
Extension of the mediator-wrapper architecture for
heterogeneous data source integration by adding a
mask

Dončević, Juraj

Doctoral thesis / Disertacija

2024

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of
Zagreb, Faculty of Electrical Engineering and Computing / Sveučilište u Zagrebu, Fakultet
elektrotehnike i računarstva

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:168:974939

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-07-16

Repository / Repozitorij:

FER Repository - University of Zagreb Faculty of
Electrical Engineering and Computing repozitory

https://urn.nsk.hr/urn:nbn:hr:168:974939
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.fer.unizg.hr
https://repozitorij.fer.unizg.hr
https://repozitorij.unizg.hr/islandora/object/fer:11978
https://dabar.srce.hr/islandora/object/fer:11978

FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

Juraj Dončević

EXTENSION OF THE MEDIATOR–WRAPPER
ARCHITECTURE FOR HETEROGENEOUS DATA
SOURCE INTEGRATION BY ADDING A MASK

DOCTORAL THESIS

Zagreb, 2024

FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

Juraj Dončević

EXTENSION OF THE MEDIATOR–WRAPPER
ARCHITECTURE FOR HETEROGENEOUS DATA
SOURCE INTEGRATION BY ADDING A MASK

DOCTORAL THESIS

Supervisor: Professor Krešimir Fertalj, PhD

Zagreb, 2024

FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA

Juraj Dončević

PROŠIRENJE ARHITEKTURE MIRITELJ–OMOTAČ
ZA INTEGRACIJU HETEROGENIH IZVORA

PODATAKA DODAVANJEM MASKE

DOKTORSKA DISERTACIJA

Mentor: prof. dr. sc. Krešimir Fertalj

Zagreb, 2024.

The DOCTORAL THESIS was created at the University of Zagreb, Faculty of Electrical

Enigneering and Computing, at the Department for Applied Computing

Supervisor: Professor Krešimir Fertalj, PhD

DOCTORAL THESIS has: 231 pages

DOCTORAL THESIS br.:

About the Supervisor

Krešimir Fertalj is a full professor at the Department of Applied Computing at the Faculty

of Electrical Engineering and Computing (FER), University of Zagreb, where he lectures a

couple of computing courses on graduate, specialist and doctoral studies. His professional and

scientific interest is in automated software engineering, complex information systems, project

management and in software security. He led several scientific and research projects and a few

dozen of development projects. He was a mentor to students for over 300 bachelor and graduate

theses, 9 MSc and 12 PhD theses. He has published nearly 200 scientific and technical papers.

Prof. Fertalj is the founder of the Laboratory for Special Purpose Information Systems and of

Postgraduate Specialist Study “Project Management” at FER. He is a senior member of IEEE

and a full member of the Croatian Academy of Engineering (HATZ). He served as a Head of

Department at FER, a Secretary of the Department of Information Systems of HATZ and was

one of the founders and a member of the management board of the PMI chapter in Croatia.

O mentoru

Krešimir Fertalj redoviti je profesor na Zavodu za primijenjeno računarstvo Fakulteta elek-

trotehnike i računarstva (FER) Sveučilišta u Zagrebu, gdje predaje nekoliko računarskih kolegija

na diplomskim, specijalističkim i doktorskim studijima. Njegov stručni i znanstveni interes je

automatizirano programsko inženjerstvo, složeni informacijski sustavi, upravljanje projektima

i sigurnost softvera. Vodio je nekoliko znanstveno-istraživačkih projekata te nekoliko desetaka

razvojnih projekata. Bio je mentor studentima na više od 300 preddiplomskih i diplomskih

radova, 9 magistarskih i 12 doktorskih radova. Objavio je gotovo 200 znanstvenih i stručnih

radova. Prof. Fertalj osnivač je Laboratorija za informacijske sustave posebne namjene i posli-

jediplomskog specijalističkog studija “Upravljanje projektima” na FER-u. Viši je član IEEE i

redoviti član Hrvatske akademije tehničkih znanosti (HATZ). Obnašao je dužnost voditelja za-

voda na FER-u, tajnika Odjela informacijskih sustava HATZ-a te je bio jedan od osnivača i član

upravnog odbora PMI ogranka u Hrvatskoj.

Abstract

This doctoral research deals with the extension of the mediator–wrapper architecture for het-

erogeneous data source integration. Scenarios that require the addition of diverse system access

interfaces where the mediator–wrapper architecture underperforms are identified. Therefore, an

extension of the mediator–wrapper architecture is proposed by the addition of a new compo-

nent type called a mask. The mask presents a new layer in the mediator–wrapper architecture,

effecting the creation of a mask–mediator–wrapper architecture. The proposed architecture is

observed in modern technical aspects by including the consideration of architectural quanta.

The proposed architecture is examined through qualitative and quantitative analyses, and case

studies emulating a legacy data store preserving system and a data mesh. The mask is observed

as a generic component that can be implemented in various mask kinds. This observation is

facilitated by an analysis of the mask’s inner components and data flows. Masks are proposed

to be uniformly developed components by using a mask framework. The masks are proposed to

be used in architecture topologies as prefabricated and configurable components. Although the

translation of schemas and queries in the mask are determined to be one-way transformations,

the translation of data is bidirectional. The use of bidirectionalisation for data translation is

examined to reduce the effort of implementing a mask and enable reasoning about the correct-

ness of the implemented two-way transformation. A simple symmetric lens is determined as the

method of choice for data transformations and treated as a design pattern. A lens is implemented

for use in a mask kind. A testing framework is created for determining the behavedness of the

implemented lenses. A mask–mediator–wrapper system, called Janus, is presented as a proto-

type to satisfy the need for empirical proof and experimentation. Janus supports implementing

masks through a mask framework as a proof-of-concept. The Janus mask framework is shown

to enable the implementation of a mask kind in nine general steps. Three implementations of

mask kinds in Janus are presented. The qualitative analysis and case studies are confirmed by

the deployment of Janus components in different architectural topologies.

Keywords: software architecture, data integration, data management, mediator–wrapper,

bidirectionalisation, functional programming, category theory

Proširenje arhitekture miritelj–omotač za
integraciju heterogenih izvora podataka
dodavanjem maske

Uvod

Integracija podataka uvijek je imala ključnu ulogu u upravljanju podacima; očekivano je da

sustav koji rukuje s više izvora podataka u nekom trenutku izvrši njihovu integraciju. Iako se

podaci mogu integrirati na razini pojedinačnog slučaja korištenja, sustavi obično zahtijevaju

sveobuhvatnu integraciju podataka iz više izvora. Ostvarivanje generičke integracije podataka

iz više skupova podataka ključno je za postizanje jedinstvenog prikaza izvorišnih podataka i

smislenog uvida u podatke. Sustav za integraciju izvora podataka je sustav za upravljanje po-

dacima koji ima zadatak integriranja dva ili više izvora podataka [1].

Istraživanje o integraciji podataka polje je bilo predmet sveobuhvatnih studija tijekom 1990-

ih [2, 3, 4, 5, 6, 7]. Napredak u istraživanju je označilo ostvarivanje dva značajna sustava

za integraciju heterogenih izvora podataka - GARLIC [8] i TSIMMIS [9]. Oba sustava su

implementirana arhitekturom miritelj–omotač. Nažalost, ti su sustavi bili kratkog vijeka i nisu

bili javno dostupni.

U području integracije podataka došlo je do značajnih noviteta pojavom NoSQL sustava

[10]. NoSQL sustavi su ojačali značaj paradigmatske heterogenosti izvora podataka [1]. Podaci

se više nisu samo pohranjivali u relacijskim bazama podataka, već i u formatima bez sheme

u specijaliziranim bazama podataka, pa čak i u datotekama. Proteklo desetljeće označeno je

povećanjem količine podataka i popularizacijom jezera podataka koja omogućavaju pohranu

velikih količina distribuiranih, nestrukturiranih i heterogenih podataka [11, 12]. Sustavi poput

jezera podataka pridonijela su povećanju raznolikosti podataka, naglašavajući važnost ostvari-

vanja integracije heterogenih podataka. Napredak integracije podataka kaska za uvod̄enjem

novih sustava za upravljanje podacima i novim izvorima podataka, a tome pridodaje nedostatak

sveobuhvatnih i otvorenih sustava za eksperimentiranje [13].

Dugogodišnji trendovi u upravljanju podacima ukazuju na sve veću važnost reprezentacije

iii

podataka. Može se očekivati kako će se sljedeći pomak na području integracije podataka ticati

reprezentacije podataka, te kako će integracijski sustavi morati omogućiti ne samo heterogenost

izvora podataka, nego i reprezentacije podataka [14]. Cilj istraživanja predstavljenog ovom dis-

ertacijom je uvod̄enje nove arhitekture čija bi se fleksibilnost mogla nositi s budućim izazovima

u integraciji podataka po pitanju reprezentacije podataka.

Istraživanjem u sklopu ove disertacije uvodi se arhitektura maska–miritelj–omotač kao proši-

renje arhitekture miritelj–omotač. Proširenje se ostvaruje dodavanjem nove komponente zvane

maska. Komponenta maske se konceptualno razrad̄uje do razine principa rada, te se za nju pred-

laže mogućnost stvaranja radnog okvira koji omogućava standardizirani razvoj maski. Pred-

loženi koncepti dokazani su razvojem prototipnog sustava Janus, zasnovanog na arhitekturi

maska–miritelj–omotač. Janus sadrži prototipe tri vrste maski i radni okvir za njihov razvoj.

Dvosmjerne transformacije za podatke u različitim formatima ostvarene su korištenjem jednos-

tavne simetrične leće kao oblikovnog obrasca, u svrhu smanjenja napora implementacije poje-

dine vrste maske. Jednostavne simetrične leće za dvosmjerne transformacije implementirane su

u sklopu sustava Janus, te je uz njih implementiran i jednostavan radni okvir za testiranje imple-

mentiranih leća kojim je moguće dokazati razinu ispravnosti transformacija, odnosno ponašanja

leće.

Kako bi se pokazalo poboljšanje arhitekture maska–miritelj–omotač, predstavlja se sposob-

nost sustava maska–miritelj–omotač za emuliranje drugih sustava za upravljanje podacima -

sustav SOS i mreže podataka (eng. data mesh). Emulacija se empirijski dokazuje postavljan-

jem i konfiguracijom komponenti sustava Janus.

Ova disertacija predstavlja sljedeće znanstvene doprinose ostvarene tijekom doktorskog is-

traživanja:

1.Proširenje arhitekture miritelj-omota č za reprezentaciju podataka, sheme podataka i upita

nad podacima komponentom nazvanom maska, kojom će se omogućiti implementacija

raznovrsnih pristupnih sučelja sustava za integraciju heterogenih izvora podataka;

2.Metoda za stvaranje dvosmjernih transformacija podataka u maskama korištenjem bidi-

rekcionalizacije, kako bi se smanjio implementacijski napor po vrsti maske;

3.Radni okvir kojim se omogu ćuje ugradnja prethodno definirane maske i predložene metode,

verificiran prototipom ugradnje nad reprezentativnim primjerom hipotetičkog sustava za

integraciju heterogenih izvora podataka.

Preliminarni pojmovi iz softverskih arhitektura

Poglavlje 2 daje pregled pojmova koji su preliminarno potrebni za razumijevanje sadržaja ove

disertacije u vidu softverskih arhitektura. Potpoglavlje 2.1 predstavlja pojmove modula, kom-

ponenti i slojeva, te ih povezuje uz pojmove metrike sprezanja i kohezije kôda [15, 16]. Isto

iv

potpoglavlje predstavlja pojam arhitekturalnog kvanta i evolucijske arhitekture [17], te prepoz-

nate arhitekturalne karakteristike [15]. Predstavlja se i tijek procesa identifikacije komponenti

sustava [15] koji se koristio kao vodilja pri razradi arhitekture iz doprinosa. Ranije spomenuti

pojmovi karakteristika arhitektura povezuju se s uvjetima za dobro oblikovane komponente

koje je prethodno uveo Meyer [18]. Uvjeti koje je predstavio Meyer korišteni su pri razradi

komponenti za arhitekturu iz doprinosa.

Potpoglavlje 2.2 daje kratki uvod u sustave za upravljanje podacima, poglavito sustave za

integraciju izvora podataka. Potpoglavlje 2.3 predstavlja arhitekturu miritelj–omotač u kon-

tekstu sustava za integraciju izvora podataka, te predstavlja ustaljena pravila za komponente

miritelja [3] i omotača [5, 8]. Oba tipa komponenti su sažeto predstavljena definicijama [14].

Daljnja diskusija vodi u strategije raspodjele shema po komponentama miritelja i omotača [19],

te se predstavljaju dvije konfiguracije arhitekture miritelj–omotač - s jednim slojem miritelja i s

dva sloja miritelja. Ove strategije su važna točka diskusije u kvalitativnoj analizi arhitekture iz

doprinosa.

Potpoglavlje 2.4 predstavlja najsuvremeniju arhitekturu za raspodijeljeno upravljanje po-

dacima - mrežu podataka (eng. data mesh) [20]. Arhitektura mreže podataka koristi se u studi-

jama slučaja, gdje se demonstrira kako arhitektura iz doprinosa može emulirati mrežu podataka.

Potpoglavlje 2.5 opisuje postupak kvantitativne analize fleksibilnosti softvera [21, 22] ko-

jom je moguće uspored̄ivati softver. Analiza koristi kvantizirane evaluacije broja promjena

generičkih modula softvera u scenarijima promjene zahtjeva. Prilagodba predstavljene kvan-

titativne analize fleksibilnosti softvera koristi se u ovoj disertaciji za usporedbu relevantnih

arhitektura.

Preliminarni pojmovi iz teorije kategorija, funkcijskog pro-

gramiranja i bidirekcionalizacije

Poglavlje 3 daje pregled pojmova koji su preliminarno potrebni za razumijevanje sadržaja ove

disertacije u vidu teorije kategorija, funkcijskog programiranja i bidirekcionalizacije. Ovo

poglavlje služi kako bi se predstavio osnovni skup znanja koji je potreban za razumijevanje

pojmova iz područja bidirekcionalizacije. Potpoglavlje 3.1 uvodi osnovne pojmove teorije kat-

egorija i veže ih uz programiranje korištenjem kategorije tipova kao referentne kategorije. Pot-

poglavlje 3.2 nadalje razrad̄uje pojmove srodne teoriji kategorija kroz okvir funkcijskog pro-

gramiranja. Uvode se pojmovi parcijalne aplikacije, funkcija višeg reda, funktora i monada.

Potpoglavlje 3.3 predstavlja područje bidirekcionalizacije korištenjem prethodno uvedenih

mehanizama funkcijskog programiranja. Bidirekcionalizacija se predstavlja kroz tri istaknu-

tije metode bidirekcionalizacije: semantička bidirekcionalizacija, sintaksna bidirekcionalizacija

i bidirekcionalni kombinatori. Semantička bidirekcionalizacija se poglavito predstavlja kroz

v

rad Voigtländera [23]. Sintaksna bidirekcionalizacija se poglavito predstavlja kroz rad Mat-

sude [24]. Uvode se osnovna pravila za kružne transformacije, odnosno provjeru ponašanja

transformacija. Ta pravila se nadalje razrad̄uju prema potrebi pojedinih tehnika bidirekcional-

izacije, kao što su korištenje komplemenata i monada. Nadalje se predstavljaju leće kao nositelji

bidirekcionalnih transformacija, te se opisuju asimetrične, simetrične [25] i jednostavne simetrične

leće [26]. Jednostavna simetrična leća koristi se kao oblikovni obrazac u implementaciji dvos-

mjernih transformacija komponente iz doprinosa.

Arhitektura maska–miritelj–omotač

Poglavlje 4 uvodi arhitekturu iz doprinosa - maska–miritelj–omotač. Ovo poglavlje je preuzeto

iz znanstvenog rada objavljenog u sklopu doktorskog istraživanja [14], uz manje prilagodbe.

Potpoglavlje 4.1 predstavlja uočene probleme postojeće arhitekture miritelj–omotač. To se

ostvaruje kroz kvalitativnu analizu raspodjela shema po komponentama, kojom se uočava kako

pojedine komponente arhitekture miritelj–omotač moraju upravljati s dvije ili više shema ra-

zličitih slučaja uporabe. Zaključuje se kako to krši ispravnu raspodjelu odgovornosti izmed̄u

komponenata, pogotovo u miriteljskim komponentama u najvišem sloju arhitekture. Zaključuje

se kako je miriteljima dodijeljeno upravljanje i reprezentacija podataka, te da to nije povoljno u

slučaju potrebe za više različitih reprezentacija podataka sustava. Potreba za istim se naglašava

pregledom radova iz područja koji ukazuju na raznolikost potrebnih sučelja sustava za upravl-

janje podacima. Kao rješenje u okviru arhitekture miritelj–omotač predlaže se dodavanje trećeg

pravila za miritelje koje propisuje da miritelji služe mirenju (modela), a ne za reprezentaciju.

Potpoglavlje 4.2 predstavlja rješenje uočenih problema u vidu proširenja postojeće arhitek-

ture dodatnom komponentom za potrebe reprezentacije. Nova komponenta se uvodi pod nazivom

maska. Za masku se propisuju tri pravila koja su u skladu s prethodno predstavljenim prav-

ilima za miritelje i omotače, kao i s pravilima za dobro oblikovane komponente. Time se

predlaže stvaranje nove arhitekture, zvane maska–miritelj–omotač, koja čini znanstveni do-

prinos ovog doktorskog istraživanja. Arhitektura maska–miritelj–omotač se kvalitativno anal-

izira kroz raspodjelu shema po komponentama, te se dobivena raspodjela uspored̄uje s raspod-

jelom u arhitekturi miritelj–omotač. Utvrd̄uje se kako je arhitektura maska–miritelj–omotač

poboljšanje naspram arhitekture miritelj–omotač, jer sve komponente nove arhitekture posje-

duju samo jednu shemu; čime su odgovornosti komponenti ispravno granulirane i raspodijel-

jene.

Potpoglavlje 4.3 koristi prilagod̄enu kvantitativnu analizu fleksibilnosti softvera kako bi

se dokazalo poboljšanje postigunuto proširenjem postojeće arhitekture. Analiza se provodi

na razini komponenata sustava kao generičkih modula. Analiza pokazuje kako predložena

arhitektura ima poboljšanu fleksibilnost naspram postojećih u scenarijima dodavanja novih

vi

reprezentacija podataka i dodavanja miritelja, te da u slučaju dodavanja novih izvora podataka

ne dolazi do nazadovanja.

Komponenta maske

Poglavlje 5 predstavlja daljnju razradu komponente maske izvan okvira crne kutije. Ovo poglavlje

je preuzeto iz znanstvenog rada objavljenog u sklopu doktorskog istraživanja [14], uz manje

prilagodbe. U potpoglavlju 5.1 izvode se funkcijski zahtjevi na masku korištenjem pravila za

maske.

U potpoglavlju 5.2 nadalje se razrad̄uju unutarnje komponente maske putem funkcijskih

zahtjeva. Model tokova podataka, predstavljen dijagramom, služi dodatnoj razradi unutarnjih

komponenti. Ova sistemska analiza rezultira konceptualnim modelom dizajna komponenti un-

utar maske. Teoretski se zaključuje kako maska može biti generički implementirana, izuzev

komponenata s funkcionalnostima translacije shema, upita (uključujući naredbe) i podataka.

Potpoglavlje 5.3 predstavlja koncept radnog okvira za razvoj maska. Pretpostavka gener-

ičnosti komponente maske povlači zaključak kako bi se maske mogle implementirati putem

radnog okvira. Time bi se njihov postupak implementacije pojednostavio i standardizirao. Ovo

potpoglavlje uvodi pojmove vrste i tipova maski. Vrstama maske smatraju se biblioteke koje

podupiru odred̄eni oblik reprezentacije, dok se tipovima maske smatraju oblici implementacije

konkretnih izvršivih komponenti maske.

Potpoglavlje 5.4 postavlja pretpostavke o tome kako je moguće maske ostvariti u modalite-

tima virtualizirajuće i materijalizirajuće maske, čime bi se omogućilo u ostvarivanje integraci-

jskog sustava koji je ujedno i virtualizirajući i materijalizirajući.

Prototipni sustav

Iako propisani doprinosi ovog doktorskog istraživanja upućuju na mogućnost korištenja hipotet-

skog sustava, poglavlje 6 predstavlja ostvareni prototip sustava, nazvanog Janus, kao dokaz kon-

cepta arhitekture maska–miritelj–omotač [27]. Ovime se pretpostavljeni doprinosi ojačavaju.

Potpoglavlje 6.1 predstavlja općeniti dizajn Janusa po pitanju implementacije pojedinih

komponenti, konfiguracije mirenja shema, te modela za upite, naredbe, sheme i podatke.

Potpoglavlje 6.2 predstavlja ostvarenje prototipa maske. Potpoglavlje predstavlja imple-

mentirani radni okvir za implementaciju maski kao dokaz koncepta. Korištenjem radnog okvira

pokazano je kako je implementacija vrste maske svedena na devet općenitih koraka (deseti

korak uključuje implementaciju same izvršne komponente maske). U potpoglavlju se pred-

stavljaju i implementacije prototipa maske: virtualizirajuća REST Web API maska, materijal-

izirajuća SQLite maska i materijalizirajuća LiteDB maska.

vii

Metoda za bidirekcionalne transformacije podataka

Poglavlje 7 predstavlja korištenje jednostavne simetrične leće kao odabrane metode bidirek-

cionalizacije za implementaciju dvosmjernih transformacija podataka u maskama. Analiza i

diskusija o maski je pokazala postojanje jednosmjernih i dvosmjerne translacije u maskama.

Osiguravanje ispravnosti dvosmjernih transformacija i minimizacija implementacijskog troška

osigurani su korištenjem jednostavne simetrične leće kao oblikovnog obrazaca. Samo korištenje

oblikovnog obrasca implicira smanjenje implementacijskog troška, jer se implementacija tip-

izira. Korištenje jednostavne simetrične leće obrazloženo je u potpoglavlju 7.1.

Potpoglavlje 7.2 predstavlja implementaciju leća u programskom jeziku C#. Potpoglavlje 7.3

predstavlja implementirane leće koje su korištene u implementaciji REST Web API maske. Pot-

poglavlje 7.4 predstavlja jednostavni radni okvir za testiranje ponašanja implementiranih leća,

te raspravlja do koje razine je moguće zaključiti da je ponašanje dokazano testom. Smanjenje

implementacijskog troška očituje se i standardizacijom pisanja testova putem radnog okvira.

Studije slučaja maska–miritelj–omotača

Poglavlje 8 predstavlja studije slučaja emulacije drugih sustava od strane hipotetskog sustava

maska–miritelj–omotača. Ovo poglavlje je preuzeto iz znanstvenog rada objavljenog u sklopu

doktorskog istraživanja [14], te neobjavljenog znanstvenog rada [28] stvorenog u sklopu dok-

torskog istraživanja. Ovim poglavljem proširuje se kvalitativna analiza arhitekture maska–

miritelj–omotač.

U potpoglavlju 8.1 predstavlja se mogućnost emulacije sustava za očuvanje naslijed̄enih

sustava pohrane podataka Save Our Systems (SOS), putem hipotetskog sustava maska–miritelj–

omotača. Hipotetski se pokazuje kako je sustav SOS moguće i nadograd̄ivati korištenjem

arhitekture maska–miritelj–omotač, čime ga se može pretvoriti u integracijski sustav ili mu

uvesti nove oblike reprezentacije.

U potpoglavlju 8.2 predstavlja se mogućnost emulacije mreže podataka putem hipotet-

skog sustava maska–miritelj–omotača. Nad generičkim slučajevima demonstrira se hipotetsko

emuliranje platforme podatkovne infrastrukture i kontejnera podatkovnog proizvoda. Kontejner

podatkovnog proizvoda emulira se u dva oblika, bez lokalnog spremišta domenskih podataka

i s lokalnim spremištem domenskih podataka. Predlažu se pogodnosti hipotetske emulacije u

vidu niskorizičnih proba uvod̄enja, brzog prototipiranja, garantiranja evolucijske karakteristike

i standardizacije sustava mreže podataka.

Potpoglavlje 8.3 obuhvaća prototipiranje studija slučaja korištenjem sustava Janus kao reprezen-

tativnog sustava maska–miritelj–omotača. Prototipiranja se provode postavljanjem komponenti

u kontejnerizirano okruženje korištenjem alata Docker Compose.

viii

Potpoglavlje 8.3.1 predstavlja postavke i postavljanje komponenti sustava Janus u topologiju

heterogenog sustava za integraciju podataka. Potpoglavlje 8.3.2 predstavlja postavke i postavl-

janje komponenti sustava Janus u topologiju kojom se emulira sustav SOS. Potpoglavlje 8.3.3

predstavlja postavke i postavljanje komponenti sustava Janus u topologiju mreže podataka.

Dodaci

Poglavlje 10 je skup dodataka vezanih uz ovaj. Poglavlje dodataka sadrži popis kratica ko-

rištenih u radu, prefikse potrebne za izvršavanje programskih odsječaka, upute za pokretanje

prototipova studija slučaja, konfiguracijske tablice prototipova studija slučaja. Potpoglavlje 10.5

sadrži detaljan pregled translacije shema, upita i podataka u prototipu sustava za integraciju

izvora podataka.

Zaključak

Ova disertacija donosi unaprijed̄enje postojeće arhitekture miritelj–omotač za integraciju het-

erogenih izvora podataka. Unaprijed̄enje je postignuto proširenjem postojeće arhitekture novim

tipom komponente zvanim maska, čime je stvorena nova arhitektura maska–miritelj–omotač.

Kroz kvalitativnu analizu pokazano je kako je nova arhitektura unaprijed̄enje naspram pos-

tojeće u vidu raspodijele sheme po komponentama sustava. Nova arhitektura omogućava po-

jedinoj komponenti zaduženost za upravljanje isključivo jedne sheme. Nova arhitektura je pri-

lagod̄ena podršci raznolikih reprezentacija podataka, što se pregledom područja istraživanja

pokazalo kao trend. Kvantitativna analiza fleksibilnosti softvera pokazala je bolju fleksibilnost

arhitekture maska–miritelj–omotač naspram miritelj–omotača u slučajevima kada se dodaju

novi tipovi reprezentacija i novo mirenje, te da ne postoji nazadovanje pri dodavanju novog

izvora podataka u topologiju arhitekture sustava.

Komponenta maske je razrad̄ena do principa rada. Za masku su propisana pravila u skladu

s postojećim pravilima za komponente miritelja i omotača, kao i prilagodba pravila miritelja.

Preko propisanih pravila za masku razrad̄eni su funkcijski zahtjevi na masku. Korištenjem

funkcijskih zahtjeva napravljena je sistemska analiza u obliku modeliranja tokova podataka i

procesa. Iz sistemske analize proizašao je konceptualni dizajn komponente maske. Dizajn

maske sugerira mogućnost stvaranja radnog okvira za standardizaciju i smanjanje troška im-

plementacije pojedine vrste maske. Za dvosmjerne transformacije podataka, koje su otkrivene

analizom, predložena je mogućnost korištenja metoda bidirekcionalizacije radi daljnjeg sman-

jenja troška implementacije maske.

Predložena arhitektura i komponenta maske ostvareni su implementacijom sustava Janus

kao dokaza koncepta. Janus omogućava implementaciju maski putem ostvarenog radnog okvira.

ix

Tri vrste maski implementirane su korištenjem radnog okvira u Janusu. Korištenje radnog

okvira za implementiranje maski pokazano je kako je implementacija maske svedena na de-

vet općenitih koraka. Takod̄er, Janus omogućava implementaciju jednostavnih simetričnih leća,

kao oblikovnog obrasca za dvosmjerne transformacije. Korištenje leća omogućava provjeru is-

pravnosti implementiranih dvosmjernih transformacija, što je do odred̄ene razine omogućeno

jednostavnim radnim okvirom za testiranje leća u Janusu.

Sustav Janus korišten je kao prototip studije slučaja čime je dokazano da je sustav za inte-

graciju heterogenih izvora podataka ostvariv putem arhitekture maska–miritelj–omotač. Nadalje,

pretpostavljena kvalitativna svojstva arhitekture maska–miritelj–omotač dokazana su prototip-

ima studija slučaja sustava SOS i mreže podataka. Ovi prototipi studija slučaja pokazali su kako

generičnost komponenti maska–miritelj–omotača omogućuje emuliranje više različitih sustava,

te da predstavljena arhitektura može služiti i široj uporabi u upravljanju podacima.

Ključne riječi: softverske arhitekture, integracija podataka, upravljanje podacima, miritelj–

omotač, bidirekcionalizacija, funkcijsko programiranje, teorija kategorija

x

Contents

1. Introduction . 1

1.1. Motivation .1

1.2. Contributions .2

1.3. Research methodology .3

1.4. Thesis structure .4

2. Software architecture preliminaries . 7

2.1. Fundamentals of software architectures .7

2.2. Data integration and management systems .15

2.2.1. A note on metamodelling .17

2.2.2. Data source integration systems .18

2.3. Mediator–wrapper architecture .21

2.3.1. On the roles of mediator–wrapper components24

2.3.2. On schema hierarchies in the mediator–wrapper architecture25

2.4. Data mesh .28

2.5. Quantitative shift-cost analysis .31

3. Category theory, functional programming, and bidirectionalisation preliminaries 36

3.1. Basic category theory .36

3.2. Functional programming .42

3.2.1. Functors .47

3.2.2. Monads .49

3.3. Bidirectionalisation .52

3.3.1. Syntactic BX .57

3.3.2. Semantic BX .58

3.3.3. BX combinators .60

3.3.4. Other notable approaches .63

3.3.5. Lenses .63

4. Mask–mediator–wrapper architecture . 69

4.1. Problems with the mediator–wrapper architecture69

4.2. Extending the mediator–wrapper architecture71

4.2.1. The mask’s effect on the system schema hierarchy74

4.3. Quantitative shift-cost analysis of the mediator–wrapper architecture75

5. Mask component . 83

5.1. Mask component functional requirements .83

5.2. Mask inner components .84

5.2.1. Data translation .90

5.3. Mask framework .90

5.4. Mask modalities .92

6. Prototype system . 93

6.1. Janus system .93

6.1.1. Janus schema model .97

6.1.2. Janus data model .99

6.1.3. Janus query model .100

6.1.4. Janus command model .101

6.1.5. Janus communication .104

6.1.6. Janus components .106

6.1.7. Janus mediator component .108

6.1.8. Janus wrapper component .113

6.2. Proof of concept mask in the Janus system .116

6.2.1. Mask framework .116

6.2.2. Web REST API mask .119

6.2.3. LiteDB mask .139

6.2.4. SQLite mask .144

7. Method for bidirectional data transformations 149

7.1. Lenses for data transformation .149

7.2. Lens implementation in C# .151

7.3. Web API mask lenses .153

7.3.1. RowDataDtoLens .153

7.3.2. TabularDataDtoLens .157

7.4. Behavedness of Janus lenses .160

8. Mask–mediator–wrapper case studies . 165

8.1. SOS system emulation case study .165

8.2. Data mesh emulation case study .168

8.2.1. Emulating a data mesh .171

8.2.2. Expected benefits .174

8.3. Case study prototypes .176

8.3.1. Janus as a data source integration system176

8.3.2. Janus for SOS system emulation .179

8.3.3. Janus for data mesh emulation .180

9. Conclusion . 186

10. Appendix . 189

10.1. List of abbreviations .189

10.2. Code example prefix .190

10.3. Running the case studies’ prototypes using Docker compose191

10.4. Configuration tables for the case studies’ prototypes194

10.4.1. Data source integration system case study prototype configuration . . .194

10.4.2. SOS system case study prototype configuration194

10.4.3. Data mesh case study prototype configuration195

10.5. Additional details on the data source integration system case study prototype .197

10.5.1. Schema translation .197

10.5.2. Query translation and execution activities207

10.5.3. Data translation .210

Bibliography . 216

Biography . 230

Životopis . 231

Chapter 1

Introduction

1.1 Motivation

Data integration has always played a critical role in data management; a system handling mul-

tiple data sources is expected to integrate them at some point. Although a subset of data can

be integrated by implementing integration for a specific use case, systems usually require the

integration of data from multiple data sources. Finding a generic way of facilitating data inte-

gration of multiple data sets is paramount to achieving a unified view of the underlying data and

deriving meaningful insights over large quantities of data.

Research on data integration has been ongoing for at least since the introduction of the first

database systems. The field was subject to comprehensive studies in the 1990s [2, 3, 4, 5, 6, 7].

This led to the construction of two notable heterogeneous data source integration systems -

GARLIC [8] and TSIMMIS [9]. Both systems were implemented with the mediator–wrapper

architecture. Sadly, these systems were short-lived and weren’t openly available.

This time period was also the advent of changes in data models for data storage. Researchers

tried to pull away from the idea of relational databases and experiment with new paradigms.

Researchers were led in part by hypotheses that the relational model is expressively restrictive,

outdated, or unable to support large amounts of data. The result of this was the appearance of

NoSQL systems [10]. Data was no longer just being stored in relational databases but also in

schemaless formats in specialized database management systems and even files, and this opened

new research questions as well as created room for innovation in data integration. Researchers

started focusing more on the abstract term data source than the database.

Research into extract–transform–load processes [29] also tackled the integration of data

from multiple data sources. But this topic primarily concerns data warehousing and data anal-

ysis [30, 31], and entails explicitly programming data integration through mechanisms such as

map/reduce.

Research in the last decade has tried to deal with the growing amount of data, especially

1

Introduction

with how to store, manage and handle it. Data lakes were introduced as a solution to store large

quantities of distributed, unstructured, and heterogeneous data [11, 12]. This solution opened

the possibility for the introduction of heterogeneous data storage at a larger scale, adding to the

stress on data integration research to follow up. Notably, Apache Linkis has started tackling

data integration [32], especially for Hadoop-based products.

Data integration research is yet to fully catch up and the landscape is once again shifting;

toward graph-formatted data [33, 34, 35, 36], Web-based data [37, 38, 39], and new kinds of

specialized data sources [37, 40, 41, 42, 43, 44]. The referenced research also points out a trend

that a data management system is not only concerned with how to acquire and transform data

but also with the representation of that data.

The exasperations and aspirations of data integration research were expressed by Golshan

et al. [13]:

“...it is time for data integration operators to break free of end-to-end data integra-

tion systems and be available in the open source to speed up adoption and progress.”

“The first challenge [...] is that progress of data integration and its application in

practice are hindered by the fact that there are very few quality tools with which

practitioners and researchers can freely experiment.”

Summarily, the research has yet to produce a concrete, freely usable, and open-source data

source integration system.

These ideas should be the guiding principles for developing a complete and robust data in-

tegration strategy. The end goal should be a comprehensive, evolvable, extendable, and open

system for heterogeneous data source integration. The research described in this thesis exam-

ines, proposes, proves, and postulates the architectural framework and implementational design

with which the long-desired heterogeneous data source integration system can be built.

1.2 Contributions

This thesis makes the following scientific contributions:

1.Extension of the mediator–wrapper architecture for data, schema and query representa-

tion via a component named mask, enabling the implementation of different kinds of

heterogeneous data source integration system access interfaces;

2.Method for creating data transformations in masks using bidirectionalisation to reduce

the effort of mask implementation;

3.Framework enabling the implementation of the previously defined mask and proposi-

tioned method, verified by an implementation prototype over a representative example of

a hypothetical heterogeneous data integration system.

2

Introduction

1.3 Research methodology

The research of state-of-the-art and seminal publications has shown that data source integra-

tion systems lack the flexible representational capabilities required in a modern technological

setting. Previous research on data source integration systems had primarily focused on data

acquisition, translation and integration, while mostly overlooking the importance of data repre-

sentation. This is the primary research problem of this thesis - expanding the representational

capabilities of a data integration system.

The doctoral research has revealed that the mediator–wrapper architecture remains the most

suitable choice for data source integration in a modern technological setting. Therefore, any

effort to expand representational capabilities should focus on this architecture. The suitability

of the mediator–wrapper architecture stems from its components’ adherence to concrete rules

and the capability to support schema hierarchies at the component level.

The component rules and schema hierarchy examples provided the opportunity to qualita-

tively analyse and discuss the existing architecture, as well as reason about the state-of-the-art

architecture proposed by this research. The mask–mediator–wrapper architecture is the pro-

posed architecture providing the expansion of representational capabilities through the exten-

sion of the mediator–wrapper architecture. The expansion of representational capabilities is fa-

cilitated by the ability of the proposed architecture to provide multiple representations of system

queries, commands, schema, and data. The proposed architecture is qualitatively analysed and

compared with the mediator–wrapper architecture. The proposed architecture is also analysed

through case studies’ prototypes. The case studies’ prototypes include not just a data source in-

tegration system, but also two separate data management systems: the legacy-preserving Save

Our Systems (SOS) system, and a data mesh.

The mask–mediator–wrapper architecture implied the introduction of a new component

type, called a mask. The mask component presents another research problem, in terms of its

feasibility, design, and uniformity. As with the existing mediator and wrapper component types,

rules for the mask were proposed in accordance with the planned capabilities of the proposed

architecture. The mask was further detailed through functional requirements stemming from

the inferred rules. The functional requirements enabled further examination of the mask’s in-

ner components and data flows. This examination showed that the mask could hypothetically

be implemented generically, requiring only the implementation of a set of translators and a

masked application interface per mask kind. This hypothesis was expanded on to propose that

mask kinds can be constructed using a generic framework to simplify mask development and

contribute to the uniformity of mask implementations.

The mask is proposed to contain one-way translations for schemas and queries (including

commands). On the other hand, data translation requires a two-way transformation. The cor-

3

Introduction

rectness of such transformations is in question if written ad-hoc, as well as the effort required for

their implementation. This presents another research problem of this thesis. These problems

were proposed to be solved through the use of bidirectionalisation methods. Concretely, the

overview of the field of bidirectionalisation pointed in the direction of lenses as a design pattern

to facilitate the two-way transformations. The simple symmetric lens was chosen as the lens

to facilitate such transformations in the mask, due to its simplicity and symmetrical character.

Examples of lenses were implemented in C#, as well as a generic testing framework for testing

the behavedness of lenses.

A prototype mask–mediator–wrapper system was implemented as a substitute for the hy-

pothetical data source integration system of the third contribution, making the contributions of

this thesis more tangible. The implemented system is called Janus. Janus has served as a prime

example of a mask–mediator–wrapper system during the research. Janus was implemented to

contain a mask framework for constructing masks. To exemplify the development of masks by

using the framework, three mask kinds were created as prototypes. Additionally, the develop-

ment of a mask has been distilled into 10 steps. An implemented lens was used to facilitate

data transformations in the REST Web API mask, proving that lenses with a determined level

of behavedness can be used in masks.

Concrete case studies’ prototypes were configured to prove the statements made about the

mask–mediator–wrapper architecture in the qualitative analysis and case studies. The first case

study prototype demonstrates the Janus system’s capability of being deployed as a data source

integration system; as primarily hypothesised in the qualitative analysis. The second case study

prototype demonstrates the capability of the Janus system to emulate the SOS system. The

third case study prototype demonstrates the capability of the Janus system to emulate a data

mesh. The second and third case study prototypes are used to show an originally unanticipated

versatility of the mask–mediator–wrapper architecture.

1.4 Thesis structure

Chapter 2 introduces the preliminary terms in software architectures. Section 2.1 provides the

essentials for observing architectural characteristics and component properties, and includes the

modern perspective through evolutionary architectures. Section 2.2 concerns data management

and integration systems, where the mediator–wrapper architecture is introduced as a data in-

tegration system (Section 2.3), and the data mesh is introduced as a data management system

(Section 2.4). Section 4.3 introduces the quantitative shift cost analysis as a way of quantifying

software flexibility.

Chapter 3 introduces preliminaries regarding category theory and functional programming.

Sections 3.1 and 3.2 introduce definitions and explanations of the terms and mechanisms exten-

4

Introduction

sively used in bidirectionalisation. Bidirectionalisation is introduced through a set of methods

in Section 3.3. Section 3.3.5 examines bidirectional lenses.

Chapter 4 introduces the mask–mediator–wrapper architecture; discussing the first contri-

bution of this thesis. The deficiencies of the mediator–wrapper architecture are discussed from

a qualitative perspective in Section 4.1. The mask–mediator–wrapper architecture is introduced

in Section 4.2 as an extension of the mediator–wrapper architecture to resolve the examined

deficiencies. A quantitative shift-cost analysis is performed in Section 4.3 as further proof that

the mask–mediator–wrapper architecture is an improvement over the mediator-wrapper archi-

tecture.

Chapter 5 is concerned with the state-of-the-art mask component type with which the mediator–

wrapper architecture was extended. The chapter advances the first contribution theoretically and

sets the theoretical background for the third contribution. Sections 5.1 and 5.2 theoretically ex-

amine the mask component itself. Section 5.3 discusses the strategy for constructing masks via

a framework. Section 5.4 examines the modalities of masks in terms of previously observed

integration systems’ modes of use.

Chapter 6 introduces the system Janus implemented during this doctoral research. Janus

is a prototype built using the proposed architecture. The design, models and components of

the Janus system are discussed in Section 6.1. Section 6.2 presents the implementation of a

framework enabling the implementation of masks in the Janus system, the process of imple-

menting a mask, and three concrete mask implementation prototypes; finalizing the third thesis

contribution.

Chapter 7 is concerned with the use of lenses as the bidirectional method of choice for data

transformations in a mask. The choice of the appropriate lens type is discussed in Section 7.1.

The implementation of a lens using the C# programming language is discussed in Section 7.2.

Lenses used in an implemented mask (in the Janus system) are presented in Section 7.3. Sec-

tion 7.4 discusses the behavedness provability of the implemented lenses.

Chapter 8 examines case studies to analyse the capabilities of the mask–mediator–wrapper

architecture. Two case studies present the capability of the proposed architecture to emulate

two additional data management architectures, beyond serving just as a data source integration

system. Sections 8.1 and 8.2 present the two case studies. Section 8.3 introduces prototypes

of the three case studies as proof of the proposed capabilities of the mask–mediator–wrapper.

Section 8.3.1 proves the primarily proposed data source integration system capabilities by de-

ploying the Janus system components as such a system. This section finalizes the first contribu-

tion of this thesis. Section 8.3.2 proves the capabilities of emulating the SOS data management

system by appropriate deployment of the Janus system components. Section 8.3.3 proves the

capabilities of emulating a data mesh by appropriate deployment of the Janus system compo-

nents.

5

Introduction

Chapter 9 presents the conclusions of this doctoral research.

The appendix (Chapter 10) contains the list of all abbreviations used in the text; they are

not introduced directly in the text for the sake of readability (Section 10.1). The appendix con-

tains the common code prefix for the Haskell code examples (Section 10.2), the instructions for

running the Janus system components as the case studies’ prototypes by using Docker Com-

pose (Section 10.3), tables for noting the configuration of the components deployed in the case

studies’ prototypes (Section 10.4), and additional details about the Janus system’s schema and

query translation through an established case study prototype (Section 10.5).

6

Chapter 2

Software architecture preliminaries

In this chapter, some basics of observing software systems in terms of architecture are presented.

An introduction to the basic and modern concepts of software architecture is given. In addition,

an overview of data management systems in the context of data integration is given based on

the conference paper on taxonomy [1]. The chapter includes a section on the mediator–wrapper

architecture, which is extended by the contributing architecture of this thesis. The overview of

the mediator–wrapper architecture is from a published journal paper [14] written during this

doctoral research. A section on the data mesh for data management is given; this is summarised

from a preprint [28]. The data mesh is used as a part of a case study in Chapter 8. The chapter

concludes with an overview of the quantitative analysis that was adapted to determine certain

properties of the architecture used in this thesis.

2.1 Fundamentals of software architectures

On modules, components, and layers

Software architectures are usually observed in terms of modules and components, and the place-

ment of these in a computer environment. The most atomic observed element of software ar-

chitecture is the module - a logical grouping of related code [15, 16, 17]. Multiple modules can

be part of a component. A component is a physical packaging of modules [17]. Components

are physically present in computer systems as files. Modules and components are sometimes

used interchangeably by some authors, but Richards and Ford [15] and Ford et al. [16, 17] do

differentiate between the two. Because the compilation of its code creates a physical file, the

component can theoretically be placed on different machines. In modern development envi-

ronments that enable portability, components contain some form of pre-compiled intermediate

code (e.g. OpenJDK Java Bytecode or C# .NET Common Intermediate Language). The term

component is also used interchangeably to denote architectural components. An architectural

component represents a functional physical element of an architecture and can be comprised

7

Software architecture preliminaries

of one or more components. Components within architectural components are also referred to

as "inner components" in the remainder of this thesis to make the distinction clearer in certain

parts of the text.

Two examples of architectural components and inner components of a hypothetical multi-

layer information system are given in Figure 2.1. A system can be logically layered, where

each layer contains a set of components. These layers can become components themselves,

depending on the build configuration (in Java this is referred to as an uber or slim JAR). In the

example of Figure 2.1a all components are kept as a single architecture component; presumably

on a single machine. Figure 2.1b gives an example where layers and components are also

physically separated; on different machines.

(Architectural) component

Presentation layer

Business layer

Persistence layer

Database layer

Presentation component

Business
component

Business
component

Business
component

(a) Single architectural component

(Architectural) component

(Architectural) component

(Architectural) component

Presentation layer

Business layer

Persistence layer

Database layer

Presentation component

Business
component

Business
component

Business
component

(b) Multiple architectural components

Figure 2.1: Relation example of inner and architectural components

Layering, componentization and modularization are used to facilitate the separation of con-

cerns (responsibilities). The reasoning behind this is that each layer, component, and module

concerns a certain specific functionality of a software system. To this end, a system can be

functionally granulated into finely-grained components. Such components are concerned with

one specific functionality each. This reasoning can be run into the extreme end where even the

smallest function is separated into its own inner component. Ford et al. [17] state that granu-

lation produces positive outcomes in the code until it causes the loss of code cohesion. Analo-

gously, architectural component granulation can cause latency if applied excessively [15].

Coupling and cohesion

Coupling and cohesion are fundamental properties observed in software. Cohesion is the degree

to which the elements inside a module belong together [45]. Cohesion can be defined as a range

from positive to negative [15]:

8

Software architecture preliminaries

• Functional cohesion - Every part of the module is related to the other, and the module

contains everything essential to function.

• Sequential cohesion - Two modules interact, where one outputs data that becomes the

input for the other.

• Communicational cohesion - Two modules form a communication chain, where each

operates on information and/or contributes to some output.

• Procedural cohesion - Two modules must execute code in a particular order.

• Temporal cohesion - Modules are related based on timing dependencies.

• Logical cohesion - The data within modules is related logically but not functionally.

• Coincidental cohesion - Elements in a module are not related other than being in the same

source file.

Coupling is the degree of interdependence between modules [45]. Yourdon and Constantine

defined afferent and efferent coupling as code metrics. Afferent coupling measures the number

of incoming connections to a code artefact. Efferent coupling measures the outgoing connec-

tions to other code artefacts. These metrics allowed Martin [46, 47] to define his own metrics

of instability and abstractness.

Definition 1. For afferent coupling Ca and efferent coupling Ce, I is the measure of code insta-

bility calculated by:

I =
Ce

Ce +Ca (INSTABILITY)

Definition 2. For a number of abstract classes (including interfaces) in a module ma and a

number of concrete classes in a module mc, A is the measure of code abstractness calculated

by:

A =
∑ma

∑mc (ABSTRACTNESS)

Richards and Ford [15] state that these metrics can be used on other code elements (e.g.

lines of code), not just classes.

Building on these coupling metrics, Martin [47] proposed the distance from the main se-

quence metric (Figure 2.2). The distance from the main sequence is the perpendicular distance

from a line idealizing the main sequence: A+ I = 1. Balanced code in terms of instability and

abstractness is positioned on the main sequence line.

Definition 3. The distance from the main sequence is calculated by:

D = |A+ I −1| (DFMS)

where A is the measure of abstractness and I the measure of instability.

Coupling and cohesion are intertwined concepts because attempting to divide a cohesive

module would only result in increased coupling and decreased readability [45].

9

Software architecture preliminaries

Ab
st

ra
ct

ne
ss

Instability

1

1

D
D

Main sequence

Figure 2.2: Illustration of the distance from the main sequence

Additionally, Page-Jones [48] recoined coupling as connasence; by ignoring coupling di-

rection and concentrating on the reason for the coupling. Two components are connascent if a

change in one would require the other to be modified in order to maintain the overall correct-

ness of the system. Most importantly, connasence is recognized having two types: static and

dynamic. Static connasence is coupling created in code and can be detected by static analysis

of the code. Dynamic connasence is coupling that appears at runtime (e.g. remote service calls,

or library references).

Coupling can be transferred into architectural reasoning by observing architectural com-

ponents instead of modules. This is sensible because components are physical manifestations

of modules [17]. Coupling between components is created through compile-time or runtime

dependencies [17]. Compile-time dependencies are usually created by references to library

components. Runtime dependencies are usually manifested through references to remote ser-

vices. Architectural components also manifest cohesion and the statement that the division of a

cohesive component causes increased coupling (by Yourdon and Constantine [45]) still holds.

Architectural quantum and evolutionary architecture

Ford et al. [17] observed architectural coupling to facilitate the term - architectural quantum.

An architectural quantum is an independently deployable component with high functional co-

hesion, which includes all structural elements required for the system to function properly. The

expression "all structural elements" should be stressed in this definition, because unlike an inner

or architectural component, an architectural quantum contains multiple elements of a system.

An architectural quantum may include databases, search engines, reporting tools [17], and any

such service that might not be directly tied to the codebase.

An architectural quantum is typically exemplified with the comparative example of a mono-

10

Software architecture preliminaries

lithic and microservice architecture (Figure 2.3 and Figure 2.4). A monolithic architecture con-

tains just one architectural component (the monolith) and its dependent parts. A microservice

architecture consists of multiple services called microservices, each responsible for functional-

ities within a separate bounded context [49]. In the monolith architecture, the monolith itself

is the architectural quantum along with its dependent parts. In the microservices architecture,

each microservice with its dependent parts is an architectural quantum.

Architectural quantum

Monolith component

Module Module

Module Module

Search
service

Reporting
toolDatabase

Module Module

Module Module

Module Module

Module Module

Figure 2.3: Monolith architecture with denoted architecture quantum

Quantum

Microservice
component

Module

Module

Database

Quantum

Microservice
component

Module

Module

Database

Quantum

Microservice
component

Module

Module

Database

Quantum

Microservice
component

Module

Module

Database

API layer

Message broker

Figure 2.4: Microservices architecture with denoted architecture quanta

Evolutionary architectures use the principle of the architectural quantum to support incre-

mental changes across multiple dimensions [17]. Dimensions of changes generally include

functional changes and technological changes. This means that not only requirement shifts

11

Software architecture preliminaries

need to be accommodated in the architecture, but technological shifts as well. Technological

shifts entail changes in the technologies and third-party components used in the system. If

such elements are abstracted to reasonable levels, then the entire system is able to "evolve"

over a long period of time. Additionally, evolutionary architecture principles introduce fitness

functions. Architectural fitness functions provide an objective integrity assessment of some ar-

chitectural characteristics [17]. Fitness functions use unit tests, integration tests, architecture

metrics, contract tests, process metrics, and monitors as tools to assess the fitness of an archi-

tecture implementation. Fitness functions can be run continually during a system’s runtime or

can be triggered at certain points of development (e.g. during DevOps deployment).

Evolvability is the defining characteristic of evolutionary architectures. Evolvability is rec-

ognized as being impacted by the following architectural dimensions [17]:

• Technical - The implementation parts of the architecture: the frameworks, dependent

libraries, and the implementation language(s).

• Data - Database schemas, table layouts, optimization planning, etc. The database admin-

istrator generally handles this type of architecture.

• Security - Defines security policies, guidelines, and specifies tools to help uncover defi-

ciencies.

• Operational/System - Concerns how the architecture maps to existing physical and/or

virtual infrastructure: servers, machine clusters, switches, cloud resources, and so on.

Architectural characteristics

Richards and Ford [15] assessed multiple architectural styles through a set of architectural

characteristics. Out of many alternative architectural characteristics sets, even including the

ISO25010 standard [50], the authors [15] drew the following set of architectural characteristics:

• Deployability - Degree of ease with which the system is deployed.

• Elasticity - Ability of the system to handle sudden increases in the amount of data or

users.

• Evolvability - Ability of the system to evolve through its life-cycle (adherence to the

evolutionary architecture principles).

• Fault tolerance - Ability to operate as intended despite hardware or software faults.

• Modularity - Degree of cohesion and decoupling in the system modules.

• Overall cost - Monetary, time, and effort cost to build and deploy the system.

• Performance - Performance of a system in measurable technical terms (e.g. processing

time, response time).

• Reliability - Degree to which a system functions under specified conditions for a specified

period of time.

• Scalability - Ability to handle increasing amounts of data and users over time.

12

Software architecture preliminaries

• Simplicity - Degree to which the system is simple to build, maintain, and deploy over.

• Testability - Degree to which the system is able to be tested.

These characteristics are not a finite set; the set can be changed (and is expected to change)

according to the requirements at hand. While Richards and Ford [15] do evaluate multiple

architecture styles through a common quantified grading system (from 1 to 5 stars), their evalu-

ations are inherently qualitative. This is because they don’t set a concrete quantitative analysis

framework for their evaluations.

Component identification workflow

Richards and Ford [15] propose a generic component identification workflow for the inference

of components (Figure 2.5).

Initial component
identification

Assignment of
requirements to

components

Roles and
responsibilities

analysis

Architectural
characteristics

analysis

Component
restructuring

Figure 2.5: Component identification workflow [15]

As illustrated in Figure 2.5, the workflow contains the following steps:

• Initial component identification - The architect must determine top-level components of

an architecture. The point of this initial step is simply to start the process of component

identification, not to produce a perfect architecture on the first attempt.

• Assignment of requirements to components - The architect must align requirements with

the inferred components. This can include creating new components, consolidating exist-

ing ones, or decomposing components.

• Roles and responsibilities analysis - The architect refines the architecture even further by

taking into account the roles and responsibilities of components. Roles and responsibili-

ties are inferred from the requirements.

• Architectural characteristics analysis - In this step, the architect also takes into account

architectural characteristics and further refines the architecture accordingly.

• Component restructuring - The architect should cooperate with the developers to deter-

mine if there are any previously unforeseen technological obstacles to developing the

system in the proposed architecture. The workflow cycles back to the roles and responsi-

bilities analysis and continues until the architecture is adequately refined.

13

Software architecture preliminaries

This workflow is effectively used throughout the research presented in this thesis. Initial

component identification, assignment of requirements to components, roles and responsibilities

analysis, and architectural characteristics analysis are manifested in Chapter 4 and 5. The result

of component restructuring and the outcome of the cycle iterations through development is

evident in Section 6.1.

Well-formed components

Meyer [18] proposed architectural reasoning in terms of architectural components in a general

sense; describing the properties of what can be considered well-formed components. A system

component should satisfy the following conditions [18]:

RC1 It can be used by other software elements, its “clients”.

RC2 It possesses an official usage description, which is sufficient for a client author to use it.

RC3 It is not tied to any fixed set of clients.

The conditions set by Meyer predate those by Richards and Ford, but they are not at odds.

They simply exhibit the same notions in different terms. RC1 stresses the importance of what

Richards and Ford would relate as modularity and deployability. RC2 would be akin to sim-

plicity. RC3 would be relatable to scalability and modularity.

The mediator component

This section is included to clarify some ambiguities on a component called a "mediator". This

component name will be mentioned extensively in terms of data integration and management

systems in the subsequent sections. Unfortunately, the term "mediator" is a homonym for an-

other component and architectural pattern used in the general field of software architectures.

The use of the term in data integration and management systems predates its use in the general

field of software architectures.

In modern software architectures, the mediator is a component of the event-driven archi-

tectural style. It is used for process orchestration between multiple services. Although the

component’s name is the event mediator, it is colloquially referred to as just the mediator.

The event-driven architecture is based on event handling through message queue (broker)

components. Components subscribe to certain message topics defined in the message queues.

When a message on a certain topic appears, the subscribers are notified and are able to pull the

message from the queue for a certain time. Components can also publish messages with a topic

to the message queues. This focuses the system design on messages being relayed across the

topology. Events precipitate the creation of messages in the system, so messages are a reflection

of events occurring in the system’s surrounding environment.

Event-driven architecture with a mediator topology (also referred to as orchestration) uti-

lizes a mediator component to receive an initial event and coordinate operations spanning mul-

14

Software architecture preliminaries

tiple components regarding the initial event (Figure 2.6). The mediator generates corresponding

processing events for dedicated event channels (queues) handled by the components required for

each operation. These operational components are referred to as event processors. In essence.

The mediators can be tasked with handling complex action paths, so they usually support spec-

ifying entire business processes via the Business Process Execution Language (BPEL).

Event
processor

Event
processor

Event
processor

Event
processor

Event
queue

Event mediatorInitiating
event

Event
channel

Event
channel

Event
channel

Event
channel

Figure 2.6: Mediator in the event-driven architecture [15]

The alternative to the mediator topology is the broker topology. It necessitates the use of

multiple message brokers with multiple topics to which event processors are independently

subscribed. It is also referred to as choreography.

The referred "mediator" in the subsequent sections isn’t the event mediator but a different,

although similar, component.

2.2 Data integration and management systems

Numerous authors usually preface their work in the field of data management with a statement

that the significance of data in technological fields is increasing. This is illustrated by Statista’s

incrementally updated report on the volume of data worldwide in Figure 2.7 [51]. With each

yearly report, the projected years in the graph form a steeper curve than in the previous report

year. This trend places emphasis on the management of data and imposes some general research

questions - How can data be stored? How can data be exchanged? How can data be viewed?

How can data be analyzed? How can data be utilized?

The primordial efforts of tackling data management can be found in database management

systems, leveraging relational algebra to store and manipulate structured data. The work by

Edgar Codd [52] is usually presented as the beginning of major efforts in empowering relational

database systems. These efforts were fruitful and relational database management systems be-

15

Software architecture preliminaries

Figure 2.7: Volume of data from 2010 to 2025, as presented by Statista [51]

came the norm by the 1990s. The acceptance of relational systems in software systems led

to their proliferation by many vendors; some systems had even become unsupported by their

authors and turned into legacy systems. This precipitated the problem of managing legacy data

stores and presenting them with a modern application interface. In parallel, the possibility of

integrating multiple data stores became an attractive research topic. The work of Sheth and Lar-

son [2] presents an overview of the scientific and technological efforts and reasoning of the day.

Sheth and Larson [2] concerned themselves with, what they called, federated multi-database

systems. Data integration, schema integration, and querying were predominantly studied on

relational databases.

During this period, the management of non-structured data became a prominent topic,

caused by the advent of NoSQL systems by Carlo Strozzi [10]. The absence of schemas in

these systems enables the structure of data to vary, so the term schemaless is used to denote

this property. This only added complexity to the data integration challenges, as traditional re-

lational databases and structured data storage systems could not easily handle non-structured

data. However, NoSQL databases provided a flexible and scalable solution for handling un-

structured or semi-structured data, such as text, images, videos, and social media data. As a

result, organizations started to adopt NoSQL databases to store and process large amounts of

16

Software architecture preliminaries

unstructured data. Overall, the rise of NoSQL databases and the management of non-structured

data have brought new challenges and opportunities to the data management field.

An alternative idea to data integration was data exchange/interchange between data sources

[4]. This solution became impractical because it required direct connections between different

data sources acting as peers. In parallel, ETL processes [29] over multiple data sources for data

warehousing also appeared and are to this day an active research topic [30, 31].

Research has currently been exploring the idea of data lakes and how to process such large

quantities of distributed, unstructured, and heterogeneous data [12, 53], but even these have re-

cently been found wanting and inciting the concept of the data mesh [54]. Research is currently

shifting toward graph data [33, 34, 35, 36] and Web-centered data [37, 38, 39].

It is clear that the research of data integration is very unlikely to abate, especially as new

kinds of potential data sources continue to be created [37, 40, 41, 42, 43, 44], and as new

consolidating solutions appear [32].

The research community expresses data integration in terms of data sources or data stores,

not just databases. These terms are often used interchangeably, but this thesis differentiates

between the terms data source and data store with the following definitions:

•A data store is a system or mechanism by which data is stored.

•A data source is any system or mechanism that can source data.

Any data store can be a data source, but not every data source is a data store. Most notably, a

data stream is not a data store but a data source.

2.2.1 A note on metamodelling

Data management systems typically try to encompass a greater variety of data and its use cases,

so it is practical to think of data as an abstract construct. This thesis delves into terms like

metadata, models and metamodels, so it is appropriate to introduce such terms at this point. The

following definitions are adapted in their succinct form from Gonzalez-Perez and Henderson-

Sellers [55, 56].

Definition 4. A model is a representation of a system under study (SUS).

Definition 5. A metamodel is a description of a model.

Definition 6. A metametamodel is a description of a metamodel.

Gonzalez-Perez and Henderson-Sellers [55, 56] also point out that the SUS is abstracted

by a cognitive model of the observer before being put down as a specific model. Despite this,

it is practical to consider just the direct mapping between these models, ignoring the possible

intermediate models.

17

Software architecture preliminaries

M3
metametamodel

instance of

M2
metamodel

instance of

M1
model

instance of

M0
data

Figure 2.8: Object Management Group’s four-layer hierarchy

Definitions 4, 5, and 6 can be understood in their reverse, as usually illustrated by the Object

Management Group (Figure 2.8). The nature of their specific research doesn’t concern an ab-

stract system under study but concrete data, which is more aligned with the topic of this thesis.

The observation of metamodelling in the domain of data allows the introduction of a instance

of relationship between the data, model, metamodel and metametamodel. The most common

observation of such relationships is found in the Unified Modelling Language.

Additionally, the term metadata is also used throughout the thesis. This term denotes a

specific instance of data describing some other data. E.g. this can be a schema describing the

structure of the data. In turn, the model used to describe the schema is a metamodel.

2.2.2 Data source integration systems

The taxonomy of data source integration systems has suffered greatly from undefinedness and

incompleteness, so when reading through past research one can stumble upon different nam-

ing conventions (especially those promptly made for the material at hand). To illustrate a few

examples, one author considers multi-database systems a category [19], while another author

considers them a subcategory [2]. One author names a concept as a federated system, another

author names the same concept as a multi-database system [57], and a third author considers

them separate concepts [7]. The solution to these taxonomical qualms was proposed by Donče-

vić and Fertalj [1] with a revised taxonomy. The authors presented the taxonomy in terms of

database integration systems. Accordingly, this subsection presents this taxonomical revision

in the generalized term of data sources where applicable.

A data source integration system is a data management system with the task of integrating

data from two or more data sources (Figure 2.9).

Data source integration systems integrate three basic components that can hypothetically

be inferred from data sources: schemas, queries, and data. Data in these systems is usually

acquired as query results.

18

Software architecture preliminaries

Data source integration system

User

Data
source

Data
source

Data
source

...

Figure 2.9: Conceptual illustration of a data source integration system

Data source integration systems can be divided into two groups based on their mode of

use: virtualising and materialising. Virtualising systems create unified views (virtualisations)

of multiple data sources but keep the data in the connected data sources. Materializing systems

produce (materialise) unified data stores as a product of their integration, hence the data is kept

in the produced data store.

Data source integration systems, according to Özsu and Valduriez [19], are determined by

three dimensions (Figure 2.10): heterogeneity, autonomy, and distribution.

Distribution

Autonomy

Heterogeneity

Figure 2.10: Dimensions of data source integrations systems [19]

The kind of data source heterogeneity an integration system supports can be divided into five

categories: technical [2, 58], structural [6, 57], semantic [2], syntactic [58], and paradigmatic

[1]. Technical heterogeneity indicates that a system integrates data sources with different tech-

nical implementations; this is the precondition for the system to be considered heterogeneous.

Structural heterogeneity indicates that the models of the connected data sources are different.

Semantic heterogeneity implies different modelling of semantically equivalent data in the con-

nected data sources. Syntactic heterogeneity implies a difference in the connected data sources’

19

Software architecture preliminaries

query languages. Paradigmatic heterogeneity was introduced as an additional marker to indicate

that an integration system functions over paradigmatically different sources [1]. Paradigmatic

heterogeneity implies that the integration system also belongs to the other categories. Dončević

and Fertalj [1] proposed these be called hybrid data source integration systems.

Three categories are regarded in the autonomy dimension of data source integration sys-

tems [2, 57]: design autonomy, communication autonomy, and execution autonomy. Design

autonomy implies that connected data sources don’t require model corrections to be included in

the integration system. Communication autonomy implies that connected data sources continue

to have the same level of openness to other clients besides the integration system. Execution

autonomy implies the ability of connected data sources to continue executing tasks from other

clients besides the integration system without hindrance. The degree of autonomy is determined

by behaviour alternatives [19]: tight integration, semi-autonomy, and total isolation. Tight in-

tegration disables the connected data sources’ ability to control their own data and access to it.

Semi-autonomy implies that connected data sources relinquish control of only a part of their

data to the integration system. Total isolation implies that the connected data sources can still

act as completely stand-alone systems; they aren’t aware that they are part of an integration

system.

The distribution dimension concerns the distribution of data in the data source integration

system. This dimension infers three implementation alternatives: undistributed system, client-

server system, peer-to-peer system. The undistributed alternative is not of any particular inter-

est, as the existence of multiple data sources requires the latter alternatives. The client-server

alternative involves just one system component for the purpose of integration, but the com-

ponent can be instantiated multiple times (Figure 2.11). These instances have no means of

intercommunication. The peer-to-peer alternative involves multiple integration system compo-

nents that communicate to form a unified system (Figure 2.12). In the peer-to-peer alternative,

each system component is dedicated to a single data source. In terms of database integration

systems, the client-server alternative produces the multi-database integration system, and the

peer-to-peer alternative produces the federated database integration system. These can be taxo-

nomically brought into the abstract definition of a data source as multi-data-source integration

system and federated data source integration system, respectively.

20

Software architecture preliminaries

Client Client...

Integration
system

Integration
system...

Network

Network

Data
source

Data
source

Data
source

Figure 2.11: Client-server alternative

Integration
system

component

Integration
system

component
...

Network

Data
source

Data
source

Client Client

Figure 2.12: Peer-to-peer alternative

2.3 Mediator–wrapper architecture

The mediator–wrapper (MW) architecture doesn’t originate from the aforementioned dimen-

sioning of data source integration systems. Rather, it is a product of lateral reasoning about the

functionalities of an integration system.

The MW architecture was first envisioned as an information system architecture [3], allow-

ing a modular architecture for sub-tasking when numerous data sources are imposed, in opposi-

tion to monolithic architectures. This was specifically intended for information and knowledge

management systems for informed decision-making.

Expanding on the idea of the MW architecture’s applicability, Papakonstantinou et al. [4]

observed its usage for the exchange of data across heterogeneous information sources. Roth

and Schwarz [5] also observed the MW architecture to uniformly access legacy stores through

the GARLIC system [8]. Similarly, the MW architecture was used as a basis for the TSIMMIS

project [9]. Garcia-Molina et al. [59] recognized the MW architecture primarily for the purpose

of data source integration systems.

The MW architecture in the most general sense is an architectural pattern, consisting of me-

diator and wrapper components, used to query and acquire data from multiple data sources. The

21

Software architecture preliminaries

wrapper component is directly connected to a data source and acts as a standardized interface to

that data source. The wrapper wraps (or encapsulates) the data source for further use throughout

the rest of the system, effectively making it the only component in immediate contact with the

data source. To guarantee such functionalities, the wrapper must be able to translate queries,

data and metadata coming to and from the data source, as well as the layers above.

The mediator component is architecturally situated above the wrappers. The mediator’s task

is to connect multiple wrappers and integrate their data and metadata. Because data, metadata

and queries are logically intertwined, the mediator also must have the ability to decompose

and allocate queries to its connected wrappers. Both the wrapper and mediator components

come with an implicit consideration that they are generically implemented to enable multiple

configurable deployments.

Certain aspects of the MW architecture can be clarified by following the top-to-bottom

flow of data as shown in the conceptual illustration of the MW pattern in Figure 2.13. The

mediator receives a query which is then propagated accordingly to its connected wrappers. Not

all wrappers need to be included in a query, as all the data required by the query might not be

in all the data sources. The queried wrappers then translate the queries according to their data

source’s schema and querying language. The returned result is then translated back into the

system’s standardized result format and propagated to the mediator and above.

Query Query

Result Query

Mediator

Result

Query

Wrapper

Result

Query

Wrapper

Result

Data
source

Result

Data
source

Figure 2.13: MW pattern [59]

This pattern of interaction is the basis for the complete MW architecture. A more global

view is shown in Figure 2.14, illustrating the layering of mediator and wrapper components.

The data sources to be integrated are at the lowest layer. Each data source is directly covered

by a single wrapper. As an example, a system where each wrapper operates over a single data

source is displayed (Figure 2.14), although Özsu and Valduriez [19] display a possibility of

22

Software architecture preliminaries

a wrapper operating over multiple data sources. It can be observed that the “one wrapper –

one data source” setting gives more agility for appending new data sources to the integration

system, as it allocates the responsibility of overseeing data sources to each wrapper separately

and thus balances the workload. It is also interesting to remark that this component setting is

better suited for systems being built bottom-up [7, 19], where data sources are expected to be

appended and the global data overview is expected to change.

Wrapper

Mediator

Wrapper

DS DS

Wrapper

DS

Wrapper

DS

Mediator Mediator

Mediator Mediator Mediator Mediator layer 2

Mediator layer 1

Wrapper layer

Data sources

Figure 2.14: MW architecture with layered mediators [19]

The first layer of mediators is located directly above the wrapper layer. Figure 2.14 displays

their relationship in a form where each mediator in this layer can be connected to multiple

wrappers, and multiple wrappers can be connected to a single mediator. This is in line with

the MW architecture displayed by Özsu and Valduriez [19]. Papakonstantinou et al. [4] and

Jurczyk et al. [60] displayed an architecture in which each mediator of the first mediator layer

is connected to just one wrapper and vice versa, showing that this is also a feasible solution in

cases where mediators are only needed for transformation. The first mediator layer can be used

to mediate between wrappers over paradigmatically similar data sources or data sources that

have an overlapping or connected domain.

The second and upper layers of mediators can be used to raise the level of abstraction. The

mediators of the upper layers are used to mediate between mediators of the lower layers, thus

possibly encompassing multiple different data sources. Such a layering strategy is used by

Moura et al.[61] in a form of special and central mediators to organize and distribute processing

load, which can also be a beneficial effect if components are run on different machines. On the

other hand, Chawathe et al. [9] used layering to enable localized logical management of data

sources. This layering strategy was also proposed by Özsu and Valduriez [19].

Systems featuring a single monolithic mediator have been both proposed and implemented

[5, 62, 63, 64, 65, 66]. This can be found to be an ample, quick, and expedient solution if the

23

Software architecture preliminaries

number of connected data sources is not large or expected to rise. If the number of connected

data sources rises, then the processing load on that single mediator is increased and this can

easily lead to increased latency when querying any of the connected data sources through the

integration system. These types of systems can be covariantly classified as multi-data source

integration systems [1], taking note that the data source component translation is distributed

(assigned to the wrappers). It should also be noted that in these cases, the mediator component

is not really a component but rather a software module.

Recently, Sethi et al. [67] also focused on creating and maintaining a concern-oriented ar-

chitecture system. Their workers each have a Data Source API in similarity to wrappers. The

mediator’s functionalities are assigned to a single coordinator acting as the query entry point and

planner, and another worker to join the query results (akin to a reducer node in MapReduce).

2.3.1 On the roles of mediator–wrapper components

Considering the previously mentioned roles and interactions of wrappers and mediators in the

MW architecture, it can be determined what kind of properties these components should have,

and to which rules they should adhere. General conditions for well-formed components by

Meyer [18] have already been presented in Section 2.1. Meyer’s conditions can be expanded to

determine what conditions a wrapper or mediator should specifically meet. For wrappers in a

data source integration system, by following the example of [5, 8] (in their case the GARLIC

system), the following rules (goals) are set:

RW1 The start-up cost to write a specific wrapper should be small. The wrapper itself can be

constructed quickly with little need for prior knowledge of the data source integration

system internal structure. There is a basic service upon which a specific wrapper is built

upon.

RW2 Wrappers should be able to evolve. Incremental upgrades to the wrapper should be pos-

sible.

RW3 Wrappers should be modular and independent. Wrappers for new data sources can be

integrated into the existing data source integration system without disturbing user appli-

cations, and other wrappers or components.

RW4 Wrappers should be participants in query planning. The wrapper may use whatever

knowledge it has about a repository’s query and specialized search facilities to dynami-

cally determine how much of a query the repository is capable of handling.

The wrapper component type is succinctly defined in Definition 7 [14].

Definition 7. The wrapper is a component that allows uniform access to a data source by

wrapping the data source in terms of schema, queries, and data.

For mediators in a data source integration system, following the ideas of Wiederhold [3],

24

Software architecture preliminaries

the following rules are set:

RMe1 Structuring mediators into hierarchies should not lead to problems.

RMe2 Mediators should drive transformations. Mediators are there to accommodate the need

for data and metadata restructuring. Queries are also affected by this restructuring.

The mediator component type is succinctly defined in Definition 8 [14].

Definition 8. The mediator is a component used to manage transformations involving multiple

unified schemas, the data they represent, and queries used to acquire the data.

2.3.2 On schema hierarchies in the mediator–wrapper architecture

One of the advantages of using the MW architecture is the ability to modularly translate schemas

by using the architecture’s components themselves. To better understand these specifics, a

generic example of a schema-type hierarchy is displayed in Figure 2.15, which shows all the

possible schema types and their possible relationships. This is, in multiple forms, explained

by [19].

GES1 GES2 GES3

GCSLES11 LES12 LES13 LESn1 LESn1 LESn3

LCS1 LCSn

LIS1 LISn

...

...

Figure 2.15: A schema hierarchy [19].

Starting bottom-up in Figure 2.15, the first type of schema is a local internal schema (LIS).

The LIS is the schema found in the connected data source itself, defined in the data source’s

native form. For the data source integration system to be able to work on the connected data

source, it must translate the LIS to a more generic and adaptable form that is used system-wide -

this is the local conceptual schema (LCS). The LCS can then be translated into a local exported

schema (LES). The LES is, for all intents and purposes, a partial or transformed schematic

view of the LCS. As the data source integration system does not use the LES for its internal

functioning, the LES can be described in an entirely different form and presented to the user.

The global conceptual schema (GCS) is created by integrating the local conceptual schemas.

In turn, the GCS can also be exported to the user in multiple forms, just like the LES. Such an

exported schema is called a global exported schema (GES).

25

Software architecture preliminaries

In a multi-database integration system, these schemas are all found in the same integration

component in the form of metadata and are generated by modules. On the other hand, in an MW

architecture data source integration system, these schemas are worked on gradually. This is done

through the system’s wrapper and mediator layers, each layer creating a more encompassing

global schema or creating new forms of exported schemas.

As an example, a certain system-wide schema hierarchy is presented in Figure 2.16 with

the schemas’ relationships in accordance with the former explanation. The schema relation-

ships (mergers or extractions) are presented by connecting lines, while the arrows on top of the

schemas demonstrate which of them can be accessed by a user.

To provide a tangible illustration, an example is provided to demonstrate the appropriate

allocation of schemas to MW components. Setting this example for the continuation of this

paper, the schemas from the exemplified hierarchy (Figure 2.16) can now be assigned to MW

architecture components. In Figures 2.17 and 2.18, the components are displayed with their

assigned schemas (illustrated by a white rectangle) adjacent to them.

LIS1 LIS2 LIS3 LIS4

LCS1 LCS2 LCS3 LCS4

GCS12 GCS123 GCS234 LES41

GES121 GES122 GES2341 GES2342

Figure 2.16: An example of a system-wide schema hierarchy.

The first possible assignment of schemas is to a system with a single mediator layer, as

displayed in Figure 2.17. The LISs are positioned in the connected data sources. The wrappers

then form their individual LCSs based on their connected data source’s LIS. The wrappers’

LCSs are then used by the mediators to create their GCSs. In this example, an aforementioned

case of a mediator connected to a single wrapper is also displayed. This mediator generates an

LES, and thus this mediator is only used for translation. The other mediators, along with their

GCSs, generate GESs. A mediator can be used to create GESs to remove the need for another

architectural layer of the mediators above. Of course, this might decrease system latency but

will increase the complexity of mediator components, as they now must manage multiple user

26

Software architecture preliminaries

role access.

DS1 DS2 DS3 DS4

Mediator

Wrapper WrapperWrapperWrapper

Mediator Mediator Mediator

LIS1 LIS2 LIS3 LIS4

LCS1 LCS2 LCS3 LCS4

GCS12 GCS123 GCS234 LES41GES121
GES122

GES2341
GES2342

Figure 2.17: An exemplified assignment of schemas to an MW system with a single mediator layer.

Another example of schemas’ assignments is displayed in Figure 2.18. In this example,

there is another mediator layer on top of the architectural hierarchy. These mediators are used

exclusively for exporting schemas, similar to the translating mediator. In this alternative, each

mediator exports just one form of GES, thus reducing their task base and reducing the required

complexity for user role management. In other words, each mediator could have just one form

of a data-accessing user.

DS1 DS2 DS3 DS4

Mediator

Wrapper WrapperWrapperWrapper

Mediator Mediator Mediator

LIS1 LIS2 LIS3 LIS4

LCS1 LCS2 LCS3 LCS4

GCS12 GCS123 GCS234 LES41

Mediator Mediator Mediator Mediator

GES121 GES122 GES2341 GES2342

Figure 2.18: An exemplified assignment of schemas to an MW system with an exporting mediator layer.

27

Software architecture preliminaries

2.4 Data mesh

The data mesh is a decentralized data management architecture that converges the ideas of [54]:

•distributed domain-driven architecture;

•self-serve platform design;

•product thinking with data.

It was proposed by Dehghani [20, 54, 68] as an alternative to the centralized data platform

approach. The centralized data platform approach centrally manages and serves data through

coupled ETL processes (Figure 2.19). The centralized data platform requires technologically

specialized teams to support and develop ETL processes to serve data for analytical systems.

Dehghani proposed a shift of technology-oriented data platforms towards those centred around

domains and bounded contexts. This proposal brings the ideas of domain-driven design, as pre-

sented by Evans [49], from operational systems into the field of data management and analytical

systems.

Operational Data Plane Analytical Data Plane
Data Lake/Data Warehouse

...
E T L

Data pipelines
Extract-Transform-Load

Dashboards
Reporting

Visualization

Lakeshore
Data mart

Data warehouse

E T L

E T L

: </> {}

E T L

Figure 2.19: Illustration of centralized data management architectures

In a data mesh, an organization’s data is arranged into bounded contexts. This paradigm

leverages Conway’s law [69], which postulates that organizations which design systems [...]

are constrained to produce designs which are copies of the communication structures of these

organizations. By federating data in such a way, teams can be separated along the lines of

domains (bounded contexts), not technologies or functionalities. Such teams acquire domain-

specific knowledge faster and handle data and new tasks with greater expertise [20]. There is a

trade-off inferred by adopting the data mesh, as postulated by Richards and Ford [15] in terms

of architectures, which requires teams to be cross-functional. Concretely, instead of delegating

the task of constructing a data pipeline to a specialized data technician team, the domain teams

are tasked with building it for themselves. Paired with Conway’s law, the data mesh is not only

an architecture but also an organizational template.

Because teams in a data mesh are specialized, they can deliver a greater focus on the quality

of data their domains provide. This enables teams to think of the data they provide in their

domains as products, hence the name data products. The primary data source location for the

28

Software architecture preliminaries

Data
Product

Operational
System

Operational
System

IDP
IDP

ODP

D

Data
Product

Operational
System

IDP

IDP

ODP

D

Data
Product

Operational
System

IDP

ODP

D

O
O

O

O

Data infrastructure platform

Figure 2.20: Multiple domains serving domain-oriented data (O - operational data; D - analytical data;
IDP - input data port; ODP - output data port)

data mesh is the data infrastructure platform (DIP) [20]. The DIP contains (or refers to) existing

data warehouses, data lakes or operational data stores. Operational systems tied to domains

also contribute to the data product; the idea is that operational systems are also designed as

bounded contexts. Data products can also be created by acquiring data from other domains

through their own data products, which guarantees data quality from both the providing and

receiving domains’ end. A domain data product shouldn’t acquire data from other domains’

operational systems, because this would circumvent the data quality guarantee. Data products

are consumed by users (for reporting, visualisation, dashboards etc.), operational systems, other

analytical systems, or other data products. A hypothetical data mesh is illustrated in Figure 2.20.

Data products are conceptually illustrated as having input and output data ports, as in Fig-

ure 2.20. This usual imaging, provided by Dehghani [20, 54, 68], remarkedly evokes the ports-

and-adapters pattern of the hexagonal architecture by Cockburn [70]. In the hexagonal architec-

ture, the domain implementation is completely decoupled from driving and driven actors. This

is done by prescribing a set of behaviours that the domain will recognize or enact (e.g. inter-

faces) called ports, and a set of adapters for those ports as a means to interact with actors (e.g.

interface implementations). Reflecting ports and adapters back onto data products, they should

be independent of the technological mechanisms by which they are created. To provide the data

product with the aforementioned properties, an architectural component must be constructed

29

Software architecture preliminaries

accordingly. Data product provisioning is accomplished by the data product container (DPC;

Figure 2.21), which is an architectural quantum [20]. This infers that the data mesh itself has

evolvable characteristics and is an evolutionary architecture.

Data product container

Transformations

Domain data

Temporary
storage

Figure 2.21: A data product container having a local domain data storage - data prepared for serving
(adapted from [20])

The DPC has to consume data from the input ports, transform the data in adherence to

global quality standards [20], and offer a means of serving the data as a ready product. A more

distilled view of the DPC is that might not be implemented to handle data as a stream and might

be required to keep data in temporary storage before being transformed into a viable product

[28]. Therefore, the data needn’t be served as a stream, so a data product store (domain data in

Figure 2.21) can be used to store the data product.

The data mesh is proposed by Dehghani [54] to enable:

•Scalable polyglot big data storage;

•Encryption for data at rest and in motion;

•Data product versioning;

•Data product schema;

•Data product de-identification;

•Unified data access control and logging;

•Data pipeline implementation and orchestration;

•Data product discovery, catalogue registration and publishing;

•Data governance and standardization;

•Data product lineage;

•Data product monitoring/alerting/log;

•Data product quality metrics (collection and sharing);

•In memory data caching;

•Federated identity management;

30

Software architecture preliminaries

•Compute and data locality.

A point of particular importance for this thesis is the statement by Dehghani [68] on what

kind of data could the data mesh be tasked to serve: Depending on the nature of the domain

data and its consumption models, data can be served as events, batch files, relational tables,

graphs, etc., while maintaining the same semantic.

2.5 Quantitative shift-cost analysis

Richards [15] used a 5-level grading system to evaluate characteristics and compare the covered

architecture styles. Despite the analysis results being quantified it is by its nature a qualitative

analysis. This evaluation is sufficient for a fundamental architecture overview and to remark that

software architectures are often differentiated by their trade-offs, but qualitative analysis results

are difficult to clearly compare. Conversely, quantitative analysis results are clearly comparable

if they were acquired from the same experiment.

Mens and Eden introduced a way to quantitatively measure and analyse the flexibility of

software in terms of requirements changes in their two linked papers [21, 22]. This analysis

will be referred to as a quantitative shift-cost analysis. Their definition of flexibility is assumed

from IEEE’s standard glossary of software engineering terminology (Definition 9) [71]. This

same definition of flexibility is accepted in this thesis.

Definition 9. Flexibility is the ease with which a system or a component can be modified for

use in applications or environments other than those for which it was specifically designed.

Mens and Eden [21, 22] observed a generic environment where arising requirements shift

the problems within a specific domain. Requirement shifts necessitate changes in the existing

software implementation called adjustments. Each pairing of a shift and adjustment is con-

sidered an evolution step (not directly tied with the terms evolvability and evolutionary from

Section 2.1). This is illustrated in Figure 2.22.

The aforementioned terms are defined as follows [21, 22]:

Definition 10. A requirement r is a well-defined specification of the program’s expected be-

haviour, expressed in terms of the problem domain D .

Definition 11. An implementation i is the subject of the evolution effort.

Definition 12. A shift is a specific change to a given set of requirements. A shift is represented

as a function σδ (r,D,d), where D ∈ D and δ is an adjustment operation over D which changes

the element d ∈ D.

Definition 13. An adjustment is a specific change to a given implementation i creating i′, rep-

resented as α = (i, i′).

31

Software architecture preliminaries

Problem Shifted problem

Realizes

Implementation

Realizes

Adjusted
implementation

Adjustment

Shift

Figure 2.22: Conceptual illustration of an evolution step

Definition 14. An evolution step is a pair of a shift and adjustment ε = (σ ,α).

While shifts are regarded in terms of requirements, adjustments on an implementation can

be observed with different levels of granularity regarding the implementation’s elements. Mens

and Eden [21, 22] generically define this element as a module. This module is not necessarily

the module from Section 2.1 by definition, but a theoretical placeholder for implementation

elements like methods, functions, structures, classes, etc. A module in this terminology can

represent a concrete code module. This generality allows the cost of an evolution step to be

parametrized according to the implementation elements of interest. Hence, this analysis can be

used for evaluating design patterns and, as will be shown in Section 4.3, architectures.

Definition 15. The evolution cost metric is calculable as:

Cmodule(ε) = |modules(i) ∆ modules(i′)| (SHIFTCOST)

where ∆ is a symmetric set difference such that A∆B = (A\B)∪ (B\A), and modules(i) are all

modules in an implementation i.

To simplify the statements of Definition 15, the evolution cost is the sum of the number of

all modules added or removed during an adjustment effected by a shift.

Example 1 exemplifies the process of acquiring an evolution cost of a class hierarchy and is

provided to demonstrate the nature and potential of this analysis.

Example 1. An object-oriented environment is observed, where the domain consists of an inter-

face IGameObject denoting an object in a hypothetical two-dimensional game, and implement-

ing classes Rectangle, Circle, Triangle, and Square representing two-dimensional objects

in the game. The domain diagram is presented by Figure 2.23. Evaluations of evolution costs

are made for two separate shifts on methods and classes as modules.

Shift scenario 1: addition of a rotateCW method to the IGameObject interface

32

Software architecture preliminaries

IGameObject

+ getPositionX(): int

+ getPositionY(): int

+ translateX(int): void

+ translateY(int): void

Rectangle

-

+ getPositionX(): int

+ getPositionY(): int

+ translateX(int): void

+ translateY(int): void

Circle

-

+ getPositionX(): int

+ getPositionY(): int

+ translateX(int): void

+ translateY(int): void

Triangle

-

+ getPositionX(): int

+ getPositionY(): int

+ translateX(int): void

+ translateY(int): void

Square

-

+ getPositionX(): int

+ getPositionY(): int

+ translateX(int): void

+ translateY(int): void

Figure 2.23: Game object domain diagram

The addition of a method to an interface necessitates implementing the method in the imple-

mentation classes (Figure 2.24). The rotateCW method must be implemented in four classes,

so the method-moduled evolution cost is 4. This can be concretely specified as the following

calculation:

α = (ibe f ore, ia f ter)

d = methods

methods(ibe f ore) = {Rectangle.getPositionX, ...,Square.translateY}
methods(ia f ter) = {Rectangle.getPositionX, ...,Square.rotateCW}
methods(ibe f ore) ∆ methods(ia f ter) =

{Rectangle.rotateCW, Circle.rotateCW, Triangle.rotateCW, Square.rotateCW}
Cmethod(ε) = |methods(ibe f ore) ∆ methods(ia f ter)|= 4

Since there were no adjustments made to classes, it follows that:

Cclass(ε) = |classes(ibe f ore) ∆ classes(ia f ter)|= 0

It can be concluded that in the general case of adding methods to the interface, the evolution

cost on classes will always be 0, but the evolution cost on methods will depend on the number

of implementation classes. It can be stated that for this type of shift:

Cmethod(ε) = |classes(ibe f ore/a f ter)|;
Cclass(ε) = 0.

Mens and Eden [21, 22] represent this as being akin to big-O notation.

33

Software architecture preliminaries

IGameObject

+ getPositionX(): int

+ getPositionY(): int

+ translateX(int): void

+ translateY(int): void

+ rotateCW(int): void

Rectangle

-

+ getPositionX(): int

+ getPositionY(): int

+ translateX(int): void

+ translateY(int): void

+ rotateCW(int): void

Circle

-

+ getPositionX(): int

+ getPositionY(): int

+ translateX(int): void

+ translateY(int): void

+ rotateCW(int): void

Triangle

-

+ getPositionX(): int

+ getPositionY(): int

+ translateX(int): void

+ translateY(int): void

+ rotateCW(int): void

Square

-

+ getPositionX(): int

+ getPositionY(): int

+ translateX(int): void

+ translateY(int): void

+ rotateCW(int): void

Figure 2.24: Addition of the rotateCW method

Shift scenario 2: addition of a Rhombus class implementing the IGameObject interface
The addition of an implementation class necessitates implementing the interface’s methods in

the implementing class (Figure 2.25). The interface contains four methods, so the evolution

cost in terms of methods is 4. The evolution cost in terms of classes is trivially 1. This can be

concretely specified as the following calculation:

α = (ibe f ore, ia f ter)

d = methods

methods(ibe f ore) = {Rectangle.getPositionX, ...,Square.translateY}
methods(ia f ter) = {Rectangle.getPositionX, ...,Rhombus.translateY}
methods(ibe f ore) ∆ methods(ia f ter) =

{Rhombus.getPositionX, Rhombus.getPositionY, Rhombus.translateX,
Rhombus.translateY}

Cmethod(ε) = |methods(ibe f ore) ∆ methods(ia f ter)|= 4

Adjustments made to classes involve adding one class, so it follows that:

Cclass(ε) = |classes(ibe f ore) ∆ classes(ia f ter)|= 1

In a general case of adding implementation classes to the interface, the evolution cost on classes

will always be 1, but the evolution cost on methods will depend on the number of methods the

interface has. It can be stated that for this type of shift:

Cmethod(ε) = |methods(iIGameOb ject)|= constant;

Cclass(ε) = 1.

34

Software architecture preliminaries

Rhombus

-

+ getPositionX(): int

+ getPositionY(): int

+ translateX(int): void

+ translateY(int): void

IGameObject

+ getPositionX(): int

+ getPositionY(): int

+ translateX(int): void

+ translateY(int): void

Rectangle

-

+ getPositionX(): int

+ getPositionY(): int

+ translateX(int): void

+ translateY(int): void

Circle

-

+ getPositionX(): int

+ getPositionY(): int

+ translateX(int): void

+ translateY(int): void

Triangle

-

+ getPositionX(): int

+ getPositionY(): int

+ translateX(int): void

+ translateY(int): void

Square

-

+ getPositionX(): int

+ getPositionY(): int

+ translateX(int): void

+ translateY(int): void

Figure 2.25: Addition of the Rhombus class

It can be concluded that with a growing number of implementation classes, the domain is more

flexible to implementation class additions than to interface method additions.

In the remainder of this thesis, the evolution cost is referred to as the shift cost, as costs are

expressed over shifts. This is to prevent the mixing of concepts regarding evolvability and to

keep in line with the contributing journal article [14]. The nomenclature is also adjusted later

on to simplify the expressions made while running a quantitative analysis, but the core concept

is kept.

35

Chapter 3

Category theory, functional programming,
and bidirectionalisation preliminaries

This chapter is provided to introduce the minimal preliminary information required for the un-

derstanding of concepts tied to category theory and functional programming. First and foremost,

the concept of lenses is a construct from functional programming that has its basis in category

theory. The Janus system’s design, which is presented later (see Chapter 6), relies heavily on

functional programming and category theory. To illustrate concepts tied to category theory

applied in functional programming, examples in Haskell-like code snippets will be provided.

3.1 Basic category theory

Category theory is a branch of pure mathematics that stems from the field of algebraic topology

[72]. Category theory has greatly influenced computer science and has been used extensively

in programming language design and implementational techniques, software design and imple-

mentation, and type theory. The most basic term in category theory is that of the category.

Definition 16. A category C is comprised of:

1.a collection of objects;

2.a collection of arrows called morphism;

3.operations assigning each arrow f an object dom f , its domain, and an object cod f , its

codomain (we write f : A → B to signify that dom f = A and cod f = B);

4.a composition operator assigning to each pair of arrows f and g with cod f = dom g, a

composite arrow g◦ f satisfying the following associativity law:

for any arrows f : A → B, g : B →C, and h : C → D (with A, B, C, and D not

necessarily distinct),

h◦ (g◦ f) = (h◦g)◦ f ;

36

Category theory, functional programming, and bidirectionalisation preliminaries

5.for each object A, an identity arrow id A : A → A satisfying the following identity law:

for any arrow f : A → B,

idB ◦ f = f and f ◦ idA = f .

Constructions in category theory can be graphically represented by a commutative diagram,

which is a directed graph where:

•vertices are objects;

•morphisms are directed edges such that for f : A → B there is an edge pointing from

vertex A to B.

A commutative diagram is shown for category C from Definition 16 in Figure 3.1, where a

dashed directed edge is added to represent the composition of morphisms f , g, and h.

h C

g

Bf

h ◦ (g ◦ f) = (h ◦ g) ◦ f

A

D

idA idB

idCidD

Figure 3.1: A commutative diagram representing category C from Definition 16

Each possible composition of morphisms also implies the existence of an equivalent mor-

phism by substitution [73]. By the example of Figure 3.2, morphisms f and g can compose,

since cod f = domg, hence there exists a morphism that signifies g◦ f - the h morphism. Identity

morphism compositions are usually omitted.

f

g ◦ f = h

g

C

B
idA

A
idB

idC

Figure 3.2: Morphism composition example

The essence of category theory is to try and omit the contents of a category’s objects as

much as possible, so they can be reasoned about in terms of their morphisms. Morphisms can

be affected by the nature of the objects they pair. The abstract nature of Definition 16 allows

the replacement of a category’s objects and morphisms with other corresponding mathematical

and logical constructs. To show a simplified example, authors [72, 73] usually present a case

37

Category theory, functional programming, and bidirectionalisation preliminaries

where objects can represent sets and morphisms can represent total functions between sets. This

creates a category called Set. This Set category can represent a category of sets of numbers,

similarly presented as NumSet in Example 2.

Monomorphism, epimorphism, isomorphism

Morphisms can be distinguished by their properties, especially if they are considered mappings

of quantifiable objects. In category theory, these properties are reasoned about without look-

ing into the objects the morphisms map, but by taking into account the relations between the

morphisms themselves.

Definition 17. A morphism f : B → C in a category C is a monomorphism if, for any pair of

C-arrows g : A → B and h : A → B, the equality f ◦g = f ◦h implies that g = h.

Definition 18. A morphism f : A → B is an epimorphism if, for any pair of arrows g : B → C

and h : B →C, the equality g◦ f = h◦ f implies that g = h.

Definition 19. A morphism f : A → B is an isomorphism if there is an arrow f−1 : B → A,

called the inverse of f , such that f−1 ◦ f = idA and f ◦ f−1 = idB. The objects A and B are said

to be isomorphic if there is an isomorphism between them.

Definition 20. Two objects that are isomorphic are often said to be identical up to isomorphism
or within an isomorphism.

There is a correspondence between the terms monomorphism, epimorphism, and isomor-

phism when discussing categories with set-like objects. Monomorphism corresponds to in-

jectivity, epimorphism corresponds to surjectivity, and isomorphism corresponds to bijectivity.

Example 2 illustrates this by approaching a category of number sets.

Example 2. A NumSet category contains objects (Figure 3.3):

• N0 - a set of natural numbers including zero;

• Z - a set of integers;

and total functions as morphisms:

• idN0 , such that idN0(x) = x;

• idZ, such that idZ(x) = x;

• f : N0 → Z, such that f (x) =−x;

• g : Z→ N0, such that g(x) = |x|.

f
0

idℕ0

g

id

Figure 3.3: NumSet category diagram

38

Category theory, functional programming, and bidirectionalisation preliminaries

f maps all elements of N0 into Z in such a way that f (x1) = f (x2) implies x1 = x2, making

it a injective function. f is non-surjective as its codomain is not the entirety of Z. In terms of

category theory, f is a monomorphism. g is a non-injective function on Z, as can be proven

by example of g(−1) = 1 and g(1) = 1. On the other hand, g is a surjective function as its

codomain covers the entirety of N0. This makes g an epimorphism. The composition g ◦ f is

bijective, therefore it is correspondingly an isomorphism.

Terminal and initial objects

Objects in category theory can be classified by forming universal constructions - objects and

accompanying morphisms that share a common property[72]. The simplest of these are the

initial and terminal objects, as introduced by Definitions 21 and 22 [72] (Figure 3.4).

Definition 21. An object 0 is called an initial object if, for every object X, there is exactly one

arrow from 0 to X.

Definition 22. An object 1 is called a terminal object if, for every object X, there is exactly one

arrow from X to 1.

A

0

B C

A

1

B C

Figure 3.4: Diagrams of an initial and terminal object

In terms of the Set category, an initial object is the singular empty set {} of the category.

For every set S in Set, there is a unique empty function from {} to S. A terminal object is any

singleton set {x} of Set where x∈ S, since for every set S there is a function from S to a singleton

set {x}.

Products

A product is a universal construction in category theory (Figure 3.5). It corresponds to the

Cartesian products in set theory. A product is constructed by recognizing that products have

projection functions; for a product A×B there exist projection functions π1 : A×B → A and

π2 : A×B → B. There is also an initial set, which must contain two functions which connect

it to the projected product sets: f : C → A and g : C → B. To virtually construct a product,

the functions f and g are formed into a product function ⟨ f ,g⟩, such that ⟨ f ,g⟩ : C → A×B

and ⟨ f ,g⟩(x) = (f (x),g(x)). These functions can be recovered by setting f = π1 ◦ ⟨ f ,g⟩ and

g = π2 ◦ ⟨ f ,g⟩.

39

Category theory, functional programming, and bidirectionalisation preliminaries

Definition 23. A product of two objects A and B is an object A×B, together with two projection

morphisms π1 : A×B → A and π2 : A×B → B, such that for any object C and pair of arrows

f : C → A and g : C → B there is exactly one mediating arrow ⟨ f ,g⟩ : C → A×B, with f =

π1 ◦ ⟨ f ,g⟩ and g = π2 ◦ ⟨ f ,g⟩ making the diagram commute [72].

f g⟨f,g⟩

C

BA 𝝅1 𝝅2
A×B

Figure 3.5: Commutative diagram of a product

Coproducts

Due to the notion of duality, that for every category C there exists an opposite category Cop in

which morphisms are reversed, it is possible to construct an opposite construction to the product

- the coproduct (Figure 3.6). The coproduct corresponds to the discriminate (disjoint) union in

set theory.

Definition 24. A coproduct of two objects A and B is an object A+B, together with two injection

arrows ι1 : A→A+B and ι2 : B→A+B, such that for any object C and pair of arrows f : A→C

and g : B →C there is exactly one arrow [f ,g] : A+B →C making the diagram commute [72].

f g[f,g]

C

BA
ι1 ι2A+B

Figure 3.6: Commutative diagram of a coproduct

Relationship to types and computer programs

Objects and morphisms in category theory can be used to denote various ideas. The given

examples over vague sets or sets of natural numbers and integers can be transposed onto a more

concrete environment of computer programs. A category can be observed where objects are

types, and morphisms are total functions. This is exemplified by a simple type category in

Example 3 adapted from Pierce [72].

40

Category theory, functional programming, and bidirectionalisation preliminaries

Example 3. A category ST has the following objects representing types:

Int - integer values;

Real - real number values (discrete);

Bool - boolean values;

Unit - type with just one possible value;

Void - empty type;

The ST category has the following morphisms representing total functions between types:

true : Unit → Bool;

f alse : Unit → Bool;

zero : Unit → Int;

not : Bool → Bool;

succInt : Int → Int;

succReal : Real → Real;

isZero : Int → Bool;

toReal : Int → Real;

∀α ∈ (Int ∪Real ∪Bool ∪Unit) unit : α →Unit

The ST category’s diagram is shown in Figure 3.7. The ST category can be assessed in terms

isZero

toReal

Int

false

Bool

Real
true

zero

Unit

unit

not succInt

succReal

unit unit

unit

Figure 3.7: Diagram of the ST category

of a computer program. The category is equipped with a means to create constants via functions:

true, f alse, and zero. Real is not covered by constant creation, whose constant can be created by

an implied toReal ◦ zero composition. toReal and isZero represent a function mapping integers

to real and boolean values respectively. The category contains a terminal object Unit, which

is accessed from all types via their respective unit functions. The ST category does contain a

Void as an initial object, but the example omits it further for the sake of clarity. In a type system

such as this, no actual constants could be created if morphisms were declared to stem from

Void because such a function couldn’t have any Void value passed to it. Many type systems,

like in Haskell, substitute this by having constant-creating functions stem from Unit. This

doesn’t prevent the Unit from being a valid terminal object [73]. Haskell does additionally

41

Category theory, functional programming, and bidirectionalisation preliminaries

provide a polymorphic function from Void to all types called absurd, but this function can never

be invoked. It is important to note that morphisms not, succInt, and succReal aren’t identity

functions. On the other hand, unit : Unit → Unit is an identity function. These formulations

make the hypothetical computer program declarative.

3.2 Functional programming

The declarative nature of a computer program doesn’t impact its ability to be run on a genuine

computer. A subset of declarative programming is functional programming (alt. functional

paradigm). Tying in functional programming with category theory, data types are objects and

pure total functions are morphisms. Pure functions are those functions that have the following

properties [73]:

•repeatedly return the same result with the same set of arguments;

•have no side effects (no mutation of static variables, references or input/output streams).

This implies that a pure function is idempotent and stateless in regard to its surrounding program

environment. However, these properties don’t limit programming capabilities in functional pro-

gramming. Side effects are handled by a mechanism introduced in Section 3.2.2. Exclusive use

of pure functions allows the use of the substitution model to run proofs on programs, where

each expression can be substituted by a sub-expression or concrete value as a result of expres-

sion evaluation [74].

Functional programming has been implemented in many programming languages, with

Haskell being popular in the programming language, category theory, and type theory com-

munity. As mentioned at the beginning of Chapter 3, Haskell-like notation will be used for

illustrative examples of category theory in software design. Type notation in Haskell relies on

the Curry-Howard (alt. arrow) notation. This notation is adopted from lambda-calculi and

implies a vital notion of functions in functional programming - all functions have just one pa-

rameter. This much is already evident in set theory. E.g. a function f : (A×B) → C doesn’t

individually map elements of A and B into C, but takes as an argument a single tuple of elements

from A and B denoted as (A×B). This is not evident in formulaic mathematical expressions

for functions, e.g. f (x,y) = x+ y. In the Curry-Howard notation, such a function would be

annotated as Int → Int → Int. The Curry-Howard arrow is an operator of a type constructor

[73] that indicates the types of parameters the function accepts and the type of its return value.

The arrow operator is left-associative, so the last argument is the return type of the function.

This notation also allows the usage of brackets. A function defined in this manner is called a

curried function.

Example 4. A function add is defined in over an Int type as follows:

add : (Int × Int × Int)→ Int such that add(x,y,z) = x+ y+ z

42

Category theory, functional programming, and bidirectionalisation preliminaries

In Curry-Howard notation, add is defined as follows:

add : Int → Int → Int, with a definition: add(x) = λy.λ z.x+ y+ z.

This can be translated into Haskell as:

1 --curriedfuntiontosum3integers

2 add::Integer->Integer->Integer->Integer

3 add x =

4 \y ->

5 \z -> x + y + z

6 --calladdandassertresult

7 main =

8 letresult = add 3 7 11

9 in

10 print$assert (== 21) (result)

Listing 3.1: Explicitly curried function add in Haskell

1 --non-curriedfunctiontosum3integers

2 add:: (Integer,Integer,Integer) ->Integer

3 add (x, y, z) = x + y + z

4 --calladdandassertresult

5 main =

6 letresult = add (3, 7, 11)

7 in

8 print$assert (== 21) (result)

Listing 3.2: Non-curried function add in Haskell

It is important to note that Haskell implicitly supports currying, but Listing 3.1 in Example 4

explicitly curries the add function to illustrate the case of curried functions.

In lambda-calculi, as is consequently recognized in functional programming, a function

receives individual arguments by returning a new function that receives the successive argument.

In functional programming, each argument is said to be applied to the function. This is the basis

for partial application. The consequence of this mechanic is the ability to treat functions as

objects in object-oriented programming. Hence, partially applied functions can be referenced

with variables. In a bare type system, akin to the one provided by Scheme/Lisp, this enables

the construction of more complex data types. The most notable of these examples was given by

Abelson et al. [74], showing how a tuple data type can be constructed by the use of captured

variables, closures, and partial application. A closure is a data structure containing a lambda

expression [75]. A captured variable is a variable declared outside of the closure’s scope, but

referenced inside the closure. In Listing 3.3 a similar example to the one by Abelson et al. [74]

is given; a tuple of strings with projection functions f irst and second. This implementation is

akin to the definition of a categorical product from Section 3.1.

43

Category theory, functional programming, and bidirectionalisation preliminaries

1 --declareafunctiontypetoaliasastringtuple

2 typeStringTuple =Integer-> [Char]

3 --constructsastringtupleasalambda

4 consStringTuple :: [Char] -> [Char] -> StringTuple

5 consStringTuple x y =

6 \idx ->ifidx == 0thenxelsey

7 --returnsthefirstelementofatuple

8 first :: StringTuple -> [Char]

9 first t = t 0

10 --returnsthesecondelementofatuple

11 second :: StringTuple -> [Char]

12 second t = t 1

13 --createastringtuple

14 tuple = consStringTuple"42""JohnDoe"

15 --mainfunction

16 main =

17 letfirstElement = first tuple

18 secondElement = second tuple

19 indo

20 print$assert (=="42") firstElement

21 print$assert (=="JohnDoe") secondElement

Listing 3.3: Construction of a tuple by using lambda functions, closures, and partial application

Functional programming allows the composition of functions; this is analogous to the com-

position of morphisms in category theory. Consequently, this enables the construction of more

complex functions from simpler functions. The composition of morphisms in a functional pro-

gramming environment is exemplified in 5

Example 5. For a collection of functions:

zero : Unit → Int, where zero(x) = 0

addOne : Int → Int, where addOne(x) = x+1

divTwo : Int → Int, where divTwo(x) = x/2

mulT hree : Int → Int, where mulT hree(x) = x∗3

gtT hree : Int → Bool, where gtT hree(x) =

true, x > 3

f alse, otherwise
A composite function can be defined by:

composite : Unit → Bool,

where composite(x) = gtT hree◦mulT hree◦divTwo◦addOne◦ zero(x).

This can be defined and declared in terms of functional programming as:

1 --createsa0integer

2 zero:: () ->Integer

44

Category theory, functional programming, and bidirectionalisation preliminaries

3 zero_ = 0

4 --addsonetoanumber

5 addOne ::Integer->Integer

6 addOne x = x + 1

7 --dividesnumberbytwo

8 divTwo ::Integer->Integer

9 divTwo x = x ‘div‘ 2

10 --multipliesnumberbythree

11 mulThree ::Integer->Integer

12 mulThree x = x * 3

13 --determinesifnumberisgreaterthan3

14 gtThree ::Integer->Bool

15 gtThree x = x > 3

16 --composefunctionswiththe‘.‘operator

17 composed :: () ->Bool

18 composed = gtThree . mulThree . divTwo . addOne .zero

19 --runandtest

20 main =print$assert (not) (composed ())

Listing 3.4: Composition of functions

Example 5 also raises the point in functional programming that functions can be treated

as objects. The composed function doesn’t call the composition of the functions on its right-

hand side, this is done in the main function. The composed function is just a reference to the

composition of functions (a function itself), which is treated as an object of type Unit -> Bool.

In functional programming, referenced objects (including value objects) should not be mutated

in the program. Copying objects with the applied mutations is preferred as an alternative, so

objects are considered immutable by default.

Currying functions enables arguments to be passed individually as parameters of functions.

With each argument passed, a new function accepting the next parameter is returned. The

returned function is equivalent to the underlying closure, with the first argument ending up

as a captured variable in the closure. This piecemeal passing of arguments to parameters of

functions is called partial application. Each argument application returns a function that uses

it as a captured variable. Due to this, every function can be also considered a constructor for a

family of functions. Example 6 illustrates the basic functioning of partial application.

Example 6. A collection of partially applied functions is given, where sumThree sums three

given integers, addToThree adds two integers to the number 3 by applying it to sumThree, and

addToTen adds an integer to the number 10 by partially applying the number 7 to addToThree.

1 ---addthreeintegers

2 sumThree ::Integer->Integer->Integer->Integer

3 sumThree x y z = x + y + z

45

Category theory, functional programming, and bidirectionalisation preliminaries

4 --addtwointegersto3

5 addToThree ::Integer->Integer->Integer

6 addToThree = sumThree 3--alsovalidaddToThreexy=sumThree3xy

7 --addintegerto10

8 addToTen ::Integer->Integer

9 addToTen = addToThree 7--alsovalidaddToTenx=addToThree7x

10 --runandtest

11 main =

12 letresult = 19

13 indo

14 print$assert (== result) (sumThree 3 7 9)

15 print$assert (== result) (addToThree 7 9)

16 print$assert (== result) (addToTen 9)

Listing 3.5: Collection of partially applied functions

Since functions are viewed as objects in functional programming, they inherit their basic

nature. As with value objects, function objects can be passed as arguments to a function if a

function is parametrized as such. A function that accepts a function as a parameter is called

a high-order function. High-order functions further enable the management of abstraction in a

program. A high-order function might define the general way in which a certain operation is to

be executed, but the operation itself is not detailed. When the operation function is provided, the

high-order function constructs a concrete function. This allows the construction of a strategy

pattern similar to the one in object-oriented programming [49, 76] where the high-order function

acts as an interface or abstract class. This mechanism is presented in Example 7.

Example 7. A high-order function createStartingScreen is used to parametrize the print-

ing of a starting screen for a hypothetical command shell by a welcome message that names

the user. Functions welcomeEng, welcomeCro, and welcomeDeu create welcome messages in

their respective languages depending on the user name they are given. Functions createS-

tartingScreenCro, createStartingScreenEng, and createStartingScreenDeu are con-

cretizations of createStartingScreen.

1 --createsenglishwelcome

2 welcomeEng :: [Char] -> [Char]

3 welcomeEng name ="Welcome,"++ name ++"!"

4 --createscroatianwelcome

5 welcomeCro :: [Char] -> [Char]

6 welcomeCro name ="Dobrodosli,"++ name ++"!"

7 --createsgermanwelcome

8 welcomeDeu :: [Char] -> [Char]

9 welcomeDeu name ="Willkommen,"++ name ++"!"

10 --startingscreenfunction

46

Category theory, functional programming, and bidirectionalisation preliminaries

11 createStaringScreen :: ([Char] -> [Char]) -> [Char] -> [Char]

12 createStaringScreen welcomeFun userName =

13 "***************"++"\n"++

14 (welcomeFun userName) ++"\n"++

15 "~/HomeDir>"

16 --croatianwelcomescreen

17 createStartingScreenCro :: [Char] -> [Char]

18 createStartingScreenCro userName =

19 createStaringScreen welcomeCro userName

20 --englishwelcomescreen

21 createStartingScreenEng :: [Char] -> [Char]

22 createStartingScreenEng userName =

23 createStaringScreen welcomeEng userName

24 --germanwelcomescreen

25 createStartingScreenDeu :: [Char] -> [Char]

26 createStartingScreenDeu userName =

27 createStaringScreen welcomeDeu userName

28 --runandprint

29 main::IO()

30 main =do

31 putStrLn$createStartingScreenCro"John"

32 putStrLn$createStartingScreenEng"John"

33 putStrLn$createStartingScreenDeu"John"

Listing 3.6: High-order functions to print a welcome screen

3.2.1 Functors

Functors arise as a necessity to map structures between two categories, but in such a way that

object-morphism structures are preserved. A definition of a functor according to Pierce [72] is

given in Definition 25. To preserve structures in other categories, functors must guarantee that

they preserve identity morphisms and compositions of morphisms.

Definition 25. Let C and D be categories. A functor F : C → D is a map taking each C-object

A to a D-object F(A) and each C-morphism f : A → B to a D-morphism F(f) : F(A)→ F(B),

such that for all C-objects A and composable C-morphisms f and g

• F(ida) = idF(A);

• F(g◦ f) = F(g)◦F(f).

In functional programming, functors are used to control transformations over data. This

can be practical when data has to abide by certain rules. Example 8 is derived from a similar

age-type example made by Buonanno [77], where data regarding a person’s age has to respect

certain limits.

47

Category theory, functional programming, and bidirectionalisation preliminaries

C D

f

h

a

g

b

Ff

Fh

Fa

Fg

Fb

c Fc

Figure 3.8: Conceptual diagram of a functor

Example 8. The Age functor limits age values to [0,99]. To modify the data inside the Age type,

only the ageMap function can be used. The ageMap function calls the given argument method

and then calls the appropriate method to create an age in a valid range. The argument method f

may return a value from an invalid range, but the subsequent call of makeAge sets the value in

the valid range.

1 --Agefunctortype

2 dataAge = AgeInt

3 --EqdefinitionforAge

4 instanceEqAgewhere

5 (Age a) == (Age b) = a == b

6 --functorreturnfunction

7 makeAge ::Int-> Age

8 makeAge n = Age (max0 (min99 n))

9 --showimplementation

10 instanceShowAgewhere

11 show(Age n) =shown

12 --functormapforage

13 ageMap :: (Int->Int) -> Age -> Age

14 ageMap f (Age n) = makeAge(f n)

15 --runandtest

16 main =

17 --createanAgevaluewithavalueof102(really99)

18 letmadeAge = makeAge 102

19 --add5yearstotheage

20 incAge = ageMap (+ 5) madeAge

21 --remove105yearsfromtheage

22 decAge = ageMap (subtract105) madeAge

23 --addanother18years

24 finalAge = ageMap (+ 18) decAge

25 indo

48

Category theory, functional programming, and bidirectionalisation preliminaries

26 print$assert (== Age 99) madeAge

27 print$assert (== Age 99) incAge

28 print$assert (== Age 0) decAge

29 print$assert (== Age 18) finalAge

Listing 3.7: Primitive Age functor

According to Buonanno [77], a functor F must have the following functions available over

its type (kind):

• map: F a -> (a -> b) -> F b;

• return: a -> F a.

Buonanno [77] states that a functor doesn’t need a return function, because it is defined by the

properties a map function should observe. The existence of return is just a technicality since

the type a has to have a way of being lifted into the functor type F a.

It is interesting to note a subtle difference between a functor, as defined in category the-

ory and one defined in a program. Functors in a programming environment are endofunctors

(Figure 3.9); these map categories onto themselves, instead of mapping categories onto other

categories. All functors defined in a program are endofunctors since they map types from the

existing type system onto the very same type system; they can’t map to types indescribable by

the existing type system.

C

f

h

a

g

b

Ff

Fh

Fa

Fg

Fb

c Fc

Figure 3.9: Conceptual diagram of an endofunctor

3.2.2 Monads

Monads are an important tool in functional programming used to manage side effects (excep-

tional behaviour in a program) or to box behaviour for types to certain rules. In Haskell, even

printing data onto the standard output is managed by the IO monad. Definition 26 gives a formal

definition of a monad in category theory according to Barr and Wells [78].

49

Category theory, functional programming, and bidirectionalisation preliminaries

Definition 26. A monad M = (M,η ,µ) on a category C consists of a functor M : C → C,

together with two natural transformations η : id → M and µ : M2 → M for which the following

diagrams commute.

μ

T2

=

ηT
T

=

Tη
T

T

μT

Tμ
T3

T2

μ

T2

Tμ

Buonanno [77] states that a monad M must contain the following functions over its type

(kind):

• bind: M a -> (a -> M b) -> M b;

• return: a -> M a.

A monad must adhere to the monad laws [77, 78]:

• right identity - return a >>= f ≡ f a;

• left identity - m >>= return ≡ m;

• associativity - (m >>= g) >>= h ≡ m >>= (\x -> g x >>= h).

Where x ≡ y denotes that x is substitutable by y.

The return method, just like in the case of functors, lifts the enclosed type into a monad

type. The bind function enables the management of side effects when calling functions that also

produce a monad of the same kind. The bind function allows chained calling and composition

of functions that return the same kind of monad (see Example 9); this is the basis of the railway

pattern [77, 79]. All monads are by definition functors, and this can be emphasised by the fact

that a map function can be expressed in terms of bind and return functions [77]:

1 map::MonadM=>M a -> (a -> b) -> M b

2 mapx f = bind x (return. f)

Listing 3.8: A sketch of map in terms of bind and return

A more notable monad type, which is universally used in many languages, is Option*.

Option is used to encase data in such a way that it indicates whether there is some data or none.

This enables the elimination of nullable types from use in codespaces that require explicitly

defined behaviour [79], and primitively managing outcomes of operations.

Example 9. The monadic Option a type is defined as a discriminate union of the Some a type

and None. Some indicates the presence of data, and None indicates the absence of data. the map

function relating to Option is defined in terms of bind and return functions. Option-returning

*Also named Maybe or Optional in other languages and environments. The name Option is used to stay in
accordance with the name of the analogous type used in the Janus system in Section 6.1.

50

Category theory, functional programming, and bidirectionalisation preliminaries

functions are chained by the bind operator >>=, which is in Haskell an infix redeclaration of

bind. The code below demonstrates the Option monad working over an integer type:

1 --shouldinclude:importPreludehiding((>>=),map,return)

2 --Optiondefinition

3 dataOption a = Some a | None

4 --EqinstanceforOption

5 instanceEqa=>Eq(Option a)where

6 Some x == Some y = x == y

7 None == None =True

8 _ == _ =False

9 --returnfunction

10 return:: a -> Option a

11 returnx = Some x

12 --bindfunction

13 bind:: Option a -> (a -> Option b) -> Option b

14 bind (Some a) f = f a

15 bind None f = None

16 --bindoperator

17 (>>=):: Option a -> (a -> Option b) -> Option b

18 (>>=) = bind

19 --showinstance

20 instanceShowa=>Show(Option a)where

21 show(Some x) =showx

22 showNone ="None"

23 --mapintermsofbindandreturn

24 map:: Option a -> (a -> b) -> Option b

25 mapx f = bind x (return. f)

26 --incrementsvalue

27 inc::Int-> OptionInt

28 inc x = Some (x + 1)

29 --decrementsvalue

30 dec::Int-> OptionInt

31 dec x = Some (x - 1)

32 --returnsNone

33 retNone ::Int-> OptionInt

34 retNone _ = None

35 --runandtest

36 main =

37 letsimpleMap =map(return4) (+ 1)

38 bindResult1 = (return4) >>= inc >>= dec >>= inc >>= inc

39 bindResult2 = (return4) >>= inc >>= dec >>= retNone >>= inc

40 indo

41 print$assert (== Some 5) simpleMap

42 print$assert (== Some 6) bindResult1

51

Category theory, functional programming, and bidirectionalisation preliminaries

43 print$assert (None) bindResult2

Listing 3.9: Primitive Option a monad

3.3 Bidirectionalisation

Bidirectionalisation (or bidirectional transformations; BX) is a collection of approaches for cre-

ating two-way data transformations resulting in consistent data. BX observes the relationship

between forward and backward transformations on data. Such transformations should ideally

be inverses and enable round-trip transformation of data. The roots of BX can be found in

Bancilhon and Spyrators [80], who proposed a translator-defining method for determining up-

dates on an underlying relational database from updates on relational views. Updateable views

are now a common feature in modern relational database management systems. BX has also

been proposed for use in data model management and synchronization [81, 82, 83, 84], data

source integration [85, 86], triple graph grammars [87], and syntax parsing with a possibility of

program transpilation [88].

Three primary BX approaches stand out, as recognized by Foster et al. [89]: syntactic BX,

semantic BX, and BX combinators. Syntactic BX observes the function definition of the for-

ward transformations and infers a backward transformation function. Semantic BX infers a

backward transformation from a forward transformation without inspecting it, but by observ-

ing the changes made to the data. BX combinators allow the description of the forward and

backward transformation simultaneously by combining lenses, usually via domain-specific lan-

guages. These approaches are complementary and can be utilised together, as in the case pre-

sented by Voigtländer et al. [90]

All BX approaches recognize the pairing of a get and put function as the standard basis

for two-way invertible transformations. The get function represents a forward transformation,

and the put function represents a backward transformation. The definition of this pairing of

functions, named lens, is given in Definition 27 in the most general terms [23, 89].

Definition 27. For a set of source structures S and a set of view structures V , the get and put
functions

get ∈ S →V ; (GET)

put ∈V → S → S; (PUT)

form a well-behaved lens such that the following laws apply for s ∈ S and v ∈V :

get (put v s) = v; (PUTGET)

put (get s) s = s (GETPUT)

52

Category theory, functional programming, and bidirectionalisation preliminaries

The PutGet and GetPut laws guarantee basic round-tripping of the data transformations.

PutGet proscribes that the put function should fully reflect any changes made to the view [89],

and GetPut stipulates that the put function must not change the source if the view is not modified

at all.

The general environment discussed in BX literature can be visualized as in Figure 3.10,

where a source structure is transformed into a view structure, which is updated, and finally

returned to the source structure. This chain of operations results in a perceived update of the

source structure (a fictitious transformation source → source′).

source

update

view

view'source'

get

put

Figure 3.10: Representation of the view-update problem

There is a higher level of strictness for lenses above being well-behaved, allowing them

to be sounder [23, 89] in terms of their put functions not creating side-effects. Definition 28

implies that chaining the put function should only lead to changes in the source only if the view

had changed at some point.

Definition 28. A well-behaved lens that obeys the following law

put v′ (put v s) = put v′ s (PUTPUT)

is considered a very well-behaved lens

If the GetPut and PutPut both hold for a lens, then updates to the view can always be undone,

since the following equation is implied:

put (get s)(put v s) = s (3.1)

As a consequence, any update to the source can be undone by simply recalling the put function

with the non-updated view.

Example 10. Two functions, head and tail, are used in get and put functions of a hypo-

thetical lens. The following code exemplifies the case when PutGet, GetPut, and PutPut laws

hold.

53

Category theory, functional programming, and bidirectionalisation preliminaries

1 --returnsthefirstelementofalist

2 head:: [a] -> a

3 head(x:xs) = x

4 --omitsthefirstelementofalist

5 tail:: [a] -> [a]

6 tail(x:xs) = xs

7 --getfunction

8 get:: [a] -> a

9 get = Main.head

10 --putfunction

11 put:: a -> [a] -> [a]

12 put view source = [view] ++ (Main.tailsource)

13 --mainfunction

14 main =

15 letsource = [’a’, ’b’, ’c’, ’d’, ’e’]

16 view = ’a’

17 updatedView = ’x’

18 updatedSource = [’x’, ’b’, ’c’, ’d’, ’e’]

19 indo

20 --PUTGETlaw

21 print$assert (== updatedView) (get(put updatedView source))

22 --GETPUTlaw

23 print$assert (== source) (put (get source) source)

24 --PUTPUTlaw

25 print$assert (== updatedSource) (put updatedView (put view

↪→ source))

Listing 3.10: A get and put pair implemented with list tail and head

The laws in Example 10 wouldn’t hold if function signatures were changed so that head:

[a] -> [a] and tail: [a] -> [a] -> [a], since the Haskell list type allows empty lists.

Additionally, these laws wouldn’t hold even if elements were added to the view list. Haskell

doesn’t enable empty characters (e.g. ’’) or storing multiple characters in a single character

variable, so an item can’t be deleted from or added to the view. The get and put functions

given in this example represent a very well-behaved lens, although a very limited one. The

precise problem which prevents the well-behavedness of the lens is related to the change of

the shape of the view on updating. To mitigate these problems Voigtländer [23] proposes type

specializations (see Section 3.3.2), while Matsuda [24] proposes a more general solution of

weakening the PutGet and PutPut. This weakening is presented in Definition 29.

Definition 29. A get-put pair satisfying

(put v s) ↓
get (put v s) = v

(PARTIAL-PUTGET)

54

Category theory, functional programming, and bidirectionalisation preliminaries

and
(put v s) ↓

put v′ put(v s) = put v′ s
(PARTIAL-PUTPUT)

is called a partial very well-behaved lens.

The weakening conveys that the put function is not injective. Non-injectivity is enforced so

a view is returned to the source in an expanded domain which also contains an error state. List-

ing 3.11 demonstrates such a modification. The put from Listing 3.11 is a simplified example

and not a pure function, as it creates an exception. A pure weakened put can be implemented

to return a monad [91, 92], with the monadic bind function serving as a composition operator.

This implies that the get function also returns the monad.

1 --returnsthefirstelementofalist

2 head:: [a] -> [a]

3 head(x:xs) = [x]

4 --omitsthefirstelementofalist

5 tail:: [a] -> [a]

6 tail(x:xs) = xs

7 --getfunction

8 get:: [a] -> [a]

9 get = Main.head

10 --weakenedputfunction

11 put :: [a] -> [a] -> [a]

12 put view source =

13 letupdatedViewLen =lengthview

14 viewLen = (length. Main.head) source

15 in

16 ifupdatedViewLen == viewLen

17 thenview ++ (Main.tailsource)

18 elseerror"Wrongviewshapeafterupdate"

19 --mainfunction

20 main =

21 letsource = [’a’, ’b’, ’c’, ’d’, ’e’]

22 view = [’a’]

23 updatedView = [’x’]

24 updatedSource = [’x’, ’b’, ’c’, ’d’, ’e’]

25 illegalView = [’x’, ’y’]

26 illegalUpdatedSource = [’x’, ’y’, ’b’, ’c’, ’d’, ’e’]

27 indo

28 print$assert (== updatedView) (get(put updatedView source))--

↪→ PUTGET

29 print$assert (== source) (put (get source) source)--GETPUT

30 print$assert (== updatedSource) (put updatedView (put view

↪→ source))--PUTPUT

31 print$assert (== illegalUpdatedSource) (get(put illegalView

55

Category theory, functional programming, and bidirectionalisation preliminaries

↪→ source))--raiseserror

Listing 3.11: Code changes for a lens with a weakened put

Complements

In the put function of Listing 3.11, the expression view ++ (Main.tail source) implied

that an "opposite" function to head is known. It is important to note that this is not an inverse

function, but a complement function to head (and reflexively get). Such a function might not

always be implicitly known. A complement function is a function that preserves the data lost

in the forward transformation (Definition 30) [89]. The complement function is also referred

to as a residual function and the complement as a residue, hence the abbreviated naming res

in Definition 30. The complement created by the complement function remains untouched by

the put function; this is the reason why authors usually specify the complement as constant-

complement [93].

Definition 30. Let get ∈ S → V be a total function from S to V. A total function res ∈ S → C

computes a complement for get if and only if the tupled function ⟨get,res⟩ ∈ S → (V,C) is

injective.

Changes required to support a non-computed complement in Listing 3.11 is given in List-

ing 3.12.

1 --complementfunction

2 res:: [a] -> [a]

3 res = Main.tail

4 --weakenedputfunction

5 put :: [a] -> [a] -> [a]

6 put view source =--canalsobesubstitutedas:putviewcompl

7 letupdatedViewLen =lengthview

8 viewLen = (length. Main.head) source

9 in

10 ifupdatedViewLen == viewLen

11 thenview ++ (Main.res source)

12 elseerror"Wrongviewshapeafterupdate"

Listing 3.12: Code changes for a lens with a complement function

Complements allow further mechanisms for bidirectionalisation. Given a forward transforma-

tion and a computable complement, a tupled function of the two can be inverted to obtain a very

well-behaved lens [80]. Abou-Saleh et al. [93] state that a very well-behaved lens even induces

an isomorphism S ∼=V ×C. This is shown in Defintion 31 by Foster et al. [89].

56

Category theory, functional programming, and bidirectionalisation preliminaries

Definition 31. Let get ∈ S →V be a forward transformation function and let res ∈ S →C be a

complement function for it. The function put(get,res) defined by

put(get,res) v s = inv(v, res s),where inv = ⟨get,set⟩−1 (UPD)

is a suitable backward transformation function. When combined with a get, it yields a very

well-behaved lens.

Foster et al. [89] present two cases for the inv definition:

1.when the ⟨get,res⟩ function is injective and surjective, inv is its (full) inverse ∀s,v,c.s ∈
S,v ∈V,c ∈C:

inv(⟨get,res⟩ s) = s (LEFTINV)

⟨get,res⟩ (inv (v,c)) = (v,c) (RIGHTINV)

2.when the ⟨get,res⟩ function is not surjective, inv is a left inverse for it but only a partial

right-inverse ∀s,v,c.s ∈ S,v ∈V,c ∈C:

(inv (v,c)) ↓
⟨get,res⟩ (inv (v,c)) = (v,c)

(PARTIAL-RIGHTINV)

Create

BX can further be enriched by the addition of the create function. The create function is used

to create a source structure from a view structure, where authors [94, 95, 96] usually express

the view as an abstract representation of structures due to the idea being expressed in terms

of language design. The create function is a special case of put where no former source is

provided, and default values are used to fill in the missing data that was eliminated by get. The

create function is defined in Defintion 32 [94, 95, 96].

Definition 32. ∀s,v.s ∈ S,v ∈ V the create function is such that: create : V → S, where non-

existing values of s in v are substituted by default values of their type set, and such that the

following rule applies on the lens containing create:

get (create v) = v (CREATEGET)

3.3.1 Syntactic BX

Syntactic BX is an approach by which backward transformation functions are derived from a

forward transformation by analyzing the program definition (syntax) of the forward transforma-

tion. Matsuda et al. [24], who first proposed the approach, base syntactic BX on the composi-

tionally of primitive view functions (or primitive get functions) via several combinators. These

57

Category theory, functional programming, and bidirectionalisation preliminaries

combinators are familiar constructs from functional programming languages:

•composition: g◦ f defined by: (g◦ f) = g(f x);

•mapping: map f defined by: map f [x1, ...,xn] = [f x1, ..., f xn];

•product: f ×g defined by: (f ×g)(x,y) = (f x,g y);

•conditional: if p then f else g defined by:

(if p then f else g) x =

 f x, if p x

g x, otherwise
.

This collection of combinators is based on the work of Foster et al. [95], which has shown

that if primitive backward transformations can be prepared for primitive view functions, then

complex backward transformations for complex forward transformations can be created from

the primitive backward transformations. Matsuda et al. [24] further proposed that backward

transformations can be derived automatically with this approach. The syntactic BX approach is

implemented in three steps:

1. Derviation of a complement function. For a given get function, a res function is syntacti-

cally derived.

2. Tupling and program inversion. The get and res functions are tupled and inverted so they

form a partial inverse ⟨get,res⟩−1. The inverse satisfies LeftInv and Partial-RightInv.

3. Construction of a backward transformation. The partial inverse ⟨get,res⟩−1, complement

function res, and UPD are used to derive a backward transformation. The transformation

can be further optimized by deforestation [97] or partial evaluation.

The syntactic BX approach enables the use of a standard functional language to implement

a two-way transformation. The downside is that the expressiveness of the language is limited to

primitive view functions.

3.3.2 Semantic BX

Semantic BX approach is based on deriving backward transformations by analyzing the effects

of forward transformations. Voigtländer [23] proposed this approach by basing it on the notion

of free theorems [98]. The backward transformation can be derived from a forward transforma-

tion through a high-order function. The high-order bf f (name abbreviated from bidirectionali-

sation for free) function tracks the differences between the source and view structures made by

get and accordingly constructs a put function reflecting those differences. This approach relies

on the premise that the get function is polymorphic.

In the most general terms, the bf f function is declared as:

bf f : (S →V)→ (V → S → S) (BFF)

; where the first parameter (in parenthesis) represents the targeted get function, with the return

58

Category theory, functional programming, and bidirectionalisation preliminaries

type corresponding to a put function.

Voigtländer [23] discusses the levels of correctness that this approach produces by iteratively

increasing the specification of the S and V types, starting from a simple list structure that has no

type limitation (kind):

bf f : (∀a.[a]→ [a])→ (∀a.[a]→ [a]→ [a]) (3.2)

Consequently, the PutGet and GetPut laws are representable as:

• bf f get (get s) s ≡ s and

• get (bf f v (get s))≡ v,

respectively.

The bf f definition is susceptible to data duplication on updates in the view, so an equality

check is required. The kind of the parameters is then specified to adhere to an equality operator:

bf fEq : (Eq a.[a]→ [a])→ (Eq a.[a]→ [a]→ [a]) (3.3)

This is demonstrated to create a partial put, noticeable when originally equal values in a view

are updated to different values [23]. The parameter kind can be specified to adhere to orderable

data, and the type can be expanded to hold orderable indicators of elements in the list. This

produces the high-order bf fOrd function:

bf fOrd : (Ord a.[a]→ [a])→ (Ord a.[a]→ [a]→ [a]) (3.4)

These principles can be transposed to more advanced data structures adhering to the Zippable,

Traversable, and Foldable kinds. An implementation by Voigtlander [23] demonstrates bf f

working over the recursive data structure of a tree:

data Tree a = Node (Tree a) (Tree a) | Leaf a.

The complement is derived inside the bf f function with an enclosed set of expressions

covered by the inv function:

inv : ∀a . Eq a ⇒ ([a],(Int, IntMap a))→ [a] (3.5)

The semantic BX approach hypothetically enables the derivation of backward functions

from already compiled forward functions, because it doesn’t rely on a function’s definition.

The limitation of this is that the forward function must be polymorphic.

59

Category theory, functional programming, and bidirectionalisation preliminaries

3.3.3 BX combinators

In contrast to the other BX approaches BX combinators do not automatically derive a put func-

tion from a get function. BX combinators take into account that a get function might have

multiple put functions. The choice of the concrete put function is left to the user. This means

that BX combinators already have a prepared set of get and set functions at the user’s dis-

posal, which, together with a developed type system, can be used to guarantee certain levels

of behavedness. To assure this guarantee, BX combinators are built as separate programming

languages. Boomerang is a general-purpose bidirectional language for processing textual data

[94, 99]. BiGUL [100] is a core language serving as a foundation for higher-level languages.

Asano et al. [85] proposed a BX language for decentralized data integration. The HOBiT lan-

guage [101] was proposed to remove the combinator-based language limitation of using a point-

free style of programming (where no function arguments can be explicitly identified). A more

specifically purposed bidirectional language based on BX combinators is Augeas, which is used

to globally edit Linux configuration files in a tree format [102, 103]. These languages rely on

the work of Foster et al. [95, 104] who proposed the use of combinators over lenses to manage

the forward and backward transformations. The combinators can be composed together to form

more complex combinators with properties reflected by the combinators in their composition.

The BX combinator approach also acknowledges the use of complements, and a lens is

recognized as containing the following functions:

get ∈ S →V ; (3.6)

res ∈ S →C; (3.7)

put ∈V →C → S. (3.8)

Barbosa et al. [105] also note the create function:

create ∈V → S. (3.9)

Foster et al. [89] additionally enrich the put function with a Maybe monad† (akin to Option in

Example 3.9) to facilitate totality:

put ∈V → MaybeC → S. (3.10)

Modified round-tripping laws PutGet, CreateGet and GetPut are presented as [105]:

†The authors originally presented it with an uncurried type put ∈ V ×MaybeC → S to simplify some of their
definitions.

60

Category theory, functional programming, and bidirectionalisation preliminaries

get (put v c) = v; (3.11)

get (create v) = v; (3.12)

put (get s) (res s) = s; (3.13)

including the Maybe monad [89]:

get s = v res s = c
put (v,Just c) = s

; (3.14)

put (v,m c) = s
get s = v

; (3.15)

with a modified PutPut:

put (v′,Just (res (put (v,m c)))) = put (v′,m c)
. (3.16)

The BX combinator approach also focuses on alignment problems. Alignment problems appear

when the view data is modified with insertions, removals, or significant updates. Example 11

illustrates these problems through a transformation round-trip.

Example 11. Let source data s be:

s = [("Charlemagne", "Holy Roman Emperor"),

("Theodoric", "King of the Ostrogoths"),

("William I", "King of England"),

("Robert I", "King of Scotland")].

For a get that projects the first element of the tuple in the list over s the following v is generated:

v = ["Charlemagne", "Theodoric", "William I", "Robert I"];

together with a complement c:

c = ["Holy Roman Emperor",

"King of the Ostrogoths",

"King of England",

"King of Scotland"].

The update of v involves the removal of "Theodoric", the appending of "Baldwin IV", and

the update of "William I" to "William the Conqueror", making the updated view v’:

v’ = ["Charlemagne", "William the Conqueror", "Robert I", "Baldwin IV"].

Reflecting the update backwards onto the source s’, with setting the value for the second ele-

ment to "Baldwin IV" to a default string "", a satisfactory result would be:

s’ = [("Charlemagne", "Holy Roman Emperor"),

("William the Conqueror", "King of England"),

61

Category theory, functional programming, and bidirectionalisation preliminaries

("Robert I", "King of Scotland"),

("Baldwin IV", "")].

Achieving such a s’ is not trivial. A lens matching the values by starting position with the

complement would produce a misaligned result:

s’ = [("Charlemagne", "Holy Roman Emperor"),

("William the Conqueror", "King of the Ostrogoths"),

("Robert I", "King of England"),

("Baldwin IV", "King of Scotland")].

Alignment strategies can be used to remedy the alignment problems. Alignment strategies

observe the source and view as reordable chunks [89] (items of a list in Example 11). This view-

point allows complex data structures to be aligned at the generic level. Barbosa et al. [94, 105]

recognized four alignment strategies as illustrated in Figure 3.11. The positional strategy com-

pares the positions of the source and view chunks. The best match (minimizing edit distance)

strategy minimizes the sum of total edit distances between pairs of matched chunks and the

lengths of unmatched chunks [105]. The best non-crossing considers the minimizing edit dis-

tance but produces alignments that don’t cross positions (edges). The actual operations strategy

considers operations performed over the view and calculates the corresponding alignment.

(a) positional (b) best match (c) best non-crossing

+

-

(d) actual operations

Figure 3.11: Alignment strategies

Combinators and lenses that use alignment strategies are called matching combinators and

lenses [89, 105], respectively.

BX combinators offer several benefits over other approaches [89]:

•development of type systems with strong behavioural properties is easier;

•allows flexibility in terms of choosing an appropriate put function for a get function;

•they are easier to extend with additional features, like alignment strategies [94, 105] or

additional lens types [106].

A drawback of combinators is that they aren’t reliably implementable in existing languages

62

Category theory, functional programming, and bidirectionalisation preliminaries

[89], and are implemented in languages that are syntactically similar to existing languages.

Language design is proposed by Anjorin and Ko [107] to go so far as to enable visual editing

of combinators, mimicking circuit diagrams.

3.3.4 Other notable approaches

Other approaches to BX exist along with syntactic, semantic, and combinator-based BX. These

approaches could hypothetically also prove to be complementary to the aforementioned ones,

akin to the combining of syntactic and semantic BX [90].

Putback lenses are an approach that inverts the transformation derivation process; a get

function is derived from a put function. This approach still considers that defining a single

transformation function can lead to the derivation of a transformation function in the opposite

direction, but with a postulate that it is easier to derive such transformations by observing a put.

Fischer et al. [108] state that this is so because the put function has the potential to describe all

intentions of the transformations. The round-tripping laws still apply and are observed in the

putback approach [108], as well as the use of monads to control side effects [91]. Proof of con-

cept languages BiFluX [109] and BiGul [100] were created using the putback approach, as well

as a library for updateable views called BRUL [110]. The BIRDS language [85, 86] was used to

facilitate a data management architecture and framework [85, 86, 111, 112]. A key indication

of the complementarity of the putback approach with other approaches is that the aforemen-

tioned languages use lens combinators as proposed by the authors mentioned in Section 3.3.3;

the difference being just the opposite direction of transformation function derivation.

A relational approach for a bidirectional language for XML, called biXid, was introduced

by Kawanaka and Hosoya[113]. The proposed relational approach tackled some deficiencies

of the combinator approach at the time regarding inconsistencies found in deep structures by

expressing the relations between models with regular expression patterns.

3.3.5 Lenses

The term lens has been already used in this thesis to denote a pairing of a get and put function

and was formally defined in Definition 27 through a well-behaved lens. A lens can be under-

stood as a design pattern or data structure in terms of software engineering. Haskell already

recognizes lenses as design patterns or at least structures. This is illustrated through the in-

tuition of many authors [25, 104, 114] to represent lenses as records (invoking functions with

l.get where l is a lens record). The lens pattern, in its simplest form, contains a get and a put

function which offer certain guarantees for bidirectional transformations (Figure 3.12).

Foster [104] additionally includes a create function in the lens definition (Definition 33).

63

Category theory, functional programming, and bidirectionalisation preliminaries

source

update

view

view'source'

get

put

Figure 3.12: Basic lens as a structure

Definition 33. Let S and V be sets of structures, where s ∈ S and v ∈V . A basic lens l, from S

to V comprises of three total functions:

l.get ∈ S →V ;

l.put ∈V → S → S;

l.create ∈V → S;

obeying the following PutGet, CreateGet and GetPut rules:

l.get (l.put v s) = v;

l.get (l.create v) = v;

l.put (l.get s) s = s;

is l ∈ S ⇔V .

Matsuda et al.[115] also annotate the lens as a generic type L a b where a is the type of the

source structure and b is the type of the view structure. They use L and Lens interchangeably

between term expressions and code examples. In essence, it can be stated that l ∈ (L⟨S,V ⟩ ≡
S ⇔V).

Foster [104] described a basic lens in general terms:

1.Lenses implement robust abstractions. Users can make arbitrary modifications to the

view without having to consider whether their changes are consistent with the underlying

source.

2.Lenses propagate view updates “exactly” to the source.

3.When possible, lenses preserve any source information that is not reflected in the view.

64

Category theory, functional programming, and bidirectionalisation preliminaries

Lenses can be constructed compositionally through function composition defined in Defini-

tion 34 by Matsuda and Wang [115].

Definition 34. Basic lenses Lens a b and Lens b c can be composed into Lens a c following:

(◦̂) : Lens b c → Lens a b → Lens a c

(Lens get2 put2) ◦̂ (Lens get1 put1) =

Lens (get2 ◦get1) (λv s → put1 (put2 v (get1 s)) s)

where the "◦̂" represents the lens composition operator.

Additionally, lens composition from Definition 34 can be trivially extended to include create

(Definition 35).

Definition 35. Basic lenses Lens a b and Lens b c can be composed into Lens a c following:

(◦̂) : Lens b c → Lens a b → Lens a c

(Lens get2 put2 create2) ◦̂ (Lens get1 put1 create1) =

Lens (get2 ◦get1) (λv s → put1 (put2 v (get1 s)) s) (create1 ◦ create2)

where the "◦̂" represents the lens composition operator.

The complement can also be generally included in the composition definition (Definition 36).

Definition 36. Basic lenses Lens a b and Lens b c can be composed into Lens a c following:

(◦̂) : Lens b c → Lens a b → Lens a c

(Lens get2 res2 put2 create2) ◦̂ (Lens get1 res1 put1 create1) =

Lens (get2 ◦get1)

(res2 ◦get1)

(λv s → put1 (put2 v (res2 ◦get1 s)) (res1 s))

(create1 ◦ create2)

where the "◦̂" represents the lens composition operator.

The "◦̂" operator is associative, and has an identity lens idL as its unit;

idL : Lens a a

idL = Lens id(λ _ v → v).

This as a consequence means that a set of lenses can form a category, where objects are types

and morphisms are lenses; a lens of type Lens a b is a morphism from a to b[115].

Matching lenses were also shown to be composable with lens combinators in sequence, as

products, as iterations, and as unions [89, 95].

Asymmetric lenses

Lenses mentioned so far are considered asymmetric; the lens pictured in Figure 3.12 as a visual

example. The term "asymmetric" is used because the source S is primary and determines the

65

Category theory, functional programming, and bidirectionalisation preliminaries

view V , but not the other way around [25, 93, 106, 114]. It can be stated that an asymmetric

lens is a lens that contains a get and put function, keeping with the semantics of these functions

explained in this section. An asymmetric lens can also contain a create and res function to

guarantee levels of well-behavedness.

Symmetric lenses

Symmetric lenses were introduced by Hofmann et al. [25], where the source nor the view deter-

mine one another (Figure 3.13). This proposal postulates that a lens does not contain get and

put functions, but rather contains opposite put functions. The complement is considered for

both sides of the lens, so a complement C is a pairing of a complement from X and Y that can

be noted as (cX ,cY) : C; such that X ×C defines Y and Y ×C defines X . These complements

must be stored and managed, adding complexity to symmetric lenses not found in asymmetric

lenses [114]. It is also interesting to note the subtle change in the notation, whereas S and V

were used, now X and Y are used as sets of structures to signify the symmetry. A symmetric

lens can be defined as shown in Definition 37 [25], and conditioned for very well-behavedness

by Definition 38 [93].

Definition 37. A symmetric lens l from X to Y (written l ∈ X ⇔ Y) has three parts: a set of

complements C, a distinguished element missing ∈C, and two functions:

putr ∈ X ×C → Y ×C;

putl ∈ Y ×C → X ×C;

satisfying the following round-tripping laws:

putr(x,c) = (y,c′)
putl(y,c′) = (x,c′)

; (PUTRL)

putl(y,c) = (x,c′)
putr(x,c′) = (y,c′)

. (PUTLR)

A symmetric lens satisfying PutRL and PutLR is considered well-behaved.

Definition 38. A symmetric lens l from X to Y is considered a very well-behaved lens if it

satisfies the following laws:
putr(x,c) = (y,c′)

putr(x′,c′) = putr(x′,c)
; (PUTPUTR)

putl(y,c) = (x,c′)
putl(y′,c′) = (y′,c)

. (PUTPUTL)

66

Category theory, functional programming, and bidirectionalisation preliminaries

putR

putL

(cX,cY)X Y

Figure 3.13: Structure of a symmetric lens

Simple symmetric lens

Miltner et al. [106] proposed a subset of symmetric lenses that don’t contain a complement -

simple symmetric lenses (Figure 3.14). On the other hand, simple symmetric lenses contain

create functions used to create default values when introducing new data. createR and createL

functions are created for each side of the lens. A simple symmetric lens is presented by Defini-

tion 39.

Definition 39. A simple symmetric lens l ∈ X ⇔ Y contains the following four functions:

createR : X → Y

createL : Y → X

putR : X → Y → Y

putL : Y → X → X

subject to four round tripping laws:

putL (createR x) x = x (CREATEPUTRL)

putR (createL y) y = y (CREATEPUTLR)

putL (putR x y) x = x (PUTRL)

putR (putL y x) y = y (PUTLR)

Since simple symmetric lenses don’t define complements, they don’t require mechanisms

for storing them. Consequently, simple symmetric lenses are symmetric lenses that satisfy the

67

Category theory, functional programming, and bidirectionalisation preliminaries

property of "forgetfulness" [114].

Miltner et al. [106, 114] showed that simple symmetric lenses are strictly more expressive

than classical asymmetric lenses. The authors also provide that an asymmetric lens is repre-

sentable through a simple symmetric lens (Definition 40).

Definition 40. Let l be an asymmetric lens. l is also a simple symmetric lens, where:

l.createL y = l.create y l.createR x = l.get x

l.putL y x = l.put y x l.putR x y = l.get x

putR

putL

createR

createL
X Y

Figure 3.14: Structure of a simple symmetric lens

68

Chapter 4

Mask–mediator–wrapper architecture

This chapter presents the first contribution of this thesis regarding the MW architecture exten-

sion. This chapter is taken directly from the contributing paper [14] with some minor revisions.

The shortcomings of the MW architecture are presented as the raison d’etre for the architectural

extension in Section 4.1. The architectural extension is proposed in Section 4.2 as an addition of

a new component type, supported by component rules realignment and addition, to rectify some

detected problems in the separation of concerns of the MW architecture. An adapted quantita-

tive shift-cost analysis is presented in Section 4.3 to prove that the extension is an improvement

in terms of flexibility.

4.1 Problems with the mediator–wrapper architecture

Up to this point, the ways in which users connect to and use data management systems have been

omitted. The way in which a user uses a system is a key point of a system’s usability. Multiple

authors have opted for connecting users to the system via specialized applications which are

system specific [61, 63, 64]. Such applications connect directly to the highest mediator layer

(or the integration layer in case of an alternative architecture).

This puts additional responsibilities on the mediators in the higher layers. These mediators

not only have to mediate schemas from lower layers, but also manage their GESs, as shown in

the example of Figure 2.17. Opposed to this, the exporting mediators, shown in Figure 2.18,

seem like a better solution due to the functional responsibility being shared among multiple

mediator components. This also has its issues. RMe1 prohibits the mediator from exporting

data in a format that is not internally used by the system itself, meaning that data translation

is going to have to be done in a user application. This breaches the system’s separation of

concerns, leading to client applications having to perform the translations. It seems that this

responsibility cannot be shared among components of the mediator type. Therefore, a third rule

for mediators must be added:

69

Mask–mediator–wrapper architecture

RMe3 Mediators should be used to mediate, not to represent.

This problem is further exacerbated when one takes notice of the user applications usually

implemented alongside these systems. Although user applications generally display just one

format of data, it is interesting to notice the variety of data formats that have been used as pre-

sentational in different systems - from JSON collections [58, 116] and XML documents [117],

to tabular data [118, 119]. The way of access can also be varying - a JDBC API [119], web

applications built onto the system [58] and even a web API [116].

This is also the case with state-of-the-art databases and frameworks designed with specific

representations of data sources in mind. Some authors still show a preference for an SQL

interface [41, 42, 67, 120], while others prefer a key-value [40, 43, 44], graph [34, 35, 36],

semantic web [38, 39], an XML [121], flattened data [122], or a plain-text interface [123]. Pang

et al. [53] also showed a system with three types of data representations: object storage via a

REST API [124], file storage, and a NoSQL table store service. Benedikt et al. [125] and Qin et

al. [126] also showed that data representation (views) is becoming a key factor in data handling.

Dehghani [68] stated these same aspirations for the data mesh, concretely mentioning the need

for events, batch files, relational tables, and graphs as models of served data.

With the increase in data format variety (illustrated by Table 4.1), it is becoming more

apparent that a data source integration system, as a singular data source, will itself have to

support data representation in different formats. It is important to note that data, schemas, and

queries face this same issue equally.

A more general point is that the MW architecture in its current state diverges from the

concepts of architectural layering, separation of concerns, managing dependencies, control flow

and testability. These concepts pave the way for a flexible and largely scalable system [46, 127].

Such a system is an expected requirement for gathering and managing large amounts of data

from multiple sources.

70

Mask–mediator–wrapper architecture

Table 4.1: Overview of existing data management concepts and projects in regards to their data repre-
sentation.

Reference (Project) Data Representation and Access

[4][9][8] specialized desktop application

[116][58][53][124] JSON (+ web API)

[117][121] XML

[34][36][35] graph

[119] JDBC

[58] Web application

[118][119][67][41][120][42][122] tabular data

[44][43][40] key-value

[38][39] semantic web

[123] plain text

4.2 Extending the mediator–wrapper architecture

It is evident that currently, in the MW architectural pattern, the responsibility of representing

data, schemas, and queries cannot be assigned to any of the existing component types without

assigning too much responsibility to them. For this reason, the system designer is forced to

decide whether to assign this responsibility to the highest mediator layer or a user application.

Due to the nature of the problem being the assignment of a system functionality to a com-

ponent type, and all existing component types being finely utilized via their given rules, it has

become obvious that there is a component gap in the upper layer of the MW architecture. In

other words, due to RMe3, there is a task that no component type is adequate to additionally

handle. Hence, there is a requirement for another type of system component that could take on

the responsibility of representing system data.

A new theoretical component is introduced to the existing MW architecture, which is named

a mask. A mask masks the system at a certain point in the schema hierarchy into a represen-

tational form that can be easily handled by users, effectively taking on the responsibility of

representing the system. The mask should be placed at the top of the architectural hierarchy,

71

Mask–mediator–wrapper architecture

positioned between the users and the highest mediator layer. Placing the masks on top of the ar-

chitectural hierarchy effectively creates a mask layer. Consequently, this extended variant of the

MW architecture is called the mask–mediator–wrapper (MMW) architecture. Figure 4.1 dis-

plays the positioning and relationship of the mask components and layer with other components

in the architecture.

Wrapper

Mediator

Wrapper

DS DS

Wrapper

DS

Wrapper

DS

Mediator Mediator

Mediator Mediator Mediator

MaskMask Mask Mask Mask Mask layer

Mediator layer 2

Mediator layer 1

Wrapper layer

Data sources

Figure 4.1: The MMW architecture with layered mediators

Using the mask, the system’s representational logic is decoupled from the system’s me-

diation logic and the user’s application logic. Furthermore, by adding the mask as a system

component type, the system has a finer separation of responsibility and gains benefits that help

expand and simplify its usability. If a mask supporting a form of standardized technological

access to data is implemented, then access to the system becomes available to a wide variety of

applications implemented over that standard of access.

Observing the mask with an implementation example, one could implement a mask in the

form of a REST service with requests over URLs returning resources in JSON, akin to the

system access shown in [116]. In this way, any application built to send requests to a REST

service and receive its responses can now be used as a client application.

Another interesting way to look at a mask component is to imagine it as an inversed wrap-

per, as illustrated by the flow and dissemination of data in Figure 4.2. While the wrappers con-

cern themselves with adapting the source data from the outside world to accommodate the data

source integration system’s standard, the masks concern themselves with adapting the standard-

ized data to accommodate the outside world. Additionally, wrappers import data from multiple

sources, while masks export data to multiple destinations. Hence, the data source integration

72

Mask–mediator–wrapper architecture

system can now be seen as a single logical point of collecting, transforming and providing data

in various formats. This is in accordance with the modern notion that data management systems

consume, transform, and serve data.

As was the case with wrappers and mediators, the rules for masks are set as follows:

RMa1 A mask should be positioned at the top of the architecture.

RMa2 A mask only connects to a single mediator.

RMa3 A mask is used for representational purposes, representing a schema, querying data, and

representing the result data.

RMa1 follows from the consensus that the presentation layer in system architectures is

positioned at the top (furthest on the user side). The mask, its use being representation, is the

system’s presentation layer.

RMa2 follows from the reversal of its statement. The mask could connect to multiple me-

diators, then it would need to also apply mediation - breaking the separation of responsibilities

among the components. Hence, a mask is allowed to connect to just one mediator, and all the

mediation is left to the the mediators.

RMa3 states a set of basic functional requirements that are expected of most data access sys-

tems. This rule articulates that the mask component does not in any way diminish the system’s

functionality.

Mediators

Wrappers

Masks

Source data

Presentational data

Consume

Transform

Serve

Figure 4.2: Stylistic view of the MMW architecture

The mask component type is succinctly defined in Definition 41.

Definition 41. The mask is a component used to manage the representation of uniform schemas,

queries, and data.

The presented rules for masks, mediators, and wrappers imply that they are architectural

quanta - independently deployable components with high functional cohesion, which include all

structural elements required for the system to function properly [17]. This surprising compat-

73

Mask–mediator–wrapper architecture

ibility with modern architectural ideas is the primary reason why the MW architecture and its

extensions can be considered a relevant research topic even today.

4.2.1 The mask’s effect on the system schema hierarchy

To show that the addition of masks affects only the mediators in the higher layers and decreases

these mediators’ responsibilities, in Figure 4.3, the assignment of schemas from the system-

wide schema hierarchy from Figure 2.16 is shown. As in Figures 2.17 and 2.18, Figure 4.3

shows components and their assigned schemas adjacent to them in white rectangles.

The wrappers themselves and their schemas have remained unchanged, but there is a sig-

nificant difference above the first mediator layer. It is important to note that the placement of

prior existing components has not been changed—all the mediators still connect to the same

wrappers, and the mediators all operate over the same GCSs. Analogous to the examples shown

in Figures 2.17 and 2.18, the mediator components of the (now only existing) mediator layer

operate over their respective GCSs. The mask components have been assigned all the GESs.

There is a noteworthy schema rename in the example of Figure 4.3, for what was originally

GCS123. As the GCS123 itself was an exported schema in prior examples, in this example, the

schema might be in a fundamentally different format. Hence, the schema operated over in the

mask cannot be named the same as the schema in the mediator. To mark this change, what was

once GCS123 used for exporting is now GES123 - a fully-fledged exported schema.

A similar effect can be seen in the case of the mediator that in Figures 2.17 and 2.18 operates

over the LES41. As this mediator’s schema is not directly exported, it is renamed GCS41,

although it currently only incorporates LCS4. The mask component above this mediator has

taken the responsibility of representation and is consequently assigned LES41.

There is also an interesting case in Figure 4.3 concerning the translation of schema LCS4

to the upper layers (via LCS4, GCS41, LES41) and the components used for this task. The

previously exporting mediator of LES4 from Figures 2.17 and 2.18 is preserved. This mediator’s

schema is also renamed to GCS41, as stated earlier. For the moment ignoring the RMa2, it

can be questioned whether this purely translational mediator is even required - rightly so, if

it is additionally considered that the system probably uses standardized interfaces for inter-

component communication. It could be concluded that the mask with LES41 could be connected

directly to the wrapper with LCS4.

However, this is not the case, as the mediator with GCS4 (formerly LES4) must be preserved.

The reason for this statement is two-fold from the angle of system design. Firstly, the mediator

is not only used for translation but also enables transformations within the schema itself (as

is stated by RMe2). Connecting the mask directly to the wrapper, although feasible, would

disable the system to apply further transformations on schema LCS4. Secondly, the benefit of

using an MW architecture, and by extension our own, is the ability to append data sources after

74

Mask–mediator–wrapper architecture

DB1 DB2 DB3 DB4

Mediator

Wrapper WrapperWrapperWrapper

Mediator Mediator Mediator

LIS1 LIS2 LIS3 LIS4

LCS1 LCS2 LCS3 LCS4

GCS12 GCS123 GCS234 GCS(LES)41

Mask Mask Mask Mask

GES2341 GES2342
Mask

LES41
MaskMask Mask Mask

GES121 GES122 GES(GCS)123

Figure 4.3: An exemplified assignment of schemas to a MMW system

the system has been set up. Connecting the mask directly to the wrapper leaves the system with-

out a mediator to mediate between the wrapper with LCS4 and any additional to-be-connected

wrapper. Because of this, the system would lose the beneficial property of being (completely)

appendable.

This is an example of how the RMa2 preserves not only the component hierarchy of the

architecture but also the properties of the system itself.

4.3 Quantitative shift-cost analysis of the mediator–wrapper

architecture

To prove that the MMW architecture simplifies an MW-based data source integration system’s

maintenance and change management (flexibility), a levelled quantitative analysis to compare

the MMW and MW alternatives is needed. The following analysis is based on an evolution-cost

quantitative analysis for measuring software flexibility described by Eden and Mens [22], as

described in Section 4.3.

Eden and Mens [22] proposed that a software’s flexibility can be measured and compared to

other designs by approximating the cost of implementing anticipated changes - shifts. The cost

of shifts is defined as the quantity of software units that need to be changed, added, or removed.

These software units are called modules in a general sense but are exemplified with classes and

methods.

To adjust this analysis for the level of architecture design in this paper, the modules are

viewed as architectural components. The analysis compares an isomorphic example (shown

75

Mask–mediator–wrapper architecture

in Figure 4.4) of an MW architecture with one mediator layer (1LMW), an MW architecture

with two mediator layers (2LMW), and an MMW architecture. In the cases of 1LMW and

2LMW, mediators are considered to have functionalities of both mediation and representation.

The 1LMW and 2LMW architectures were chosen for this analysis because they generally rep-

resent the solutions of the GARLIC and TSIMMIS system architectures. The GARLIC has

been presented as both a 1LMW and 2LMW system, while the TSIMMIS has been presented as

a 2LMW system. In Figure 4.4, red rectangles represent individual wrappers, green rectangles

represent both mediators with representational functionality and mediators without (tick marks

representing names of mediators without representational functionalities), and blue-green rect-

angles represent masks in the MMW architecture and mediators in the 2LMW architecture.

W1 W3 W4W2

Me'1/Me1 Me'2/Me2 Me'3/Me3

Ma1/Me4 Ma2/Me5 Ma3/Me6

Figure 4.4: Architecture used in the analysis

The analysis is conducted over four scenarios: adding a new representation type, adding

a new representation, adding a new mediator, and adding a new wrapper to a mediation. The

symbolic nomenclature for this analysis is defined as follows:

For a set of components Scomp of possible types Scomptypes = {Ma,Me,Me′,W} rep-

resenting a mask, a mediator with representational functionality, a mediator without

representational functionality, and a wrapper respectively, and a set of possible ac-

tions over those components Sact = {impl,depl} representing implementation and

deployment respectively, CY
X us the cost of performing an action Y ∈ Sact over com-

ponent X ∈ Scomp, with the addition of Cset
Conn signifying the cost of setting up a

connection between a pair of components {(c1,c2) | c1,c2 ∈ Scomp}

Since a mediator with representational functionality is more complicated to implement than

a mediator without representational functionality, the cost of implementing the former is greater

than the latter:

Cimpl
Me >Cimpl

Me′ (4.1)

76

Mask–mediator–wrapper architecture

Due to a greater number of functionalities that need to be supported by the surrounding

system to which the component is being deployed, the deployment of a mediator with represen-

tational functionality is also more costly than that of a mediator without representational func-

tionalities. This is because their deployment includes the tasks of setting up system resource

access permissions, component settings, and firewall rules, all of which are either increased

in quantity or complexity in the case of a representational mediator. Therefore, the following

expression is concluded:

Cdepl
Me >Cdepl

Me′ (4.2)

As in the former statement, for the same reasons, the deployment of a mask component

is considered less costly than a mediator with representational functionalities. In addition, the

mediator has a communication node intended for access to multiple sources. This is considered

bloat, as the representational components connect to only one component in the lower layer. The

mask, on the other hand, has a communication node inherently allowing just one connection to

the lower layer (as per RMa2), making the connection configuration simpler. Therefore, the

following expression is concluded:

Cdepl
Me >Cdepl

Ma (4.3)

Scenario 1: Adding a new representation type

In this scenario, a requirement for a new representation type on top of the combined schemas of

wrappers W2, W3, and W4 is added. Since a new type of representation is required, in a 1LMW,

an entirely new mediator must be implemented. This new mediator also must be deployed and

connected to wrappers W2, W3, and W4. The outcome of the shift on 1LMW is displayed in

Figure 4.5 (added elements are marked with dashed lines), with the addition of Me4 and its

connections to the required wrappers.

W1 W3 W4W2

Me1 Me2 Me3 Me4

Figure 4.5: Scenario 1 outcome on a one-layer mediator MW architecture

Thus, the cost of the shift is

C1
1LMW =Cimpl

Me +Cdepl
Me +3×Cset

Conn

77

Mask–mediator–wrapper architecture

In a general case, with the number of connected wrappers being N, the cost is

C1
1LMW =Cimpl

Me +Cdepl
Me +N ×Cset

Conn

It can be noticed that this architecture forms redundant connections between wrappers and

mediators, adding to the shift cost.

Again, in the case of a 2LMW, a new mediator must be implemented and deployed (Me7).

In this case, the mediator is stacked on top of a mediator on the lower layer of mediators (Me3).

Hence, mediator Me3 is reused for combining wrappers W2, W3, and W4, and only one connec-

tion is set up. The outcome of the shift on 2LMW is displayed in Figure 4.6, where the added

mediator component and connection are illustrated with dashed lines.

W1 W3 W4W2

Me1 Me2 Me3

Me7Me4 Me5 Me6

Figure 4.6: Scenario 1 outcome on a two-layer mediator MW architecture

The cost for this shift is

C1
2LMW =Cimpl

Me +Cdepl
Me +Cset

Conn,

which remains true for any general case.

In the case of an MMW architecture, to create a new type of representation, a new mask

(Ma4) is required to be implemented and deployed. Only one connection setup is required, as

the new mask only connects to one mediator in the mediator layer (Me′3). The mediators in

this architecture do not serve a representational purpose, so they do not have representational

functionality. The outcome of the shift on MMW is displayed in Figure 4.7, with the added

mask component and connection illustrated with dashed lines.

78

Mask–mediator–wrapper architecture

W1 W3 W4W2

Me'1 Me'2 Me'3

Ma1 Ma2 Ma3 Ma4

Figure 4.7: Scenario 1 outcome on a MMW architecture

The shift cost in this and general cases is:

C1
MMW =Cimpl

Ma +Cdepl
Ma +Cset

Conn

Scenario 2: Adding a new representation

In this scenario, a requirement for a new representation on top of combined schemas of wrappers

W1 and W2 is added. The representational component is already implemented, so none of the

cases will have an implementation cost, just the deployment cost and the cost of connection

setup.

In a 1LMW, the new mediator is deployed, and two connections to the two wrappers W1 and

W2 are set up. The shift cost is

C2
1LMW =Cdepl

Me +2×Cset
Conn

In a general case, the shift cost is determined by the number of required redundant connec-

tions to wrappers N:

C2
1LMW =Cdepl

Me +N ×Cset
Conn

In a 2LMW, a new mediator is deployed, and one connection to its underlying mediator

(Me2) is set up. The shift cost is

C2
2LMW =Cdepl

Me +Cset
Conn

In an MMW architecture, a new mask is deployed, and one connection to its underlying

mediator (Me′2) is set up. The shift cost is

C2
MMW =Cdepl

Ma +Cset
Conn

79

Mask–mediator–wrapper architecture

Scenario 3: Adding a new mediator

In this scenario, a requirement for a new mediator over wrappers W2 and W3 is added. It is

assumed that this type of mediator already exists, so there is no cost of implementation.

In a 1LMW, a mediator is deployed and connected to the two wrappers. The shift cost is:

C3
1LMW =Cdepl

Me +2×Cset
Conn

Again, for a general case where N is the number of connected wrappers, the shift cost is:

C3
1LMW =Cdepl

Me +N ×Cset
Conn

In a 2LMW, a mediator must be deployed to the lower mediator layer to combine the wrap-

pers and a mediator in the upper mediator layer to provide the representation. The set-up con-

nections also must be considered, as two connections are set up toward the wrappers and a

single connection between the mediators. The shift cost is:

C3
2LMW = 2×Cdepl

Me +3×Cset
Conn

In a general case, where N is the number of connected wrappers, the shift cost is

C3
2LMW = 2×Cdepl

Me +(N +1)×Cset
Conn

In an MMW architecture, together with deploying a mediator, a mask must be provided. The

mask type is considered as already implemented (analogous to the cases of MW architectures),

so it has to only be deployed. Two connections are set up toward the wrappers and a single

connection between the mediator and mask. The shift cost is:

C3
MMW =Cdepl

Me′ +Cdepl
Ma +3×Cset

Conn

In a general case, where N is the number of connected wrappers, the shift cost is

C3
MMW =Cdepl

Me′ +Cdepl
Ma +(N +1)×Cset

Conn

Scenario 4: Adding a new wrapper to an existing mediation

Additionally, to demonstrate that these architectures are sound (the MMW architecture first and

foremost), a scenario of adding a new wrapper can be analyzed. The appending of wrappers to

an existing mediator does not impact the rest of the components, as the wrapper is deployed and

a single connection to the required mediator is set up. Thus, the shift cost for all architectures

80

Mask–mediator–wrapper architecture

is:

C4
1LMW =C4

2LMW =C4
MMW =Cdepl

W +Cset
Conn

Analysis of the Shift Costs

With the shift costs evaluated, a more concise comparison of architectures can be made. Ta-

ble 4.2 displays all the shift costs for each scenario and architecture.

Table 4.2: Shift costs for all scenarios and architectures

Sc. 1LMW 2LMW MMW

1 Cimpl
Me +Cdepl

Me +N ×Cset
Conn Cimpl

Me +Cdepl
Me +Cset

Conn Cimpl
Ma +Cdepl

Ma +Cset
Conn

2 Cdepl
Me +N ×Cset

Conn Cdepl
Me +Cset

Conn Cdepl
Ma +Cset

Conn

3 Cdepl
Me +N ×Cset

Conn 2×Cdepl
Me +(N +1)×Cset

Conn Cdepl
Me′ +Cdepl

Ma +(N +1)×Cset
Conn

4 Cdepl
W +Cset

Conn Cdepl
W +Cset

Conn Cdepl
W +Cset

Conn

The first scenario demonstrates that in the MMW architecture, the addition of a new type of

representation is only dependent on the implementation and deployment of a mask component.

The other two architectures depend on mediator components. The 1LMW shift cost noticeably

depends on the number of connected wrappers - to emphasize, for adding a representation type.

The 2LMW and MMW architectures are not at such a disadvantage, their difference being the

type of component added to the system. Since a mask is less costly to implement and deploy

than a mediator, the overall shift cost in scenario 1 is the lowest in the MMW case.

The second scenario also shows that the 1LMW shift cost is dependent on the number of

wrappers. The cases of 2LMW and MMW are again analogous, but a mask is less costly to

deploy than a representational mediator. This makes the shift cost of the MMW case the lowest

again. As it was discussed earlier in the text, using a mediator just for representation, without

using its mediation functionalities, is akin to killing a fly with a cannonball.

The third scenario shows the shift cost overhead that 2LMW and MMW have as opposed to

1LMW when setting up mediation. There is an obvious trade-off in these architectures between

the shift cost of adding mediation or representations. To maintain a less costly (and qualitatively

simpler) representation addition, the overhead cost of adding mediation is increased. This over-

head can be quantified for 2LMW as

Coverhead
2LMW =C3

2LMW −C3
1LMW =Cdepl

Me +CSet
Conn,

81

Mask–mediator–wrapper architecture

and for the MMW,

Coverhead
MMW =C3

MMW −C3
1LMW = (Cdepl

Me′ −Cdepl
Me)+Cdepl

Ma +Cset
Conn.

Considering that the MMW mask and mediator are less costly to deploy than the 2LMW

mediator, the overhead cost is reduced in favour of the MMW.

The fourth scenario shows that the addition of a new wrapper to the MMW system has no

effect on the rest of the system hierarchy, as it is also expected of the other MW architectures.

The MMW finds itself in no detrimental opposition to the other architectures.

82

Chapter 5

Mask component

This chapter details the mask component implementation up to the point of prescribing the

paradigm or technology in which the mask should be implemented. Sections of this chapter are

taken from the contributing paper [14] with some minor revisions. This chapter presents the

closing details of the first thesis contribution regarding the concretisation of the mask compo-

nent and sets the groundwork for the third thesis contribution regarding the outlines of the mask

framework.

5.1 Mask component functional requirements

The general practice up to this point was to analyze the mask as a generic black box component

and explain how it would work in synthesis with other system components. To expand the

idea of the mask even further, it can no longer be observed just as a black box. The possible

inner workings of a mask provide the ability to distil this architectural component even further

in terms of design and development. As with most software systems, the mask, a miniature

system itself, can be internally elaborated by following some functional requirements.

Using the mask’s properties that have been introduced via its defined rules, relations to

other components, and effect on the architectural layout, we introduce some basic functional

requirements:

F1 The mask must interface with the system via mediators. The mask connects to just one

mediator, but it should in general be able to connect to and communicate with any system

mediator interchangeably. A connection with a wrapper is feasible, but it is inadvisable and

thus not of primary concern.

F2 The mask must provide a user access interface. The user access interface is the point of user

system access. This interface can take any implementational form, provided that the chosen

form has presentational abilities for data storage concerns. This interface is interchangeable

and does not have an effect on the general way in which data source component translations

83

Mask component

take place.

F3 The mask must translate schemas from the system format to the user access (masked) for-

mat. The mask ascertains the system schema provided by its connected mediator and adapts

the schema to a defined mask format.

F4 The mask must translate queries from the user access (masked) format to the system format.

The queries are given by the user through the user access interface in a masked format and

are translated into the system format. To determine mask-to-system element mappings, the

query translation can use the results of schema translations.

F5 The mask must translate results from the system format to the user access (masked) format.

The results received through the system must be adapted to the defined mask format. To

determine certain metadata aspects (e.g., the naming of attributes) of the data results, the

results of the schema translations can be used.

The requirement F1 follows from RMa1, F2 from RMa2, and the requirements F3, F4 and

F5 from RMa3.

5.2 Mask inner components

Following the functional requirements from Section 5.1, a conceptual depiction of the mask’s

inner components is devised. This is displayed in Figure 5.1 as a conceptual model of functional

components and the types of data they are expected to handle. These components present a

generalized idea of what kind of functionalities a mask should have and what their relationships

should be in terms of data exchange and dependency. These components do not present real-

world components, but rather a possible grouping of some real-world components providing a

functionality.

This sketch allows the mask’s functionalities to be put into context. The schema, query,

and result translators are recognized as components with the task of translating data source

components. The central role in translation is given to the schema translator as queries and

query results are translated by using schemas generated by the schema translator. The system

access interface is used to connect to the system via a mediator in the layer below. The outer

access interface is a generic component, able to accommodate an adequate form of an access

interface.

A noticeable trademark of this model is that there is a focus on the flow of data and its

conversion by the components. A masked query is translated and sent (down) into the system.

Reciprocally, the result of such a query is translated into a masked format to be sent (up) to the

user. Similar is the case of schema translation; the system specified schema is translated into a

masked schema for presentation to the user.

Such data transformations can only be achieved through processes, so in a general sense, it

84

Mask component

is more sensical to discuss the mask in terms of processes and the data that flow between them.

To achieve a more detailed elaboration of the mask, building upon the model from Figure 5.1, a

data flow diagram is constructed as displayed in Figure 5.2. Figure 5.2 displays the recognized

processes as circles, outer entities as rectangles (users and mediator), data storage as open

rectangles, and flowing data as named arrows.

MASK COMPONENT

Masked query

Outer access interface

System specified query

Uses
Query

translator

Masked schema

Schema
translator

Masked result

Uses
Result

translator

System specified schema
System specified result

System access interface

Users

MEDIATOR LAYER

Mediator MediatorMediator

Figure 5.1: A conceptual model of the mask’s functional components

On the right-hand side of Figure 5.2, the schema translator of Figure 5.1 is decomposed

as two processes: schema loading and schema translation. The schema loading process is

concerned with the acquisition of a system schema from a connected mediator. This schema is

also stored for other usages, besides schema translation, but it should be reacquired frequently

to maintain an up-to-date schema. For this reason, schema loading is considered a separate

and independent process. The schema translation process uses the currently acquired system

85

Mask component

schema and schema mapping rules from a separate storage to create a masked schema. This

masked schema is presented to the user.

The querying process in Figure 5.2 is a complex process that concerns itself with query-

ing over a mediator. It is closely tied to processes of query translation and result translation.

These processes are effectively subprocesses of querying but have been extracted due to their

importance and correlation with components in Figure 5.1.

The query translation process translates a masked query into a system-formatted query. It

requires data about the current system schema and schema mapping rules to determine the way

in which they are reflected in the current query. This must be considered, as the schema trans-

lation might change the resources’ names or change their schematic, so it becomes important to

reverse those translations when constructing a system query. The query translation process also

requires query mapping rules. As a general example, and for the moment setting a simplified

generic model for a query - these rules might explain how a projection or selection in a query is

to be translated.

Schema mapping

Schema
translation

Masked result

Result
translation

Schema mapping

Schema mapping

Schema mapping

Masked result

Query

Result

Masked query

Querying

Schema

Result

Mediator

Masked query

Users

Schema

Schema request

Schema
loading

Schema

Schema

Schema

System schema

Result mapping

Result mapping

Query mapping

Query mapping

Masked schema

Query

Query
translation

Figure 5.2: Dataflow diagram following the mask’s functionalities

86

Mask component

The result translation process also requires data about the current system schema and schema

mapping rules, as it is also concerned with translating a small view-like portion of the schema

with the addition of holding result data that can also go through some masking transformations.

Just like in other translational cases, result data translation also requires some mapping rules for

data results.

There is also a very interesting feature of the diagram in Figure 5.2 regarding all the mapping

(rules) data storage. The result mapping, schema mapping, and query mapping data storage do

not have any data inflows. These mappings are, in the context of this diagram, then clearly

provided by some other undefined source. In fact, these mappings can only be provided by

the developers of a certain mask component. These mappings are the exact point at which the

system can no longer be designed as generic or abstract, and some concrete implementation or

empirical data describing the masking of the system is required.

Considering the mentioned findings, a high-level design for a mask is proposed and shown

in the diagram of Figure 5.3. The goal is also to think of the mask’s component design without

reducing generality to avoid prescribing any concrete programming paradigms, languages, or

specific design patterns. Figure 5.3 illustrates the recognized components of a mask as white

rectangles (cylinder in the case of a metadata database), required implementations for a mask

kind as grey rectangles (implementation indicated by arrows with empty arrow-heads), and data

flow as arrows with black arrow-heads.

Following the process inference of the data flow diagram of Figure 5.2, in Figure 5.3, the

schema manager and schema translator (interface) are recognized as components - analogous

to the schema loading and schema translation processes, respectively. The schema manager

observes the system schema and updates the stored system schema appropriately.

The inference of a general querying process in the data flow diagram leads to the recogni-

tion of the query manager component. This component manages the underlying translations and

query execution sequencing. In general, its purpose is to produce a masked result for a masked

query. This is achieved through the processes of query and data result translation, which them-

selves in turn lead to the recognition of the query translator (interface) and data result translator

(interface) components.

Regarding the mask’s communication abilities with the rest of the system, the mask sends

system format queries and results, just like mediators and wrappers. For this reason, the mask

can use a standardized communication node used in all other component types. Due to the com-

munication restrictions of the mask (allowing for a single mediator connection), an extension of

a basic communication node should also be implemented. This also allows the addition of new

message types if such a requirement should arise later.

To store all the data inferred for storage in Figure 5.2, a metadata store should also be

introduced to the component. Such a store would be used by all components that require at least

87

Mask component

Mask module

System result

Communication
node

System schema

Mask
communication

node
extension

Metadata
database

Application interface

System schema

Schema manager

Schema mapping

Masked schema

Schema translator
interface

Schema translator
implementation

Masked query

Masked query

Masked result

System query
System result

Query manager
System query

Query translator
interface

Masked result
Result translator

interface

Query translator
implementation

Result translator
implementation

Mediator

Mask application

Figure 5.3: High-level design of the mask component

some schematic information or technical information. In Figure 5.3, this store is displayed, but

the connections to other components are omitted for the sake of clarity.

On the other hand, the mappings (marked as data storages in Figure 5.2) are not stored in

the metadata database. They are presented by the component implementations (marked grey)

in Figure 5.3. For the mask to remain as generic as possible, such mapping rules are explicitly

described by the schema, query, and result translator implementations. The aforementioned

interfaces are used to keep a level of abstraction toward the other inner components. The imple-

mentations are case-specific and created by the mask’s developers according to their respective

interfaces. This allows the development of a mask kind to be done without the need for extensive

coding, as only the missing implementation pieces need to be filled in. This by consequence,

not only simplifies the development process but also decreases the time required to develop a

88

Mask component

certain kind of mask component.

It is important to note that the term “interface” is used in its broadest form here, not ex-

cluding the development of the mask component in a non-OOP language. Along with these

interfaces being implemented as standard OOP interfaces, they can also be implemented as

high-order functions in a functional paradigm or as separate implementations of function pro-

totypes defined in library headers (to be linked before compilation) in a structural-procedural

paradigm. This is one of the beneficial results of generic and abstract reasoning about mask

components.

The inner components that have been elaborated up to this point are part of a mask module

or rather a library. This is best understood from the point of another component marked solidly

blue in Figure 5.3 - the mask application. The mask application is the execution entry point of

the mask component. In the continuation of previous possible use-case examples, this compo-

nent could be a web API or a TCP server listening for JDBC. Whichever the exemplified case,

it would use the mask module as a library to connect to the integration system. The interfac-

ing of the mask application and the module is achieved through the mask application interface

that provides a universal interface for data storage. In essence, the mask application interface

provides the following:

•The acquisition of a mask schema;

•Querying via a masked query;

•Receiving masked results.

A well-designed mask module allows developers to treat it as a simple native data provider

without the need for additional transformations. Of course, the achievement of such a property

is also dependent on the developer’s ability to provide schema, query, and result translator

implementations fitting well with the implemented mask application.

If such design generalizations were not considered, the development of each kind of mask

component would create a lot of excess repeated work and increase the overhead workload,

as all aspects of a mask would need to be re-implemented and retested. Such development

would also have an impact on the management of multiple mask-kind codebases, as none would

conform to any design standard.

Keeping in form with the proposed design, the development of a mask-type component is

narrowed down to the implementation of just four components:

•Schema translator implementation;

•Query translator implementation;

•Result translator implementation;

•Mask application.

This obviously reduces the workload and time required to implement a mask component,

removing the need for the re-implementation of core components. The development following

89

Mask component

the proposed design allows logical layering of the mask component in the segment of the mask

application, as the mask module can be treated as a provider or service. Such standardization

allows the mask components to be potentially built, tested, and maintained by a community of

developers in the form of an open-source software initiative.

These observations implicitly consider the mask to be used as a prefabricated and config-

urable component - generically developed once for a required format, with the ability to be

reused in multiple (MMW) systems.

5.2.1 Data translation

A data source integration system’s functionalities don’t explicitly end with querying. A data

source integration system can additionally facilitate the mutation of data in the data sources.

Consequently, a data source integration system doesn’t just support querying but also com-

manding. The commanding nomenclature is taken from the command-query responsibility seg-

regation principle [128].

With the addition of commanding, the system’s data model is supposed to serve as both

results and data inputs. This change trivially affects the mask component by producing the

requirement for a command translator. A more consequential effect of this is the arising re-

quirement for a translator to enable data to be transformed to and from the masked and system

format with a certain level of correctness. The data translator has to output masked data that is

equivalent to the inputted system data, and also be able to output system data that is equivalent

to the inputted mask data. The conclusion is that a data translator has to facilitate two-way

transformations if the data source integration system is to correctly provide both commanding

and querying. Such transformations are the topic of research in the field of bidirectionalisation.

5.3 Mask framework

An implementation framework is the most feasible way to facilitate the uniform and cognitively

simplest implementation of masks. Restrictions via typing of components can be proscribed to

prevent developers from constructing ill-formed components as much as possible and to guide

the development process itself. The development process, as will be shown in Section 6.1, can

be described in general guiding steps.

Figure 5.4 illustrates the relationship between elements involved in the mask development

process. A framework with generic typing and pre-implemented components is used to create

a mask library. The mask library is a library of a specific mask kind. It is created as a physical

packaging of the mask module (from Figure 5.3) with concrete implementations assigned to the

proposed interfaces. The mask library contains the implementations of the concrete command,

90

Mask component

query and schema managers, as well as the command, query, schema and data translator imple-

mentations as classes. The library also prescribes the use of a communication node for masks.

The mask type is determined by the mask application which is built using the library. The mask

application is an instantiable mask component that uses a specific mask library. Multiple mask

types can be created from a single mask (kind) library. The mask application, with its enclosed

mask library, effectively forms a mask component. The mask component is used by end-users to

access the system in the format of the implemented kind. A point to note is that end-users here

are considered as persons or systems that consume the masked data through a masked schema

using masked queries (or commands for data mutation).

Mask
component

Mask application

Mask
library

Used to
create

Mask
framework

Users

Mediator

Figure 5.4: Mask development concept

It is important to note that once a mask kind and its corresponding type are implemented to

create a mask component, they do not need to be reimplemented for use in other projects. The

mask components are introduced to systems as prefabricated components that only need to be

configured to function properly within the MMW topology at hand. This brings into light users

who will be tasked with configuring and managing the deployed mask components - these are

to be considered as a separate group from the end-users.

The difference between a mask kind and type here is most apparent. The nomenclature of

kind and type is taken from Gonzalez-Perez and Henderson-Sellers[55, 56] and their review of

kind, types, and powertypes in metamodelling (Figure 5.5). A mask kind is defined by the rep-

resentation its library supports (e.g. Web API, JDBC, graph data), while a mask type is defined

by the application which encases the library (e.g. web server, CLI daemon, desktop applica-

tion). Implementing a mask kind creates a powertype, whose concretisation as an application

infers a type.

91

Mask component

Class Class
kind

Subclass

is instance of

SubclassSubclass

(a) Generic powertype example

Mask
library Mask kind

Mask app.

is instance of

Mask app.Mask app.

(b) Mask powertype

Figure 5.5: Powertype examples for a generic case and masks

5.4 Mask modalities

Virtualising and materialising data integration systems were mentioned in Section 2.2.2 as being

two groups based on the integration system’s mode of use. The mask framework and compo-

nent, as generically described in this chapter, support the construction of both virtualising and

materialising masks. This capability will be presented in Section 6.1 with prototypal masks

from both groups. Since a hypothetical MMW system facilitates multiple masks, an MMW

system can be a virtualising and materialising system at the same time. To put these statements

succinctly:

•A virtualising mask manages a virtualised representation of the system in terms of a

unified view of a certain mask kind.

•A materialising mask produces a materialised representation of the system in terms of a

generated data store of a certain mask kind*.

*It will be demonstrated in the case studies and their respective prototypes (Chapter 8) how the materialising
of masks can be used to create temporary localised stores or to create a physical export of the data.

92

Chapter 6

Prototype system

This chapter concerns the implementation of an MMW system prototype, called Janus. Specif-

ically, Section 6.2 introduces the third contribution of the research covered by this thesis - a

framework for implementing masks. The contribution is enhanced by substituting the hypo-

thetical system with the prototype Janus system. Section 6.2 also includes the steps taken to

implement a Web REST API mask by using the mask framework and a succinct overview of

two materializing masks that were implemented for further experimentation and prototyping.

6.1 Janus system

Research cited in this thesis has yet to produce a concrete, comprehensive, freely usable and

open-ended data source integration system. This problem is best summarized by Golshan et

al. [13]:

“. . . it is time for data integration operators to break free of end-to-end data in-

tegration systems and be available in the open source to speed up adoption and

progress.”

“The first challenge [. . .] is that progress of data integration and its application

in practice are hindered by the fact that there are very few quality tools with which

practitioners and researchers can freely experiment.”

To provide a solution for future scientific contributions and to concretise this thesis’ contribu-

tion of a mask framework implementation, the framework is not only developed for use in a

hypothetical system but a genuine (although prototype) system. The development of a proto-

type system also allows reasoning about concrete system elements which are translated, making

the mask framework implementation more candid.

The implemented prototype of a heterogeneous data source integration system is called

Janus [27]. The system is named after the ancient Roman god Janus Bifrons, the god of

93

Prototype system

beginnings, gates, transitions, time, duality, doorways, passages, frames, and endings. This

symbolises the intentions of this and future research in terms of data management and bidirec-

tionalisation.

Wrapper

Mediator

Mask

Janus.Commons

Janus.Communication

Janus.Mask Janus.Mediator Janus.Wrapper

Janus.Mask.<Kind>

Janus.Mask.<Kind>.<App>

Janus.Mediator.App Janus.Wrapper.<Kind>

Janus.Serialization

Janus.Wrapper.<Kind>.<App>

Janus.Components

Figure 6.1: Solution structure of the Janus system with key project dependencies (coloured rectangles
outline the projects used exclusively by individual component types; red - wrapper, green - mediator;
blue - mask)

Janus is implemented using C# in .NET 6. The conceptual solution structure is shown in Fig-

ure 6.1, where each rectangle represents a C# project in a .NET solution. The Janus.Commons

project defines the common Janus system models regarding schema, data, queries, and com-

mands; these definitions are in the system format. The schema model is presented in Sec-

tion 6.1.1, the data model in Section 6.1.2, the query model in Section 6.1.3, and the command

model in Section 6.1.4. The Janus.Commons project also contains definitions of communica-

tion messages for communication between system components (Section 6.1.5).

Janus.Serialization contains all the serialization interfaces required for implementing

serialization functionalities for data formats in Janus. Each supported data format is imple-

mented in a separate project. Janus.Communication contains definitions of the communica-

tion capabilities of Janus (Section 6.1.5) as communication nodes and network adapters.

Janus.Components contains the core interfaces that all Janus MMW components should

adhere to. Janus.Mask, Janus.Mediator, and Janus.Wrapper contain core component def-

94

Prototype system

initions implemented from interfaces of Janus.Components. The Janus.Mediator is direc-

tily used by the (in Figure 6.1 hypothetical) Janus.Mediator.App to construct a deployable

and runnable component. This is because the mediator has no additional definitions of kinds.

Janus.Wrapper is the core framework for the wrapper component type, and it is used to define

specific wrapper kinds for each type of data source. The wrapper kind library projects are then

used to construct deployable and runnable wrapper components.

The mask framework is defined as a collection of interfaces in the Janus.Mask project.

The definitions in Janus.Mask are used to construct separate mask kind library projects for

specific representations. Each implemented mask kind library is named with the following

pattern: Janus.Mask.<Kind>. The mask kind libraries are then used to implement concrete

mask applications in their own projects. The creation of a mask application implies that a mask

type has been created. The mask application projects are named with the following pattern:

Janus.Mask.<Kind>.<Application>; where the "Application" placeholder is used to indi-

cate what application is implemented in the project (e.g. Web application, Web API, desktop

application, CLI application). The application project for a mask kind must produce an exe-

cutable component that allows the mask component to be deployed and run.

It is interesting to note that, in accordance with the concept presented by Figure 4.2, the

mask’s project structure mirrors that of the wrapper.

The compilation outputs of the individual projects are physical components in the form

of DLL files. The component application projects output executable components, while the

library projects output library components. The components created on a solution-wide build

of the current Janus codebase and their dependencies are shown in Figure 6.2.

95

Prototype system

«L
ib
ra
ry
»

Ja
nu
s.
Co
mm
on
s.
dl
l

«L
ib
ra
ry
»

Ja
nu
s.
Ba
se
.d
ll

«L
ib
ra
ry
»

Ja
nu
s.
Co
mm
un
ic
at
io
n.
dl
l

«L
ib
ra
ry
»

Ja
nu
s.
Co
mp
on
en
ts
.d
ll

«L
ib
ra
ry
»

Ja
nu
s.
Le
ns
es
.d
ll

«L
ib
ra
ry
»

Ja
nu
s.
Ma
sk
.d
ll

«L
ib
ra
ry
»

Ja
nu
s.
Me
di
at
or
.d
ll

«L
ib
ra
ry
»

Ja
nu
s.
Wr
ap
pe
r.
dl
l

«L
ib
ra
ry
»

Ja
nu
s.
Lo
gg
in
g.
dl
l

«L
ib
ra
ry
»

Ja
nu
s.
Me
di
at
io
n.
dl
l

«L
ib
ra
ry
»

Ja
nu
s.
Qu
er
yL
an
gu
ag
e.
dl
l

«L
ib
ra
ry
»

Ja
nu
s.
Me
di
at
io
nL
an
gu
ag
e.
dl
l

«L
ib
ra
ry
»

Ja
nu
s.
Ma
sk
.W
eb
Ap
i.
dl
l

«E
xe
cu
ta
bl
e»

Ja
nu
s.
Ma
sk
.W
eb
Ap
i.
We
bA
pp
.d
ll

«L
ib
ra
ry
»

Ja
nu
s.
Ma
sk
.S
ql
it
e.
dl
l

«E
xe
cu
ta
bl
e»

Ja
nu
s.
Ma
sk
.S
ql
it
e.
We
bA
pp
.d
ll

«L
ib
ra
ry
»

Ja
nu
s.
Ma
sk
.L
it
eD
B.
dl
l

«E
xe
cu
ta
bl
e»

Ja
nu
s.
Ma
sk
.L
it
eD
B.
We
bA
pp
.d
ll

«L
ib
ra
ry
»

Ja
nu
s.
Wr
ap
pe
r.
Sq
li
te
.d
ll

«E
xe
cu
ta
bl
e»

Ja
nu
s.
Wr
ap
pe
r.
Sq
li
te
.W
eb
Ap
p.
dl
l

«E
xe
cu
ta
bl
e»

Ja
nu
s.
Me
di
at
or
.W
eb
Ap
p.
dl
l

«L
ib
ra
ry
»

Ja
nu
s.
Co
mm
an
dL
an
gu
ag
e.
dl
l

«L
ib
ra
ry
»

Ja
nu
s.
Se
ri
al
iz
at
io
n.
dl
l

Figure 6.2: Janus system components and their dependencies (dependencies are depicted transitively;
individual serialization libraries are omitted)

96

Prototype system

6.1.1 Janus schema model

The schema model in Janus takes inspiration from a statement by Kleppman [129] that:

“...relational databases turned out to generalize very well, beyond their original

scope of business data processing, to a broad variety of use cases.”

The Janus system’s schema model is illustrated by a class diagram in Figure 6.3.

Figure 6.3: Janus schema model

The schema model specifies a singular root element - the data source, defined by the Data-

Source class. The DataSource class contains metadata about the data source it represents -

the data source name, version, textual description and identifier. The DataSource doesn’t just

represent the schema of a wrapped data source but can also represent a virtualized view; e.g.

a schema generated in a mediator or loaded in a mask. The data source can contain schemas.

The schema construct is defined by the Schema class and is related to collections of data storage

units in a data source; e.g. schema in a relational database. The schema contains an identifier,

name, and textual description. The schema can contain tableaus. A tableau, as defined by the

97

Prototype system

Tableau class, is a tabular data descriptor related to data unit structures; such as relational ta-

bles or document collections for example. The name "tableau" is chosen to denote the tabular

nature of the structure, but not to cause confusion when dealing with tables. Additionally, a no-

table difference from tables is that tableaus are not marked as being in relationships with other

tableaus. In the Janus schema model, relationships are ignored. A tableau contains an iden-

tifier, name, and textual description. A tableau consists of attributes. Attributes, represented

by the Attribute class, relate to relational attributes or document keys. An attribute contains

its identifier, name, textual description, and annotations on whether it represents nullable val-

ues, identity values, its preferred ordinality in the attribute set, and data type. Janus currently

supports the data types represented in Table 6.1

Table 6.1: Janus supported data types and their mappings to C# .NET types

Janus data type C# .NET type

INT int

LONGINT long

DECIMAL double

STRING string

DATETIME DateTime

BOOLEAN bool

BINARY byte[]

The identifiers for the schema model elements are generated from the elements’ names and

their parent element’s identifier. A data source doesn’t have a parent element, as it is the root

element, and its identifier is equivalent to its name. A schema’s identifier is formed from its

parent data source identifier and its own name. A tableaus identifier is formed from its parent

schema identifier and its own name. An attributes identifier is formed from its parent tableau

and its own name. This helps to determine an element’s affiliation with other elements. A

dot-delimited representation is used for identifiers, as exemplified in Table 6.2.

Table 6.2: Identifier examples for schema model elements

Element type Element name Identifier

Data source ShopDb ShopDb

Schema main ShopDb.main

Tableau Items ShopDb.main.Items

Attribute Price ShopDb.main.Items.Price

98

Prototype system

Since some data sources might not represent a physical data source, but rather a virtual one,

the update set mechanism is used to denote which attributes can be used in a command (see

Section 6.1.4 for commands). Attributes in an update set are expected to come from a single

physical data source. More on update sets is given in Section 6.1.7.

The construction of a valid schema model instance is supported by the SchemaModel-

Builder class, which provides a series of construction declarations.

6.1.2 Janus data model

The Janus data model (Figure 6.4) reflects that of the schema model, so tabular data is described

as if it originated from a tableau. The TabularData class describes this data in terms of a

possible name and data types of columns. The name of the tabular data is usually used to relate

it to a query as a result. The tabular data’s schema is simply seen as containing columns, where

only the expected data type is noted. To ease the manipulation of individual data instances,

tabular data is defined as containing rows. Rows are defined by a DataRow class, where values

are kept for each column defined in a TabularData instance.

Figure 6.4: Janus data model

Along with the data model, the Janus codebase offers a collection of operations over tabular

data: selection, projection, equi-join, and column rename. These can be found as extension

methods in the TabularDataOperations class.

Construction of a valid TabularData instance is enabled through the TabularDataBuilder

class, which provides a series of construction declarations.

99

Prototype system

6.1.3 Janus query model

The Janus query model is defined as having three clauses: joining, selection, and projection.

None of these clauses is obligatory in a query, but a query must define an initial tableau. In the

absence of the three clauses, The initial tableau’s data is fully selected and projected onto the

query results. The query model supports only natural equi-join. The query model is illustrated

in Figure 6.5 as a class diagram.

Figure 6.5: Janus query model

A Janus system query is defined by the Query class. Query contains the optional clause

definitions, the initial tableau identifier, and a method to check a query’s validity over a data

source’s schema model. Projection is defined by the Projection class, which contains a set

of all the projected attributes’ identifiers. The joining clause is defined by the Joining class,

which contains a list of Join objects representing joins. A join is defined to contain a primary

and foreign key attribute identifier. The foreign key is considered the attribute from the left

operand tableau, and the primary key is considered the attribute from the right operand tableau.

The selection clause is defined by the Selection class, which holds the selection expression.

Selection expressions are defined by the selection expression model shown in Figure 6.6.

Query creation is supported by the QueryModelBuilder and QueryModelOpenBuilder

classes which provide a declarative construction. The regular query builder enables the con-

struction of a valid query over a given data source, while the open builder provides the building

100

Prototype system

Figure 6.6: Janus selection expression model

of a valid query without a target data source. Queries built using the QueryModelOpenBuilder

must be additionally validated over their intended target data sources; the IsValidForData-

Source method is used in that case.

Janus supports an SQL-like query language defined in ANTLR4 [130] which enables the

construction of textual queries in user interfaces for component management. Queries can ref-

erence one data source at a time. Queries expressed in this way are created in the system format.

An example of a textual query is given in Listing 6.1 (the query can be run on the TracksData

data source from Section 8.3.1).

1 SELECT*

2 FROMTracksData.main.tracks

3 JOINTracksData.main.genres

4 ONTracksData.main.tracks.GenreId == TracksData.main.genres.

↪→ GenreId

5 JOINTracksData.main.media_types

6 ONTracksData.main.tracks.MediaTypeId == TracksData.main.

↪→ media_types.MediaTypeId

7 WHERETracksData.main.genres.Name ="Soundtrack";

Listing 6.1: Query language example

6.1.4 Janus command model

The Janus system has a command model defined for source data manipulation. Three command

types are supported: delete, insert, and update. The command model classes are shown in

Figure 6.7.

101

Prototype system

Figure 6.7: Janus command model

The delete command is used to delete data from a data source. The delete command con-

tains a tableau targeting clause and an optional selection clause. The optionality of the selection

clause is modelled so that the None is effectively a logical false. This is to prevent uninten-

tional deletion of tableau data when the selection clause is accidentally omitted. The delete

command is valid and can be run over a tableau that contains an update set containing all of the

102

Prototype system

tableau’s attributes.

The insert command is used to insert data into a data source. The insert command contains a

tableau targeting clause and an instantiation clause. The instantiation clause supports declaring

multiple tuple values for insertion. The insert command is valid and can be run over a tableau

that contains an update set containing all of the tableau’s attributes.

The update command is used to update data in a data source. The update command contains

a tableau targeting clause, a mutation clause, and an optional selection clause. The update

command is valid and can be run over attributes from a single update set; this includes the

attributes referenced in the selection clause.

Command creation is supported by the DeleteCommandBuilder, InsertCommandBuilder,

and UpdateCommandBuilder classes which provide a declarative construction. These builders

construct commands over a specified target data source. Each contains an open builder coun-

terpart: DeleteCommandOpenBuilder, InsertCommandOpenBuilder, and UpdateComman-

dOpenBuilder. The open builders don’t guarantee validity over a data source, hence the com-

mands built by them must be additionally validated over their intended target data sources; the

IsValidForDataSource method is used in those cases.

Janus supports an SQL-like command language defined in ANTLR4 [130] which enables

the construction of textual commands in user interfaces for component management. Com-

mands expressed in this way are created in the system format. Examples of textual commands

are given in Listing 6.2 (these commands can be run on the data sources created in the prototype

of Section 8.3.1).

1 /*DELETEcommand*/

2 DELETE

3 FROMUsersInvoices.main.customers

4 WHEREUsersInvoices.main.customers.Country =="USA"ANDUsersInvoices

↪→ .main.customers.Company =="TradesInc.";

5 /*INSERTcommand*/

6 INSERT

7 INTOInvoicingData.Main.Users(UserFirstName , UserLastName , UserEmail)

8 VALUES("John","Doe","johnnyd@gmail.com");

9 /*UPDATEcommand*/

10 UPDATEUsersInvoices.main.employees

11 WITHTitle <-"Seniorprogrammer", RepotsTo <- 6L, Phone <-"+1(403)

↪→ 246 -9882"

12 WHERE(UsersInvoices.main.employees.LastName =="King"AND

↪→ UsersInvoices.main.employees.FirstName =="Robert")ORFALSE;

Listing 6.2: Command language examples for delete, insert, and update commands

103

Prototype system

6.1.5 Janus communication

The Janus system’s communication is defined by communication nodes, network adapters, and

messages. The Janus message types are listed in Table 6.3. The request message type names are

denoted with the _REQ suffix, and the analogous response type names are denoted with the _RES

suffix. All response messages contain information pertaining to the outcome of the operation

initiated by their request; be it a successful or failing outcome.

To support evolvability, communication in Janus is implemented by separating the concerns

of logical communication behaviour from the technological way in which communication is

achieved. The logical aspect of messaging is defined in the classes inheriting the Communi-

cationNode class (Figure 6.8). A concrete communication node class is defined per MMW

component type.

Table 6.3: Message types available in the Janus system

Message type Description

HELLO_REQ Used to test a connection to a remote node or to establish a connection
with a remote node where both nodes are expected to register one an-
other.

HELLO_RES Used to confirm the acceptance of a connection request by the remote
node. If the request was also used to request a connection registration,
then the response also signifies that the registration on the remote node
is successful.

BYE_REQ Used to request deregistration of a (requesting node’s) connection on a
remote node.

SCHEMA_REQ Used to request a schema from a component.

SCHEMA_RES Used to respond to a schema request and transfer the schema of a remote
component to the requesting component.

QUERY_REQ Used to request a query run from a remote component.

QUERY_RES Used to respond to a query request with an outcome of a query run; an
outcome message and an optional query result (as tabular data).

COMMAND_REQ Used to request a command run from a remote component.

COMMAND_RES Used to respond to a command request with an outcome of a command
run.

104

Prototype system

Figure 6.8: Janus communication node classes

The communication node type interfaces are parametrized by the network adapter type they

support. Network adapters classes contain technological concerns of communication. Cur-

rently, only network adapters supporting TCP are implemented. An adapter is implemented

per MMW component type. The available network adapter implementations are shown in Fig-

ure 6.9. Additional network adapters can be implemented, e.g. using HTTP or message queues.

105

Prototype system

Figure 6.9: Janus TCP adapter classes

Additional network adapters could hypothetically work with a variety of data formats, so

a flexible data serialization codebase is required. In the case of the TCP network adapters,

the messages are expected to be transferred in binary formats. To facilitate the serialization

of messages into binary data and demonstrate the flexibility of implementing new data format

types, the Janus codebase contains serialization operation interfaces. These interfaces are im-

plemented for the following binary formats: BSON, MongoBSON, Avro, and Protocol Buffers

(Protobufs). These formats can be used interchangeably with the TCP network adapter. Addi-

tionally, the textual JSON format is supported, but it is currently not used for communication

purposes.

6.1.6 Janus components

The Janus system contains three types of components: mask, mediator, and wrapper. Each of

these component types needs to implement interfaces from the Janus.Components namespace.

The interfaces provide a framework upon which system components are implemented. The

106

Prototype system

common component interfaces are:

• IComponentOptions describes the minimum required options for a system component.

This includes the node identifier, listening port, timeout in milliseconds, communication

format, network adapter type, startup remote points, and a persistence connection string.

•Schema management interfaces:

– IComponentSchemaManager describes the base functionality of a schema manager,

such as loading a schema and providing it to outer components. Schema loading
means that a schema is going to be actively used in a component for querying,

commanding, or mediation.

– IDelegatingSchemaManager describes the base functionality of a delegating schema

manager, which can work over other components’ schemas.

– IMediatingSchemaManager describes the base functionality of a mediating schema

manager, which performs schema mediation.

•Query management interfaces:

– IComponentQueryManager describes a component query manager that runs queries

on its own schema.

– IDelegatingQueryManager describes query manager that can delegate query runs

to other components.

•Command management interfaces:

– IComponentCommandManager describes a component command manager that runs

commands on its own schema.

– IDelegatingCommandManager describes command manager that can delegate com-

mand runs to other components.

• IComponentManager describes the base functionalities of a component, such as con-

necting with other components, acquiring schemas, and running commands and queries.

This is the main interface for use in component applications. An implemented compo-

nent manager is expected to have a schema, query, and command manager, as well as a

communication node.

•Persistence interfaces are used to persist known remote points and schemas, as well as

other metadata. These interfaces are akin to the repository pattern interfaces. The current

common interfaces are:

– IPersistence<TId, TModel> describes a persistence interface generically. All

persistence interfaces should inherit from this interface and state their concrete

generic types.

– IRemotePointPersistence describes persistence for remote points.

– Currently, persistence implementations can be found under

Janus.<ComponentType>.Persistence.LiteDB. Persistence is implemented over

107

Prototype system

a JSON store file database called LiteDB.

•Translation interfaces are used to describe translators for data, schemas, queries, and

commands. Since they proscribe a significant number of generics, they should be given

façade implementations.

– ISchemaTranslator<TSchemaSource, TSchemaDestination> describes a sche-

ma translator.

– IQueryTranslator<*> describes a query translator. This interface exhaustively

requires source and destination types for query clauses.

– ICommandTranslator<*> describes a command translator. This interface exhaus-

tively requires source and destination types for command clauses and command

types. This interface covers all three command types.

– IDataTranslator<TSource, TDestination> describes a data translator. For

components specific component types, the data translator usually has its

TSource or TDestination set to TabularData. Data translators can be imple-

mented using lenses to provide sound bidirectional data transformations.

6.1.7 Janus mediator component

The core mediator components can be found in the Janus.Mediator namespace (Figure 6.10).

Classes from this namespace rely on interfaces from Janus.Components. The core components

of a mediator implementation are:

• MediatorOptions represents the options of a mediator component. It implements the

IComponentOptions interface, without additions.

• MediatorSchemaManager manages the schema in the mediator, enables schema acqui-

sition from other components, and schema mediation through the Janus.Mediation

namespace. The MediatorSchemaManager implements the IComponentSchemaMan-

ager, IDelegatingSchemaManager, and IMediatingSchemaManager interfaces.

• MediatorQueryManager manages queries in the mediator, allowing queries over a me-

diated schema or other components. It implements the IDelegatingQueryManager in-

terface. The mediator query manager additionally defines a special method to run queries

on a mediated schema: RunQuery(Query query, MediatorSchemaManager schema-

Manager)

• MediatorCommandManager manages commands in the mediator, allowing command over

a mediated schema or other components. It implements the IDelegatingCommandMan-

ager interface. The mediator command manager additionally defines a special method to

run commands on a mediated schema: RunCommand(BaseCommand command, Media-

torSchemaManager schemaManager)

• MediatorManager is the mediator component manager. It implements the IComponent-

108

Prototype system

Figure 6.10: Janus mediator classes

Manager interface.

•The MediatorPersistenceProvider provides the mediator with persistence objects.

It can be found under the Janus.Mediator.Persistence namespace. Currently, the

provider provides persistence for data source information (mediation, loaded schemas for

the mediation, and mediated schema) and remote points.

Mediation

The mediator relies on the Janus.Mediation namespace for concrete mediation algorithms

and data structures that enable it to mediate schemas, queries, commands, and data. All me-

diation is determined through the specification of the schema model mediation. The Medi-

ationBuilder class is used as an entry point for schema model mediation construction. It

provides the means to declaratively define a schema model mediation. To simplify the decla-

ration of mediation for a management interface, a mediation language has been implemented

using ANTLR4. An exemplified mediation script (used to specify mediation in Section 8.3.1)

is given in Listing 6.3. The mediation language takes inspiration from the work of Asano et

al. [85], where a view is declared, followed by a description of how to populate the view.

A mediation script begins with hierarchical clauses describing the mediated data source,

109

Prototype system

schemas, and tableaus with their attributes. After each individual tableau’s attribute declara-

tion, a description of how to populate the tableau’s attributes is given by a source query. A

description can be given for each element, enclosed by the ’#’ symbol, next to their declara-

tion. If attribute description propagation is enabled (as exemplified in line 3 of Listing 6.3),

then all attributes without explicitly provided descriptions inherit the descriptions provided by

their source attribute. An attribute’s data type, identity, and nullability annotations are automat-

ically propagated from the underlying data source. An attribute’s identifier is inferred from its

declared name and the declared names of its parent elements. The ordinality of an attribute is

determined by the position of its declaration in the "WITH ATTRIBUTES" clause.

1 SETTING

2 PROPAGATE UPDATE SETS

3 PROPAGATE ATTRIBUTE DESCRIPTIONS

4 DATASOURCEMusicData VERSION "1.0" #Mediated data about music#

5 WITHSCHEMAMain #Default schema#

6 WITHTABLEAUAlbums #Data about albums#

7 WITHATTRIBUTES

8 AlbumId ,

9 AlbumTitle ,

10 ArtistName

11 BEING

12 SELECT

13 AlbumsArtistsData.main.albums.AlbumId ,

14 AlbumsArtistsData.main.albums.Title ,

15 AlbumsArtistsData.main.artists.Name

16 FROMAlbumsArtistsData.main.albums

17 JOINAlbumsArtistsData.main.artists

18 ONAlbumsArtistsData.main.albums.ArtistId ==

↪→ AlbumsArtistsData.main.artists.ArtistId

19 WITHTABLEAUTracks #Data about tracks and albums#

20 WITHATTRIBUTES

21 TrackId ,

22 TrackName ,

23 GenreName ,

24 MediaType , #Can be AAC , MP3 , FLAC , etc.#

25 AlbumTitle ,

26 DurationMs ,

27 Composer

28 BEING

29 SELECT

30 TracksData.main.tracks.TrackId ,

31 TracksData.main.tracks.Name ,

32 TracksData.main.genres.Name ,

33 TracksData.main.media_types.Name ,

110

Prototype system

34 AlbumsArtistsData.main.albums.Title ,

35 TracksData.main.tracks.Milliseconds ,

36 TracksData.main.tracks.Composer

37 FROMTracksData.main.tracks

38 JOINTracksData.main.genres

39 ONTracksData.main.tracks.GenreId == TracksData.

↪→ main.genres.GenreId

40 JOINTracksData.main.media_types

41 ONTracksData.main.tracks.MediaTypeId ==

↪→ TracksData.main.media_types.MediaTypeId

42 JOINAlbumsArtistsData.main.albums

43 ONTracksData.main.tracks.AlbumId ==

↪→ AlbumsArtistsData.main.albums.AlbumId

44 WITHTABLEAUUsers #Data about users/customers#

45 WITHATTRIBUTES

46 UserId ,

47 UserEmail ,

48 UserFirstName ,

49 UserLastName ,

50 UserCountry

51 SELECT

52 PlaylistsUsersData.main.customers.CustomerId ,

53 PlaylistsUsersData.main.customers.Email ,

54 PlaylistsUsersData.main.customers.FirstName ,

55 PlaylistsUsersData.main.customers.LastName ,

56 PlaylistsUsersData.main.customers.Country

57 FROMPlaylistsUsersData.main.customers

58 WITHTABLEAUPlaylists #Data about playlists#

59 WITHATTRIBUTES

60 PlaylistId ,

61 PlaylistName ,

62 CreatorEmail

63 BEING

64 SELECT

65 PlaylistsUsersData.main.playlists.PlaylistId ,

66 PlaylistsUsersData.main.playlists.Name ,

67 PlaylistsUsersData.main.customers.Email

68 FROMPlaylistsUsersData.main.playlists

69 JOINPlaylistsUsersData.main.customers

70 ONPlaylistsUsersData.main.playlists.CreatorId ==

↪→ PlaylistsUsersData.main.customers.CustomerId

71 WITHTABLEAUPlaylistTracks #Tracks in playlists#

72 WITHATTRIBUTES

73 TrackId ,

74 TrackName ,

111

Prototype system

75 TrackGenre ,

76 PlaylistId ,

77 PlaylistName

78 BEING

79 SELECT

80 PlaylistsUsersData.main.playlist_track.TrackId ,

81 TracksData.main.tracks.Name ,

82 TracksData.main.genres.Name ,

83 PlaylistsUsersData.main.playlist_track.PlaylistId

↪→ ,

84 PlaylistsUsersData.main.playlists.Name

85 FROMPlaylistsUsersData.main.playlist_track

86 JOINTracksData.main.tracks

87 ONPlaylistsUsersData.main.playlist_track.TrackId

↪→ == TracksData.main.tracks.TrackId

88 JOINPlaylistsUsersData.main.playlists

89 ONPlaylistsUsersData.main.playlist_track.

↪→ PlaylistId == PlaylistsUsersData.main.playlists.PlaylistId

90 JOINTracksData.main.genres

91 ONTracksData.main.tracks.GenreId == TracksData.

↪→ main.genres.GenreId

Listing 6.3: Janus mediation language example

The mediation process can also be set up to propagate update sets (Listing 6.3, line 2) so

that they remain preserved in the higher levels of the schema hierarchy. Propagation of update

sets allows data to be manipulated from mediated schemas. Figure 6.11 demonstrates some

situations involving update set propagation to a mediated tableau. The blue, purple, and orange

update set columns are partially projected in the mediated tableau, but they remain open to data

manipulation through the projected columns. The data sets remain, but they are represented

strictly along the lines of their projected columns. A concrete example of update set propagation

is given in Section 10.5.1.

112

Prototype system

Tableau A Tableau CTableau B

Mediated Tableau

Figure 6.11: Update set mediation

6.1.8 Janus wrapper component

The core wrapper components can be found in the Janus.Wrapper namespace (Figure 6.12).

Classes from this namespace rely on interfaces from Janus.Components. The wrapper com-

ponents in this namespace are still generic, abstract, and partially implemented. The rest of the

implementation depends on a specific data source type - the wrapper kind. The core components

of a wrapper at this level are:

•The WrapperOptions is an implementation of IComponentOptions, with the addition

of a data source name specification, command permission, and a data source connection

string.

•The WrapperSchemaManager is an implementation of IComponentSchemaManager. The

wrapper’s schema manager contains a SchemaInferrer, which is used for schema load-

ing in a wrapper.

– The SchemaInferrer is a mechanism by which a schema is inferred from a wrap-

per’s underlying data source. The schema inferrer itself uses a schemaModel-

Provider which is an implementation of the ISchemaModelProvider interface.

– The ISchemaModelProvider is used to describe a provider for a specific schema

model. The implementations of this interface determine what will be considered

a data source, schema, tableau, attribute, and update sets, as well as determin-

ing data type mappings in the underlying data source. The provider uses spe-

cial schema model classes to provide universal information; this can be found un-

der Janus.Wrapper.SchemaInference.Model. Each specific data source type -

wrapper kind - has to implement its own schema model provider following this in-

terface.

•The WrapperCommandManager<*> represents a command manager for a wrapper. At

this stage, the command manager is still a generic class with some methods implemented.

113

Prototype system

To use it for a concrete implementation of a wrapper kind, upon assigning the generic

types, create a façade class. This eases type specifications during dependency injection.

The command manager uses some generic types that are at this stage only defined as

interfaces.

•The WrapperQueryManager<*> represents a query manager for a wrapper. At this stage,

the query manager is still a generic class with some methods implemented. To use it for

a concrete implementation of a wrapper kind, upon assigning the generic types, create

a façade class. This eases type specifications during dependency injection. The query

manager uses some generic types that are at this stage only defined as interfaces.

•These are the interfaces and types describing local execution, translation and model types:

– The IWrapperQueryTranslator describes a local query translator that translates

queries from a system format to a local data source query format. This interface

inherits from the IQueryTranslator<*> interface from Janus.Components. The

interface fixes the types on the input side of the translation to the system format.

– The IWrapperCommandTranslator describes a local command translator that trans-

lates a command from a system format to a local data source command format. This

interface inherits from the ICommandTranslator interface from Janus.Components.

The interfaces fix the types on the input side of the translation to the system format.

– The IWrapperDataTranslator describes a local data translator that translates a lo-

cal data format to the TabularData format. This interface inherits from the IData-

Translator<*> from Janus.Components. The interface fixes the types on the

output side of the translation to the system format.

– The IQueryExecutor describes a local query executor. This is a generic interface,

requiring types of local clauses, local data, and local queries. An implementation is

recommended to be a façade, to ease dependency injection.

– The ICommandExecutor describes a local command executor. This is a generic

interface, requiring types of local clauses, local data, and local delete, insert, and

update commands. An implementation is recommended to be a façade, to ease

dependency injection.

– Abstract classes for queries and commands can be found in the LocalCommanding

and LocalQuerying namespaces.

•The WrapperManager represents a wrapper component manager. At this stage, the wrap-

per manager is still a generic class with some methods implemented. To use it for a

concrete implementation of a wrapper kind, upon assigning the generic types, create a

façade class. This eases type specifications during dependency injection.

•The WrapperPersistenceProvider contains persistence functionalities for the wrap-

per. This includes data source and remote point persistence.

114

Prototype system

Figure 6.12: Janus wrapper classes

115

Prototype system

6.2 Proof of concept mask in the Janus system

6.2.1 Mask framework

The mask framework is implemented as the Janus.Mask library in the Janus project. The mask

framework (Figure 6.13) uses the core Janus component definitions of Janus.Components by

implementing its interfaces generically. These generic interfaces are declared so that they guide

the development of a mask kind; making the developer implement the inner components of a

mask in a sequence determined by their type dependencies. For the system-end interactions,

generic type specifications are prescribed as the system models for schemas, data, queries and

commands. The generic type specifications for masked representation models in those generic

classes only prescribe that they should inherit the base masked models. Hence, concrete man-

agers can only be typified if their types are constructed using classes specified as certain masked

models. Since the manager and translator inner components are declared as interfaces, they are

expected to be implemented as classes in the Janus system.

Figure 6.13: Mask framework classes

116

Prototype system

The mask framework component definitions are as follows:

• MaskCommandManager<*> describes a mask command manager. It implements the

IDelegatingCommandManager interface. The MaskCommandManager<*> contains im-

plemented methods to run common model commands on the loaded schema, but it also

contains abstract methods that represent the functionality of running commands in the

localized command model. This class contains multiple generic type parameters, hence

its derivatives should present façades with concrete types.

• MaskQueryManager<*> describes a mask query manager. It implements the

IDelegatingQueryManager interface. The MaskQueryManager<*> contains implemented

methods to run common model queries on the loaded schema, but it also contains abstract

methods that represent the functionality of running queries in the localized query model.

This class contains multiple generic type parameters, hence its derivatives should present

façades with concrete types.

• MaskSchemaManager<*> describes a mask schema manager. It implements the

IDelegatingSchemaManager interface. This class contains a generic type parameter

TMaskSchema which represents the type of a masked schema model that a specific mask

kind will use. Its derivatives should be implemented as façades.

• MaskOptions represents the options of a mask component. It implements the

IComponentOptions interface, without additions.

• MaskManager<*> is the mask component manager. It implements the IComponentMan-

ager interface. This class contains multiple generic type parameters, hence its derivatives

should present façades with concrete types.

•Translation interfaces can be found in the Janus.Mask.Translation namespace. They

have fixed source generic type parameters to system models. Specific destination types

are to be specified for a mask kind. These are the interfaces for the local (mask) translators

that are required for a concrete mask kind implementation:

– IMaskCommandTranslator

– IMaskQueryTranslator

– IMaskSchemaTranslator

– IMaskDataTranslator

•Abstract local query, command, and data model can be found in the MaskedQueryModel,

MaskedCommandModel, MaskedSchemaModel, and MaskedDataModel namespaces re-

spectively.

•Persistence functionality can be found in the Janus.Mask.Persistence namespace.

Listing 6.4 shows the type declaration of the generic MaskQueryManager<*> class. It is

specified that the TMaskedData type parameter is required to inherit from the generic Masked-

Data<*> class, the TMaskedSchema from MaskedSchema, and in a more complex specification,

117

Prototype system

the TMaskedQuery must inherit from a generic MaskedQuery<*> class with concrete clause

types. The mask manager component is even more complex in its type specification than the

query manager (Listing 6.5), because it requires concrete specifications of all masked models.

1 publicabstractclass

2 MaskQueryManager<TMaskedQuery,

3 TMaskedStartingWith,TMaskedSelection,

4 TMaskedJoining,TMaskedProjection,

5 TMaskedSchema,

6 TMaskedData,TMaskedDataItem>

7 :IDelegatingQueryManager

8 whereTMaskedQuery:MaskedQuery<TMaskedStartingWith,

9 TMaskedSelection,

10 TMaskedJoining,

11 TMaskedProjection>

12 whereTMaskedSchema:MaskedDataSource

13 whereTMaskedData:MaskedData<TMaskedDataItem>

Listing 6.4: Janus mask framework query manager definition

1 publicabstractclass

2 MaskManager<TMaskedQuery,TMaskedStartingWith,TMaskedSelection,

3 TMaskedJoining,TMaskedProjection,

4 TMaskedDeleteCommand,TMaskedInsertCommand,

5 TMaskedUpdateCommand,

6 TMaskedMutation,TMaskedInstantiation,

7 TMaskedSchema,TMaskedData,TMaskedDataItem>

8 :IComponentManager

9 whereTMaskedQuery:MaskedQuery<TMaskedStartingWith,

10 TMaskedSelection,

11 TMaskedJoining,

12 TMaskedProjection>

13 whereTMaskedDeleteCommand:MaskedDelete<TMaskedSelection>

14 whereTMaskedInsertCommand:MaskedInsert<TMaskedInstantiation>

15 whereTMaskedUpdateCommand:MaskedUpdate<TMaskedSelection,

16 TMaskedMutation>

17 whereTMaskedSchema:MaskedDataSource

18 whereTMaskedData:MaskedData<TMaskedDataItem>

Listing 6.5: Janus mask framework mask manager definition

The typifications facilitate a standard for constructing mask kinds, enabling the construction

of uniformly implemented masks. In essence, this facilitates a ubiquitous language for mask

kind development. Additionally, these complex typifications are created so they can guide the

development of a mask kind. In the Janus system, the development of a mask kind library using

the mask framework is distilled into these general steps:

118

Prototype system

1.Create a mask kind library project, naming it: Janus.Mask.<kind_name>.

2.Implement the MaskedDataModel, MaskedQueryModel, MaskedCommandModel, and

MaskedSchemaModel namespaces; respective to the mask kind being implemented. Im-

plement them using the abstract classes found in the corresponding namespaces of the

Janus.Mask project.

3.Implement the translator interfaces from the Janus.Mask.Translation namespace. Pla-

ce them in the mask kind’s Translation namespace. Set the TDestination generic type

parameters according to the declared mask kind’s local models from the previous step.

4.Implement the mask kind’s schema manager by extending the MaskSchemaManager<*>.

Place the masked schema model as the generic type parameter.

5.Implement the mask kind’s query manager by extending the MaskQueryManager<*>.

Place the masked model types in the generic type parameters accordingly.

6.Implement the mask kind’s command manager by extending the MaskCommandManager<*>.

Place the masked model types in the generic type parameters accordingly.

7.Implement the mask kind’s component options class; even if nothing new is added to the

class.

8.Representation-instance implementations should be placed in additional underlying names-

paces.

9.Implement the mask kind’s component manager by extending the MaskManager<*> class.

Place the masked model types in the generic type parameters accordingly.

To develop the mask type (a runnable mask component), an additional step is required:

10.Create a mask kind application project, naming it: Janus.Mask.<kind_name>.<app_-

type>. Reference the mask kind library. Implement the application.

6.2.2 Web REST API mask

As a proof-of-concept for the mask component and the mask framework, a virtualising Web

REST* API mask library was developed (referred to as the Web API mask). The use of the mask

framework enabled the development of the Web API mask according to the steps provided in

Section 6.2.1.

Before the actual development took place, design decisions were made concerning the map-

pings of the system format models to the representational format models.

The Web API must be constructed using the model-view-controller pattern provided by

ASP.NET. The schema model elements must map to a REST API in such a way that:

•the DataSource is represented by the entire API starting at the root path ’/’, the;

•each Schema is represented by a URI subpath marked by the schema’s name;

*The REST API is implemented at maturity level 2.

119

Prototype system

•each Tableau is represented by a controller with appropriate actions marking an explicit

resource path;

•all Attributes are represented as fields of DTOs served or received at the resource paths.

Following the aforementioned decisions, each tableau is mapped to a controller so that it sup-

ports querying via a GET method request. The selection clause is generally supported through

a query string in the URL. Joins and projection are not supported, as they don’t have natural

analogues in the REST API format. The acquisition of a singular item by its identifier is implic-

itly supported. The DELETE and INSERT methods are enabled on a resource if the underlying

tableau contains an update set with all attributes included. These methods are supported by

Janus insert and delete commands. Appropriate DTO types are prepared to facilitate INSERT

on each resource. A PUT method is created for each update set on a tableau, with an accompa-

nying DTO type.

The Web API is constructed at runtime, without the need for the entire mask application to

restart if the underlying system schema changes.

The following presents the actual steps taken during the development of the Web API mask

kind and its Web application type.

1. Creation of the library project

A C# .NET class library project is created to facilitate the code for the Web API mask library.

The project is named Janus.Mask.WebApi.

2. Implementation of the masked models

The masked query model is implemented as classes describing the typing of the controller and

DTO classes that must be created and instantiated during the mask’s runtime. These classes

are placed under the MaskedSchemaModel namespace for consistency with the framework’s

namespaces. The WebApiTyping class is declared to inherit from the framework’s Masked-

DataSource class. This marks the WebApiTyping class as the root of the masked model that

is analogous to the DataSource. Consequently, this indicates that this model is considered a

masked schema model for this mask kind. The ControllerTyping class contains the specifica-

tions for constructing a controller; its route, route prefix, DTO types, and supported operations.

The DtoTyping represents the specification for individual DTOs served by controller actions.

This specification will be used to construct concrete DTO classes and their instances at runtime.

The Web API masked schema model is presented in Figure 6.14.

120

Prototype system

Figure 6.14: Web API masked schema model implementation

The masked data model is represented by the WebApiDtoData class, inheriting from the

mask framework’s MaskedData<TItem> class. The generic parameter is set as an object

since the concrete DTO type will be determined only at runtime. This is a masked analogue for

the TabularData. The masked data model is placed in MaskedDataModel namespace to be

consistent with the mask framework namespaces.

The masked query is implemented by the WebApiQuery in the MaskedQueryModel names-

pace. The WebApiQuery is an analogue for the system Query as driven by an HTTP GET

method. This is marked by setting the WebApiQuery to inherit from the mask framework’s

MaskedQuery<*>. The provided generic parameters are specified such that they reflect the

aforementioned design decisions about querying in the Web API mask. The query’s starting (or

target) element is determined through a tableau identifier. The target tableau will be acquired

through the controller supporting that specific query. Selection is represented as a nullable

string, facilitating a URL query string. Since the support of joins and projection is not intended,

the related types are provided as a Unit to truncate the WebApiQuery in those terms. The

specified type is given in Listing 6.6.

1 publicsealedclassWebApiQuery

2 : MaskedQuery <TableauId ,string?, Unit , Unit >

Listing 6.6: Web API mask masked query class type

The Web API masked command model contains the WebApiDelete, WebApiInsert and

121

Prototype system

WebApiUpdate commands, inheriting from their respective mask framework classes. WebApi-

Delete is a masked delete command, setting its selection type as a nullable string to enable

the use of URL query strings. The WebApiDelete represents a DeleteCommand driven by an

HTTP DELETE method. WebApiInsert is a masked insert command, with its instantiation

being set as an object to facilitate the various DTO types that will be generated in the Web

API. WebApiInsert represents an InsertCommand driven by an HTTP POST method. We-

bApiUpdate is a masked update command, with the selection type set as a nullable string to

support URL query strings, and the mutation type set as an object enabling the use of various

DTO types generated by the Web API. WebApiUpdate represents an UpdateCommand driven by

an HTTP PUT method. The typification of the command model classes is shown in Listing 6.7.

1 publicsealedclassWebApiDelete : MaskedDelete <string?>

2

3 publicsealedclassWebApiInsert : MaskedInsert <object>

4

5 publicsealedclassWebApiUpdate : MaskedUpdate <string?,object>

Listing 6.7: Web API mask masked command model class types

The implemented masked models provide the basis for the forthcoming implementation of

the Web API mask’s inner components.

3. Implementation of translators

The next mask development step is the implementation of translators. The required translator

interfaces can be found in the mask framework’s project (Janus.Mask) in the Translation

namespace. Each of the masked models requires an implementation of its translator. The direc-

tion of the translations in the translators is also important to note.

Schema translator

To remain consistent with the (non-obligatory) sequence of development in the masked model,

the translator for the schema model is observed first. The WebApiSchemaTranslator is im-

plemented by adhering to the mask framework’s IMaskSchemaTranslator<TMaskedSchema>

interface. The TMaskedSchema generic type parameter specifies the type to which the schema

will be translated (destination type), and must inherit from the MaskedDataSource. In the case

of the Web API mask, this type is the WebApiTyping class. The source type for the translation

is already set beforehand as the DataSource. The interface enforces the implementation of a

Translate method accepting a source DataSource and returning the result of a translated We-

bApiTyping. The type specifications of the implemented schema translator and the consequent

method signature are shown in Listing 6.8.

1 publicclassWebApiSchemaTranslator :

2 IMaskSchemaTranslator <WebApiTyping >

122

Prototype system

3 {

4 publicResult <WebApiTyping > Translate(DataSource dataSource)

5 => ...

6 }

Listing 6.8: Web API mask schema translator

The Translate method iterates over the Tableau elements of a DataSource, noting their

schemas. For each tableau a ControllerTyping is created as follows:

•a controller route prefix is determined by its parent schema name;

•the type of the property representing the identity attribute is determined;

•a POST method DTO is specified with a DtoTyping if the tableau contains an update set

containing all the tableau’s attributes (default update set);

•a DELETE method is specified if the tableau contains a default update set;

•PUT method DTOs are specified as DtoTyping objects for each update set on the tableau.

The controller typings are gathered into a WebApiTyping object and returned as a result.

Data translator

The data translator in the Web API mask kind library is implemented as the WebApiDataTrans-

lator. The code for the translator is shown in Listing 6.9. Unlike the other translators in the

mask, the data translator enables two-way transformations for data. Consequently, the transla-

tor contains two Translate methods, each for one transformation direction of the translation.

The mask framework’s translator interface is already fixed on the TabularData as the source,

while the destination is at this point set to indicate the WebApiDtoData and object as the data

and the data item type respectively. This destination typification is limited to models inheriting

the aforementioned MaskedData by the framework’s interface. To ensure the correctness of the

transformations in both ways, a lens pattern is used in the form of a TabularDataDtoLens to

facilitate them (see Chapter 7). The translator enables the persistence of column names from

the TabularData through the constructor parameter columnNamePrefix, as well as an alter-

native to providing a DTO type over a generic parameter via the originalType constructor

parameter.

1 publicclassWebApiDataTranslator :

2 IMaskDataTranslator <WebApiDtoData ,object>

3 {

4 privatereadonlyTabularDataDtoLens <object> _dataLens;

5 privatereadonlystring_columnNamePrefix;

6

7 publicWebApiDataTranslator(

8 string? columnNamePrefix =null,

9 Type? originalType =null)

10 {

11 _dataLens =

123

Prototype system

12 SymmetricTabularDataDtoLenses

13 .Construct <object>(

14 columnNamePrefix ,

15 originalType);

16 _columnNamePrefix = columnNamePrefix ??string.Empty;

17 }

18

19 publicResult <TabularData > Translate(WebApiDtoData source)

20 => Results.AsResult(

21 () => _dataLens.PutLeft(

22 source.Data ,

23 Option <TabularData >.None));

24

25 publicResult <WebApiDtoData > Translate(TabularData destination)

26 => Results.AsResult(

27 () => _dataLens.PutRight(

28 destination ,

29 Option <IEnumerable <object>>.None)

30 .Map(data =>newWebApiDtoData(data)));

31 }

Listing 6.9: Web API mask data translator

Query translator

The Web API mask’s query translator is implemented as the WebApiQueryTranslator (List-

ing 6.10), implementing the mask framework’s IMaskQueryTranslator<*> interface. The

framework’s interface enforces the specification of generic types such that only a class inherit-

ing the MaskedQuery can be provided. Additionally, proper clause types relating to the masked

model are also enforced. In contrast to the schema translator, the system model here is posi-

tioned on the destination end of the translator, although this is not clearly visible in the mask

framework interface, it is visible in the interface provided by the Janus.Components library.

Each query clause is translated by its own translation method. These methods are individu-

ally used in the Translate method translating the entire query. Since the masked query model

doesn’t contain joins and projection, their translation methods receive the Unit type and return

a logical error result if they were to be called by accident.

The masked query is translated in the Translate method by first initiating a translation of

the URL query string through string parsing. The result of the selection translation is mapped

to the result of an operation initialising the open query builder and assigning the translated

selection to the system query via the builder.

1 publicsealedclassWebApiQueryTranslator :

2 IMaskQueryTranslator <WebApiQuery , TableauId ,string?, Unit , Unit >

3 {

124

Prototype system

4 publicResult <Query >

5 Translate(WebApiQuery query)

6 => Results.AsResult(

7 () => TranslateSelection(

8 Option <string?>.Some(query.Selection ?. TrimStart (’?’)),

9 $"{query.StartingWith}.")

10 .Map(selectionExpression =>

11 QueryModelOpenBuilder.InitOpenQuery(query.

↪→ StartingWith)

12 .WithSelection(conf => conf.WithExpression(

↪→ selectionExpression))

13 .Build()));

14

15 publicResult <Joining >

16 TranslateJoining(

17 Option <Unit > joining ,

18 TableauId? startingWith =null)

19 => ...

20

21 publicResult <Projection >

22 TranslateProjection(Option <Unit > projection)

23 => ...

24

25 publicResult <SelectionExpression >

26 TranslateSelection(Option <string?> selection)

27 => ...

28 }

Listing 6.10: Web API mask query translator

Command translator

The command translator for the Web API mask is implemented as the WebApiCommandTrans-

lator class. This translator contains the translation methods required for all three command

types. The generic type parameters concern the Web API masked command model by which the

source model is specified. As in the case of the query translator, the command translator must

implement translation methods for clauses that appear in commands. The notable difference

from the other translators is that it requires the WebApiDataTranslator (visible as a field in

Listing 6.11) to translate the data used in the instantiation and mutation clauses.

1 publicsealedclassWebApiCommandTranslator :

2 IMaskCommandTranslator <WebApiDelete , WebApiInsert , WebApiUpdate ,

↪→ string?,object,object>

3 {

4 privatereadonlyWebApiDataTranslator _dataTranslator;

5

125

Prototype system

6 publicWebApiCommandTranslator ()

7 {

8 _dataTranslator =newWebApiDataTranslator ();

9 }

10

11 publicResult <DeleteCommand >

12 TranslateDelete(WebApiDelete delete)

13 => ...

14

15 publicResult <InsertCommand >

16 TranslateInsert(WebApiInsert insert)

17 => ...

18

19 publicResult <Instantiation >

20 TranslateInstantiation(Option <object> instantiation)

21 => ...

22

23 publicResult <Mutation >

24 TranslateMutation(Option <object> mutation)

25 => ...

26

27 publicResult <SelectionExpression > TranslateSelection(Option <

↪→ string> selection)

28 => ...

29 }

Listing 6.11: Web API mask query translator

At this point, the type dependencies set by the mask framework can be noted. The transla-

tors can’t be correctly implemented without the concrete masked model types and the manager

components can’t be correctly implemented without the concrete translator types.

4. Implementation of the MaskSchemaManager

The Web API schema manager, named WebApiMaskSchemaManager (Listing 6.12), is im-

plemented by inheriting the mask framework’s MaskedSchemaManager abstract class. The

MaskedSchemaManager already contains the required methods implemented generically. These

methods concern the loading, unloading and reloading of the schema into the manager, as well

as providing the loaded schema to the components using the schema manager. Only the masked

data source generic type parameter is required for the concrete implementation of a schema

manager. In this case, the WebApiTyping is provided. The schema manager requires a mask

communication node instance and a schema translator function, as prescribed by the constructor

parameters. The mask communication node is used to acquire schemas from other system com-

126

Prototype system

ponents. This is visible in Listing 6.12 in the LoadSchema method, where the communication

node is used to send a schema request (SCHEMA_REQ). The schema translator is used to translate

the acquired schemas into the masked format (visible in the CurrentMaskedSchema property

in Listing 6.12). When referencing other inner components, it is best to use the concrete types

(their façades) instead of the exhaustively typed generic interfaces used in the base classes.

1 publicsealedclassWebApiMaskSchemaManager :

2 MaskSchemaManager <WebApiTyping >

3 {

4 privatereadonlyWebApiSchemaTranslator _schemaTranslator;

5

6 publicWebApiMaskSchemaManager(

7 MaskCommunicationNode communicationNode ,

8 WebApiSchemaTranslator schemaTranslator ,

9 ILogger? logger =null)

10 :base(communicationNode , schemaTranslator , logger)

11 {

12 _schemaTranslator = schemaTranslator;

13 }

14

15 //belowaremethodstakenoverfromthebaseclass

16 publicOption <WebApiTyping > CurrentMaskedSchema

17 publicOption <TMaskedSchema > CurrentMaskedSchema

18 => _currentSchema.Map(_schemaTranslator.Translate)

19 .Bind(translation => translation

20 ? Option <TMaskedSchema >.Some(translation.Data) :

↪→ Option <TMaskedSchema >.None);

21

22 publicOption <DataSource > CurrentOutputSchema

23 => ...

24

25 publicasync Task <Result <DataSource >>

26 GetSchemaFrom(RemotePoint remotePoint)

27 => ...

28

29 publicasync Task <Result <DataSource >>

30 LoadSchema(RemotePoint remotePoint)

31 => (await Results.AsResult(async () =>

32 {

33 ...

34 var result =

35 await _communicationNode

36 .SendSchemaRequest(remotePoint);

37 ...

38 }))

127

Prototype system

39

40 publicasync Task <Result <DataSource >>

41 ReloadOutputSchema ()

42 => ...

43

44 publicResult UnloadSchema ()

45 => ...

46

47 publicResult

48 UnloadSchema(RemotePoint remotePoint)

49 => ...

50 }

Listing 6.12: Web API mask schema manager

5. Implementation of the MaskQueryManager

The Web API mask query manager is implemented as a class called the WebApiMaskQueryMan-

ager (part of implementation given in Listing 6.13). The query manager inherits the abstract

MaskQueryManager class that already contains most methods implemented generically. The

generic type parameters for the MaskQueryManager reflect on the masked query, schema and

data model. The query manager requires a mask communication node to send queries to other

system components (line 41 in Listing 6.13), a schema manager to acquire information about the

currently loaded schema and its source, and a query translator to translate the masked queries

to the system format.

The MaskQueryManager requires the implementation of the RunQuery method accepting

a masked query as a parameter and returning the masked data as a result. The RunQuery is

shown in Listing 6.13. The method first prepares a temporary data translator. The method then

translates the masked query into the system format, passing it to the RunQuery accepting the

system format. The query result data is finally translated by the temporary data translator into

the masked format and returned as a result.

1 publicsealedclassWebApiMaskQueryManager :

2 MaskQueryManager <WebApiQuery , TableauId ,string?,

3 Unit , Unit , WebApiTyping ,

4 WebApiDtoData ,object>

5 {

6 privatereadonlyWebApiQueryTranslator _queryTranslator;

7 privatereadonlyILogger <WebApiMaskQueryManager >? _logger;

8

9 publicWebApiMaskQueryManager(

10 MaskCommunicationNode communicationNode ,

11 WebApiMaskSchemaManager schemaManager ,

128

Prototype system

12 WebApiQueryTranslator queryTranslator ,

13 ILogger? logger =null)

14 :base(communicationNode , schemaManager , queryTranslator ,

↪→ logger)

15 {

16 _queryTranslator = queryTranslator;

17 logger ?. ResolveLogger <WebApiMaskQueryManager >();

18 }

19

20 publicoverrideasync Task <Result <WebApiDtoData >>

21 RunQuery(WebApiQuery query)

22 => await Results.AsResult (() =>

23 {

24 var dataTranslator =

25 newWebApiDataTranslator(query.StartingWith.ToString

↪→ () +".", query.ExpectingReturnDtoType);

26

27 var queryResult =

28 Task.FromResult(_queryTranslator.Translate(query))

29 .Bind(query => RunQuery(query))

30 .Bind(async data => dataTranslator.Translate(data))

31 .Map(data => data);//boxit

32

33 returnqueryResult;

34 });

35

36 //methodtakenoverfromthebaseclass

37 publicasync Task <Result <TabularData >>

38 RunQuery(Query query)

39 => (await Results.AsResult <TabularData >(async () =>

40 ...

41 var result =

42 await _communicationNode

43 .SendQueryRequest(

44 query ,

45 _schemaManager.CurrentSchemaRemotePoint.Value

46);

47 ...

48);

49 }

Listing 6.13: Web API mask query manager

129

Prototype system

6. Implementation of the MaskCommandManager

The Web API mask command manager is implemented as a class called the WebApiMaskCom-

mandManager. The command manager supports operations regarding all three types of com-

mands. The generic type parameters concern the masked command, schema and data models.

The command manager requires a mask communication node in order to send commands to

other system components, a schema manager to acquire the latest loaded schema, and a com-

mand translator to translate the commands from the masked to the system format.

Listing 6.14 contains a partial implementation of the command manager. The implementa-

tion of the RunCommand method for the update command is given starting at line 28. The method

translates the command to the system format using the command translator and then proceeds

to run the command in the system format. The RunCommand method (line 41) from the base

class uses the communication node to send a command request to a remote system component.

There is no reverse translation since the result is only a logical indication of the outcome of the

operation.

1 publicsealedclassWebApiMaskCommandManager :

2 MaskCommandManager <WebApiDelete , WebApiInsert , WebApiUpdate ,

3 string?,object,

4 object, WebApiTyping >

5 {

6 privatereadonlyWebApiCommandTranslator _commandTranslator;

7 privatereadonlyILogger <WebApiMaskCommandManager >? _logger;

8

9 publicWebApiMaskCommandManager(

10 MaskCommunicationNode communicationNode ,

11 WebApiMaskSchemaManager schemaManager ,

12 WebApiCommandTranslator commandTranslator ,

13 ILogger? logger =null)

14 :base(communicationNode , schemaManager , commandTranslator ,

↪→ logger)

15 {

16 _commandTranslator = commandTranslator;

17 _logger = logger ?. ResolveLogger <WebApiMaskCommandManager >();

18 }

19

20 publicoverrideasync Task <Result >

21 RunCommand(WebApiDelete command)

22 => ...

23

24 publicoverrideasync Task <Result >

25 RunCommand(WebApiInsert command)

26 => ...

130

Prototype system

27

28 publicoverrideasync Task <Result >

29 RunCommand(WebApiUpdate command)

30 => await Results.AsResult (() =>

31 {

32 var commandResult =

33 Task.FromResult(

34 _commandTranslator.TranslateUpdate(command))

35 .Bind(cmd => RunCommand(cmd));

36

37 returncommandResult;

38 });

39

40 //frombaseclass

41 publicasync Task <Result >

42 RunCommand(BaseCommand command)

43 => (await Results.AsResult(async () =>

44 {

45 ...

46

47 var result =

48 await _communicationNode

49 .SendCommandRequest(

50 command ,

51 _schemaManager.CurrentSchemaRemotePoint.Value);

52

53 returnresult;

54 }));

55 }

Listing 6.14: Web API mask command manager

7. Implementation of the mask’s options class

The Web API mask doesn’t contain any additional options regarding the component itself, ex-

cept for the options regarding the Web API instance. Because of this, the WebApiMaskOp-

tions inherits from the mask framework’s MaskOptions and extends it with fields regarding

the specifics of the Web API instance.

The key implementation details of the WebApiMaskOptions are shown in Listing 6.15. The

_startupWebApi field is introduced to allow the indication of whether the component should

automatically start up the Web API instance. This is included for practical purposes regarding

automatised deployment. The WebApiOptions class contains specific options regarding the

instance of the Web API: the HTTP port number, HTTPS port number and whether to even use

131

Prototype system

HTTPS.

1 publicsealedclassWebApiMaskOptions : MaskOptions

2 {

3 privatereadonlyWebApiOptions _webApiOptions;

4 privatereadonlybool_startupWebApi;

5 ...

6 }

7 ...

8 publicclassWebApiOptions

9 {

10 publicintListenPort { get; init; }

11 publicint? ListenPortSecure { get; init; }

12 publicboolUseSSL { get; init; }

13 }

Listing 6.15: Web API mask options

8. Implementation of the instance functionalities

All code regarding the actual Web API instance is placed in the InstanceManagement names-

pace. The primary task of the code in this namespace is to facilitate the repeated creation of an

ASP.NET Web API according to the typing specifications gathered as a masked schema. The

concretely implemented classes enabling the running of such a feature are shown in Figure 6.15.

The WebApiInstance contains the Web API instance at runtime as an ASP.NET WebAp-

plication. The TypeFactory is used to create new controllers and their DTO types according

to the typings given as ControllerTyping and DtoTyping. The types are created through the

use of abstract partially implemented templates and their concrete implementation using the IL

generator. The DTOs are only templated as inheriting the BaseDto class. The controllers are

templated through the generic abstract GenericController class. This base controller class

only provides support for GET methods, so additional generic interfaces IDeleteController,

IPutController andIPostController are assigned and implemented using the IL generator

to enable the required DELETE, PUT and POST methods. These new types are placed in a

dynamic assembly.

Since the Web API instance controllers require access to querying and commanding, they

must have such functionalities provided. This is achieved by packing the mask query and com-

mand managers into their respective query and command provider; the QueryProvider and

CommandProvider. Because of this, the controllers unanticipatedly also adhere to the com-

mand query segregation principle. To simplify the injection of the provider dependencies, the

providers are injected via the ProviderFactory, which is then used to acquire the concrete

QueryProvider and CommandProvider instances as needed.

132

Prototype system

Figure 6.15: Key classes used for the Web API instance management

The StartApplication method in the WebApiInstance prepares and starts the Web API

instance as follows:

•the mask’s current masked schema is acquired through the schema manager;

133

Prototype system

•the WebApiOptions are applied to the Web API configuration;

•the elements of the masked schema are used together with the TypeFactory in a Gener-

icControllerFeatureProvider to populate a dynamic assembly with the new DTO

and controller types;

•the newly created controller types are added to the ASP.NET WebApplication through

the use of the GenericControllerFeatureProvider;

•the QueryProvider and CommandProvider are registered as services through the Provider-

Factory;

•the Swashbuckle Swagger graphical interface is added to the configuration to enable a

visual overview of the Web API;

•the WebApplication object is built, ran asynchronously, and referenced for future man-

agement purposes.

9. Implementation of the MaskManager

The Web API mask manager is implemented as the WebApiMaskManager class, inheriting from

the mask framework’s MaskManager. The generic type parameters concern all of the aforemen-

tioned Web API masked models. The WebApiMaskManager inherits all the basic component

management methods; this includes establishing connections with other system components,

managing schemas, and sending queries and commands. The mask manager is the central com-

mand component that abstracts away the functionalities of the other management components.

Because of this encompassing scope, the mask manager requires all of the other manager com-

ponents. This is visible in Listing 6.16 with the constructor requiring the query, command and

schema managers, as well as the communication node.

The Web API mask manager is also tasked with creating and managing the Web API in-

stance. The management of the Web API instance in terms of the Web API mask manager

interface implies the ability to start and stop the Web API instance. This functionality is shown

in Listing 6.16 in the StartWebApi and StopWebApi methods.

1 publicsealedclassWebApiMaskManager

2 : MaskManager <WebApiQuery , TableauId ,string?, Unit , Unit ,

3 WebApiDelete , WebApiInsert , WebApiUpdate ,

4 object,object, WebApiTyping ,

5 WebApiDtoData ,object>

6 {

7 ...

8 publicWebApiMaskManager(

9 MaskCommunicationNode communicationNode ,

10 WebApiMaskQueryManager queryManager ,

11 WebApiMaskCommandManager commandManager ,

12 WebApiMaskSchemaManager schemaManager ,

134

Prototype system

13 ...

14 WebApiMaskOptions maskOptions ,

15 ...)

16 {

17 ...

18 _webApiInstance =

19 newWebApiInstance(

20 maskOptions.WebApiOptions , commandManager ,

21 queryManager , schemaManager , logger);

22 ...

23 }

24

25 publicResult StartWebApi ()

26 => Results.AsResult(

27 () => _webApiInstance

28 .StartApplication(GetCurrentSchema ()));

29

30 publicResult StopWebApi ()

31 => Results.AsResult(

32 () => _webApiInstance.StopApplication ());

33

34

35 }

Listing 6.16: Web API mask manager

10. Creation of the Web application type

A separate ASP.NET MVC Web Application project is created with the name Janus.Mask.WebApi.WebApp.

This project contains the code for the Web application type of the Web API mask kind. The

project references the Janus.Mask.WebApi project. The Program.cs file contains the config-

uration code for the Web application, as well as the dependency injection configuration for all

of the mask’s inner components. The dependency injection configuration includes all of the

required components for instantiating a WebApiMaskManager. This crucially includes:

•the mask component options;

•the TCP network adapter;

•the communication data serializer;

•the mask communication node;

•the mask query, command, schema, and query translators;

•the query, command, and schema managers;

•the mask manager.

The final class diagram overview of the implemented inner components of the Web API

135

Prototype system

mask is given in Figure 6.16

Figure 6.16: Management classes of the Janus Web API mask library

136

Prototype system

Figure 6.17 is provided in order to compare the established implementation of the Web API

mask with the proposed usage of the mask framework in Section 5.3, specifically illustrated in

Figure 5.4. The mask framework (itself implemented as the Janus.Mask library project) was

used to construct a Web API mask library. The Web API mask library is used primarily through

the Web API mask manager since the manager provides a façade of the Web API mask’s func-

tionalities. Foremost, the Web API mask manager controls the Web API instance and shares its

QueryManager and CommandManager with it. The Web API instance is an instance of ASP.NET

Web API application recreated and restarted at runtime depending on the current schema avail-

able to the mask manager. The Web API instance provides the masked data, schema, queries,

and commands to end-users. These components make up the Web API mask kind.

In order for the Web API mask manager to be run, it must be positioned within an executable

component. The mask management Web application is used to this end, as well as enabling the

Web API mask to be managed through a Web graphical user interface. The management user

interface is not intended for end-users but for administrators managing the deployed component.

The creation of a mask management Web application effectively determines the type of this

deployable and executable mask component - a Web application type of a Web API kind.

Mask component

Mask management Web application

Web API mask manager

Used to
create

Mask
framework

Clients

Mediator

Web API instance

CommandManager

QueryManager

CommandManager

QueryManager

Figure 6.17: Web API mask creation facilitated by the mask framework

The Web API mask component (as proposed in Section 5.3) is a prefabricated component

that only requires adjustments to its configuration to be deployed in various MMW topologies.

137

Prototype system

The configuration is adjusted through a JSON configuration file placed alongside the executable

component. An example of the relevant parts of a configuration file is given in Listing 6.17 for

a Web API mask from the case study prototype of Section 8.3.1.

1 {

2 "MaskConfiguration ": {

3 "NodeId ": "MusicWebApiMask",

4 "ListenPort ": 30001,

5 "TimeoutMs ": 5000,

6 "CommunicationFormat ": "AVRO",

7 "NetworkAdapterType ": "TCP",

8 "EagerStartup ": true ,

9 "StartupRemotePoints ": [{" Address ": "172.24.2.1" , "ListenPort ":

↪→ 20001}] ,

10 "StartupNodeSchemaLoad ": "MusicMediator",

11 "StartupWebApi ": true ,

12 "PersistenceConnectionString ": "./ mask_database.db",

13 "WebApiConfiguration ": {

14 "ListenPort ":8801 ,

15 "UseSSL ": false ,

16 "ListenSecurePort ":8802

17 }

18 },

19 "WebConfiguration ": {

20 "Port": 8301,

21 "AllowedHttpHost ": "http ://*",

22 "AllowedHttpsHost ": "https ://*"

23 },

24 ...

25 }

Listing 6.17: Example of a configuration file of a Web API mask

To provide a concrete example of a running Web API mask component, Figure 6.18 displays

an instance of a generated Web API schema which can be found in the case study prototype of

Section 8.3.1. The Swagger interface is included in the Web API mask to provide end-users

with a concise overview of the masked schema. A more detailed overview of the generated

Web API REST schema can be found in Section 10.5.1.

138

Prototype system

Figure 6.18: A Swagger interface for a Web REST API generated by a mask at runtime

Figure 6.18 shows the specific case of mask representing a system format data source Mu-

sicData, consisting of a single Main schema having two tableaus Tracks and Users, as a Web

API.

6.2.3 LiteDB mask

As a prototype of a materialising mask discussed in Section 5.4, the materialising LiteDB mask

was implemented. For a given data source, the LiteDB mask must generate a LiteDB database

and populate it with the available data. The LiteDB mask library was implemented follow-

139

Prototype system

ing the steps for implementing a mask kind via the mask framework from Section 6.2.1. The

implementation is illustrated in Figure 6.19.

Figure 6.19: Management classes of the Janus LiteDB mask library

The LiteDB mask doesn’t require representations for querying or commanding, since it is

not used for virtualisation, and querying and commanding operations are expected to be run

on the materialised database itself. Hence, the command and query models are not required in

the LiteDB mask, but the mask framework requires these models to exist. Consequently, the

command and query models are truncated by using the Unit type for clause type specifications

(Listing 6.18).

1 /*litedbmaskedquery*/

2 publicabstractclassMaskedQuery<TStartingWith,TSelection,

3 TJoining,TProjection>

4 publicsealedclassLiteDbQuery

5 :MaskedQuery<TableauId,Unit,Unit,Unit>

140

Prototype system

6

7 /*litedbmaskeddeletecommand*/

8 publicabstractclassMaskedDelete<TSelection> :MaskedCommand

9 publicsealedclassLiteDbDelete:MaskedDelete<Unit>

10

11 /*litedbmaskedinsertcommand*/

12 publicabstractclassMaskedInsert<TInstantiation>

13 :MaskedCommand

14 publicsealedclassLiteDbInsert:MaskedInsert<Unit>

15

16 /*litedbmaskedupdatecommand*/

17 publicabstractclassMaskedUpdate<TSelection,TMutation>

18 :MaskedCommand

19 publicsealedclassLiteDbUpdate:MaskedUpdate<Unit,Unit>

Listing 6.18: Janus LiteDB mask query and command model type definitions

The materialisation is facilitated by the DatabaseMaterializer. This is analogous to the

Web API mask’s instance (Section 6.2.2). To materialise the database on request, the LiteDB

mask manager acquires the current masked schema from the schema manager, which then trans-

lates its currently loaded schema to the masked format (Figure 6.20) before returning it to the

mask manager. The masked schema is then used by the DatabaseMaterializer to create a

proper mapping strategy between the system and database schema. System queries are created

and run, each to acquire data from a tableau. The resulting data is then translated into LiteDb-

Data containing a collection of BSON documents appropriate for storage in a LiteDB database.

The BSON documents are finally stored in the database, effectively materialising the database.

The current mapping strategy determines the representation of the system format schema.

The data source is represented by a database file. The schema is represented by a prefix to

collection names, concatenated by the underscore symbol. Each tableau is represented by a

collection (of BSON documents). Individual attributes are represented as primitive value fields

as implemented in LiteDB. Update sets are not represented in the materialised database since

they are only related to the source data.

Reflecting on Figure 5.4 from Section 5.3, the LiteDB mask’s creation via a mask framework

is depicted in Figure 6.21. The LiteDB mask manager component represents the LiteDB mask

library as a provider of all functionalities of a LiteDB mask. The LiteDB mask manager con-

tains a database materializer component which is tasked with creating a new LiteDB database

and making the required queries to populate it. The database materializer only requires the

QueryManager from the LiteDB mask manager, since it only loads the data into the database.

In contrast to the Web API mask, the LiteDB materializer is not a separately controlled instance

of an application, just an object with the required methods to materialize the database.

The LiteDB mask manager component is placed within an ASP.NET Web application to

141

Prototype system

Figure 6.20: Janus LiteDB masked schema model

make it an executable component. The Web application enables the management of the mask

component through a graphical user interface. The end-users are only expected to access the

materialised database, and not the mask itself in this case. This mask is effectively of the Web

application type of the LiteDB kind.

Mask component

Mask management Web application

LiteDB mask manager

Used to
create

Mask
framework

Clients

Mediator

LiteDB materializer

QueryManager QueryManager

Materialised
LiteDB

Figure 6.21: LiteDB mask creation facilitated by the mask framework

142

Prototype system

As was proposed in Section 5.3, the implemented LiteDB mask presented in this section is a

prefabricated and configurable component that can be deployed in different MMW topologies.

The configuration of the LiteDB component comes in the form of a JSON configuration file

positioned next to its executable. An example configuration file used in the case study prototype

of Section 8.3.1 is shown in Listing 6.19.

1 {

2 "MaskConfiguration ": {

3 "NodeId ": "InvoicingLiteDBMask",

4 "ListenPort ": 30004,

5 "TimeoutMs ": 5000,

6 "CommunicationFormat ": "AVRO",

7 "NetworkAdapterType ": "TCP",

8 "EagerStartup ": true ,

9 "StartupRemotePoints ": [{" Address ": "172.24.2.2" , "ListenPort ":

↪→ 20002}] ,

10 "StartupNodeSchemaLoad ": "InvoicingMediator",

11 "StartupMaterializeDatabase ": true ,

12 "MaterializationConfiguration ": {

13 "ConnectionString ": "invoicing.db"

14 },

15 "PersistenceConnectionString ": "./ mask_database.db",

16 },

17 "WebConfiguration ": {

18 "Port": 8307,

19 "AllowedHttpHost ": "http ://*",

20 "AllowedHttpsHost ": "https ://*"

21 }

22 ...

23 }

Listing 6.19: Example of a configuration file for a LiteDB mask

Taking the example of the case study prototype of Section 8.3.1, namely the Invoic-

ingLiteDBMask, Listing 6.20 shows the content of the first documents from the three col-

lections generated in the prototype. The database was materialised from the InvoicingData

with a single Main schema containing the Users, UserListenedTracks, and UserInvoices

tableaus.

1 /* Main_Users */

2 {

3 "_id": {"$oid": "650 c6ee87992cf0a3a8350ea "},

4 "UserId ": {"$numberLong ": "1"},

5 "UserFirstName ": "Luis",

6 "UserLastName ": "Goncalves",

143

Prototype system

7 "UserEmail ": "luisg@embraer.com.br"

8 }, ...

9 /* Main_UserListenedTracks */

10 {

11 "_id": {"$oid": "650 c6eea7992cf0a3a8352c1 "},

12 "InvoiceItemId ": {"$numberLong ": "1"},

13 "UserEmail ": "leonekohler@surfeu.de",

14 "Quantity ": {"$numberLong ": "1"},

15 "TrackName ": "Balls to the Wall"

16 }, ...

17 /* Main_UserInvoices */

18 {

19 "_id": {"$oid": "650 c6ee87992cf0a3a835125 "},

20 "InvoiceId ": {"$numberLong ": "1"},

21 "UserId ": {"$numberLong ": "2"},

22 "UserEmail ": "leonekohler@surfeu.de",

23 "InvoiceDate ": {"$date": "2023 -09 -21 T16 :27:20.6910000Z"},

24 "InvoiceTotal ": 1.98

25 }, ...

Listing 6.20: Examples of the first documents from three collections generated by the LiteDB mask

The LiteDB mask can be used to physically export data or to create localised or temporary

storage. A demonstration of this usability is given in Section 8.3.1, where the LiteDB mask is

used to physically export mediated data into a LiteDB database.

6.2.4 SQLite mask

Another prototype of a materialising mask was implemented - the materialising SQLite mask.

For a given data source, the SQLite mask must generate a SQLite database and populate it

with the available data. The SQLite mask library was implemented following the steps for

implementing a mask kind via the mask framework from Section 6.2.1. The implementation is

illustrated in Figure 6.22.

The SQLite mask is analogous to the one presented for LiteDB. Consequently, its querying

and commanding capabilities are also truncated in the way described in Section 6.2.3.

The materialisation of an SQLite database is facilitated by the DatabaseMaterializer. To

materialise the database, the SQLite mask manager acquires the current masked schema from

the schema manager, which then translates its currently loaded schema to the masked format

(Figure 6.23) before returning it to the mask manager. The masked schema model is allowed

to be modified by a user in terms of adding relationships between tables. The finalised masked

schema is then used by the DatabaseMaterializer to create a proper mapping strategy be-

tween the system and database schema. System queries are created and run, each to acquire

144

Prototype system

Figure 6.22: Management classes of the Janus LiteDB mask library

data from a tableau. The resulting data is then translated into SqliteTabularData contain-

ing a collection of SqliteDataRow which are appropriate for use in INSERT commands of an

SQLite database.

The current schema model mapping strategy is as follows. The data source is represented

by a database file. The schema is represented by a prefix to table names, concatenated by the

underscore symbol. Each tableau is represented by a table. Individual attributes are represented

as columns. Update sets are not represented in the materialised database since they are only

related to the source data.

145

Prototype system

Figure 6.23: Janus SQLite masked schema model

Reflecting on Figure 5.4 from Section 5.3, the SQLite mask’s creation via a mask framework

is depicted in Figure 6.24. The SQLite mask manager component represents the SQLite mask

library as a provider of all functionalities of a LiteDB mask. The SQLite mask manager con-

tains a database materializer component which is tasked with creating a new SQLite database

and making the required queries to populate it. The database materializer only requires the

QueryManager from the SQLite mask manager, since it only loads the data into the database.

The SQLite materializer is analogous to the one presented in Section 6.2.3.

The SQLite mask manager component is placed within an ASP.NET Web application to

make it an executable component. The Web application enables the management of the mask

component through a graphical user interface. The end-users are only expected to access the

materialised database, and not the mask itself in this case. This mask is effectively of the Web

application type of the SQLite kind.

146

Prototype system

Mask component

Mask management Web application

SQLite mask manager

Used to
create

Mask
framework

Clients

Mediator

SQLite materialiser

QueryManager QueryManager

Materialised
SQLite DB

Figure 6.24: SQLite mask creation facilitated by the mask framework

Keeping with the proposal in Section 5.3, the implemented SQLite mask is a prefabricated

and configurable component that can be deployed in different MMW topologies. The configura-

tion of the SQLite component comes in the form of a JSON configuration file positioned next to

its executable. An example configuration file used in the case study prototype of Section 8.3.1

is shown in Listing 6.21.

1 {

2 "MaskConfiguration ": {

3 "NodeId ": "MusicSqliteMask",

4 "ListenPort ": 30003,

5 "TimeoutMs ": 5000,

6 "CommunicationFormat ": "AVRO",

7 "NetworkAdapterType ": "TCP",

8 "EagerStartup ": true ,

9 "StartupRemotePoints ": [{" Address ": "172.24.2.1" , "ListenPort ":

↪→ 20001}] ,

10 "StartupNodeSchemaLoad ": "MusicMediator",

11 "StartupMaterializeDatabase ": true ,

12 "MaterializationConfiguration ": {

13 "ConnectionString ": "Data Source = ./music.db"

14 },

15 "PersistenceConnectionString ": "./ mask_database.db",

16 },

147

Prototype system

17 "WebConfiguration ": {

18 "Port": 8305,

19 "AllowedHttpHost ": "http ://*",

20 "AllowedHttpsHost ": "https ://*"

21 },

22 ...

23 }

Listing 6.21: Example of a configuration file for an SQLite mask

The case study prototype of Section 8.3.1, provides an example for a deployed SQLite

mask component - the MusicSqliteMask. The prototype exemplifies the materialisation of an

SQLite database from a data source named MusicData with a single schema Main having mul-

tiple tables; of which Figure 6.25 shows the physical model of the materialised SQLite database.

The materialised database contains no concrete relationships, since they are not specified in the

materialisation.

Main_Users

PK UserId: INTEGER

UserEmail: TEXT NOT NULL

UserFirstName: TEXT NOT NULL

UserLastName: TEXT NOT NULL

UserCountry: TEXT

Main_Tracks

PK TrackId: INTEGER

TrackName: TEXT NOT NULL

GenreName: TEXT

AlbumTitle: TEXT

DurationMs: INTEGER NOT NULL

Composer: TEXT

Main_Albums

PK AlbumId: INTEGER

AlbumTitle: TEXT NOT NULL

ArtistName: TEXT

Main_Playlists

PK PlaylistId: INTEGER

PlaylistName: TEXT

CreatorEmail: TEXT NOT NULL

Main_PlaylistTracks

PK TrackId: INTEGER

PK PlaylistId: INTEGER

TrackName: TEXT NOT NULL

TrackGenre: TEXT

PlaylistName: TEXT

Figure 6.25: Example of an SQLite database materialised by the SQLite mask component

The SQLite mask is used to create physical exports of data in Section 8.3.1 and to create

local data storages (in Section 8.3.3).

148

Chapter 7

Method for bidirectional data
transformations

This chapter deals with the second contribution of this thesis - a method for creating bidirec-

tional data transformations in masks using bidirectionalisation to reduce the effort of mask

implementation. The chapter discusses the chosen method of lenses for two-way data trans-

formations in masks, and the form in which they are theoretically adapted to fit into the re-

quirements of the Janus system. The chapter covers the chosen method’s implementation in the

Janus system to transform masked and system data bidirectionally, as well as the method for

providing proof for the level of behavedness of implemented lenses.

7.1 Lenses for data transformation

As was mentioned in Section 5.1, masks need to be capable of transforming data from a system

format to a representative format, and vice-versa. Bidirectionalisation methods, as presented

in Sections 3.3 and 3.3.5, can be utilized to facilitate a means of constructing two-way data

transformations. Additionally, the use of bidirectionalisation methods provides the means of

ascertaining the level of correctness of the created program.

The semantic and syntactic methods of bidirectionalisation provide the means to automati-

cally generate inverse functions, and this alone could reduce implementation effort. Implemen-

tation effort can also be reduced by using design patterns [76]. The lens can be observed as

a design pattern containing bidirectional transformations. This pattern is also composable, as

lenses have the ability to be reused in complex lenses via combinators or simply composed. The

use of the lens method doesn’t rule out the possibility of using semantic and syntactic bidirec-

tional methods to reduce the effort required of implementing elementary lenses. Rather, the use

of lenses facilitates the hypothetical use of other bidirectionalisation methods. Consequently,

the research for this thesis focuses on the way in which lenses can be utilised in a tangible

149

Method for bidirectional data transformations

software system.

The software system in question for lens utilization in this thesis is Janus because it’s a

system that was identified to have the requirement of bidirectional transformations through the

aforementioned requirements on masks.

Data in the Janus system is used as query results, mutation or instantiation specifications

on equal terms in both the system and representational format. Therefore, changes to data can

be expected on both sides of the transformations. A symmetric lens is appropriate for such a

scenario. Additionally, the use of symmetric lenses allows for stateful data transformations on

both sides to be introduced if needed later in the system’s lifetime. The symmetric lens allows

the position of the data formats (there is no strict source and view) to be ignored when com-

posing lenses. A symmetric lens ubiquitously marks the transformations between formats, with

the left or right orientation being inconsequential when selecting a lens for further composition.

To cut down the complexity of a lens implementation even further, the need for complement

storage is removed by choosing a simple symmetric lens as the lens to drive the bidirectional

transformations in the Janus system.

The simple symmetric lens should also be able to accordingly manage errors and side-

effects, if such arise. The existence of such cases is best exemplified in the Web API mask

(Section 6.2.2), where data must be transformed through the use of reflection (see Section 7.3).

Reflection introduces volatile operations to any programming language and can lead to unfore-

seen side-effects. To take such cases into account, a monad is introduced as the carrier of the

result of a transformation. Expanding on Definition 39, a simple symmetric lens in the Janus

system is declared as in Defitinition 42.

Definition 42. A simple symmetric lens l ∈ X ⇔ Y in the Janus system contains the following

four functions:

createR : X → Result Y

createL : Y → Result X

putR : X → Y → Result Y

putL : Y → X → Result X

150

Method for bidirectional data transformations

subject to four round-tripping laws expressed by:

createR x >>= \y -> putL y x = return x (CREATEPUTRLTEST)

createL y >>= \x -> putR x y = return y (CREATEPUTLRTEST)

putR x y >>= \y -> putL y x = return x (PUTRLTEST)

putL y x >>= \x -> putR x y = return y (PUTLRTEST)

where Result is a monad having the associated bind (denoted with the ">>=" operator) and

return functions.

7.2 Lens implementation in C#

Concrete lens implementations were introduced into the Janus system as a means to provide

two-way data transformations for masks, guaranteeing a level of correctness for the imple-

mented transformations. The level of correctness depends on the behavedness property of the

lens and will be reasoned through lens behavedness when discussing these transformations.

This is because behavedness was introduced as an established metric for bidirectional transfor-

mations in Section 3.3.

The code related to lenses and their implementations can be found under the Janus.Lenses

namespace, or in the Lenses sub-namespace of a mask library when the implemented lens uses

a specific masked data model tied to the mask kind. The Janus.Lenses contains the base def-

inition of a simple symmetric lens in the form of a generic abstract class SymmetricLens<*>.

The generic types of this class, TLeft and TRight, represent left and right types for which

the simple symmetric lens provides bidirectionalisation. This abstract class is presented in its

entirety in Listing 7.1. The lens definition, as prescribed by the abstract class, requires that

all transformation methods be implemented. These methods are not directly exposed as public

members but are exposed via their respective Func<*> properties. This enables referencing

methods of a specific lens instance, simplifying function composition implemented in Janus’

base library.

1 publicabstractclassSymmetricLens <TLeft , TRight >

2 {

3 //putL:Y->X?->X

4 publicFunc <TRight , Option <TLeft >, Result <TLeft >> PutLeft

5 => _PutLeft;

6

7 //putR:X->Y?->Y

8 publicFunc <TLeft , Option <TRight >, Result <TRight >> PutRight

151

Method for bidirectional data transformations

9 => _PutRight;

10

11 //createR:X?->Y

12 publicFunc <Option <TLeft >, Result <TRight >> CreateRight

13 => _CreateRight;

14

15 //createL:Y?->X

16 publicFunc <Option <TRight >, Result <TLeft >> CreateLeft

17 => _CreateLeft;

18

19 protectedSymmetricLens () { }

20

21 protectedabstractResult <TLeft >

22 _PutLeft(TRight right , Option <TLeft > left);

23

24 protectedabstractResult <TRight >

25 _PutRight(TLeft left , Option <TRight > right);

26

27 protectedabstractResult <TRight >

28 _CreateRight(Option <TLeft > left);

29

30 protectedabstractResult <TLeft >

31 _CreateLeft(Option <TRight > right);

32 }

Listing 7.1: Simple symmetric lens as defined in the Janus system

The simple symmetric lens definition also enables the omission of a current state object

through the Option<T> monad. This can be introduced because the data transformations in the

mask might not have to be stateful - data is completely recreated during a transformation.

A trivial example of a symmetric lens implementation in the Janus system is exemplified by

the IntStringLens, as shown in Listing 7.2. This lens isn’t used in the Janus system, rather it

is used as a illustrative implementation.

1 publicsealedclassIntStringLens : SymmetricLens <int,string>

2 {

3 protectedoverrideResult <int> _CreateLeft(Option <string> right)

4 => Results.AsResult(

5 () => right.Match(

6 r => Convert.ToInt32(r),

7 () =>default)

8);

9

10 protectedoverrideResult <string> _CreateRight(Option <int> left)

11 => Results.AsResult(

152

Method for bidirectional data transformations

12 () => left.Match(

13 l => l.ToString (),

14 () =>string.Empty)

15);

16

17 protectedoverrideResult <int>

18 _PutLeft(stringright , Option <int> left)

19 => Results.AsResult (() => Convert.ToInt32(right));

20

21 protectedoverrideResult <string>

22 _PutRight(intleft , Option <string> right)

23 => Results.AsResult (() => left.ToString ());

24 }

Listing 7.2: Simple symmetric lens as defined in the Janus system

7.3 Web API mask lenses

The RowDataDtoLens and TabularDataDtoLens are concretely used in the Janus system.

They are specifically used for providing two-way data transformations for the Web API mask’s

data translator.

7.3.1 RowDataDtoLens

The RowDataDtoLens is an example of an elementary lens, which provides bidirectional trans-

formations between the Janus data row model (described by the RowData class; see Section 6.1.2)

and a singular DTO which is generically typed. This lens can be described with the expression:

RowDataDtoLens ∈ RowData ⇔ TDto. The TDto type remains generic since DTO types are

generated at runtime, and consequently, the type of the lens.

Listing 7.3 shows the expected equivalent left and right-side data as transformed by a Row-

DataDtoLens ∈ DataRow ⇔ PersonDto lens. The left-side data contains a RowData object

having column values typed as long, double, string and DateTime. The right-side data

contains the equivalent data representation in the form of a PersonDto object*. The Row-

DataDtoLens is expected to map the RowData column values to the fields of the PersonDto

according to their respective names. The PersonDto fields in Listing 7.3 are hidden behind

the equivalently named properties. The PersonDto object is expected to be represented by the

ASP.NET Web framework as a JSON object shown in Listing 7.4.

1 RowData left =

*The exemplified PersonDto and its associated TabularData structure is used in the tests for lenses used in
the Janus system. These structures are representative of the data types used in the system

153

Method for bidirectional data transformations

2 RowData.FromDictionary(newDictionary <string,object?>

3 {

4 {"Id", 1L },

5 {"Coefficient", 1.2 },

6 {"FirstName","John"},

7 {"LastName","Doe"},

8 {"DateOfBirth",newDateTime (1965, 1, 1)}

9 });

10

11 PersonDto right =

12 newPersonDto

13 {

14 Id = 1L,

15 Coefficient = 1.2,

16 FirstName ="John",

17 LastName ="Doe",

18 DateOfBirth =newDateTime (1965, 1, 1)

19 };

Listing 7.3: The equivalent left and right data transformed by a RowDataDtoLens ∈ DataRow ⇔
PersonDto

1 {

2 "Id": 1,

3 "Coefficient ": 1.2,

4 "FirstName ": "John",

5 "LastName ": "Doe",

6 "DateOfBirth ": "1965 -01 -01 T00 :00:00"

7 }

Listing 7.4: The json representation of the PersonDto object

Listing 7.5 contains the implementation of a putR function as the _PutRight method in the

RowDataDtoLens class. The entire _PutRight implementation is wrapped in the AsResult

high-order function to facilitate failures by exceptions risen through the use of reflection. Since

the type environment of the lens is generated at runtime, the method tries to determine the DTO

type either through the specified generic parameter of the lens or through a field containing

the specific type (the latter can be specified through a constructor). The method then creates

a default instance of the right-typed output object by using runtime instantiation. The output

object is optionally populated with the field values specified by the right parameter through

reflection. The output object is finally populated through reflection by column values of the

left value.

1 protectedoverrideResult <TDto >

2 _PutRight(RowData left , Option <TDto > right)

154

Method for bidirectional data transformations

3 => Results.AsResult (() =>

4 {

5 //determinetypeofDTO

6 Type rightType = _dtoType.Value ??typeof(TDto);

7 //createadefaultrightitemobject

8 var rightItem = Activator.CreateInstance(rightType);

9 //populatetherightitemwithrespecttogivenright

10 if(right)

11 {

12 foreach(var fieldinrightType.GetRuntimeFields ())

13 {

14 var rightFieldValue = field.GetValue(right.Value);

15 var targetField = rightType.GetField(field.Name ,

↪→ BindingFlags.Instance | BindingFlags.NonPublic);

16 targetField ?. SetValue(rightItem , rightFieldValue);

17 }

18 }

19 //mapvaluesfromrightfieldsintorightcolumnvalues

20 foreach(var (colName , value)inleft?. ColumnValues.Map(t =>

↪→ (t.Key.Split(’.’).Last(), t.Value)) ?? Enumerable.Empty <(string

↪→ ,object?) >())

21 {

22 stringfieldName =$"_{colName}";

23

24 var targetField = rightType.GetField(fieldName ,

↪→ BindingFlags.Instance | BindingFlags.NonPublic);

25 targetField ?. SetValue(rightItem , value);

26 }

27

28 return(TDto)rightItem;

29 });

Listing 7.5: putR function implemented by a _PutRight method of the RowDataDtoLens

Listing 7.6 contains the implementation of a putL function as the _PutLeft method in the

RowDataDtoLens class. The _PutLeft method’s principles of error management and DTO

type inference is equivalent to the _PutRight method. The _PutLeft method then determines

the column name prefixes for the resulting RowData. This is either taken from a specification

from a field set by a constructor beforehand or through the left parameter’s longest common

column name prefix. The right type’s property names and types are determined to specify

the column names, system types of the column values, and their corresponding property names.

The column values dictionary is used to populate the data of the resulting RowData by acquiring

the DTO object’s property values by using reflection. The column values dictionary is then used

to create the resulting RowData.

155

Method for bidirectional data transformations

1 protectedoverrideResult <RowData >

2 _PutLeft(TDto right , Option <RowData > left)

3 => Results.AsResult (() =>

4 {

5 //determineDTOtype

6 var dtoType = right?. GetType () ?? _dtoType.Value ??typeof(

↪→ TDto);

7 //determineRowDatacolumnnameprefix

8 stringcolumnNamePrefix =

9 _columnNamePrefix

10 ? _columnNamePrefix.Value

11 : FindLongestCommonPrefix(

12 (left.Value ?? CreateLeft(Option <TDto >.None).Match(

13 l => l,

14 msg => RowData.FromDictionary(newDictionary <

↪→ string,object?>()))

15).ColumnValues.Keys

16);

17 //determineDTOfieldnamesandtypesforpopulation

18 var columnInfos =

19 dtoType.GetRuntimeProperties ()

20 .Map(property => (name: property.Name , type: property.

↪→ PropertyType))

21 .Map(t => (propertyName: t.name , propertyType: t.type ,

↪→ columnName:$"{columnNamePrefix}{t.name}"))

22 .ToDictionary(t => t.propertyName , t => t);

23 //createcolumnvaluedictionarytoinstantiateRowData

24 var rowData =

25 newDictionary <string,object?>(

26 (left.Value ?? CreateLeft(Option <TDto >.None).Match(

27 l => l,

28 msg => RowData.FromDictionary(newDictionary <

↪→ string,object?>())

29)

30).ColumnValues

31);

32 //populaterowdatadictionaryfromDTOpropertyvalues

33 foreach(var propertyindtoType.GetRuntimeProperties ())

34 {

35 var value = property.GetValue(right);

36 var columnName = columnInfos[property.Name]. columnName;

37 rowData[columnName] = value;

38 }

39

156

Method for bidirectional data transformations

40 returnRowData.FromDictionary(rowData);

41 });

Listing 7.6: putL function implemented by a _PutLeft method of the RowDataDtoLens

7.3.2 TabularDataDtoLens

The TabularDataDtoLens provides bidirectional transformations between the Janus tabular

data model (described by the TabularData class; see Section 6.1.2) and an enumerable of

DTOs. The TabularDataDtoLens can be considered a complex lens since it uses the Row-

DataDtoLens to bidirectionally transform each DTO item and row data. The TabularDataD-

toLens inherits the behavedness of the RowDataDtoLens in terms of individual row data and

DTO items, but the transformation of tabular data and enumerable of DTOs depends on its own

qualities. The TabularDataDtoLens can be described with the expression: TabularDataDtolens∈
TabularData⇔ IEnumerable<TDto>.

Listing 7.7 shows the expected equivalent left and right-side data as transformed by a

TabularDataDtoLens∈ TabularData⇔ IEnumerable<PersonDto>. The left-side data con-

tains a TabularData object with two rows having column value types as LONGINT, DECIMAL,

STRING and DATETIME. The right-side data is a IEnumerable<PersonDto>, where the Per-

sonDto is the same as the one used in Section 7.3.1. The right-side data is expected to be

represented by the ASP.NET Web framework as a JSON object shown in Listing 7.8.

1 TabularData left =

2 TabularDataBuilder.InitTabularData(newDictionary <string, Commons

↪→ .SchemaModels.DataTypes >

3 {

4 {"Id", DataTypes.LONGINT },

5 {"Coefficient", DataTypes.DECIMAL },

6 {"FirstName", DataTypes.STRING },

7 {"LastName", DataTypes.STRING },

8 {"DateOfBirth", DataTypes.DATETIME }

9 })

10 .AddRow(conf => conf.WithRowData(newDictionary <string,object?>()

11 {

12 {"Id", 1001L },

13 {"Coefficient", 1.0 },

14 {"FirstName","John"},

15 {"LastName","Smith"},

16 {"DateOfBirth",newDateTime (1985, 7, 14)}

17 }))

18 .AddRow(conf => conf.WithRowData(newDictionary <string,object?>()

19 {

157

Method for bidirectional data transformations

20 {"Id", 1002L },

21 {"Coefficient", 1.1 },

22 {"FirstName","Emily"},

23 {"LastName","Johnson"},

24 {"DateOfBirth",newDateTime (1992, 2, 19)}

25 })).Build();

26

27 IEnumerable <PersonDto > right =newList <PersonDto >

28 {

29 newPersonDto

30 {

31 Id = 1001L,

32 Coefficient = 1.0,

33 FirstName ="John",

34 LastName ="Smith",

35 DateOfBirth =newDateTime (1985, 7, 14)

36 },

37 newPersonDto

38 {

39 Id = 1002L,

40 Coefficient = 1.1,

41 FirstName ="Emily",

42 LastName ="Johnson",

43 DateOfBirth =newDateTime (1992, 2, 19)

44 }

45 }

Listing 7.7: The equivalent left and right data transformed by a TabularDataDtoLens ∈
TabularData⇔ IEnumerable<PersonDto>

1 [

2 {

3 "Id": 1001,

4 "Coefficient ": 1.0,

5 "FirstName ": "John",

6 "LastName ": "Smith",

7 "DateOfBirth ": "1985 -07 -14 T00 :00:00"

8 },

9 {

10 "Id": 1002,

11 "Coefficient ": 1.1,

12 "FirstName ": "Emily",

13 "LastName ": "Johnson",

14 "DateOfBirth ": "1992 -02 -19 T00 :00:00"

15 }

16]

158

Method for bidirectional data transformations

Listing 7.8: The json representation of the IEnumerable<PersonDto> object

Listing 7.9 shows the implementation of the putR function as the _PutRight method in

the TabularDataDtoLens class. The method body is wrapped by the AsResult high-order

function, to ensure the control of the program flow. The left parameter’s RowData is mapped

to individual DTO instances by using the RowDataLens (_rowDataLens field in the class). The

mapping doesn’t directly produce the DTO objects, but rather their encasing results. A fold is

initiated to check the result outcomes and reach the DTO object. The fold returns an aggregated

result containing the IEnumerable<TDto> with all of the DTOs transformed from individual

RowData of the left-side TabularData.

1 protectedoverrideResult <IEnumerable <TDto >>

2 _PutRight(TabularData left , Option <IEnumerable <TDto >> right)

3 => Results.AsResult (() =>

4 left.RowData

5 //mapitemlensresultsoverrowdata

6 .Map(rd => _rowDataLens.PutRight(rd, Option <TDto >.None))

7 //foldresultsintosingularresult

8 .Fold(Results.OnSuccess <IEnumerable <TDto >>(Enumerable.Empty <

↪→ TDto >()),

9 (dtoRes , results) => results.Bind(r => dtoRes.Map(dto

↪→ => r.Append(dto))))

10);

Listing 7.9: putR function implemented by a _PutRight method of the TabularDataDtoLens

Listing 7.10 shows the implementation of the putL function as the _PutLeft method in

the TabularDataDtoLens class. The method body is wrapped by the AsResult high-order

function, to ensure the control of the program flow. The right parameter DTO items are

mapped to individual results containing column values for each row of the future TabularData.

The collection of column values is then folded over an initialized TabularDataBuilder. The

name specification of the resulting TabularData is given to the builder, and the Build method

is called. The resulting TabularData object is returned wrapped in a result type.

1 protectedoverrideResult <TabularData >

2 _PutLeft(IEnumerable <TDto > right , Option <TabularData > left)

3 => Results.AsResult (() =>

4 right.Map(rightItem => _rowDataLens.CreateLeft(Option <TDto >.

↪→ Some(rightItem))

5 .Bind(createdLeft => _rowDataLens.

↪→ PutLeft(rightItem , Option <RowData >.Some(createdLeft)))

6 .Match(l => l.ColumnValues , msg =>

↪→ newDictionary <string,object?>()))

159

Method for bidirectional data transformations

7 .Fold(TabularDataBuilder.InitTabularData(newDictionary <

↪→ string, DataTypes >((left.Value ?? CreateLeft(Option <IEnumerable

↪→ <TDto >>.Some(right)).Data).ColumnDataTypes)),

8 (values , tabularBuilder) => tabularBuilder.AddRow(

↪→ conf => conf.WithRowData(newDictionary <string,object?>(values

↪→))))

9 .WithName(left.Value?.Name ?? CreateLeft(Option <

↪→ IEnumerable <TDto >>.None).Data.Name)

10 .Build()

11);

Listing 7.10: putL function implemented by a _PutLeft method of the TabularDataDtoLens

7.4 Behavedness of Janus lenses

One of the reasons for proposing bidirectional methods for two-way data transformations in

masks was the ability to determine the correctness of those transformations. The behavedness of

the implemented lenses can be determined by implementing tests which check their adherence

to the round-tripping rules presented in Definition 42. The round-tripping laws’ tests for all

lenses are declared as a generic lens testing framework, described and partially implemented

by the SymmetricLensTestingFramework<TLeft, TRight> class. Listing 7.11 shows that

the framework is practically a C# reendition of the Haskell-like laws from Definition 42. The

developer is only required to specify the test data and the lens under test when implementing

the concrete behavedness tests.

For the aforementioned IntStringLens, the test implementation can be as exemplified in

Listing 7.12. Since the IntStringLens lens passes these tests it can be stated that it is a very

well-behaved lens, but only for the values -42 and "-42". To ascertain further proof of very well-

behavedness in a general case, the lens transformation methods themselves would have to be

evaluated, e.g. by using the substitution model. In this simple lens case, a test might simply be

run over all possible integer values in C#, with the addition of invalid string representations of

integers. This would prove that the lens is very well-behaved, but would require an impractical

amount of computational resources and time for each test run. Additionally, type domains can

be infinite, as is the case with the RowDataDtoLens and TabularDataDtoLens. Since their

transformations depend on reflection, their tests would have to cover all possible classes that

contain the system types mapped to the Janus DataTypes. The obvious solution is to demand

that a lens be written in such a form that enables the use of the substitution model to prove

its level of behavedness. In a primarily object-oriented language, even in C# which supports

some functional paradigm aspects, this is at times difficult to achieve without an underlying

functional paradigm framework and can hinder the timely development of a lens. The use of

160

Method for bidirectional data transformations

reflections adds to this problem since it’s questionable how such mechanisms could be expressed

functionally.

1 publicabstractclassSymmetricLensTestingFramework <TLeft , TRight > :

↪→ SymmetricLensTesting

2 {

3 protectedabstractTLeft _x { get; }

4 protectedabstractTRight _y { get; }

5

6 protectedabstractSymmetricLens <TLeft , TRight > _lens { get; }

7

8 publicoverridevoidCreatePutLRTest ()

9 {

10 var result =

11 _lens.CreateLeft(Option <TRight >.Some(_y))

12 .Bind(x => _lens.PutRight(x, Option <TRight >.Some(_y)));

13

14 Assert.True(result);

15 Assert.Equal(_y, result.Data);

16 }

17

18 publicoverridevoidCreatePutRLTest ()

19 {

20 var result =

21 _lens.CreateRight(Option <TLeft >.Some(_x))

22 .Bind(y => _lens.PutLeft(y, Option <TLeft >.Some(_x)));

23

24 Assert.True(result);

25 Assert.Equal(_x, result.Data);

26 }

27

28 publicoverridevoidPutLRTest ()

29 {

30 var result =

31 _lens.PutLeft(_y, Option <TLeft >.Some(_x))

32 .Bind(x => _lens.PutRight(x, Option <TRight >.Some(_y)));

33

34 Assert.True(result);

35 Assert.Equal(_y, result.Data);

36 }

37

38 publicoverridevoidPutRLTest ()

39 {

40 var result =

41 _lens.PutRight(_x, Option <TRight >.Some(_y))

161

Method for bidirectional data transformations

42 .Bind(y => _lens.PutLeft(y, Option <TLeft >.Some(_x)));

43

44 Assert.True(result);

45 Assert.Equal(_x, result.Data);

46 }

47 }

Listing 7.11: Simple symmetric lens testing framework class for round-tripping laws

1 publicsealedclassIntStringLensTests :

↪→ SymmetricLensTestingFramework <int,string>

2 {

3 protectedoverrideint_x => -42;

4

5 protectedoverridestring_y =>"-42";

6

7 protectedoverrideSymmetricLens <int,string> _lens =>

↪→ IntStringLenses.Construct ();

8 }

Listing 7.12: Round-tripping laws’ tests for IntStringLens

The practical view of the situation is that the lens framework tests should be used to verify

the behavedness of a lens over sound instance representatives of the data types that will be used

in the transformations. For the RowDataDtoLens and TabularDataDtoLens, this can be a

DTO class and TabularData instance that contains properties of all possible types represented

by the Janus DataTypes model (of significance to the lense’s use case).

The RowDataDtoLens and TabularDataDtoLens are tested using the testing framework

in Janus.Lenses.Tests project as follows in Listing 7.13 and 7.14. The PersonDto class is

the same one that was used to demonstrate the expected data equivalence after transformation

applications in Section 7.3.

1 publicsealedclassRowDataDtoLensTests :

2 SymmetricLensTestingFramework <RowData , PersonDto >

3 {

4 protectedoverrideRowData _x =>

5 RowData.FromDictionary(newDictionary <string,object?>

6 {

7 {"Id", 1L },

8 {"Coefficient", 1.2 },

9 {"FirstName","John"},

10 {"LastName","Doe"},

11 {"DateOfBirth",newDateTime (1965, 1, 1) }

12 });

13 protectedoverridePersonDto _y =>newPersonDto

162

Method for bidirectional data transformations

14 {

15 Id = 1L,

16 Coefficient = 1.2,

17 FirstName ="John",

18 LastName ="Doe",

19 DateOfBirth =newDateTime (1965, 1, 1)

20 };

21

22 protectedoverrideSymmetricLens <RowData , PersonDto > _lens

23 => SymmetricRowDataDtoLenses.Construct <PersonDto >();

Listing 7.13: Round-tripping laws’ tests for RowDataDtoLens

1 publicsealedclassTabularDataDtoLensTests :

2 SymmetricLensTestingFramework <TabularData , IEnumerable <PersonDto >>

3 {

4 protectedoverrideTabularData _x =>

5 TabularDataBuilder.InitTabularData(newDictionary <string,

↪→ Commons.SchemaModels.DataTypes >

6 {

7 {"Id", DataTypes.LONGINT },

8 {"Coefficient", DataTypes.DECIMAL },

9 {"FirstName", DataTypes.STRING },

10 {"LastName", DataTypes.STRING },

11 {"DateOfBirth", DataTypes.DATETIME }

12 })

13 .AddRow(conf => conf.WithRowData(newDictionary <string,

↪→ object?>()

14 {

15 {"Id", 1001L },

16 {"Coefficient", 1.0 },

17 {"FirstName","John"},

18 {"LastName","Smith"},

19 {"DateOfBirth",newDateTime (1985, 7, 14) }

20 }))

21 .AddRow(conf => conf.WithRowData(newDictionary <string,

↪→ object?>()

22 {

23 {"Id", 1002L },

24 {"Coefficient", 1.1 },

25 {"FirstName","Emily"},

26 {"LastName","Johnson"},

27 {"DateOfBirth",newDateTime (1992, 2, 19) }

28 }))

29 ...//morerows

30 .WithName("PeopleData")

163

Method for bidirectional data transformations

31 .Build();

32

33 protectedoverrideIEnumerable <PersonDto > _y =>newList <

↪→ PersonDto >

34 {

35 newPersonDto

36 {

37 Id = 1001L,

38 Coefficient = 1.0,

39 FirstName ="John",

40 LastName ="Smith",

41 DateOfBirth =newDateTime (1985, 7, 14)

42 },

43 newPersonDto

44 {

45 Id = 1002L,

46 Coefficient = 1.1,

47 FirstName ="Emily",

48 LastName ="Johnson",

49 DateOfBirth =newDateTime (1992, 2, 19)

50 },

51 ...//moreitems

52 };

53

54 protectedoverrideSymmetricLens <TabularData , IEnumerable <

↪→ PersonDto >> _lens =>

55 SymmetricTabularDataDtoLenses.Construct <PersonDto >();

56 }

Listing 7.14: Round-tripping laws’ tests for TabularDataDtoLens

These tests confirm that the implemented RowDataDtoLens and TabularDataDtoLens are

well-behaved for sound representatives of the transformed data; and that they are adequate to

facilitate transformations in Web API mask data translator.

164

Chapter 8

Mask–mediator–wrapper case studies

This chapter provides additional qualitative observations on the mask–mediator–wrapper ar-

chitecture in the form of case studies. The provided case studies present the capability of the

mask–mediator–wrapper architecture to emulate other data management systems. The mask–

mediator–wrapper architecture is shown to be versatile through the hypothetical emulation of

the SOS system in Section 8.1 and the data mesh in Section 8.2. These sections take the material

from the contributing paper [14] and the tied preprint paper [28], with some minor revisions.

The chapter introduces prototypes for each case study, including the data source integration

system as a case study, to prove the correctness of the previously made assumptions (Sec-

tion 8.3). The case studies are an integral part of the qualitative analysis of the MMW architec-

ture, hence their proof is paramount. The case studies’ prototypes introduce target architecture

topologies that the MMW architecture was proposed to be capable of emulating and support-

ing. The Janus system was utilized as the demonstrating system. The case studies’ prototypes

demonstrate the emulation capabilities of the MMW architecture by deploying the Janus system

as a data source integration system, the SOS system, and a data mesh.

8.1 SOS system emulation case study

As referenced before, Atzeni et al. [116] presented SOS (Save Our Systems) as a system for

uniform operations over non-relational stores. The representational format of this system is a

Web REST API with URI-like resource identification, serving result data as JSON objects.

The SOS system is organized into two main modules of the common data model and the

common interface. The common data model provides access to the underlying data stores and

is supported by a mapper implementation which is created per data store type. The model map-

pers are constructed via a NonRelationalMapper interface. The common interface provides

system access features in terms of a Web REST API, where a schema is denoted by URIs and

data is served as JSON objects. Data access and manipulation are modelled over HTTP GET,

165

Mask–mediator–wrapper case studies

DELETE and PUT methods. The common interface is supported by handlers, which are im-

plementations of the NonRelationHandler interface. The handlers are responsible for provid-

ing operations for the system access methods. The modules and components are conceptually

shown in Figure 8.1.

The authors of the system don’t make it clear whether the system is intended to be deployed

as a monolith (hinted in [131]), or if each handler and mapper pair is deployed as a separate

service (hinted in [116]). This thesis optimistically takes the latter as the perceived best case for

the system in terms of architectural flexibility.

MongoDB
implementation

Redis implementationHBase implementation

HBase Redis MongoDB

Common
interface

Common
data
model

HBase mapper

HBase handler

Redis mapper

Redis handler

MongoDB
 mapper

MongoDB
handler

put, get, delete

Application

put, get, delete

Application

put, get, delete

Application

Figure 8.1: SOS system (adapted from [116])

The authors of the SOS system have proposed the possibility of it being a supporting element

for data integration [131]. Although not a data source integration system, the SOS system could

keep its raison d’être and be conveniently extendable to a data source integration system if it

were reimagined following the MMW architecture. Additionally, using different mask kinds,

the representational form of these data storages could be expanded on.

A hypothetical example of such a system use case is presented in Figure 8.2, where the re-

vised SOS system provides uniform access over a single HBase, Redis, and MongoDB database.

At the top of the component hierarchy, each database must be converted to the SOS interface for

application access, as presented by [116]. This interface can be presented via mask components

166

Mask–mediator–wrapper case studies

of the SOS mask kind.

HBase Redis MongoDB

Wrapper Wrapper Wrapper

Mediator Mediator Mediator

SOS mask SOS mask SOS maskMediator

X mask Y mask

JDBC mask

Figure 8.2: The SOS system emulated by the MMW architecture

Starting from the bottom of Figure 8.2 hierarchy, observing only solidly outlined elements,

a wrapper is connected to each data source. Since it is not advisable to connect masks directly

to wrappers and following RMa2 stating that masks should only connect to mediators - a single

mediator is connected to each wrapper. An SOS mask is connected to each of these mediators,

thus encompassing the original SOS system’s functionalities. These settings do not restrict the

system to just using an SOS mask. Additional mask kinds can be connected to these singular

mediators to offer an alternative presentational form and keep in line with the SOS use case of

uniform system access. Such an example is given in Figure 8.2 with a JDBC mask representing

the Redis database.

The singular mediators can be used to adapt the wrapped schemas, but also enable the

system topology to be expanded. If by the example of the mediator shown with a dashed outline

in Figure 8.2, a mediator connecting to each of the singular mediators is provided, then that part

of the system becomes a data source integration system. Consequently, the integrating mediator

allows connections coming from different masks.

Not only does the MMW architecture allow the emulation of a system, such as the SOS,

167

Mask–mediator–wrapper case studies

but it also expands on it. If it were not for the mask components taking on the responsibility of

system representation, all mediators would have to be adapted (redesigned and reimplemented)

to the SOS interface standard to work as both the SOS system and a data source integration

system, which itself does not explicitly require adherence to the SOS interface standard. In

effect, the use of the MMW architecture enables standardized implementation of mask kinds

dedicated to data representations from Table 4.1 (illustrated in Figure 8.2 as masks X and Y).

8.2 Data mesh emulation case study

The data mesh has been exhaustively described in general terms of its capabilities and properties

in Section 2.4. To show that a data mesh can be emulated with the MMW architecture, it must

be shown that these properties can be satisfied through the MMW architecture. The essence of

this case study is to show that the data mesh and MMW are compatible. These two concepts

originate as solutions for distinct sets of problems, but they do close with the same conclusive

ideas about how the systems should be built. It can be said that the data mesh and MMW are

orthogonal concepts, but prove to be complementary; as one enriches the other.

The compatibility of the data mesh and MMW can be shown through four system aspects:

adherence to the consume-transform-serve methodology [20], data models, evolvability, and

coverage of capabilities. Through these aspects, the MMW is set to be shown as capable of

satisfying them, since these aspects are already satisfied by the data mesh.

Consume–transform–serve

A data product is expected to autonomously consume, transform and serve data [20]. This

was illustrated in Figure 2.21, where the input ports consume data, transformations are done

inside the container, and the data is served at the output ports. In the MMW architecture, as

illustrated conceptually by Figure 4.2, data is consumed by wrappers, transformed by media-

tors, and served by masks. By providing the general consume-transform-serve capabilities, the

MMW architecture is capable of acting as a data product in some component settings.

Data model

Domain-driven design models are instinctively thought of as classes or structs. This is be-

cause domain-driven design is usually observed in operational systems*, which here is not the

particular case. In analytical systems, this line of thinking might prove to be a trap, because

*Disambiguation on the operational and analytical system terms mentioned here:
An operational system is considered a system tasked with supporting the day-to-day business of an organization;
primarily implemented via online transaction processing. An analytical system is considered a system tasked with
supporting analytical requirements of an organization; primarily implemented via online analytical processing

168

Mask–mediator–wrapper case studies

the consumed data might be defined by different metamodels and it’s expected that the data

is served in polyglot form. Dehghani [68] also recognizes this by naming multiple possible

forms of data the data mesh might consume and serve, as was cited in Section 2.4. Therefore,

domain-driven design should be considered abstractly when it comes to modelling - decoupling

it from a predetermined metamodel. Kleppmann [129] has noted the surprising lifetime of rela-

tional systems in the software industry: relational databases turned out to generalize very well,

beyond their original scope of business data processing, to a broad variety of use cases. The

relational model should fit the data mesh well. Nothing prevents a domain or a bounded context

from being described in a relational model; this is done regularly in operational systems that

use relational databases. A quasi-relational model could be used as a system format model in

the MMW architecture. Asano et al. [85] already demonstrated a tabular model in mediators.

Support for polyglot access can be significantly easier to research and implement, as there are

already numerous implementations of relational mapping to other models. This is the key point

for the MMW architecture’s capability to provide domain-agnostic modelling, processing and

data sharing across the organization, as proposed by Dehghani[20].

Evolvability

Technological capriciousness is one of the driving values of evolutionary architectures [17].

Dehghani [20] derives from this the suggestion that: ”it’s only appropriate to [...] leave the

specific implementation details and technology to be refined and built over time". A data mesh

should be evolvable, and it would be favourable if the MMW architecture followed this. The

MMW architecture respects the dimensions of evolvability, mentioned in Section 2.1, in the

following ways:

Technical
The inner components of the MMW component types are finely grained and their core

functionalities can be decoupled from technologically changeable inner components by

using the ports-and-adapters pattern [70]. Hence, the MMW components can be adapted

to different technologies. This allows rapid development of support for newer or previ-

ously unsupported technologies.

Data
Both data and metadata are shared in an MMW system and are described in a generalized

manner. Although alterations to the core metamodels are anticipated to be rare, their

impact can be reduced by storing their definitions in a common library.

Security
Authentication, authorization, confidentiality and data integrity in communication can be

decoupled along with communication protocols and data formats. Security in terms of

system-concerned operations (e.g. sharing confidential system information or sending

169

Mask–mediator–wrapper case studies

unsafe data) can be assured through a common library describing behaviours for general

exchanges and each component type.

Operational/System
Since each MMW component is an architectural quantum, it can be easily mapped onto

existing infrastructure, providing great flexibility. The evolvability of the MMW archi-

tecture enables it to adhere to the data mesh’s prescribed norms, which promote the inter-

operability of diverse technologies and ensure its long-term compatibility with the data

mesh paradigm.

Capability coverage

The question of capability coverage boils down to the MWW architecture’s ability to replicate

the capabilities of the data mesh. Section 2.4 listed the data mesh capabilities, and these can be

argued as covered as presented in Table 8.1.

Table 8.1: Coverage of data mesh capabilities by the MMW architecture

Scalable polyglot big
data storage

The MMW architecture enables the utilization of heterogeneous data

sources and various representations.

Encryption for data at
rest and in motion

MMW component communication can be extended with encryption

protocols. Encryption of static data essentially involves encrypting the

local data storage.

Data product version-
ing

Data products can be versioned through a metamodel that supports ver-

sioning. Entire data schemas can be marked with a version indicator.

Data product schema Since queries are defined over some form of schema, a data product

schema is inherently included in each component.

Data product de-
identification

De-identification can be supported by data transformation in mediators

as data hiding, or by settings in wrappers.

Unified data access
control and logging

Data access can be controlled at the component level. A mask can ad-

ditionally provide access control through its application.

Data pipeline imple-
mentation and orches-
tration

Data pipelines are created by connecting (architecturally composing)

the mask, mediator and wrapper components for data consumption,

transformation and serving.

170

Mask–mediator–wrapper case studies

Data product discov-
ery, catalogue regis-
tration and publishing

Data product discovery is provided by schema metadata (sources used

to create the schema). Common interfaces simplify this process.

Data governance and
standardization

Data governance is distributed because MMW components are quanta

and can be grouped. Standardization is guaranteed by the MMW com-

ponents’ standard interfaces.

Data product lineage Lineage can be examined by looking into the sources used for mediator

transformations, and mask and wrapper translations.

Data product moni-
toring/alerting/log

Each MMW component can be deployed along with a monitoring ap-

plication. As standard engineering practice, logging is expected to be

component-level. Alerting mechanisms can be created as a part of a

monitoring or management application.

Data product quality
metrics (collection
and sharing)

Schema metadata can carry quality metrics. This allows quality metric

declaration per data product version.

In-memory data
caching

There is no limitation to an in-memory data caching implementation to

optimize request response times.

Federated identity
management

Identity management is expected to be supported by the infrastructure.

Compute and data lo-
cality

Data can be placed in local data stores using materializing masks. The

local data stores then must be consumed by a wrapper on request (this

is illustrated in Section 8.2.1).

8.2.1 Emulating a data mesh

Figure 8.3 represents an example of an arbitrary data mesh which is emulated by the MMW

components. The data mesh is constructed from a DIP and three domains that are generically

named X , Y , and Z. Each of these domains contains an operational system and a DPC. The

data products serve some exemplified analytical data. The operational systems are not emulated

through the MMW components, since they are not primarily concerned with data management

or analytical aspects of the data mesh. Hence, the focus of emulation is on the DPCs and DIP.

A DIP should enable uniform data access, resolving the need for duplicate data pipelines and

storage [20]. Hence, it is fitting that the DIP is emulated by deploying wrappers over sources

171

Mask–mediator–wrapper case studies

the platform should cover. The data pipelines are emulated by connections to the wrappers,

where the arduous data pipeline setup is substituted by a connection setup to a wrapper which

wraps the data of interest. Data acquisition and transfer are handled by the protocols MMW

components use for communication.

The simplest pattern of DPC emulation is illustrated in domain Z. A mediator is used

to acquire and mediate the data from multiple DIP sources by connecting to the appropriate

wrappers. DPCs access the DIP exclusively through the use of their mediator. A DPC wrapper

connecting to a DIP source would be considered an anti-pattern, as it would infringe on the

separation of concerns between the DIP and the DPC. A DPC wrapper is used to consume

data coming from the domain’s operational system. This wrapper is also mediated by the DPC

mediator. The DPC mask is used to represent the mediated schema and data as a standardized

API chosen for the data mesh. The data served by the mask is the domain’s data product and

can be used by the domain’s operational system or served outside of the domain.

The domains X and Y reiterate the aforementioned pattern but with the addition of serving

and consuming a data product from domain Y (annotated as D′
y in Figure 8.3). The DPC in

a standard (non-MMW) data mesh implementation is expected to always access data products

through a standardized API, the same as any other data product consumer. With the MMW,

some corners can be cut. The mediator drives the data transformation to create a data product,

hence the data exiting the mediator is the finished data product but in an MMW system format.

This doesn’t affect the value or cleanliness of the data product, simply its format; the mask only

facilitates the translation. This claim is supported by rules RMe3 and RMa3. A data product

format translation is not required for it to be consumed by another MMW component - a receiv-

ing mediator from a remote domain. Conversely, another data mesh API wrapper would have to

be deployed in the consuming DPC to acquire the data product. A mask and a wrapper would

have to intercede the data product between the serving and consuming mediators. Additionally,

this pattern would result in a requirement to deploy a separate wrapper for each consumed data

product.

The example of Figure 8.3 illustrates a data mesh emulation where there are no locally

stored data products. When a request for a data product is given, this triggers a set of queries

throughout the architecture to acquire the data, construct the data product, and serve it. As

was discussed in Section 2.4, some prepared domain data can be kept in a local data store to

expedite data acquisition. The same functionality can be emulated by the MMW architecture.

To facilitate this, the emulation of a DPC must be realigned with the requirement for a local

domain data store.

172

Mask–mediator–wrapper case studies

Domain X

Data product X

Domain Z

Data product Z

Domain Y

Data product Y

Data infrastructure platform

Wrapper Wrapper Wrapper Wrapper

Mask

Mediator

Mediator

Mediator

Mask

Mask

Operational
system

Operational
system

Dy'

Dz

Dy

Dx

Operational
system

Wrapper

Wrapper

Wrapper

Figure 8.3: A data mesh emulated by MMW components

Figure 8.4 illustrates the case where a local domain data store is used by an MMW-emulated

DPC. The DPC in this case is segregated into two component groups. The data ingress group

is tasked with data acquisition and preparation. The ingress group consists of. The data egress

component group is tasked with finalizing and serving the data. MMW components illustrated

as being on the left-hand side of the DPC are the ingress group components, and the components

on the right-hand side are the data egress group. As in the previous example, the DPC consumes

data via its ingress mediator either from DIP wrappers, an operational system wrapper, or an-

other DPC’s egress mediator. The data is not immediately served by an egress component,

rather a materializing ingress mask is used to create and populate a domain data store. The

173

Mask–mediator–wrapper case studies

domain data store can hold finalized data products or data that has been prepared for the final

transformation into a data product by the egress components. On a request to the data mesh

API mask (the egress mask), the request is interceded by the egress mediator and delegated to

the egress wrapper. The egress wrapper consumes the prepared data, and the egress mediator

either finalizes the data product creation or forwards the data to the mask. The egress mediator’s

responsibilities in a DPC are determined by the nature of the domain data store. The alternative

situation is a request from another DPC, which is then received by the egress mediator itself

and the aforementioned operations are executed analogously.

The ingress and egress component groups can work independently and asynchronously from

one another. The ingress components can consume and store data in various modes, e.g. at time

intervals, or on administrator requests. The egress components execute their tasks on request.

Additionally, the egress mediator can include the ingress mediator in the data acquisition. This

enables the acquisition of the newest data product possible, but requires increased computation.

This is because the data product is at least partially prepared in the domain data store and should

require lesser amounts of preparation for serving. This setting allows the MMW-emulated DPC

to be more elastic than in a case when no intermediate domain data store is used.

This setting is revertable to the simple DPC pattern by completely bypassing the domain

data store. This is achieved by configuring the egress mediator to send an exhaustive data

request to the ingress mediator.

Data product container

Transformations

Mask

Mediator

Wrapper

Domain data

Wrapper Mask

Mediator

Data
Ingress

Data
Egress

Figure 8.4: Data product with localized domain data emulated by MMW components (arrows denote
flow of data as results of queries)

8.2.2 Expected benefits

The data mesh is a state-of-the-art concept and even Dehghani [20] refuses to set any imple-

mentational technology in stone. This is justified since the data mesh is observed through the

174

Mask–mediator–wrapper case studies

lens of evolvability, and such systems must be adaptable to changing technologies (see Sec-

tion 2.1). Consequently, a lot of technological and organizational trial-and-error is expected

from the first data mesh adopters. This is especially the case if the organization adopting the

data mesh might not possess what would be data at scale [20] or might possibly not have the

organizational prowess to implement and use it. Using the MMW architecture to emulate the

data mesh is beneficial to organizations which are at risk but keen on using it to manage their

data. The MMW-emulated data mesh enables:

Low-risk adoption trials
Organizations can set up a trial run of a data mesh in parallel with an existing analytical

or as an initial solution. The risk is lowered in terms of:

Development failure

Development is required only if specialized components are required. The MMW-

emulate data mesh construction boils down to deploying prebuilt components and

editing their configurations to work as a data mesh.

Loss of large resource investment

No extensive coding is required to construct an MMW-emulated data mesh. A small

technical team can prepare a demonstration in a short time since all components are

prebuilt. The investment in terms of finance is reduced to the cost of additional

infrastructure and work time required.

Deteriorated business usability

The MMW-emulated data mesh can run in parallel with an existing analytical and

data management system. Deterioration of business usability is bounded by the

duration of the trial run.

Rapid prototyping
Since the construction of an MMW-emulated data mesh involves deploying and config-

uring prebuilt components, the time to set the system up is minuscule. Once the MMW-

emulated data mesh is deployed, its DPCs can be replaced piece by piece with perma-

nently developed data mesh components. The DIP can also be gradually converted into a

more permanent infrastructure since it is emulated by a collection of wrappers.

Evolvability
The MMW architecture guarantees evolvability, so any system emulated with it will in-

herently be evolvable. Accordingly, MMW-based emulation can be used to guarantee

evolvability.

Standardization
The MMW architecture can be used to standardize the architectural quanta of the data

mesh, which lowers the cognitive load of developers by using known experience, lan-

guages, and APIs [20]. Standardization also contributes to the composability of software

175

Mask–mediator–wrapper case studies

systems.

8.3 Case study prototypes

8.3.1 Janus as a data source integration system

The MMW architecture was primarily envisioned as a data source integration architecture. To

prove that the MMW architecture is capable of producing an architectural topology acting as a

data source integration system, the Janus system’s components were containerised and deployed

as illustrated in Figure 8.5. The prototyped data source integration system integrates the data

represented by the logical model in Figure 8.6.

AlbumsArtistsWrapper TracksWrapper PlaylistsUsersWrapper UsersInvoicesWrapper

MusicMediator InvoicingMediator

MusicWebApiMaskMusicSqliteMask InvoicingWebApiMask InvoicingLiteDBMask

AlbumsArtists Tracks PlaylistsUsers UsersInvoices

AlbumsArtists-
Data

PlaylistsUsers-
Data

TracksData UsersInvoices-
Data

MusicData InvoicingData

MusicData MusicData InvoicingData InvoicingData

Figure 8.5: Architectural topology of an example data source integration system driven by the MMW
architecture

An SQLite sample database, called chinook, was taken as the primary data source for the

case study prototype [132]. The sample database was separated into four thematic databases.

The AlbumsArtists database contains data about music albums and artists. The Tracks database

contains data about music tracks. The PlaylistsUsers database contains data about users’ mu-

sic playlists. The UsersInvoices contains billing data for users according to their played mu-

sic tracks. The customers table can be found with replicated data in both the PlaylistsUsers

and UsersInvoices databases. This is to show that the entire schema encompassed by the in-

tegration system might not be normalised. The four databases are represented by the logical

model diagram in Figure 8.6. Figure 8.6 has the tables of the AlbumsArtists databases coloured

blue, tables of the Tracks coloured orange, tables of the PlaylistsUsers database coloured red,

176

Mask–mediator–wrapper case studies

and the tables of the UsersInvoices database coloured green. The customers table is repli-

cated in the PlaylistsUsers and the UsersInvoices database. Wrapper components are deployed

and configured for each database and are named according to the database they wrap: Album-

sArtistsWrapper, TracksWrapper, PlaylistsUsersWrapper, and UsersInvoicesWrapper. Media-

tors are named according to the topics of their mediated schemas: MusicMediator and Invoic-

ingMediator. Mask components are named according to their kind and the topic they represent:

MusicSqliteMask, MusicWebApiMask, InvoicingWebApiMask, and InvoicingLiteDBMask. The

component naming is established by setting the component communication node identifiers in

their respective configurations. All of the MMW components are typified as Web applications.

Reflecting on the schema hierarchies presented as a tool for the qualitative analysis in Sec-

tions 2.3.2 and 4.2.1, the topology of this case study prototype can be discussed in those terms.

The schemas of the underlying databases are LISs, in their native format. The schemas in the

wrappers (AlbumsArtistsData, TracksData, PlaylistsUsersData and UsersInvoices) are LCSs

translated to the system format. The mediators join their respective connected LCSs into GCSs

(MusicData and InvoicingData). Masks translate the GCSs to LESs (MusicData and Invoicing-

Data) by translating the schemas to the appropriate representational formats.

Following the illustrations of schema assignments in the qualitative analysis of the MMW

architecture and its predecessor (Sections 2.3 and 4.2.1), Figure 8.5 accordingly conveys the

placement of system schemas as white rectangles next to their respective component.

To achieve the topology depicted in Figure 8.5 a Docker compose was specified with the

suitable source connection strings, mediation scripts, component startup options and commu-

nication settings. The SQLite databases intended for integration were placed inside their re-

spective wrapper containers. The system component containers were placed in a virtual Docker

network running in bridge mode. Individual component access points exposed by the Docker

compose are detailed in Table 10.2. The Docker compose specification and accompanying files

for containerisation are provided in the Janus system’s git repository [27].

This case study prototype shows that an MMW system can be used as a data source integra-

tion system. The topology demonstrates the capabilities provided by adding a mask component,

where each mediated schema is represented by masks of different kinds. The case study proto-

type also demonstrates that virtualising and materialising masks can drive the integration system

in different modalities. An additional benefit provided by the Janus system is that the schema

elements have been translated to a singular naming convention, whereas the source databases

used snake case to name tables, and Pascal case to name columns.

177

Mask–mediator–wrapper case studies

m
ed

ia
_t

yp
es

PK
M

ed
ia

Ty
pe

Id

N
am

e ge
nr

es

PK
G

en
re

Id

N
am

e

tr
ac

ks

PK
Tr

ac
kI

d

N
am

e

FK
Al
bu
m
Id

FK
M
ed
ia
Ty
pe
Id

FK
G
en
re
Id

C
om

po
se
r

M
illi
se
co
nd
s

By
te
s

U
ni
tP
ric
e

al
bu

m
s

PK
A

lb
um

Id

Ti
tle

FK
Ar
tis
tId

pl
ay

lis
ts

PK
Pl

ay
lis

tId

N
am

e

FK
C
re
at
or
Id

pl
ay

lis
t_

tr
ac

k

PK
, F

K
Pl

ay
lis

tId

PK
, F

K
Tr

ac
kI

d

cu
st

om
er

s

PK
C

us
to

m
er

Id

Fi
rs
tN
am

e

La
st
N
am

e

C
om

pa
ny

Ad
dr
es
s

C
ity

St
at
e

C
ou
nt
ry

Po
st
al
C
od
e

Ph
on
e

Fa
x

Em
ai
l

Su
pp
or
tR
ep
Id

em
pl

oy
ee

s

PK
Em

pl
oy

ee
Id

La
st
N
am

e

Fi
rs
tN
am

e

Ti
tle

FK
R
ep
or
ts
To

Bi
rth

D
at
e

H
ire
D
at
e

Ad
dr
es
s

C
ity

St
at
e

C
ou
nt
ry

Po
st
al
C
od
e

Ph
on
e

Fa
x

Em
ai
l

cu
st

om
er

s

PK
C

us
to

m
er

Id

Fi
rs
tN
am

e

La
st
N
am

e

C
om

pa
ny

Ad
dr
es
s

C
ity

St
at
e

C
ou
nt
ry

Po
st
al
C
od
e

Ph
on
e

Fa
x

Em
ai
l

Su
pp
or
tR
ep
Id in
vo

ic
es

PK
In

vo
ic

eI
d

FK
C
us
to
m
er
Id

In
vo
ic
eD

at
e

Bi
llin

gA
dd
re
ss

Bi
llin

gC
ity

Bi
llin

gS
ta
te

Bi
llin

gC
ou
nt
ry

Bi
llin

gP
os
ta
lC
od
e

To
ta
l

in
vo

ic
e_

ite
m

s

PK
In

vo
ic

eI
te

m
Id

FK
In
vo
ic
eI
d

FK
Tr
ac
kI
d

U
ni
tP
ric
e

Q
ua
nt
ity

ar
tis

ts

PK
A

rt
is

tId

N
am

e

Figure 8.6: Unified logical model diagram of the sample databases used in the case study prototype
(colouring: UsersAlbums - blue; Tracks - orange; PlaylistsUsers - red; UsersInvoices - green)

178

Mask–mediator–wrapper case studies

A detailed description of the schema translations in this case study prototype, providing

additional details on the schema translation mechanisms, can be found in the Appendix in Sec-

tion 10.5.1. Activities undertaken by the Janus system components while executing queries

(sending requests to the masked Web API) are detailed in the Appendix Section 10.5.2.

8.3.2 Janus for SOS system emulation

It was discussed during the qualitative analysis in Section 8.1 that the MMW architecture could

emulate the SOS system to preserve legacy data stores by representing them as REST Web

APIs. To prove that the MMW architecture is capable of producing an architectural topology

emulating the SOS system, the Janus system’s components were containerised and deployed

as illustrated in Figure 8.7. The databases from the data source integration system case study

prototype (Figure 8.6) were used as surrogates of legacy data stores.

AlbumsArtistsWrapper TracksWrapper PlaylistsUsersWrapper UsersInvoicesWrapper

AlbumsArtistsMediator UsersInvoicesMediator

TracksMaskAlbumsArtistMask PlaylistsUsersMask UsersInvoicesMask

AlbumsArtists Tracks PlaylistsUsers UsersInvoices

TracksMediator PlaylistsUsersMediator

Figure 8.7: Architectural topology of the SOS system emulated by the MMW architecture

As illustrated in Figure 8.7, each database is assigned a silo of MMW components to

translate its schema to the REST Web API format. This topology follows the idea discussed

in Section 8.1, with the omission of additionally proposed components. Each component is

named according to its component type and the database it is assigned to. For example, the Al-

bumsArtistsWrapper wraps the AlbumsArtists database, the AlbumsArtistsMediator adapts the

schema, and the AlbumsArtistsMask represents the adapted schema as a REST Web API. Adap-

tation in this case is meant in terms of standardising naming conventions for schema elements.

The schema model data sources were named after their originating databases. All MMW com-

ponents in this case study prototype are typed as Web applications.

179

Mask–mediator–wrapper case studies

To achieve the topology depicted in Figure 8.7 a Docker compose was specified with the

suitable data source connection strings, mediation scripts, component startup options and com-

munication settings. The SQLite databases mimicking legacy data stores were placed inside

their respective wrapper containers. The system component containers were placed in a virtual

Docker network running in bridge mode. Individual component access points exposed by the

Docker compose are detailed in Table 10.3. The Docker compose specification and accompa-

nying files for containerisation are provided in the Janus system’s git repository [27].

The case study prototype shows that an MMW architecture system, namely Janus, can em-

ulate the SOS system. Thus, the case study prototype provides empirical proof for the as-

sumptions made in the qualitative analysis regarding the SOS system’s emulation via an MMW

architecture system. Janus enables the creation of a standardized SOS mask, which is familiarly

represented as a Web API mask kind in this case study prototype. The case study prototype’s

topology can also be expanded to a data source integration system with other representation

formats by adding mediator and mask components, as already exemplified in the case study

prototype of Section 8.3.1.

8.3.3 Janus for data mesh emulation

This case study prototype proves the theorized capability of the MMW architecture to emulate

a data mesh. The operational goal of this case study prototype is to emulate a data mesh with

the topology presented in Figure 8.8. The topic of the domain for this case study prototype is

a music streaming platform. The case study prototype data mesh has a DIP with data sources

containing data about music, countries, customers, listening, media types of track instances, and

customer subscription plans. The data is separated into bounded contexts presented by DPCs

concerning music, customers, customer listening history, and customer subscription plans. The

DIP data sources are illustrated with a logical model diagram in Figure 8.9 The DPCs in this

case study prototype are not tied to any operational systems’ data for the sake of clarity, because

wrappers over operational data stores mirror the requirement for wrappers emulating the DIP.

180

Mask–mediator–wrapper case studies

Customers DPC

Data infrastructure platform

Music DPC

Listening DPC

Subscriptions
DPC

countries customers_planscustomers listeningmusic

D

tracks_instances

D

Figure 8.8: Topology of the data mesh to be prototypically emulated

SQLite databases were created to act as DIP data sources. The databases were created using

Python scripts with surrogate data generated by the Faker library. The Janus system was used

as a representative MMW architecture system. Web API masks were used for serving data to

entities outside of the data mesh, while SQLite wrappers were used to uniformly represent the

SQLite databases in the DIP. Since the Listening DPC contains the most complexity in terms

of required data sources it is presented in Figure 8.10 as an example of an emulated DPC via

Janus components.

181

Mask–mediator–wrapper case studies

TracksInstances

Music

Listening

Customers

Countries CustomersPlans

genres

PK genre_id: INT

name: TEXT

artists

PK artist_id: INT

name: TEXT

albums

PK album_id: INT

title: TEXT

publish_year: INT

FK ArtistId: INT

customers

PK customer_id: INT

username: TEXT

email: TEXT

FK country_id: INT

listening_history

PK listen_id: INT

FK customer_id: INT

FK listened_track_id: INT

listened_on: DATETIME

listened_to_end: BOOLEAN

stopped_at_seconds: INT

FK listened_media_type:_id: INT

customers_plans

PK plan_id: INT

started_on: DATETIME

ended_on: DATETIME?

FK billing_customer_id: INT

single_plans_customers

PK,FK plan_id: INT

FK beneficiary_customer1_id: INT

dual_plans_customers

PK, FK plan_id: INT

FK beneficiary_customer1_id: INT

FK beneficiary_customer2_id: INT

multi_plans_customers

PK, FK plan_id: INT

FK beneficiary_customer1_id: INT

FK beneficiary_customer2_id: INT

FK beneficiary_customer3_id: INT

FK beneficiary_customer4_id: INT

FK beneficiary_customer5_id: INT

countries

PK country_id: INT

name: TEXT

tracks

PK track_id: INTEGER

title: TEXT

genre_id: INT

album_id: INT

track_length_seconds: INT

composer: TEXT

media_types

PK media_type_id: INT

name: TEXT

tracks_instances

PK,FK media_type_id: INT

PK,FK track_id: INT

Figure 8.9: Logical model diagram of the databases used as DIP data sources in the data mesh emulation
case study prototype

The DIP listening and tracks_instances data sources used by the Listening DPC are wrapped

by their respective wrappers, inferring the ListeningData and TracksInstancesData schemas.

The DIP wrappers are of the SQLite kind and are configured not to allow commands on their

data sources - they are read-only. The Music and Customers DPCs provide their data products

to the Listening DPC from their egress mediators; their schemas are accordingly named Music-

Data and CustomersData. The Listening DPCs ingress mediator mediates the aforementioned

schemas and creates the ListeningIngressData mediated schema. The ListeningIngressData

182

Mask–mediator–wrapper case studies

Listening DPC

Transformations

Ingress
Mask

Ingress
Mediator

Egress
Wrapper

Domain data
(SQLite)

Egress
Mask

Egress
Mediator

Listening-
Ingress-
Data

Listening-
Data

Listening-
DataListening-

DomainData

Listening-
Ingress-
Data

Music DPC

Egress
Mediator

MusicData

Customers DPC

Egress
Mediator

Customers-
Data

DIP

listening
(SQLite)

tracks_instances
(SQLite)

DIP
Wrapper

DIP
Wrapper

Listening-
Data

Tracks-
Instances-

Data

Fresh

Stable

Fresh

Stable

Figure 8.10: Listening DPC emulated by the Janus system with its adjacent emulated DPCs and DIP

schema is loaded by the Listening DPC’s ingress mask, which is an SQLite materialising mask.

The ingress mask materialises the domain data store (data product) as an SQLite database. To

serve the data product, the SQLite egress wrapper wraps the domain data store and infers from

it the ListeningDomainData schema. The Listening DPC’s egress mediator loads the schemas

from the egress wrapper and the ingress mediator. The two loaded schemas are then medi-

ated into the ListeningData schema, which can be used for serving the data product. The Lis-

teningData schema is instantiated as a DataSource schema model in the Janus system. The

DataSource is declared through mediation to have two Schema instances; one under the name

Stable representing the data acquired from the domain data store, the other under the name

Fresh representing the data acquired directly from the ingress mediator. The Stable and Fresh

schemas contain the same tableaus and attributes, but their sources differ. The Fresh schema

provides the most recent data, and the Stable schema provides a preprocessed data snapshot

which can be acquired more quickly and with less computational load. The Listening DPC’s

egress mask is a Web API kind mask, and it represents as such the ListeningData schema.

The Fresh and Stable schemas are represented as separate URL route prefixes /Fresh and

183

Mask–mediator–wrapper case studies

/Stable. For example, to acquire the preprocessed listening history of a customer with the

user name "johnsmith" the URL for a GET request, sans the domain, would be: /Stable/Lis-

teningHistory?UserName=johnsmith. The concrete Web API routes of the Listening DPC

provided by the egress mask are shown in Table 8.2, as well as an example of the served data in

the JSON format is shown in Listing 8.1

Table 8.2: Routes found in the Listening DPC’s egress mask Web API

Route HTTP method

/Fresh/ListeningHistory/{id} GET

/Fresh/ListeningHistory?{query_string} GET

/Stable/ListeningHistory/{id} GET

/Stable/ListeningHistory?{query_string} GET

1 {

2 "ListenId ": 1,

3 "CustomerUserName ": "wendyjennings",

4 "ListenedTrackId ": 499,

5 "ListenedTrackName ": "Au Privave",

6 "ListenedOn ": "2023 -09 -21 T12 :56:24"

7 "ListenedToEnd ": true ,

8 "StoppedAtSeconds ": 16,

9 "ListenedMediaType ": "AAC"

10 }

Listing 8.1: Example of a JSON representing a listening history item provided by the Egress mask of

the Listening DPC

To achieve the topology depicted in Figure 8.8 a Docker compose was specified with the

suitable data source connection strings, mediation scripts, component startup options and com-

munication settings. The SQLite databases mimicking DIP data sources were placed inside

their respective wrapper containers. The system component containers were placed in a vir-

tual Docker network running in bridge mode. Materialised SQLite databases posing as do-

main data were placed in virtual volumes, each specifically used by their respective DPC ser-

vices. Individual component access points exposed by the Docker compose are detailed in

Tables 10.4, 10.5, 10.6, 10.7, and 10.8, along with the names of the data sources the compo-

nents infer, mediate, or represent. The Docker compose specification and accompanying files

for containerisation are provided in the Janus system’s git repository [27].

184

Mask–mediator–wrapper case studies

The case study prototype shows that an MMW architecture system, namely Janus, can em-

ulate a data mesh. Therefore, the case study prototype provides empirical proof for the as-

sumptions made in the qualitative analysis regarding the data mesh’s emulation via an MMW

architecture system. Janus components were demonstrated to simultaneously emulate multiple

DPCs and a DIP by using its configurable MMW components. It was demonstrated that Janus

can emulate a DPC containing a local domain store. The case study prototype also presented

the naming convention for schemas and MMW components when emulating a data mesh.

185

Chapter 9

Conclusion

This thesis presented research involving the extension of the MW architecture to facilitate the

addition of various representational system access interfaces. The motivation for this research

was to increase the flexibility and capability of heterogeneous data source integration systems

and to provide a framework for the development of a comprehensive future system of this type.

The MW architecture has been shown to underperform through a qualitative analysis when

requirements for various data access interfaces arise. The qualitative analysis was facilitated by

a discussion and study on schema hierarchy deployments, where schemas from an exemplified

schema hierarchy were deployed to architectural components. The individual MW architecture

components were exhibited as having to manage multiple schemas, clearly not adhering to

the concept of responsibility separation. The outlook for future exacerbation of the problem

is discussed through the trend of increasing variety in data representation. This presents the

primary research problem.

To solve the problem, the research theoretically introduced a new component type specif-

ically intended for representational purposes, called a mask. Due to the introduction of a new

component type, the extended architecture proposed in the presented research was named the

mask–mediator–wrapper architecture.

The research produced a set of rules for the mask component in accordance with the exist-

ing rules for mediators and wrappers, additionally providing a new rule for mediators to further

distil their roles in the architecture. Just like the mediator and wrapper components, the mask

is also considered a generic component - allowing prefabrication and configurable deployment

in multiple topologies. The mask’s functionalities were analysed and its design was discussed

through an analysis of the mask’s rules, functional requirements inferred from those rules, ex-

pected data flow and processes implied by the functional requirements, and the inner component

design determined from the previous analyses. The findings of this analysis suggested that the

implementation of a mask kind varied only in terms of the implementations of translator compo-

nents, while the remaining inner components can be implemented generically. Since the mask’s

186

Conclusion

implementation is parametrized by these implementations, it was proposed that masks could be

uniformly developed through a mask framework. The framework was proposed to be able to

create a library for a mask kind, which would then be used to develop an application represent-

ing a mask type. The ability to provide such a framework has posed another research problem.

The MMW architecture and mask component were only discussed theoretically at this point.

A quantitative shift-cost analysis was conducted to prove that the theoretic architectural

extension doesn’t negatively impact a data source integration system and is beneficial when

introducing new representations. The quantitative analysis showed that the MMW architecture

is more flexible than the existing modes of the MW architecture in scenarios requiring the

addition of new representations (existing or entirely new), and scenarios requiring the addition

of another mediation. The scenario of including a new data source is determined to have a

shift-cost on par with the existing MW architecture modes.

Case studies were developed to hypothetically demonstrate the flexibility and versatility of

the proposed architecture. The case studies were concerned with the emulation of two addi-

tional data management systems other than a data source integration system. The SOS system,

intended for persevering legacy data stores, was shown as emulated by MMW components.

Such an emulation enabled additional flexibility in terms of adding representation capabilities

and adding mediation to the existing architectural topology. The state-of-the-art data mesh ar-

chitecture was the focus of the second emulation case study. The MMW components were the-

oretically shown as being capable of emulating the DIP and DPC components of a data mesh.

The MMW components were also shown as being capable of emulating a DPC containing a

local domain data store.

The translations in a mask were theorised to include one-way transformations of queries

(including commands) and schemas. On the other hand, the translation of data included in

mutations, insertions, and query results requires two-way transformations that guarantee some

level of correctness. This raised the research question of the ability to minimize the effort re-

quired of implementing two-way transformations in a mask while maintaining the ability to

reason about the correctness of the implemented transformations. The examination of the field

of bidirectionalisation resulted in the choice of lenses to facilitate these transformations. A

simple symmetric lens was concretely chosen and introduced as a design pattern through an

implementation in C#. Implementing two-way transformations in the form of simple symmet-

ric lenses enabled the transformations to be reused, even for constructing complex lenses. The

reusability of design patterns, in general, reduces implementational effort. An additional re-

duction in the implementational effort was introduced by providing a behavedness-level testing

framework for the implemented simple symmetric lenses.

Although the expected contributions of this research permitted further investigation through

a hypothetical heterogeneous data source integration system, a prototypal system was expected

187

Conclusion

to provide better solidification of the contributions. The Janus system acted as a prototype

to substitute a hypothetical system, making the contributions tangible and provable. Janus was

developed as an open-source prototype MMW system, enabling further prototyping, experimen-

tation and proofs regarding the proposed architecture and component design. Janus provides the

proof-of-concept for the hypothesised mask framework. The Janus mask framework was used

to expeditiously develop three mask kinds and their respective applications: a REST Web API

virtualizing mask, a LiteDB materialising mask, and an SQLite materialising mask. The pro-

cess of a mask’s implementation (in the Janus system) was concluded to include nine general

steps. Janus also enabled the proof for the usability of lenses in masks for two-way transforma-

tions. The lens providing bidirectional transformations between DTO objects and tabular data

was utilised in the Janus system’s REST Web API mask.

The Janus system enabled the creation of a case study prototype for an MMW heteroge-

neous data source system, showing that such a system is achievable. Two additional case study

prototypes over the case studies regarding the SOS system and data mesh were also conducted.

The case studies’ prototypes showed that the MMW architecture is capable of emulating other

systems and not just acting as a data source integration system. These results, especially in the

case of the data mesh, were not initially expected but have enriched the results of this research.

They provide additional insight into the nature of the MMW architecture, raising a future re-

search question on the feasibility of data management systems constructed through pre-built

configurable components.

The true aspiration of this research warrants a note. The ulterior motive of this research

was also the development of a pathfinding system as a stepping stone towards a comprehen-

sive, evolvable, extendable, and open system for heterogeneous data management that can be a

foundation for future research.

188

Chapter 10

Appendix

10.1 List of abbreviations

The thesis text uses some abbreviations that are commonly used in the covered scientific and

engineering fields. The fully-qualified name of such abbreviations is omitted in the text, while

abbreviations of terms introduced in the thesis are parenthesised at first appearance. Table 10.1

presents the fully-qualified names of the abbreviations.

Table 10.1: Abbreviations used in the text

Abbreviation Fully-qualified name

1LMW mediator–wrapper architecture with one mediator layer

2LMW mediator–wrapper architecture with two mediator layers

API application programming interface

BSON binary javascript object notation

BX bidirectional transformations or bidirectionalisation

CLI command line interface

DIP data infrastructure platform

DLL dynamic-link library

DPC data product container

DTO data transfer object

189

Appendix

HTTP hypertext transfer protocol

HTTPS hypertext transfer protocol secure

IL .NET intermediate language

JDBC java database connection

JSON javascript object notation

MW mediator–wrapper

MMW mask–mediator–wrapper

NoSQL not only SQL

OOP object-oriented paradigm

REST representational state transfer

SOS save our systems

SSL secure sockets layer

SUS system under study

TCP transmission control protocol

URI uniform resource identifier

URL uniform resource locator

XML extensible markup language

10.2 Code example prefix

To run Haskell code examples given in Chapter 3, they should be prefixed in a programming

environment with the following helper data types and functions:

1 --assertionresults

2 dataAssertion a = Success a | Failure a

3 --assertHoF;takesafunctiontoassertonanobjectfromparam2

4 assert :: (a ->Bool) -> a -> Assertion a

5 assert f x =iff xthen

6 Success x

190

Appendix

7 else

8 Failure x

9 --showimplementationallowssimplifiedprinting

10 instanceShowa=>Show(Assertion a)where

11 show(Success x) ="Assertionsucceeded:"++showx

12 show(Failure x) ="Assertionfailed,actualvalue:"++showx

Listing 10.1: Prefix functions for code listings in Haskell

Assertion is a data type that signifies if an assertion (provided by a truth-testing function) of

an assumption was found to be true or false. The Assertion is created by calling the assert

high-order function that applies a truth-testing function and the object over which the testing

is to be undertaken. The instance of Show is provided to simplify and neaten the printing of

assertion outcomes.

10.3 Running the case studies’ prototypes using Docker com-

pose

The required files for the containerisation of the Janus system mentioned in this thesis (primarily

in Sections 8.3.1, 8.3.2, and 8.3.3) can be found in the Janus git repository on Github [27]. The

files are located in the experimentation directory, which contains separate directories for each

emulated system. The prerequisites for running the case study prototypes are the installations of

Docker and Docker Compose. The containerisation files can be downloaded by using the git

clone shell command. After the repository files are acquired, it is required to navigate to the

desired case study’s directory. The required Docker container images must be built, advisably

without using cache via the docker compose build command. The images can be started

as containers by using the docker compose up command. When running computationally

demanding case study prototypes, it is advisable to specify only the required services of the

Docker compose specification. The Docker compose services for each individual component

can be configured in the specification file under the name docker-compose.yml. Mediation

scripts used in the case study prototypes can be found in the mediation_scripts directory

of each case study, as well as the SQLite databases under the databases directory. The shell

commands required to run the data source integration, SOS system, and data mesh prototypes

from Sections 8.3.1, 8.3.2, and 8.3.3 are provided in Listings 10.2, 10.3, and 10.4 respectively.

1 $> git clone https :// github.com/JurajDoncevic/Janus.git --branch

↪→ master

2 $>cd./ experimentation/janus_integration

3 $> docker compose build --no-cache

4 $> docker compose up

191

Appendix

Listing 10.2: Running the Docker compose to initialise the data source integration prototype from

Section 8.3.1

1 $> git clone https :// github.com/JurajDoncevic/Janus.git --branch

↪→ master

2 $>cd./ experimentation/janus_sos

3 $> docker compose build --no-cache

4 $> docker compose up

Listing 10.3: Running the Docker compose to initialise the SOS prototype from Section 8.3.2

1 $> git clone https :// github.com/JurajDoncevic/Janus.git --branch

↪→ master

2 $>cd./ experimentation/janus_data_mesh

3 $> docker compose build --no-cache

4 $> docker compose up

5 -- or just the listening DPC

6 $> docker compose up -d listening_egress_mask

Listing 10.4: Running the Docker compose to initialise the data mesh prototype from Section 8.3.3

Depending on the computational power of the host system used for running the containers, it

might be required to adjust the startup times and timeout settings of individual components. The

case where an egress wrapper starts inferring a schema not yet materialised by the ingress mask

is most common. The startup timing of the components’ containers can be adjusted with the

SLEEP_START argument in the docker-compose.yml service specification, while the timeout

settings can be adjusted with the TIMEOUT_MS argument.

192

Appendix

Table 10.2: Component settings for the Janus-driven data source integration system

Component name Component
listen port

Web man-
agement
port

IP address Web API port
/
materialization
path

AlbumsArtistsWrapper 10001 8101 172.24.1.1 -

TracksWrapper 10002 8103 172.24.1.2 -

PlaylistsUsersWrapper 10003 8105 172.24.1.3 -

UsersInvoicesWrapper 10004 8107 172.24.1.4 -

MusicMediator 20001 8201 172.24.2.1 -

InvoicingMediator 20002 8203 172.24.2.2 -

MusicWebApiMask 30001 8301 172.24.3.1 8801

InvoicingWebApiMask 30002 8303 172.24.3.2 8803

MusicSqliteMask 30003 8305 172.24.3.3 ./music.db

InvoicingLiteDBMask 30004 8307 172.24.3.4 ./invoicing.db

193

Appendix

10.4 Configuration tables for the case studies’ prototypes

10.4.1 Data source integration system case study prototype configuration

10.4.2 SOS system case study prototype configuration

Table 10.3: Component settings for the SOS system emulation by Janus

Component name Component
listen port

Web man-
agement
port

IP address Web API port

AlbumsArtistsWrapper 10001 8101 172.25.1.1 -

TracksWrapper 10002 8103 172.25.1.2 -

PlaylistsUsersWrapper 10003 8105 172.25.1.3 -

UsersInvoicesWrapper 10004 8107 172.25.1.4 -

AlbumsArtistsMediator 20001 8201 172.25.2.1 -

TracksMediator 20002 8203 172.25.2.2 -

PlaylistsUsersMediator 20003 8205 172.25.2.3 -

UsersInvoicesMediator 20004 8207 172.25.2.4 -

AlbumsArtistsMask 30001 8301 172.25.3.1 8801

TracksMask 30002 8303 172.25.3.2 8803

PlaylistsUsersMask 30003 8305 172.25.3.3 8805

UsersInvoicesMask 30004 8307 172.25.3.4 8807

194

Appendix

10.4.3 Data mesh case study prototype configuration

Table 10.4: Janus components settings for DIP emulation

Component name
(suffixed with

_DIPWrapper)

Component
listen port

Web man-
agement
port

IP address Data source name

Customers 11001 8101 172.26.1.1 CustomersData

Countries 11003 8103 172.26.1.3 CountriesData

CustomerPlans 11004 8104 172.26.1.4 CustomersPlansData

Listening 11005 8105 172.26.1.5 ListeningData

Music 11007 8107 172.26.1.7 MusicData

TracksInstance 11008 8108 172.26.1.8 TracksInstancesData

Table 10.5: Janus components settings for Music DPC emulation

Component name
(prefixed with:

Music_)

Component
listen port

Web man-
agement
port

IP address Data source name

IngressMediator 22001 8201 172.26.2.1 MusicIngressData

IngressMask 32001 8203 172.26.2.2 MusicIngressData

EgressWrapper 12001 8205 172.26.2.3 MusicDomainData

EgressMediator 22002 8207 172.26.2.4 MusicData

EgressMask 32002 8209 172.26.2.5 MusicData

195

Appendix

Table 10.6: Janus components settings for Subscriptions DPC emulation

Component name
(prefixed with:

Subscriptions_-

)

Component
listen port

Web man-
agement
port

IP address Data source name

IngressMediator 23001 8301 172.26.3.1 SubscriptionsIngressData

IngressMask 33001 8303 172.26.3.2 SubscriptionsIngressData

EgressWrapper 13001 8305 172.26.3.3 SubscriptionsDomainData

EgressMediator 23002 8307 172.26.3.4 SubscriptionsData

EgressMask 33002 8309 172.26.3.5 SubscriptionsData

Table 10.7: Janus components settings for Customers DPC emulation

Component name
(prefixed with:

Customers_)

Component
listen port

Web man-
agement
port

IP address Data source name

IngressMediator 24001 8401 172.26.4.1 CustomersIngressData

IngressMask 34001 8403 172.26.4.2 CustomersIngressData

EgressWrapper 14001 8405 172.26.4.3 CustomersDomainData

EgressMediator 24002 8407 172.26.4.4 CustomersData

EgressMask 34002 8409 172.26.4.5 CustomersData

196

Appendix

Table 10.8: Janus components settings for Listening DPC emulation

Component name
(prefixed with:

Listening_)

Component
listen port

Web man-
agement
port

IP address Data source name

IngressMediator 25001 8501 172.26.5.1 ListeningIngressData

IngressMask 35001 8503 172.26.5.2 ListeningIngressData

EgressWrapper 15001 8505 172.26.5.3 ListeningDomainData

EgressMediator 25002 8507 172.26.5.4 ListeningData

EgressMask 35002 8509 172.26.5.5 ListeningData

10.5 Additional details on the data source integration system

case study prototype

10.5.1 Schema translation

Section 8.3.1 omitted the specifics of the schema translation and mediation implemented in the

case study prototype. This appendix section delves into more detail about the schemas that were

inferred in the wrappers from the data sources, the mediation that was applied, how it reflected

on a mediated schema, and how the mediated schema was represented as a Web REST API.

This detailed overview shows just the schemas and system components used to generate the

Web API MusicData representation. Hence, the included components are: AlbumsArtistsWrap-

per, TracksWrapper, PlaylistsUsersWrapper, MusicMediator, and MusicWebApiMask. The in-

ferred schema elements are coloured so that they reflect the data source they originate from in

Figure 8.6.

The following tables represent the tableaus of the inferred schema from the AlbumsArtistsWrap-

per:

197

Appendix

Tableau id AlbumsArtistsData.main.albums

Attribute name Data type Is identity

AlbumId LONGINT T

Title STRING F

ArtistId LONGINT F

Update set 0 AlbumId, Title, ArtistId

Tableau id AlbumsArtistsData.main.artists

Attribute name Data type Is identity

ArtistId LONGINT T

Name STRING F

Update set 0 ArtistId, Name

The following tables represent the tableaus of the inferred schema from the TracksWrapper:

Tableau id TracksData.main.genres

Attribute name Data type Is identity

GenreId LONGINT T

Name STRING F

Update set 0 GenreId, Name

Tableau id TracksData.main.media_types

Attribute name Data type Is identity

MediaTypeId LONGINT T

Name STRING F

Update set 0 MediaTypeId, Name

198

Appendix

Tableau id TracksData.main.tracks

Attribute name Data type Is identity

TrackId LONGINT T

Name STRING F

AlbumId LONGINT F

MediaTypeId LONGINT F

GenreId LONGINT F

Composer STRING F

Milliseconds LONGINT F

Bytes LONGINT F

UnitPrice DECIMAL F

Update set 0 TrackId, Name, AlbumId, MediaTypeId, GenreId, Com-

poser, Milliseconds, Bytes, UnitPrice

The following tables represent the tableaus of the inferred schema from the PlaylistsUsersWrap-

per:

Tableau id PlaylistsUsersData.main.playlists

Attribute name Data type Is identity

PlaylistId LONGINT T

Name STRING F

CreatorId LONGINT F

Update set 0 PlaylistId, Name, CreatorId

199

Appendix

Tableau id PlaylistsUsersData.main.playlist_track

Attribute name Data type Is identity

PlaylistId LONGINT T

TrackId LONGINT T

CreatorId LONGINT F

Update set 0 PlaylistId, TrackId

Tableau id PlaylistsUsersData.main.customers

Attribute name Data type Is identity

CustomerId LONGINT T

FirstName STRING F

LastName STRING F

Company STRING F

Address STRING F

City STRING F

State STRING F

Country STRING F

PostalCode STRING F

Phone STRING F

Fax STRING F

Email STRING F

SupportRepId LONGINT F

Update set 0 CustomerId, FirstName, LastName, Company,

Address, City, State, Country, PostalCode,

Phone, Fax, Email, SupportRepId

200

Appendix

The MusicMediator is used to mediate the aforementioned wrappers’ schemas. The follow-

ing is the mediation script used in the MusicMediator to mediate those schemas:

1 SETTING

2 PROPAGATE UPDATE SETS

3 PROPAGATE ATTRIBUTE DESCRIPTIONS

4 DATASOURCEMusicData VERSION "1.0" #Mediated data about music#

5 WITHSCHEMAMain #Default schema#

6 WITHTABLEAUAlbums #Data about albums#

7 WITHATTRIBUTES

8 AlbumId ,

9 AlbumTitle ,

10 ArtistName

11 BEING

12 SELECT

13 AlbumsArtistsData.main.albums.AlbumId ,

14 AlbumsArtistsData.main.albums.Title ,

15 AlbumsArtistsData.main.artists.Name

16 FROMAlbumsArtistsData.main.albums

17 JOINAlbumsArtistsData.main.artists

18 ONAlbumsArtistsData.main.albums.ArtistId ==

↪→ AlbumsArtistsData.main.artists.ArtistId

19 WITHTABLEAUTracks #Data about tracks and albums#

20 WITHATTRIBUTES

21 TrackId ,

22 TrackName ,

23 GenreName ,

24 MediaType ,

25 AlbumTitle ,

26 DurationMs ,

27 Composer

28 BEING

29 SELECT

30 TracksData.main.tracks.TrackId ,

31 TracksData.main.tracks.Name ,

32 TracksData.main.genres.Name ,

33 TracksData.main.media_types.Name ,

34 AlbumsArtistsData.main.albums.Title ,

35 TracksData.main.tracks.Milliseconds ,

36 TracksData.main.tracks.Composer

37 FROMTracksData.main.tracks

38 JOINTracksData.main.genres

39 ONTracksData.main.tracks.GenreId == TracksData.main.genres

↪→ .GenreId

40 JOINTracksData.main.media_types

201

Appendix

41 ONTracksData.main.tracks.MediaTypeId == TracksData.main.

↪→ media_types.MediaTypeId

42 JOINAlbumsArtistsData.main.albums

43 ONTracksData.main.tracks.AlbumId == AlbumsArtistsData.main

↪→ .albums.AlbumId

44 WITHTABLEAUUsers #Data about users/customers#

45 WITHATTRIBUTES

46 UserId ,

47 UserEmail ,

48 UserFirstName ,

49 UserLastName ,

50 UserCountry

51 BEING

52 SELECT

53 PlaylistsUsersData.main.customers.CustomerId ,

54 PlaylistsUsersData.main.customers.Email ,

55 PlaylistsUsersData.main.customers.FirstName ,

56 PlaylistsUsersData.main.customers.LastName ,

57 PlaylistsUsersData.main.customers.Country

58 FROMPlaylistsUsersData.main.customers

59 WITHTABLEAUPlaylists #Data about playlists#

60 WITHATTRIBUTES

61 PlaylistId ,

62 PlaylistName ,

63 CreatorEmail

64 BEING

65 SELECT

66 PlaylistsUsersData.main.playlists.PlaylistId ,

67 PlaylistsUsersData.main.playlists.Name ,

68 PlaylistsUsersData.main.customers.Email

69 FROMPlaylistsUsersData.main.playlists

70 JOINPlaylistsUsersData.main.customers

71 ONPlaylistsUsersData.main.playlists.CreatorId ==

↪→ PlaylistsUsersData.main.customers.CustomerId

72 WITHTABLEAUPlaylistTracks #Tracks in playlists#

73 WITHATTRIBUTES

74 TrackId ,

75 TrackName ,

76 TrackGenre ,

77 PlaylistId ,

78 PlaylistName

79 BEING

80 SELECT

81 PlaylistsUsersData.main.playlist_track.TrackId ,

82 TracksData.main.tracks.Name ,

202

Appendix

83 TracksData.main.genres.Name ,

84 PlaylistsUsersData.main.playlist_track.PlaylistId ,

85 PlaylistsUsersData.main.playlists.Name

86 FROMPlaylistsUsersData.main.playlist_track

87 JOINTracksData.main.tracks

88 ONPlaylistsUsersData.main.playlist_track.TrackId ==

↪→ TracksData.main.tracks.TrackId

89 JOINPlaylistsUsersData.main.playlists

90 ONPlaylistsUsersData.main.playlist_track.PlaylistId ==

↪→ PlaylistsUsersData.main.playlists.PlaylistId

91 JOINTracksData.main.genres

92 ONTracksData.main.tracks.GenreId == TracksData.main.genres

↪→ .GenreId

The application of the mediation script in the MusicMediator resulted in a schema described by

the following tables (the colours marking the attributes’ and update sets’ origins are preserved):

Tableau id MusicData.Main.Albums

Attribute name Data type Is identity

AlbumId LONGINT T

AlbumTitle STRING F

ArtistName STRING F

Update set 0 AlbumId, AlbumTitle

Update set 1 ArtistName

203

Appendix

Tableau id MusicData.Main.Tracks

Attribute name Data type Is identity

TrackId LONGINT T

TrackName STRING F

GenreName STRING F

MediaType STRING F

AlbumTitle STRING F

DurationMs LONGINT F

Composer STRING F

Update set 0 TrackId, TrackName, Composer, DurationMs

Update set 1 GenreName

Update set 2 MediaType

Update set 3 AlbumTitle

Tableau id MusicData.Main.Users

Attribute name Data type Is identity

UserId LONGINT T

UserEmail STRING F

UserFirstName STRING F

UserLastName STRING F

UserCountry STRING F

Update set 0 UserId, UserFirstName, UserLast-

Name, UserCountry, UserEmail

204

Appendix

Tableau id MusicData.Main.Playlists

Attribute name Data type Is identity

PlaylistId LONGINT T

PlaylistName STRING F

CreatorEmail STRING F

Update set 0 PlaylistId, PlaylistName

Update set 1 CreatorEmail

Tableau id MusicData.Main.PlaylistTracks

Attribute name Data type Is identity

TrackId LONGINT T

TrackName STRING F

TrackGenre STRING F

PlaylistId LONGINT T

PlaylistName STRING F

Update set 0 PlaylistId, TrackId

Update set 1 TrackName

Update set 2 PlaylistName

Update set 3 TrackGenre

The schema loaded into the MusicWebApiMask component is the same as in the MusicMediator,

but the mask provides a representation of the schema in the form of a Web REST API. The

following tables contain the description of the generated API routes in the mask:

205

Appendix

Tableau id MusicData.Main.Albums

Route prefix /Main

Route Method

/Albums/{id} GET

/Albums?<query_string> GET

/Albums/UpdateSet_0?<query_string> PUT

/Albums/UpdateSet_1?<query_string> PUT

Tableau id MusicData.Main.Playlists

Route prefix /Main

Route Method

/Playlists/{id} GET

/Playlists?<query_string> GET

/Playlists/UpdateSet_0?<query_string> PUT

/Playlists/UpdateSet_1?<query_string> PUT

Tableau id MusicData.Main.PlaylistTracks

Route prefix /Main

Route Method

/PlaylistTracks/{id} GET

/PlaylistTracks?<query_string> GET

/PlaylistTracks/UpdateSet_0?<query_string> PUT

/PlaylistTracks/UpdateSet_1?<query_string> PUT

/PlaylistTracks/UpdateSet_2?<query_string> PUT

/PlaylistTracks/UpdateSet_3?<query_string> PUT

206

Appendix

Tableau id MusicData.Main.Tracks

Route prefix /Main

Route Method

/Tracks/{id} GET

/Tracks?<query_string> GET

/Tracks/UpdateSet_0?<query_string> PUT

/Tracks/UpdateSet_1?<query_string> PUT

/Tracks/UpdateSet_2?<query_string> PUT

/Tracks/UpdateSet_3?<query_string> PUT

Tableau id MusicData.Main.Users

Route prefix /Main

Route Method

/Users/{id} GET

/Users?<query_string> GET

/Users POST

/Users/{id} DELETE

/Users/UpdateSet_0?<query_string> PUT

10.5.2 Query translation and execution activities

The activity diagram in Figure 10.1 shows the sequence of activities undertaken when a GET

request for the /Main/PlaylistTracks resource is initiated by an end-user on the MusicWe-

bApiMask component. Upon receiving the request, the mask component translates the request

to a system format query presented in Listing 10.5. The query is then sent as part of a QUERY_-

REQ message to the component from which the mask loaded its current schema - the MusicMe-

diator.

207

Appendix

GET request on /Main/PlaylistTracks

MusicWebApiMask

Receive GET
request

Translate request
to system format

query

Send QUERY_REQ
to

MusicMediator

Receive
QUERY_RES

Translate data
results to Web

API format (JSON)

Serve results
over Web API

MusicMediator

Receive
QUERY_REQ

Partition
query

Send QUERY_REQ
to determined
collaborating
components

Translate
partitioned
queries

Receive
QUERY_RES from
collaborators

Mediate the
data results

Send mediated
data as
QUERY_RES

TracksWrapper

Receive
QUERY_REQ

Translate query
to SQLite
format

Execute query
on SQLite data

source

Translate
results to

system format

Send results
as QUERY_RES

PlaylistsUsers-
Wrapper

Receive
QUERY_REQ

Translate query
to SQLite
format

Execute query
on SQLite data

source

Translate
results to

system format

Send results
as QUERY_RES

Figure 10.1: Activities undertaken by the Janus system components on sending a GET method request
to /Main/PlaylistTracks of the MusicWebApiMask

208

Appendix

The MusicMediator receives the message and begins the process of running the enclosed

query. The query is first partitioned for sending to individual mediated schemas from remote

components. The queries are translated to match the schema element names of the mediated

schemas (Listings 10.6 and 10.7). The specifications of operations required to mediate the

results of these queries are also created. The QueryMediation class is used for these specifi-

cations, and its code is available in the Janus.Mediation project. The translated partitioned

queries are sent in parallel as QUERY_REQ messages to the two wrappers with data sources that

are determined to contain the required data - PlaylistsUsersWrapper and TracksWrapper. The

AlbumsArtistsWrapper is not used for this query, since it doesn’t contain any required data.

1 SELECT*

2 FROMMusicData.Main.PlaylistTracks;

Listing 10.5: GET method request for /Main/PlaylistsTracks translated into a system format query

1 SELECT

2 PlaylistsUsersData.main.playlist_track.TrackId ,

3 PlaylistsUsersData.main.playlist_track.PlaylistId ,

4 PlaylistsUsersData.main.playlists.Name

5 FROMPlaylistsUsersData.main.playlist_track

6 JOINPlaylistsUsersData.main.playlists

7 ONPlaylistsUsersData.main.playlist_track.PlaylistId ==

↪→ PlaylistsUsersData.main.playlists.PlaylistId;

Listing 10.6: Partitioned query as sent to PlaylistsUsersWrapper

1 SELECT

2 TracksData.main.tracks.TrackId ,

3 TracksData.main.tracks.Name ,

4 TracksData.main.genres.GenreId ,

5 TracksData.main.genres.Name

6 FROMTracksData.main.tracks

7 JOINTracksData.main.genres

8 ONTracksData.main.tracks.GenreId == TracksData.main.genres.GenreId

↪→ ;

Listing 10.7: Partitioned query as sent to TracksWrapper

The wrapper components receive their QUERY_REQ messages and translate the enclosed

queries into SQLite queries (Listing 10.8 and 10.9). The translated queries are executed and

their results are translated to the system format (as TabularData). The results are returned to

the MusicMediator by QUERY_RES messages.

1 SELECT

2 playlist_track.TrackID ,

209

Appendix

3 playlist_track.PlaylistId ,

4 playlists.Name

5 FROMplaylist_track

6 JOINplaylists

7 ONplaylist_track.PlaylistId == playlists.PlaylistId;

Listing 10.8: SQLite query executed by PlaylistsUsersWrapper

1 SELECT

2 tracks.TrackId ,

3 tracks.Name ,

4 genres.GenreId ,

5 genres.Name

6 FROMtracks

7 JOINgenres

8 ONtracks.GenreId == genres.GenreId

Listing 10.9: SQLite query executed by TracksWrapper

The QUERY_RES messages containing the expected TabularData instances of the data re-

sults are awaited and received in the MusicMediator. The TabularData instances are mediated

according to the associated mediation specification. The mediated results now consist of a sin-

gular TabularData object. A QUERY_RES message is returned to the MusicWebApiMask. The

mask uses the TabularDataDtoLens to translate the data into DTOs specified by classes. The

DTO class instances are turned into JSON by the ASP.NET framework. The results in the JSON

format are served to the end-user who initiated the original request. The end-user might not even

realise that the request used a data source integration system or that it caused a propagation of

queries to multiple underlying systems; their only concern was sending a valid request to the

Web API and awaiting the result in the JSON format.

10.5.3 Data translation

The example of data translation can be presented from the query activities provided in Sec-

tion 10.5.2. That section dealt with the activities taken by making an HTTP GET request for

the /Main/PlaylistTracks resource on the MusicWebApiMask. To observe a concrete case

of data translation, this section covers the acquisition and propagation of the result data.

SQLite queries shown in Listings 10.8 and 10.9, are executed over their respective databases.

The results already translated into TabularData are exemplified in Tables 10.9 and 10.10.

210

Appendix

Table 10.9: Data sample of the tabular data result acquired by the PlaylistsUsersWrapper

PlaylistsUsersData.main. PlaylistsUsersData.main. PlaylistsUsersData.main.

playlist_track.TrackId playlist_track.PlaylistId playlists.Name

(LONGINT) (LONGINT) (STRING)

3402 1 Music

3389 1 Music

...

1063 5 90’s Music

1064 5 90’s Music

...

3426 15 Classical 101 - The Basics

3427 15 Classical 101 - The Basics

3367 16 Grunge

52 16 Grunge

...

211

Appendix

Table 10.10: Data sample of the tabular data result acquired by the TracksWrapper

TracksData.main. TracksData.main. TracksData.main. TracksData.main.

tracks.TrackId tracks.Name genres.GenreId genres.Name

(LONGINT) (STRING) (LONGINT) (STRING)

1 For Those About

To Rock (We

Salute You)

1 Rock

2 Fast As a Shark 1 Rock

...

77 Enter Sandman 3 Metal

78 Master Of Puppets 3 Metal

...

99 Your Time Has

Come

4 Alternative &

Punk

100 Out Of Exile 4 Alternative &

Punk

...

The original mediated query referenced the mediated MusicData.Main.PlaylistTracks

tableau (Listing 10.5). The required joins for mediating the data are determined according

to the specifications given in the mediation script. This can be concretely found in lines 72-

92 of Listing 10.5.1. The JOIN clause concerning the joining of the two data results from

different wrappers can be found in lines 87-88 of the mediation script; the results must be

joined according to the equality of their respective TrackId attributes. The joining of the data

produces a TabularData exemplified in Table 10.11.

212

Appendix

Table 10.11: Data sample of the tabular data results acquired by the MusicMediator

MusicData. MusicData. MusicData. MusicData. MusicData.

Main. Main. Main. Main. Main.

PlaylistTracks. PlaylistTracks. PlaylistTracks. PlaylistTracks. PlaylistTracks.

TrackId TrackName TrackGenre PlaylistId PlaylistName

(LONGINT) (STRING) (STRING) (LONGINT) (STRING)

3402 Band Members

Discuss Tracks

from "Revela-

tions"

Alternative 1 Music

3389 Revelations Alternative 1 Music

...

1136 Boulevard Of

Broken Dreams

Alternative &

Punk

1 Music

1137 Are We The

Waiting

Alternative &

Punk

1 Music

...

1837 Seek & Destroy Metal 17 Heavy Metal

Classic

1854 Master Of Pup-

pets

Metal 17 Heavy Metal

Classic

...

The mediated query was created on a request received from the MusicWebApiMask compo-

nent. The mask’s system query was equivalent to that of the mediated query, but it originated

from an HTTP GET request on the Web API. An appropriate response is required, and it is ex-

pected that it comes in the form of an HTTP successful response containing a JSON object with

the data results. To achieve this, the TabularData is first translated into a DTO of the expected

result. The DTO class type was created at runtime, at the start of the Web API instance in the

MusicWebApiMask. The DTO class is automatically named as Main_PlaylistTracks_Get.

213

Appendix

The class is detailed in Listing 10.10 as a C# class and as Swagger schema in Listing.

1 publicclassMain_PlaylistTracks_Get

2 {

3 publiclongTrackId { get; set; }

4 publicstringTrackName { get; set; }

5 publicstringTrackGenre { get; set; }

6 publiclongPlaylistId { get; set; }

7 publicstringPlaylistName { get; set; }

8 }

Listing 10.10: The Main_PlaylistTracks_Get class generated at runtime

1 {

2 TrackId integer($int64)

3 TrackName string

4 nullable: true

5 TrackGenre string

6 nullable: true

7 PlaylistId integer($int64)

8 PlaylistName string

9 nullable: true

10 }

Listing 10.11: The Main_PlaylistTracks_Get class represented in the Swagger schema

The TabularDataDtoLens is then tasked with translating the TabularData instance into

an enumerable of the Main_PlaylistTracks_Get class. As shown in Chapter 7, this is done

by utilizing reflection. The created enumerable is then served through the middleware of the

ASP.NET Web API application (mask Web API instance) where it is transformed into a JSON

string.

1 [

2 {

3 "TrackId ": 3402,

4 "TrackName ": "Band Members Discuss Tracks from \" Revelations \"",

5 "TrackGenre ": "Alternative",

6 "PlaylistId ": 1,

7 "PlaylistName ": "Music"

8 },

9 {

10 "TrackId ": 3389,

11 "TrackName ": "Revelations",

12 "TrackGenre ": "Alternative",

13 "PlaylistId ": 1,

14 "PlaylistName ": "Music"

15 },

214

Appendix

16 ...

17 {

18 "TrackId ": 1136,

19 "TrackName ": "Boulevard Of Broken Dreams",

20 "TrackGenre ": "Alternative & Punk",

21 "PlaylistId ": 8,

22 "PlaylistName ": "Music"

23 },

24 {

25 "TrackId ": 1137,

26 "TrackName ": "Are We The Waiting",

27 "TrackGenre ": "Alternative & Punk",

28 "PlaylistId ": 8,

29 "PlaylistName ": "Music"

30 },

31 ...

32 {

33 "TrackId ": 1837,

34 "TrackName ": "Seek & Destroy",

35 "TrackGenre ": "Metal",

36 "PlaylistId ": 17,

37 "PlaylistName ": "Heavy Metal Classic"

38 },

39 {

40 "TrackId ": 1854,

41 "TrackName ": "Master Of Puppets",

42 "TrackGenre ": "Metal",

43 "PlaylistId ": 17,

44 "PlaylistName ": "Heavy Metal Classic"

45 },

46 ...

47]

Listing 10.12: Sample of the result data served as JSON

215

Bibliography

[1]Don čević, J., Fertalj, K., “Database Integration Systems”, in 2020 43rd International

Convention on Information, Communication and Electronic Technology (MIPRO), Sep.

2020, str. 1617–1622, iSSN: 2623-8764.

[2]Sheth, A., Larson, J., “Federated Database-Systems for Managing Distributed, Hetero-

geneous, and Autonomous Databases”, Computing Surveys, Vol. 22, No. 3, Sep. 1990,

str. 183–236, wOS:A1990GL46000002.

[3]Wiederhold, G., “Mediators in the architecture of future information systems”, Com-

puter, Vol. 25, No. 3, Mar. 1992, str. 38–49.

[4]Papakonstantinou, Y., Garcia-Molina, H., Widom, J., “Object exchange across heteroge-

neous information sources”, in Proceedings of the Eleventh International Conference on

Data Engineering, Mar. 1995, str. 251–260.

[5]Roth, M. T., Schwarz, P., “Don’t Scrap It, Wrap It! A Wrapper Architecture for Legacy

Data Sources”, in Proceedings of the 23rd VLDB Conference, Athens, Greece, 1997,

str. 10.

[6]Chiang Lee, Chia-Jung Chen, “Query optimization in multidatabase systems considering

schema conflicts”, IEEE Transactions on Knowledge and Data Engineering, Vol. 9,

No. 6, Dec. 1997, str. 941–955, dostupno na: http://ieeexplore.ieee.org/document/

649318/

[7]Busse, S., Kutsche, R.-D., Leser, U., Weber, H., “Federated Information Systems: Con-

cepts, Terminology and Architectures”, Forschungsberichte Des Fachbereichs Infor-

matik, 1999, str. 41.

[8]Roth, M. T., Arya, M., Haas, L., Carey, M., Cody, W., Fagin, R., Schwarz,

P., Thomas, J., Wimmers, E., “The Garlic project”, in Proceedings of the 1996

ACM SIGMOD international conference on Management of data - SIGMOD

’96. Montreal, Quebec, Canada: ACM Press, 1996, str. 557, dostupno na:

http://portal.acm.org/citation.cfm?doid=233269.280363

216

http://ieeexplore.ieee.org/document/649318/
http://ieeexplore.ieee.org/document/649318/
http://portal.acm.org/citation.cfm?doid=233269.280363

Bibliography

[9]Chawathe, S. S., Garcia-Molina, H., Hammer, J., Ireland, K., Papakonstanti-

nou, Y., Ullman, J., Widom, J., “The TSIMMIS Project: Integration of

Heterogeneous Information Sources”, undefined, 1994, dostupno na: /paper/

The-TSIMMIS-Project%3A-Integration-of-Heterogeneous-Chawathe-Garcia-Molina/

14348170a14b4e2edca01521184cb2cd60b83200

[10]Leavitt, N., “Will NoSQL Databases Live Up to Their Promise?”, Computer, Vol. 43,

No. 2, Feb. 2010, str. 12–14, dostupno na: http://ieeexplore.ieee.org/document/5410700/

[11]Dixon, J., “Pentaho, Hadoop, and Data Lakes”, dostupno na: https://jamesdixon.

wordpress.com/2010/10/14/pentaho-hadoop-and-data-lakes/ Oct. 2010.

[12]Bogatu, A., Fernandes, A. A. A., Paton, N. W., Konstantinou, N., “Dataset Discovery in

Data Lakes”, in 2020 IEEE 36th International Conference on Data Engineering (ICDE),

Apr. 2020, str. 709–720, iSSN: 2375-026X.

[13]Golshan, B., Halevy, A., Mihaila, G., Tan, W.-C., “Data Integration: After

the Teenage Years”, in Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI

Symposium on Principles of Database Systems, ser. PODS ’17. New York, NY,

USA: Association for Computing Machinery, May 2017, str. 101–106, dostupno na:

https://doi.org/10.1145/3034786.3056124

[14]Don čević, J., Fertalj, K., Brčić, M., Krajna, A., “Mask–Mediator–Wrapper: A Revised

Mediator–Wrapper Architecture for Heterogeneous Data Source Integration”, Applied

Sciences, Vol. 13, No. 4, Jan. 2023, str. 2471, number: 4 Publisher: Multidisciplinary

Digital Publishing Institute, dostupno na: https://www.mdpi.com/2076-3417/13/4/2471

[15]Richards, M., Ford, N., Fundamentals of Software Architecture: An Engineering Ap-

proach, 1st ed. Sebastopol, CA: O’Reilly Media, Mar. 2020.

[16]Ford, N., Richards, M., Sadalage, P., Dehghani, Z., Software Architecture: The Hard

Parts: Modern Trade-Off Analyses for Distributed Architectures, 1st ed. Sebastopol, CA:

O’Reilly Media, Nov. 2021.

[17]Ford, N., Parsons, R., Kua, P., Building Evolutionary Architectures: Support Constant

Change, 1st ed. Beijing: O’Reilly Media, Nov. 2017.

[18]Meyer, B., “The grand challenge of trusted components”, in 25th International Con-

ference on Software Engineering, 2003. Proceedings., May 2003, str. 660–667, iSSN:

0270-5257.

[19]Özsu, M. T., Valduriez, P., Principles of distributed database systems, 3rd ed. New York:

Springer Science+Business Media, 2011, oCLC: ocn706920112.

217

/paper/The-TSIMMIS-Project%3A-Integration-of-Heterogeneous-Chawathe-Garcia-Molina/14348170a14b4e2edca01521184cb2cd60b83200
/paper/The-TSIMMIS-Project%3A-Integration-of-Heterogeneous-Chawathe-Garcia-Molina/14348170a14b4e2edca01521184cb2cd60b83200
/paper/The-TSIMMIS-Project%3A-Integration-of-Heterogeneous-Chawathe-Garcia-Molina/14348170a14b4e2edca01521184cb2cd60b83200
http://ieeexplore.ieee.org/document/5410700/
https://jamesdixon.wordpress.com/2010/10/14/pentaho-hadoop-and-data-lakes/
https://jamesdixon.wordpress.com/2010/10/14/pentaho-hadoop-and-data-lakes/
https://doi.org/10.1145/3034786.3056124
https://www.mdpi.com/2076-3417/13/4/2471

Bibliography

[20]Dehghani, Z., Data Mesh: Delivering Data-Driven Value at Scale, 1st ed. Beijing Boston

Farnham Sebastopol Tokyo: O’Reilly Media, Apr. 2022.

[21]Mens, T., Eden, A. H., “On the Evolution Complexity of Design Patterns”, Electronic

Notes in Theoretical Computer Science, Vol. 127, No. 3, Apr. 2005, str. 147–163,

dostupno na: https://www.sciencedirect.com/science/article/pii/S1571066105001465

[22]Eden, A., Mens, T., “Measuring software flexibility”, IEE Proceedings - Software,

Vol. 153, No. 3, 2006, str. 113, dostupno na: https://digital-library.theiet.org/content/

journals/10.1049/ip-sen_20050045

[23]Voigtländer, J., “Bidirectionalization for free! (Pearl)”, in POPL ’09, 2009.

[24]Matsuda, K., Hu, Z., Nakano, K., Hamana, M., Takeichi, M., “Bidirectionalization

transformation based on automatic derivation of view complement functions”,

ACM SIGPLAN Notices, Vol. 42, No. 9, Oct. 2007, str. 47–58, dostupno na:

https://doi.org/10.1145/1291220.1291162

[25]Hofmann, M., Pierce, B., Wagner, D., “Symmetric lenses”, ACM SIGPLAN Notices,

Vol. 46, No. 1, 2011, str. 371–384, dostupno na: https://doi.org/10.1145/1925844.

1926428

[26]Miltner, A., Fisher, K., Pierce, B. C., Walker, D., Zdancewic, S., “Synthesizing bijective

lenses”, Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, 2017,

str. 1:1–1:30, dostupno na: https://dl.acm.org/doi/10.1145/3158089

[27]Doncevic, J., “Janus”, dostupno na: https://github.com/JurajDoncevic/Janus Original-

date: 2022-03-14T13:56:20Z. Feb. 2023.

[28]Don čević, J., Fertalj, K., Brčić, M., Kovač, M., “Mask-Mediator-Wrapper architecture

as a Data Mesh driver”, dostupno na: http://arxiv.org/abs/2209.04661 ArXiv:2209.04661

[cs]. Sep. 2022.

[29]Kimball, R., Caserta, J., The Data Warehouse ETL Toolkit: Practical Techniques for

Extracting, Cleaning, Conforming, and Delivering Data, 1st ed. Indianapolis, IN: Wiley,

Oct. 2004.

[30]Zhang, Y., Zhang, Y., Wang, S., Lu, J., “Fusion OLAP: Fusing the Pros of MOLAP

and ROLAP Together for In-memory OLAP (Extended Abstract)”, in 2019 IEEE 35th

International Conference on Data Engineering (ICDE), Apr. 2019, str. 2125–2126, iSSN:

2375-026X.

218

https://www.sciencedirect.com/science/article/pii/S1571066105001465
https://digital-library.theiet.org/content/journals/10.1049/ip-sen_20050045
https://digital-library.theiet.org/content/journals/10.1049/ip-sen_20050045
https://doi.org/10.1145/1291220.1291162
https://doi.org/10.1145/1925844.1926428
https://doi.org/10.1145/1925844.1926428
https://dl.acm.org/doi/10.1145/3158089
https://github.com/JurajDoncevic/Janus
http://arxiv.org/abs/2209.04661

Bibliography

[31]Forresi, C., Gallinucci, E., Golfarelli, M., Hamadou, H. B., “A dataspace-

based framework for OLAP analyses in a high-variety multistore”, The VLDB

Journal, Vol. 30, No. 6, Nov. 2021, str. 1017–1040, dostupno na: https:

//link.springer.com/10.1007/s00778-021-00682-5

[32]“Apache Linkis | Apache Linkis”, dostupno na: https://linkis.apache.org/

[33]Cappuzzo, R., Papotti, P., Thirumuruganathan, S., “Creating Embeddings of Heteroge-

neous Relational Datasets for Data Integration Tasks”, SIGMOD Conference, 2020.

[34]da Trindade, J. M. F., Karanasos, K., Curino, C., Madden, S., Shun, J., “Kaskade: Graph

Views for Efficient Graph Analytics”, in 2020 IEEE 36th International Conference on

Data Engineering (ICDE), Apr. 2020, str. 193–204, iSSN: 2375-026X.

[35]Debrouvier, A., Parodi, E., Perazzo, M., Soliani, V., Vaisman, A., “A model and query

language for temporal graph databases”, The VLDB Journal, Vol. 30, No. 5, Sep. 2021,

str. 825–858, dostupno na: https://link.springer.com/10.1007/s00778-021-00675-4

[36]Chatziantoniou, D., Kantere, V., “DataMingler: A Novel Approach to Data

Virtualization”, in Proceedings of the 2021 International Conference on Management

of Data. New York, NY, USA: Association for Computing Machinery, Jun. 2021, str.

2681–2685, dostupno na: https://doi.org/10.1145/3448016.3452752

[37]Magdy, A., Abdelhafeez, L., Kang, Y., Ong, E., Mokbel, M. F., “Microblogs

data management: a survey”, The VLDB Journal — The International Journal on

Very Large Data Bases, Vol. 29, No. 1, Jan. 2020, str. 177–216, dostupno na:

https://doi.org/10.1007/s00778-019-00569-6

[38]Arenas, M., Gottlob, G., Pieris, A., “Expressive Languages for Querying the Semantic

Web”, ACM Transactions on Database Systems, Vol. 43, No. 3, Nov. 2018, str.

13:1–13:45, dostupno na: https://doi.org/10.1145/3238304

[39]Krommyda, M., Kantere, V., “Visualization Systems for Linked Datasets”, in 2020 IEEE

36th International Conference on Data Engineering (ICDE), Apr. 2020, str. 1790–1793,

iSSN: 2375-026X.

[40]Zhou, J., Xu, M., Shraer, A., Namasivayam, B., Miller, A., Tschannen, E., Atherton,

S., Beamon, A. J., Sears, R., Leach, J., Rosenthal, D., Dong, X., Wilson, W.,

Collins, B., Scherer, D., Grieser, A., Liu, Y., Moore, A., Muppana, B., Su, X.,

Yadav, V., “FoundationDB: A Distributed Unbundled Transactional Key Value Store”, in

Proceedings of the 2021 International Conference on Management of Data. New York,

219

https://link.springer.com/10.1007/s00778-021-00682-5
https://link.springer.com/10.1007/s00778-021-00682-5
https://linkis.apache.org/
https://link.springer.com/10.1007/s00778-021-00675-4
https://doi.org/10.1145/3448016.3452752
https://doi.org/10.1007/s00778-019-00569-6
https://doi.org/10.1145/3238304

Bibliography

NY, USA: Association for Computing Machinery, Jun. 2021, str. 2653–2666, dostupno

na: https://doi.org/10.1145/3448016.3457559

[41]Zimányi, E., Sakr, M., Lesuisse, A., “MobilityDB: A Mobility Database Based on

PostgreSQL and PostGIS”, ACM Transactions on Database Systems, Vol. 45, No. 4,

Dec. 2020, str. 19:1–19:42, dostupno na: https://doi.org/10.1145/3406534

[42]Seidemann, M., Glombiewski, N., Körber, M., Seeger, B., “ChronicleDB: A

High-Performance Event Store”, ACM Transactions on Database Systems, Vol. 44,

No. 4, Oct. 2019, str. 13:1–13:45, dostupno na: https://doi.org/10.1145/3342357

[43]Zhao, X., Jiang, S., Wu, X., “WipDB: A Write-in-place Key-value Store that Mimics

Bucket Sort”, in 2021 IEEE 37th International Conference on Data Engineering (ICDE),

Apr. 2021, str. 1404–1415, iSSN: 2375-026X.

[44]Liang, J., Chai, Y., “CruiseDB: An LSM-Tree Key-Value Store with Both Better Tail

Throughput and Tail Latency”, in 2021 IEEE 37th International Conference on Data

Engineering (ICDE), Apr. 2021, str. 1032–1043, iSSN: 2375-026X.

[45]Yourdon, E., Constantine, L. L., Structured design: fundamentals of a discipline of com-

puter program and systems design. Englewood Cliffs, N.J: Prentice Hall, 1979.

[46]Martin, R., Clean Architecture: A Craftsman’s Guide to Software Structure and Design,

1st ed. London, England: Pearson, Sep. 2017.

[47]Martin, R., Agile Software Development, Principles, Patterns, and Practices, 1st ed. Up-

per Saddle River, N.J: Pearson, Oct. 2002.

[48]Page-Jones, M., What every programmer should know about object-oriented design. New

York, N.Y: Dorset House Pub, 1995.

[49]Evans, E., Domain-Driven Design: Tackling Complexity in the Heart of Software, 1st ed.

Boston: Addison-Wesley Professional, Aug. 2003.

[50]“ISO 25010”, dostupno na: https://iso25000.com/index.php/en/iso-25000-standards/

iso-25010

[51]“Data created worldwide 2005-2025 | Statistic”, dostupno na: https://www.statista.com/

statistics/871513/worldwide-data-created/

[52]Codd, E. F., “A Relational Model of Data for Large Shared Data Banks”, Vol. 13, No. 6,

1970.

220

https://doi.org/10.1145/3448016.3457559
https://doi.org/10.1145/3406534
https://doi.org/10.1145/3342357
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://www.statista.com/statistics/871513/worldwide-data-created/
https://www.statista.com/statistics/871513/worldwide-data-created/

Bibliography

[53]Pang, Z., Lu, Q., Chen, S., Wang, R., Xu, Y., Wu, J., “ArkDB: A Key-Value Engine for

Scalable Cloud Storage Services”, in Proceedings of the 2021 International Conference

on Management of Data. New York, NY, USA: Association for Computing Machinery,

Jun. 2021, str. 2570–2583, dostupno na: https://doi.org/10.1145/3448016.3457553

[54]Dehghani, Z., “How to Move Beyond a Monolithic Data Lake to a Distributed Data

Mesh”, dostupno na: https://martinfowler.com/articles/data-monolith-to-mesh.html May

2019.

[55]Gonzalez-Perez, C., Henderson-Sellers, B., Metamodelling for Software Engineering,

1st ed. Chichester, UK ; Hoboken, NJ: Wiley, Oct. 2008.

[56]Henderson-Sellers, B., On the Mathematics of Modelling, Metamodelling, Ontologies

and Modelling Languages. Springer, Jun. 2012.

[57]Breitbart, Y., Garcia-Molina, H., Silberschatz, A., “Overview of multidatabase transac-

tion management”, 1992, str. 59.

[58]Vathy-Fogarassy, A., Hugyák, T., “Uniform data access platform for SQL and NoSQL

database systems”, Information Systems, Vol. 69, Sep. 2017, str. 93–105, dostupno na:

https://linkinghub.elsevier.com/retrieve/pii/S0306437916303398

[59]Garcia-Molina, H., Ullman, J., Widom, J., Database Systems: The Complete Book,

2nd ed. Upper Saddle River, N.J: Pearson, Jun. 2008.

[60]Jurczyk, P., Xiong, L., Goryczka, S., “DObjects+: Enabling Privacy-Preserving Data

Federation Services”, in 2012 IEEE 28th International Conference on Data Engineering,

Apr. 2012, str. 1325–1328, iSSN: 2375-026X.

[61]Moura, S. L. d., Coutinho, F., Siqueira, S. W. M., Melo, R. N., Nunes, S. V., “In-

tegrating repositories of learning objects using Web-services to implement mediators

and wrappers”, in International Conference on Next Generation Web Services Practices

(NWeSP’05), Aug. 2005, str. 6 pp.–.

[62]Hongzhi Wang, Jianzhong Li, Zhenying He, “An effective wrapper architecture to hetero-

geneous data source”, in 17th International Conference on Advanced Information Net-

working and Applications, 2003. AINA 2003., Mar. 2003, str. 565–568.

[63]Chang, Y., Chang, C., Cheng, H., “Applying ontology to geographical scientific data

extraction”, in 2011 IEEE International Conference on Systems, Man, and Cybernetics,

Oct. 2011, str. 3397–3402, iSSN: 1062-922X.

221

https://doi.org/10.1145/3448016.3457553
https://martinfowler.com/articles/data-monolith-to-mesh.html
https://linkinghub.elsevier.com/retrieve/pii/S0306437916303398

Bibliography

[64]Shao, Y., Di, L., Kang, L., Bai, Y., “An integrated framework for geospatial data discov-

ering and standardized processing”, in 2013 Second International Conference on Agro-

Geoinformatics (Agro-Geoinformatics), Aug. 2013, str. 334–337.

[65]Garg, B., Kaur, K., “Integration of heterogeneous databases”, in 2015 International Con-

ference on Advances in Computer Engineering and Applications, Mar. 2015, str. 1033–

1038.

[66]Schmatz, K., Berwind, K., Engel, F., Hemmje, M. L., “An Interface to Heterogeneous

Data Sources Based on the Mediator/Wrapper Architecture in the Hadoop Ecosystem”, in

2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Dec.

2018, str. 1838–1845.

[67]Sethi, R., Traverso, M., Sundstrom, D., Phillips, D., Xie, W., Sun, Y., Yegitbasi, N., Jin,

H., Hwang, E., Shingte, N., Berner, C., “Presto: SQL on Everything”, in 2019 IEEE 35th

International Conference on Data Engineering (ICDE), Apr. 2019, str. 1802–1813, iSSN:

2375-026X.

[68]Dehghani, Z., “Data Mesh Principles and Logical Architecture”, dostupno na:

https://martinfowler.com/articles/data-mesh-principles.html Dec. 2020.

[69]Conway, M. E., “HOW DO COMMITTEES INVENT?”, Datamation magazine, F. D.

Thompson Publications, Inc., 1968, str. 4.

[70]Cockburn, A., “Hexagonal architecture”, dostupno na: https://alistair.cockburn.us/

hexagonal-architecture/ 2005.

[71]“IEEE Standard Glossary of Software Engineering Terminology”, IEEE Std 610.12-

1990, Dec. 1990, str. 1–84, conference Name: IEEE Std 610.12-1990.

[72]Pierce, B. C., Basic Category Theory for Computer Scientists. Cambridge, Mass: The

MIT Press, Aug. 1991.

[73]Milewski, B., Category Theory for Programmers. Milton Keynes: Bartosz Milewski, Jan.

2019.

[74]Abelson, H., Sussman, G. J., Sussman, J., Structure and Interpretation of Computer Pro-

grams - 2nd Edition, second edition ed. Cambridge, Mass.: The MIT Press, Sep. 1996.

[75]Sussman, G. J., Steele, G. L., “SCHEME: An Interpreter for Extended Lambda

Calculus”, Dec. 1975, accepted: 2004-10-01T20:37:06Z, dostupno na: https:

//dspace.mit.edu/handle/1721.1/5794

222

https://martinfowler.com/articles/data-mesh-principles.html
https://alistair.cockburn.us/hexagonal-architecture/
https://alistair.cockburn.us/hexagonal-architecture/
https://dspace.mit.edu/handle/1721.1/5794
https://dspace.mit.edu/handle/1721.1/5794

Bibliography

[76]Gamma, E., Helm, R., Johnson, R., Vlissides, J., Booch, G., Design Patterns: Elements

of Reusable Object-Oriented Software, 1st ed. Reading, Mass: Addison-Wesley Profes-

sional, Oct. 1994.

[77]Buonanno, E., Functional Programming in C#, Second Edition, 2nd ed. Shelter Island,

NY: Manning, Feb. 2022.

[78]Barr, M., Wells, C., Category Theory for Computing Science, 1st ed. New York: Prentice

Hall, Jul. 1990.

[79]Wlaschin, S., Domain Modeling Made Functional: Tackle Software Complexity with

Domain-Driven Design and F#, 1st ed. Raleigh, North Carolina: Pragmatic Bookshelf,

Feb. 2018.

[80]Bancilhon, F., Spyratos, N., “Update semantics of relational views”, ACM Transactions

on Database Systems, Vol. 6, No. 4, Dec. 1981, str. 557–575, dostupno na:

https://dl.acm.org/doi/10.1145/319628.319634

[81]Diskin, Z., “Algebraic Models for Bidirectional Model Synchronization”, in Model

Driven Engineering Languages and Systems, ser. Lecture Notes in Computer Science,

Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M., (ur.). Berlin, Heidelberg:

Springer, 2008, str. 21–36.

[82]Diskin, Z., “Compositionality of Update Propagation: Laxed PutPut”, Proceedings of the

Sixth International Workshop on Bidirectional Transformations (Bx 2017), Apr. 2017,

str. 16.

[83]Anjorin, A., Diskin, Z., Jouault, F., Ko, H.-S., Leblebici, E., Darmstadt, T., Westfechtel,

B., “Benchmarx Reloaded: A Practical Benchmark Framework for Bidirectional Trans-

formations”, Proceedings of the Sixth International Workshop on Bidirectional Transfor-

mations (Bx 2017), Apr. 2017, str. 16.

[84]Tullsen, M., “ASN.1 Encoding Schemes Done Right Using CMPCT”, in Proceedings of

the 8th International Workshop on Bidirectional Transformations, ser. CEUR Workshop

Proceedings, Cheney, J., Ko, H.-S., (ur.), Vol. 2355. Philadelphia, PA: CEUR, Jun. 2019,

str. 1–15, iSSN: 1613-0073, dostupno na: http://ceur-ws.org/Vol-2355/#paper1

[85]Asano, Y., Hidaka, S., Hu, Z., Ishihara, Y., Kato, H., Ko, H.-S., Nakano, K., Onizuka, M.,

Sasaki, Y., Shimizu, T., Tsushima, K., Yoshikawa, M., “A View-based Programmable

Architecture for Controlling and Integrating Decentralized Data”, arXiv:1803.06674

[cs], Mar. 2018, arXiv: 1803.06674, dostupno na: http://arxiv.org/abs/1803.06674

223

https://dl.acm.org/doi/10.1145/319628.319634
http://ceur-ws.org/Vol-2355/#paper1
http://arxiv.org/abs/1803.06674

Bibliography

[86]Asano, Y., Cao, Y., Hidaka, S., Hu, Z., Ishihara, Y., Kato, H., Nakano, K.,

Onizuka, M., Sasaki, Y., Shimizu, T., Takeichi, M., Xiao, C., Yoshikawa, M.,

“Bidirectional Collaborative Frameworks for Decentralized Data Management”, in

Software Foundations for Data Interoperability, Fletcher, G., Nakano, K., Sasaki,

Y., (ur.). Cham: Springer International Publishing, 2022, Vol. 1457, str. 13–51,

series Title: Communications in Computer and Information Science, dostupno na:

https://link.springer.com/10.1007/978-3-030-93849-9_2

[87]Weidmann, N., Anjorin, A., Fritsche, L., Varró, G., Schürr, A., Leblebici,

E., “Incremental Bidirectional Model Transformation with eMoflon::IBeX”, in

Proceedings of the 8th International Workshop on Bidirectional Transformations,

ser. CEUR Workshop Proceedings, Cheney, J., Ko, H.-S., (ur.), Vol. 2355.

Philadelphia, PA: CEUR, Jun. 2019, str. 45–55, iSSN: 1613-0073, dostupno na:

http://ceur-ws.org/Vol-2355/#paper4

[88]Matsuda, K., Wang, M., “FliPpr: A Prettier Invertible Printing System”, in Programming

Languages and Systems, ser. Lecture Notes in Computer Science, Felleisen, M., Gardner,

P., (ur.). Berlin, Heidelberg: Springer, 2013, str. 101–120.

[89]Foster, N., Matsuda, K., Voigtländer, J., “Three Complementary Approaches to

Bidirectional Programming”, in Generic and Indexed Programming, Hutchison, D.,

Kanade, T., Kittler, J., Kleinberg, J. M., Mattern, F., Mitchell, J. C., Naor, M., Nierstrasz,

O., Pandu Rangan, C., Steffen, B., Sudan, M., Terzopoulos, D., Tygar, D., Vardi, M. Y.,

Weikum, G., Gibbons, J., (ur.). Berlin, Heidelberg: Springer Berlin Heidelberg, 2012,

Vol. 7470, str. 1–46, series Title: Lecture Notes in Computer Science, dostupno na:

http://link.springer.com/10.1007/978-3-642-32202-0_1

[90]Voigtländer, J., Hu, Z., Matsuda, K., Wang, M., “Combining syntactic and semantic

bidirectionalization”, ACM SIGPLAN Notices, Vol. 45, No. 9, Sep. 2010, str. 181–192,

dostupno na: https://dl.acm.org/doi/10.1145/1932681.1863571

[91]Pacheco, H., Hu, Z., Fischer, S., “Monadic combinators for "Putback" style

bidirectional programming”, in Proceedings of the ACM SIGPLAN 2014 Workshop

on Partial Evaluation and Program Manipulation, ser. PEPM ’14. New York, NY,

USA: Association for Computing Machinery, Jan. 2014, str. 39–50, dostupno na:

https://doi.org/10.1145/2543728.2543737

[92]Abou-Saleh, F., Cheney, J., Gibbons, J., McKinna, J., Stevens, P., “Reflections on

Monadic Lenses”, in A List of Successes That Can Change the World, Lindley, S.,

McBride, C., Trinder, P., Sannella, D., (ur.). Cham: Springer International Publishing,

224

https://link.springer.com/10.1007/978-3-030-93849-9_2
http://ceur-ws.org/Vol-2355/#paper4
http://link.springer.com/10.1007/978-3-642-32202-0_1
https://dl.acm.org/doi/10.1145/1932681.1863571
https://doi.org/10.1145/2543728.2543737

Bibliography

2016, Vol. 9600, str. 1–31, series Title: Lecture Notes in Computer Science, dostupno

na: http://link.springer.com/10.1007/978-3-319-30936-1_1

[93]Abou-Saleh, F., Cheney, J., Gibbons, J., McKinna, J., Stevens, P., “Introduction

to Bidirectional Transformations”, in Bidirectional Transformations, Gibbons, J.,

Stevens, P., (ur.). Cham: Springer International Publishing, 2018, Vol. 9715,

str. 1–28, series Title: Lecture Notes in Computer Science, dostupno na:

http://link.springer.com/10.1007/978-3-319-79108-1_1

[94]Bohannon, A., Foster, J. N., Pierce, B. C., Pilkiewicz, A., Schmitt, A., “Boomerang:

Resourceful Lenses for String Data”, Nov. 2007, str. 33.

[95]Foster, J. N., Greenwald, M. B., Moore, J. T., Pierce, B. C., Schmitt, A., “Combinators

for bidirectional tree transformations: A linguistic approach to the view-update

problem”, ACM Transactions on Programming Languages and Systems, Vol. 29, No. 3,

May 2007, str. 17, dostupno na: https://dl.acm.org/doi/10.1145/1232420.1232424

[96]Foster, J. N., Pilkiewicz, A., Pierce, B. C., “Quotient lenses”, ACM SIGPLAN Notices,

Vol. 43, No. 9, Sep. 2008, str. 383–396, dostupno na: https://doi.org/10.1145/1411203.

1411257

[97]Wadler, P., “Deforestation: transforming programs to eliminate trees”, Theoretical

Computer Science, Vol. 73, No. 2, Jun. 1990, str. 231–248, dostupno na:

https://www.sciencedirect.com/science/article/pii/030439759090147A

[98]Wadler, P., “Theorems for free!”, in Proceedings of the fourth international conference

on Functional programming languages and computer architecture, ser. FPCA ’89. New

York, NY, USA: Association for Computing Machinery, Nov. 1989, str. 347–359,

dostupno na: https://doi.org/10.1145/99370.99404

[99]Foster, J. N., Pierce, B. C., “Boomerang Programmer’s Manual”, dostupno na:

https://www.seas.upenn.edu/~harmony/manual.pdf Sep. 2009.

[100]Ko, H.-S., Zan, T., Hu, Z., “BiGUL: a formally verified core language for putback-based

bidirectional programming”, in Proceedings of the 2016 ACM SIGPLAN Workshop

on Partial Evaluation and Program Manipulation, ser. PEPM ’16. New York, NY,

USA: Association for Computing Machinery, Jan. 2016, str. 61–72, dostupno na:

https://doi.org/10.1145/2847538.2847544

[101]Matsuda, K., Wang, M., “HOBiT: Programming Lenses Without Using Lens

Combinators”, in Programming Languages and Systems, Ahmed, A., (ur.). Cham:

Springer International Publishing, 2018, Vol. 10801, str. 31–59, series Title:

225

http://link.springer.com/10.1007/978-3-319-30936-1_1
http://link.springer.com/10.1007/978-3-319-79108-1_1
https://dl.acm.org/doi/10.1145/1232420.1232424
https://doi.org/10.1145/1411203.1411257
https://doi.org/10.1145/1411203.1411257
https://www.sciencedirect.com/science/article/pii/030439759090147A
https://doi.org/10.1145/99370.99404
https://www.seas.upenn.edu/~harmony/manual.pdf
https://doi.org/10.1145/2847538.2847544

Bibliography

Lecture Notes in Computer Science, dostupno na: http://link.springer.com/10.1007/

978-3-319-89884-1_2

[102]Lutterkort, D., “AUGEAS—a configuration API”, Proceedings of Linux Symposium,

2008, str. 47–56.

[103]“Augeas — Main”, dostupno na: https://augeas.net/

[104]Foster, J. N., “Bidirectional Programming Languages”, Doktorski rad, University of

Pennsylvania, 2009.

[105]Barbosa, D. M. J., Cretin, J., Foster, N., Greenberg, M., Pierce, B. C., “Matching Lenses:

Alignment and View Update”, 2010, str. 12.

[106]Miltner, A., Maina, S., Fisher, K., Pierce, B. C., Walker, D., Zdancewic, S., “Synthesizing

symmetric lenses”, Proceedings of the ACM on Programming Languages, Vol. 3, No.

ICFP, Jul. 2019, str. 1–28, dostupno na: https://dl.acm.org/doi/10.1145/3341699

[107]Anjorin, A., Ko, H.-S., “Towards a visual editor for lens combinators (extended

abstract)”, in Conference Companion of the 2nd International Conference on Art,

Science, and Engineering of Programming. Nice France: ACM, Apr. 2018, str. 33–35,

dostupno na: https://dl.acm.org/doi/10.1145/3191697.3191719

[108]Fischer, S., Hu, Z., Pacheco, H., “The essence of bidirectional programming”, Science

China Information Sciences, Vol. 58, No. 5, May 2015, str. 1–21, dostupno na:

http://link.springer.com/10.1007/s11432-015-5316-8

[109]Pacheco, H., Zan, T., Hu, Z., “BiFluX: A Bidirectional Functional Update Language

for XML”, in Proceedings of the 16th International Symposium on Principles and

Practice of Declarative Programming. Canterbury United Kingdom: ACM, Sep. 2014,

str. 147–158, dostupno na: https://dl.acm.org/doi/10.1145/2643135.2643141

[110]Zan, T., Liu, L., Ko, H.-S., Hu, Z., “Brul: A Putback-Based Bidirectional Transforma-

tion Library for Updatable Views”, Proceedings of the Fifth International Workshop on

Bidirectional Transformations (Bx 2016), Apr. 2016.

[111]Asano, Y., Herr, D.-F., Ishihara, Y., Kato, H., Nakano, K., Onizuka, M., Sasaki, Y.,

“Flexible Framework for Data Integration and Update Propagation: System Aspect”, in

2019 IEEE International Conference on Big Data and Smart Computing (BigComp), Feb.

2019, str. 1–5, iSSN: 2375-9356.

226

http://link.springer.com/10.1007/978-3-319-89884-1_2
http://link.springer.com/10.1007/978-3-319-89884-1_2
https://augeas.net/
https://dl.acm.org/doi/10.1145/3341699
https://dl.acm.org/doi/10.1145/3191697.3191719
http://link.springer.com/10.1007/s11432-015-5316-8
https://dl.acm.org/doi/10.1145/2643135.2643141

Bibliography

[112]Asano, Y., Hu, Z., Ishihara, Y., Kato, H., Onizuka, M., Yoshikawa, M., “Controlling

and Sharing Distributed Data for Implementing Service Alliance”, in 2019 IEEE Inter-

national Conference on Big Data and Smart Computing (BigComp), Feb. 2019, str. 1–4,

iSSN: 2375-9356.

[113]Kawanaka, S., Hosoya, H., “biXid: A Bidirectional Transformation Language for XML”,

in Proceedings of the eleventh ACM SIGPLAN international conference on Functional

programming, Portland, Oregon, USA, Sep. 2006, str. 16.

[114]Miltner, A. F., “Synthesizing Lenses”, Doctoral Dissertation, Princeton University, Sep.

2020.

[115]Matsuda, K., Wang, M., “Applicative bidirectional programming: Mixing lenses

and semantic bidirectionalization”, Journal of Functional Programming, Vol. 28,

2018, str. e15, dostupno na: https://www.cambridge.org/core/product/identifier/

S0956796818000096/type/journal_article

[116]Atzeni, P., Bugiotti, F., Rossi, L., “Uniform access to NoSQL systems”,

Information Systems, Vol. 43, Jul. 2014, str. 117–133, dostupno na: http:

//www.sciencedirect.com/science/article/pii/S0306437913000719

[117]Li, R., Lu, Z., Xiao, W., Wu, W., “XML-based integration data model and schema map-

ping in multidatabase systems”, Journal of Systems Engineering and Electronics, Vol. 16,

No. 2, 2005, str. 437–444.

[118]Kozankiewicz, H., Stencel, K., Subieta, K., “Integration of heterogeneous resources

through updatable views”, in 13th IEEE International Workshops on Enabling Tech-

nologies: Infrastructure for Collaborative Enterprises, Jun. 2004, str. 309–314, iSSN:

1524-4547.

[119]Lawrence, R., “Integration and Virtualization of Relational SQL and NoSQL Systems

Including MySQL and MongoDB”, in 2014 International Conference on Computational

Science and Computational Intelligence, Vol. 1, Mar. 2014, str. 285–290.

[120]Abuzaid, F., Kraft, P., Suri, S., Gan, E., Xu, E., Shenoy, A., Ananthanarayan, A., Sheu,

J., Meijer, E., Wu, X., Naughton, J., Bailis, P., Zaharia, M., “DIFF: a relational interface

for large-scale data explanation”, The VLDB Journal, Vol. 30, No. 1, Jan. 2021, str.

45–70, dostupno na: https://link.springer.com/10.1007/s00778-020-00633-6

[121]Li, Y., Cao, J., Chen, H., Ge, T., Xu, Z., Peng, Q., “FlashSchema: Achieving High

Quality XML Schemas with Powerful Inference Algorithms and Large-scale Schema

227

https://www.cambridge.org/core/product/identifier/S0956796818000096/type/journal_article
https://www.cambridge.org/core/product/identifier/S0956796818000096/type/journal_article
http://www.sciencedirect.com/science/article/pii/S0306437913000719
http://www.sciencedirect.com/science/article/pii/S0306437913000719
https://link.springer.com/10.1007/s00778-020-00633-6

Bibliography

Data”, in 2020 IEEE 36th International Conference on Data Engineering (ICDE), Apr.

2020, str. 1962–1965, iSSN: 2375-026X.

[122]Lam, H. T., Buesser, B., Min, H., Minh, T. N., Wistuba, M., Khurana, U., Bramble, G.,

Salonidis, T., Wang, D., Samulowitz, H., “Automated Data Science for Relational Data”,

in 2021 IEEE 37th International Conference on Data Engineering (ICDE), Apr. 2021, str.

2689–2692, iSSN: 2375-026X.

[123]Gkini, O., Belmpas, T., Koutrika, G., Ioannidis, Y., “An In-Depth Benchmarking

of Text-to-SQL Systems”, in Proceedings of the 2021 International Conference on

Management of Data. New York, NY, USA: Association for Computing Machinery, Jun.

2021, str. 632–644, dostupno na: https://doi.org/10.1145/3448016.3452836

[124]Fielding, R. T., “Architectural Styles and the Design of Network-based Software Archi-

tectures”, Doctrolar dissertation, UNIVERSITY OF CALIFORNIA, IRVINE, University

of California, Irvine, 2000.

[125]Benedikt, M., Bourhis, P., Jachiet, L., Tsamoura, E., “Balancing Expressiveness and

Inexpressiveness in View Design”, ACM Transactions on Database Systems, Vol. 46,

No. 4, Nov. 2021, str. 15:1–15:40, dostupno na: https://doi.org/10.1145/3488370

[126]Qin, X., Luo, Y., Tang, N., Li, G., “Making data visualization more efficient and

effective: a survey”, The VLDB Journal, Vol. 29, No. 1, Jan. 2020, str. 93–117, dostupno

na: http://link.springer.com/10.1007/s00778-019-00588-3

[127]Ivanics, P., “An Introduction to Clean Software Architecture”, 2017, dostupno

na: https://pivanics.users.cs.helsinki.fi/portfolio/docs/publications/Peter_Ivanics-Clean_

Software_Architecture.pdf

[128]Young, G., “CQRS Documents by Greg Young”, 2010.

[129]Kleppmann, M., Designing Data-Intensive Applications: The Big Ideas Behind Reliable,

Scalable, and Maintainable Systems, 1st ed. Boston: O’Reilly Media, May 2017.

[130]Parr, T., The Definitive ANTLR 4 Reference. Dallas, Texas, Raleigh, North Carolina:

The Pragmatic Programmer, 2012.

[131]Atzeni, P., Bugiotti, F., Rossi, L., “Uniform Access to Non-relational Database Systems:

The SOS Platform”, in Active Flow and Combustion Control 2018, King, R., (ur.).

Cham: Springer International Publishing, 2012, Vol. 141, str. 160–174, series Title:

Notes on Numerical Fluid Mechanics and Multidisciplinary Design, dostupno na:

http://link.springer.com/10.1007/978-3-642-31095-9_11

228

https://doi.org/10.1145/3448016.3452836
https://doi.org/10.1145/3488370
http://link.springer.com/10.1007/s00778-019-00588-3
https://pivanics.users.cs.helsinki.fi/portfolio/docs/publications/Peter_Ivanics-Clean_Software_Architecture.pdf
https://pivanics.users.cs.helsinki.fi/portfolio/docs/publications/Peter_Ivanics-Clean_Software_Architecture.pdf
http://link.springer.com/10.1007/978-3-642-31095-9_11

Bibliography

[132]“SQLite Sample Database And Its Diagram (in PDF format)”, dostupno na:

https://www.sqlitetutorial.net/sqlite-sample-database/

229

https://www.sqlitetutorial.net/sqlite-sample-database/

Biography

Juraj Dončević was born on the 31st of December 1992 in Bjelovar, Croatia. He enrolled in

the Computing undergraduate program at the University of Zagreb Faculty of Electrical Engi-

neering and Computing (FER), where he earned his bachelor’s degree in 2016. The same year

he enrolled in the graduate Software Engineering program at FER. Upon completing his mas-

ter’s thesis, titled Heterogeneous Database System, he received his master’s degree in 2018. He

enrolled in postgraduate doctoral studies at FER that same year. In 2018, he also took up the po-

sition of teaching assistant at the Department of Applied Computing at FER. Since then, he has

been involved in the following undergraduate and graduate courses: Introduction to Program-

ming, Algorithms and Data Structures, Development of Software Applications, and Information

Systems. His research involves software architecture, software design, data management, func-

tional programming, bidirectionalisation, and category theory.

List of published work

Journal articles

1.Don čević, J.; Fertalj, K.; Brčić, M.; Krajna, A. Mask–Mediator–Wrapper: A Revised

Mediator–Wrapper Architecture for Heterogeneous Data Source Integration. Appl. Sci.

2023, 13, 2471. https://doi.org/10.3390/app13042471

Conference papers

1.J. Don čević and K. Fertalj, "Database Integration Systems", 2020 43rd International Con-

vention on Information, Communication and Electronic Technology (MIPRO), Opatija,

Croatia, 2020, pp. 1617-1622, doi: 10.23919/MIPRO48935.2020.9245245.

230

Životopis

Juraj Dončević rod̄en je 31. prosinca 1992. u Bjelovaru, Hrvatska. Upisao je preddiplomski

studij Računarstva na Fakultetu elektrotehnike i računarstva (FER) Sveučilišta u Zagrebu, gdje

je 2016. godine stekao zvanje prvostupnika. Iste godine upisao je diplomski studij Program-

skog inženjerstva na FER-u. Nakon obrane diplomskog rada pod nazivom Heterogeni sustav

baza podataka diplomirao je 2018. Iste godine upisao je poslijediplomski doktorski studij na

FER-u. 2018. godine preuzima i mjesto asistenta na Zavodu za primijenjeno računarstvo FER-

a. Od tada je uključen u sljedeće preddiplomske i diplomske kolegije: Uvod u programiranje,

Algoritmi i strukture podataka, Razvoj primijenjene programske potpore i Informacijski sus-

tavi. Njegovo istraživanje uključuje arhitekturu softvera, dizajn softvera, upravljanje podacima,

funkcijsko programiranje, bidirekcionalizaciju i teoriju kategorija.

231

	Introduction
	Motivation
	Contributions
	Research methodology
	Thesis structure

	Software architecture preliminaries
	Fundamentals of software architectures
	Data integration and management systems
	A note on metamodelling
	Data source integration systems

	Mediator–wrapper architecture
	On the roles of mediator–wrapper components
	On schema hierarchies in the mediator–wrapper architecture

	Data mesh
	Quantitative shift-cost analysis

	Category theory, functional programming, and bidirectionalisation preliminaries
	Basic category theory
	Functional programming
	Functors
	Monads

	Bidirectionalisation
	Syntactic BX
	Semantic BX
	BX combinators
	Other notable approaches
	Lenses

	Mask–mediator–wrapper architecture
	Problems with the mediator–wrapper architecture
	Extending the mediator–wrapper architecture
	The mask’s effect on the system schema hierarchy

	Quantitative shift-cost analysis of the mediator–wrapper architecture

	Mask component
	Mask component functional requirements
	Mask inner components
	Data translation

	Mask framework
	Mask modalities

	Prototype system
	Janus system
	Janus schema model
	Janus data model
	Janus query model
	Janus command model
	Janus communication
	Janus components
	Janus mediator component
	Janus wrapper component

	Proof of concept mask in the Janus system
	Mask framework
	Web REST API mask
	LiteDB mask
	SQLite mask

	Method for bidirectional data transformations
	Lenses for data transformation
	Lens implementation in C#
	Web API mask lenses
	RowDataDtoLens
	TabularDataDtoLens

	Behavedness of Janus lenses

	Mask–mediator–wrapper case studies
	SOS system emulation case study
	Data mesh emulation case study
	Emulating a data mesh
	Expected benefits

	Case study prototypes
	Janus as a data source integration system
	Janus for SOS system emulation
	Janus for data mesh emulation

	Conclusion
	Appendix
	List of abbreviations
	Code example prefix
	Running the case studies' prototypes using Docker compose
	Configuration tables for the case studies' prototypes
	Data source integration system case study prototype configuration
	SOS system case study prototype configuration
	Data mesh case study prototype configuration

	Additional details on the data source integration system case study prototype
	Schema translation
	Query translation and execution activities
	Data translation

	Bibliography
	Biography
	Životopis

