-automatic tracking data analysis, as shown in Figure 6.1.

The CC data does not provide correspondence between subjects and labels for the multi-

subject videos, potentially causing erroneous subject-level labels. We perform automatic detec-

tion of multi-subject video candidates, followed by manual verification and selection of track-

ing streams in 108 videos. In two of the videos, subjects of interest face away from the camera,

making their faces fully self-occluded. These videos are not suitable for a face-oriented evalu-

ation benchmark. Continuous face tracking with a target duration of 20 seconds was achieved

in 5,932 of 6,022 videos. Manual verification of the remaining 90 videos showed that in 21

videos, continuous tracking was not sustainable due to occlusions, self-occlusions, camera is-

sues, or extreme lighting. 69 videos were shorter than 20 seconds, with the shortest one lasting

for only 6 seconds.

Based on the obtained tracking data and manual verification, we propose three versions

of the CCMiniVID benchmark data. CCMiniVID-O, where O stands for original, comprises

only videos from the original CCMini subset. It contains 5,932 sequences with continuously

tracked 600 frames (20s@30FPS) and 90 outlier videos with between 100 and 599 continuously

tracked frames. It also includes the aforementioned two videos where subjects of interest are

not visible. In CCMiniVID-A, where A stands for alternatives, replacements for 92 problem-

atic videos were manually selected from the full CC dataset by looking for the most similar

substitutes in video galleries of target subjects. This allows consistent evaluation with 600 con-

secutively tracked frames for all 3,011 subjects from the CC dataset. Additionally, we propose

CCMiniVID-R, where R stands for reduced; a simple subset of CCMiniVID-O where the 92

problematic videos were removed. This allows for precise and consistent testing without the

need to download the complete 6.9 TB Casual Conversations dataset.

CCMiniVID exploratory analysis

All three versions of the CCMiniVID data are based on videos from the same 3,011 subjects,

with two videos per subject selected from CC to create a balanced subset. Videos of 62 subjects

that did not provide age information are unsuitable for an age estimation benchmark. That

leaves us with 5,898 videos of 2,949 unique subjects used in CCMiniVID benchmark datasets.

The original CC metadata provides some subject-level labels (i.e., age, gender, and skin

tone) and video-level labels for lighting (i.e., bright or dark). The authors encourage users to

extend the annotations of their dataset [147]. To this extent, we processed the dataset with a

commercial face tracking system and filtered the results by automatically processing the track-

ing data and manually validating edge cases. The tracking data consists of 75 facial landmark

‡https://visagetechnologies.com/facetrack/
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Figure 6.2: CCMiniVID-O label distributions for gender, age, and skin tone (subject-level) and lighting
(video-level).

points, apparent pitch, yaw, and roll head rotation, and tracking quality for each frame.

Figure 6.2 presents label distributions for the CCMiniVID-O benchmark dataset based on

labels from CC’s original metadata. We can see that gender and lighting label distributions

are fairly balanced, with some reasonable underrepresentations in the skin tone distribution.

CCMiniVID-A shares the same distribution for the subject-level labels (i.e., age, gender, and

skin tone). Still, there is a minor difference in the lighting distribution caused by the selection

of alternative videos (i.e., 62.67% bright and 37.33% dark). Videos of 10 subjects were dropped

in the reduced CCMiniVID-R version, causing a negligible variation in all distributions.

Figures 6.3, 6.4, and 6.5 present distributions for relevant tracking data from our extended

CCMiniVID-O metadata. Head-pose angle distributions show that this conversational dataset is

oriented towards frontal and near-frontal faces, with some occurrences of extreme head poses.

The face scale distribution, where the face scale is the width or height of a square face bounding

box in pixels, shows that the provided high-quality videos contain faces mainly in the 100 to

400-pixel range. The tracking quality distribution indicates that continuous face tracking with

high confidence was sustained on a large majority of the videos.
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Figure 6.3: CCMiniVID-O head-pose angle distributions, based on the produced face tracking data.
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Figure 6.4: CCMiniVID-O face scale distribution, based on the produced face tracking data.
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Figure 6.5: CCMiniVID-O tracking quality distribution, based on the produced face tracking data.
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6.2 Video age estimation benchmark protocol

To design the benchmark protocol, we first review the image-based age classification protocol

introduced in [147].

6.2.1 Image-based benchmark protocol

The authors of [147] extracted 100 frames from each of the 6,022 CCMiniIMG videos and

provided only video-level metadata and raw frames. Face detection metadata was not provided,

and neither face detection setup nor frame sampling algorithm were specified. The proposed

protocol treats age estimation as a 3-class age classification task. The median of 100 image-

level age estimations is used as the video-level estimation, which is then mapped to 3 predefined

age groups (i.e., 18-30, 31-45, and 46-85). Classification accuracy was selected as the primary

metric. The protocol additionally relies on the dataset’s auxiliary labels to calculate accuracy

across three gender groups, six apparent skin tone types, and two ambient lighting types.

Protocol reproduction details

As discussed in Section 6.1.1, the authors of [147] extracted 100 frames from each of the 6,022

videos and detected faces with the DLIB face detector [278]. Face detection metadata was not

provided, and neither face detection setup nor frame sampling algorithm were specified.

To reproduce the evaluation protocol, we first process CCMiniIMG raw frames following

the limited information available in [147] and explore DLIB’s face detection options. DLIB

offers two types of face detectors: HOG-based and CNN-based. The HOG-based face detector

is very light, but it is not able to detect many of the challenging samples from this dataset.

Therefore, we choose the CNN-based detector. We experiment with DLIB’s sole face detection

parameter (i.e., upsampling factor) and CLAHE image enhancement [279] with different tile

sizes and clip limits to push the detection rate to 99.82%. No protocol for handling multiple

detections was specified, so in each frame, we selected the detection with the highest detection

confidence. 62 of the 3,011 subjects did not provide age labels, eliminating 12,400 images from

the test set. This results in 588,720 video frames with successfully detected faces and valid age

labels. We proceeded by extracting face crops using DLIB’s affine alignment algorithm, which

uses five facial landmark points detected by DLIB’s shape predictor. Face crops were extracted

with 50% context and resized to 256×256p.

To enable easy reproduction of this evaluation protocol, we make DLIB’s detection metadata

and CCMiniIMG frame processing scripts publicly available§ and encourage authors to utilize

it in their work to avoid inconsistencies.
§https://github.com/kbesenic/CCMiniVID
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Image-based baseline results

We evaluate the performance of our best-performing image-based age estimation model from

[267] and Section 5.3.3 and compare it to the previously reported SOTA results from [147].

The selected model is based on a CNN architecture from MobileFaceNet family [84] (Section

5.3.3) and trained on the proposed large in-the-wild B3FD image dataset (Section 5.3.2) using

the DLDL-v2 age estimation method [91]. The model takes 128×128 RGB face crop inputs

and outputs 101 values corresponding to ages 0 to 100. More details are available in Sections

2.3.3 and 5.3.3. In this chapter, we call this model the baseline image-based age estimation

model.

Table 6.1 presents the baseline results. The selected model outperforms the overall age clas-

sification accuracy of the previously reported leading method from [281] by a large margin of

18.74 points, establishing the new state-of-the-art on this benchmark. Although it outperforms

the baseline methods by a large margin, it shows a similar relative performance drop for female

subjects, darker skin tones, and poorly illuminated recordings.

To validate the CCMiniVID benchmark data from Section 6.1, we apply the image-level

baseline model and protocol to its three versions. Table 6.2 compares results obtained on the

original CCMiniIMG data. The results are closely matched, showing that while the CCMiniVID

benchmark data offers several benefits over CCMiniIMG, such as continuous video sequences,

face tracking data, and clear mapping between video subjects and the dataset’s metadata, it

retains a very similar difficulty level.

6.2.2 Video-based benchmark protocol

Methods that work with sequential (i.e., temporal) data can be either offline or online. Offline

methods process a video as a unit non-causally and produce a single estimate for the whole

video. Temporal stability is not an issue since only one estimate per video is produced. There-

fore, we find Mean Absolute Error (MAE, Eq. 3.2) a sufficient metric for offline estimation

methods. The absolute error is calculated based on a single estimate per video, while the mean

is calculated over all videos in the dataset. Online methods produce updated age estimations

in real time as new video frames are captured. For online methods, we propose Temporal

Mean Absolute Error (tMAE) and Temporal Standard Deviation (tST D) as the benchmark met-

rics to evaluate both method’s accuracy and online estimation stability, respectively. These are

standard MAE and ST D metrics calculated at the frame level, as online methods produce new

estimates for each of the frames in the temporal dimension. Following the CCMiniIMG pro-

tocol, we rely on the dataset’s additional labels to calculate the proposed metrics across three

gender groups, six apparent skin tone types, and two ambient lighting types. To unambiguously

define the benchmark protocol, we make the metadata (including the face tracking data from the
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commercial tracking system), the test set extraction framework, and the evaluation framework

publicly available athttps://github.com/kbesenic/CCMiniVID.

Video-based baseline results

Tables 6.3 and 6.4 present results of our image-based age estimation model described in Section

6.2.1 on the three CCMiniVID benchmark dataset versions, following the previously described

offline and online video protocols, respectively. To comply with the offline estimation protocol,

which expects a single estimate per video, we use the median of the frame-level estimations to

calculate MAE. The online protocol’s tMAE and tST D metrics are calculated directly from the

frame-level estimation errors.

The results obtained on the three versions are very similar, and the relative performance drop

can be observed in the case of female subjects, darker skin tones, and lack of good lighting. High

tST D numbers indicate unstable age estimation across video frames. The large gap between

overall offline and online MAE indicates that video-level estimations are more precise than

frame-level estimations.

6.3 Towards video-based age estimation method

All previously presented results are obtained with image-based age estimation methods. The

central premise of this work is that age can be estimated more precisely by taking a better look,

i.e., by using a longer video sequence instead of a single image. To verify this, we first analyze

how video sequence duration affects the accuracy of age estimation.

6.3.1 Taking a better look

For this experiment, we use the CCMiniVID-A video benchmark data, which contains 600

frames (20s@30FPS) of continuous face tracking for two videos of each subject in the CCMini

dataset. We find this version of the benchmark data most suitable since it contains all subjects,

and all video subsequences are of the exact same duration. The majority of video-based meth-

ods rely on frame subsampling techniques to avoid redundant processing of nearly identical

neighboring frames and to reduce computational complexity. We set the subsampling step to

6, following various video processing methods [282, 283, 284, 285, 286]. We calculate age

estimation MAE for video subsequences lasting from a single frame (0 seconds) to 20 seconds.

The results are presented in Figure 6.6, denoted as 2D CNN.

By using video sequences of 1 second, the single-frame-based estimation error is reduced by

5.59%. By using 5 seconds, the error is reduced by 10.29%. Increasing sequence duration from

5 to 15 seconds reduces the error by an additional 2.67 percentage points. However, increas-
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Figure 6.6: Age estimation MAE of our baseline 2D CNN image-based age estimation model and
the proposed video-based model (2D CNN + TCN4) in relation to video sequence duration on the
CCMiniVID-A offline video-based benchmark protocol.

ing the sequence duration from 15 to 20 seconds results in almost no improvement. Using the

complete sequences reduces the estimation error by 13.35%, compared to the single-frame ap-

proach. The results demonstrate that taking a better look is very useful for age estimation, even

with a basic image-based estimation method and simple median aggregation of the frame-level

results.

6.3.2 Cherry-picking based on tracking data

Cherry-picking is a popular name for a technique based on the selection of the best or most

suitable elements from a set. A frontal-face cherry-picking approach was proposed by [258],

where a fixed threshold was used on the sum of absolute head-pose angles. To evaluate the

cherry-picking approach, we can utilize the produced frame-level tracking data described in

Section 6.1.2 (i.e., head-pose angles, tracking quality, and face scale). Using a fixed threshold

is not suitable for our evaluation protocol since it might cause biases in video-based or even

subject-based label distributions. For example, there might be more female subjects with bad

lighting in the non-frontal subset. To mitigate this issue, we extract three equally sized subsets

from each of the benchmark videos. As a baseline, we extract the chronologically first 50% of

the video frames. We also extract the best and the worst 50% of the video frames based on a

certain criterion. This ensures that all videos and subjects are used in all three subsets and that

the subsets are of equal size. Results of this experiment are presented in Table 6.5.

Contrary to the findings in [258], head-pose angles seem to have negligible influence on
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Table 6.5: Age estimation MAE of our baseline image-based age estimation model on the CCMiniVID-
A benchmark data for frame cherry-picking approaches based on different face tracking data.

Criterion Yaw Pitch Roll Tracking quality Face scale

First 50% 5.29 5.29 5.29 5.29 5.29

Best 50% 5.32 5.26 5.29 5.27 5.27

Worst 50% 5.26 5.32 5.26 5.30 5.31

age estimation error in our experiments. The image-based age estimation model was trained on

the proposed B3FD dataset, a very large in-the-wild age estimation dataset with unconstrained

head poses. The model was also trained with data augmentations to make it robust to tracking

instabilities and low face resolution, further explaining why filtering based on auxiliary tracking

data did not result in significant improvements.

6.3.3 Video-based age estimation method

The main obstacle to training an age estimation model that leverages facial dynamics and tem-

poral information from videos is the lack of video data with age labels. As mentioned in our

data review in Section 4.1.2, there are no publicly accessible video datasets that permit training

of age models. As reviewed in Section 4.4, some researchers resorted to a manual collection of

very small video datasets (e.g., only one or two subjects). We believe this is insufficient to train

a reliable model with good generalization capabilities.

To deal with the lack of annotated video data that restricts the usability of fully super-

vised learning, we explore pseudo-labeling and semi-supervised learning. Whereas supervised

learning requires labels for all training samples, semi-supervised learning algorithms aim at im-

proving their performance by utilizing unlabeled data [287]. According to [55], this sounds like

magic, but it can work under the right conditions. One approach for making use of unlabeled

data is generating pseudo labels. Pseudo labels are weak labels generated by the model itself

and subsequently used to further train the model [288]. Semi-supervised learning is explained

in more detail in Section 2.1.3. In our setup, we leverage the fact that the subject’s age does

not change during a single video recording. We rely on an image-based age estimation model

and apply it to every frame of an unlabeled facial video dataset. The frame-level results are

aggregated to get video-level pseudo labels. These pseudo labels can then be used to super-

vise the learning of spatiotemporal models. In the case of end-to-end training, the image-based

backbone used to generate the pseudo-labels is also further optimized and improved.
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Pseudo-labeled training data

The main advantage of the proposed approach is that any source of unlabeled facial videos

can be used for model training. We combine two large sources of raw videos. The video

portion of the IJB-C dataset [289] is selected since the dataset’s general statistics indicate good

age distribution. The CelebV-HQ dataset [290] is chosen for its size and good distribution

concerning facial expressions, appearance attributes, and actions. The raw videos were once

again processed with a commercial face tracking system, and frame-level estimations were

produced with the image-based age estimation model from Section 6.2.1. The median was used

to aggregate frame-level estimations into video-level pseudo labels. We filtered the video data

with respect to face scale, tracking quality, and sequence duration. The produced set consists of

28,619 videos with a total of 7,535,299 frames, averaging 263 continuously tracked frames per

video. Pseudo-label distribution ranges from 6 to 89 years.

Semi-supervised video-based method

In Section 6.2.2, we demonstrated that offline median estimation across video sequences can be

much more precise than frame-level predictions. Our goal is to use the median pseudo labels

to train a temporal model that will be able to replicate that performance boost, but in an online

fashion and based on a much shorter time window.

Our method follows the fundamental design principle of many video-processing methods

[283, 291, 292, 293, 294], including some previously reviewed video age estimation methods

[256, 257], meaning that the model consists of an image-based 2D CNN feature extractor and a

temporal model that learns to aggregate frame-level features in an optimal way.

For feature extraction, we once again rely on our 2D CNN model for image-based age

estimation from Section 6.2.1. The feature extractor backbone is stripped of its last age classi-

fication layer to produce features of 512 elements. Motivated by the results of [295], we base

our temporal model on their implementation of the Temporal Convolutional Network (TCN)¶.

The proposed TCN can be parameterized with respect to the number of layers, kernel size, and

number of input and output channels. We set the kernel size to 2 and parameterize the TCN to

input and output feature vectors of size 512, matching the chosen feature extractor output. The

TCN’s output is passed to a fully connected layer that translates the temporal feature vectors to

age estimations. The number of layers determines the network’s receptive field and, therefore,

the time window size used in online processing. We experiment with 3 and 4 layers, resulting

in receptive fields of 8 and 16 frames, respectively.

An overview of the method is presented in Figure 6.7. The figure illustrates the processing

pipeline for a 4-layer TCN with a receptive field of 16 frames. The method predicts a softmax

¶github.com/locuslab/TCN/blob/master/TCN/tcn.py
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Figure 6.7: The proposed video age estimation method based on a 2D CNN feature extractor and a
4-layer TCN temporal model (4L TCN), followed by a fully connected layer (FC) for dimensionality
reduction. The model takes 16 input video frames (VID) denoted as xt to xt−15 to produce an age
estimation probability vector y′t .

probability vector y′t of size 1× 101 (mapping to ages from 0 to 100) based on the current

frame face crop xt and 15 previous face crops (xt−1 to xt−15). The weighted sum of the softmax

probabilities is used as the final age prediction, according to the DLDL-v2 method.

We train the proposed model in an end-to-end manner, meaning that we jointly optimize

both the image-pretrained feature extractor and the randomly initialized TCN. The training data

is divided into training and validation subsets with a random 80:20 split. The model is trained

with the DLDLv2 age estimation method and Adam optimization [296], using a learning rate of

10−6 and weight decay of 10−3. We adopt an early stopping approach, where training is ended

when the validation subset MAE plateaus.

Video-based benchmark results

The results in Tables 6.6 and 6.7 show that we outperformed image-based baseline according to

both offline and online evaluation protocols, even though our model trainings were supervised

with pseudo labels generated by that exact baseline model. Figure 6.6 presents consistent im-
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provements of the 4-layer TCN model (TCN4) on the offline protocol in relation to sequence

duration. Significant improvements can also be observed in the online protocol results in Table

6.7, where the TCN4 overall tMAE is reduced by 15.41%, while tST D is reduced by an even

larger margin of 51.60%.

The TCN3 model uses a time window of size 8, which amounts to just 1.6 seconds of

video data under the proposed frame subsampling setting. By using the first 1.6 seconds of

each video, TCN3 can achieve MAE of 5.32 with a single online inference pass, compared to

5.52 in the case of the aggregated image-based results. Image-based result aggregation on the

full 20-second videos gives MAE of 5.25. Using a single online TCN4 inference pass on the

first 3.2 seconds of each video, we even outperform the full-video results with MAE of 5.15,

simultaneously achieving 84% shorter estimation time and improved estimation accuracy.

6.4 Discussion

Aligned with our initial premise for this work, taking a better look at video sequences signif-

icantly improves age estimation compared to the single-image approach. Our evaluation has

also confirmed previous findings regarding inconsistent performance with respect to gender,

skin tone, and lighting type, highlighting the issue of demographic biases in the machine learn-

ing field.

Contrary to the findings of previous works, our experiments have shown that the correlation

between age estimation error of contemporary age estimation models and auxiliary face tracking

data (i.e., head-pose angles, tracking quality, and face scale) is negligible, making the frame

cherry-picking method ineffective.

The proposed video age estimation method, based on pseudo-labeling and semi-supervised

learning, overcomes the lack of available annotated training data and improves age estimation

accuracy according to both offline and online evaluation protocols, while estimation stability

is improved by more than 50%. Our goal is for our carefully designed and publicly available

benchmark protocol, along with the baseline video age estimation results, to encourage and

support further research on the topic of video-based age estimation, as the potential of this

understudied field of research is clearly demonstrated.

105



Chapter 7

Conclusions

The estimation of chronological age based solely on visual cues is a challenging task. In fact,

it is one of the most intricate problems in the face analysis research field. The main reason for

this is the personalized and stochastic nature of the aging process, described in the first chapter.

In this thesis, the problem of automatic age estimation is tackled using machine learning. Since

machine learning is a very broad and complex research field, we dedicated the second chapter to

introducing the most relevant theoretical foundations, related to learning algorithms, estimation

methods, and the deep learning paradigm.

The sophistication and performance of modern-day machine learning models are truly im-

pressive. However, it is not a common practice to estimate age from images or videos directly,

via a single model. Multiple models, each serving a specific purpose, such as face detection,

face alignment, and age estimation, are commonly organized in a processing pipeline. The gen-

eral face analysis framework, with a special focus on the age estimation framework, is outlined

in the third chapter. The abundance and variety of proposed algorithms and methods are evident

from the overview of related work presented in the fourth chapter. To systematically review this

fruitful field, we proposed a taxonomy that organizes the age estimation system design choices

according to the type of input data, feature representation, and estimation algorithm. The early

work was mostly focused on the design of novel feature representations, while in the era of

deep learning the emphasis shifted towards the design of estimation algorithms. However, mul-

tiple studies indicate that the main contributor to the development of robust and precise age

estimation systems is the training data.

Web scraping is a frequently utilized source for large quantities of diverse but unreliable

data. The fifth chapter introduces an unsupervised biometric data filtering method capable of

automatically reducing the number of erroneous samples in facial datasets. The experimen-

tal evaluation showed that the proposed method improved the performance significantly, even

when more than half of the data was declared erroneous and discarded from training. As the

lack of large and reliable public datasets is a common problem in the field, we further con-
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tributed by introducing additional biometric filtering strategies and designing a newly derived

public dataset, named Biometrically Filtered Famous Figure Dataset (B3FD). We demonstrated

experimentally that it outperforms various state-of-the-art public datasets, while also showing

that data quality is more important than data quantity, and that the choice of data contributes

more than the choice of the age estimation method.

The potential of videos in the age estimation field is explored in the sixth chapter. While the

benefits of using videos instead of static images were repeatedly discussed and experimentally

demonstrated, the video-based methods are still far less studied. Once again, a big obstacle to

the advancement of the video-based research field is the lack of appropriate data. We address

the validation and comparability issues by designing a public video-based benchmark protocol,

based on a recent in-the-wild evaluation dataset comprising a large number of videos and highly

reliable labels. The second big obstacle, regarding the lack of training data, hinders the devel-

opment of video-based methods that are able to utilize spatiotemporal dynamic information.

We tackled this issue using a strategy based on semi-supervised learning and pseudo-labeling.

The designed video-specific method, based on a temporal convolutional network, was shown to

outperform its image-based counterpart, further corroborating the premise of video usefulness.

The principal contributions of this thesis are focused on data. The accuracy and robustness

of machine learning models rely heavily on the quantity and quality of used training data. The

validity and verifiability of research findings directly depend on the availability and quality of

public benchmarks. The large performance disparities in the cross-dataset evaluation settings

indicate the persistence of data-related issues in public datasets. In the era of advanced machine

learning models, learning algorithms, and computational capabilities, the key to developing age

estimation systems, that are truly robust in real-world conditions and to various intrinsic and

extrinsic factors affecting facial appearance, is most likely to lie in the data itself.
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