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Abstract

This thesis focuses on autonomous exploration using aerial vehicles. An autonomous explo-

ration and mapping process is one of the fundamental tasks of robotics. Exploration methods

can be used in both 2D and 3D space. In contrast to 2D exploration and mapping strategies,

mapping large environments in 3D requires a large amount of memory and computational effort.

Therefore the fastest possible generation of a complete 3D map and autonomous navigation of

a robot through the map is a challenging task. This task is used in many applications, such as

civil infrastructure or search and rescue scenarios. Additionally, a great challenge is running

the exploration and mapping onboard an unmanned aerial vehicle (UAV).

The main objective of this thesis is to develop 3D autonomous exploration strategies capable

of meeting the above challenges, and at the same time be adequate for both large and cluttered

unknown environments. In those environments, a UAV should navigate autonomously without

any a priori knowledge of the environment. The goal of autonomous exploration is to explore an

unknown environment trying to optimize time, distance or energy consumption, to name a few.

The environment is initially unknown and bounded. The exploration is considered done when

the whole environment is explored and the map of the environment is created. The exploration

strategies are designed with a focus on enabling a UAV to navigate autonomously and make

real-time decisions.

As already mentioned, the primary objective of this research is to develop innovative meth-

ods for autonomous 3D exploration in unknown environments, specifically tailored to operate

online and onboard robots with limited computational and energy resources. While current

methods in the field show promise in scaling to various environment sizes and complexities, a

significant gap remains in their applicability for 3D exploration, particularly when constrained

to onboard processing capabilities. Addressing this gap, this research introduces three novel

methods designed to efficiently manage the dense datasets produced by advanced sensors, ap-

plicable across diverse 3D environments, and executable in real time on robotic platforms.

The first method involves using submaps to find frontiers, along with refining those frontiers

at multiple resolutions. This technique is engineered to identify and prioritize unexplored areas

(frontiers) within a 3D space, adapting its resolution to effectively balance details of the envi-

ronment and computational load. By dividing the environment into manageable submaps, the

system can swiftly update and refine its understanding of the surroundings, guiding the robot to

areas of interest.

The second method employs a sampling-based approach, leveraging a Recursive Shadow-

casting algorithm. This algorithm is pivotal for the efficient estimation of information gain, a

crucial factor in determining whether it is worth exploring a specific area. By recursively ana-

lyzing the environment for unobserved regions, this method directs the robot towards locations



that maximize the acquisition of new information, ensuring an effective exploration process.

In addition to these, semantic information about the environment is integrated into the ex-

ploration process. This integration enhances the understanding of the environment, allowing

robots to make more informed decisions about where to explore next. The semantic layer adds

context to the raw spatial data, enabling the robot to recognize and prioritize areas of potential

interest or importance.

Each method focuses on rapidly calculating information gain and selecting the most bene-

ficial next exploration goal, thereby optimizing the exploration process. The methods are not

only novel in their approach but also in their efficiency, ensuring that even robots with limited

resources can execute them effectively.

To verify the effectiveness and robustness of these methods, a series of tests are conducted,

both in controlled simulations and in real-world scenarios. These include experiments in simu-

lations to test specific functionalities, as well as in indoor and outdoor environments to test the

performance of the system under more complex conditions. It is important to emphasize that

the tests in real-world scenarios are carried out directly on the UAV with limited resources. The

results of this thesis contribute to advancing the field of autonomous aerial exploration, offering

robust, adaptable, and efficient methodologies for 3D mapping and exploration in a variety of

challenging environments.

The contribution of this thesis consists of three main elements:

• A method for planning of autonomous 3D exploration based on multi-resolution frontier

clustering

• A method for planning of autonomous 3D exploration based on Recursive Shadowcasting

algorithm for information gain estimation

• A method for planning of autonomous 3D exploration based on semantic features of the

environment

Keywords: Unmanned Aerial Vehicle, Autonomous Navigation, Mapping, Path Planning
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Autonomno istraživanje 3D prostora s pomoÂcu bespilotne let-

jelice zasnovano na informacijskoj dobiti

Ova disertacija fokusira se na autonomno istraživanje prostora pomoÂcu zračnih bespilotnih let-

jelica. U sklopu ove disertacije, ciljana podskupina bespilotnih letjelica su višerotorske letjelice.

Proces autonomnog istraživanja i kartiranja prostora jedan je od osnovnih zadataka robotike.

Metode istraživanja prostora mogu se koristiti u dvodimenzionalnom (2D) i trodimenzional-

nom (3D) prostoru. Za razliku od istraživanja prostora i strategija kartiranja prostora u 2D

okruženju, izrada 3D karte prostora velikih okruženja zahtijeva veliku količinu memorije i raču-

nalnih resursa. Stoga je brza izrada potpune 3D karte prostora i autonomna navigacija robota

kroz kartu izazovan zadatak. Ovaj zadatak koristi se u mnogim primjenama, kao u inspekciji

infrastrukture ili u scenarijima potrage i spašavanja. Dodatni izazov je izvo Ådenje autonomnog

istraživanja i izgradnja karte prostora na bespilotnoj letjelici s ograničenim resursima.

Glavni cilj ove doktorske disertacije je razvoj strategija autonomnog 3D istraživanja pros-

tora sposobnih za suočavanje s navedenim izazovima, koje su istovremeno prikladne za velika

i složena okruženja. U takvim okruženjima, bespilotna letjelica bi se trebala navigirati au-

tonomno ne znajuÂci unaprijed informacije o okruženju. Cilj autonomnog istraživanja je istražiti

nepoznato okruženje pokušavajuÂci optimizirati na primjer vrijeme istraživanja, prije Ådeni put

ili potrošnju energije. Okruženje je na početku nepoznato, a veličina okruženja je unaprijed

definirana. Istraživanje prostora smatra se potpunim u trenutku kada je istraženo cjelokupno

okruženje i kada je izra Ådena karta prostora. Strategije istraživanja prostora implementirane su

s ciljem da omoguÂce bespilotnoj letjelici autonomnu navigaciju i donošenje odluka u stvarnom

vremenu.

Kao što je spomenuto, cilj ovog istraživanja je razvoj metoda za autonomno 3D istraživanje

nepoznatih prostora koje može izvoditi robot s ograničenim resursima. Dosad razvijene metode

pokazuju zadovoljavajuÂce performanse s obzirom na zadanu veličinu prostora te mogu istražiti

kako okruženja velikih tako i malih dimenzija. Me Ådutim, neke od njih nisu prikladne za is-

traživanje 3D prostora. Može se reÂci da dosad razvijene metode u ovom području pokazuju

potencijal te se odlikuju skalabilnošÂcu. To je posebno istaknuto u prilagodbi istih složenim i

velikim prostorima. Me Ådutim, značajan nedostatak je u primjeni postojeÂcih metoda u istraži-

vanju 3D prostora u stvarnom vremenu koristeÂci bespilotne letjelice. Stoga se predlažu tri

metode za autonomno istraživanje prostora koje mogu obra Ådivati guste i velike skupove po-

datakaa, koje su prikladne za sve vrste 3D prostora i mogu se izvršavati na sklopovlju robota.

Metode uključuju otkrivanje fronte iz podkarte prostora, filtriranje fronte koristeÂci višerezolu-

cijsku metodu, pristup temeljen na uzorkovanju koji se oslanja na rekurzivni algoritam bacanja

sjene za učinkovitu procjenu informacijske dobiti te integraciju semantičkih značajki prostora

u proces istraživanja prostora. Predložene metode postupno istražuju prostor uz računanje in-



formacijske dobiti i planiranje putanje. Metoda temeljena na fronti kao i metoda uzorkovanja

temelje se na novoj i učinkovitoj procjeni informacijske dobiti i odabiru sljedeÂce najbolje ciljne

točke. Metoda za autonomno istraživanje prostora korištenjem semantičkih značajki okoline

integrirana je u metodu temeljenu na fronti čime je postignuta pristranost istraživanja područja

u blizini objekata od interesa.

Metode su detaljno opisane u nastavku.

Prva metoda temelji se na detekciji fronte na osnovu podkarte prostora u kombinaciji s

filtriranjem točaka fronte višerezolucijskim pristupom. Ova tehnika osmišljena je za identifici-

ranje granice istraženog i neistraženog 3D prostora (fronte) i prilagodbu rezolucije točaka fronte

za učinkovitu ravnotežu izme Ådu razine detalja objekata u okolini prikazanih u karti prostora i

računalnog optereÂcenja. Dijeljenjem okruženja na podkarte željene veličine, sustav može brzo

osvježiti cjelokupnu kartu prostora te time ubrzati detekciju fronte.

Druga metoda koristi pristup temeljen na uzorkovanju u kojem se pomoÂcu algoritma br-

zorastuÂcih slučajnih stabala generiraju čvorovi u 3D prostoru. Generirani čvorovi evaluiraju

se koristeÂci rekurzivni algoritam bacanja sjene. Ovaj algoritam ključan je za učinkovitu proc-

jenu informacijske dobiti. Predložena metoda usmjerava robota prema pozicijama koje mak-

simiziraju otkrivanje novog prostora.

TreÂca metoda temelji se na integraciji semantičkih značajki okoline u proces istraživanja

prostora. Predložena integracija osigurava razumijevanje značajki iz okoline, omoguÂcujuÂci

robotu da donose informiranije odluke o tome kamo se dalje kretati dok istražuje prostor.

Drugim riječima, semantički sloj dodaje kontekst geometrijskim podatcima prostora zapisanim

u karti prostora. Na taj način daje se prednost područjima u čijoj se blizini nalaze objekti od

interesa.

Sve metode u središte pozornosti stavljaju brzo izračunavanje informacijske dobiti i odabir

najbolje sljedeÂce ciljne točke, optimizirajuÂci time proces istraživanja prostora. Metode su in-

ovativne te osiguravaju učinkovito istraživanje 3D prostora robotima s ograničenim resursima.

Kako bi se potvrdila učinkovitost i robustnost ovih metoda, provodi se niz ispitivanja, kako u

kontroliranom simulacijskom okruženju tako i u stvarnim okruženjima. To uključuje ispitivanje

u simulacijskom okruženju za testiranje specifičnih funkcionalnosti i u vanjskim ili unutarnjim

stvarnim okruženjima za procjenu izvedbe sustava u složenijim uvjetima. Testiranje strategija

na stvarnom robotu s ograničenim resursima je u isto vrijeme jedan od najvažnijih dijelova dis-

ertacije. Rezultati ove disertacije doprinose napretku u području autonomnog zračnog istraži-

vanja prostora, nudeÂci robustne, prilagodljive i učinkovite metode za 3D kartiranje i istraživanje

prostora u različitim izazovnim okruženjima.

Doktorska disertacija sastoji se od osam poglavlja.

U prvom poglavlju opisani su autonomni sustavi u području robotike te primjena istih na

stvarnim primjerima. Ovo poglavlje ujedno najavljuje temu doktorske disertacije, odnosno
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autonomno istraživanje pomoÂcu bespilotne letjelice. Opisani su osnovni pojmovi kao što su

lokalizacija, kartiranje prostora, istraživanje prostora i planiranje putanje. Uz to, predstavljeni

su izazovi koje ova tema uključuje, motivacija i ciljevi doktorske disertacije. Ukratko su opisani

znanstveni doprinosi doktorske disertacije i dan je kratki pregled strukture rada.

U drugom poglavlju objašnjeni su osnovni koncepti i tehnike korištene u implementaciji

metoda za autonomno istraživanje prostora. Opisana je arhitektura robota korištenog u dok-

torskoj disertaciji, senzori kao što su LiDAR i RGB-D kamera i načini prikazivanja 3D prostora

(kartiranje prostora). Osim toga, dan je uvod u relevantne koncepte u teoriji informacija (poput

entropije i izračuna informacijske dobiti), te pregled metoda za planiranje putnje i autonomnu

navigaciju. Objašnjeni su i osnovni algoritmi računanja informacijske dobiti.

U treÂcem poglavlju prikazan je pregled područja od interesa za ovu disertaciju. Istraživanje

prostora razloženo je na metode temeljene na fronti, metode temeljene na uzorkovanju i metode

temeljene na semantičkim značajkama okoline.

U četvrtom poglavlju dan je opis metoda autonomnog istraživanja prostora u 3D okruženju.

Na samom početku predstavljen je sustav autonomnog istraživanja prostora sa svojim kompo-

nentama. NajveÂci fokus stavljen je na strategije istraživanja prostora. Stoga, u poglavlju su

predstavljene tri strategije autonomnog istraživanja prostora koje su ujedno i znanstveni do-

prinosi ovoga rada. Strategije su najavljene prethodno u ovom poglavlju. Za svaku strategiju

objašnjeni su osnovni pojmovi i detaljnije je opisan znanstveni doprinos.

U petom poglavlju dan je zaključak ove disertacije koji sažima znanstvene doprinose i

cjelokupni rad. Zaključak obuhvaÂca raspravu o rezultatima istraživanja i predlaže smjernice

za buduÂce istraživanje. Ovaj dio objedinjuje doprinose doktorske disertacije i prikazuje njezin

značaj u širem kontekstu robotike.

U šestom poglavlju dan je popis objavljenih radova koji čine disertaciju.

U sedmom poglavlju opisan je doprinos autora na svakome od objavljenih radova.

U osmom poglavlju priloženi su radovi na kojima se disertacija zasniva.

Nakon toga izložen je popis literature korištene u disertaciji. Disertacija je izra Ådena po

skandinavskom modelu te ju čine tri časopisna članka. Glavni doprinosi disertacije su izloženi

i opisani u nastavku poglavlja.

Tri su glavna doprinosa ove disertacije:

• Metoda za planiranje autonomnog 3D istraživanja temeljena na grupiranju točaka

fronte koristeÂci višerezolucijski pristup

Metoda je zasnovana na detekciji točaka fronte, točaka na granici istraženog i neis-

traženog prostora. Jedna od veÂcih prednosti razvijene metode je skalabilnost. Metoda

zahtijeva manje vremena obrade za istu veličinu prostora, dok održava usporedivo vri-

jeme istraživanja s postojeÂcim metodama. Ovo poboljšano izvo Ådenje, izme Ådu ostalog,
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postiže se korištenjem ulaznih podataka iz algoritma za istovremenu lokalizaciju i kar-

tiranje prostora, umjesto izravno iz 3D senzora. Rad uključuje znanstvene doprinose

kao što su: razvoj metode za detekciju fronte zasnovane na podkartama, implementacija

višerezolucijskog pristupa za poboljšanu detekciju fronte, te razvoj algoritma za odabir

najbolje točke fronte uključujuÂci aproksimaciju senzora na bazi kocke za brzi izračun

informacijske dobiti. U usporedbi s trenutno razvijenim metodama, ovaj pristup nudi

brže i učinkovitije izvo Ådenje kako u računalnom vremenu tako i cjelokupnom vremenu

potrebnom za istraživanje prostora. Performanse predloženog pristupa potvr Ådene su kroz

detaljno simulacijsko i eksperimentalno ispitivanje.

• Metoda za planiranje autonomnog 3D istraživanja temeljena na rekurzivnom algo-

ritmu bacanja sjene za procjenu informacijske dobiti

Metoda se temelji na nasumičnom uzorkovanju točaka, potencijalnih ciljnih točaka is-

traživanja prostora i evaluaciji istih u svrhu bržeg istraživanja prostora. Točke su nasum-

ično generirane korištenjem algoritma brzorastuÂcih slučajnih stabala. Evaluacija točaka je

implementirana pomoÂcu nove i učinkovite metode za izračunavanje informacijske dobiti,

temeljene na algoritmu rekurzivnog bacanja sjene. Za odre Ådivanje sljedeÂce najbolje ciljne

točke koristi se metoda evaluacije putanje zasnovana na kvadrima, što značajno sman-

juje vrijeme računanja informacijske dobiti cijele putanje. Osim toga, metoda uključuje

strategiju za rješavanje zaglavljenja, poveÂcavajuÂci sposobnost brzog oporavka robota u

složenim okruženjima, čime se minimizira ukupno vrijeme istraživanja. Usporedna ispi-

tivanja u simulacijama pokazuju da ovaj pristup nadmašuje trenutno razvijene metode u

vidu računalne učinkovitosti i ukupnog vremena istraživanja. Doprinosi rada su: razvoj

algoritma za procjenu informacijske dobiti temeljenog na algoritmu rekurzivnog bacanja

sjene, implementacija metode zasnovane na kvadrima za procjenu informacijske dobiti za

svaku vezu brzorastuÂceg slučajnog stabla, te metoda praÂcenja posjeÂcenih čvorova u svrhu

rješavanja zaglavljenja u složenim prostorima tijekom autonomnog istraživanja.

• Metoda za planiranje autonomnog 3D istraživanja temeljena na semantičkim znača-

jkama okoline

Metoda se temelji na razvoju strategije istraživanja prostora koja integrira metodu za-

snovanu na fronti sa semantičkim informacijama u prostoru, omoguÂcavajuÂci iterativno

istraživanje i označavanje objekata od interesa u 3D karti prostora. Metoda je kombini-

rana s metodom temeljnom na fronti. Ukupna informacijska dobit pojedine točke sastoji

se od geometrijskih podataka o točki u prostoru i semantičkih informacija dobivenih iz

algoritma za semantičku segmentaciju objekata. Glavni doprinos uključuje nadogradnju

funkcije informacijske dobiti kako bi obuhvatila i geometrijske i semantičke informacije

o prostoru. Implementirano je označavanje 3D objekata u stvarnom vremenu tijekom
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istraživanja prostora, što uključuje izdvajanje semantički segmentiranih objekata iz 2D

slike i obradu oblaka točaka iz kamere kako bi se odredili položaji objekata u okruženju.

Sustav se sastoji od kartiranja prostora, istraživanja prostora, planiranja putanje i au-

tonomne navigacije u prostoru. Sustav je modularan i prilagodljiv novim okruženjima,

te je ispitan na jednostavnom sklopovlju s pristupačnim sezorima (RGB-D kamerom) na

bespilotnoj letjelici s ograničenim resursima.

Ključne riječi: bespilotna letjelica, autonomna navigacija, kartiranje prostora, planiranje

putanje
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Chapter 1. Introduction

CHAPTER 1

Introduction

Autonomous systems in aerial robotics, particularly unmanned aerial vehicles (UAVs), are rev-

olutionizing a number of industries with their ability to operate independently of direct human

control. Equipped with advanced sensors and sophisticated algorithms, these aerial robots are

ideal for tasks such as agricultural surveillance, search and rescue operations, environmental

monitoring and infrastructure inspection. Their flying capability along with computer hardware

that enables the execution of algorithms, allows them to navigate complex environments and

make real-time decisions on obstacle avoidance and path planning. This technology not only

increases efficiency and precision in various applications, but also opens up new possibilities

in areas where human access is restricted or dangerous. The transition from basic autonomous

functions to more complex tasks and advanced applications, where UAVs are deployed in un-

known or inaccessible areas, is a challenging endeavour. In such scenarios, the UAVs utilize

navigation capabilities and autonomous decision-making processes to perform comprehensive

data collection or map creation.

The navigation and decision-making capabilities create a process of autonomous explo-

ration. Autonomous exploration refers to the ability of a robot or unmanned vehicle to nav-

igate through an unknown environment and gather information without human intervention.

In general, autonomous exploration consists of four core components: localization, mapping,

exploration and path planning.

Localization in robotics is the process by which a robot determines its position and orienta-

tion within its environment. External positioning systems, such as Global Positioning System

(GPS), can be utilized for this purpose; however, depending on the task, such systems might not

be viable. For example, in GPS-denied environments or if high accuracy or update rate is re-

quired. For a robot to function in any scenario, it is therefore desirable that it can localize using
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only onboard sensors and computation. This capability is essential for robots to autonomously

navigate and interact effectively with their surroundings. It relies on data from various sensors

like cameras, Light Detection and Ranging (LiDAR), Inertial Measurement Unit (IMU), and

wheel encoders, which provide information about the surroundings of the robot and its motion.

A map of the environment serves as a reference for localization and can be either pre-existing

or generated by the robot through Simultaneous Localization and Mapping (SLAM). There are

different types of localization, including global localization where the robot estimates its pose

without prior knowledge of its initial position, and local localization which refines the pose

estimate when an approximate location is known.

Mapping is the process of creating a detailed representation, a map, of the environment

from sensor data. This map can incorporate various details that assist the robot in understand-

ing and navigating its surroundings. Commonly included are the locations of physical barriers

like walls, objects, and trees, which are crucial for localization and collision avoidance. Addi-

tionally, the map can contain diverse data such as temperature readings at specific points, the

positions of various items like chairs, doors, vehicles, and the presence of different colors. The

ability of a robot to autonomously create such a map significantly enhances its functionality,

particularly in environments lacking pre-existing information.

Exploration uses decision-making algorithms to enable a robot to automatically acquire a

map of an environment without any a priori information, i.e., when the environment is fully or

partially unknown. It involves both decision-making and mapping. The mapping part of explo-

ration accumulates the information gathered by the sensors and the decision-making part deals

with where and how the environment should be traversed to uncover it. A common formulation

for the decision-making objective is to move the robot such that the unknown parts of the map

of the environment are removed. Depending on the task in which exploration is performed, the

goal of exploration might be to perform, for example, complete 3D reconstruction or search and

rescue. This influences the decision-making strategy.

Path planning is an important aspect of autonomous exploration, involving the determina-

tion of a sequence of actions for a robot to reach a goal location while avoiding obstacles. In

Figure 1.1: Examples of some of the aerial and ground robots autonomously executing exploration of
outdoor and indoor environments.
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Figure 1.2: UAVs used in outdoor and indoor experiments. On the left is a Kopterworx quadcopter, a
custom built quadcopter equipped with a Velodyne V LP−16 LiDAR sensor. On the right is a Hexsoon
EDU-450 quadcopter equipped with a Realsense D455 camera.

other words, path planning involves the robot calculating a path from its current position to

its destination, taking into account its understanding of the environment and sensor inputs. It

uses map of the environment to plan safe and obstacle-free paths. Optimality criteria, such as

shortest distance, quickest time, or energy efficiency, are determined based on the requirements

of the application.

Autonomous exploration can be performed by different types of robots, as shown in Fig. 1.1,

in various environments and with single or multiple robots. In this thesis, the focus is on aerial

robot exploration in static outdoor and indoor environments with a single robot. Autonomous

exploration using UAVs has been an active area of research in robotics for several years. It is a

rapidly growing field of research that has the potential to revolutionize various industries. The

use of UAVs for exploration has several advantages, including the ability to cover large areas

quickly and the ability to access areas that are difficult to reach by ground vehicles.

Usually, autonomous exploration is done without any a priori knowledge of the environment.

UAVs use various sensors, including LiDAR sensors and RGB-D cameras, to perceive informa-

tion from the environment and allow the UAV to navigate through unknown environments and

gather information autonomously. During exploration, sensors are also used to evaluate the

environment in which the robot is operating and allow the robot to adjust following actions

based on collected data. The system proposed in the thesis utilizes the capabilities of UAVs

equipped with advanced sensors such as LiDARs or cameras, as shown in Fig. 1.2. This system

is specifically designed to handle the complexity of navigating and mapping unexplored and

unstructured environments. The proposed system is expected to have applications in various

fields. These include search and rescue missions where rapid and efficient location of people is

crucial, surveillance missions where an extensive and detailed area needs to be monitored, and

inspection tasks, particularly in dangerous or inaccessible environments.
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1.1 Challenges

Autonomous exploration using UAVs is a highly challenging task for a number of reasons. Here

are some of the main challenges when doing autonomous exploration with UAVs.

Challenge 1: Unknown environments. Initially, environments are unknown and during au-

tonomous exploration, a robot can not assume prior knowledge of its surroundings. As a con-

sequence, it is required to plan based on the limited information available at each time step.

Furthermore, all systems need to be able to operate in diverse and potentially unforeseen envi-

ronments.

Challenge 2: Time efficient exploration. The goal is to achieve efficiency regarding time to

completion for exploration. Both the exploration paradigm, i.e., defining how long an iteration

should be, and the exploration heuristic, i.e., determining what action to take, directly affect the

exploration performance. If an iteration is too long, the robot may be idle for a moment, or if

too short, the computational cost may be too high ± it is therefore important to strike a balance.

The exploration heuristic should aim to be optimal in the global sense although exploration

operates either in frontier-based or sampling-based fashion. Furthermore, UAVs have limited

battery life, which restricts the amount of time they can spend exploring an environment. This

can be a significant challenge when exploring large or complex environments, as the UAV may

need to return to its base station for recharging.

Challenge 3: Scalability with respect to the size of the environment. The computational time

plays an important role in the autonomous exploration process. It influences on total exploration

time and thus performance in general. The extraction of potential waypoints and information

gain calculation should be adjusted to run in real time but also to be able to explore both small

and large environments.

Challenge 4: Modular exploration system: The exploration planner should fit to different lo-

calization, control and path planning algorithms. It should not be restricted to a specific module.

Challenge 5: Adaptation to sensors and mobile platforms. The exploration algorithm should

be adaptable to different sensors, as far as they produce input data suitable for map creation. Ex-

ploration planners should apply to various types of autonomous robots equipped with LiDARs

or other sensors that can be used to build a map.

Challenge 6: Online operation on robots. To operate on a fully autonomous system, the meth-

ods used should run on the limited onboard computation available. This is related to the com-

putational time of each component in the exploration system. Similarly, all methods should
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function incrementally as the robot moves and perceives more of its surroundings, and in real-

time for an interactive system to operate.

Challenge 7: Onboard computational capabilities. UAVs have limited onboard computational

capabilities, which can make it challenging to process the data collected by sensors such as

LiDARs and cameras. This can lead to delays in processing and decision-making, which can

impact the efficiency of the exploration.

Challenge 8: Safe navigation with obstacle avoidance. One of the main reasons why a map-

ping system should account for all these challenges is to ensure the safety of the robot. UAVs

need to be able to identify and avoid obstacles in the environment to ensure safe and efficient

exploration. This requires the development of sophisticated sensory systems and algorithms

that can detect and avoid obstacles in real time by planning safe paths.

These challenges summarize the issues that one is usually confronted with in autonomous

systems. Often, it is needed to make a trade-off between the challenges and choose some that are

more important than others. However, they should all be achieved to enable fully autonomous

3D exploration both in simulation and in the real world. The system proposed in the thesis

aims to overcome all these challenges by using different input data, scenarios, sensors, UAV

platforms, localization algorithms, exploration strategies, path planning and control algorithms

to achieve efficient and complete coverage of the environment.

1.2 Motivation and Objectives

The ability to autonomously explore unknown environments is a crucial component to robot au-

tonomy and a prerequisite for a wide range of applications, ranging from consumer and service

robotics to industrial inspection, tunnel mapping, warehousing as well as search and rescue.

In many of these applications, the goal of exploration is to actively map an unknown environ-

ment, such that it is fully covered as fast as possible. Autonomous mapping and exploration

have received great research interest, and numerous methods have been proposed. The motiva-

tion for doing autonomous exploration with UAVs is deeply rooted in the desire to enhance the

scope and effectiveness of exploration in diverse and often challenging environments. UAVs

enable exploration in areas that are either too dangerous, remote, or inaccessible for humans,

such as disaster zones, dense forests, and rugged terrain. The UAVs in autonomous exploration

can safely and efficiently navigate these environments, providing critical data and insights that

would be otherwise difficult to obtain. However, to enable the application of such systems in

real-world environments, all of the challenges pointed out in Section 1.1 need to be addressed.

While great progress has been made by the community, some of them are not focused on apply-
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ing the solution in the real world, and some of them still have several limitations.

The main goal of this research is to develop methods for autonomous 3D exploration of un-

known environments that can be performed online and onboard a robot with limited resources.

Current methods show good scaling characteristics and the ability to explore both large and

small environments. However, most of them are not suitable for 3D exploration and onboard

processing. Therefore, proposed methods for autonomous exploration can handle dense datasets

generated by state-of-the-art sensors, that are suitable for all types of 3D environments and can

be executed online and onboard a robot. The implemented methods cover three different ex-

ploration strategies, frontier-based, sampling-based and semantically-enhanced strategy, which

will be explained in detail in Chapter 4. The methods include submap-based frontier detection

and multi-resolution frontier refinement, a sampling-based approach that relies on a Recursive

Shadowcasting algorithm for efficient information gain estimation and the integration of seman-

tic map information into the exploration process. The proposed methods gradually explore an

area while planning paths and calculating the information gain in a short computational time.

Both frontier-based and sampling-based strategies rely on novel and efficient calculations of

information gain and selection of the next best goal. The method for autonomous exploration

using semantic information of the environment integrates frontier-based exploration and en-

ables directing to the objects of interest to achieve efficient object labeling in 3D exploration.

The system is validated in several realistic and challenging simulation experiments as well as in

real-world experiments.

The frontier-based exploration method utilizes a multi-resolution frontier planner that deals

with large environments and large input data, trying to reduce computational efforts. It is ad-

equate for all types of the environment, especially for large environments. The approach was

inspired by that of Zhu et al. [1], an exploration tool called 3D-FBET. This is a frontier-based

tool that is performed in three phases, similar to those presented in this thesis. The phases

are 3D mapping, frontier detection in combination with a clustering algorithm, and the selec-

tion of the best frontier. Through experimental evaluation on different environments, 3D-FBET

showed several shortcomings. First, because the frontier detection is based on a subset of al-

tered voxels (generated from the camera point cloud), which is highly variable, the obtained

frontiers were noisy and unreliable. Furthermore, the resulting frontier presented only a local

view and the clustering was not adapted to the environment. These problems led to a higher total

exploration time. The authors provide the source code and the duration analysis for each phase,

which facilitates comparison with the new approaches. This approach is extended to recognize

not only local but also global frontiers, similar to Mannucci et al. [2]. Mannucci proposed a

3D exploration with two OctoMaps and two frontiers (local and global) with different resolu-

tions. Global frontiers are assigned when the set of local frontiers is empty. Manucci evaluates

the best frontier using a cost-utility approach, similar to [3]. Since maintaining two OctoMaps
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is a resource-intensive task, the properties of OctoMaps are used and a solution with multiple

resolutions in a single OctoMap is implemented. An advantage of an OctoMap is also used

in [4] to merge voxels with an equal state, which results in the reduction of obstacle detection

calculations. The 3D frontier detection is motivated by a dense 2D frontier method presented

by Orsulic et al. [5], which has achieved good results in terms of wall time per frontier up-

date. Together with multi-resolution clustering and appropriate target point selection, a novel

3D exploration planner that accelerates the 3D exploration process is constructed.

Most related works design the exploration algorithm to minimize the total exploration time

([2], [6], [7]). Some of them take into consideration computation time [1], which plays an

important role in an exploration process, such that a lower computation time as well as the

next best goal selection algorithm lead to a lower total exploration time. However, both the

computation time and the total exploration time are considered. The planner is able to run online

and on board a robot with limited resources. Results are shown in simulations and experiments

while datasets are provided for further use.

Sampling-based methods have gained considerable traction due to their efficiency in nav-

igating complex environments and their ability to compute volumetric information gain from

different waypoints. These capabilities facilitate effective local exploration planning and al-

low these methods to tailor their approach to different targets [6, 8]. Despite these advantages,

these methods have few limitations. Major challenges include determining optimal sampling

locations, accurately calculating information gains, evaluating path costs, and effectively in-

tegrating these factors. They often rely on heuristic approaches that require extensive tuning,

which can limit overall performance. Furthermore, when planning in unknown environments,

these methods must rely on the limited information available at each time step. This leads to

a reliance on assumptions, such as the predictability that unknown areas are observable, which

can affect the efficiency and accuracy of the exploration process. Despite the limits outlined,

the considerable potential of the sampling-based method for exploring both large and small

cluttered environments is recognized. This approach allows for a reasonable number of way-

points to be evaluated, making it feasible to compute the next best goal in real time. To avoid

the time-consuming nature typically associated with such methods, an innovative Recursive

Shadowcasting algorithm for calculating information gain has been implemented, instead of

the more traditional raycasting technique. This adjustment significantly enhances efficiency.

Moreover, by evaluating entire paths rather than just individual sampling points within the envi-

ronment, the limitations imposed by isolated sampling points are effectively bypassed, thereby

accelerating the exploration process.

The integration of semantically enhanced exploration in this approach offers a significant

advance in understanding and interacting with the environment. By integrating detailed seman-

tic information, the exploration process can be controlled more precisely. This method uses a
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3D segmentation or detection model that is capable of running onboard the robot despite its

limited computational resources. The task of this model is to identify and categorize objects

in the environment, which are then strategically integrated into the exploration planning. As a

result, a map is obtained, that not only outlines the physical layout of the environment, but also

identifies objects of interest within the area. The motivation for using a semantically-enhanced

strategy in exploration is to add a layer of contextual understanding that goes beyond mere spa-

tial awareness. By identifying specific objects and their properties, the robot can make more

informed decisions about where it should be and which areas might be particularly relevant or

interesting. This is particularly important in environments where specific objects or features

are part of the mission objectives, such as search and rescue missions, where the identification

of human figures is of paramount importance. The semantic layer therefore not only increases

the efficiency of the exploration by directing the focus where it is most needed, but it also en-

riches the quality of the data collected and provides a more comprehensive understanding of the

explored environment.

1.3 Problem Formulation

In this thesis, the problem of a UAV attempting to explore a previously unknown environment

is solved. The UAV has at least one 3D imaging sensor, either LiDAR or RGB-D, with a finite

resolution and a fixed horizontal and vertical field of view (FOV), mounted in a fixed position.

It is assumed that the UAV is building a map of the environment from this sensor as it navigates.

Additionally, it is assumed that the environment is static and does not change over time.

A modular exploration planner is designed, which consists of localization, mapping, explo-

ration and path planning modules. It is assumed that the localization module provides accurate

position and the drift over time is not considered in other modules. The map of the environment

should be capable of integrating various types of data, including geometric and semantic infor-

mation, to provide a comprehensive understanding of the environment. The efficiency of the

mapping process, its accuracy, and its ability to function with limited computational resources

are key factors in its effectiveness. Within the exploration module, it is distinguished between

waypoint generation and best waypoint calculation. Depending on the strategy (frontier-based

or sampling-based), waypoint generation identity boundaries between explored and unexplored

areas (frontiers) or samples waypoints in the environment, respectively. The primary challenge

here is to develop an algorithm that can quickly and accurately generate waypoints in real-time,

even in complex and challenging environments. This requires the algorithm to be adaptive, and

capable of handling varying terrain. Once waypoints are generated or detected, the next step

is to calculate the best waypoint to explore next. This involves assessing each waypoint based

on a set of criteria such as distance, ease of access and potential information gain. The chal-
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lenge in this stage is to develop a decision-making process that not only evaluates these factors

effectively but also does so in a manner that optimizes the overall exploration strategy. This

process should take into account the current state of the map and the capabilities of the robot.

Path planning module treats unknown space as occupied and inaccessible. The core problem

to address is the development of a complementary exploration algorithm for use in different

environments. All parts of the method should be fast enough to be executed online and in real

time and onboard the UAV.

The goal of autonomous exploration is to explore an unknown environment while trying to

optimize time, distance or energy consumption, to name a few. The environment is initially

unknown and bounded. The exploration is considered done when the whole environment is

explored and the map of the environment is created.

1.4 Hypotheses

The problems and challenges considered within this thesis arising in the attempt of autonomous

exploration of unknown environments are investigated experimentally, defining the hypotheses

of the proposed scientific research as follows:

1. It is possible to improve frontier detection using an OctoMap created from Google Car-

tographer SLAM submaps

2. By using hierarchical multi-resolution frontier refinement, it is possible to obtain faster

frontier points clustering

3. It is possible to estimate the information gain and improve the information gain calcula-

tion using the Recursive Shadowcasting algorithm

4. Using a history tracking method to resolve dead end states during exploration improves

the overall time to explore the unknown environment

5. It is possible to evaluate exploration algorithms both in a simulation environment and in

the real world

6. Using a semantic segmentation algorithm to extract semantic features from the environ-

ment into the map, it is possible to extend the proposed exploration methods and achieve

more efficient exploration

These hypotheses are formulated to address specific challenges in autonomous exploration

and are intended to guide the development and validation of novel methods and algorithms. At

the same time, these hypotheses aim to contribute to the advancement of autonomous systems

in various domains and scenarios that rely on static or manual procedures and conventional

platforms that can be unreliable, costly or even dangerous, and where autonomous UAVs save

time, cost and labor.
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1.5 Contribution

The contribution of this thesis consists of three main elements:

1. A method for planning of autonomous 3D exploration based on multi-resolution frontier

clustering

2. A method for planning of autonomous 3D exploration based on Recursive Shadowcasting

algorithm for information gain estimation

3. A method for planning of autonomous 3D exploration based on semantic features of the

environment

1.6 Thesis Outline

This thesis is organized into eight chapters, discussing the existing state of the art and the

contribution of this thesis. The summary of the following chapters is as follows:

Chapter 2: Within this chapter the basic technologies are overviewed, such as robot archi-

tecture, sensors and map representations. Furthermore, an introduction to information theory is

given. This is followed by the description of the path planning and navigation algorithm.

Chapter 3: This chapter presents the current state of scientific knowledge about autonomous

exploration methods, their development over time, their specific applications and the various

ways in which they have been adapted and improved in recent research.

Chapter 4: This chapter is the core of the thesis and discusses the contribution of this thesis

related to autonomous exploration for robotic applications in outdoor and indoor environments.

It introduces frontier-based, sampling-based and semantically-enhanced exploration strategies.

The elements of the scientific contribution to the methods for planning autonomous 3D explo-

ration based on multi-resolution frontier clustering and the Recursive Shadowcasting algorithm

for estimating information gain are discussed, as well as the incorporation of semantic data into

the exploration. Furthermore, the basic concepts for each strategy are discussed, with a focus

on the contribution compared to state-of-the-art methods.

Chapter 5: This chapter presents concluding remarks of the thesis, summarizing the key ele-

ments of the contribution and implications of the research. It reflects on the objectives set out at

the beginning of the thesis, discussing how they were addressed through the research and high-

lighting the significant advancements made in the field of autonomous exploration with UAVs.

Furthermore, this chapter outlines potential future research directions, identifying areas where
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further investigation could lead to continued development and refinement of the methodologies

and technologies explored in this thesis.

Chapter 6: This chapter lists all publications contributing to the main results of the thesis.

Chapter 7: This chapter states the author’s contribution to each of the included publications.

Chapter 8: This chapter includes full versions of publications published in peer-reviewed

journals contributing to the main results of the thesis.

A list of referenced bibliographies is given following the main body of this thesis. Finally,

a short biography of the author followed by a complete list of publications is given in the end.
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CHAPTER 2

Preliminary

According to Yamauchi et al. [9], the central question in exploration is: Given what you know

about the world, where should you move to gain as much new information as possible? At the

start of an exploration, the only available information about the environment is what you can see

from where you are standing. The task of exploration is then to create a map that describes as

much of the world as possible in a reasonable amount of time. This chapter describes the UAV

system used for autonomous exploration and the sensors attached to the UAV for data collection.

It also presents the mapping techniques and the key component of the central question in the

exploration, namely the methods for calculating the information gain used in decision making

during the exploration.

2.1 Robot Architecture

In this thesis, the exploration is performed with a UAV that has no prior knowledge of the

environment. More specifically, a quadcopter or quadrotor is used for autonomous exploration.

It is a multirotor helicopter that has four vertically oriented propelled motors which are placed

in a square formation with an equal distance from the quadcopter center of the mass. It has

6 degrees of freedom including the translational movements in the x, y, and z axes and the

rotational movements which are roll, pitch, and yaw. Two of the motors spin clockwise and two

of the motors spin counterclockwise to generate lift without getting a constant yaw and spin on

the quadcopter. The configuration of the propellers is shown in Fig. 2.1.

In other words, the state of the UAV is described by a state vector that consists of two main

parts: the position of the UAV in space and its yaw rotation. This state vector describes where

the UAV is located and in which direction it is facing at a certain point in time. Additionally,
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Figure 2.1: The spin direction of the propeller motors on the quadcopter.

within this thesis, the exploration algorithms assume that there is a maximum linear velocity

and a maximum angular velocity around z axis. These limits are important to ensure that the

movements of the UAV are safe, especially when performing experiments in the real world.

2.2 LiDAR and RGB-D Sensors

To map and explore the environment, a robot is equipped with sensors such as a LiDAR or an

RGB-D camera, shown in Fig 2.2. Both have advantages and disadvantages. However, com-

pared to other sensor types, these sensors are suitable for autonomous exploration and mapping

because they can capture a large amount of data with each sensor measurement and provide

information about the distance to obstacles in sight. The ability to measure the distance to an

object is one of the key features as it gives the robot depth perception.

LiDAR uses light waves to measure the distance to a target. To measure the distance, a

LiDAR emits a laser light that bounces back to the LiDAR from a physical object. By knowing

the constant speed of light in the air and the time it takes for the signal to travel from emission

to rebound, the distance can be calculated. RGB-D cameras use two or more lenses to achieve

human binocular vision. This allows the robot to capture 3D images. The images provided by

the RGB-D cameras contain the distance to each pixel in the camera frame.

The advantages of LiDAR technology are the high measurement range and accuracy, the

ability to measure 3D structures and the fast update rate, which gives the robot a real-time view.

As it works with light, it can also be used in dark environments. LiDAR technology is inde-

pendent of extreme weather conditions such as extreme sunlight and other weather scenarios.

Another important advantage of LiDAR is that it can have a horizontal field of view of 360◦.

On the downside, LiDARs are quite expensive, and transparent surfaces can lead to incorrect

measurements. The vertical field of view is also limited with a 3D LiDAR, so there are some

blind spots above and below the sensor. Furthermore, due to its weight, it cannot be mounted

and carried by small UAVs.

The remarkable advantages of RGB-D cameras lie in their high mobility and low cost. How-

13



Chapter 2. Preliminary

Figure 2.2: A Velodyne V LP− 16 LiDAR sensor with a maximum range of 100 m and a Realsense
D455 camera with a maximum range of 6 m, used in the experimental evaluation of the autonomous
exploration and mapping in this thesis.

ever, RGB-D sensors require a light source and only allow measurement ranges of a limited

distance and a limited field of view.

Depending on the use case, UAV system and requirements for autonomous exploration and

mapping, one can choose between LiDAR and RGB-D sensors, as each offers distinct advan-

tages and limitations. The selection ultimately hinges on factors such as the complexity of

the environment, the level of detail required in the mapping, budget constraints, and specific

mission goals.

2.3 3D Map Representation

A popular approach to model 3D environments is to discretize the world into equal-sized cubic

volumes, called voxels. One of the major shortcomings of fixed grid structures is that the size of

the area to be mapped has to be known a priori. Voxel hashing [10] is one approach to overcome

this shortcoming, as fixed-sized blocks are allocated on demand. Memory requirements can

also be a problem when mapping large areas at a high resolution. Hierarchical data structures

such as hierarchical voxel hashing [11] and octrees [12] are used for this purpose, where the

map can be displayed at different resolutions. One of the most popular mapping frameworks

is OctoMap [13]. OctoMap uses an octree-based data structure, as proposed in [12], to do

occupancy mapping.

There are also other mapping frameworks in the literature that have good capabilities. The

mapping framework Voxblox [14] uses a signed distance field [15] voxel grid, with voxel hash-

ing for dynamic growth, as representation. It was mainly developed for planning or trajectory

optimization in the context of micro aerial vehicles (MAVs). The signed distance field represen-

tation makes trajectory optimization faster by storing the distance to the closest obstacle in each

voxel. Voxblox builds on [10] where they use a spatial hashing scheme and allocates blocks

of fixed size when needed. This means that the size of the area to be mapped does not need

to be known in advance. In recent years, several mapping frameworks [16, 17, 18, 19, 20, 21]

for storing dense semantic information have been proposed. All of these are based on the voxel
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Figure 2.3: An example of octree with space subdivision in octants.

hashing approach of [10].

Within this thesis, the OctoMap framework, developed by Hornung et al. [13], is used to

describe the environment. As previously mentioned, it is based on an octree data structure. An

octree is a tree data structure in which each node has exactly eight children, as shown on the

right side of Fig. 2.3. By using an octree, it is possible to divide a 3D space into eight octants.

According to this principle, each node represents a part of the space and its children represent

the eight octants of this part, i.e. eight smaller parts of the space (see left side of Fig. 2.3).

The octree structure allows for delaying the initialization of the grid structure. It is also

often more memory efficient compared to voxel hashing or fixed-size grid structures since the

information can be stored at different resolutions in the octree, without losing any precision.

If the inner nodes of the octree are updated correctly, it is possible to do queries at different

resolutions. Namely, the model is represented as coarse to fine, with similar voxels compressed

into a single node, while volumes containing more details are represented by a larger number

of smaller voxels. Fig. 2.4 shows the different layers of an octree-based model. Each image

shows a deeper level (higher resolution) of the octree compared to the previous one. Querying

at different resolutions can be especially beneficial in systems where multiple algorithms use

the same map but have different computational and time requirements.

The OctoMap has several advantages over other approaches, such as probabilistic represen-

tation, storage efficiency and flexibility (multi-resolution). The point cloud data is used to create

and update the map in each iteration. This can be raw data from sensors (LiDARs or cameras) or

processed and accumulated point clouds such as the Google Cartographer submap point cloud

[22]. The OctoMaps created from the LiDAR point cloud in the simulator, the camera point

cloud and the LiDAR Velodyne V LP−16 point cloud are shown in Fig. 2.5, respectively.

As already mentioned, each cube of the OctoMap is called a voxel (cell), which can be free,

occupied or unknown. With OctoMap, every voxel has an occupied possibility. The value of

the occupied possibility is in the range of 0 to 1.
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Figure 2.4: Coarse to fine visualization of an octree-based model.

Figure 2.5: Examples of OctoMaps that were created during the exploration in a simulation, an indoor
and an outdoor environment as part of this thesis.

The OctoMap plays an important role as it is used for both exploration and path planning.

It serves as a key tool for identifying new areas to explore and navigating safely through the

environment. For example, in the frontier-based exploration strategy, the OctoMap can be used

to easily distinguish between known and unknown areas (frontiers). In this case, the OctoMap

influences the extraction of potential waypoints for exploration, their evaluation (calculation

of information gain) and finally the selection of the next best goal. To navigate to these new

waypoints, OctoMap provides a detailed map of the environment, including obstacles and po-

tentially dangerous areas. The path planner uses this information to calculate a trajectory that

avoids collisions, respects the flying capabilities of the UAV, and optimizes factors such as

distance. In general, the extraction of the potential waypoints for exploration depends on the

applied exploration strategy (frontier-based or sampling-based), which is explained in Chapter

4, while the selection of the next best goal is based on the calculation of the information gain,

16



Chapter 2. Preliminary

which is presented in Subsection 2.4.2.

2.4 Information Theory

The focus of this thesis is the autonomous exploration and mapping of 3D environments. To

achieve full autonomy, a fundamental component is the exploration algorithm described in

Chapter 4. The core of the exploration algorithms relies on the concept of information gain,

a principle rooted in information theory as described in [23]. Information theory is the mathe-

matical study of the coding of information, incorporating several aspects that are important in

robotics algorithms. This section provides the basic definitions and concepts within information

theory, emphasizing the algorithms used for information gain calculation.

2.4.1 Entropy

Entropy is a central concept in the field of information theory, and it quantifies the amount of

uncertainty or randomness associated with a set of probabilities. In simpler terms, it measures

the unpredictability of the information content. For a discrete random variable X with possible

values {x1, . . . ,xn}, the entropy H(X) is defined as:

H(X) =−
n

∑
i=1

p(xi) ln p(xi), (2.1)

where p(xi) is the probabilty that X = xi. Entropy indicates the average amount of informa-

tion required to represent an outcome of X . A higher entropy indicates greater unpredictability,

while a lower entropy indicates greater predictability. Given a second random variable Y , the

amount of information required to describe the outcome of X can be defined. If the value of Y

is known, the conditional entropy H(X |Y ) is as follows:

H(X |Y ) =
m

∑
j=1

p(y j)H(X |Y = y j), (2.2)

where H(X |Y = y j) is defined as:

H(X |Y = y j) =−
n

∑
i=1

p(xi|y j) ln p(xi|y j). (2.3)

As already mentioned, the random variables X and Y are described as discrete values and

the above definitions are based on this assumption. If X and Y are continuous random variables,

it is necessary to replace the sum by an integral over all possible values of X or Y . The entropy

of a continuous random variable X is therefore described as follows:
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H(X) =−
∫

p(x) ln p(x)dx, (2.4)

and the conditional entropy as:

H(X |Y ) =
∫

p(y)H(X |Y = y)dy, (2.5)

with x and y values of X and Y , respectively.

2.4.2 Information Gain Calculation

In order to be able to make autonomous decisions during exploration, the calculation of infor-

mation gain is of crucial importance. It is used to quantify how much one learns about the

environment by performing a certain action. In general, this quantity is the amount of informa-

tion obtained about a random variable by observing another random variable. The information

gain can be defined using entropy and conditional entropy as follows:

I(X ,Y ) = H(X)−H(X |Y ). (2.6)

More explicitly, it is defined as:

I(X ,Y ) =
m

∑
j=1

n

∑
i=1

p(xi,y j) ln

(

p(xi,y j)

p(xi)p(y j)

)

, (2.7)

and it continuous case:

I(X ,Y ) =
∫ ∫

p(x,y) ln

(

p(x,y)

p(x)p(y)

)

dxdy. (2.8)

The information gain can be calculated using a raycasting algorithm (RC). In autonomous

exploration, before making an observation, the robot faces uncertainty about the environment,

quantified by the initial entropy H(X). The RC can be employed by the robot to simulate

sensor readings. Rays are projected into the environment to detect obstacles or other points of

interest. The sensor readings or observations, resulting from this RC represent the variable Y .

After performing RC, the robot has new information about the environment that allows it to

update its knowledge and reduce uncertainty. This new knowledge is represented as conditional

entropy H(X |Y ), which represents the remaining uncertainty about the environment given the

new sensor readings. The information gain I(X ,Y ) is then calculated as the difference between

the initial entropy and the conditional entropy, indicating by how much the uncertainty about

the environment has decreased thanks to the new observations. For a robot, this difference is

the improved understanding of its environment. To put this into action with the RC, one would

start by discretizing the environment if necessary, simulating how the sensor interacts with the
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environment, and then estimating the probability distributions that represent the likelihood of

the sensor readings given the state of the environment. This involves calculating how often

a simulated ray interacts with certain features of the environment across different grid cells or

space partitions. These interactions provide the data to estimate the joint probability distribution

p(x,y) and the individual distributions p(x) and p(y). Once these probabilities are estimated,

you can compute the entropies and thus the information gain by integrating or summing over

these distributions for continuous or discrete spaces respectively.

In this way, the RC algorithm estimates the expected reduction in uncertainty or estimates

information gain for each potential action or observation. This process forms the basis for the

robot to make decisions that maximize the efficiency of its exploration by steering into areas

that promise the highest information gain.

When looking into exploration process, once the potential waypoints for exploration are

extracted from the OctoMap, each waypoint is evaluated. The evaluation of the potential way-

point usually considers the information gain of the potential waypoint and the distance from

the current position of the robot to the potential waypoint position [24]. The information gain

in a probabilistic volumetric map, an OctoMap, is defined as the sum of expected information

enclosed in voxels, that are likely to be visible from a particular position (potential waypoint

position). As already mentioned, each position in the OctoMap can be evaluated by using a spe-

cific algorithm, for example, RC to traverse voxels around candidates. The motion of the robot

is formulated as an optimization problem, where the expected entropy change is minimized,

or, in other words, the expected information gain is maximized. The goal of autonomous ex-

ploration is to determine future poses that maximize the map information gain, or equivalently

minimize the map entropy. Since autonomous exploration is conducted in uncertain or unknown

environments, a complete path is not known a priori.

In the literature, the information gain calculated from a map is commonly determined with

Shannon’s entropy [25], an uncertainty metric based on grid cell occupancy probability, such

as in [26, 27]. Yamauchi et al. [9] put forward the exploration strategy of the nearest frontier,

whose revenue function is inversely proportional to the length of the path. Gonzales-Banos et.

al. [24] proposed a revenue function that combines the expected information gain and the length

of the expected path. Umari et al. [28] proposed a new information gain estimation method,

which only considers the unknown grid inside of the circle centering at the frontier with a

predefined radius, and further combined the information gain with the path cost in the benefit

function. However, most of them evaluate the candidate frontiers independently and ignore the

geometric continuity of obstacles in the environment. In [29], mapping is performed in 3D while

motion planning is done in 2D to reduce computational complexity since an MAV typically

flies at a constant height. Bissmarck et al. [30] compared various approaches to compute the

information gain for candidate views. The proposed frontier-oriented volumetric hierarchical
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ray tracing was benchmarked against the hierarchical ray tracing by Vasquez-Gomez et al. [31]

in computation time, mapping efficiency and estimation error. The second group of evaluation

metrics estimates the amount of unknown volume in the view frustum via RC. This metric is

used in [6, 32, 33, 34].

Furthermore, the information gain calculation should be calculated in real time and onboard

the robot with limited resources. In general, the information gain represents a volume of the

unmapped space that would be observed by robot sensors when the robot is positioned in the

potential waypoint for exploration. A common algorithm used for the information gain estima-

tion is the RC algorithm [35], and its results are then weighted by the cost of the robot traveling

to the candidate. The described method is used in RH-NBVP [6] approach. The main drawback

of the RH-NBVP is the significant computation time required to compute the information gain

using the RC. A more efficient algorithm in terms of computation time is the Recursive Shad-

owcasting (RSC) algorithm, proposed in [36]. Both algorithms will be explained in detail in the

following sections.

2.4.3 Raycasting Algorithm

Raycasting (RC) is a fundamental technique in computer graphics that traces rays from a source

point in straight lines through a 3D space. This method can be employed to determine the

visibility and intersections between objects, often in rendering contexts such as ray tracing [37].

Beyond graphics, RC is useful for many applications, including robotics and environmental

sensing. An important use case is the calculation of information gain in the exploration process.

Information gain for each candidate position is calculated using an RC algorithm which

traces the path of a series of rays originating from a given candidate. The density and range

of rays define the area to be examined and are specified in advance. When one of these rays

hits an obstacle (e.g., a wall), all voxels that the ray previously touched are considered occupied

voxels. Otherwise, the voxels are considered as free or unknown, depending on the current

state of the OctoMap. This results in knowing the number of free and unknown voxels in a

predefined area, in each direction from a specific position. Based on this information, a robot

can take appropriate actions to move to an unknown area to reduce the total exploration time. In

other words, when evaluating potential sensor positions or robot movements in an environment,

maximizing information gain (i.e., the amount of new, valuable information obtained) is often

crucial. By casting rays from a point source, the amount and quality of information that can be

obtained from that position are calculated. For instance, a sensor might obtain more information

from an unobstructed viewpoint than one blocked by obstacles. Furthermore, a large number of

rays can be cast rapidly, allowing for fine-grained analysis of potential information gain in large

environments. However, with limited computational resources available onboard the UAV, it

cannot run in real-time, especially if using dense rays.
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In general, all algorithms that directly cast rays into the map, cast more rays than necessary

because they cast a fixed number of rays regardless of the design of the environment [38]. It

is shown in [39] that the computation time of RC algorithm increases as the predefined area

increases. This is because the number of rays depends on the predefined area and is not affected

by the occupied voxels (obstacles). The problem of computational effort required to calculate

the information gain becomes even more apparent when using sensors that produce large or

dense point clouds, such as LiDARs or cameras.

2.4.4 Recursive Shadowcasting Algorithm

Recursive Shadowcasting (RSC) was first used in computer games to calculate an FOV from

a top-down perspective, where the FOV is defined as a set of locations visible from a specific

position in a computer game scene [38]. The original RSC, proposed in [36], considers a 2D

FOV grid and initially sets all grid cells to not visible. Then the grid is divided into eight

octants centered on the FOV source (S) and the cells within each octant are traversed [38]. This

traversal occurs within each octant by rows or columns in ascending order of distance from the

FOV source. Fig. 2.6 shows the steps of the RSC on an octant. When a cell is traversed, its

visibility state is set to visible. However, when an occupied cell (the black cell) is encountered,

an octant is recursively split into smaller regions (Fig. 2.6 b) and c)), which are bounded by

rays cast from the FOV source to the corners of the occupied cell (blue dashed rays). The cell

traversals are then continued within each smaller region. As marked in Fig. 2.6 a) with green

arrows, the algorithm first processes rows one through five without encountering any occupied

cell. In line six, three occupied cells are encountered, splitting the free region in two and causing

the algorithm to call itself recursively. The recursive call then processes the free region on the

left (Fig. 2.6 b)), while the main iteration of the algorithm continues processing the free region

on the right. Note that even if a ray only grazes the edge of a cell, that entire cell is set to

visible. The result of the RSC on an octant in 2D is shown in Fig. 2.6 d), where occupied

cells are shown in black, visible cells in yellow and invisible cells in grey. Similarly, the main

goal of the RSC in the information gain calculation is to find unknown voxels of the OctoMap

among the visible cells. Similar to the FOV grid in 2D computer games, the 3D OctoMap used

in this thesis is divided into cube-shaped voxels, allowing us to take advantage of the RSC and

calculate the information gain.

Within this thesis, the exploration strategies use sensors that produce large point clouds with

each scan, such as LiDARs and dense point clouds from cameras. The RC in the information

gain calculation process increases the computation time as the input data increases (shown in

[6], [8], [40]). Therefore, using the RSC solves the computational bottleneck and results in a

significant computation time reduction during planning iterations.
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Figure 2.6: Steps of the RSC on a single octant.

2.5 Path Planning and Navigation

Path planning in robotics and autonomous systems is a crucial computational process in which

an algorithm determines the most suitable route for a robot to take to get from one point to

another. The process begins with an understanding of the environment, which includes mapping

the surroundings, identifying obstacles and understanding the terrain. The algorithm must be

given a starting point and a goal point. One of the main goals of path planning is obstacle

avoidance, i.e. the algorithm must recognize all physical obstacles in the environment and

navigate around them. In autonomous exploration path planning is required for the ability to

explore the environment, which in the scope of this thesis means moving between selected

waypoints. A key aspect of path planning is optimization, which is about finding not just any

path, but the optimal one. This can mean choosing the shortest, the fastest or the most energy-

efficient route, depending on the specific requirements of the task. Path planning algorithms

should be able to adapt dynamically, especially in environments where obstacles or conditions

may change, requiring path changes in real time.

Different algorithms are used for path planning, each with unique strengths and suitable

for different applications. These include A* [41], Dijkstra’s algorithm [42], Rapidly-exploring

Random Tree (RRT) [43, 44] and their variants. Finally, the chosen path must be feasible con-

sidering the robot’s capabilities, including factors such as size, speed, maneuverability, and

ability to navigate varying terrain. Path planning is a critical component in autonomous sys-

tems, ensuring that they can perform their tasks efficiently while adapting to the complexity

and unpredictability of the real-world environment.

In this thesis, path planning and navigation are not the focus, but play an important role

in autonomous exploration as they ensure movement throughout the environment. The path

planner uses the Rapidly-exploring Random Tree Star (RRT*), an improved version of the orig-

inal RRT algorithm. The main difference of RRT* lies in its ability to improve the quality of

paths. Unlike RRT, which stops after finding a feasible path, RRT* continuously refines the

path through rewiring steps during expansion. Over time, this process leads to more efficient
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and near-optimal paths. The approach utilized within this thesis has been developed in [45, 46].

The OctoMap is used for path planning and navigation. The path planner strategically gen-

erates routes through free voxels that ensure safe navigation. In the practical implementation,

the path planner takes a binary representation of the OctoMap as input, which provides an effi-

cient and compact description of the environment. The UAV is represented in the path planner

as a rectangular prism with the corresponding dimensions.
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CHAPTER 3

State-of-the-Art

Significant progress has been made in the field of autonomous exploration. Various methods

have been developed to improve the efficiency and effectiveness of navigation and understand-

ing of unknown environments. This section looks at the extensive research into these methods,

focusing on three key areas: frontier-based, sampling-based, and semantically-enhanced explo-

ration.

In the area of frontier-based exploration, the basic concept where the robot navigates to

a point on the frontier is examined. The frontier is defined as the boundary between known

and unknown areas. This approach, first introduced by Yamauchi [9], has evolved through nu-

merous studies. Various algorithms were proposed to improve this strategy. Elements such as

information gain, exploration costs and different functions for the selection of frontier points

were considered. Sampling-based exploration is characterized by the fact that it focuses on pro-

ducing and evaluating a series of points in the area to ensure complete coverage. This method

typically involves sampling points near the frontier or randomly in the surrounding area and

then evaluating these points for their potential information gain. Sampling-based methods are

known for their effectiveness in cluttered spaces, but can face challenges such as local minima

that affect the full coverage of the area. Finally, semantically-enhanced exploration represents

a significant advance in integrating semantic information from the environment into the explo-

ration process. This approach not only takes into account the geometrical layout of the space,

but also incorporates semantic understanding, which significantly improves the efficiency of

exploration. By using semantic image segmentation, this strategy improves the ability of the

robot to make informed decisions about exploration by utilizing the rich information from the

environment. Each of these exploration strategies contributes to the overall goal of autonomous

exploration and offers unique solutions and perspectives. This section provides an in-depth look
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at these methods, their evolution over time, their specific applications, and the various ways they

have been adapted and improved in recent research.

3.1 Frontier-Based Exploration

A characteristic of frontier-based approaches is exploration by approaching a selected point on

the frontier between the explored and unexplored portion of the environment. This idea was

first introduced by Yamauchi in [9] and subsequently evaluated in more detail in [47]. In each

iteration, the next best goal is a frontier point closest to the robot. This method has two short-

comings for the exploration task. First, it treats all frontiers equally and secondly, it is limited

to one source of information, finding new areas. The exploration process is complete when

no frontiers remain. There are many different frontier point selection algorithms. Simmons et

al. [48] and Moorehead et al. [49] present the frontier point selection function by combining

information gain and exploration cost to select the target frontier point. Carlone and Lyons [50]

use the Mixed-Integer Linear Programming (MILP) model to obtain the optimal frontier point

for autonomous exploration. The work by Mei et al. [51] proposes an algorithm to choose the

next target frontier point for the robot to explore based on orientation information. The authors

in [52] propose a novel exploration strategy that exploits background knowledge by considering

previously seen environments to make better exploration decisions. Gautam et al. [53] use the

K-means algorithm to cluster frontier points and assign these frontier points to the robots using

a Hungarian method.

The simplest approach to 3D exploration is to use 2D frontier-based exploration with 3D

maps at different heights (oftentimes called 2.5D approaches) [54]. A complete frontier-based

solution for 3D environments is developed in [7], where the next best goal is the frontier that

minimizes the velocity change to maintain a consistently high flight speed. It is shown that this

approach outperforms the closest frontier method [9]. Zhu et al. [1] introduced an exploration

tool called 3D-FBET. This is a frontier-based tool that is performed in three phases. The phases

are 3D mapping, frontier detection in combination with a clustering algorithm, and the selec-

tion of the best frontier. Through experimental evaluation in different environments, 3D-FBET

showed several shortcomings. First, because the frontier detection is based on a subset of al-

tered voxels (generated from the camera point cloud), which is highly variable, the obtained

frontiers were noisy and not reliable. Furthermore, the resulting frontier presented only a local

view and the clustering was not adapted to the environment. These problems led to a higher

total exploration time [55]. Mannucci et al. [2] used not only local but also global frontiers with

two OctoMaps and two frontiers (local and global) with different resolutions. Global frontiers

are assigned when the set of local frontiers is empty. Manucci evaluates the best frontier using

a cost-utility approach, similar to [3]. Fast and efficient exploration performance was achieved
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in [56]. The computationally expensive frontier clustering employed in classic frontier-based

exploration is avoided by exploiting the implicit grouping of frontier voxels in the underlying

octree map representation. Candidate next-views are sampled from the map frontiers and are

evaluated using a utility function combining map entropy and travel time, where the former

is computed efficiently using sparse raycasting. An advantage of an OctoMap is also used in

[4] to merge voxels with an equal state, which results in the reduction of obstacle detection

calculations. In the study by Senarathne et al. [57], he augments the traditional frontier-based

exploration strategy to include a probabilistic decision step that decides whether further motion

on the planned path to the next sensing location is desirable or not. If the motion is not de-

sirable, it is canceled and a new sensing location is selected as the next sensing task. In [58],

authors present a strategy based on frontier points optimization and multistep path planning.

In order to get the best frontier point, they propose a Random Frontier Points Optimization

(RFPO) algorithm. This algorithm optimizes the random frontier points generated by the RRT

algorithm. Combining this algorithm with the frontier points evaluation function, they obtain

the current optimal frontier point. Stachniss et al. [59] propose an algorithm that uses a highly

efficient Rao-Blackwellized particle filter to represent the posterior about maps and poses. It

trades off the cost of executing an action with the expected information gain and takes into ac-

count possible sensor measurements gathered along the path taken by the robot. Furthermore,

frontier-based methods are combined with information theory to design a differentiable utility

function for solving optimization problems such as optimal yaw angle and path optimization in

[56, 60, 61].

3.2 Sampling-Based Exploration

While frontier-based methods are suitable for large environments due to their ability to iden-

tify unexplored spaces in the global map, sampling-based approaches are well-suited for clut-

tered spaces but can suffer from local minima issues, hindering complete coverage of the target

environment [62]. Sampling-based or Next Best View-based (NBV) approaches aim to deter-

mine a (minimal) sequence of robot (sensor) viewpoints to visit in the environment until the

entire space is explored. Potential viewpoints are typically sampled near the frontier or ran-

domly. Then these viewpoints are evaluated for the potential information gain and the next best

viewpoint is assigned. One of the first sampling-based methods is presented in [24] and then

extended in [6], [63], [64]. In [6], authors proposed the Receding Horizon Next-Best-View

planning (RH-NBVP), which uses a RRT [43], [44] to guide a UAV into the unexplored area.

While the method showed good scaling properties and performance in a local exploration, it

is not resilient to dead ends, resulting in poor global scene coverage and, thus, a high overall

exploration time, as shown in [7], [56], [60]. Improvements of the RH-NBVP are presented in
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[32, 65]. The exploration times are later improved in [63]. Often NBV approaches are used to

build a 3D object without any a priori information, as in [66] and [67].

Hybrid strategies combine the advantages of both frontier-based and sampling-based ap-

proaches and can be combined in various ways as shown in Selin et al. [8] successfully com-

bine the RH-NBVP with conventional frontier reasoning to compensate for a poor performance

in global exploration. Respall et al. [40] sample viewpoints in the vicinity of a point of in-

terest near a frontier and additionally memorize nodes that indicate regions of interest in a

history graph to reduce the gain calculation time. Furthermore, authors in [68] introduced the

Fast UAV ExpLoration (FUEL), a frontier-based exploration approach complemented with a

Travelling Salesman Solver to generate minimum-time trajectories for visiting target locations.

Namely, FUEL introduced an incrementally updated frontier information structure (FIS), which

stores information about the explored space to facilitate high-frequency exploration planning.

The FIS is utilized in their proposed hierarchical planner. The hierarchical planner first gener-

ates a global tour, similar to [69], that covers all frontier regions. The costs of moving between

every pair of frontier regions are cached inside the FIS to make the global tour computation-

ally feasible. Next, a local segment of the tour is refined and a safe minimum-time trajectory,

accounting for the dynamics of the robot, is generated for the first part of the refined tour. The

FUEL strategy was further extended by [70], adapting the approach for collaborative explo-

ration with a decentralized team of UAVs, thereby reducing the exploration time required for

large environments.

3.3 Semantically-Enhanced Exploration

Apart from classification related to candidate extraction and evaluation, exploration algorithms

differ in the map used for exploration policy. Besides the volumetric map, such as the OctoMap

[13], the environment can also be represented by a topological map with semantic features [71],

which can improve the efficiency of the robotic exploration by facilitating the next best goal

selection. The nodes on the graph that contain the semantic features are used to guide the

exploration. Gomez et al. [72] presented a hybrid mapping approach that combined topological

mapping with 3D dense mapping for large indoor 3D environments.

Recently, more and more exploration systems use semantic features from volumetric maps

to evaluate candidate locations and select the next best goal. The authors in [73] extend the

sampling-based approach from [6] to include the semantic segmentation information in a harbor-

like environment. Similarly, Ashour et al. [74] presents an exploration strategy for UAVs that

integrates environmental semantics for object mapping. The approach combines semantic in-

formation with autonomous exploration techniques to guide the exploration path and enhance

object mapping efficiency using the approach from [75]. Instead of mapping objects during the
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exploration, objects can be extracted from 2D images and then converted to 3D point types using

the point cloud library (PCL). Previously, Wang et al. [76] introduced the extraction of edges.

Furthermore, most of the semantic-aware exploration strategies are goal-oriented (search for an

object), such as [77, 78, 79]. Authors in [77] introduced a frontier semantic exploration method

for visual target navigation. Both frontier detection and semantic segmentation are performed

using neural networks.

3.3.1 Semantic Image Segmentation

Semantic image segmentation plays a fundamental role in a variety of computer vision appli-

cations as it provides key information for the global understanding of an image. It assigns a

specific class or category to each pixel of an image and aims to understand the content and

context of an image by assigning semantic labels to different regions.

Several notable approaches have been proposed in the literature to address this problem.

Shelhamer et al. [80] presented a fully convolutional network (FCN) that revolutionized se-

mantic segmentation by extending convolutional neural networks (CNNs) to provide dense

pixel-wise predictions. The FCN utilizes upsampling and skip connections to obtain spatial in-

formation and achieve accurate segmentation results. DeepLab, which was developed by Chen

et al. [81], improves FCN by incorporating dilated convolutions that allow to capture of contex-

tual information at multiple levels while maintaining spatial resolution. DeepLab uses various

refinements such as Atrous Spatial Pyramid Pooling (ASPP) and post-processing techniques to

improve segmentation accuracy.

Ronneberger et al. [82] introduced U-Net, an architecture specifically designed for biomed-

ical image segmentation. U-Net consists of an encoder-decoder structure with skip connections

that allows the network to capture both local and global context while preserving fine-grained

details. Zhao et al. [83]proposed a Pyramid Scene Parsing Network (PSPNet) that uses a pyra-

mid pooling module to capture context information at different levels. By aggregating features

from multiple pyramid levels, PSPNet achieves robust semantic segmentation results. Mask

R-CNN, proposed by He et al. [84] extends the popular Faster R-CNN object detection frame-

work [85] to perform instance-level segmentation. Mask R-CNN combines region proposal

generation with pixel-wise mask prediction, enabling accurate object segmentation along with

object detection. The method developed by Sun et al. [86] proposed HRNet model focuses

on obtaining high-resolution details in the entire network architecture. Unlike traditional archi-

tectures that downsample the input image at the beginning of the network, HRNet maintains

a high-resolution representation by using parallel branches. These branches process the image

at different resolutions and exchange information to effectively capture both local and global

contexts. HRNet builds a multi-level representation from the high resolution and applies it to

the Faster R-CNN, Mask R-CNN and Cascade R-CNN. This work represents a significant ad-
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vance in semantic image segmentation as it addresses the challenges associated with context

modeling, spatial resolution, and handling object instances. For a detailed literature review on

this topic, [87] can be mentioned, which summarizes two decades of research in the field of

semantic image segmentation. In this thesis, the HRNet model for semantic segmentation of

2D images is used. It showed enviable performance results [88]. Moreover, it is compact, fast,

robust and easy to use, so it is possible to customize the model to run only on the CPU, which

makes it suitable for applications on embedded systems (e.g. UAVs).
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CHAPTER 4

Autonomous Exploration in 3D

Environments

During the last decade, the sensing, planning, and control technologies for UAVs have made

great progress. This chapter mainly describes the exploration strategies for UAVs and explains

the difference between the current technologies and the contribution of this thesis. Exploration

algorithms aim to identify a set of locations that an autonomous vehicle should visit in order to

achieve complete coverage of the desired environment. These algorithms rely on local infor-

mation gathered by perceptual sensors such as RGB-D cameras or LiDAR scanners [89]. Fur-

thermore, exploration algorithms are designed to optimize various utility metrics such as infor-

mation gain, energy consumption, or time required for exploration. Robotic exploration, which

uses mobile robots to map unknown environments, has been studied for years. Some of the

works focus on exploring the space quickly [7, 65]. Meanwhile, other methods place more em-

phasis on accurate reconstruction [69, 90]. Among the various proposed methods, there are two

fundamental types of approaches: frontier-based approaches and sampling-based approaches.

The frontier-based approaches try to maximize the exploration efficiency by selecting and ex-

ploring frontiers between the known and unknown areas of a map, while the sampling-based

approaches randomly generate robot states and search the path that can maximize the informa-

tion gathered in the environment. There are also hybrid strategies that combine the advantages

of both frontier-based and sampling-based approaches. In recent years, semantically-enhanced

exploration strategies have also been used to solve autonomous exploration problems. They are

usually combined with frontier-based or sampling-based strategies. This chapter is divided into

four sections. The first section gives a system overview, while the rest of the chapter presents

the strategies for autonomous exploration, i.e. frontier-based, sampling-based and semantically-
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enhanced exploration.

4.1 System Overview

In general, the proposed autonomous exploration system is modular and each module can be

replaced with a custom module, e.g. path planning or mapping. The system relies on odometry

data that can be obtained from any localization algorithm. Mapping is done using the OctoMap

module, which requires a point cloud from a suitable sensing system, such as a laser scanner

or a camera, to create a 3D map. The OctoMap is used for both exploration and collision-

free navigation. The key part of this thesis is the exploration strategy that guides the robot

in the environment. Each strategy (frontier-based, sampling-based and semantically-enhanced)

utilizes the data from the OctoMap and the odometry data to make informed decisions about

where to go next, prioritizing unexplored spaces or optimizing routes for efficiency. Finally, the

path planner is the component that safely navigate the UAV through the environment. It takes

into account the construction of the UAV and any potential obstacles, using the OctoMap to find

a safe and efficient path. It results in a trajectory that is forwarded to the controller of the UAV.

The system overview is shown in Fig. 4.1.

Exploration Strategy

Goal Point

OctoMap Update OctoMap

Frontier-Based

Sampling-Based

Sematically-Enhanced

UAV

Path Planning
Trajectory

Odometry

Point Cloud

Figure 4.1: Overall schematic diagram of the 3D exploration system. The system input module generates
odometry data and point cloud data that produce input data for OctoMap creation. The exploration
strategy generates a goal point towards which the robot plans its path and navigates.

4.2 Frontier-Based Exploration

In frontier-based exploration, the central idea is to move a robot to the boundary between known

(free) and unknown space to gain as much new information as possible. The points on the

border between known and unknown space are called frontier points (frontiers) and they are
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Figure 4.2: Illustration of a 2D frontiers. The frontiers are detected on the border between unknown
(gray) and free (white) voxels.

Figure 4.3: Illustation of a 3D frontier detection. The voxels are shown in 3D space which is a more
complex, volumetric space where the boundary between free (gray) and unknown (transparent) voxels
represents frontier (red) voxels.

shown in Fig. 4.2 for 2D and in Fig. 4.3 for 3D space. Detecting frontiers in 3D space is

a much more complex challenge than in 2D space. The additional dimension in 3D requires

more sophisticated algorithms to accurately identify and map boundaries between known and

unknown areas. This complexity is also reflected in higher computational requirements, as

processing 3D data requires more power and memory resources. Furthermore, the intricacies of

3D environments, including the varied terrain and potential obstacles, require advanced spatial

awareness and decision-making algorithms to effectively navigate and explore frontiers. As

the robot moves to the frontiers, it explores more unknown space and the map is consequently

expanded. As the robot continues to navigate to the frontiers, the border between the known and

unknown space is pushed back until there are no more frontiers. In this case, the environment

is considered fully explored.

As stated by [9], frontier-based exploration would eventually explore all of the accessible

space in the world, assuming perfect sensor and motor control. Therefore, frontier-based ex-

ploration is suitable in a restricted area as it eventually will reach the end of the exploration.

The idea was first implemented and used to build 2D maps. However, lately, 3D maps have

been created and used for frontier-based exploration. It is discussed in detail in Section 3.1. 3D

maps are required for aerial vehicles to explore safely while allowing for changes in altitude,

although it is more complex and requires more data resources.

In this thesis, frontier exploration is divided into three subsystems, frontier detection, fron-
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tier clustering and frontier evaluation and selection. Each subsystem is explained in detail in

the following text.

4.2.1 Frontier Definition and Detection

Within this thesis, the focus is on frontier detection and evaluation in 3D spaces. The definition

of a frontier is that it marks the border between known (free) space and unknown space. An

OctoMap M is selected for the map representation. It generates an occupancy grid map that is

divided into a 3D grid. The OctoMap structure is explained in detail in Section 2.3. Each cube

of the OctoMap, with a predefined resolution r, is denoted as a voxel (cell) v, which can be

free, occupied or unknown. Free voxels form the free space Vf ree ⊂ V , occupied voxels form

the occupied space Vocc ⊂ V and unknown voxels form the unknown space Vun ⊂ V . Initially,

the entire bounded space is unknown, V ≡Vun, and the unknown space decreases as the explo-

ration advances. The entire space is a union of the three subspaces V ≡ Vf ree ∪Vocc ∪Vun. The

exploration problem can be considered fully solved when Vocc ∪Vf ree ≡ V \Vres, where Vres is

residual space defined as an unexplored space, which remains inaccessible to the sensors.

In this thesis, both a 3D LiDAR and a camera have been used as sensors in frontier-based

exploration. The detailed description of both sensors is given in Section 2.2.

A frontier, F , can be defined as a set of voxels v f with the following property:

F = {v f ∈Vf ree : ∃neighbor(v f ) ∈Vun}. (4.1)

In other words, a frontier consists of free voxels with at least one unknown neighbor. The

center of a frontier voxel is often called the frontier point. Frontiers are shown in Fig. 4.2 and

Fig. 4.3.

The OctoMap M used for frontier detection is generated using LiDAR or camera scans S.

The OctoMap is in the form of octrees, a format suitable for path planning. During the ex-

ploration, the OctoMap M is built iteratively using the method described in [13]. The current

OctoMap Mi is created from the current LiDAR or camera scan Si added to the OctoMap ex-

plored so far:

Mi = f (Mi−1
,Si),M0 = /0. (4.2)

With each new incoming scan, a new OctoMap is created according to Eq. 4.2. At the same

time, a frontier detection cycle is performed periodically to ensure that frontiers are constantly

updated. Note that the rate of an OctoMap update process is lower than the frontier detection

process since the OctoMap update is a computationally demanding process, especially when

using dense scans.

The OctoMap used for frontier detection can be generated using raw data (as shown in the

equations above) or using Cartographer submaps [22] and their matching point cloud. This
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Figure 4.4: Comparison of raw sensor data and submap data. On the left is the raw sensor data, which
typically includes a high volume of individual data points captured directly by sensors (in this case,
LiDAR). This raw data is often noisy and unstructured, reflecting the immediate readings from the envi-
ronment without any processing or filtering. On the right side, the submap point cloud is shown, which
represents a more refined and organized version of the raw data. The submap point cloud is created from
a predefined number of LiDAR scans.

process is described in detail in Publication 1 in Chapter 8. The comparison of raw sensor

data and submap data is shown in Fig. 4.4. Generally, in Eq. 4.2, Si can be replaced by any

point cloud, less or more dense. Accordingly, it will be reflected in the density of the created

OctoMap.

Once the map M is defined, the frontiers can be extracted from the map. The approach

combines local and global frontiers, similar to Manucci [2]. Let V i
f ree and V i−1

f ree correspond to

the free voxels in two consecutive OctoMaps, Mi and Mi−1. Then the local frontier Fl contains

only newly created frontier points:

Fl = {v f ∈V i
f ree \V i−1

f ree : ∃neighbor(v f ) ∈V i
un}. (4.3)

The global frontier Fg is a union of all past local frontiers, which is updated and filtered in

each iteration to exclude voxels that do not satisfy Eq. 4.1 anymore. Fg is calculated as follows:

F i
g = F i

l ∪F i
g f ,

F i
g f = {v f ∈ F i−1

g : ∃neighbor(v f ) ∈V i
un},F

0
g = /0.

(4.4)

There is usually a large number of voxels in the global frontier (referred to only as frontier

from now on) and their evaluation is expensive in view of the computing effort involved. It

is therefore common to cluster these frontier voxels in order to optimize the evaluation pro-

cess. This clustering strategy culminates in the formation of multiple voxel clusters, where the

geometrically central voxels of these clusters are identified as potential exploration targets.

34



Chapter 4. Autonomous Exploration in 3D Environments

4.2.2 Frontier Clustering

In this subsection, two different clustering methods are presented: a novel multi-resolution

clustering approach and mean-shift clustering. The proposed novel multi-resolution clustering

approach introduces a unique methodology that allows different granularity of the clustering

process, which can improve the efficiency and precision of frontier voxel evaluation in complex

environments. On the other hand, mean-shift clustering is a technique known for its efficiency

in identifying clusters without prior knowledge of the number of clusters. These methods,

their implementation and their effects on the efficiency of frontier exploration are thoroughly

examined and discussed.

In this thesis, the multi-resolution properties of an OctoMap are utilized for efficient clus-

tering of frontier voxels, an essential part of the proposed exploration strategy. The OctoMap is

an advanced framework that uses an octree structure to represent 3D environments. An octree

is a tree structure where each node branches into eight children, allowing recursive partitioning

of the volume into finer segments (described in Section 2.3).

The OctoMap has a maximum depth dmax of 16 levels, with the voxel size at this deepest

level defining the level of detail of the map. For frontier detection, the maximum depth is used,

but depending on the structure of the environment, other layers may be more suitable.

Detecting the frontier at the maximum depth results in a large number of frontier points,

which can consume significant computational resources, especially in expansive outdoor envi-

ronments. To solve this problem, the number of frontier points is reduced by clustering them at

a chosen exploration level, which is called dexp. Both dmax and dexp are shown in Fig. 4.5. It

shows the OctoMap structure (different layers of an octree-based model), as Fig. 2.4 extended

with multi-resolution clustering parameters description.

The level dexp and the corresponding voxel size rexp are selected based on the characteristics

of the environment. For more open environments, dexp can be lower, which leads to larger

clustered voxels. The process involves determining the parent node at the exploration level dexp

which are linked to the known voxels at the maximum depth. For instance, if four depth levels

are considered (as shown in Fig. 4.5) for the sake of simplicity, with dmax = 4 and dexp = 2, the

goal is to find the parent node at dexp for the frontier voxels of dmax.

The proposed multi-resolution clustering algorithm is fast, robust, easy to implement and

can be adapted to different map resolutions and exploration depths. It is suitable for both small

and large areas. In the proposed methodology, this clustering approach is combined with the

mean-shift clustering algorithm so that the robot can be directed to areas where the frontier

points are denser, optimizing the exploration process.

Clustering algorithms play an important role in exploration tasks, as evidenced by the use

of various methods such as the union-find algorithm, the depth-first algorithm and the flood

fill clustering algorithm in the algorithms described in [91], [1] and [2] respectively. Deviating
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dexp

dmax

Figure 4.5: The structure of an octree and the cube-shaped space it represents. A representation of
frontier voxels at the maximum depth dmax and their corresponding parent nodes at the chosen exploration
depth dexp.

from these traditional state-of-the-art approaches, the mean-shift clustering algorithm is used in

this thesis, which is specifically adapted to 3D point data. This algorithm, originally introduced

by Fukunaga and Hostetler [92], is characterized by its flexibility. It works without predefined

assumptions about the shape of the distribution or the set of clusters. This is a notable advantage

over other algorithms such as K-means [93], which require prior knowledge of the number of

clusters.

The mean-shift clustering algorithm is particularly known for its robustness to noise and

outliers, making it a reliable choice in scenarios where data quality can be inconsistent. Its non-

parametric nature means that it does not assume a particular probability distribution for the data,

which improves its applicability in various domains where the data distribution is unknown or

complex. Through an iterative process, mean-shift moves each data point towards the densest

area in its vicinity, which is defined by the bandwidth of the kernel. This process, which contin-

ues until convergence is achieved, usually results in well-defined clusters. The computationally

most complex component of the mean-shift procedure is the identification of the neighbours

of a point in 3D space (as defined by the kernel and its bandwidth). The kernel represents a

weighting function and applying it to 3D points generates a probability surface (e.g., a density

function). The kernel bandwidth regulates the size of the "window" over which the mean is

calculated. In this thesis, the Gaussian kernel is used. Although a fixed bandwidth is typically

used, the algorithm can also be implemented with variable bandwidths to adapt to different data

densities, which can improve performance in datasets with heterogeneous characteristics. To

make the mean-shift algorithm work in real time, along with the reduction in the number of

frontiers by multi-resolution frontier clustering, an appropriate bandwidth is carefully selected

to balance between computation time and the desired outcome with respect to the size of the

environment and rexp. The example of the mean-shift output is given in Fig. 4.6.

In addition to its use in autonomous exploration, mean-shift clustering is also widely used in
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Figure 4.6: Results of mean-shift clustering during real-world experiments within this thesis. Grey and
white parts of the OctoMap represent the unexplored and green/blue explored environment. Red voxels
represent the frontier and yellow voxels are centroids of frontier point clusters, the output of the mean-
shift algorithm.

areas such as image processing, computer vision and pattern recognition thanks to its ability to

adapt to the underlying data structure. However, computational intensity remains a challenge,

especially for large amounts of data or high-dimensional spaces, but this can be mitigated by

various optimizations and efficient implementation techniques. These properties make mean-

shift clustering a versatile and valuable tool in the interpretation of complex, real-world data in

a wide range of applications.

4.2.3 Frontier Evaluation and Selection

The clustering algorithms result in the potential exploration targets (voxels) Fc. To evaluate

which of the potential exploration targets could result in a faster exploration of the environment,

total gain of every candidate vc ∈ Fc is defined using the following function similar to the one

proposed in [24]:

G(vc) =
I(vc)

eλL(pi,pvc)
, (4.5)

where λ is a positive constant, L(pi,pvc) is the distance between the current position of the robot

pi and the position of the candidate pvc, while I(vc) is an information gain i.e. a measure of the

unexplored region of the environment that is potentially visible from vc. The estimated distance

is approximated using the Euclidean distance between the robot position pi and the position of

the candidate (voxel center) pvc, L(pi,pvc) = ∥pi−pvc∥. The information gain I(vc), introduced

in Subsection 2.4.2, is defined as the share of unknown voxels in a cube placed around vc, as

shown in Fig. 4.7. The size of the cube is defined with respect to the range of the used sensor.

The constant λ weights the importance of robot motion cost against the expected informa-
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Figure 4.7: Information gain calculation for the potential exploration targets is shown on the left. Cubes
are placed around the candidates and the information gain is proportional to the number of unknown
voxels within the cubes. The UAV selects the best frontier according to Eq. 4.6, plans the path and
navigates toward the target.

tion gain. A small λ gives priority to the information gain, while λ → ∞ means that the motion

is so expensive that only vc near the robot is selected.

Finally, the best frontier voxel vb f is one that maximizes the total information gain G(vc):

vb f = argmax
vc∈FC

G(vc). (4.6)

Choosing the best frontier will favor actions that explore the unknown environment and

gather more information about the unknown space, taking into account the distance between

the robot and each candidate vc.

As soon as the best frontier point is selected, it is forwarded to a path planner as a waypoint.

The robot starts to follow the planned path and navigates to the best frontier point vb f , as

described in Section 2.5.

4.3 Sampling-Based Exploration

Following the discussion of the frontier-based strategy for autonomous exploration systems in

the previous section, another widely used approach, the sampling-based strategy, is introduced.

While frontier-based strategies focus on the systematic exploration of the boundary between

known and unknown areas, sampling-based strategies offer a different methodology. Sampling-

based strategies use random sampling to create a roadmap or tree of possible paths in the en-

vironment. This approach is particularly advantageous in complex or high-dimensional spaces

where boundary identification can be difficult or computationally intensive. Algorithms such as

Probabilistic Roadmaps (PRM) and Rapidly-exploring Random Trees (RRTs) are prime exam-

ples of this strategy and provide theoretical guarantees such as probabilistic completeness [94].

PRM and RRT are the classic sampling-based path planning algorithms, which belong to the
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Figure 4.8: Graph search algorithms based on sampling. The green, yellow and red points denote the
starting, ending and sampled points, respectively, and the red curve represents the global path. On the
left, the performance of the RRT is shown, while on the right, the path planned with the PRM is visualized
[95].

graphic search techniques. The comparison of these two algorithms is shown in Fig. 4.8, on the

simple example for path planning.

4.3.1 Potential Exploration Targets Generation

A key advantage of sampling-based strategies over frontier-based strategies is their ability to

navigate complex environments without the need for constant frontier detection and evalua-

tion. However, this brings with it a number of challenges, particularly in ensuring the quality

and optimality of the paths generated. While frontier-based methods provide a more global

approach to exploration and focus on expanding the known territory, sampling-based methods

provide a more local perspective of the environment. The choice between these two strategies

often depends on the specific requirements and constraints of the exploration task, including the

complexity of the environment, the available computational resources, and the desired balance

between exploration efficiency and path optimization. This section aims to deepen the basics

of the sampling-based strategy, the advantages and potential limitations of the sampling-based

strategy and to provide a comprehensive understanding of its role in autonomous exploration

systems.

As shown in Fig. 4.1, the exploration strategy inside the exploration system can easily be

replaced. Instead of a frontier-based strategy, the autonomous exploration system can use the

sampling-based strategy, ensuring that the odometry and OctoMap are received. In this the-

sis, a sampling-based strategy is studied that is based on the state-of-the-art Receding Horizon

Next-Best-View planning (RH-NBVP) [6]. The proposed strategy uses a sampling-based ap-

proach to generate the potential exploration targets and select the next best viewpoint similar
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to the frontier-based strategy (explained in Subsection 4.2.3). This planner is used in combi-

nation with RRT [43], [44] to generate traversable paths. The RRT algorithm samples nodes

n =
[

x y z
]T

∈ R
3 (highlighted in yellow in Fig. 4.9). For each node in the RRT path, the

information gain is calculated as a volume of the unmapped space that would be observed by

robot sensors when the robot is positioned in the target node. The algorithm used for the in-

formation gain estimation is the Recursive Shadowcasting algorithm, introduced in Subsection

2.4.4. The best RRT path is then determined and executed.

Figure 4.9: An illustration of the RRT node and path generation. Pink paths with yellow waypoints
(nodes) are the result of the RRT. The origin of the RRT is at the position of the UAV. The OctoMap is
shown in red for better visualization.

4.3.2 Path Evaluation and Selection

As mentioned above, the RRT algorithm samples nodes n. A collision-free RRT path is denoted

as µ ∈ M, where M denotes the set of all RRT paths. Let µ j, j ∈ (1,2, ...,N) be the path edge

between nodes nk−1 and nk, where k ∈ (1,2, ...,N +1) and N is the number of nodes. For path

edge µ j, the information gain I(µ j) ∈ R is defined as a measure of an unexplored region of the

environment that is potentially visible from the center ck of this path edge.

To determine the information gain I(µ j) using the RSC, first a cuboid around the edge µ j

is placed. The center and the size of this cuboid depend on the position and length of the edge

as well as on the range of the sensors and the size of the environment. The dimensions of the

cuboid are important as they define the area within the calculations are performed. The center

of the cuboid serves as the focal point for the grid-based analysis and defines the boundaries of

the study area. An illustration of the cuboid centered at the path edge is shown in Fig. 4.10. The

illustration is simplified showing the performance of the RSC on the first 2D OctoMap slice.

The RSC algorithm is performed on each slice and on each path edge. The principle is described
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Figure 4.10: An illustration of the proposed Recursive Shadowcasting algorithm in the OctoMap. The
algorithm is performed inside the cuboid centered at the path edge, on each 2D slice (planes inside the
cuboid). The results of the RSC are shown on the first OctoMap slice, where the cyan voxels represent
unknown voxels while the grey voxel is not taken into account for the information gain calculation.

in detail in Publication 2 in Chapter 8. When calculating the information gain, the length of the

path is taken into account to avoid missing important data, especially for longer paths. If a path

is too long, additional focus points are added to ensure complete coverage. The information

gain for each node on the path is calculated by considering both the amount of newly covered

area and the travel cost. In doing so, the importance of the new information against the cost of

moving to new locations is weighted, giving more weight to the new information or the travel

cost, depending on thespecific requirements. Namely, to form the information gain of the node

nk, edge information gain I(µ j) is weighted with the negative exponential of the cost to travel

along the path up to nk, similar to the one proposed in [24] and used in [6]:

I(nk) = I(nk−1)+
I(µ j)

eλL(nk,nk−1)
, (4.7)

where λ is a positive constant while L(nk,nk−1) is Euclidean distance between nodes nk and

nk−1. The constant λ weighs the importance of the robot motion cost against the expected

information gain. A small λ gives priority to the information gain, while λ → ∞ means that the

motion is so expensive that the shortest path is selected.

The goal in each step of this process is to find the path that maximizes the information gain.

According to Eq. 4.7, path information gain I(µ) is equal to the information gain of the last

node of the path and presents the volume of the unknown space that is covered along the path,

combined with the cost of going there. In each iteration, thegoal is to find the best path µbp,

which maximizes the information gain I(µ):
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Figure 4.11: The UAV body (cyan color) denotes the first point of the path. Orange cuboids along the
path of the RRT illustrate the volume where the information gain is computed. A green path with green
waypoints is the best path. Pink paths with yellow waypoints are other paths of the RRT.

µbp = argmax
µ∈M

I(µ). (4.8)

The principle of finding the best path is similar to the one used in frontier-based strategy,

described in Subsection 4.2.3. The illustration of the path evaluation is shown in Fig. 4.11.

Once the best path is selected, the direction or yaw angle of thesensor is adjusted to ensure

that it is aligned with the next point on the path. In the RH-NBVP the yaw angle is randomly

sampled during the exploration, which limits the sample efficiency of the exploration. This

limitation is briefly addressed in [32], [40]. Unlike other strategies, this strategy implemented

in the thesis increases the efficiency of theexploration as it ensures that thesensor is always

aligned with the most informative area.

After the path has been augmented with the yaw angle, it is forwarded to the trajectory

planner. Within this thesis, the Time Optimal Path Parametrization by Reachability Analysis

(TOPP-RA) algorithm, developed by [96], is used. Apart from the waypoints, inputs for the

TOPP-RA are also velocity and acceleration constraints, which are maximally set to the UAV

physical limitations. The planned trajectory is then executed by the UAV, and a new cycle for

determining the best path is started after the UAV stops.

The probabilistic nature of sampling-based strategies not only ensures a thorough explo-

ration but also gives them a degree of flexibility and adaptability that is very valuable in complex

or uncertain environments. This makes sampling-based strategies particularly suitable for ap-
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plications where the environmental conditions are unknown or not precisely defined in advance.

However, it is important to note that while sampling-based strategies are superior in terms of

coverage and adaptability, they sometimes lose efficiency compared to more targeted methods

such as frontier-based strategies. While the random nature of path generation is advantageous

for exploring unknown spaces, it can lead to redundancies, especially in simpler environments.

4.4 Semantically-Enhanced Exploration

Semantically-enhanced exploration refers to an exploration method in which a semantic un-

derstanding of the environment is incorporated into the exploration process. This approach

goes beyond traditional exploration methods by understanding and interpreting the meaning

or context of the objects and features within that environment. For example, a UAV using

semantically-enhanced exploration can identify specific objects such as warehouse infrastruc-

ture or objects on a construction site, and understand their importance or function within the

environment. This advanced understanding allows for more informed decision-making during

exploration. The system can prioritize certain areas or objects for closer examination based on

their semantic value, leading to more efficient and effective exploration strategies. In practice,

this means that a semantically enhanced exploration system not only maps the physical layout

of an area, but also creates a context-aware representation of the environment.

Within this thesis, a semantically-enhanced exploration strategy involves object detection

using semantic segmentation algorithms in parallel with autonomous exploration. The result is

a map of a previously unknown area with labeled objects of interest. By using information about

the objects in the environment, theexploration system can effectively identify key regions with

a high concentration of relevant objects, resulting in faster labeling of objects of interest. As

the UAV navigates through the unknown area, it utilizes advanced algorithms for real-time data

processing and decision-making. This allows the UAV to adapt its exploration strategy in flight

and focus on the areas most likely to provide valuable insights. Semantic segmentation enables

a deeper understanding of the environment, allowing the UAV to distinguish and categorize

objects.

Typically, incorporating semantic information into the map requires having a specific goal or

application in mind. Thus, within this thesis, the goal of the semantically-enhanced exploration

strategy is to direct the exploration to quickly label all objects of interest on the map in the

warehouse scenario and the construction site. The algorithm should enable real-time mapping,

exploration, navigation, object detection and labeling in GPS-denied indoor environments. By

leveraging onboard sensors and processing capabilities, a UAV can detect and identify objects of

interest, such as equipment, products, or inventory, in real time, providing valuable information

for the exploration algorithm. The integration of real-time localization, mapping and semantic
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segmentation onboard a UAV equipped with an RGB-D camera is provided. The semantically

segmented object from the image frame is projected on a 3D map of the environment. In this

thesis, the proposed strategy takes advantage of the semantic information extracted in 3D so that

a new utility function is introduced to guide the UAV toward the objects in the environment.

This section provides an overview of the segmentation of 2D images and the extraction of

object poses, which is important for labeling objects in the 3D map. The chapter concludes with

a focus on a novel utility function for frontier evaluation and selection.

4.4.1 2D Image-Based Sematic Segmentation

An input image from an RGB-D camera can be represented as a 2D array of pixel values.

Semantic segmentation is a computer vision technique that involves labeling each pixel of the

image with a specific class or category. The objective of semantic segmentation is to predict

the segmentation map for the input image, but instead of containing pixel values, it contains the

predicted semantic labels for each pixel. Each object of interest oi corresponds to a collection

of pixels that form a distinct entity that can be visually identified and distinguished from the

background or other elements in the image. Then, using a semantic segmentation algorithm,

the semantic labels si for each object oi can be determined. In other words, the goal is to find a

function f : O −→ S that maps each object to its corresponding semantic label. Given a number

of semantic labels Nlabels, the determination of semantic labels for each object can be expressed

as:

f (oi) = s j for 1 ≤ i ≤ Nob j,1 ≤ j ≤ Nlabels, (4.9)

where oi is the object, and s j is a semantic label, from the set S and for the given object.

By utilizing deep learning models, this approach can accurately segment objects and regions

of interest in 2D images. In this thesis, for semantic segmentation, the HRNet [86] is used,

which is a recently proposed model that retains high-resolution representations throughout the

model, without the traditional bottleneck design.

The HRNet model for the 2D image semantic segmentation is used since it showed enviable

performance results [88]. Furthermore, it is compact, fast, robust and easy to use, enabling

the model adaptation to work on CPU only, making it suitable for applications running on

UAVs with limited computational resources. The model is trained on the ADE20K dataset with

150 objects and stuff classes included. ADE20K is a large open-source dataset for semantic

segmentation and scene parsing, released by the MIT Computer Vision team [97], [98]. The

ADE20K dataset is selected since some datasets have a limited number of objects (e.g., COCO

[99], Pascal [100]) and in many cases those objects are not the most common objects encoun-

tered in indoor environments, or the datasets only cover a limited set of scenes (e.g., Cityscapes

[101]). Additionally, objects of interest are extracted from the semantically segmented image.
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Figure 4.12: Semantic segmentation of simple features (table, chair and monitor). The semantic seg-
mentation is performed with an HRNet model trained on the ADE20K dataset. Once the objects are se-
mantically segmented, the 3D position of each object is extracted and colored in a specific color matched
to the object.

A demonstration of semantic segmentation using the HRNet model trained on the ADE20K

dataset is illustrated in Fig. 4.12 using a basic image featuring a table, chair, and monitor.

In addition to the HRNet model, another model used in this thesis is RetinaNet [102], which

is known for its effectiveness in object detection. RetinaNet is characterized by its unique focal

loss function, which addresses the problem of class imbalance in training, a common challenge

in object detection. This feature makes RetinaNet particularly suitable for recognizing objects

in diverse and complex environments, where the presence of many "easy" background examples

can make learning the "harder" object examples more difficult.

In scenarios where more computational power is available, such as systems equipped with

Nvidia Jetson or similar high-performance computing platforms, the integration of mmdetection

or mmsegmentation packages [103] proves to be highly beneficial. Mmdetection provides an

object detection toolbox that supports a wide range of detection models, while mmsegmentation

offers a comprehensive suite for semantic segmentation tasks. Their high performance and

flexibility make them ideal for demanding applications that require real-time processing and

precise object recognition. Therefore, in this thesis, the HRNet model trained on ADE20K

dataset for warehouse scenarios has been integrated, as well as RetinaNet model with a custom

dataset for detecting objects on the construction site (Fig. 4.13). Testing two models with

different approaches shows the adaptability of the system in using and exchanging detection

algorithms to meet different exploration requirements.

4.4.2 Labeling Objects in the Map

Once the objects in a 2D image have been semantically segmented, the next step is to determine

their 3D positions in the global frame for 3D exploration. To do this, both the object mask from

the image and the point cloud data from the camera are used. The object mask provides a binary

representation of the objects in the image and distinguishes the objects from the background.

In addition, the point cloud from a camera, a collection of 3D points that represent the surface
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Figure 4.13: Results of the mmdetection algorithm using RetinaNet. The model, trained specifically for
construction site environments, effectively detects pipes and ladders. The detection is performed in the
real-world scenario.

geometry of the objects, is used.

In this process, the segmented objects in the image mask are matched with the corresponding

points in the point cloud. For each object identified in the 2D image, a corresponding set of 3D

points is identified from the RGB-D data of the camera that are aligned with the image mask.

The 3D position of each object is then calculated using the centroid technique, which estimates

the position based on the points in the point cloud, expressed in the coordinate system of the

camera.

This matching of the 3D points with the 2D image coordinates helps to determine the po-

sition of each object in the coordinate system of the camera. Taking into account the state of

the UAV in the global frame, the position of the object can be mapped onto the global frame.

For this purpose, transformation matrices are used that define the position and orientation of the

UAV as well as the fixed transformation between the UAV body and the camera. The detailed

approach is described in Publication 3 in Chapter 8. This method effectively maps 2D image

objects to their 3D positions in the world and enables accurate and robust extraction of object

positions for 3D exploration.

4.4.3 Sematically-Aware Frontier Evaluation

In this thesis, the frontier-based strategy, described in Section 4.2, is combined with seman-

tic information from the environment. The frontiers are evaluated by taking into account the

information from the semantic segmentation algorithm.

Labeled objects of interest are included in the exploration policy, assuming that this leads to

faster object labeling. To evaluate each voxel in Fc, the total gain of every candidate vc ∈ Fc is

defined using the following function:

G(vc) = αIgg(vc)+β Isg(vc), (4.10)
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Figure 4.14: The OctoMap of the warehouse environment in the simulation and in the real-world exper-
iment is shown on the left and right respectively. The transparency effect is applied on the OctoMap and
detected objects during the exploration are shown. Shelves, boxes and doors are shown with different
colors on the map.

where α and β are positive constants, while Igg(vc) and Isg(vc) represent geometric information

gain and semantic information gain of each candidate vc, respectively. Therefore, α and β

represent the trade-off between the geometric and semantic information gain. The values of α

and β are experimentally determined and depend on the environment layout.

The geometric information gain Igg(vc) is defined using the function similar to the one

proposed in [24]:

Igg(vc) =
Iun(vc)

eλL(pi,pvc)
, (4.11)

where λ is positive constant, L(pi,pvc) is the distance between the robot’s current position pi

and the position of the candidate pvc, while Iun(vc) is information gain (explained in Subsection

2.4.2).

Similar to the frontier-based strategy, the estimated distance is approximated using the Eu-

clidean distance between the robot position pi and the position of the candidate (voxel center)

pvc, L(pi,pvc)= ∥pi−pvc∥. The constant λ weights the importance of robot motion cost against

the expected information gain. A small λ gives priority to the information gain, while λ → ∞

means that the motion is so expensive that only vc near the robot is selected. To include seman-

tically segmented objects from the environment in the exploration policy, Isg(vc) is introduced,

as shown in Eq. 4.10. Isg(vc) represents the semantic information gain of each candidate. Let

nob j be the number of currently semantically segmented objects in the environment, then Isg(vc)
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is defined as:

Iob j(vc) =







1
L(pob j,pvc)

if L(pob j,pvc)≤ Irange,

0 otherwise,
(4.12)

Isg(vc) =
nob j

∑
ob j=1

Iob j(vc), (4.13)

where L(pob j,pvc) is the distance between the position of the object pob j and the position

of the candidate pvc. Position of the object pob j is calculated as stated in Subsection 4.4.2. In

other words, the semantic information gain of each candidate vc is the sum of all visible objects

from the candidate vc inversely proportional to the distance of the object.

Finally, the best frontier voxel is one that maximizes the total information gain G(vc):

vb f = argmax
vc∈FC

G(vc). (4.14)

The best frontier voxel vb f is forwarded as a target point to the path planner. The result of

semantically-enhanced exploration is an OctoMap with labeled objects of interest as shown in

Fig. 4.14.
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CHAPTER 5

Conclusion

In summary, this thesis focuses on the main concepts for autonomous exploration using un-

manned aerial vehicles. The concepts include mapping, exploration, localization and path plan-

ning. Mapping involves translating sensor data into a map that contains useful information such

as the location of obstacles and the position of objects. Autonomous map creation significantly

improves the utility of a robot, enabling it to operate in environments without prior information.

Mapping during exploration allows a robot to autonomously create a map of an unknown envi-

ronment. The exploration aspect is tailored to the specific goal of the exploration task, whether

it is 3D reconstruction, search and rescue or other applications. Localization is fundamental to

autonomous navigation. It involves determining the position and orientation of a robot in its

environment using various sensors and techniques such as SLAM. Finally, path planning is cru-

cial for safe navigation. Taken together, these concepts form effective and efficient autonomous

robotic systems that can operate in complex environments. The methods are designed to be

adaptable to GPS-denied environments. They can include SLAM algorithms or precise local-

ization techniques as well as various sensors and are therefore suitable for both outdoor and

indoor exploration.

The novel elements of the contribution of this thesis are related to the exploration strategies.

First and foremost is the development of a method for planning autonomous 3D exploration

based on frontier detection. This method presents a novel frontier detection and multi-resolution

frontier clustering approach. The approach improves the exploration process by using submap-

based frontier detection and refining these frontiers at multiple resolutions. The effectiveness

of this method is particularly notable in large or complex environments where efficient ex-

ploration is a challenge. The developed multi-resolution clustering algorithm is characterized

by fast processing, robust performance and easy implementation and is adaptable to different
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map resolutions and exploration depths. Furthermore, the thesis demonstrates the advantages

of the multi-resolution frontier clustering approach through various simulations and real-world

tests. These tests highlight the effectiveness of the method in optimizing the exploration path

and reducing the time and resources required to explore large and complex environments. The

adaptability and scalability of the method make it a robust solution for a wide range of applica-

tions.

Secondly, the introduction of a sampling-based approach using the Recursive Shadowcast-

ing algorithm to efficiently estimate information gain is a novel approach. This method revo-

lutionizes the process of planning exploration paths and enables a fast and thorough coverage

of the environment with minimal computational effort. The ability to calculate information

gain quickly and accurately is a key advance for onboard processing in robotic systems. What

is more, the inherent probabilistic properties of sampling-based strategies provide comprehen-

sive exploration coverage and give these methods considerable flexibility and adaptability. This

is especially beneficial in complex scenarios and in environments where conditions are either

uncertain or cannot be explicitly described before exploration.

Third, the thesis includes an integration of semantic map information into the exploration

process. This method combines frontier-based exploration with semantic understanding and

directs exploration to objects of interest. This approach proves especially advantageous for

the efficient labeling of objects in 3D exploration, fostering a more comprehensive and detailed

understanding of the environment. Semantically-enhanced autonomous exploration using UAVs

represents a significant leap forward in the field of remote sensing and mapping. It combines

state-of-the-art technologies for object detection and autonomous navigation to create highly

detailed and accurate maps of previously unknown areas. This opens up new possibilities for

exploration, analysis and strategic planning in various industries.

Moreover, these methods introduce novel calculations of information gain and the selection

of the next best goal. The real-world applicability and effectiveness of these methods have been

thoroughly validated through a series of realistic, challenging simulation experiments and real-

world tests. These validations not only demonstrate the practical utility of the methods but also

highlight their adaptability and reliability in the real world.

All strategies and methods developed and used in the implementation of the autonomous

exploration system are modular. This modularity ensures that individual components can be

easily expanded or replaced as required and offers a high degree of flexibility and scalability.

For example, the localization, mapping, exploration strategy or navigation algorithm can be

easily extended or replaced with a different approach if required. Every element of the system

has been thoroughly validated, not only in simulated environments but also under real-world

conditions. In addition, the entire system and the methods it contains have been made available

as open source, so that the research and development community has the opportunity to further
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develop and customize the system.

Overall, the contribution presented in this thesis not only addresses the immediate chal-

lenges in the field of autonomous robotic exploration, but also sets new standards for future

research. The methods developed here open up new avenues for exploration and pave the way

for more advanced, efficient and intelligent robotic systems that can navigate autonomously and

understand complex 3D environments.
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Author’s Contributions to the

Publications

The results presented in this thesis are based on the research carried out in the Laboratory for

robotics and intelligent control systems (LARICS), lead by Professors Zdenko Kovacic and

Stjepan Bogdan, at the University of Zagreb, Faculty of Electrical Engineering and Computing,

Croatia during the period of 2019 - 2023. The thesis includes four publications written in

collaboration with co-authors of the published papers. The author’s contribution to each paper

consists of the method design, software implementation, testing in simulations and real-world

experiments, result analysis and written presentation.

Pub1 In the paper entitled A Multi-Resolution Frontier-Based Planner for Autonomous 3D Ex-

ploration the authors have developed a novel 3D exploration planner, optimized for state-

of-the-art 3D sensors like LiDARs. The planner is designed to efficiently process the

extensive point clouds generated by these sensors. The core of this planner is an algo-

rithm for detecting frontier points, which represent the boundary between the explored

and unexplored areas of an environment. This detection is followed by a novel process

for clustering these frontier points and selecting the most suitable point for efficient explo-

ration. One of the main advantages of this planner over existing frontier-based approaches

is its scalability. It requires less processing time for the same size of the environment with

comparable exploration times. This improved performance is achieved by using data from

a mapping algorithm rather than directly from the 3D sensor. The planner takes advantage

of the properties of the octree environment representation, enabling efficient analysis at

different resolutions. The author’s work contains several groundbreaking elements that
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make a significant contribution to the field:

± The introduction of a submap-based method for detecting frontiers.

± The implementation of a multi-resolution approach to refine frontiers.

± The development of an innovative technique for selecting the best frontier point

that incorporates a cube-based sensor approximation for fast calculation of potential

information gain.

Compared to the current state-of-the-art methods, this approach provides faster and more

efficient performance in both computation time and environmental coverage speed. The

effectiveness and improved performance of the proposed approach are demonstrated by

detailed simulations and experimental results. In addition, the author has made great

efforts to improve the accessibility and reproducibility of this research. This is reflected

in the publication of the datasets used in this study (including source code and maps),

which allow direct comparison with other research in this area. This openness not only

underlines the practical applicability of the planner, but also invites collaborative further

development and validation within the research community.

Pub2 In the paper entitled A Shadowcasting-Based Next-Best-View Planner for Autonomous 3D

Exploration the authors deal with the challenge of autonomous exploration of unknown

environments using an aerial robot equipped with sensors such as LiDARs. The main

goal is to efficiently explore an area, plan paths and calculate the information gain in a

short time, so that implementation on an onboard computer is possible. An important

innovation presented in this paper is a planner that randomly samples viewpoints in the

environment. This planner uses a novel and efficient method for computing the informa-

tion gain based on the Recursive Shadowcasting algorithm. To determine the Next-Best-

View (NBV), an evaluation method based on cuboids is used, which significantly reduces

the calculation time. In addition, the planner includes a dead-end resolution strategy

that improves its ability to recover quickly in complex environments, minimizing overall

exploration time. Comparative experiments in simulations show that this approach out-

performs current state-of-the-art methods in terms of computational efficiency and total

exploration time. The results consistently show that the proposed method achieves full

exploration faster and with remarkably less computational time compared to other leading

methods. The contributions of this paper are significant and threefold:

± The development of a time-efficient technique for estimating information gain using

the Recursive Shadowcasting algorithm.

± The implementation of a cuboid-based method to evaluate the information gain at

each RRT edge.

± The introduction of a history tracking method specifically designed to resolve dead-
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ends during exploration.

Extensive simulation analyzes and comparisons with state-of-the-art approaches were car-

ried out. To further emphasize the commitment to research transparency and collabora-

tion, the authors have made the source code, simulation datasets and experimental data

used in this study openly available. This initiative not only validates the results, but also

facilitates future comparative research in the field of autonomous exploration.

Pub3 In the paper entitled ASEP: An Autonomous Semantic Exploration Planner with Object

Labeling the authors present the Autonomous Semantic Exploration Planner (ASEP),

an autonomous 3D exploration planner tailored to GPS-denied environments. ASEP

uniquely integrates real-time mapping, exploration, navigation, object detection and ob-

ject labeling capabilities for a UAV with limited resources. ASEP is based on a frontier

exploration strategy that uses semantic information to determine its exploration policy.

Policy is enhanced by the integration of geometric and semantic data coming from a deep

convolutional neural network (DCNN) used for semantic segmentation. This innovative

approach to semantically-enhanced exploration focuses on the rapid identification and

labeling of all relevant objects in the environment. In addition, the planner includes an

advanced path planning algorithm that continuously checks the feasibility of the path,

enabling safe and efficient navigation even in complex environments. An important as-

pect of ASEP is its modular design, which allows easy expansion or replacement of its

components with customized modules. The effectiveness of ASEP has been thoroughly

tested both in simulation and in real tests with a UAV. The experimental results confirm

the performance of ASEP compared to existing state-of-the-art methods. In particular,

the results show an accelerated exploration of objects in the environment, a reduction of

the overall exploration time and a consistent computational efficiency, even when con-

sidering the requirements of semantic segmentation. The main contributions of this work

are as follows:

± Development of an exploration strategy that integrates a frontier-based method with

semantic utility functions, enabling iterative exploration and labeling of objects of

interest in unknown environments. This includes extending the information gain

function to consider both geometric and semantic environment data.

± Implementation of real-time 3D object labeling during exploration, which includes

the extraction of semantically segmented objects from 2D images and the processing

of camera depth point cloud data to determine object locations in the environment.

± Development of a comprehensive system for mapping, exploration, path planning

and navigation that is both modular and adaptable and can operate using low-cost

sensors on a UAV with limited resources. This system provides efficient exploration
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and object labeling while ensuring the safety and reliability of navigation.

This work represents a significant advance in autonomous exploration planning, offer-

ing improvements in exploration efficiency and object labeling accuracy, especially in

challenging indoor environments.
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A Multi-Resolution Frontier-Based Planner for

Autonomous 3D Exploration
Ana Batinovic , Tamara Petrovic , Member, IEEE, Antun Ivanovic , Student Member, IEEE,

Frano Petric , Member, IEEE, and Stjepan Bogdan , Senior Member, IEEE

Abstract—In this letter we propose a planner for 3D exploration
that is suitable for applications using state-of-the-art 3D sensors,
such as LiDARs, that produce large point clouds with each scan.
The planner is based on the detection of a frontier - a boundary
between the explored and the unknown part of the environment -
and consists of the algorithm for detecting frontier points, followed
by the clustering of frontier points and the selection of the best
frontier point to be explored. Compared to existing frontier-based
approaches, the planner is more scalable, i.e., it requires less time
for the same environment size while ensuring similar exploration
time. The performance is achieved by relying not on data obtained
directly from the 3D sensor, but on data obtained by a mapping
algorithm. In order to cluster the frontier points, we exploit the
properties of the Octree environment representation, which allows
easy analysis with different resolutions. The planner is tested in the
simulation environment and in an outdoor test area with a UAV
equipped with a LiDAR sensor. The results show the advantages of
the approach compared to current state-of-the-art approaches.

Index Terms—Aerial systems, perception and autonomy,
autonomous agents.

I. INTRODUCTION

A
N AUTONOMOUS exploration and mapping process is

one of the fundamental tasks of robotics. Typical explo-

ration methods are based on frontiers [1] and are used in both 2D

and 3D space. In contrast to 2D exploration and mapping strate-

gies, mapping large environments in 3D requires a large amount

of memory and computational effort. Therefore the fastest possi-

ble generation of a complete 3D map and autonomous navigation
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This letter has supplementary downloadable material available at https://doi.
org/10.1109/LRA.2021.3068923, provided by the authors.
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Fig. 1. A snapshot of the proposed method in action. Grey and white parts
of the OctoMap represent the unexplored and green/blue explored environment.
Red voxels represent the frontier and yellow voxels are centroids of frontier point
clusters. A UAV explores the environment by planning a trajectory towards the
selected cluster centroid.

of a robot through the map is a challenging task. This task is

used to inspect civil infrastructure [2] or to search for people or

objects, such as in search and rescue scenarios [3]. Furthermore,

the fastest possible exploration could be required when operating

with an energy-constrained robot [4].

The main objective of this letter is to develop a 3D exploration

planner capable of meeting the above challenges. The letter

focuses on large unknown environments where a robot should

navigate autonomously without any a priori knowledge of the

environment. The planner, which consists of a sequence of

algorithms, acts as a decision making tool that guides the robot

to the next exploration point. A snapshot of the proposed method

in action is shown in Fig. 1.

We use the Google Cartographer simultaneous localization

and mapping (SLAM) algorithm [5] as the basis for a novel

exploration planner. For detection of the frontier, which is the

first step of the exploration planning procedure, we use submap

point cloud from Cartographer, which has one point for each

occupied submap cell. A submap is created from a sequence of

sensor scans by scan matching, fusion with IMU and odometry,

thus providing a more stable input for the frontier detection

algorithm compared to published exploration methods ([6], [7],

[8], [9]) which use raw 3D sensor readings.

2377-3766 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
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We convert the aforementioned submap point cloud into an

OctoMap, which has become the standard in recent years due

to its efficient memory and querying properties [10]. For a

more efficient frontier detection, we exploit the structure of the

OctoMap which allows us to easily query occupied voxels with

different spatial resolutions. Points of the frontier are detected

at the lowest OctoMap level (corresponding to the smallest

Octree voxels), resulting in large number of points which would

decrease the overall performance of the proposed algorithm.

To mitigate this problem, we efficiently filter frontier points by

changing the resolution level of the points in the OctoMap. The

final frontier points processing is performed using the mean-shift

clustering [11] and results in a significantly reduced number of

frontier points to be considered in further steps. The best frontier

point to be visited is determined by estimating the benefit of the

information gathered by visiting a candidate frontier point. The

exploration loop is closed with an autonomous navigation to

the selected frontier point, using the map generated through the

exploration for trajectory planning and localization.

This exploration procedure encompasses several novel ele-

ments that make up the contribution of this letter: a) a submap-

based frontier detection; b) multi-resolution frontier refinement;

c) the best frontier point selection using a cube-based sensor

approximation for fast calculation of the potential information

gain. Compared to state-of-the-art approaches, our approach

contributes to fast and efficient performance in terms of both

computation time and speed of the environment coverage. The

validity and increased performance of the proposed approach

is demonstrated through extensive analysis of simulation and

experimental results. In addition, we focus our efforts on making

our datasets (source, maps) available for comparison with other

research approaches.

In Section II we give an overview of the state-of-the-art of

3D exploration methods and position our work in relation to

them. Section III is the core of the letter and contains the details

of the planner. The results of the simulations and experiments

performed with a UAV and their analysis, are presented in Sec-

tions IV and V. The letter ends with a conclusion in Section VI.

II. RELATED WORK

There is a wealth of earlier work related to autonomous ex-

ploration, especially for 2D, but more recently also for 3D envi-

ronments. The approaches can be roughly divided into frontier-

based and next best view-based approaches, even though there

is a significant overlap between categories. In this section we

give an overview of techniques from each category, with a focus

on selected frontier-based approaches for 3D environment such

as the one proposed in this letter.

Characteristic of frontier-based approaches is exploration by

approaching a selected point on the frontier between the explored

and unexplored environment. This idea was first introduced by

Yamauchi in [1] and tested in a 2D environment. The sim-

plest approach to 3D exploration is to use 2D frontier-based

exploration with 3D maps at different heights (sometimes called

2.5D approaches) [12], [13]. A complete frontier-based solution

for 3D environments is developed in [6] and [7], and these

approaches are described in more detail later in this section.

Next best view-based (NBV) approaches aim to determine

a (minimal) sequence of robot (sensor) viewpoints in the envi-

ronment to be visited until the entire search space is explored.

Potential viewpoints are usually sampled, e.g. near the frontier

or randomly. Then the viewpoints are checked for the poten-

tial information gain and the next best viewpoint is assigned.

One of the first NBV methods is presented in [14] and then

extended in [8], [9], [15] and others. In [9] the authors use an

RRT-based search to direct a UAV to the unexplored region.

The method showed good scaling properties and the ability to

handle large spaces, but due to the characteristics of the RRT

algorithms, the total exploration time could be much higher for

some environments, as verified in [16], [17] and [18], and what

we additionally confirmed in our experiments. The exploration

times are later improved in [8]. Often NBV approaches are used

to build a 3D object without any a priori information, as in [19]

and [20].

Our approach was inspired by that of Zhu et al. [6], an

exploration tool called 3D-FBET. This is a frontier-based tool

that is performed in three phases, similar to those presented in

this letter. The phases are 3D mapping, frontier detection in

combination with a clustering algorithm, and the selection of

the best frontier. Through experimental evaluation on different

environments 3D-FBET showed several shortcomings. First,

because the frontier detection is based on a subset of altered

voxels (generated from the camera point cloud), which is highly

variable, the obtained frontiers were noisy and not reliable.

Furthermore, the resulting frontier presented only a local view

and the clustering was not adapted to the environment. These

problems led to a higher total exploration time. The authors

provide the source code and the duration analysis for each phase,

which facilitates comparison with the new approaches. We ex-

tend this approach to recognize not only local but also global

frontiers, similar to Mannucci et al. [7]. Mannucci proposed a

3D exploration with two OctoMaps and two frontiers (local and

global) with different resolutions. Global frontiers are assigned

when the set of local frontiers is empty. Manucci evaluates

the best frontier using a cost-utility approach, similar to [21].

Since maintaining two OctoMaps is a resource-intensive task,

we use the properties of OctoMaps and implement a solution

with multiple resolutions in a single OctoMap. An advantage

of an OctoMap is also used in [22] to merge voxels with an

equal state, which results in the reduction of obstacle detection

calculations. Our 3D frontier detection is motivated by a dense

2D frontier method presented by Orsulic et al. [23], which has

achieved good results in terms of wall time per frontier update.

Together with multi-resolution clustering and appropriate target

point selection, we are constructing a novel 3D exploration

planner that accelerates the 3D exploration process.

Most related works design the exploration algorithm to min-

imize the total exploration time ([7], [9], [16]). Some of them

take into consideration computation time [6], which plays an

important role in an exploration process, such that a lower com-

putation time as well as the next best goal selection algorithm

lead to a lower total exploration time. However, we consider both
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Fig. 2. Overall schematic diagram of autonomous 3D frontier-based explo-
ration. The Cartographer SLAM creates 3D submaps, which are an input for
the OctoMap generation module. Frontier detection, clustering and the module
for selecting the best frontier voxels form the proposed 3D exploration planner
(highlighted in blue). The best frontier voxel represents a target towards which
the robot navigates.

the computation time and the total exploration time compared

to the state-of-the-art approaches in Section IV-C and V-B. Our

planner is able to run online and on board a robot with limited

resources. Results are shown in simulations and experiments

while datasets are provided for further use.

III. PROPOSED APPROACH

An autonomous exploration of either indoor or outdoor un-

known 3D space V ⊂ R
3, among the other objectives, creates a

3D map of the environment.

As a basis for our algorithm, we use an OctoMap, a hierar-

chical volumetric 3D representation of the environment. Each

cube of the OctoMap is called a voxel (cell) v, which can be free,

occupied or unknown. Free voxels form the free space Vfree ⊂
V , occupied voxels form the occupied space Vocc ⊂ V and

unknown voxels form the unknown space Vun ⊂ V . The entire

space is a union of the three subspacesV ≡ Vfree ∪ Vocc ∪ Vun.

The approach we propose is a frontier-based exploration,

where the goal is to increase the overall knowledge of the envi-

ronment by directing the robot to the frontier point with the best

trade-off between benefit and cost. An overview of the proposed

system is given in Fig. 2. The Cartographer SLAM algorithm

requires an appropriate sensing system, e.g. a laser scanner or

a camera to create a 3D map. An OctoMap is generated using

the SLAM algorithm and is used for both frontier detection and

collision-free navigation. Our planner is applicable to various

types of autonomous robots equipped with LiDARs or other

sensors that can be used to build an OctoMap. Note that our

planner is not restricted to the Cartographer SLAM. As long as

a reliable map builder is provided, multi-resolution frontier re-

finement and the best frontier selection modules can be applied.

A. Frontier Detection

A frontier, F , can be defined as a set of voxels vf with the

following property:

F = {vf ∈ Vfree : ∃neighbor(vf ) ∈ Vun}. (1)

In other words, a frontier consists of free voxels with at least

one unknown neighbor. The center of a frontier voxel is often

Fig. 3. Creating a submap cloud from ns LiDAR scans (red) that are matched
against a submap Ms (black) and a submap cloud Msc is created at the end
(blue).

called the frontier point. Since the space V is bounded, once the

exploration is over the frontier becomes empty, F = ∅.

As already mentioned, the OctoMap used for frontier detec-

tion is generated using Cartographer submaps. The submap M i
s

(ith submap) is an occupancy grid map built using the last ns

consecutive LiDAR scans S, and matched with past IMU and

odometry data:

M i
s = f(S(i−1)ns

, . . . , Sins
, IMU,Odometry), (2)

where Sk denotes kth LiDAR scan. Function f stands for a

nonlinear optimization that aligns each successive scan against

a submap being built. When the predetermined fixed number of

scans ns are inserted into a submap, it is marked as completed.

Note that the size of a submap is adjustable, which makes the

entire exploration process more robust. The map M can be

created by joining all past submaps together:

M i = f(M1
s , . . . ,M

i
s). (3)

Both the map M and the submaps Ms are in the form of a 3D

occupancy grid. A format much more suitable for path planning

and other operations are octrees, so instead of building a 3D

occupancy grid map M we build an OctoMap O using the Oc-

toMap generation software [10]. Namely, from each completed

submap M i
s we calculate a submap cloud M i

sc by adding a point

in the centre of each occupied voxel of M i
s. The OctoMap Oi is

then created from all the past submap clouds:

Oi = f(Oi−1,M i
sc), O

0 = ∅. (4)

The process of creating submap clouds from sensor scans

is shown in Fig. 3. Due to optimizing the ns laser scans to

form a submap, submap clouds provide a more stable input for

OctoMap generation compared to raw scans from the sensor,

which enables more reliable detection of frontier points. Similar

to FBET [6], our algorithm extracts the frontiers incrementally.

Each time a new submap is created, the OctoMap is updated and a

new frontier detection cycle is started. Our approach combines

local and global frontiers, similar to Manucci [7]. With each

new-coming submap cloud, a new OctoMap is created according

to Eq. (4).

Let V i
free and V i−1

free correspond to the free voxels in two con-

secutive OctoMaps, Oi and Oi−1. The local frontier Fl, which

contains only newly created frontier points can be calculated as

follows:

Fl = {vf ∈ V i
free \ V

i−1
free : ∃neighbor(vf ) ∈ V i

un}. (5)

The global frontier Fg is a union of all past local frontiers,

updated in each iteration and filtered to exclude voxels which
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Fig. 4. The structure of an octree and the cube shaped space it represents. An
instance of frontier voxels at dmax and their parents on the desired exploration
depth dexp.

do not satisfy the property Eq. (1) anymore. Fg is calculated as

follows:

F i
g = F i

l ∪ F i
gf

F i
gf = {vf ∈ F i−1

g : ∃neighbor(vf ) ∈ V i
un}, F

0
g = ∅. (6)

There is usually a large number of voxels in the global frontier

(referred to only as frontier from now on) and their evaluation is

expensive in view of the computing effort involved. Therefore,

we cluster the frontier voxels using both multi-resolution frontier

and mean-shift clustering algorithms. This procedure leads to

multiple clusters whose geometric central voxels are potential

exploration targets.

B. Multi-Resolution Frontier Clustering

We exploit the Octree structure of the OctoMap to perform

initial clustering of frontier voxels. The Octree recursively di-

vides the volume and is a tree structure consisting of a node,

or OcTreeNode, which has eight children (Fig. 4), which are

also OcTreeNodes. The maximum depth of the OctoMap is

dmax = 16 [10]. The size of the voxel, expressed in meters,

at this maximum level determines the level of detail of the

OctoMap and is denoted with rmax.

In this work, the frontier is being detected at the OctoMap level

dmax, but in general we can choose other levels for initial frontier

detection. When making this decision, one should consider the

expected structure of the environment, as the calculation on

lower levels may artificially close corridors or narrow paths

through the environment. The trade-off for calculation of the

frontier on dmax is a large number of frontier points, which can

cause unnecessary consumption of computational resources in

later stages of the exploration planning procedure, especially if

we focus on large outdoor environments. For that reason we aim

to decrease the number of frontier points for future consideration

while exploiting the multi-resolution properties of OctoMap for

efficient frontier clustering.

We define the desired exploration level dexp and the corre-

sponding exploration voxel size rexp based on the characteristics

of the environment. If we expect more open areas, dexp can

be lower and rexp can be larger. Frontier points clustered on

the level dexp are denoted as Fexp and determined as follows.

Let us consider only four depth levels (as shown in Fig. 4),

and let the frontier detection level be dmax = 4 and the desired

exploration level be dexp = 2. Then our goal is to find frontier

parent OcTreeNodes from depth dexp that are parents to the

known frontier voxels vf from dmax. A general expression for

determination of the frontier points clustered at the exploration

level in exploration planner iteration j (parent frontier voxels)

Fexp is:

F j
exp = {vj

exp : vj
exp = parent(vj

f ) at dexp}, ∀v
j
f ∈ F j

g . (7)

We use the superscript j in the previous equation to empha-

size that the process of clustering is not performed for each

newly built OctoMap, but only when the j − th commanded

waypoint, generated by the previous (j − 1) exploration plan-

ner iteration, is reached. The frontier is updated after each ns

LiDAR scans, i.e. when a new submap is created. The described

multi-resolution clustering algorithm is fast and robust, easy

to implement and suitable for different map resolutions and

exploration depths. It can be applied to small and large areas.

In our approach we combine it with the mean-shift clustering

algorithm to direct a robot into the area where the frontier points

are denser.

C. Mean-Shift Frontier Clustering

Clustering algorithms are often used in exploration (union-

find algorithm, depth-first algorithm or flood fill clustering al-

gorithm are used in [24], [6] and [7] respectively). In contrast to

state-of-the-art approaches, we use the mean-shift clustering al-

gorithm applied to 3D points. The mean-shift was first proposed

by Fukunaga and Hostetler [25] and requires no assumptions on

the form of the distribution or the number of clusters (compared

to for example K-means [26]).

The input into the mean-shift clustering are the parent frontier

voxels obtained in the previous step, Fexp. The output of the

mean-shift clustering are frontier voxels which are candidates

for becoming a next waypoint for the exploration and are denoted

as Fc. The computationally most complex component of the

mean-shift procedure is the identification of the neighbours of a

point in 3D space (as defined by the kernel and its bandwidth).

The kernel represents a weighting function and applying it to 3D

points generates a probability surface (e.g., a density function).

The kernel bandwidth regulates the size of the “window” over

which the mean is calculated. In this letter, the Gaussian kernel

is used. To make the mean-shift algorithm work in real time,

along with the reduction in the number of global frontiers by

multi-resolution frontier clustering, we carefully selected an

appropriate bandwidth to balance between computation time and

the desired outcome with respect to the size of the environment

and rexp.

D. Best Frontier Voxel Selection

To evaluate which of the voxels in Fc could result in a faster

exploration of the environment, we define total gain of every

candidate vc ∈ Fc using the following function similar to the

one proposed in [14]:

G(vc) =
I(vc)

eλL(pi,pvc)
, (8)
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whereλ is a positive constant,L(pi,pvc) is the distance between

the robot’s current position pi and the position of the candidate

pvc, while I(vc) is a information gain i.e. a measure of the unex-

plored region of the environment that is potentially visible from

vc. The estimated distance is approximated using the Euclidean

distance between the robot position pi and the position of the

candidate (voxel center) pvc, L(pi,pvc) = ‖pi − pvc‖. The

information gain I(vc) is defined as the share of unknown voxels

in a cube placed around vc. The size of the cube is defined with

respect to the range of the used sensor. Often the information

gain is estimated using a ray tracing algorithm and a real sensor

field of view instead of using a cube-based approximation. By

using the proposed simplification, the high calculation effort

required by ray tracing is avoided.

The constant λ weights the importance of robot motion cost

against the expected information gain. A small λ gives priority

to the information gain, while λ → ∞ means that the motion

is so expensive that only vc near the robot is selected. We

can calculate the value of λ to be used based on the relative

importance we set on the motion cost and the information gain.

If we have two candidates vc1, vc2 and their information gains

I(vc1), I(vc2), we can choose λ as follows:

λ =
ln( I(vc2)

I(vc1)
)

L(pi,pvc2)− L(pi,pvc1)
. (9)

In this way, it is easy to set the ratio between the desired

information gain and the distance with respect to the desired

behavior of the system. For instance, if we want to prefer twice

less information gain only ifL(pi,pvc2)− L(pi,pvc1) > 5 m,

we set λ to 0.1386. Finally, the best frontier voxel is one that

maximizes the total information gain G(vc):

vbf = arg max
vc∈FC

G(vc). (10)

As soon as the best frontier point is selected, it is forwarded

to a path planner as a waypoint. The robot starts to follow the

planned path and navigates to the best frontier point vbf . For

UAV control, we use an RRT-based path planner and trajec-

tory following solution [27]. A new cycle of the procedure for

determination of the best frontier is started after the previous

waypoint is reached by the UAV, that is, the clusters and the

candidate frontier voxels FC are re-calculated. The exploration

process is performed until the entire environment is explored

and a complete map of the environment is created.

IV. SIMULATION-BASED EVALUATION

Simulations are performed in the Gazebo environment using

Robot Operating System (ROS) and a model of the Kopterworx

quadcopter, which is identical to the one used for experiments

in the real world. More details about our system and the control

structure can be found in our previous work [28]. The quadcopter

is equipped with a Velodyne VLP-16 LiDAR sensor, whose

maximum range is reduced to 20 m in the simulations. We set

the maximum velocity of the UAV to 0.8 m/s, identical to the

velocity used in outdoor experiments, which is low for safety

reasons, however, it is comparable to the state-of-the-art settings

Fig. 5. House exploration scenario. (a) Gazebo world. (b) OctoMap generated
during exploration.

Fig. 6. House scenario metrics for rmax = 0.25 m, rexp = 1 m, bandwidth
= 2. On the left, the computation times for significant modules in each iteration
j are shown. On the right, a graph shows the number of voxels in each iteration.

([7], [9], [18]), especially in the experimental analysis. In sim-

ulation and outdoor experiments, ns = 90 while the side length

of a cube used for information gain calculation is set to 5 m. We

run two scenarios with different sizes and analyze the results.

All simulations have been run 10 times on Intel(R)Core(TM)

i7-8550U CPU @ 1.80 GHz × 8.

A. House Exploration Scenario

The first scenario refers to a 30 m × 40 m × 5 m space

shown in Fig. 5. The vehicle starts from the marked position

in the Gazebo world and navigates through the environment to

explore the entire space. For the first scenario, the voxel size at

the lowest resolution level is rmax = 0.25m. For the exploration

we use the level dexp = 14, that is, voxel size rexp = 1 m and

mean-shift bandwidth of 2. The results are shown in Fig. 6.

The figure shows, for each iteration j of the waypoint calcu-

lation, the number of frontier voxels |Fg|, local frontier voxels

|Fl|, the number of parent frontier voxels at the exploration depth

|Fexp| and the final target candidates |Fc|. Furthermore, the com-

putation times for the significant modules (OctoMap creation,

frontier detection, clustering and best frontier selection) are also

given. Note that clustering includes both multi-resolution and

mean-shift algorithms, while detection takes into account the

time required to detect local frontiers and to update global

frontiers. These modules take part in the total computation

time, also calculated in each iteration. For this scenario, the

average computation time is 0.197 s with a standard deviation
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Fig. 7. House scenario - the percentage of free, occupied and unmapped
volumes in total exploration time for the proposed planner, closest frontier
method [1] and the NBVP [9], from top to bottom.

0.062 s, which shows that our planner is suitable for real-time

performance.

The proposed algorithm is compared with the closest frontier

method [1] adapted to our planner as well as with the Next-Best-

View planner (NBVP) presented in [9]. Parameters dplannermax , λ,

Nmax, r and the maximum edge length of the RRT tree refer to

the setup of NBVP explained in [9] and are set to 1.5 m, 0.25,

20, 0.25 m and 1.5 m respectively. We adapted the NBVP to our

quadcopter, equipped with a LiDAR and to our control system

to allow the fairest possible comparison. The percentage of free,

occupied and unmapped volumes during exploration for all three

planners is shown in Fig. 7. Note that for the proposed planner

and the closest frontier method the total exploration time here

includes the computation and execution time. For the NBVP, the

total exploration time includes only the execution time, while the

computation time for the given setup in each iteration was about

10 s. The graph shows that our method performs significantly

faster than the closest frontier and the NBVP, taking less than

180 s to explore the house scenario. It is shown that combining

the cube-based approximation of the information gain with the

distance, instead of considering only the distance to the frontier

point, results in faster exploration. The random sampling of the

NBVP leads to regions revisiting, resulting in a higher total

exploration time (380 s).

B. Large Exploration Scenario

The second scenario refers to a 130 m × 160 m × 5 m

space, similar to the real world environment, as shown in Fig. 10

(a). In this scenario we set rmax to 0.5 m, dexp to 14 and the

bandwidth to 2. We can allow a lower resolution and exploration

depth, as this scenario is larger than previous one. An instance

of the large scenario exploration with the mentioned parameters

is shown in Fig. 10 (b). Global frontiers (red) are clustered,

resulting in candidates (yellow). The path is computed and the

UAV navigates to the best frontier voxel (pink). The number

of frontiers and the corresponding computation time during a

single run are given in Fig. 8.

Even if the environment is larger, our planner needs on average

only 0.095 s for the entire calculation time with a standard

deviation of 0.058 s. In other words, our planner is also suitable

Fig. 8. Large scenario metrics for rmax = 0.5 m, rexp = 2 m, bandwidth =

2. On the left, the computation times for significant modules in each iteration j

are shown. On the right, a graph shows the number of voxels in each iteration.

Fig. 9. Large scenario - the percentage of free, occupied and unmapped
volumes over total exploration time.

Fig. 10. Large exploration scenario. (a) Gazebo world (b) An instance of the
exploration process. Global frontiers are marked red, candidates yellow while
the best frontier voxel vbf is marked pink. The UAV planned a path (green) to
the best frontier voxel (target).

for larger environments where the resolution may be lower. As

shown in Fig. 9, the total exploration time is about 650 s. Note

that the slope of the curve is different from that shown in Fig. 7.

There are no sudden jumps in the explored volume because the

environment is larger, but the LiDAR range is the same.
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Fig. 11. A custom built quadcopter equipped with a Velodyne V LP − 16

LiDAR sensor.

C. Simulation Results Discussion

Based on the simulation results shown in the last subsections,

some general conclusions can be drawn which can be used in the

design of an exploration system. First, frontier detection compu-

tation time and clustering time increase directly with the size of

the global frontier, and we can vary the size of the global frontier

by setting different values of rmax. Next, the computation time

for the best frontier point depends directly on the number of

candidate voxels Fc, and we can vary the number of candidate

voxels for any rmax by changing the exploration level dexp
and the bandwidth parameter of the mean-shift. As expected,

the OctoMap update time does not depend on the size of the

frontier. The averages of the total computation time required for

one exploration planner iteration (0.197 s, 0.095 s) allow the

process to run even more frequently than in the current solution.

The total computation time has an approximately linear relation

to the size of the frontier, and the absolute values are suitable

for the applications under consideration, so we can say that the

approach scales well with the increase in the resolution and the

number of frontier points. The simulations were performed for

different initial UAV positions and similar numerical values were

obtained. The comparison showed that the proposed planner

is 25% and 53% faster than the closest frontier method and

the NBVP, respectively, in terms of total exploration time. We

mention the numerical results from [7] where the authors show

results for an arena 100 m × 80 m × 7 m, stereo camera with

a limited field of view and achieve a total exploration time of

1424 s using a single robot. Computation times are not given.

Even though these numbers are better in our approach, we need

to test solutions in the same setting to make further conclusions.

V. EXPERIMENTAL EVALUATION

A. Setup

For our outdoor experimental analysis, we use a Kopterworx

quadcopter (Fig. 11) which features four T-motors P60 KV170

motors attached to a carbon fiber frame. The dimensions of the

UAV are 1.2 m × 1.2 m × 0.45 m, which makes it a relatively

large UAV suitable for outdoor environments. The total flight

time of the UAV is around 30 min with a mass of m = 9.5 kg,

including batteries, electronics and sensory apparatus. The Pix-

hawk 2.1 flight controller unit is attached to the center of the UAV

body, and it is responsible for the low-level attitude control of

the vehicle. Furthermore, we equipped the UAV with an Intel

Fig. 12. The OctoMap created during the exploration of the real world scenario
with the path traversed by the UAV during exploration.

Fig. 13. Outdoor scenario metrics for rmax = 0.5 m, rexp = 2, bandwidth
= 2. On the left, the computation times for significant modules in each iteration
j are shown. On the right, a graph shows the number of voxels in each iteration.

NUC, i7-8650U CPU @ 1.90GHz × 8, on-board computer for

collecting and processing sensory data. The on-board computer

runs Linux Ubuntu 18.04 with ROS Melodic framework that

communicates with the autopilot through a serial interface. The

UAV is equipped with a Velodyne V LP − 16 LiDAR sensor

with a maximum range of 100 m. The maximum velocity of

the UAV is limited to 0.8 m/s with a maximum acceleration of

0.5 m/s2.

B. Results and Discussion

In the real world, we used the same parameters as in the

large exploration scenario (rmax = 0.5 m, dexp = 14 and the

bandwidth = 2). Running the planner with the limited onboard

resources and in real time, we were able to demonstrate fast

exploration processing despite the large number of frontiers (

Fig. 13). The OctoMap update time is much higher than in the

simulations because the rate of the sensor is higher, however

the frontier detection time, which depends on rmax, is similar

to the times achieved in the simulation. The average calculation

time is 0.343 s with a standard deviation of 0.043 s. Fig. 14

shows that the total exploration time is about 350 s. The result

of the exploration is the OctoMap of the environment shown

in Fig. 12, in which the path traversed by the UAV during the

exploration is also shown.

A thorough comparison of the experimental results with

other state-of-the-art approaches is not possible, due to the

different environments, equipment and setup used. We briefly
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Fig. 14. The percentage of free, occupied and unmapped volumes in total
exploration time for the experimental scenario.

state, for completeness, experimental results available in the

previously mentioned state-of-the art approaches. In [9] authors

experiment in a 9 m × 7 m × 2 m indoor arena with a MAV

with vmax = 0.25 m/s and a stereo camera and the exploration

finishes approximately after 250 s. Size of our outdoor arena is

50 m × 100 m × 4 m, and a UAV with vmax = 0.8 m/s finishes

the exploration in 350 s. Regarding computation time, in [6]

the authors use RGBD camera in an area of approximate size

10 m × 10 m, and obtain frontiers of size up to 200 cells. For

these values, frontier detection takes about 18 ms, clustering

around 1 ms and OctoMap update 0.5 s. The frontier sizes in

our experiments are 1-2 orders of magnitude larger, but the total

average computation time is similar, 58 ms. To showcase the

reproducibility of our results and facilitate more thorough future

comparisons in the exploration field of research, data sets of

simulations and experiments carried out for preparation of this

letter are available [29].

VI. CONCLUSION

This letter deals with a novel multi-resolution frontier-based

planner. The planner is capable of autonomously exploring

a previously unknown area, creating an occupancy grid map

using Cartographer SLAM and generating an OctoMap. The

results showed an improved behaviour in terms of exploration

time compared to a state-of-the-art strategies. A robust fron-

tier detection speeds up the exploration process, while a novel

clustering algorithm ensures target evaluation in the real time.

This 3D exploration planner has been successfully tested in

simulation scenarios, as well as in a real world experiment,

using a quadcopter equipped with a LiDAR. Video recordings

of frontier-based exploration can be found at YouTube [30].
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A Shadowcasting-Based Next-Best-View Planner for

Autonomous 3D Exploration
Ana Batinovic , Graduate Student Member, IEEE, Antun Ivanovic , Student Member, IEEE,

Tamara Petrovic , Member, IEEE, and Stjepan Bogdan , Senior Member, IEEE

Abstract—In this letter, we address the problem of autonomous
exploration of unknown environments with an aerial robot
equipped with a sensory set that produces large point clouds,
such as LiDARs. The main goal is to gradually explore an area
while planning paths and calculating information gain in short
computation time, suitable for implementation on an on-board
computer. To this end, we present a planner that randomly sam-
ples viewpoints in the environment map. It relies on a novel and
efficient gain calculation based on the Recursive Shadowcasting
algorithm. To determine the Next-Best-View (NBV), our planner
uses a cuboid-based evaluation method that results in an envi-
ably short computation time. To reduce the overall exploration
time, we also use a dead end resolving strategy that allows us
to quickly recover from dead ends in a challenging environment.
Comparative experiments in simulation have shown that our ap-
proach outperforms the current state-of-the-art in terms of com-
putational efficiency and total exploration time. The video of our
approach can be found at https://www.youtube.com/playlist?list
=PLC0C6uwoEQ8ZDhny1VdmFXLeTQOSBibQl.

Index Terms—Aerial systems, perception and autonomy,
autonomous agents, mapping.

I. INTRODUCTION

I
N THIS letter, we study an autonomous exploration and

mapping of a completely unknown 3D environment. We

propose a novel method that improves upon the state-of-the-art

Receding Horizon Next-Best-View planing (RH-NBVP) [1],

which uses a sampling-based approach to select the next best

viewpoint [2]. This planner is used in combination with Rapidly-

exploring Random Trees (RRT) [3], [4] to generate traversable

paths. For each node in the RRT path, the information gain
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is calculated as a volume of the unmapped space that would

be observed by robot sensors when the robot is positioned in

the target node. A common algorithm used for the information

gain estimation is the Raycasting algorithm (RC) [5], and its

results are then weighted by the cost of the robot travelling to

the node. The best RRT path is then determined and the first

edge is traversed before running a new iteration of the path

planner.

The main drawbacks of the RH-NBVP are the significant com-

putation time required to compute the information gain using the

Raycasting algorithm and the high probability of ending up in a

dead end state during the exploration. To overcome these issues,

we propose a new strategy based on a Recursive Shadowcasting

(RSC) algorithm, proposed in [6]. Since the RSC allows a much

faster computation, we can estimate the information gain not

only for each RRT node, but also for each RRT edge. We propose

a cuboid-based evaluation for each RRT edge to obtain a more

complete information about the unknown space to be discovered.

We select the best RRT path and execute a trajectory through

the RRT nodes of the best path. We extend the RH-NBVP to

deal with sensors that produce large point clouds with each

scan, such as LiDARs. Since we use a large point cloud, the

RC in the information gain calculation process increases the

computation time [1], [7], [8]. On the other hand, using LIDARs

in combination with the RSC results in a significant computation

time reduction during planning iterations.

The RRT has its root in the current position of the robot and is

recomputed in each iteration. In large and narrow environments,

as the explored area increases, the RRT algorithm might end

up stuck in a dead end characterized by a significant increase

in the distance to the node with a non-zero information gain

and in the time required to sample valid RRT nodes. To address

this drawback, motivated by the previous work on history-aware

approaches to the 3D exploration ([7]–[9]), we developed a

method to resolve such states by tracking previously visited

RRT nodes.

We compare our method with the state-of-the-art methods in

the simulation. The results show that in all cases our method

achieves the complete exploration faster with an enviably low

computation time. The contributions of this letter are summa-

rized as follows:
� Time-efficient information gain estimation based on the

Recursive Shadowcasting algorithm.
� Cuboid-based estimation of information gain on each RRT

edge.

2377-3766 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
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� A history tracking method for resolving dead end states.

To validate our contributions, we performed an extensive

simulation analysis and comparison with the state-of-the-art

approaches. Furthermore, to encourage the reproduction of our

results and facilitate more thorough future comparisons in the

exploration field of research, the source code, data sets of simu-

lations and experiments carried out for preparation of this letter

are available at [10].

In Section II we give an overview of the state-of-the-art of 3D

exploration methods and position our work in relation to them.

Section III is the core of the letter and contains details of the

proposed planner. Results of simulations performed with a Un-

manned Aerial Vehicle (UAV) and their analysis are presented

in Section IV. The letter ends with a conclusion in Section V.

II. RELATED WORK

Autonomous exploration and mapping is one of the funda-

mental tasks of robotics. Typical exploration approaches can

be roughly classified into frontier-based, sampling-based, and

hybrid strategies.

Characteristic of frontier-based approaches is exploration by

approaching a selected point on the frontier between the explored

and unexplored environments. This idea was first introduced by

Yamauchi in [11] and subsequently evaluated in more detail

in [12]. In each iteration, the next best goal is a frontier point

closest to the robot. Similarly, in [13], the next best goal is

the frontier that minimizes the velocity change to maintain a

consistently high flight speed. It is shown that this approach

outperforms the closest frontier method [11]. Frontier-based

exploration approaches for 3D environments are also researched

in [14]–[19].

Sampling-based approaches aim to determine a (minimal)

sequence of robot (sensor) viewpoints to visit in the environ-

ment until the entire space is explored. Potential viewpoints are

typically sampled, e.g., near the frontier or randomly. Then these

viewpoints are evaluated for the potential information gain and

the next best viewpoint is assigned. One of the first sampling-

based methods is presented in [2] and then extended in [1], [20],

[21]. In [1], authors proposed the RH-NBVP, which uses an

RRT-based search [3], [4] to guide a UAV into the unexplored

area. While the method showed good scaling properties and

performance in a local exploration, it is not resilient to dead

ends, resulting in a poor global scene coverage and thus, a high

overall exploration time, as shown in [13], [17], [22], and in our

previous work [16]. To address the drawbacks of the RH-NBVP,

Witting et al. [9] introduced several modifications: memoriz-

ing previously visited locations; local gain optimization; and

trajectory optimization, resulting in faster exploration. In [23],

the authors improve the efficiency of the RH-NBVP by con-

tinuously growing a single tree and only sporadically querying

feasible paths.

Hybrid strategies combine the advantages of both frontier-

based and sampling-based approaches. Selin et al. [7] suc-

cessfully combine the RH-NBVP with conventional frontier

reasoning to compensate for a poor performance in the global

exploration. In other words, [7] plans global paths towards

Fig. 1. An illustration of the proposed Recursive Shadowcasting algorithm in
the OctoMap. The algorithm is performed inside the cuboid centered at the path
edge, on each 2D slice (planes inside the cuboid). The results of the RSC are
shown on the first OctoMap slice, where the cyan voxels represents unknown
voxels while the grey voxel is not taken into account for the information gain
calculation.

frontiers and samples paths locally. Meng et al. [24] samples

viewpoints around frontiers and finds the global shortest tour

passing through them. Similarly, Respall et al. [8] samples

viewpoints in the vicinity of a point of interest near a frontier and

additionally memorizes nodes that indicate regions of interest in

a history graph to reduce the gain calculation time. Besides,

more recent efforts in this domain have focused on multi-

objective planning [25], [26], informative path planning [27] or

utilizing supervised and reinforcement learning for the problem

of exploration planning [28], [29]. Motivated by advances in

the literature and the fact that sampling-based algorithms have

been shown to provide good behavior in local exploration, but

typically require computationally expensive information gain

calculation (e.g., the RH-NBVP), this letter presents a novel

exploration planner that aims to provide shorter computation

times and faster exploration.

III. PROPOSED APPROACH

A. System Overview

The main goal of our approach is to explore a bounded and pre-

viously unknown 3D space V ⊂ R
3. As a basis for our approach

we use an OctoMap, a hierarchical volumetric 3D representation

of the environment [30]. Each cube of the OctoMap is denoted

as a voxel (cell), which can be free, occupied or unknown. Free

voxels form the free space Vfree ⊂ V , occupied voxels form

the occupied space Vocc ⊂ V and unknown voxels form the

unknown space Vun ⊂ V . Initially, the entire bounded space

is unknown, V ≡ Vun, and the unknown space decreases as the

exploration advances. The entire space is a union of the three

subspaces V ≡ Vfree ∪ Vocc ∪ Vun. The goal of the exploration

process is to explore the environment as soon as possible.

Our proposed approach is a sampling-based exploration

where the goal is to increase the overall knowledge of the

environment by directing the robot in a way that reduces the

overall exploration time. An overview of the proposed system

is given in Fig. 2. The OctoMap module requires a suitable

sensing system, such as a laser scanner or a camera, to cre-

ate a 3D map. In our case, a LiDAR point cloud is used to
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Fig. 2. Overall schematic diagram of the 3D exploration. The LiDAR point
cloud and odometry data represent inputs to the OctoMap module. The explo-
ration planner module (highlighted in blue) generates a trajectory to the selected
target towards which the robot navigates.

generate an OctoMap, which is used for both exploration and

collision-free navigation.

The exploration method is based on a novel information gain

computation algorithm that ensures a fast exploration of the

environment. We use RSC algorithm to calculate the information

gain for each RRT edge, evaluating the whole path rather than

the subsequent point only, and navigate the robot towards the

best path. Our approach leads to an efficient global exploration

of the environment.

B. UAV and Sensor Models

In this work, the exploration is performed with a UAV that has

no prior knowledge of the environment. Although the concepts

are explained with the UAV in mind, the same approach is

applicable on other autonomous robots equipped with LiDARs

or other sensors that can be used to build an OctoMap.

The UAV is represented with a state vectorx =
[

pT ψ
]T

∈

R
4 that consists of the position p =

[

x y z
]T

∈ R
3 and the

yaw rotation angle around z axis ψ ∈ [−π, π). Furthermore, the

algorithm assumes a maximum linear velocity vmax ∈ R
3 and

a maximum angular velocity around z axis ψ̇max. For collision

checking, it is considered that the UAV is inside a prism centered

at p, with adequate length, width and height l, w, h. The

algorithm relies on a maximum range of the sensor Rmax ∈ R

with horizontal and vertical Field of View (FOV) in range, αh,

αv ∈ (0◦, 360◦], respectively. This allows our algorithm to work

with point-cloud-producing sensors with various FOV, such as

camera with limited FOV and LiDARs with limited αv .

C. Overview of the RH-NBVP and Raycasting Algorithms

The RH-NBVP samples nodes from the position of the robot

using the RRT algorithm. For each new node, the expected

information gain is calculated as the sum of the unknown volume

in the sampled camera FOV, exponentially weighted by distance

from the node to the current position of the robot. The total gain

of a node is the sum of all gains along the RRT path to that node.

The growth of the tree is limited with a predetermined number of

nodes. When the limit is reached, the node with the highest total

information gain defines the best path and the robot executes

only the first edge of the path. The described procedure is then

repeated. The exploration is considered complete when the best

node information gain is below a threshold gzero and the tree

reaches the maximum number iterations.

Information gain for each node is calculated using a Raycast-

ing algorithm which traces the path of a series of rays originating

from a given node. The density and range of rays define the

area to be examined and are specified in advance. When one

of these rays hits an obstacle (e.g., a wall), all voxels that the

ray previously touched are considered as free voxels. Otherwise,

the voxels are considered as free or unknown, depending on the

current state of the OctoMap. This results in knowing the number

of free and unknown voxels in a predefined area, in each direction

from a specific position. Based on this information, a robot can

take appropriate actions to move to an unknown area to reduce

the total exploration time.

In general, all algorithms that directly cast rays into the map,

cast more rays than necessary because they cast a fixed number

of rays regardless of the design of the environment [31]. It is

shown in [32] that the computation time of Raycasting algorithm

increases as the predefined area increases. This is because the

number of rays depends on the predefined area and is not

affected by the occupied voxels (obstacles). The problem of

computational effort required to calculate the information gain

becomes even more apparent when using sensors that produce

large point clouds, such as LiDARs.

Moreover, in the RH-NBVP, the robot moves to the first node

of the best path before performing another planning iteration.

This may cause the robot to move back and forth in a small

area, changing the best path in each iteration. As the size of the

explored area increases, the RRT can easily reach the maximum

number of iteration and result in uncovered regions. Moreover,

if the distance to the next node is large, the RRT sampling time

increases significantly. This limitation is usually noticeable in

narrow and large environments.

D. Recursive Shadowcasting Algorithm Overview

Recursive Shadowcasting was first used in computer games

to calculate a FOV from a top-down perspective, where the FOV

is defined as a set of locations visible from a specific position

in a computer game scene [31]. The original RSC, proposed in

[6], considers a 2D FOV grid and initially sets all grid cells to

not visible. Then the grid is divided into eight octants centred

on the FOV source (S) and the cells within each octant are

traversed [31]. This traversal occurs within each octant by rows

or columns in ascending order of distance from the FOV source.

Fig. 3 shows the steps of the RSC on an octant. When a cell

is traversed, its visibility state is set to visible. However, when

an occupied cell (the black cell) is encountered, an octant is

recursively split into smaller regions (Fig. 3 b) and c)), which

are bounded by rays cast from the FOV source to the corners

of the occupied cell (blue dashed rays). The cell traversals

are then continued within each smaller region. As marked in

Fig. 3 a) with green arrows, the algorithm first processes rows

one through five without encountering any occupied cell. In line

six, three occupied cells are encountered, splitting the free region

in two and causing the algorithm to call itself recursively. The

recursive call then processes the free region on the left (Fig. 3 b)),

while the main iteration of the algorithm continues processing
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Fig. 3. Steps of the RSC on a single octant.

the free region on the right. Note that even if a ray only grazes

the edge of a cell, that entire cell is set to visible.

The result of the RSC on an octant in 2D is shown in Fig. 3 d),

where occupied cells are shown in black, visible cells in yellow

and invisible cells in grey. Similarly, the main goal of the RSC

in the information gain calculation is to find unknown voxels of

the OctoMap among the visible cells.

Similar to the FOV grid in 2D computer games, the 3D

OctoMap used in this letter is divided into cube-shaped voxels,

allowing us to take advantage of the RSC and calculate the

information gain in a 2.5D environment. Note that the rays of

the RSC in 3D would emanate from a single point, giving us

a more accurate estimate of the information gain. Currently,

we assume that the 2.5D approximation would lead to a fairly

accurate and fast computation of the information gain, so we

consider the implementation of the RSC in 3D as future work.

To the best of our knowledge, this is the first time that the RSC

algorithm is used in the exploration of the environment. In the

next section we show how the RSC is used for the evaluation of

RRT paths.

E. Cuboid-Based Path Evaluation

The RRT algorithm samples nodes n =
[

x y z
]T

∈ R
3.

A collision-free RRT path is denoted as µ ∈ M , where M
denotes the set of all RRT paths. Let µj , j ∈ (1, 2, ..., N) be the

path edge between nodesnk−1 andnk, where k ∈ (1, 2, ..., N +
1) and N is the number of nodes. For path edge µj , we define

information gain I(µj) ∈ R as a measure of an unexplored

region of the environment that is potentially visible from the

center ck of this path edge.

To determine the information gain I(µj) using the RSC, we

first place a cuboid around the edge µj . The cuboid center point

is ck, while the cuboid length is lc = ‖nk − nk−1‖. The cuboid

width and height are defined by the parameter Irange, which

depends on the used sensor range and the environment size.

The point ck is the FOV grid source inside which the RSC is

performed, while the cuboid determines the borders of each FOV

grid. The FOV grid is obtained as a 2D slice of the OctoMap at

point ck and the RSC is performed 360◦ with a horizontal step

size r. Additionally, the cuboid is adjusted to the slope of each

edge. The voxels considered for computing the information gain

should be within the cuboid and the specified boundaries of the

environment. An illustration of the cuboid centered at the path

edge is shown in Fig. 1. We simplified the illustration showing

the performance of the RSC on the first 2D OctoMap slice. As

described, the algorithm is performed on each slice and on each

path edge.

Note that the maximum cuboid length lmax is predefined

according to the size of the environment, because calculating the

information gain on a large path edge using only one center, that

is, one FOV grid for RSC, may result in missing information

and poor information gain calculation. In other words, when

lc > lmax we add intermediate FOV sources to cover the path

edge and to achieve lc < lmax.

To form the information gain of the nodenk , edge information

gain I(µj) is weighted with the negative exponential of the cost

to travel along the path up to nk, similar to the one proposed in

[2] and used in [1]:

I(nk) = I(nk−1) +
I(µj)

eλL(nk,nk−1)
, (1)

where λ is a positive constant,L(nk,nk−1) is Euclidean distance

between nodes nk and nk−1. The constant λ weighs the impor-

tance of the robot motion cost against the expected information

gain. A small λ gives the priority to the information gain, while

λ → ∞ means that the motion is so expensive that the shortest

path is selected. The value of λ is experimentally determined.

As for the complexity of algorithms in the information gain

calculation, performing a single RC with n horizontal and m
vertical rays with the resolution r of the map scales with O( 1

r4
)

in [1], O(nm/r) in [7], while our approach with the RSC scales

with O(mn logn
r

). By using the proposed algorithm, the high

calculation effort required by the RC is avoided. The main reason

for the calculation effort reduction is the property of the RSC

that ensures each voxel is visited only once.

As presented in [32], [33], RSC has significantly better perfor-

mance among existing FOV algorithms. However, [31] showed

the drawback of RSC algorithm when the grid size increases

to tens of thousands of cells. This is because it performs a

relatively large number of operations per cell. Nevertheless, we

find the RSC suitable for our exploration environments, sensor

specifications and OctoMap size.

F. Exploration of the Best Path

According to Eq. 1, path information gain I(µ) is equal to

information gain of the path’s last node and presents the volume

of the unknown space that is covered along the path, combined

with the cost of going there.

In each iteration, our goal is to find the best path µbp, which

maximizes the information gain I(µ):

µbp = arg maxµ∈MI(µ). (2)
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Fig. 4. An illustration of the exploration process. Green path with green
waypoints is the best path. Purple paths with yellow waypoints are other paths
of the RRT. The UAV body (cyan color) denotes the first point of the path.
a) The initial tree with selected path leading towards upper right portion of
the environment. Orange cuboids along the right path of the RRT illustrate the
volume where the information gain is computed. b) The second iteration with
tree leading towards the right of the environment. c) The third iteration leading
towards the left portion of the environment. d) Exploration finished and the final
map of the environment obtained after third iteration.

As soon as the best path µbp is selected, we address the

yaw angle along that path. In the RH-NBVP the yaw angle

is randomly sampled during the exploration, which limits the

sample efficiency of the exploration. This limitation is briefly

addressed in [8], [9], and is not the scope of this letter. Since we

use a LiDAR sensor with horizontal FOV αh = 360◦, which is

attached to the UAV with some pitch angle, our strategy is to

align the yaw angle towards the next point on the path.

After the path has been augmented with the yaw angle, it

is forwarded to the trajectory planner. Within this letter, we

use the Time Optimal Path Parametrization by Reachability

Analysis (TOPP-RA) algorithm developed in [34]. Apart from

the waypoints, inputs for the TOPP-RA are also velocity and

acceleration constraints, which are maximally set to the UAV

physical limitations. The planned trajectory is then executed by

the UAV, and a new cycle for determining the best path is started

after the UAV stops. The exploration process is performed until

the entire environment is explored, yielding the environment

map. The described process is depicted on Fig. 4.

G. Dead End Resolving Strategy

One of the drawbacks of the RH-NBVP algorithm is the

dead end state. It especially occurs in large and narrow envi-

ronments where the RRT algorithm might end up stuck in a

dead end, trying to grow the tree up to the node with non-zero

information gain. This results in both higher computation and

total exploration time. Inspired by the idea from [9] and [7],

we propose a different approach to resolve a dead end state.

Both [9] and [7] use RRT planner for local exploration and

frontier points for global exploration. In [9], a Breadth First

Search (BFS) is used to count reachable frontier points around

visited locations, while in [7], frontiers are defined as nodes

Fig. 5. An illustration of returning from the dead end to the best node inside
the proposed recovery strategy. The current node n0 is marked green, while the
yellow star denotes the best nodenbn. The blue path is calculated using the RRT
and is traversed before reaching the dead end. The orange path connects the nodes
of the blue path from n0 to nbn to get the shortest possible collision-free path,
which is then executed. Grey part of the illustration represents an unknown space.

with a high potential information gain from previously expanded

RRTs. However, in [7] the information gain is updated only

for the nodes in the previously defined range from the current

position of the robot. Our approach mitigates the problems of

these approaches (computational requirements of frontier search

and search only in a limited range). We say that a dead end

state occurs when the information gain of the best path (I(µ)) is

smaller than a threshold (It) and when the fraction of the known

space (Vfree ∪ Vocc) in the entire space (V ) is less than 95 %.

When the robot is in a dead end, the main idea is to return the

robot to a previously-visited node that has the highest informa-

tion gain at the moment, without growing new RRTs, using only

previously visited nodes. Information gain is estimated again for

each previously visited node by estimating the unknown volume

around the nodes using the RSC. Note that the information gain

of the path to the node and the corresponding distance (Eq. 1) are

not considered. In our observation, the information gain of the

previously visited nodes is usually zero or very small. The RSC

quickly estimates the best node, nbn, to return to and resolve the

dead end.

The previously visited nodes are used to form an obstacle-free

path to node nbn. However, instead of backtracking along this

path, we use an algorithm to try to find the shortest and collision-

free path µ starting from nbn up to the current node n0. First, if

there is a collision-free path between nbn and the current node

n0, the pathµ is returned. If this is not the case, algorithm tries to

find a collision-free path between some other node (denoted as

nr) to the current node n0. When this is achieved, nr becomes a

new current node (denoted nshortest). We repeat this procedure

until we can connect nodesnbn andn0. When the robot returns to

the best node, dead-end resolution process is considered finished

and the standard exploration process continues. Fig. 5 illustrates

the process of dead end resolution by returning to the best node

in a simple environment. Note that a simple backtracking along

the previous path (denoted with a blue line in Fig. 5) would result

in a much longer return path. The main purpose of this dead end
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TABLE I
EXPLORATION PARAMETERS

resolving strategy is to shorten the return to the best node and,

therefore, avoid unnecessary visits to the previously explored

parts of the environment.

IV. SIMULATION ANALYSIS

A. System Setup

Simulations are performed in the Gazebo environment using

the Robot Operating System (ROS) and a model of the custom

built Kopterworx quadcopter. More details about our system and

the control structure can be found in our previous work [35]. The

quadcopter is equipped with a Velodyne VLP-16 LiDAR sensor

featuring a horizontal and vertical FOV αh = 360◦, αv = 30◦,

respectively. For collision checking, dimensions of a prism

around the UAV are set to l = 0.6 m, w = 0.6 m, h = 0.5 m.

Parameters used in our experiments are shown in Table I. The

proposed algorithm is compared with the RH-NBVP and a more

recent autonomous exploration planner (AEP) [7]. Parameters

dplannermax = 1.5 m, λ = 0.25, Nmax = 20 and the maximum

RRT tree edge length of 1.5 m refer to the setup of the RH-NBVP

explained in [1] and are set to indicated values. The parameters

used in the AEP are set to the default values explained in [7], with

velocities as given in Table I. We adapted the NBVP and AEP

to our quadcopter, equipped with a LiDAR and to our control

system to allow the fairest possible comparison. Note that in

the AEP the yaw optimization method is neglected, while the

horizontal FOV of the sensor is 360◦. We run three scenarios

with different sizes and resolution r and analyze the results.

All simulations have been run 10 times on Intel(R)Core(TM)

i7-10750H CPU @ 2.60GHz × 12.

The first scenario refers to a 10 m × 20 m × 3 m relatively

simple apartment space used in [1], [7], [17]. The second sce-

nario refers to a 20 m× 20 m× 2.5 m maze environment used in

[17], [36]. Finally, the third simulation scenario refers to a 30 m

× 30 m× 2 m large maze environment used in [8], [9]. The robot

performs a simple trajectory in a close proximity to the initial

point, to ensure the planning is performed with some initial

information. Additionally, we assume a reliable state estimation

and focus on the exploration.

B. Comparison of Raycasting and Shadowcasting

We compared the performance of the RC (used in the RH-

NBVP), the sparse RC (used in the AEP) with our RSC-based

Fig. 6. The explored volume in total exploration time for the apartment
scenario.

planner in all three simulation scenarios and at different resolu-

tions. The casting methods in the information gain calculation

affect the computation time tc and thus the total exploration

time texp. The computation time is equal to the time required

to select the next best path µbp in each iteration (growing RRT,

path evaluation and µbp selection). For AEP, tc includes both

the time for gain estimation and collision checking (described

in [7]). Computation times and total exploration times for all

10 runs are shown in Table II. It can be observed that the

computation times for the RH-NBVP approach are significantly

higher than in our approach, especially when using a high

resolution map. Furthermore, the use of RC in the RH-NBVP

causes the computation time to increase as the complexity of the

environment increases. On the other hand, the computation times

in the AEP depend mainly on the size of the environment and the

number of RRT nodes, rather than on the map resolution (which

is especially evident in the large maze scenario). For instance, in

the apartment scenario at the resolution r = 0.2 m, our planner

runs almost thirteen times faster than the AEP, and up to ten

times faster for the maze and large maze scenarios. Although the

authors in [7] report lower computation times for the apartment

scenario than in our simulation runs, we assume that this is

caused by using a different sensor FOV and the maximum range

of the sensor. The computation time in the proposed planner

increases with the finer resolution in all scenarios, but is still

low enough not to affect the exploration progress. The results

have confirmed that the RC algorithm may cause a bottleneck

in larger and more complex scenarios during the exploration. In

other words, the robot has to stand still in the air for about 3

s to decide about the next best path. In simulation analysis, we

noticed that setting the parameter inside which RC is performed,

dplannermax , to higher values leads higher computation times

(up to 10 s).

C. Global Exploration Using Proposed Planner

Simulations were also performed to compare the total ex-

ploration time of our exploration planner with the RH-NBVP

and the AEP. Fig. 6 shows the explored volume over time for

algorithms at a voxel resolution of r = 0.2 m and r = 0.4 m.

It can be observed that our planner and the AEP complete

the exploration of the entire area at almost the same time and

remarkably faster than the RH-NBVP, especially when using a

higher resolution. The graph shows that our method and the AEP

need around 100 s to explore the apartment scenario at different

map resolutions, while the RH-NBVP needs more than 250 s.

Exploring the apartment scenario takes slightly longer in the

original setup [7], requiring about 200 s to explore the entire
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TABLE II
THE TUPLES OF MEAN AND STANDARD DEVIATION FOR THE TOTAL EXPLORATION TIME texp AND THE COMPUTATIONAL TIME PER ITERATION tc

Fig. 7. The explored volume in total exploration time for the maze scenario.

area. However, a method proposed in [17] explores 95 % of the

environment in 80 s and 151 s at a resolution of 0.4 m and 0.1

m, respectively.

In the maze scenario, the algorithms were tested using a

voxel resolution of r = 0.1 m and r = 0.2 m. We used higher

resolutions because the environment contains some narrow cor-

ridors that the UAV cannot navigate through when a coarse

resolution is used. The explored volume in time is shown in

Fig. 7. Our method explores the entire environment more than

twice as fast as the RH-NBVP and about 1.5 times faster than

the AEP. All planners behave similarly at the beginning, but over

time the RH-NBVP and the AEP show their drawbacks, which

affect the total exploration time. Our planner explores the maze

environment in 209.24 s with a standard deviation of 31.03 and

in 350.05 s with a standard deviation of 87.33 s for a resolution

of 0.2 m and 0.1 m, respectively. The total exploration time is

comparable to the results of [17], whose method explores 95 %

of the environment in 177 s and 330 s for a resolution of 0.2 m and

0.1 m, respectively. The reported results confirm the efficiency of

our planner. A thorough comparison of the experimental results

with [17] is not possible, due to different equipment and setup

used, without the source code provided. The OctoMap of the

maze scenario generated by our planner at r = 0.2m is shown in

Fig. 8 a) together with the corresponding UAV path and the nodes

in which the next best path is calculated. Taking these results

into consideration, it is shown that combining the cube-based

approximation in the path information gain estimation, instead

of considering the nodes only (using either RC or the sparse RC),

results in a faster exploration. The random sampling of our, the

RH-NBVP and the AEP algorithms leads to revisiting regions,

but executing only the first node instead of the whole path results

in a higher total exploration time.

D. Evaluation of the Dead End Resolving Strategy

The performance of the dead end resolving strategy is tested

on a challenging large maze scenario with dead ends and narrow

Fig. 8. The OctoMap of maze and large maze scenarios generated by our
exploration planner. In a), the path traversed by the UAV in the maze scenario
during exploration is marked in pink. The start and end positions of the UAV
are highlighted. The nodes in which the next best path µbp is calculated are
marked with blue circles. In b), the pink dashed line shows the path followed
during the exploration of the large maze scenario. When a dead end state occurs
(yellow marker), the shortest path (solid white line) to the best node (red circle) is
executed. The visited nodes that form the shortest path for return are marked with
orange circles. The UAV continues to explore unknown (white) space executing
green dashed path.

Fig. 9. The explored volume in total exploration time for the large maze
scenario.

passages, and further compared to [1] and [7]. The resolution is

set to r = 0.1 m and r = 0.2 m for all planners. The results

are shown in Fig. 9. The results demonstrate that our algorithm

completes the exploration in 17 minutes and 22 minutes for a

resolution of 0.2 m and 0.1 m, respectively. That is more than two

times faster on average than the RH-NBVP. The graph shows

that the RH-NBVP spends a large amount of time growing the

tree when dead end states occur. The authors in [7] use frontiers

to deal with dead ends, and a detailed comparison with the

proposed method is conducted. Repeated experiments confirm

that the AEP (adapted to our control system), at both resolutions,

was unable to complete the exploration of such a challenging

scenario, despite our best efforts to follow the parameter tuning

instructions from [7].

When compared to other state-of-the-art results that use the

large maze scenario and history tracking methods, [8] reports
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time of 21 minutes at a resolution r = 0.1 m and vmax = 1.0
m/s, while [9] finished the exploration in 30 minutes (vmax =
1.2 m/s). Note that the system setup as well as the maximal

exploration velocity are not the same as in our case. The Oc-

toMap of the large maze scenario and an instance of the proposed

strategy for resolving dead ends are shown in Fig. 8 b). As can

be observed, the path to the best node is successfully shortened,

leading to faster exploration.

V. CONCLUSION AND FUTURE WORK

This letter presents a novel sampling-based planner for

autonomous 3D exploration. The planner is capable of au-

tonomously exploring a previously unknown bounded area and

creating an OctoMap of the environment. The results showed

an improved behaviour in terms of both computation and total

exploration time compared to state-of-the-art strategies. The

proposed information gain calculation and path evaluation en-

sures target evaluation in a short computation time, while a

novel dead end recovery algorithm speeds up the exploration

process. Even though the proposed information gain calculation

method is implemented in 2.5D space, the planner explores the

3D environment and creates a 3D map using a 3D sensor system.

This 3D exploration planner has been successfully tested and

analysed in simulation scenarios.

For future work we consider testing our planner in an out-

door environment and extending our planner to a hybrid one,

combined with the frontier-based approach.
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ABSTRACT In this paper, we present a novel 3D autonomous exploration planner called the Autonomous

Semantic Exploration Planner (ASEP), designed for GPS-denied indoor environments. ASEP combines real-

time mapping, exploration, navigation, object detection, and object labeling onboard an Unmanned Aerial

Vehicle (UAV) with limited resources. The planner is based on a frontier exploration strategy that utilizes

semantic information about the environment in the exploration policy. The policy is extended to incorporate

both geometric and semantic information provided by a deep convolutional neural network (DCNN) for

semantic segmentation. This semantically-enhanced exploration algorithm directs the exploration toward

the quick labeling of all objects of interest in the environment. An extended path planning algorithm

continuously checks for path validity, enabling safe navigation in challenging environments. The overall

system is designed to be modular and easily extended or replaced with custom modules. The proposed

planner is evaluated and analyzed in both simulation and real-world environments using aUAV. Experimental

studies demonstrate the effectiveness of the ASEP strategy compared to state-of-the-art methods. Results

show that the objects in the environment are explored faster and total exploration time is reduced

while the computational time remains consistent regardless of the semantic segmentation processing

involved.

INDEX TERMS Autonomous exploration, semantic segmentation, UAV, path planning, object labeling.

I. INTRODUCTION

Autonomus exploration using UAVs has gained significant

attention in recent years due to its numerous advan-

tages, including operations in inaccessible or hazardous

environments, increased efficiency and cost-effectiveness,

mapping and monitoring capabilities, disaster response and

search-and-rescue operations.When autonomously exploring

indoor environments using a UAV with limited resources,

where GPS signals may not be available, it can represent

The associate editor coordinating the review of this manuscript and

approving it for publication was Heng Wang .

a significant challenge. Industries such as warehousing,

logistics, inspection, or maintenance can benefit from the

advancements in autonomous UAV exploration to optimize

operations, reduce costs, and improve safety.

Using the semantic data from the environment in

autonomous exploration is a marginally researched area

so far. Generally, it includes simultaneous object detection

using semantic segmentation and autonomous exploration.

The result is a map of a previously unknown area with

labeled objects of interest. Within this work, our objective

is to determine the position and semantic label of objects of

interest (hereafter referred to only as label objects of interest)
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in warehouse environments during exploration. These objects

of interest may include shelves, boxes, and doors, among

others, while the set of objects of interest is determined prior

to exploring the environment. By using the information about

the objects in the environment, our exploration system can

effectively identify key regions with a high concentration

of relevant objects, resulting in faster labeling of objects of

interest, and at the same time building a map of the previously

unknown environment. The obtained map with labeled

objects can be used then for navigation, detailed visual

inspections of equipment and infrastructure, counting boxes

in warehouses, etc. Exploration algorithms aim to explore

completely or partially unknown environments, usually as

fast as possible, considering the data from the environment.

State-of-the-art methods are focused on extracting data from

metric maps, such as the widely used OctoMap [2] and

including this data into the exploration policy. The explo-

ration methods are mostly divided into frontier-based [3] and

sampling-based [4]. In the literature, most criteria considered

by exploration strategies refer only to metric information,

i.e., information that can be derived from metric maps that a

robot builds. Recently, a few exploration strategies proposed

using semantic features to evaluate candidate locations and

select the next best goal [5], [6], [7], which will be explained

in detail in the following section. Semantic features from

the environment can be mapped into the OctoMap so that

each voxel is assigned additional information describing

its semantic label. This approach is introduced in [8] and

used in [5]. On the contrary, to avoid altering the OctoMap

structure and make the approach applicable to other map

representations, semantic features can be labeled in the

3D environment to have the position and semantic label,

as described in this paper. Presented in this way, semantic

features can be easily used in the exploration strategy to speed

up object labeling. To the best of authors’ knowledge, there is

no semantically-enhanced exploration algorithm that directs

the exploration to quickly label all objects of interest on the

map.

Thus, we present an autonomous UAV exploration planner

called Autonomous Semantic Exploration Planner (ASEP),

that enables real-time mapping, exploration, navigation,

object detection and labeling in GPS-denied indoor envi-

ronments. By leveraging onboard sensors and processing

capabilities, a UAV can detect and identify objects of interest,

such as equipment, products, or inventory, in real time,

providing valuable information for the exploration algorithm.

We provide the integration of real-time localization, mapping

and semantic segmentation onboard a UAV equipped with

an RGB-D camera. The semantically segmented object

from the image frame is projected on a 3D map of the

environment. The proposed approach takes advantage of the

semantic information extracted in 3D so that a new utility

function is introduced to guide the UAV toward the objects

in the environment. The proposed planner is thoroughly

evaluated in both simulation and real-world environments

and compared with state-of-the-art methods. The results

demonstrate the proposed strategy is capable of exploring

unknown environments and labeling objects effectively.

A. CONTRIBUTIONS

The key contributions of this work are summarized as

follows:

• An exploration strategy that utilizes the previously

introduced frontier-based method [9] to generate can-

didates, and combine semantic utility functions to

iteratively explore the unknown environment and label

all the objects of interest. This includes an extension

of the information gain function to incorporate not

only geometric but also semantic information of the

environment.

• A 3D object labeling during exploration. This includes

extraction of semantically segmented objects from 2D

images and processing camera depth point cloud to

estimate the position of the object in the environment.

• An overall system for mapping, exploration, path plan-

ning and navigation that is modular and can be extended

or replaced by a custom module. The system utilizes

a low-cost sensing system and ensures exploration and

object labeling onboard a UAV with limited resources.

B. ORGANIZATION

The paper is organized so that in Section II we give an

overview of the state-of-the-art of 3D exploration methods

and position our work in relation to them. Section III

describes problems solved within this paper while Section IV

introduces system and sensor models used in the proposed

method. Section V is the core of the paper and contains details

of the proposed planner. Results of simulations performed

with a UAV and their analysis are presented in Section VI

while Section VII shows our experiment setup and results in

a real-world indoor environment. The paper is concluded in

Section VIII.

II. RELATED WORK

In the context of warehousing, UAVs are used to collect data

and provide certain information for tasks such as inventory

management, monitoring stockpiles, and inspecting hard-

to-reach areas within a warehouse facility. UAVs used in

warehouse exploration missions should be able to effectively

navigate the environment and gather information. To achieve

this, UAVs should be able to localize themselves, detect

objects, explore and map the environment. This paper mainly

focuses on environment exploration and object labeling on

the map. Thus, in this section, state-of-the-art methods for

autonomous exploration are overviewed.

There is a wealth of earlier work related to autonomous

exploration, especially for 2D, but more recently also for 3D

environments. Typical exploration approaches can be roughly

classified into frontier-based, sampling-based, and hybrid

strategies, even though there is a significant overlap between

these categories.
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Acharacteristic of frontier-based approaches is exploration

by approaching a selected point on the frontier between

the explored and unexplored portion of the environment.

This idea was first introduced by Yamauchi in [3] and

subsequently evaluated in more detail in [10]. In each

iteration, the next best goal is a frontier point closest to

the robot. The simplest approach to 3D exploration is to

use 2D frontier-based exploration with 3D maps at different

heights (oftentimes called 2.5D approaches) [11]. A complete

frontier-based solution for 3D environments is developed

in [12], where the next best goal is the frontier that minimizes

the velocity change to maintain a consistently high flight

speed. It is shown that this approach outperforms the closest

frontier method [3]. Frontier-based exploration approaches

for 3D environments are also researched in [9], [13], [14],

[15], [16], [17], and [18].

Sampling-based approaches aim to determine a (minimal)

sequence of robot (sensor) viewpoints to visit in the environ-

ment, until the entire space is explored. Potential viewpoints

are typically sampled near the frontier or randomly. Then

these viewpoints are evaluated for the potential information

gain and the next best viewpoint is assigned. One of the

first sampling-based methods is presented in [19] and then

extended in [4], [20], and [21]. In [4], authors proposed the

Receding Horizon Next-Best-View planning (RH-NBVP),

which uses a Rapidly-exploring Random Tree (RRT) [22],

[23] to guide a UAV into the unexplored area. While the

method showed good scaling properties and performance in

a local exploration, it is not resilient to dead ends, resulting

in poor global scene coverage and, thus, a high overall

exploration time, as shown in [12], [15], and [24], and in

our previous work [9]. Improvements of the RH-NBVP are

presented in [25], [26], [27].

Hybrid strategies combine the advantages of both

frontier-based and sampling-based approaches. Selin et al. [28]

successfully combine the RH-NBVP with conventional fron-

tier reasoning to compensate for a poor performance in global

exploration. In other words, [28] plans global paths towards

frontiers and samples paths locally. Meng et al. [29] samples

viewpoints around frontiers and finds the global shortest tour

passing through them. Similarly, Respall et al. [30] samples

viewpoints in the vicinity of a point of interest near a frontier,

and additionally memorizes nodes that indicate regions of

interest in a history graph to reduce the gain calculation

time.

Apart from classification related to candidate extraction

and evaluation, exploration algorithms differ in the map used

for exploration policy. Besides the volumetric map, such as

the OctoMap [2], the environment can also be represented

by a topological map with semantic features [31], which

can improve the efficiency of the robotic exploration by

facilitating the next best goal selection. The nodes on the

graph that contain the semantic features are used to guide the

exploration. Gomez et al. [32] presented a hybrid mapping

approach that combined topological mapping with 3D dense

mapping for large indoor 3D environments.

Recently, more andmore exploration systems use semantic

features from volumetricmaps to evaluate candidate locations

and select the next best goal. The authors in [6] extend the

sampling-based approach from [4] to include the semantic

segmentation information in a harbor-like environment.

Similarly, Ashour et al. [5] presents an exploration strategy

for UAVs that integrates environmental semantics for the

object mapping. The approach combines semantic infor-

mation with autonomous exploration techniques to guide

the exploration path and enhance object mapping efficiency

using the approach from [8]. Instead of mapping objects

during the exploration, objects can be extracted from 2D

images and then converted to 3D point types using the

point cloud library (PCL). Previously, Wang et al. [33]

introduced the extraction of edges. Furthermore, most of

the semantic-aware exploration strategies are goal-oriented

(search for an object), such as [7], [34], and [35]. Authors

in [7] introduced a frontier semantic exploration method for

visual target navigation. Both frontier detection and semantic

segmentation are performed using neural networks.

Regarding the navigation and operations in the warehouse

environment using UAVs, Campos-Macias et al. [36] pre-

sented an autonomous navigation framework for capturing

inventory and locating out-of-place items while focusing on

the exploration in unknown 3D cluttered environments. They

used an RGB-D camera for depth sensing and a tracking

camera for the visual-inertial odometry. Kwon et al. [37]

demonstrated autonomous navigation for inventory inspec-

tion tasks in long and narrow warehouse aisles using a

low-cost sensing system. Their system consists of a relatively

small number of sensors, including three cameras, a laser

scanner and a range sensor.

Even though efforts to improve the efficiency, accu-

racy, and robustness of autonomous exploration have

shown promising results, it is important to note that a

semantically-enhanced exploration algorithm for onboard

UAV applications, which focuses on fast object labeling, has

not yet been developed in the literature. With this in mind,

we present a novel autonomous exploration strategy specif-

ically designed for UAVs with limited payload capabilities

and computational resources. Our approach integrates real-

time mapping, exploration, navigation, object detection, and

object labeling capabilities directly onboard theUAV. The key

component of our proposed strategy is a frontier exploration

planner that incorporates semantic information about the

environment into the exploration policy. By leveraging this

semantic understanding, our planner enables the UAV to

make informed decisions regarding which frontiers to explore

and, thus, directs the exploration toward the quick labeling

of all objects of interest on the map. By combining real-

time mapping, exploration, navigation, object detection, and

object labeling, our approach addresses the limitations of

VOLUME 11, 2023 107171

Chapter 8. Publications

78



A. Milas et al.: ASEP: An Autonomous Semantic Exploration Planner With Object Labeling

existing algorithms and provides a comprehensive solution

for autonomous exploration onboard UAVs.

III. PROBLEM DESCRIPTION

The main goal of the proposed approach is to explore a

bounded and previously unknown 3D space V ⊂ R
3 and to

label objects of interest in a 3D map as soon as possible. As a

basis for our approach, an OctoMapM is used, a hierarchical

volumetric 3D representation of the environment [2]. Each

cube of the OctoMap is denoted as a voxel (cell), which

can be free, occupied or unknown. Free voxels form the free

space Vfree ⊂ V , occupied voxels form the occupied space

Vocc ⊂ V and unknown voxels form the unknown space

Vun ⊂ V . Initially, the entire bounded space is unknown,

V ≡ Vun, and the unknown space decreases as the exploration

advances. The entire space is a union of the three subspaces

V ≡ Vfree∪Vocc∪Vun. The exploration problem is considered

fully solved when Vocc ∪ Vfree ≡ V \ Vres, where Vres is

residual space defined as an unexplored space, which remains

inaccessible to the sensors. Namely, sensors have limitations

in perceiving surfaces, leading to an inability to explore

hollow spaces or narrow pockets within a given setup.

The object labeling in a mapM is executed in parallel with

the exploration. Let O be the set of objects of interest present

in the map. The set O is defined as:

O = {oi|i = 1, 2, . . . ,Nobj}, (1)

where Nobj is the total number of objects in the 3D map. Each

object oi is represented by its 3D position and its semantic

label si, selected from the set of semantic labels:

S = {si|i = 1, 2, . . . ,Nlabels}, (2)

where Nlabels is the total number of different semantic

labels. It is preset and depends on the elements expected

in the environment. In this work, the focus is on static

objects and the semantic labels are related to a warehouse

scenario. Each object oi is defined as oi = (pobji , si),

where pobji =
[

xi yi zi
]T

∈ R
3 is the object position.

The semantic labels of objects are obtained by the semantic

segmentation algorithm described in IV-C. Given the nature

of this problem, it is crucial to employ an algorithm capable

of detecting objects and estimating their positions in real-

time, while exploring andmapping the unknown envronment.

Additionally, a suitable and obstacle-free path should be

computed online. The autonomy of the algorithm requires the

planner to run onboard with limited computational resources.

IV. SYSTEM OVERVIEW

In the subsequent section, a detailed description of the

proposed system is provided, including the sensors used

and the methodologies employed for the simultaneous

localization and mapping (SLAM), as well as semantic

segmentation based on 2D images and object pose estimation

from RGB-D data.

An overview of the proposed system is given in Fig. 1.

It shows the proposed semantically-aware exploration system

architecture, which consists of five main modules: 1) system

input, 2) localization and mapping, 3) semantic data extrac-

tion, 4) exploration, and 5) path planning and navigation.

A detailed description of all modules is given in the following

sections.

A. UAV AND SENSOR MODELS

In this work, the exploration is performed with a UAV that

has no prior knowledge of the environment. Although the

concepts are explained with the UAV in mind, the same

approach is applicable to other autonomous robots equipped

with a camera or other sensors that can be used to utilize

SLAM and build an OctoMap.

The UAV is represented with a state vector x =
[

pT ψ
]T

∈

R
4 that consists of the position p =

[

x y z
]T

∈ R
3 and the

yaw rotation angle around the body z axis ψ ∈ [−π, π).

Furthermore, the algorithm requires dynamical constraints in

terms of velocity ẋmax ∈ R
4 and acceleration ẍmax ∈ R

4

for each degree of freedom. For collision checking, it is

considered that theUAV is inside a rectangular prism centered

at p, with adequate length, width and height l, w, h.

The algorithm relies on a maximum range of the sensor

Rmax ∈ R with horizontal and vertical Field of View (FOV)

in range, αh, αv ∈ (0◦, 360◦], respectively. This allows our

algorithm to work with point-cloud-producing sensors with

various FOV, such as cameras with limited FOV, and LiDARs

with limited αv. In this paper, an RGB-D camera that provides

rich visual and depth information is used, allowing the UAV

to build a detailed and accurate map of the environment and

localize itself using the visual SLAM method.

B. LOCALIZATION AND MAPPING

The sensing system described above allows the robot to

estimate its pose and capture point clouds of its environment.

However, this sensed data is not sufficient by itself to create

a consistent global 3D map. As the robot moves around the

world, measurements from these sensors must be integrated,

taking into account the motion of the robot, to create a

coherent global representation of its surroundings, i.e., a map.

In many cases, the pose of the robot in the map will be

estimated at the same time as the map is built, which is often

known as localization; in this case, the task is usually referred

to as SLAM.

During autonomous exploration, robots need to navigate

in unknown or partially known environments, gradually

perceiving the environment through streaming data provided

by onboard sensors. A majority of the 3D strategies use a

metric map, an OctoMap [2], in order to navigate through

3D space and visualize the environment. The OctoMap is

a hierarchical volumetric 3D representation of the environ-

ment. The OctoMap can be generated using the input from

the SLAM algorithm [39], as shown in [9], or with raw data

from a sensor system, such as a laser scanner or a camera,

as demonstrated in [27]. In the proposed system, a camera

point cloud is used to generate an OctoMap, as shown
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FIGURE 1. Overall schematic diagram of the 3D exploration. The system input module consists of a forward-facing camera that produces
input data for both SLAM and OctoMap creation. The semantic segmentation module and object pose extraction module ensure object
recognition and object pose estimation in a 3D map, respectively. The semantically-enhanced exploration method generates a target point
towards which the robot plans its path and navigates. The navigation system relies on an off-the-shelf SLAM system with loop closing and
relocalization capabilities [38], which is fed with RGB-D images.

in Fig. 1. Localization and mapping module results in an

OctoMap of the environment and in the pose provided by a

SLAM algorithm. An OctoMap is used for both exploration

(frontier detection) and path planning and navigation module

(collision-free navigation).

For visual SLAM ORB-SLAM3 [38] is utilized, which

performs visual, visual-inertial and multimap SLAM with

different camera types (monocular, stereo and RGB-D).

Within this paper, RGB-D camera is used to perform

ORB-SLAM3. It uses depth information to synthesize a

stereo coordinate for extracted features on the image. This

way SLAM system is agnostic of the input being stereo or

RGB-D. As shown in [40] and [41], the RGB-D SLAM

outperforms state-of-the-art methods in most sequences on

TUM RGB-D dataset.

To avoid possible sudden jumps resulting from the

ORB-SLAM3 algorithm loop closures, a multi-sensor

fusion method introduced in [42] is used. In this case,

the multi-sensor fusion method takes into account the

inertial measurement unit (IMU) data obtained from the

LPMS-CU2 unit, together with the pose measurements from

the ORB-SLAM3.

C. 2D-IMAGE-BASED SEMANTIC SEGMENTATION

An input image from an RGB-D camera can be represented

as a 2D array of pixel values. Semantic segmentation is a

computer vision technique that involves labeling each pixel

of the image with a specific class or category. The objective

of the semantic segmentation is to predict the segmentation

map for the input image, but instead of containing pixel

values, it contains the predicted semantic labels for each

pixel. To each object of interest, oi corresponds a collection of

pixels that form a distinct entity that can be visually identified

and distinguished from the background or other elements in

the image. Then, using a semantic segmentation algorithm,

the semantic labels si for each object oi can be determined.

In other words, the goal is to find a function f : O −→ S

that maps each object to its corresponding semantic label.

Given a number of semantic labels Nlabels, the determination

of semantic labels for each object can be expressed as:

f (oi) = sj for 1 ≤ i ≤ Nobj, 1 ≤ j ≤ Nlabels, (3)

where oi is the object, and sj is a semantic label, from the set

S and for the given object.

By utilizing deep learning models, this approach can

accurately segment objects and regions of interest in

2D images. In our work, for semantic segmentation, the

HRNet [43] is used, which is a recently proposed model

that retains high-resolution representations throughout the

model, without the traditional bottleneck design. The model

architecture is shown in Fig. 2.

TheHRNetmodel for the 2D image semantic segmentation

is used since it showed enviable performance results [45].

Furthermore, it is compact, fast, robust and easy to use,

enabling the model adaptation to work on CPU only,

making it suitable for applications running on UAVs with
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FIGURE 2. HRNet architecture applied to the task of semantic segmentation. The input image from the Gazebo simulator contains a shelf and boxes. The
corresponding output image shows that the HRNet has successfully identified and segmented the objects. 
2021 IEEE. Reprinted with permission
from [44].

limited computational resources. The model is trained on the

ADE20K dataset with 150 objects and stuff classes included.

ADE20K is the largest open-source dataset for semantic

segmentation and scene parsing, released by the MIT

Computer Vision team [46], [47]. The ADE20K dataset is

selected since some datasets have a limited number of objects

(e.g., COCO [48], Pascal [49]) and in many cases, those

objects are not the most common objects one encounters in

indoor environments, or the datasets only cover a limited

set of scenes (e.g., Cityscapes [50]). Additionally, objects of

interest are extracted from the semantically segmented image.

In the case of warehouse exploration, the objects of interest

are shelves, boxes, doors, etc. Fig. 2 illustrates an example of

semantic segmentation performed on an image with a shelf

and multiple boxes. As shown in Fig. 2, it is not important

that each individual item (e.g., a box) from a set of items (e.g.,

boxes) is detected, but at least one that is then used in the

exploration policy.

D. OBJECT POSITION EXTRACTION

Once objects are semantically segmented in a 2D image, the

next step is to determine the 3D positions of those objects

in the world to be used for 3D exploration. This process

involves utilizing both an object mask and a camera point

cloud (Fig. 1). For each object oi with semantic label si from

the set S, the 3D position of the object pobji =
[

xoi yoi zoi
]T

needs to be found. The image mask serves as a binary

representation of the segmented objects in the image, where

each pixel belonging to an object is assigned a value of 1,

while pixels outside the objects are assigned a value of 0.

This mask essentially acts as a filter, isolating the regions of

interest from the background and other irrelevant elements in

the image. Masks are then extracted for each object detected

in the image. Alongside the image mask, a camera point

cloud C is utilized. In general, a point cloud C is defined

as:

C = {ci|i = 1, 2, . . . ,N }, (4)

where ci ∈ R
3 while N represents the number of

points. In other words, a point cloud is a collection of 3D

points that represent the surface geometry of objects in the

scene.

To perform the object position extraction, the algorithm

utilizes both the image mask and the camera point cloud.

It associates the segmented objects in the image mask with

their corresponding points in the point cloud. If Hoi is the

2D image mask corresponding to the object oi, then Coi ∈

C is the set of 3D points from RGB-D camera that is

aligned with the mask. It means that for the image mask of

each object, there is a corresponding point cloud. The 3D

position pobji of the object oi is then determined using point

cloud Coi . Namely, the centroid technique is used to estimate

the position from the points in Coi , expressed in the camera

coordinate frame:

pcobji =

∑Npixels
i=1 coi

Npixels
, (5)

where Npixels represents the total number of points aligned

with the image mask of the object. Note that the number of

points from the point cloud aligned with the mask is equal

to the number of pixels from the image mask. By aligning

the 3D points with the 2D image coordinates, the algorithm

determines the position of each object in the coordinate

system of the camera. Given the UAV state in the world

frame, the position of the object in a global 3D map can be

determined:

pwobji =





1 0 0 0

0 1 0 0

0 0 1 0



 · Tb
w · Tc

b ·
[

pcobji 1
]T
, (6)

where Tb
w ∈ R

4×4 is the homogeneous transform matrix

defining the position and orientation of the UAV in the

world coordinate frame, and Tc
b ∈ R

4×4 defines the

fixed transformation between the UAV body and camera.

Note that the first matrix in the equation transforms the

four-dimensional vector into a three-dimensional position

vector. This combined approach effectively maps the 2D

image objects to their corresponding 3D locations and

allows for accurate and robust extraction of object positions,

as shown in Section VI.

V. SEMANTIC-BASED EXPLORATION

In this section, the proposed semantic-based exploration

method is described in detail. Our previously developed

frontier-based method [9] is used to extract frontier voxels

(frontiers) from the OctoMap. Those frontiers are candidates

for the next waypoints of exploration. Each candidate is

evaluated using a semantically-aware policy and, finally, the

best candidate is selected as the next waypoint to which the

UAV plans a path and navigates. The main contribution in
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this part is the extension of the information gain function to

include semantic data of the environment.

A. FRONTIER DETECTION

A frontier, F , can be defined as a set of voxels vf with the

following property [9]:

F = {vf ∈ Vfree : ∃neighbor(vf ) ∈ Vun}. (7)

In other words, a frontier consists of free voxels with at least

one unknown neighbor. The center of a frontier voxel is often

called the frontier point. Since the space V is bounded, once

the frontier set becomes empty, F = ∅, the exploration is

considered done.

The OctoMap used for frontier detection is generated

using camera point clouds C . The OctoMap is in the form

of OcTrees, a format suitable for path planning. During

the exploration, the OctoMap M is built iteratively using

the method described in [2]. Within this work, the current

OctoMapM i is created from the current point cloud C i added

to the OctoMap explored so far:

M i = f (M i−1,C i),M0 = ∅. (8)

With each new-coming point cloud, a new OctoMap is

created according to Eq. 8. The OctoMap is updated as

each point cloud is processed. At the same time, a frontier

detection cycle is performed periodically to ensure that

frontiers are constantly updated. Please note that the rate of an

OctoMap update process is lower than the frontier detection

process since the OctoMap update is a computationally

demanding process, especially when using dense point

clouds.

Let V i
free and V i−1

free correspond to the free voxels in two

consecutive OctoMaps, M i and M i−1. The local frontier Fl ,

which contains only newly created frontier points can be

calculated as follows [9]:

Fl = {vf ∈ V i
free \ V i−1

free : ∃neighbor(vf ) ∈ V i
un}. (9)

The global frontier Fg is a union of all past local frontiers,

updated in each iteration and filtered to exclude voxels that

do not satisfy the property Eq. 7 anymore. Fg is calculated as

follows:

F ig = F il ∪ F igf

F igf = {vf ∈ F i−1
g : ∃neighbor(vf ) ∈ V i

un},F
0
g = ∅.

(10)

There is usually a large number of voxels in the global

frontier (referred to only as frontier from now on) and

their evaluation is expensive in view of the computing

effort involved. In our previous work, we cluster the global

frontier voxels F ig, as explained in [9], to get frontier voxels

which are candidates, denoted as Fc, for becoming a next

waypoint for the exploration. As stated in [9], the frontier

is clustered using multi-resolution clustering and mean shift

clustering algorithms. In the proposed approach, candidates

Fc are frontier Fg, clustered using the mean shift clustering

algorithm.

B. SEMANTICALLY-AWARE FRONTIER EVALUATION

The main goals of this approach are to explore the environ-

ment and label the objects of interest on the map. Labeled

objects of interest are included in the exploration policy,

assuming that this leads to faster object labeling. To evaluate

each voxel in Fc, the total gain of every candidate vc ∈ Fc is

defined using the following function:

G(vc) = αIgg(vc) + βIsg(vc), (11)

where α and β are positive constants, while Igg(vc) and

Isg(vc) represent geometric information gain and semantic

information gain of each candidate vc, respectively. There-

fore, α and β represent the trade-off between the geometric

and semantic information gain. The values of α and β are

experimentally determined and depend on the environment

layout.

The geometric information gain Igg(vc) is defined using the

function similar to the one proposed in [19]:

Igg(vc) =
Iun(vc)

eλL(pi,pvc)
, (12)

where λ is positive constant, L(pi,pvc) is the distance

between the robot’s current position pi and the position

of the candidate pvc, while Iun(vc) is a information gain

i.e. a measure of the unexplored region of the environment

that is potentially visible from vc. A high information gain

indicates that a specific vc provides significant information

about the environment, while a low information gain suggests

that the vc contributes less to reducing unknown space. The

information gain Iun(vc) is defined as the share of unknown

voxels in a cube placed around vc, as described in [9].

The cuboid width and height are defined by the parameter

Irange, which depends on the used sensor range and the

environment size. Often, the information gain is estimated

using a ray tracing algorithm and a real sensor field of

view instead of using a cube-based approximation. By using

the proposed simplification, the high calculation effort

required by ray tracing is avoided. The estimated distance

is approximated using the Euclidean distance between the

robot position pi and the position of the candidate (voxel

center) pvc, L(pi,pvc) = ∥pi − pvc∥. The constant λ

weights the importance of robot motion cost against the

expected information gain. A small λ gives priority to the

information gain, while λ → ∞ means that the motion is so

expensive that only vc near the robot is selected. As described

in [9], λ is set to satisfy the ratio between the desired

information gain and the distance with respect to the desired

behavior of the system. To include semantically segmented

objects from the environment in the exploration policy, Isg(vc)

is introduced, as shown in Eq. 11. Isg(vc) represents the

semantic information gain of each candidate. Let nobj be

the number of currently semantically segmented objects in
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the environment, then Isg(vc) is defined as:

Iobj(vc) =







1

L(pobj,pvc)
if L(pobj,pvc) ≤ Irange,

0 otherwise,

(13)

Isg(vc) =

nobj
∑

obj=1

Iobj(vc), (14)

where L(pobj,pvc) is the distance between the position of the

object pobj and the position of the candidate pvc. Position of

the object pobj is calculated as stated in Subsection IV-D.

In other words, the semantic information gain of each

candidate vc is the sum of all visible objects from the

candidate vc inversely proportional to the distance of the

object.

Finally, the best frontier voxel is one that maximizes the

total information gain G(vc):

vbf = argmax
vc∈FC

G(vc). (15)

The best frontier voxel vbf is forwarded as a target point to

path planner module.

C. PATH PLANNING AND NAVIGATION

As soon as the best frontier point is selected, it is forwarded

to a path planner as a waypoint. The robot starts to

follow the planned path and navigates to the best frontier

point vbf .

The path planning module includes the Rapidly-exploring

Random Tree Star (RRT*) algorithm, an extension of the

original RRT algorithm. Unlike the RRT, RRT* improves

the convergence properties of generated paths by performing

rewiring operations during the expansion phase, unlike

the RRT algorithm that terminates upon finding a first

feasible path. This adaptive rewiring step allows the tree

to continuously refine the path as more iterations are

performed, eventually converging to near-optimal solutions.

The approach utilized within this paper has been developed

in our previous work [51], work [51], [52], and is available

online [53]. In each iteration, the planner avoids occupied

voxels in the OctoMap and generates a path through the

free voxels up to the best frontier point. The crucial part

of the planner is the state validity checker, which evaluates

the validity of configurations based on system constraints

such as collision avoidance and environment-specific criteria.

As new configurations are sampled or interpolated between

the existing configurations during the RRT* expansion

step, the state validity checker is invoked to evaluate their

validity. In the practical implementation, the path planner

takes a binary representation of the OctoMap as an input,

which provides an efficient and compact description of

the environment. The UAV is represented as a rectangular

prism of appropriate dimensions within the state validity

checker.

Once a target point is specified and the state validity

checker is defined, the path planner creates a collision-free

path from the current UAV position to the target point.

However, during the path execution, the OctoMap is updated

and newly discovered obstacles may appear in or near the

path, as noticed in the experimental analysis within our

previous work [9]. To overcome this issue, the path planner

is extended to check the validity of the path during motion,

as the OctoMap is updated. For each point along the path,

it checks whether the UAV can execute it without interfering

with obstacles, as shown in Fig. 3.

If the validity checker detects an obstacle on the path up to

the current goal point, the UAV is stopped and the current goal

point is classified as unreachable. The exploration planner

starts a new iteration (frontiers update, the best frontier

selection and path planning). This ensures that the UAV

does not attempt to traverse newly discovered obstacles,

increasing the safety and efficiency of the exploration. Once

the goal point is set as unreachable, it is no longer considered

a candidate for the best frontier during the exploration

process. Re-planning to the same goal point is left for future

work.

A new cycle of the procedure to determine the best frontier

point is started either when the previous path is discarded or

after the previous frontier point is reached by theUAV.During

the exploration, the number of frontiers is changing and once

the entire environment is explored and a complete map of the

environment is created, the exploration process is considered

done.

The path execution and UAV control are achieved using an

MPC-based tracking method. The original implementation is

presented in [54] while an adapted version of their work is

presented in [55] and used in this paper. The main motivation

for using this tracking method is that it allows the UAV

to smoothly follow and quickly change the UAV trajectory

based on the current system state and model dynamics.

Furthermore, the tracker enables safe and stable flight,

regardless of the target point resulting from the exploration

planner.

VI. SIMULATION ANALYSIS

Simulations are performed in the Gazebo environment using

the Robot Operating System (ROS) and a quadcopter. The

quadcopter is equipped with a camera with specifications

from Intel(R)RealSense(TM) Depth Camera D455. It has

a horizontal and vertical FOV αh = 90◦, αv = 65◦,

respectively, and maximum depth defined in Table 1. For

collision checking, the dimensions of a rectangular prism

around the UAV are set to l = 0.6 m, w = 0.6 m, h = 0.5 m.

The proposed ASEP algorithm is compared with the

closest frontier method (CF) introduced by [3] and adapted to

our planner. Additionally, it is compared to our more recent

multi-resolution frontier planner (MRF) [9]. The parameters

used in the MRF are set to their default values explained

in [9], with velocities as given in Table 1. Both the CF and

the MRF are adapted to our quadcopter, equipped with a

camera, and to our control system to allow the fairest possible

comparison. The approaches are compared in two scenarios

107176 VOLUME 11, 2023

Chapter 8. Publications

83



A. Milas et al.: ASEP: An Autonomous Semantic Exploration Planner With Object Labeling

FIGURE 3. A UAV executes a planned path (green) from a start point
(pink) to a target point (yellow) in an OctoMap. A rectangular
prism-shaped state validity checker (transparent white and orange)
simplifies the representation of the UAV. The validity checking is
performed for each point (orange point) of the planned path.

FIGURE 4. Gazebo warehouse scenarios. (a) Simple warehouse scenario.
(b) Complex warehouse scenario.

(Fig. 4) with different environment sizes and OctoMap

resolutions r . All simulations have been run 10 times on

Intel(R)Core(TM) i7-10750H CPU @ 2.60GHz × 12.

The first scenario refers to a 10 m × 10 m × 3 m

relatively simple warehouse (Fig. 4 (a)). The second scenario

refers to a 20 m × 60 m × 3 m complex warehouse

environment (Fig. 4 (b)). Please note that in the simulation

analysis the odometry is provided by the simulator, while in

real experiments the odometry is provided by the SLAM.

This is mainly due to the fact that the camera simulation

is not realistic enough to be suitable for the ORB-SLAM3

algorithm.

A. OBJECT LABELING

Within this work, the objective is to label objects in

warehouse scenarios (shelves, boxes and doors). It means

that Nlabels is set to three. Note that the total number of

labels in a general case is adapted to the environment

and the elements expected in it. The total number of

objects is initially unknown, but after exploration, it is

TABLE 1. Exploration parameters for simulation scenarios. r is OctoMap

resolution, Rmax is the maximum range of the camera, ṗ
{x,y,z}
max and ψ̇max

are max UAV velocities in the x, y, z axes and yaw direction, respectively,

while p̈
{x,y,z}
max is the acceleration for the same degrees of freedom. Irange

is the cuboid width and height used for information gain calculation,
while λ, α and β are constants used in equations for exploration policy.

FIGURE 5. The detected objects in time for the simple warehouse
environment at r = 0.2 m.

FIGURE 6. The detected objects in time for the complex warehouse
environment at r = 0.1 m.

Nobj = 30 and Nobj = 160 for the simple and complex

scenarios, respectively. All three approaches are compared

in both simulation scenarios, with different resolutions. The

results are shown in Fig. 5 and Fig. 6 as a percentage of

detected objects in time. It can be observed that the ASEP

needs less time to detect all given objects since it is directed

by the semantic information from the environment. For

instance, in a complex environment, all objects are detected

and labeled on themap in 25minuteswhen usingASEP,while

MRF and CF need 35 and 40 minutes, respectively.
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FIGURE 7. The OctoMap of the simple warehouse environment with
transparency effect applied on and with detected objects during the
exploration. Shelves, boxes and doors are shown with different colors on
the map.

Fig. 7 shows the labeled objects on the map of the simple

warehouse scenario. However, due to factors such as UAV

tilting and limitations of the detection algorithm, the object

positions in the OctoMap are not entirely accurate. To address

this, any new object that is within 0.3 m of an existing object

with the same semantic label is averaged with the centroid of

the existing object, and the object position in 3D (described

in IV-D) is then updated. In this way, multiple labeling of the

same object is avoided. Consequently, labeled objects deviate

from their real positions in the environment, given by the

simulator. The mean deviation of each labeled object from

its real position in the simulator is calculated by comparing

the position of the semantic label to the real position

of the closest object of that label obtained from the simulator.

The calculated values are as follows: 0.41 m, 0.48 m,

and 0.54 m for boxes, shelves, and doors, respectively.

These values indicate that, considering the overall scale and

dimensions of the scenarios, the position of the labeled

objects matches very well with their actual position in the

environment.

B. COMPUTATION PERFORMANCE

Computation times tc and total exploration times texp for all

10 runs are shown in Table 2. The performance of all three

approaches is compared in both simulation scenarios and at

different resolutions. The computation time is equal to the

time required to detect frontiers, update global frontiers and

find the best frontier vbf . For the MRF, tc includes time

to cluster frontiers using multi-resolution frontier clustering

(with exploration depth dexp set to 15) and mean shift

clustering algorithm, as described in [9]. The clustering

methods in the MRF affect the tc and thus the texp. It can be

observed that the computation times for the MRF approach

are higher than in our approach, especially when using a

FIGURE 8. The explored volume in total exploration time for the simple
warehouse scenario.

FIGURE 9. The explored volume in total exploration time for the complex
warehouse scenario.

high-resolution map. Such results are expected since the

MRF multi-resolution frontier clustering is computationally

expensive, especially with a high number of frontiers.

Furthermore, the use of multi-resolution frontier clustering

in the MRF causes the computation time to increase as the

complexity of the environment increases. On the other hand,

the computation times in the CF depend mainly on the size

of the environment and the number of frontiers, rather than

on the map resolution (which is evident in both scenarios).

For instance, in the simple scenario at the resolution r =

0.1 m, our planner runs more than ten times faster than the

MRF. The ASEP and the CF have similar computation times

since the difference is only in information gain calculation.

The computation time in the proposed planner increases

with the finer resolution but is still low enough not to

affect the exploration. The results have confirmed that the

multi-resolution frontier clustering may cause a bottleneck

during exploration in larger and more complex scenarios with

a large number of frontiers and at fine resolutions.

C. GLOBAL EXPLORATION USING PROPOSED PLANNER

Simulations were also performed to compare the total

exploration time of our exploration planner with the MRF

and the CF. The algorithms were tested using a voxel

resolution of r = 0.2 m and r = 0.1 m. Note that the

goal of the ASEP is to label objects of interest as soon as

possible. Therefore, the placement of objects of interest in the

environments may affect the total exploration time. However,

a comparison of total exploration time shows that it is possible

to perform exploration in a comparable time to the state-of-

the-art algorithms, while in the same time doing the object

labeling.

Fig. 8 shows the explored volume over time for algorithms

in simple warehouse scenario. It can be observed that the
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TABLE 2. The tuples of mean and standard deviation for the total exploration time texp and the computational time per iteration tc .

FIGURE 10. The OctoMap of the complex scenario created by the ASEP,
MRF and CF, respectively, with planned paths, at the resolution r = 0.2 m.

ASEP and the MRF complete the exploration of the entire

area at almost the same time and remarkably faster than the

CF. The graph shows that our method and the MRF need

around 100 s to explore the simple scenario at different map

resolutions, while the CF needs more than 160 s. However,

the MRF results in less explored volume, especially at lower

resolutions. Namely, at the r = 0.2 m it explores around

92% of the environment, while the ASEP and CF explore

almost 98%. This occurs because MRF uses multi-resolution

clustering at lower OcTree depth dexp = 15, leading to

the next best frontier selected at dexp, which is shifted from

the detected frontier at the deepest level of OcTree, which

is 16.

In the complex scenario, the explored volume in time is

shown in Fig. 9. Our method explores the entire environment

more than twice as fast as the CF and about 5 minutes

faster than the MRF. ASEP and MRF behave similarly at

the beginning, but over time the MRF and especially the CF

show their drawbacks, which affect the total exploration time.

The ASEP explores the complex environment in 18.88 min

with a standard deviation of 3.78 min and in 21.74 min

with a standard deviation of 3.85 min for a resolution of

0.2 m and 0.1 m, respectively. A thorough comparison of the

FIGURE 11. Total distance traveled in the simple environment for the
ASEP, MRF and CF. Data are given as means of 10 runs with standard
deviations.

FIGURE 12. Total distance traveled in the complex environment for the
ASEP, MRF and CF. Data are given as means of 10 runs with standard
deviations.

experimental results with sampling-based approaches, such

as [4] and [28] is omitted since they use different approaches

for frontier generation and selection. Taking these results

into consideration, it is shown that combining the semantic

information from the environment in the frontier evaluation

can result in a faster total exploration, but it definitely results

in faster labeling of all given objects in the environment.

Please note that the object arrangement influences the total

exploration time. For instance, if objects of interest are tightly

grouped at a single point in the environment, we expect the

UAV to first circle the objects and then move to other parts

of the environment. This configuration could increase the

overall exploration time.

The OctoMap of the complex scenario generated by all

three planners at r = 0.2 m is shown in Fig. 10 along

with the corresponding UAV paths. Note that some of the

paths shown are not fully executed because the collision
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FIGURE 13. A Hexsoon EDU-450 quadcopter equipped with a Intel NUC,
a Realsense D455 camera, an IMU, a battery and a flight controller.

checker was triggered. In Fig. 11 and Fig. 12, the distance

traveled by the UAV is visualized in both simple and complex

scenarios at different resolutions. The metric for the distance

traveled is derived from the UAV odometry obtained from

the simulator. The ASEP achieves the shortest path planned,

as well as traveled among the three algorithms, while CF

shows a tendency towards larger traveled distances. This was

particularly evident in the complex environment at r = 0.1 m

where the CF recorded an average distance of 847.98 m and

the ASEP 575.50 m. The nature of the CF algorithm often

results in significant back-and-forth movement, which can

lead to a less efficient exploration trajectory (Fig. 10(c)).

The distance traveled for the MRF is similar to the ASEP.

Namely, for the simple warehouse scenario at r = 0.1 m

the UAV traveled on average 43.59 m and 53.02 m by

ASEP and MRF respectively, while at r = 0.2 m, 31.73 m

and 39.43 m.

VII. EXPERIMENTAL ANALYSIS

A. SETUP

For our indoor experimental analysis, a Hexsoon EDU-450

quadcopter is used (Fig. 13) which features four T-motors

HS2216 920KV motors attached to a carbon fiber frame.

The dimensions of the UAV are 0.36 m × 0.36 m × 0.3 m,

which makes it a relatively small UAV suitable for indoor

environments. The total flight time of the UAV is around

8 min with a mass of m = 2.5 kg, including batteries,

electronics and sensory apparatus. The Cube Orange+ flight

controller unit is attached to the center of the UAV body,

and it is responsible for the low-level attitude control of the

vehicle. Furthermore, the UAV is equipped with an Intel

NUC, i7-8650U CPU @ 1.90GHz × 8, onboard computer

for collecting and processing sensory data. The onboard

computer runs Linux Ubuntu 18.04 with ROS Melodic

framework that communicates with the autopilot through

a serial interface. The UAV is equipped with a Realsense

D455 camera with a maximum range of 6 m. The parameters

used in the real world are stated in Table 1. The experiments

are performed in an environment of 10 m × 8 m × 3 m.

FIGURE 14. The detected objects in time for the real-world environment
at r = 0.1 m.

FIGURE 15. The OctoMap of the real-world environment with
transparency effect applied on and with detected objects during the
exploration of a real-world scenario. Shelves, boxes and doors are shown
with different colors on the map.

Experimental evaluations were tested using a voxel resolution

of r = 0.2 m and r = 0.1 m, the same as in the simulation

analysis.

B. RESULTS AND DISCUSSION

Running the planner with limited onboard resources and in

real-time, the exploration and object labeling are demon-

strated. As in the simulation scenario, Nlabels is set to three,

whileNobj = 8 is detected during exploration. The percentage

of detected objects in time is shown in Fig. 14. Fig. 15 shows

the labeled objects on the map of the real-world scenario at

r = 0.1 m.

Computation times tc and total exploration times texp for

both runs are shown in Table 3. The average computation

time is comparable to the time achieved in the simulation
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TABLE 3. The tuples of mean and standard deviation for the total
exploration time texp and the computational time per iteration tc for the
real-world scenario.

FIGURE 16. The explored volume in time for the real-world scenario.

FIGURE 17. Comparison of ORB-SLAM3, multi-sensor fusion and ground
truth positions for the x, y, and z coordinates in a single exploration run.

setup. Fig. 16 shows that the total exploration time is

about 7 minutes for r = 0.2 m and about 8 minutes for

r = 0.1 m. The result of the exploration is the OctoMap of the

environment shown in Fig. 15, in which the objects labeled

during the exploration are also shown. Running the planner

in the real world and in real time, the successful exploration

and object labeling is demonstrated while running the SLAM,

semantic segmentation and exploration on the UAV with

limited onboard resources.

ORB-SLAM3 algorithm is used for localization during

real-world exploration. The positions estimated by the

ORB-SLAM3, multi-sensor fusion (SF), and ground truth are

shown in Fig. 17. It is noteworthy that the ORB-SLAM3

and SF are very similar and both show a deviation from the

ground truth position over time, emphasizing the importance

of ongoing calibration. The results highlight the potential

of the ORB-SLAM3 algorithm and the multi-sensor fusion

approach for reliable localization suitable for exploration.

VIII. CONCLUSION

This paper deals with a novel semantically-enhanced frontier-

based exploration planner called ASEP. The ASEP is

capable of autonomously exploring a previously unknown

GPS-denied area, creating an occupancy grid map OctoMap

and labeling objects of interest in the OctoMap. Results show

improved behavior in terms of time needed to label all objects

in the environment compared to state-of-the-art strategies.

An exploration strategy that combines both geometric and

semantic information from the environment speeds up the

exploration of all objects, while a novel object labeling

algorithm ensures real-time object detection and evaluation.

This 3D exploration planner has been successfully tested in

both simulation scenarios and a real-world experiment using

a quadcopter equipped with a camera. Video recordings of

the semantically augmented 3D exploration can be found on

YouTube [56].
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