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1. Introduction

Vehicle safety and performance in dynamic environments has been a great challenge in auto-

motive engineering. As automotive technologies evolve, so does the need for robust methodologies

to analyze and ensure the stability of vehicle dynamics, more specifically lateral dynamics. This

research focuses on implementing two fundamental techniques for stability analysis: phase plane

analysis and Lyapunov analysis. Phase Plane Analysis provides a visual approach to studying the

behavior of dynamical systems. By plotting state variables in a phase plane, interesting patterns of

system behavior become visually apparent. This method is particularly valuable in analyzing the

qualitative behavior of nonlinear systems, offering insights into stability, limit cycles, and other

nonlinear behaviour. Lyapunov Analysis offers a rigorous mathematical framework for assessing

stability in dynamical systems. Named after Aleksandr Lyapunov, this method relies on the exam-

ination of Lyapunov functions to determine the stability properties of equilibrium points. Through

Lyapunov’s direct method, we can establish different types of stability of dynamical systems, pro-

viding a deeper understanding of their behavior.

2



2. Nonlinear Control Systems

Every physical system in real world is nonlinear. Its dynamics are described as set of differ-

ential equations. Nonlinearities can be result of energy limitations, imperfections of the system,

have intentionally added nonlinear elements(e.g. hysteresis) or simply have dynamics that behave

in a nonlinear way. Unlike linear system, nonlinear systems can have multiple equilibrium points,

limit cycles, chaos and many other phenomena.

As previously mentioned, dynamic system can be represented by a set of nonlinear differential

equations:

ẋ = f (x, t) . (2.1)

If there exists some control law u = g (x, t), then closed loop dynamics are:

ẋ = f (x, g (x, t) , t) . (2.2)

Theory of nonlinear control has the following problems:

1. Analysis problem: search for properties of the system, how it behaves under different con-

ditions and its stability.

2. Synthesis problem: finding parameters, structure and elements of the system required to

create and develop controllers or algorithms to achieve desired performance.

Analysis problem will be covered in greater detail in later chapters while synthesis will not.
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2.1. Phase Trajectories of Nonlinear Systems

Figure 2.1. Phase portrait of Van der Pols equation, source:[7]

Best way to develop intuition how a system behaves is to visualize it. Very powerful tool to

achieve that is Phase portrait. One of its limitations is number of states that can be plotted, up

to three. There are multiple methods such as analythical method and method of isoclines. In

this work, phase plane construction will be based on solving systems of equations using Matlabs

solvers. There are multiple different types of equilibrium points which is shown on figure 2.2.
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Figure 2.2. Types of equilibrium points source:[1]
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2.2. Lyapunov Stability

To define stability of a system, we need to first describe an autonomous system. It is a system

which does not change in time (time-invariant) and has no outside inputs that affect the system.

Definition 2.1. Nonlinear system is autonomous if it can be described with a system of first-order

differential equations

ẋ (t) = f (x) (2.3)

where f is n× 1 vector function and x is n× 1 state vector and n is number of states, otherwise it

is non-autonomous.

Next we define equilibrium points.

Definition 2.2. A state xe is a state of equilibrium if trajectory of the system equals x (t) = xe

and remains in that state for all future t.

State vector being constant satisfies equation

ẋ (t) = f (xe) = 0. (2.4)

Let us describe concept of Lyapunov stability. We will asume that equilibrium point is in the

origin, xe = 0. According to [1],Lyapunov stability is introduced by the following definition.

Definition 2.3. The equilibrium state xe = 0 is stable if, for any R > 0, there exists r > 0, such

that if ∥x (0) ∥ < r, then ∥x (t) ∥ < R for all t ≥ 0 . Otherwise, the equilibrium point is unstable.

More intuitively, system is stable in Lyapunov sense if initial state x (0) = x0 is inside the ball

(or hypershpere if there are more than 3 states) of radius r and the trajectory from that initial state

is always inside ball (hypershere) of radius R.

Often, this definition of stability is not enough. In some cases, we want system to reach equilib-

rium or even to reach it fast (in finite time). Now we will expand concept of stability by introducing

asymptotic and exponential stability.

Definition 2.4. Equilibrium state xe = 0 is asymptotically stable if it is stable and there exist some

r > 0 such that ∥x (0) ∥ < r implies x (t) → 0 as t→ ∞.

To put simply, system is stable and state converges to equilibrium as time goes to ∞.

Exponential stability not only makes sure that system is asymptotically stable, but how fast it

converges to equilibrium as well.

Definition 2.5. Equilibrium state xe = 0 is exponentialy stable if it is stable and there exist

numbers α, λ ∈ R+ such that

∀t, ∥x (t) ∥ ≤ α∥x (0) ∥e−λt. (2.5)
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Simply, this means that trajectory converges to equilibrium faster than exponential function

α∥x (0) ∥e−λt.

In above definitions of stability, we considered local stability considering initial states within

some hypersphere of radius r. In terms of global stability, system will be stable, asymptotically or

exponentially stable for any initial state.

2.3. Lyapunov’s Direct Method

There are two methods to Lyapunov stability analysis:

1. linear model analysis

2. direct analysis.

Linear model analysis, as the name sugests, is based on linearization of system and its trajectory is

often visualised with 2-state systems. Analysis of linearized system is good only in small region

which will be shown why. Another problem is that solving nonlinear differential equation can

be extremely difficult for complex systems. Basic idea of direct method is that we can analyze

stability of a system without solving differential equation. That is done through use of Lyapunov

function V (x). It is a scalar function that originaly started as mathematical extension of total

energy of a system. If energy is constantly dissipated, then the system will eventually end up in

equilibrium point.

2.3.1. Properties of Lyapunov Functions

Since energy can only be positive, Lyapunov function needs to be positive as well.

Definition 2.6. A scalar continuous function V (x) is positive definite if V (0) = 0 and for x ̸= 0,

V (x) > 0

Another property of Lyapunov function is that it is monotone and decreasing as x and ẋ vary.

It is described with V̇ , a derivative of V along system trajectory.

Definition 2.7. For some system, if V (x) is positive definite, has continuous partial derivatives

and time derivative along any trajectory is negative semi-definite V̇ (x) ≤ 0, then V (x) is Lya-

punov function for that system.

2.3.2. Local and Global Stability

System can be stable inside hypersphere of radius R, but unstable outside (or we do not care

about stability outside of it). This brings us to important concept: local and global stability.
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Definition 2.8. If there exists V (x),with continuous partial first derivatives, inside hypersphere

with radius R such that V (x) is positive definite and V̇ (x) is negative semi-definite, then the

system is stable. If V̇ (x) is negative definite, the system is asympotitcally stable. Proof is in [1].

For global stability, hyperesphere needs to be extended to whole state space, in case of physical

system, Rn. Another extension needs to be made: V (x) has to be radially unbounded, meaning

that V (x) → ∞ as ∥x∥ → ∞. Everything combined gives the following definition.

Definition 2.9. Let V (x) be Lyapunov function of some system, with continous first order deriva-

tions. If the following is valid:

1. V (x) is positive definite

2. V̇ (x) is negative definite

3. V (x) → ∞ as ∥x∥ → ∞,

then equilibrium is globaly asymptotically stable.

2.4. Methods forming Lyapunov functions

One of the problems of finding Lyapunov function is that there are no general ways to find one

for nonlinear system as each system behaves completely differently.

2.4.1. Linear method

For a linear system described by ẋ (t) = Ax (t) one of the Lyapunov functions is V (x) =

x
TPx. Matrix P is positive definite and therefore scalar function V (x) will be positive definite as

well. Last property that needs to be satisfied is negative definiteness of the gradient:

V̇ (x) = ẋ
TP ẋ+ x

TP ẋ = x
TATPx+ x

TPAx

V̇ (x) = x
T
(

ATP + PA
)

x = −x
TQx < 0.

(2.6)

Given 2.6, linear system will be asymptotically stable at equilibrium point if:

ATP + PA = −Q, (2.7)

where Q can be identity matrix[2].

Nonlinear system with n equations and states can be linearized by determining its Jacobian:

A =









∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...
∂fn
∂x1

· · · ∂fn
∂xn









. (2.8)

This can give great insight into stability of a nonlinear system.



3. Vehicle model

In previous chapter, brief introduction to nonlinear system analysis was given. The goal is

to perform an analysis on lateral dynamics of a vehicle and get an insight into its stability under

different conditions. To do that, first we need to define the model. Vehicle model that will be used

is simplified bicycle model. For lateral dynamics, we will derive the 2-degree of freedom bicycle

model f(vy, ψ̇) with lateral speed vy and yaw rate ψ̇ as system states and then expand it to 4-DOF

model by including front and rear tyre relaxation lengths.

3.1. Lateral dynamics of bicycle model

Figure 3.1. Dynamic bicycle model source:[4]

First, we start with defining lateral position y which is measured from vehicles centered of

gravity to center of rotation of the vehicle, yaw angle ψ is measured with respect to global coordi-

nate X-axis and lastly vehicle speed, longitudinal speed denoted by vx as shown on figure 3.1. We

now apply Newton’s second law for motion for y-axis of vehicles local coordinate frame:

may = Fyf + Fyr,

where Front and rear lateral tyre forces, also shown in figure 3.2, are Fyf and Fyr and ay is

inertial acceleration along local y-axis, m is mass of the vehicle. Furthermore, ay consists of two

components:

ay =
∂2y

∂t2
+ vx

∂ψ

∂t
, (3.1)

9
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where first component is lateral acceleration as a result of motion along y-axis and second com-

ponent is centripetal acceleration due to rotation around center of gravity. Substituting 3.1. into

3.1. gives:

m

(

∂2y

∂t2
+ vx

∂ψ

∂t

)

= Fyf + Fyr

m
∂2y

∂t2
= Fyf + Fyr −mvx

∂ψ

∂t
.

(3.2)

Newton’s second law for rotation of the vehicle around z-axis in local coordinate frame is:

Jz
∂2ψ

∂t2
= lfFyf − lrFyr (3.3)

where lf is distance from center of gravity (cog) to front wheel, and lr distance from cog to rear

wheel, Jz is rotational inertia of z-axis. Now the lateral model can be extended to include steering

angle of front wheel δf as shown in figure 3.2:

mv̇y = Fyf cos (δf ) + Fyr −mvxψ̇

Jzψ̈ = lfFyf cos (δf )− lrFyr.
(3.4)

3.2. Wheel geometry

Figure 3.2. Dynamic bicycle model source:[3]

Lateral forces depend on the slip angle of the tyres Fy (α). Slip angle of a tyre is the angle

between orientation of the tyre and velocity vector of the tyre. This relation is shown on figure 3.2.

For the front wheel, slip angle is given by:

αf = arctan
vf2

vf1
,

where it can be seen that

vf1 = vfx cos (δf ) + vfy sin (δf )

vf2 = −vfx sin (δf ) + vfy cos (δf ) .
(3.5)
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Figure 3.3. Front wheel geometry

Looking at figure 3.3, we can see that vfx = vx and vfy = vy + ψ̇lf and by substituting into 3.5

gives:

αf = arctan
−vx sin δf + (vy + ψ̇lf ) cos δf

vx cos δf + (vy + ψ̇lf ) sin δf
. (3.6)

Figure 3.4. Rear wheel geometry

For the rear wheel, slip angle is:

αr = arctan
vry

vrx
,

from figure 3.4 we see vry = vy − ψ̇lr and vx = vrx. Again, by substitution, we get rear wheel

slip angle:

αr = arctan
vy − ψ̇lr

vx
. (3.7)

3.3. Tyre Model

Next step in deriving lateral model is to select tyre model. There are many tyre models such

as Pacejka’s magic formula, Dugoff’s model, TMeasy and others. Pacejka’s magic formula will

be used because it is widely used in automobile industry. It is an empirical model and the reason
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behind wide use is that analytical models are not accurate for larger slip angles. Magic formula

follows[4]:

Fy = D sin {C arctan [Bα− E (Bα− arctan (Bα))]} , (3.8)

where Fy is lateral force, α is slip angle and

• B is stiffness factor

• C is shape factor

• D is maximum value

• E is curvature factor.

In our model, lateral force has negative value:

Fy = −D sin {C arctan [Bα− E (Bα− arctan (Bα))]} . (3.9)

Due to sin and arctan being odd functions, sign can moved to equations for slip angles which

gives following equations for front and rear lateral forces and slip angles:

Fyf = Df sin {Cf arctan [Bfαf − Ef (Bfαf − arctan (Bfαf ))]} (3.10)

Fyr = Dr sin {Cr arctan [Brαr − Er (Brαr − arctan (Brαr))]} (3.11)

αf = arctan
vx sin δf − (vy + ψ̇lf ) cos δf

vx cos δf + (vy + ψ̇lf ) sin δf
(3.12)

αr = arctan
−vy + ψ̇lr

vx
(3.13)

3.4. Extension of Lateral Model

One of the phenomenons of tyres that can have big impact on behaviour and stability of a

vehicle is tyre relaxation length σ. It is related to distance that tyre travels for lateral force to reach

certain percentage of steady-state after step change of slip angle. Since this phenomenon models

delay in side slip α, it is modeled with first order linear differential equation[5]:

σ

vx

∂α1

∂t
+ α1 = α. (3.14)

It can be noticed that this phenomenon behaves as a low pass filter

α1 (s)

α (s)
=

vx
σ

s+ vx
σ

(3.15)

and as such will be modeled in Simulink.
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By substituting 3.12 and 3.13 into 3.14 we get the model for front and rear tyre relaxation:

α̇1f =
vx

σf

(

−α1f + arctan
vx sin δf − (vy + ψ̇lf ) cos δf

vx cos δf + (vy + ψ̇lf ) sin δf

)

α̇1r =
vx

σr

(

−α1r + arctan
−vy + ψ̇lr

vx

) (3.16)

To include tyre relaxation int our model, lateral tyre forces are:

Fyf = Df sin {Cf arctan [Bfα1f − Ef (Bfα1f − arctan (Bfα1f ))]}

Fyr = Dr sin {Cr arctan [Brα1r − Er (Brα1r − arctan (Brα1r))]}
(3.17)



4. Vehicle model Simulation

Nonlinear system stability analysis will be applied on a lateral bicycle model. Model of vehicle

derived in previous chapter will be simulated

4.1. Simulink Model

Model of vehicle derived in previous chapter is created in Simulink, figure 4.1, full set of

equation follows:

Figure 4.1. Simulink model of a bicycle

mv̇y = Fyf cos (δf ) + Fyr −mvxψ̇

Jzψ̈ = lfFyf cos (δf )− lrFyr

Fyf = Df sin {Cf arctan [Bfα1f − Ef (Bfα1f − arctan (Bfα1f ))]}

Fyr = Dr sin {Cr arctan [Brα1r − Er (Brα1r − arctan (Brα1r))]}

α̇1f =
vx

σf

(

−α1f + arctan
vx sin δf − (vy + ψ̇lf ) cos δf

vx cos δf + (vy + ψ̇lf ) sin δf

)

α̇1r =
vx

σr

(

−α1r + arctan
−vy + ψ̇lr

vx

)

.

(4.1)

Unfortuantely, parameters of vehicle are classified and exact values will be omitted. Graphs will

be shown with normalized data. Parameters of the vehicle are:

• mf mass of front axle

14
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• mr mass of rear axle

• m = mf +mr total mass of vehicle

• Jz inertia

• l wheelbase -distance between front and rear axles

• lr =
lmf

m
distance between rear axle and center of gravity

• lf = l − lr distance between front axle and center of gravity

• swr steering wheel ratio.

One difference with magic formula parameter D is that it is defined as D = d ∗ Fz, where Fz

is normal force of axle: Fzf for front axle and Fzr for rear axle as shown in figure 4.2. It is the

maximum force that can the vehicle achieve lateraly:

Fzf =
lrmg

l

Fzr =
lfmg

l
,

(4.2)

where g is gravitational acceleration g = 9.81m
s2

.

Figure 4.2. Longitudinal vehicle dynamics source:[6]

The model consists of multiple blocks. "Steering wheel reference" (figure 4.3) block takes

steering wheel angle as input and outputs wheel angle δf based on steering wheel ratio swr . For

stability analysis step input was used.

Since we only analyze lateral dynamics, longitudinal speed vx is constant, its magnitude is

defined in "Longitudinal starting speed" block.

Block "Slip angle calculation" implements equations 3.12 and 3.13 as shown in 4.4.

Implementation of front and rear tyre models in 3.17 is given in figure 4.5 with option to not

use tyre relaxation.
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Figure 4.3. Steering wheel reference

Figure 4.4. Slip angle

Although only lateral dynamics (3.4) are being considered , model in simulink has full dynamic

model as shown in figure 4.6.
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Figure 4.5. Tyre model

Figure 4.6. Lateral model

4.2. Simulation Results

Vehicle model is simulated using step inputs for steering wheel angles of δstrwhl = 40◦ and

δstrwhl = 70◦.

In figure 4.7 can be seen that for step input δstrwhl = 40◦ system is stable while for δstrwhl = 70◦

is unstable. For unstable vehicle, both yaw rate and lateral speed increase in oscillations, which

can also be seen in phase plane plot. Effect of those oscillations can also be seen on trajectory of

the vehicle.

Vehicle was also simulated without tyre relaxation, in figure 4.8 can be seen that the vehicle is
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Figure 4.7. Simulation results with tyre relaxation

Figure 4.8. Simulation results without tyre relaxation

stable. Tyre relaxation can have big impact on vehicle stability as seen in simulations.



5. Stability analysis

In this chapter, stability of lateral vehicle model will be analyzed.

Equilibrium point of the vehicle model is determined by solving:

0 = Fyf cos (δf ) + Fyr −mvxψ̇

0 = lfFyf cos (δf )− lrFyr

0 =
vx

σf

(

−α1f + arctan
vx sin δf − (vy + ψ̇lf ) cos δf

vx cos δf + (vy + ψ̇lf ) sin δf

)

0 =
vx

σr

(

−α1r + arctan
−vy + ψ̇lr

vx

)

.

(5.1)

To find steering wheel angle for which vehicle becomes unstable, algorithm 5.1 was used. Lya-

punov function V (x) = x
TPx is created for each wheel angle δf . Matrix P was found by solving

2.7 which satisfies Lyapunov property that is positive definiteness. Running the algorithm gives

steering wheel angle of 54.0430◦. Phase plane for given steering wheel angle is shown in figure

5.2. System is shown to be unstable if we simulation time is 15 seconds.

Figure 5.1. Algorithm for finding unstable steering wheel angle
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Figure 5.2. Phase plane for δstrwhl = 54.043◦ and t = 15s

Now we extend simulation time to 100 seconds. Figure 5.3 shows that the system is localy

unstable only if we look at small simulation time. After exteding it, we can see that equilibrium of

the system is a stable limit cycle.

Figure 5.3. Phase plane for δstrwhl = 54.043◦ and t = 100s

Trajectories outside of the curve will tend to the curve while trajectories inside the curve will

also tend to the curve. If a motion starts on the curve, it will stay on the curve. In the phase plane,

a limit cycle is a closed curve - motion is periodic. It is also isolated - trajectories that are close to

the curve will either converge or diverge from it. There are three kinds of limit cycles:

1. Stable limit cycles: all trajectories close to the curve converge to it
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2. Unstable limit cycles: all trajectories close to the curve diverge to it

3. Semi-stable limit cycles: some trajectories converge, while others diverge.

Figure 5.4. Left: stable limit cycle, middle: unstable limit cycle, right: semi-stable limit cycle:[1]

Asymptotic properties of limit cycles are described by following theorem:

Theorem 5.1 (Poincare-Bendixson). If a trajectory of of a system remains in finite region, then

one of the following is true:

1. the trajectory goes to an equilibrium point

2. the trajectory tends to asymptotically stable limit cycle

3. trajectory itself is a limit cycle.

Now we simulate our system from different starting points to see if our system really is stable

limit cycle. Figure 5.5 confirms assumed type of equilibrium point.
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Figure 5.5. Phase plane for δstrwhl = 70◦ and t = 200s



6. Conclusion

Utilizing phase plane analysis and Lyapunov analysis techniques, we gained invaluable insights

into the behavior of the system under various conditions. One of the significant achievements of

this study was the derivation and analysis of the lateral bicycle model, which provided a founda-

tion for understanding the lateral dynamics of vehicles with greater precision. Subsequently, we

expanded upon this model by incorporating tire relaxation effects, recognizing their crucial role in

real-world vehicle dynamics. Using Simulink, we tested our model with different steering wheel

angles. While the vehicle may exhibit instability for certain simulation duration, further analy-

sis uncovered the presence of stable limit cycles. By blending theoretical analysis with practical

simulations, we’ve gained insights into the intricate dynamics of vehicular motion.
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7. Abstract

7.1. In Croatian

Analiza nelinearnog modela vozila pomoÂcu teorije stabilnosti po Ljapunovu. Prvo je dana

teorija nelinearnih sustava. Bočni model vozila opisan je korištenjem drugog Newtonovog zakona,

kutovi klizanja izvedeni su iz geometrije prednjih i stražnjih kotača, a duljina relaksacije gume

uvedena je u model. Trajektorije stanja su prikazane u faznoj ravnini pomoÂcu simulacije mod-

ela u Simulinku S obzirom da se modelira bočno gibanje, pretpostavlja se da je longitudinalna

brzina konstanta. Uspore Ådeni su rezultati simulacije stabilnog i nestabilnog modela. Prikazan je

utjecaj relaksacije gume na bočnu stabilnost. Ljapunovljeva funkcija se koristi u algoritmu za

pronalaženje ulaza za koji stabilni sustav postaje nestabilan.

7.2. In English

Nonlinear analysis of vehicle model using Lyapunov stablity theory. First, theory of nonlin-

ear systems is given. Lateral vehicle model is described using Newton’s second law, slip angles

are derived from geometry of front and rear wheels and tyre relaxation length is introduced into

model. Trajectories are shown in phase plane plot based on data from simulation of vehicle model

in Simulink. Since lateral motion is modeled, longitudinal speed is assumed constant. Results

from simulation of stable and unstable model are compared. Impact of tyre relaxation on lateral

stability is shown. Lyapunov’s function is used in an algorithm to find input for which stable

system becomes unstable.
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8. Keywords

8.1. In Croatian

model automobila; nelinearni sustav; analiza nelinearnog sustava; Ljapunov teorem stabilnosti;

model bicikle; fazna ravina; prikaz trajektorija

8.2. In English

vehicle model; non-linear system; analysis of nonlinear system; Lyapun’s stability theorem;

bicycle model; phase plane; trajectory plot
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