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SVEUČILIŠTE U ZAGREBU
FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA
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Chapter 1

Introduction

The last thing one knows in con-

structing a work is what to put first.

Blaise Pascal (1623–1662)

Pensèes, no. 19, 1670

1.1 The background: Well logging

1.1.1 Definition and the basic principles

Well logging, originating from the French term carottage électrique, is the col-
lection of methods and interpretation techniques used for evaluation of charac-
teristics of rock formations, and measurements concerning completion evalua-
tion, such as pipe and tubing corrosion, cement quality, pressure measurement
and production logging services [1]. A well-logging measurement device (tool,
sonde) is lowered into a well to record many physical quantities, which are
presented in form of a log and used for the interpretation. Over fifty different
logging tools are available today employing various physical principles [1].

Formation evaluation is concerned with answering the questions of exis-
tence, location, quantity and, ultimately, producibility of the hydrocarbons
from a well. These questions are answered indirectly through the process of
interpretation of rock properties measurements, including porosity, water and
hydrocarbon (oil and gas) saturation, and permeability. Porosity, φ is a frac-
tion of the volume of a rock that can be filled with fluids. The rock matrix
material occupies the remaining fraction of the volume, 1 − φ. Water satura-
tion, Sw is the fraction of the porosity φ that contains water. The fractional
volume of the rock occupied by the water is Swφ. The remaining fraction of the
porosity containing oil or gas is the hydrocarbon saturation, Sh. The fractional
volume occupied by the hydrocarbons is Shφ or (1 − Sw)φ [2]. Permeability
(in geology) is a rock’s ability to transmit fluids, e.g. fissured carbonates and
sandstones. The later are very permeable and easily transmit fluids since they
have many large, well-connected pores (sandstones are reservoir rocks for hy-
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1.1 The background: Well logging

drocarbons) [3]. The most important formation evaluation methods, usually
sensitive to either rock properties or pore-filling fluid, are measurements of
the natural radiation (gamma ray), spontaneous potential and formation bulk
density, neutron and acoustic measurements, and resistivity measurement [1].

The gamma ray and the spontaneous potential measurements are used to
determine the zones with a low-volume fraction of shale (clean zones). The
gamma ray logging is based on higher natural radioactivity of shale formations
due to the presence of isotopes of potassium, thorium and uranium. In its
simplest form it is also used for well to well correlation and depth control.
The origin of spontaneous potential is in the diffusion of the dissolved ions in
the fluids in the borehole and in the formation [1, 4]. The measured voltage
is lower for the sand than for the shale zone, because the latter behaves as a
cation selective membrane.

The hydrocarbons can exist in a rock only if it is porous. As the num-
ber of pores increases, the formation bulk density decreases. The density is
determined from counting the scattered gamma rays by detectors placed at
several distances from the gamma ray source [5]. The counting rate of a detec-
tor varies exponentially with the bulk density of the formation. The neutron
logging tools are based on the fact that hydrogen, which is usually in the pores
in form of water or hydrocarbons, is very efficient in the slowing-down of fast
neutrons [6, 7]. The neutron logs are used with the density log, since they are
very sensitive to environmental effects. The porosity increases the compres-
sional wave slowness or interval transit time, measured by the acoustic tools [8]
The hydrogen presence can also be detected using nuclear magnetic resonance
(NMR) tools [9].

1.1.2 Resistivity measurement

So far, this very brief overview of the formation evaluation measurement prin-
ciples have shown how to locate clean and porous zones. Now remains the
question whether the formation contains the hydrocarbons or not. Measure-
ment of the formation electrical resistivity is the method of choice for answering
the question. In short, the hydrocarbon bearing formation has very large resis-
tivity, and if the formation contains brine the resistivity is low. The electrical
resistivity measurement is the first logging method used in boreholes; the first
electrical log was recorded in 1927 by the Schlumberger brothers and Henry
Doll in the Pechelbronn field in Alsace-Lorraine [2].

In order to determine quantity of the hydrocarbons in the formation, one
must determine the product of the formation porosity and water saturation,
Swφ. The water saturation itself depends on the porosity. The relation is given
in form of the Archie’s law:

Sn
w =

aρw

φmρt

, (1.1)

where ρt is measured formation resistivity and ρw is the resistivity of the water
in the undisturbed formation [10]. The constants a, m and n need to be
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1 Introduction

determined for investigated formation. There have been many attempts to
find alternatives to the Archie’s law, but it and its extensions still dominate
[1]. Resistivity of some typical materials is shown in Table 1.1. The resistivity
of formations of interest may range from 0.1 Ωm to 103 Ωm, or 1 mS/m –
10 S/m.

Table 1.1: Resistivity values of typical materials. Adapted from [1], p. 47.

Material Resistivity [Ωm]
Marble 5 · 107–109

Quartz 1012–3 · 1014

Petroleum 2 · 1014

Distilled water 2 · 1014

Saltwater (15 ◦C) 0.06–3.4

Formations
Clay/shale 2–10

Saltwater sand 0.5–10

Oil sand 5–103

Limestone 103

The electrode type resistivity tools employ electrodes and low-frequency
current sources, usually below 1000 Hz. The simplest and oldest version of
such a tool uses only one voltage measurement electrode that measures the
voltage drop across the formation caused by the current injected through an
electrode 40.6 cm or 16′′ away from the measurement electrode (“short normal”
device). Such a device measures the apparent resistivity which is different from
the true resistivity due to the effects of mud, hole size and shoulder beds. To
avoid these problems, the next generation of the electrode devices introduced
two or six additional current electrodes. Such tools, known as laterologs, create
almost horizontal (lateral) electric field that forces the main current deep into
the adjacent horizontal layer of the formation. Dual laterologs rapidly change
the role of various electrodes, what enables simultaneous measurement of deep
and shallow formation regions. Sondes with three or four arms, each with
an array of coils pressed against its section of the borehole wall, measure 3D
orientation of strata intersecting the borehole. The modern imaging devices
contain a few hundred electrodes mounted on six arms.

The induction type devices were originally designed as a replacement for
the electrode devices in conditions of nonconductive mud or air-filled bore-
holes, but today they are widely used as complementary tools to the electrode
ones. In its basic configuration, an induction tool uses a transmitter coil en-
ergised at frequencies on the order of 10 kHz and a receiver coil to measure
the electromagnetic field affected by the presence of the conductive formation.
Adding the receiver coils at different separations from the transmitter selec-
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1.2 The challenge: Through casing resistivity measurement

tively improves sensitivity to different layers and at different radial depth. As
a result, these focused tools have increased vertical resolution. For a long time,
so-called 6FF40 was standard configuration with three transmitters, three re-
ceivers (hence the number 6), fixed radial and vertical focusing (FF) and 40′′

(about 1 m) separation between the main transmitter and receiver. The next
generation, a multi-array induction tool, uses a set of coil arrays whose mea-
surements are combined through advanced inverse problem algorithms in order
to form outputs with desired vertical and radial response.

The induction tools are preferred when the resistivity near the borehole is
high and the resistivity of the formation is low, whereas the opposite holds
for the electrode devices. Detailed overview of the resistivity tools, including
historical perspective and the modern trends, can be found in [1] and especially
in [2]. Very thorough display of the theory of induction logging can be found
in [11], whereas the best starting point is the seminal paper of Henry Doll [12].

1.2 The challenge: Through casing resistivity

measurement

1.2.1 Cased borehole

The walls of a borehole are eventually lined with a casing, usually made of steel,
Fig. 1.1. The casing fulfills following important tasks: keeps the hole from col-
lapsing; serves as a high strength flow conduit; protects the freshwater-bearing
formation from contamination; provides a stable support for the installation
of tubing and pressure control devices; provides a safe passage for running
well logging equipment; provides a selective communication with formations
of interest (casing perforation) [13]. The casings are divided according to their
primary task into conductor pipes, surface, intermediate and production cas-
ings, and liners. Production casings are separated from the borehole wall only
with the cement, expect in the production zones where the casing is perforated
to allow fluid flow, Fig. 1.1.

The casing diameters and wall thickness are standardised according to [14].
Outside diameter of the production casings varies from 41

2

′′ to 95
8

′′, or approxi-
mately 114.3 mm – 244.5 mm with the tolerance of −0.75%. Wall thickness is
in the range 5 mm – 23 mm with the minimal permissible thickness of 87.5%
of the nominal value [13]. The casing steel is divided into the grades according
to the yield and tensile strength and hardness. The conductivity of the steel
is in the range 1 MS/m – 7 MS/m and relative incremental permeability is on
the order of 100.

1.2.2 Formation evaluation in cased boreholes

Cased hole logging devices provide information on casing and well integrity,
fluid flow during production and injection, and formation surrounding the cas-
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Conductor pipe

Cement

Surface casing

Production casing

Reservoir

Perforations

Figure 1.1: Typical cased hole (casing program) showing different casing sizes. Tub-
ing is omitted. Adapted from [13].

ing, which is of primary interest herein. Methods for the formation evaluation
through casing allow obtaining the essential well logs under any conditions
(e.g. the holes that are cased immediately after drilling due to expected sta-
bility problems) [15]. A prominent application of these methods is finding
and evaluating bypassed hydrocarbons in old wells. Bypassing hydrocarbon-
bearing layers during the casing of the borehole can later in production result
in recovering as low as 20% of estimated original oil in place [16–18]. Further-
more, one-time or time-lapse through-casing evaluation can assist in efficient
reservoir management, e.g. movement monitoring of a reservoir or injected
fluid [15, 19]. Using these methods, one can avoid drilling new wells for the
sole purpose od data gathering, which is more cost effective and environment
friendly. General overview of the cased-hole methods can be found in [20] and
[21].

Cased-hole formation evaluation relies mainly on the radiation methods
based on the gamma ray and neutron measurements, since these have a little
or no interaction with the steel casing. The most valuable nuclear-based tool
for such a purpose is a pulsed neutron device that can be run even from
within the tubing [21]. Pulsed neutron devices employ a neutron source that
emits 14 MeV neutrons periodically at about 1 ms intervals. Gamma ray
emissions caused by the neutrons’ interaction with the borehole and formation
are detected by usually two detectors, one near to the source (∼ 30 cm) and
the other far from the source (∼ 60 cm). The rate of emitted gamma rays
decays with time what reflects capturing (disappearing) of the neutrons, in
turn connected with the thermal absorption properties of the borehole and
formation (thermal neutron die-away or decay time logging) [1]. The gamma
ray detected at the later time depends solely on the formation properties.
In addition to the simple gamma ray counting, the next generation of the

5



1.2 The challenge: Through casing resistivity measurement

pulsed neutron detectors employs gamma-ray spectroscopy for identification of
neutron interactions with different elements in the formation. Pulsed neutron
tools are used in the cased-hole formation evaluation for measurements of
porosity, water saturation, shale content, gas detection, etc. [21]. However,
their greatest drawback is depth of investigation of only ∼ 50 cm.

The application of acoustic tools is similar to the open-hole evaluation [20].
They are used for porosity measurements and the log quality depends on the
acoustic coupling of the casing and formation. Additional applications include
measurement of formation fluid pressure, formation mechanical properties and
fractures, permeability, and cement bond quality [1].

Similarly to the open-hole logging as briefly presented in Section 1.1, the
responses of the cased-hole devices is interdependent regardless of their primary
application, and one must always rely on their combination to obtain reliable
information about the cased well. Considering the low investigation depth of
the pulsed neutron tool, there is a need to round off the cased-hole formation
evaluation process with through-casing resistivity measurement. That is not
an easy task though, since it is clear from section 1.2.1 that the casing with
its dimensions, weight and electromagnetic properties represents a formidable
obstacle for the classical electromagnetic field.

1.2.3 Cased-hole electrode measurement

The first patent for a method of rock resistivity electrode measurement through
the highly conductive casing was filed in the 1930s, but problems connected
with the measurement of extremely small electrical potentials had held the
development of these tools back until the late 1990s [22–25]. Prototyped by
ParaMagnetic Logging in the USA, the tool was commercialised under the
name Cased Hole Resistivity Tool (Schlumberger) [25–27].

The working principle of the tool is depicted in Fig. 1.2. The tool uses three
voltage electrodes each 60 cm apart and pressed against the inner wall of the
casing. In a “Measure” mode, one electrode of the current source is connected
to the ground at the surface and the other is pressed against the casing. A
very small amount ∆I of the total current I will leak to the formation behind
the casing. This leak is visible as a voltage drop between the electrodes A
and C. To cancel the effect of casing resistance RC , difference U0 = U2 − U1

is observed, which should depend solely on formation resistance Rf under the
assumption that the casing resistances between electrodes A and B, and B and
C are the same. However, since this is seldom true in the practice, “Calibrate”
mode is required where both electrodes of the current source are connected
to the casing. In that case I = IC and potential drops U1 and U2 are solely
due to casing resistance RC . By adjusting the gain for voltages U1 and U2,
it is possible to null the effects of the casing’s conductivity variations. If the
calibration was made properly, any difference in voltages U1 and U2 can now
be related to the changes in formation resistivity. Although the formation is
typically nine orders of magnitude less conductive than the casing, it presents
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∆I

IC

I

U1

U2

U0

RC

Rf

A

B

C

Measure

Calibrate

Rf and RC

in Meas.

RC in Calib.

Figure 1.2: The basic principle of the electrode resistivity measurement through
casing. Voltage difference U0 is due to Rf and RC in “Measure” mode, and RC only
in “Calibrate” mode. Adapted from [1].

a much larger mass and area, so that the ratio of the leakage current to the
total current is around 10−4 [1].

The differential voltage U0 is in nanovolts, and the measurement frequency
is no more than a few hertzs. The best measurement range is from 1 Ωm to
100 Ωm with vertical resolution of 1.22 m. The measurement is made while
the tool is stationary, resulting in the effective logging speed of 73 m/h. Accu-
racy is specified as ±10% and depth of investigation is about 10 m [15]. There
are two sizes of the tool, covering casing’s diameter range from 41

2

′′ to 95
8

′′

(production casings). Specified temperature rating is 150 ◦C. The main disad-
vantages of the method are high requirements on accuracy and precision of the
electronic instrumentation (measurements in the nanovolt range under harsh
environment conditions), low measurement speed (stationary measurement),
and large mechanical force required to establish a good contact between the
electrodes and the casing. Such a force can damage or even rupture the casing
of the older boreholes [28].

1.2.4 Cased-hole inductive measurement

Research on the inductive through casing resistivity measurement was focused
from its start on the use of the transmitter coil outside the cased borehole, un-
der the claim that the effects of the formation on the magnetic field, with the
frequency low enough to penetrate the casing, would be otherwise practically
undetectable [29]. In 1994, a consortium of academia (Lawrence Berkeley Na-
tional Laboratory, Lawrence Livermore National Laboratory, and University of
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1.2 The challenge: Through casing resistivity measurement

California), industry and US Department of Energy began a research program
with the aim to prototype a device for the through casing subsurface inductive
measurement of formation resistivity [30, 31]. The chosen configuration was a
very long transmitter positioned in one well with the receiver array in another
remote well [32]. The corresponding patent was filed in 1999 and soon the
others followed [33–35]. The result of the research was a commercial tool by
Schlumberger, trade marked DeepLook-EM [36].

The tool uses a 9.88 m long transmitter coil and four receiver coils, each
22.5 m long. The transmitter coil and receiver array are placed in different
wells. The tool is reported to work for the following combinations of the
transmitter and receiver wells: open hole – open hole (1000 m max.), open hole
– steel casing (450 m max.), open hole – chromium casing (500 m max.), and
chromium casing – chromium casing (350 m max.). The excitation frequency
is between 5 Hz and 1000 Hz. The tool operates in wells with maximum
deviation of 20◦. For each receiver station, the transmitter traverses the well
with logging speed of 600 m/h to 1520 m/h. The process is repeated for a
number of the array’s positions. From the measurement data, a tomographic
image of the resistivity distribution between the wells can be obtained [37].
Successful applications of the tool to the waterflood monitoring and finding a
bypassed pay have been reported [19, 38].

Evaluation of the casing effect is a crucial issue for the inductive measure-
ment of the formation resistivity. The shielding effect of the thin-wall casing
for a magnetic dipole was analysed by Wait and Hill [39, 40], whereas the com-
plete analysis of the multilayered conductive and permeable structures can be
found in the work of Dodd and Deeds [41, 42]. The casing behaves as a low-
pass filter, which has small attenuation of the field at very low frequencies, and
significant attenuation at high frequencies determined by the casing thickness
and penetration depth. Augustin et al. noticed in [29] that the total mag-
netic field in surface-to-borehole inductive logging can be decomposed into the
field of the formation in the absence of the casing and the field contributed
by the casing. Similar conclusion is found to hold for the cross-well measure-
ment [35, 43]. Augustin et al. in [29] also indicated the need for measurement
of the casing properties (wall thickness, electrical conductivity and relative
magnetic permeability) in order to compensate for their variations and cal-
culate the casing contribution to the total field. They also proposed the use
of the wireline casing inspection tools like the Schlumberger’s Multifrequency
Electromagnetic Thickness Tool (METT) based on the remote field technique,
[20, 44, 45]. However, the existing casing inspection tools are qualitative in
nature and thus not suitable for the correction purposes [46, 47]. Proposals
for model-based electromagnetic measurements of the casing properties using
harmonic or pulsed excitation can be found in recent literature [46, 48–50].

The greatest advantage of the cross-well inductive measurement, high-
power transmitter coil and tomographic imaging between the wells, is its disad-
vantage at the same time. The transmitter coil cannot be placed in a borehole
cased with the usual casing steel; chromium casing has several times lower
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1 Introduction

conductivity than the casing steel and relative magnetic permeability equal to
1. The only situation where the steel casing is allowed is the one with the open
transmitter and cased receiver wells. The high power transmitter placed in the
steel casing would aggravate the problems arising due to the nonlinearity of
the ferromagnetic steel. In order to overcome this limitation, there were some
recent interesting proposals to use the casing as the AC source [51]. However,
if one requires merely a cased hole counterpart to the traditional open-hole in-
duction logging with depth of investigation of about 10 m, drilling a new well
to place the transmitter for the cross-well measurement seems like an overkill.
Hence, the single well inductive measurement of the formation resistivity would
be a welcome addition to the through casing formation evaluation methods.

The challenge of placing both the transmitter and receiver in the same steel
cased well in order to measure the resistivity of the surrounding formation was,
to the best of this author’s knowledge, first tackled by Kim and Lee in 2006
[52]. In their analysis, they used relatively “weak” casing with conductivity
of only 1 MS/m, permeability of 6.25, inner radius of 100 mm and thickness
of 10 mm. The excitation frequency was 100 Hz. They studied the effect of
separation between transmitter and receiver up to 5 m and concluded that the
phase difference between the measured magnetic field and the magnetic field
calculated using the casing properties with the formation absent represents the
best indication of the change in the surrounding formation conductivity. The
phase difference was between 0.1◦ and 1◦. The effects of the formation on the
magnetic field amplitude were observable but negligible. The variations in the
casing properties significantly affect the measurement. Assuming that these
variations are localised, they proposed a simple low-pass space filtering of the
phase log in order to remove the casing effect.

1.3 The contribution: This thesis

The objective of this thesis is to propose an inductive method and inversion
procedure for simultaneous measurement of the formation resistivity and the
casing properties from within a single steel-cased well.

We will derive and numerically implement an analytical model of the mag-
netic field distribution of a transmitter coil positioned inside a casing sur-
rounded by a cylindrically layered low-conductive medium with one horizontal
boundary. Using the model, we will show that the minimal tool configura-
tion for achieving such a measurement requires one excitation frequency and
three receiver coils. The modelled geometry will allow us to investigate ver-
tical resolution, radius of investigation and the casing effect for the proposed
configuration of the measurement.

We will adopt the stochastic formulation of the inverse problem of deter-
mination of the casing and formation properties. The stochastic formulation
requires prior and results in posterior information on the properties in form
of probability distributions. As a consequence, all properties are determined

9



1.3 The contribution: This thesis

simultaneously, and there is no need for independent measurement of the cas-
ing properties, or correction for their variations. Furthermore, the stochastic
approach inherently allows use of a prior knowledge of the casing and forma-
tion obtained in previous time-lapse evaluations of the well using various well
logging methods.

We will corroborate the measurement method on a laboratory scaled model
of the cased borehole. Based on the results of Monte Carlo simulations and
the scaled-model experiments, we will discuss the practical realisability of the
electronic instrumentation capable for operation in the high-temperature en-
vironment of a well (∼ 200 ◦C).

This thesis should be thought of as the first step towards realisation of the
field system. It is to be expected that the field system will use more coils with
more complex transmit and receive patterns, multi-frequency excitation and
advanced stochastic inverse algorithms in order to achieve higher accuracy and
vertical resolution required for useful geophysical interpretation of a reservoir.
Even so, this thesis proves the basic concepts of such a tool.

To formally summarise, the contributions of this thesis to achieving the
goal of the inductive measurement of the formation resistivity from within a
single steel-cased well are as follows.

1. Development and validation of an inductive method for simultaneous
measurement of the formation resistivity and casing properties from
within a single cased well using one excitation frequency and three re-
ceiver coils.

2. Analytical modelling of the magnetic field distribution, and space-frequency
sensitivity analysis of the directly measured quantities (field and induced
voltage) on the formation and casing properties.

3. Stochastic approach to the inverse problem of determination of the for-
mation and casing properties with possibility to include existing knowl-
edge.

4. Experimental confirmation of the proposed method on a scaled model of
the cased borehole.

5. Analysis of realisability of the electronic instrumentation based on the
modelling and experimental results.

The model is derived in Chapter 2. The results of the space-frequency
sensitivity analysis, and discussions on the radius of investigation, vertical res-
olution and the casing effect are given in Chapter 3. Chapter 4 contains the
stochastic formulation of the inverse problem and results of Monte Carlo simu-
lations for the analysis of the total measurement uncertainty. The experiments
on the scaled borehole model are described in Chapter 5. Chapter 6 brings dis-
cussion about the influential factors, and requirements and realisability of the
electronic instrumentation. Chapter 7 contains the final concluding remarks.
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Chapter 2

Forward problem

In mathematics you don’t understand

things. You just get used to them.

John von Neumann (1903–1957)

In reply to a young man as quoted in Gary Zukav,
“The Dancing Wu Li Masters,” p. 208, 1984

In this chapter we derive an analytical model of a single-turn coil positioned
inside the highly conductive, magnetic tube surrounded with a low conductive,
cylindrically layered medium with one horizontal boundary. The model is
based on the quasi-static approximation of the Maxwell’s equations and the
truncated region method with eigenvalue expansion of the vector magnetic
potential [42, 53]. A special care is taken to represent the model equations in
a form suitable for a numerical implementation.

2.1 Modelled geometry and governing equations

The geometry of the problem is given in Fig. 2.1. Because of the axial sym-
metry of the problem domain, it is convenient to employ the cylindrical coor-
dinate system with unit vectors (r̂, ẑ, ϕ̂). We shall consider a single-turn coil
with radius r0 positioned at height z0. This is the most basic configuration,
and solutions for the multi-turn (one-layer and multi-layer) coils follow from
this case by the principle of superposition [41]. The coil is driven with a sinu-
soidal current i of constant amplitude I and frequency f , i.e. ω = 2πf . The
casing has inner radius r1, outer radius r2 and wall thickness c = r2 − r1. The
tube material is assumed to be linear, isotropic and homogenous with elec-
trical conductivity σt and relative magnetic permeability µr. The formation
surrounding the casing consists of three regions with different electrical con-
ductivities, Fig. 2.1. We shall assume that it is possible to model effects of the
casing’s cement and the invaded part of the formation using the lump conduc-
tivity σl of region 4 (lump zone). Regions 5 and 6 (layers A and B) represent
a two-layer uninvaded formation with their respective electrical conductivities

11
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Figure 2.1: Geometry of the analysed problem

σa and σb. Both regions border region 4 at r = r3 and extend to infinity in the
radial direction. In the axial direction, region 5 extends between −zf and zf

and the whole problem domain is truncated at z = −H and z = H [53].
We can neglect the displacement current and use the diffusion equation for

the vector magnetic potential:

∇2A − µ0µrσ
∂A

∂t
= 0.

In the frequency domain the potential satisfies the Helmholtz equation:

∇2A − jωµ0µrσA = 0.

The excitation current i has the ϕ-component only, and so does the vector
magnetic potential A, too. Because of the axial symmetry, the ϕ-component
of the potential depends on coordinates r and z, and not on coordinate ϕ.
Taking into account the form of the Laplacian operator in a cylindrical coordi-
nate system, we can write the governing equation for the ϕ-component of the
potential in the case of the axial symmetry:

∂2A

∂r2
+

1

r

∂A

∂r
+

∂2A

∂z2
− A

r2
− jωµ0µrσA = 0, (2.1)

where the last summand is zero in the case of nonconductive materials.
The governing equation needs to be solved for each region. We shall as-

sume that solutions can be obtained by linear combinations of members of the
set of solutions that are separable into factors, each dependent on only one
coordinate:

A(r, z) = R(r)Z(z). (2.2)
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2 Forward problem

Inserting (2.2) into (2.1) and dividing by R(r)Z(z) results in:

1

R

d2R

dr2
+

1

rR

dR

dr
− 1

r2
+

1

Z

d2Z

dz2
= jωµ0µrσ. (2.3)

We will separate (2.3) in two different ways. For regions 1 through 4, we will
leave jωµ0µrσ with the r-dependent part of the equation:

1

R

d2R

dr2
+

1

rR

dR

dr
− 1

r2
− jωµ0µrσ = α2, (2.4)

− 1

Z

d2Z

dz2
= α2, (2.5)

whereas for regions 5 and 6 we will leave it with the z-dependent part, because
the regions’ properties vary in the z direction:

1

R

d2R

dr2
+

1

rR

dR

dr
− 1

r2
= κ2, (2.6)

− 1

Z

d2Z

dz2
+ jωµ0µrσ = κ2. (2.7)

Solutions to equations (2.4) and (2.6) are in terms of modified Bessel func-
tions of the first and second kind:

R(r) = cII1(ar) + cKK1(ar),

where cI and cK are constants, a =
√

α2 + jωµ0µrσ for (2.4) and a = κ for
(2.6). Equations (2.5) and (2.7) are ordinary second-order differential equa-
tions whose solutions can be written as linear combinations of sine and cosine
terms.

To simplify the problem, we shall separate the solution to its odd and even
parts with respect to z. This means that we can consider only one half of the
problem domain (0 6 z 6 H). Physically, the odd parity solution is for the
case of two single-turn coils at positions z = z0 and z = −z0 carrying current
in opposite directions [54]. The even parity solution is for two coils carrying
current in the same direction. Superposition of these two physical situations
leaves us with only one coil in the upper half of the domain. If the excitation
currents in the odd and even cases have the same amplitudes as in the real
case, then the final solution is:

A(r, z) =
Aodd(r, z) + Aevn(r, z)

2
.

Because of the axial symmetry, the magnetic induction B has only r and z
components:

B = ∇× A = −∂A

∂z
r̂ +

1

r

∂ (rA)

∂r
ẑ.
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2.1 Modelled geometry and governing equations

2.1.1 Odd parity solution

The magnetic vector potential A for each region must satisfy the homogenous
Dirichlet condition:

A(r,±H) = 0. (2.8)

Also, for the odd parity solution:

A(r, 0) = 0.

As a result of these boundary conditions at z = H and z = 0 and required
parity, we can write the odd parity solution for each region in terms of a series
of appropriate discrete eigenvalues:

Aodd,1 =
∑

i

sin (αiz) I1 (αir) C1,i, (2.9)

Aodd,2 =
∑

i

sin (αiz) [I1 (αir) C2,i + K1 (αir) D2,i] , (2.10)

Aodd,3 =
∑

i

sin (αiz) [I1 (βir) C3,i + K1 (βir) D3,i] , (2.11)

Aodd,4 =
∑

i

sin (αiz) [I1 (γir) C4,i + K1 (γir) D4,i] , (2.12)

Aodd,5 =
∑

i

sin (piz) K1 (κir) D5,i, (2.13)

Aodd,6 =
∑

i

ki sin (qi (H − z)) K1 (κir) D5,i. (2.14)

Because of (2.8), the eigenvalues αi are given with:

αi =
iπ

H
, i ∈ N.

Writing equations (2.4)–(2.7) for each region, we end up with the following:

βi =
√

α2
i + jωµ0µrσt, (2.15)

γi =
√

α2
i + jωµ0σl, (2.16)

pi =
√

κ2
i − jωµ0σa, (2.17)

qi =
√

κ2
i − jωµ0σb. (2.18)

Term K1 (αir) D1,i is omitted in (2.9) because D1,i = 0,∀i due to the divergence
of K1 (αir) at r = 0. Similarly, term I1 (κir) C5,i is not present in (2.13) and
(2.14) because C5,i = 0,∀i due to the divergence of I1 (κir) as r goes to infinity.

Solutions for regions 5 and 6 have the same r-dependent parts because
of the joint boundary in the axial direction. However, they have different
conductivities and that results in different values of pi and qi. Term ki in
(2.14) is required in order to satisfy continuity equations between regions 5
and 6. Since qi is complex in general, the argument qi (H − z) ensures the zero
value of the sine term required by the Dirichlet condition at z = H.
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2 Forward problem

2.1.2 Even parity solution

In order to obtain the even parity part, we will follow a procedure similar to
the one in 2.1.1. The even parity part of the solution also needs to satisfy the
homogenous Dirichlet condition at z = H and z = −H. As a consequence, the
even parity solution should be of the following form, depending on the region:

Aevn,1 =
∑

i

cos (αiz) I1 (αir) C1,i, (2.19)

Aevn,2 =
∑

i

cos (αiz) [I1 (αir) C2,i + K1 (αir) D2,i] , (2.20)

Aevn,3 =
∑

i

cos (αiz) [I1 (βir) C3,i + K1 (βir) D3,i] , (2.21)

Aevn,4 =
∑

i

cos (αiz) [I1 (γir) C4,i + K1 (γir) D4,i] , (2.22)

Aevn,5 =
∑

i

cos (piz) K1 (κir) D5,i, (2.23)

Aevn,6 =
∑

i

ki sin (qi (H − z)) K1 (κir) D5,i. (2.24)

The eigenvalues αi are determined from the Dirichlet condition:

αi =
(2i − 1) π

2H
, i ∈ N.

Equations (2.15)–(2.18) for βi, γi, pi and qi and notes on the form of the
solutions for regions 5 and 6 in 2.1.1 are also valid for the even parity case.

In the following text, we keep the same notation for eigenvalues because
the majority of the equations are the same for the odd and even parity cases.
However, one should always bear in mind that although the notation is the
same, actual values of e.g. C1,i, αi or κi are completely different. It will be
explicitly stated if an equation or eigenvalue is valid only for one particular
case (odd or even).

2.2 Boundary conditions

We will determine values of C1,i, C2,i, D2,i,. . . ,D5,i from the boundary con-
ditions. In general, the boundary conditions for the tangential and normal
components of a magnetic field of strength H and magnetic induction B,
which should be satisfied at the surface between two homogeneous, linear and
isotropic materials, are:

n̂ × (Hn+1 − Hn) = Js,

n̂ · (Bn+1 − Bn) = 0,
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2.2 Boundary conditions

In these equations, Js is the linear density of any free current flowing in an
infinitesimally thin sheet at the surface, n and n + 1 are the indices of the
neighbouring regions, and n̂ is the unit vector normal to the surface boundary
between the regions, pointing into the region n + 1.

For all cylindrical boundaries the unit vector normal is n̂ = r̂. Taking
into account that magnetic potential has only ϕ-component and applying some
elementary rules of vector analysis, we find boundary conditions for cylindrical
boundaries:

1

µn+1

(
∂An+1

∂r
+

An+1

r

)
=

1

µn

(
∂An

∂r
+

An

r

)
+ Js, (2.25)

∂An+1

∂z
=

∂An

∂z
, (2.26)

where Js is ϕ-component of the current linear density. For all boundaries
Js = 0 except for boundary r = r0 between regions 1 and 2 where Js =
Jδ (r − r0) δ (z − z0). The delta functions δ describe a single-turn coil of radius
r = r0 at height z = z0. For the horizontal boundary between regions 5 and
6, n̂ = ẑ and Js = 0. This results in following boundary conditions:

1

µn+1

∂An+1

∂z
=

1

µn

∂An

∂z
, (2.27)

∂An+1

∂r
+

An+1

r
=

∂An

∂r
+

An

r
. (2.28)

Since the solutions for regions 1 through 4 have equal z-dependent parts and
the solutions for regions 5 and 6 have equal r-dependent parts and permeability,
conditions (2.26) and (2.27) can take simpler form (condition of continuity):

An+1 = An. (2.29)

2.2.1 Cylindrical boundaries

Condition (2.29) for the odd parity case and boundary r = r2 between regions 3
and 4 results in:

∑

i

sin (αiz) [I1 (γir2) C4,i + K1 (γir2) D4,i] =

∑

i

sin (αiz) [I1 (βir2) C3,i + K1 (βir2) D3,i] . (2.30)

If truncated to N terms, the above expression can be transformed into a linear
system of N equations using the orthogonality of the sine function:

∫ H

0

sin (αiz) sin (αjz) dz =

{
H
2

if αi = αj,

0 if αi 6= αj.
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2 Forward problem

The system obtained multiplying (2.30) by sin (αjz) ,∀j = 1, . . . , N and inte-
grating over z from 0 to H is:

I1 (γir2) C4,i + K1 (γir2) D4,i =

= I1 (βir2) C3,i + K1 (βir2) D3,i ∀i = 1, . . . , N,

where we replaced j with i since i = j. Similarly, condition (2.25) results in:

µrγiI0 (γir2) C4,i − µrγiK0 (γir2) D4,i =

= βiI0 (βir2) C3,i − βiK0 (βir2) D3,i ∀i = 1, . . . , N,

where we used the property of the Bessel functions:

Iν (x) Kν+1 (x) + Iν+1 (x) Kν (x) =
1

x
.

Conditions (2.25) and (2.29) give rise to the same equations in the even
case. The only difference is that we start from the orthogonality of the cosine
function: ∫ H

0

cos (αiz) cos (αjz) dz =

{
H
2

if αi = αj,

0 if αi 6= αj.

Equations for the boundary at r = r1 between regions 2 and 3 are obtained
using the same procedure as before:

I1 (βir1) C3,i + K1 (βir1) D3,i =

= I1 (αir1) C2,i + K1 (αir1) D2,i ∀i = 1, . . . , N,

βiI0 (βir1) C3,i − βiK0 (βir1) D3,i =

= µrαiI0 (αir1) C2,i − µrαiK0 (αir1) D2,i ∀i = 1, . . . , N.

Applied to the boundary r = r0 between regions 1 and 2, (2.29) results in:

I1 (αir0) C2,i + K1 (αir0) D2,i = I1 (αir0) C1,i ∀i = 1, . . . , N.

Since the single-turn coil is located at the boundary between regions 1 and
2, the result of (2.25) for r = r0 looks somewhat different than for the other
regions. We introduce:

exc (x) =

{
sin (x) , for the odd parity,

cos (x) , for the even parity.
(2.31)

With the help of (2.31) we can write:
∫ H

0
r=r0

Jδ (r − r0) δ (z − z0) exc (αjz) dz = J exc (αiz0) , i = j,

Finally,

αiI0 (αir0) C2,i − αiK0 (αir0) D2,i +
2µ0

H
J exc (αiz0) =

= αiI0 (αir0) C1,i ∀i = 1, . . . , N.
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2.2 Boundary conditions

Cylindrical boundary at r = r3

Because of the different separation of the r- and z-dependent parts, the inter-
face equations between region 4 on one and regions 5 and 6 on the other side
will have more complicated form than for the boundaries between regions 1–4.
Condition (2.29) for the odd-parity case results in:

∑

i

{
sin (piz)

ki sin (qi (H − z))

}
K1 (κir3) D5,i =

=
∑

i

sin (αiz) [I1 (γir) C4,i + K1 (γir) D4,i] . (2.32)

The system obtained multiplying (2.32) by sin (αjz) ,∀j = 1, . . . , N and taking
the integral of z from 0 to H is:

N∑

i=1

PjiK1 (κir3) D5,i =

H

2
[I1 (γjr3) C4,j + K1 (γjr3) D4,j] , ∀j = 1, . . . , N, (2.33)

where:

Pji =

∫ zf

0

sin (piz) sin (αjz) dz +

∫ H

zf

ki sin (qi (H − z)) sin (αjz) dz,

∀i = 1, . . . , N ∧ j = 1, . . . , N,

or, after integration:

Pji =
pi cos (pizf ) sin (αjzf ) − αj cos (αjzf ) sin (pizf )

α2
j − p2

i

+

+ ki
qi cos (qi (H − zf )) sin (αjzf ) + αj cos (αjzf ) sin (qi (H − zf ))

α2
j − q2

i

,

∀i = 1, . . . , N ∧ j = 1, . . . , N. (2.34)

The second equation based on (2.25) is:

∑

i

{
− sin (piz)

−ki sin (qi (H − z))

}
κiK0 (κir3) D5,i =

=
∑

i

sin (αiz) [γiI0 (γir) C4,i − γiK0 (γir) D4,i] .

Applying the same procedure as for (2.32) we get:

N∑

i=1

PjiκiK0 (κir3) D5,i =

H

2
γjI0 (γjr3) C4,j −

H

2
γjK0 (γjr3) D4,j, ∀j = 1, . . . , N. (2.35)
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2 Forward problem

Equations (2.33) and (2.35) are valid for the even case, too. We just need
to redefine Pji in the following way:

Pji =

∫ zf

0

cos (piz) cos (αjz) dz +

∫ H

zf

ki sin (qi (H − z)) cos (αjz) dz,

∀i = 1, . . . , N ∧ j = 1, . . . , N,

which is, after integration, equal to:

Pji =
αj cos (pizf ) sin (αjzf ) − pi cos (αjzf ) sin (pizf )

α2
j − p2

i

+

+ ki
qi cos (qi (H − zf )) cos (αjzf ) − αj sin (αjzf ) sin (qi (H − zf ))

α2
j − q2

i

,

∀i = 1, . . . , N ∧ j = 1, . . . , N. (2.36)

2.2.2 Horizontal boundary

Since solutions for regions 5 and 6 have the same r-dependent part, conditions
(2.28) and (2.29) can be satisfied if the z-dependent parts are matched on a
term-by-term basis. For the odd parity case, this results in:

sin (pizf ) = ki sin (qi (H − zf )) , (2.37)
pi cos (pizf ) = −kiqi cos (qi (H − zf )) . (2.38)

From (2.38) follows the expression for ki:

ki = −pi

qi

cos (pizf )

cos (qi (H − zf ))
.

Dividing (2.37) by (2.38) we get:

pi tan (qi (H − zf )) + qi tan (pizf ) = 0, (2.39)

where ∀i pi 6= 0 ∧ qi 6= 0.
For the even parity case we get:

cos (pizf ) = ki sin (qi (H − zf )) , (2.40)
pi sin (pizf ) = kiqi cos (qi (H − zf )) . (2.41)

From (2.41):

ki =
pi

qi

sin (pizf )

cos (qi (H − zf ))
.

Dividing (2.40) by (2.41) we get:

qi
1

tan (pizf )
− pi tan (qi (H − zf )) = 0, (2.42)
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2.2 Boundary conditions

where ∀i pi 6= 0 ∧ qi 6= 0.

Equations (2.39) and (2.42) are eigenvalue equations for the odd and even
parity cases, respectively. Since pi and qi are functions of κi, (2.39) and (2.42)
are transcendental equations with one unknown κi ∈ C. If we want to reduce
the sums in (2.9)–(2.14) and (2.19)–(2.24) to N terms, we need to find N zeros
(roots) of (2.39) and (2.42). Omitting or skipping only one of the zeros would
introduce significant modelling errors. More detailed analysis of the eigenvalue
equations and the root-finding algorithm is given in 2.3.

2.2.3 Interface equations in the matrix form

Let values of αi, βi, γi, κi, pi and qi be N components of column vectors α,
β, γ, κ, p and q, respectively. Furthermore, let values of C1,i, C2,i, D2,i, . . . ,
D5,i be components of column vectors C1, C2, D2, . . . , D5, respectively. We
shall adopt the notation xD = diag (x), where xD is a diagonal matrix whose
diagonal elements are the elements of a column vector x. We introduce the
following matrices:

P = (Pji) , (2.43)

I1 (αr) =

{
I1 (αir) , if i = j

0 otherwise
, (2.44)

for i = 1, . . . , N and j = 1, . . . , N . Other matrices denoted with Iν (·) and
Kν (·), defined analogously to (2.44), are diagonal with the main diagonals
containing N values of Iν (·) and Kν (·).

We are now ready to rewrite the cylindrical interface equations in the ma-
trix form for all regions:

M11D5 = M12C4 + M13D4, (2.45)
M21D5 = M22C4 + M23D4, (2.46)

M31C3 + M32D3 = M33C4 + M34D4, (2.47)
M41C3 + M42D3 = M43C4 + M44D4, (2.48)
M51C2 + M52D2 = M53C3 + M54D3, (2.49)
M61C2 + M62D2 = M63C3 + M64D3, (2.50)

M71C1 = M72C2 + M73D2, (2.51)

M81C1 = M82C2 + M83D2 +
2µ0

H
Jexc (αz0) , (2.52)
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2 Forward problem

where M matrices are given with:

M11 = PK1 (κr3) M12 =
H

2
I1 (γr3)

M13 =
H

2
K1 (γr3) M21 = −PκDK0 (κr3)

M22 =
H

2
γDI0 (γr3) M23 = −H

2
γDK0 (γr3)

M31 = I1 (βr2) M32 = K1 (βr2)

M33 = I1 (γr2) M34 = K1 (γr2)

M41 = βDI0 (βr2) M42 = −βDK0 (βr2)

M43 = µrγ
DI0 (γr2) M44 = −µrγ

DK0 (γr2) (2.53)
M51 = I1 (αr1) M52 = K1 (αr1)

M53 = I1 (βr1) M54 = K1 (βr1)

M61 = µrα
DI0 (αr1) M62 = −µrα

DK0 (αr1)

M63 = βDI0 (βr1) M64 = −βDK0 (βr1)

M71 = I1 (αr0) M72 = I1 (αr0)

M73 = K1 (αr0) M81 = αDI0 (αr0)

M82 = αDI0 (αr0) M83 = −αDK0 (αr0) .

System (2.45)–(2.52) contains total of eight unknown vectors, each having
N components. Since matrix P is not diagonal, we cannot solve the system
separately, i.e. considering only the i-th components (i = 1, . . . , N) of the
vectors. In the scalar notation, system (2.45)–(2.52) has 8N equations with
8N unknowns. Well-posedness of this system is of the utmost concern for the
stability of the numerical implementation of the model and we will discuss it
in 2.4.

2.3 Solution to the eigenvalue equations

For clarity, we shall omit indices i from our notation in this section and intro-
duce indices re and im to denote the real and imaginary parts of κ, p and q.
It is more suitable for the following discussion to rewrite (2.39) and (2.42) as
functions of κ. Since:

p =
√

κ2 − jωµ0σa, (2.17)

q =
√

κ2 − jωµ0σb, (2.18)

we can write:

godd (κ) = p tan (q (H − zf )) + q tan (pzf ) , (2.54)

gevn (κ) =
q

tan (pzf )
− p tan (q (H − zf )) . (2.55)
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2.3 Solution to the eigenvalue equations

In what follows, we will analyse both functions in order to locate their
poles and isolate their zeros. As a result of the analysis, we will construct an
algorithm for locating the zeros of (2.54) and (2.55).

We will take that the argument of a complex number is in (−π, π] so that
the argument of the square root of the complex number is in

(
−π

2
, π

2

]
. As a

consequence, we can limit the analysis in p- and q-planes to their right halves,
i.e. pre > 0 and qre > 0. Furthermore, it is sufficient to analyse only right half
of κ-plane (κre > 0) because of κ2 in (2.17) and (2.18). If we square (2.17) and
separate real and imaginary parts, we get:

p2
re − p2

im = κ2
re − κ2

im, (2.56)

prepim = κreκim − ωµ0σa

2
. (2.57)

Following conclusions can be drawn from (2.56) and (2.57) for κre > 0:

p = 0 ⇒ (pre = 0) ∧ (pim = 0) ⇒ κre = κim =

√
ωµ0σa

2
, (2.58)

(pre = 0) ∧ (|pim| > 0) ⇒ (κre < κim) ∧
(
κreκim =

ωµ0σa

2

)
, (2.59)

(pre > 0) ∧ (pim = 0) ⇒ (κre > κim) ∧
(
κreκim =

ωµ0σa

2

)
. (2.60)

Mapping from p right half-plane to κ right half-plane is depicted in Fig. 2.2.
Analogous results follow from (2.18):

q = 0 ⇒ (qre = 0) ∧ (qim = 0) ⇒ κre = κim =

√
ωµ0σb

2
,

(qre = 0) ∧ (|qim| > 0) ⇒ (κre < κim) ∧
(
κreκim =

ωµ0σb

2

)
,

(qre > 0) ∧ (qim = 0) ⇒ (κre > κim) ∧
(
κreκim =

ωµ0σb

2

)
.

2.3.1 Odd-case eigenvalue equation

Since p 6= 0 and q 6= 0, godd has the same zeros and poles as:

g∗
odd (κ) =

tan (pzf )

p
+

tan (q (H − zf ))

q
.

We shall introduce the following:

E1 =
tan (pzf )

p
,

E2 =
tan (q (H − zf ))

q
, (2.61)

p′ = 2zfp,

q′ = 2 (H − zf ) q.
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2 Forward problem

0

p = 0

κre

κim

κreκim = ωµ0σa

2

(pre = 0) ∧ (|pim| > 0)

(pre > 0) ∧ (pim = 0)

(pre > 0) ∧ (pim > 0)

(pre > 0) ∧ (pim < 0)

Figure 2.2: Mapping of the first and second quadrants of p-plane into κ-plane.

Imaginary parts of E1 and E2 are:

ℑ (E1) = 2zf
p′re sinh p′im − p′im sin p′re

(p′2re + p′2im) (cos p′re + cosh p′im)
,

ℑ (E2) = 2 (H − zf )
q′re sinh q′im − q′im sin q′re

(q′2re + q′2im) (cos q′re + cosh q′im)
.

For the denominator of ℑ (E1) following holds:

(cos p′re + cosh p′im)

{
= 0 if (p′im = 0) ∧ (p′re = (2n + 1) π) ,∀n ∈ N0,

> 0 otherwise.
(2.62)

Since sinh p′im > p′im and p′re > sin p′re, we have for the numerator of ℑ (E1) in
p right half-plane:

(p′re sinh p′im − p′im sin p′re)






> 0 if p′im > 0,

= 0 if (p′im = 0) ∨ (p′re = 0)

< 0 if p′im < 0.

(2.63)
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2.3 Solution to the eigenvalue equations

It is clear from (2.58)–(2.60) and (2.62)–(2.63) that ℑ (E1) is positive for p′im >
0, negative for p′im < 0 and zero at κreκim = ωµ0σa

2
except for the singular

points. Let set Sp
odd contain the singular points of E1 for the odd parity case

in κ plane:

Sp
odd = {κ| (p′re = (2n + 1) π) ∧ (p′im = 0) ,∀n ∈ N} .

Finally, we can conclude that:

ℑ (E1)






sing. for κ ∈ Sp
odd,

0 if (κ 6∈ Sp
odd) ∧

(
κreκim = ωµ0σa

2

)
,

> 0 if κreκim > ωµ0σa

2
,

< 0 if κreκim < ωµ0σa

2
.

From the similar analysis of ℑ (E2) it follows that:

ℑ (E2)






sing. for κ ∈ Sq
odd,

0 if (κ 6∈ Sq
odd) ∧

(
κreκim = ωµ0σb

2

)
,

> 0 if κreκim > ωµ0σb

2
,

< 0 if κreκim < ωµ0σb

2
,

where Sq
odd contains the singular points of E2 for the odd parity case in κ plane:

Sq
odd = {κ| (q′re = (2n + 1) π) ∧ (q′im = 0) ,∀n ∈ N} .

In general, σa 6= σb, because there would be no need for the horizontal
boundary at z = zf if σa = σb. Without loss of generality and for the sake
of simplicity, we shall assume that σa > σb. Hyperbolas κreκim = ωµ0σa

2
and

κreκim = ωµ0σb

2
bound the area in which ℑ (E1) and ℑ (E2) have different signs.

As a consequence, curve ℑ (E1 + E2) = 0 must be bounded by the hyperbolas.
Since E1 + E2 = 0 is equivalent to (ℜ (E1 + E2) = 0)∧ (ℑ (E1 + E2) = 0), the
zeros must also be located within the area bounded by the hyperbolas, Fig. 2.3.

The limits of functions ℑ (E1) and ℑ (E2) as p and q tend to their corre-
sponding singular points depend on the approach trajectories. We will illus-
trate this for the limit of ℑ (E1) as p approaches to singular point p′ = (π, 0)
with trajectory p′im (p′re) = kπ

2
(p′re − π)2 where k ∈ C [55]:

lim
p′re→π

p′im=p′im(p′re)

ℑ (E1) = 2zfk.

Since the limit value depends on the direction that is fixed with k, singular
point (π, 0) is an essential singularity of ℑ (E1) [56]. This can be shown for
all elements of Sp

odd and Sq
odd for ℑ (E1) and ℑ (E2), respectively. According to

the Picard theorem from the complex analysis, the functions will take all pos-
sible values infinitely often on any open set containing the singular point [56].
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2 Forward problem

0

p = 0

q = 0

κre

κim

κre = κim
κreκim = ωµ0σa

2

κreκim = ωµ0σb

2

σa > σb

κ ∈ Sp
odd

κ ∈ Sq
odd

Figure 2.3: Two depicted hyperbolas bound all zeros of the odd-case eigenvalue
equation for case σa > σb. Singular points κ ∈ Sp

odd ∪ Sq
odd lie on the hyperbolas.

Practically, this means that there is a trajectory passing through a singular
point of ℑ (E1) for which ℑ (E1) = −ℑ (E2) and vice versa for singularities of
ℑ (E2). Finally, we can conclude that curve ℑ (E1 + E2) = 0 certainly passes
through any, arbitrarily small region around any κ ∈ Sp

odd ∪ Sq
odd.

Real parts of E1 and E2:

ℜ (E1) = 2zf
p′re sin p′re + p′im sinh p′im

(p′2re + p′2im) (cos p′re + cosh p′im)
,

and:

ℜ (E2) = 2 (H − zf )
q′re sin q′re + q′im sinh q′im

(q′2re + q′2im) (cos q′re + cosh q′im)
,

have the same singular points as ℑ (E1) and ℑ (E2), respectively. These points
are essential singularities of ℜ (E1) and ℜ (E2), too. For example, the limit of
ℜ (E1) as p approaches to singular point p′ = (π, 0) with trajectory p′im (p′re) =(

2
kπ

)1/2
(p′re − π)1/2 where k ∈ C is [55]:

lim
p′re→π

p′im=p′im(p′re)

ℜ (E1) = 2zf

(
−k +

2

π2

)
.
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2.3 Solution to the eigenvalue equations

Since the limit value depends on the path, the singular point is an essential
singularity. Following the arguments made for ℑ (E1 + E2) = 0, we can con-
clude that curve ℜ (E1 + E2) = 0 also approaches arbitrarily close to any point
κ ∈ Sp

odd ∪ Sq
odd.

Further numerical analysis of curves ℜ (E1 + E2) = 0 and ℑ (E1 + E2) = 0
corroborates following statements:

1. Two consecutive singular points are said to be spaced if relation ℑ (E1 + E2) =
0 between the singular points is an implicit function κim (κre), i.e. for
each κre there is only one κim that satisfies ℑ (E1 + E2) = 0.

2. There is only one crossing of ℜ (E1 + E2) = 0 and ℑ (E1 + E2) = 0
between two singular points (not necessarily spaced), i.e. we can pair
each singular point with a corresponding zero.

Fig. 2.4 depicts an illustration of these statements for H = 5 m, zf = 2 m, f =
60 Hz, σa = 10 S/m and σb = 1 S/m. It shows first three zeros of g∗

odd that are
enclosed between κreκim = ωµ0σa

2
and κreκim = ωµ0σb

2
. Essential singularities of

ℑ (E1 + E2) = 0 and ℜ (E1 + E2) = 0 are located at the hyperbolas. Fig. 2.5
shows the similar example with exception of H = 12 m. For this case, two
consecutive singularities have the same real parts, i.e. they are not spaced. As
a result, for a given κre there are more than one κim that satisfies ℑ (E1 + E2) =
0. However, there is still only one zero between two consecutive singularities.

κ
re

κ im
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Figure 2.4: Zero contour lines of real and imaginary parts of g∗odd and its singularities
and zeros bounded with two hyperbolas.
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2 Forward problem
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Figure 2.5: Zero contour lines of real and imaginary parts of g∗odd for the case of two
singularities having the same real parts.

Singular points κp ∈ Sp
odd, in contrast to being essential singularities of

ℑ (E1) and ℜ (E1), are poles of function E1 (κ). This can be confirmed by
observing that [56]:

lim
κ→κp

κp∈Sp
odd

|E1 (κ) | = ∞.

The poles are of order 1 since function (κ − κp) E1 (κ) has a removable sin-
gularity at κp [57]. By complete analogy, singularities κq ∈ Sq

odd are poles of
order 1 for function E2 (κ).

2.3.2 Even-case eigenvalue equation

Since p 6= 0 and q 6= 0, gevn has the same zeros and poles as:

g∗
evn (κ) =

cot (pzf )

p
− tan (q (H − zf ))

q
.

If p′ = 2zfp, q′ = 2 (H − zf ) q and:

E3 =
cot (pzf )

p
,

we can write g∗
evn = E3 − E2, where E2 is given by (2.61).
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2.3 Solution to the eigenvalue equations

We will proceed with the analysis of E3 only, since we have already analysed
function E2 in the previous section. Real and imaginary parts of E3 are:

ℜ (E3) = 2zf
−p′re sin p′im + p′im sinh p′im

(p′2re + p′2im) (cos p′re − cosh p′im)
,

ℑ (E3) = 2zf
p′re sinh p′im + p′im sin p′re

(p′2re + p′2im) (cos p′re − cosh p′im)
.

For the denominator of ℜ (E3) and ℑ (E3) the following holds:

(cos p′re − cosh p′im)

{
= 0 ∀p|κ ∈ Sp

evn,

< 0 otherwise,

where set Sp
evn contains singular points of ℜ (E3) and ℑ (E3) in κ plane:

Sp
evn = {κ| (p′re = 2nπ) ∧ (p′im = 0) ,∀n ∈ N} .

Sign of the numerator of ℑ (E3) in the p right half-plane is:

p′re sinh p′im + p′im sin p′re






> 0 if p′im > 0,

= 0 if (p′im = 0) ∨ (p′re = 0) ,

< 0 if p′im < 0.

Function ℑ (E3) is:

ℑ (E3)






sing. for κ ∈ Sp
evn,

0 if (κ ∈ Sp
evn) ∧

(
κreκim = ωµ0σa

2

)
,

< 0 if κreκim > ωµ0σa

2
,

> 0 if κreκim < ωµ0σa

2
.

Similarly to the odd parity case, hyperbolas κreκim = ωµ0σa

2
and κreκim =

ωµ0σb

2
bound the area in which ℑ (E3) and −ℑ (E2) have different signs. Hence,

the zeros of the even-case equation are confined in the same region as for the
odd parity case. We will skip analysis of the singular points because it is
completely analogous to one in the previous section. We will only state that
singular points κp ∈ Sp

evn are essential singularities of ℜ (E3) and ℑ (E3), and
poles of order 1 for E3 (κ).

2.3.3 Root-finding algorithm

In this section, we will describe the main features of the proposed algorithm
for isolation and finding zeros (or roots) of eigenvalue functions godd (κ) and
gevn (κ). This task is equivalent to the task of finding the zeros of g∗

odd (κ) and
g∗

evn (κ) if p 6= 0 and q 6= 0. We will assume that we have already determined
sets Sp

odd, Sq
odd, Sp

evn, and Sq
evn based on the analyses from the previous sections.
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2 Forward problem

Also, we will assume that we know how many zeros (i.e. eigenvalues) we must
find to ensure convergence of the series in (2.9)–(2.14) and (2.19)–(2.24).

There are two groups of root-finding algorithms for this kind of eigenvalue
equations. The first one is a modification of the Newton-Raphson iteration
technique [58, 59]. The first step of the method as proposed in [59] and applied
to model geometry in Fig. 2.1 would be to find two initial sets of zeros for the
cases of zf = 0 and zf = H. In the subsequent steps, the boundary is increased
in the first case and decreased in the second case by a small step ∆z. Two
new sets of zeros are calculated using the zeros from the previous steps as the
initial values for the Newton-Raphson solver. The procedure is repeated until
the boundaries in both cases reach the target value of zf . The final set of zeros
is a union of the two sets from the last step. The authors in [54] propose the
FindRoot function in Mathematica for a core iteration solver [55].

However, it is a difficult task to attempt to obtain all the zeros of an
eigenvalue equation within a given finite region using the iteration methods
proposed in [58] and [59]. The biggest concern is that there is no evidence
why the iterations should end in different zeros if they are started at different
initial guesses taken from the initial set of zeros. In implementing the iteration
algorithm, we observed that it was difficult to stop the procedures to converge
to the same zero. Also, for a significant number of zeros, the basic iteration
algorithm results in a nonconvergent cycle, thus raising the need for more
advanced iteration algorithms, e.g. backtracking modifications and Brent’s
method. The function FindRoot can handle such situations, but being the
part of a closed commercial package, it is hard to use it in a stand-alone,
proprietary codes or libraries.

The second group of algorithms, based on the explicit use of the Cauchy’s
theorem (zero-counting), is much more reliable, although potentially somewhat
slower [56]. Such algorithms can be found in [60–62]. The argument principle,
based on the Cauchy’s theorem, states the following: If a function f is a
meromorphic in a simple connected region G with poles κp,1, . . . , κp,m and
zeros κz,1, . . . , κz,n closed inside some positively oriented Jordan curve γ in G
and counted according to their order (multiplicity), then:

1

2πj

∮

γ

f ′ (κ)

f (κ)
dκ =

n∑

k=1

n (γ, κz,k) −
m∑

k=1

n (γ, κp,k) , (2.64)

where n (γ, κz,k) and n (γ, κp,k) are the order of zero κz,k and the multiplicity
of pole κp,k within γ, respectively. Our knowledge of locations of the poles and
bounded regions where zeros can exist for both eigenvalue equations enables
us to count and isolate the zeros in the observed region using the argument
principle as a criteria. The integral in (2.64) can be approximated with:

1

2πj

∮

γ

f ′ (κ)

f (κ)
dκ ≈ 1

2πj

L∑

l=1

ln
f (κl)

f (κl−1)
, (2.65)

where κ0, . . . , κL are the points on γ sorted in the positive direction (counter-
clockwise).
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2.3 Solution to the eigenvalue equations

0 κre

κim

κreκim = ωµ0σa

2

κreκim = ωµ0σb

2

κp,n

κp,n

κp,n+1

κp,n+1

κp,n+2

κp,n+3κp,n+4κp,n+5

κp,n+6

κp,n+7

ζn

Bn+1

An

Zero (root)
Poles
Vertices of ROI

Figure 2.6: Definition of regions of interest (ROI), see Algorithm 1.

Fig. 2.6 depicts the main idea of the root-finding algorithm that we propose
here. Since we know that the zeros are located between the two hyperbolas,
we will define regions of interest (ROI) in form of rectangles. For pole κp,n two
defining vertices of the corresponding ROI are given with:

An . . .

(
ℜ (κp,n) − ζn,

ωµ0σa

2 (ℜ (κp,n) − ζn)

)
,

Bn+1 . . .

(
ℜ (κp,n+1) − ζn+1,

ωµ0σb

2 (ℜ (κp,n+1) − ζn+1)

)
,

where ζn and ζn+1 are real positive numbers much smaller than the distance
between the neighboring poles. Defined in such a way, the ROI has exactly one
pole. If two consecutive poles have the same real parts, pole κn+1 is skipped,
point B is determined using pole κn+2 and, as a consequence, the ROI has two
poles and two zeros instead of one. Using the iterative procedure of successive
division of the ROI and criteria based on (2.65) all of the zeros in ROI can be
found. Thus, the problem of finding unknown number of the zeros in a single
vast region is separated into a number (defined by the model convergence)
of much simpler problems of finding the zeros in a smaller finite region with
known poles. More details on the implementation of the root-finding algorithm
are given in a pseudocode form in Algorithm 1.
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2 Forward problem

Algorithm 1 Locating the zeros using the argument principle

Require: H, zf , ω, σa, σb, κre,max, parity: odd or even
Ensure: Set Szero of all zeros κz for which ℜ (κz) 6 κre,max

1: if odd case then
2: Calculate Sp

odd and Sq
odd

3: S ⇐ Sp
odd ∪ Sq

odd

4: else
5: Calculate Sp

evn and Sq
evn

6: S ⇐ Sp
evn ∪ Sq

evn

7: end if
8: Sort the elements of S by their real part in ascending order
9: N ⇐ number of elements in S = {κp,1, . . . κp,N}

10: m ⇐ 0
11: for n = 1 to N − 1 do
12: m ⇐ m + 1 // increase the ROI counter
13: Calculate vertex An // See Fig. 2.6
14: if ℜ (κp,n) < ℜ (κp,n+1) then
15: Calculate vertex Bn+1

16: Define ROI(m) as a rectangle between An and Bn+1

17: ROI(m) .poles ⇐ 1 // One pole!
18: end if
19: if ℜ (κp,n) = ℜ (κp,n+1) then
20: Calculate vertex Bn+2 // e.g. κp,n+5 and κp,n+6 in Fig. 2.6
21: Define ROI(m) as a rectangle between An and Bn+2

22: ROI(m) .poles ⇐ 2 // Two poles!
23: n ⇐ n + 1 // skip the next pole in FOR loop
24: end if
25: end for
26: M ⇐ total number of ROI
27: Szero = ∅
28: for m = 1 to M do
29: a ⇐ result of (2.65)
30: ROI(m) .zeros ⇐ a + ROI (m) .poles // Number of zeros in ROI
31: repeat
32: Divide ROI(m) into subregions
33: until Number of subregions with one zero is ROI(m) .zeros
34: for k = 1 to ROI(m) .zeros do
35: repeat
36: Successive division of the subregion corresponding to k-th

zero of ROI (m) using (2.65) as criteria
37: until convergence criteria is met
38: Szero = Szero ∪ {k-th zero of ROI (m)}
39: end for
40: end for
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2.4 Numerical implementation

2.4 Numerical implementation

As we will see in the next chapter, we require knowledge of the magnetic
field in the interior of the tube only. Since we expect that distances from the
excitation coil required for successful measurement of the casing properties
and formation conductivity are several times larger than the casing diameter,
we can assume that z-component of the magnetic field at such large distances
does not vary significantly with r [48, 63]. Hence, we can concentrate here on
obtaining the components of vector C1 only.

The matrices given in (2.53) are diagonal except matrices M11 and M21.
This means that equations (2.47)–(2.52) can be written independently for each
component. We shall denote with mxy an element on the main diagonal of the
corresponding matrix Mxy, where we left out index i of the element’s row.
Similarly, we will shorten C1,i into C1 (a component of C1).

We need to normalise the coefficients and unknowns of the linear system
because their orders of magnitude can differ for more than 40 times, if left as in
(2.53). We will denote normalised coefficients and unknowns with the asterisk
(∗). The normalised components of the unknown vectors are:

C1 =
C∗

1

m81

,

C2 =
C∗

2

m61

, D2 =
D∗

2

m62

,

C3 =
C∗

3

m41

, D3 =
D∗

3

m42

, (2.66)

C4 =
C∗

4

m43

, D4 =
D∗

4

m44

,

D5 =
D∗

5

κK0 (κr3)
.

From that and (2.45)–(2.52) we yield the normalised coefficients:

m∗
12 =

m12

m43

, m∗
13 =

m13

m44

,

m∗
22 =

m22

m43

, m∗
23 =

m23

m44

,

m∗
63 =

m63

m41

, m∗
64 =

m64

m42

,

m∗
82 =

m82

m61

, m∗
83 =

m83

m62

, (2.67)

m∗
71 =

m71

m81

, m∗
72 =

m72

m61

, m∗
73 =

m73

m62

,

m∗
41 = m∗

42 = m∗
43 = m∗

44 = m∗
61 = m∗

62 = m∗
81 = 1,

m∗
31 =

m31

m41

, m∗
32 =

m32

m42

, m∗
33 =

m33

m43

, m∗
34 =

m34

m44

,

m∗
51 =

m51

m61

, m∗
52 =

m52

m62

, m∗
53 =

m53

m41

, m∗
54 =

m54

m42

.
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2 Forward problem

Normalisation of the elements of M11 and M21 is somewhat more difficult
because of the full matrix P. We have for normalised matrices M∗

11 and M∗
21:

M∗
11 = PK1 (κr3)

[
κDK0 (κr3)

]−1
,

M∗
21 = −P,

where the inverse of κDK0 (κr3) is easy to obtain since both factors are diag-
onal matrices.

We will first find the relation between C1, C4 and D4 using equations (2.47)–
(2.52) and then eliminate D5 combining (2.45) and (2.46). If we introduce:

V1 =

[
m∗

72 m∗
73

m∗
82 m∗

83

]
, V−1

2 =
1

m∗
51 − m∗

52

[
1 −m∗

52

−1 m∗
51

]
,

V3 =

[
m∗

53 m∗
54

m∗
63 m∗

64

]
, V−1

4 =
1

m∗
31 − m∗

32

[
1 −m∗

32

−1 m∗
31

]
,

V5 =

[
m∗

33 m∗
34

1 1

]
,

V =

[
V11 V12

V21 V22

]
= V1V

−1
2 V3V

−1
4 V5,

then ∀i = 1, . . . , N :

[
m∗

71

1

]
C∗

1 = V

[
C∗

4

D∗
4

]
+

[
0

2µ0J
H

exc (αz0)

]
. (2.68)

Calculation of V and detV is crucial for overall stability of the numerical
implementation. In order to avoid loss of significance in floating-point arith-
metics, we need to limit dynamics of operands involving Bessel’s functions
during calculation of V by carefully rearranging the expressions. The follow-
ing expressions have proved to be stable if one first calculates ratios of the
Bessel’s functions and than their products:

V1V
−1
2 = αr1I0 (αr1) K1 (αr0) ·

·




I1(αr0)
I0(αr1)

K0(αr1)
K1(αr0)

+ 1 1
αµr

(
I1(αr0)
I0(αr1)

K1(αr1)
K1(αr0)

− I1(αr1)
I0(αr1)

)

α
(

I0(αr0)
I0(αr1)

K0(αr1)
K1(αr0)

− K0(αr0)
K1(αr0)

)
1
µr

(
I0(αr0)
I0(αr1)

K1(αr1)
K1(αr0)

+ I1(αr1)
I0(αr1)

K0(αr0)
K1(αr0)

)



 ,

V3V
−1
4 = βr2I0 (βr2) K1 (βr1) ·

·




I1(βr1)
I0(βr2)

K0(βr2)
K1(βr1)

+ 1 1
β

(
I1(βr1)
I0(βr2)

K1(βr2)
K1(βr1)

− I1(βr2)
I0(βr2)

)

β
(

I0(βr1)
I0(βr2)

K0(βr2)
K1(βr1)

− K0(βr1)
K1(βr1)

)
I0(βr1)
I0(βr2)

K1(βr2)
K1(βr1)

+ I1(βr2)
I0(βr2)

K0(βr1)
K1(βr1)



 .
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2.4 Numerical implementation

Matrix V is then calculated as V =
(
V1V

−1
2

) (
V3V

−1
4

)
V5. Using the multi-

plicativity of the determinants, it can be shown that:

detV =
1

µ2
rγ

2r0I0 (γr2) K0 (γr2)
.

Equations (2.45) and (2.46) yield for j-th rows m∗
11,j and m∗

21,j of matrices
M∗

11 and M∗
21, respectively:

m∗
11,jD

∗
5 =

[
m∗

12 m∗
13

] [
C∗

4

D∗
4

]
, (2.69)

m∗
21,jD

∗
5 =

[
m∗

22 m∗
23

] [
C∗

4

D∗
4

]
. (2.70)

Let us introduce:

l1 = (m∗
12m

∗
71V22 − m∗

12V12 − m∗
13m

∗
71V21 + m∗

13V11) , (2.71)
l2 = (m∗

22m
∗
71V22 − m∗

22V12 − m∗
23m

∗
71V21 + m∗

23V11) , (2.72)

l3 =
2µ0J

H
(m∗

22V12 − m∗
23V11) exc (αz0) . (2.73)

Combining equations (2.68)–(2.73) we obtain:

SD∗
5 = x, (2.74)

C∗
1 =

detV

l2
m∗

21,jD
∗
5 −

l3
l2

, (2.75)

where j-th row vector sj of matrix S and the corresponding element x of vector
x are:

sj = m∗
11,j −

l1
l2

m∗
21,j, (2.76)

x =
µ0JH

2

r0m
∗
71

r3l2
detV exc (αz0) . (2.77)

It is worth to repeat that matrix V, l1, l2 and l3 must be calculated for each
of the N equations of system 2.74.

The component of the magnetic induction B in z direction is given by:

Bz,odd (r, z) =
N∑

i=1

sin
(
αodd

i z
)
I0

(
αodd

i r
) C∗odd

1,i

I0

(
αodd

i r0

) ,

Bz,evn (r, z) =
N∑

i=1

cos (αevn
i z) I0 (αevn

i r)
C∗evn

1,i

I0 (αevn
i r0)

,

B (r, z) =
Bz,odd (r, z) + Bz,evn (r, z)

2
.
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2 Forward problem

The magnetic field of the transmitter coil can be represented as a sum
of the magnetic field of the coil in the air and the contribution of the sur-
rounding conductive medium. Starting from (2.51) and (2.52) and after the
normalisation we get:

C∗
1 = C∗

1,air + C∗
1,mdm,

C∗
1,air =

2µ0J

H
αr0I0 (αr0) K1 (αr0) ,

C∗
1,mdm =

I0 (αr0)

µrI0 (αr1)
C∗

2 ,

where C∗
1,air would be the elements of the coefficient vector C∗

1 in the case
without surrounding medium (only air) and C∗

1,mdm is the contribution of the
surrounding medium. The elements of C∗

2 can be calculated using following
expressions:

U =

[
U11 U12

U21 U22

]
= V−1

2 V3V
−1
4 V5,

detU =
α2I0 (αr1) K0 (αr1)

γ2I0 (γr2) K0 (γr2)
,

t1 = m∗
12U22 − m∗

13U21,

t2 = m∗
22U22 − m∗

23U21,

t3 =
2µ0J

H
µrαr0I1 (αr0) K0 (αr1) (m∗

22U12 − m∗
23U11) exc (αz0) ,

s′j = m∗
11,j −

t1
t2

m∗
21,j,

x′ =
µ0HJ

2

r0

µrr3t2

αI1 (αr0) K0 (αr1)

γ2I0 (γr2) K0 (γr2)
exc (αz0) ,

S′D∗
5 = x′,

C∗
2 =

detU

t2
m∗

21,jD
∗
5 −

t3
t2

.

The elements of S are complex numbers in double precision and since N
can easily grow to several thousands, one must use iterative procedures for
obtaining the solution to the linear system (2.74). Minimum residual methods
and biconjugate gradients methods as implemented in Matlab provided reliable
solutions [64]. The usage of the expressions given above is summarised in a
pseudocode form in Algorithm 2.

2.5 Homogenous surrounding formation

The case of homogenously conductive surrounding formation will be of in-
terest in the sensitivity analysis for evaluation of the casing effect, minimal
measurable contrast in conductivities of horizontal layers in the formation and
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2.5 Homogenous surrounding formation

Algorithm 2 Numerical implementation of the TREE model - vector C∗
1

Require: H, zf , r0, r1, r2, r3, ω, σa, σb, N , Sodd
zero, Sevn

zero

Ensure: N elements of vectors C∗
1 for the odd and even parity cases

1: for odd-parity and even-parity case do
2: Calculate N×N matrix P — use (2.34) for odd-parity case and (2.36)

for even-parity case.
3: Calculate Mxy using (2.53)
4: Normalise Mxy and obtain M∗

xy

5: for i = 1 to N do
6: Calculate V,
7: Calculate l1, l2 and l3 using (2.71)–(2.73)
8: end for
9: Form S using (2.76)

10: Form x using (2.77)
11: Numerically solve the system (2.74) for D∗

5

12: Calculate N elements of C∗
1 using (2.75)

13: end for

maximum radial depth of formation conductivity measurement. Because of
the formation homogeneity, there is no need to solve the eigenvalue equations
and all matrices from the previous sections in this chapter are diagonal. As
a result, this case is a much lighter computational burden than the case of
two-layered formation.

We will take that layer B in Fig. 2.1 has the same conductivity as layer A,
i.e. σb = σa, what is equivalent to letting zf = H. Although only even part
of the solution would suffice to completely describe the magnetic potential in
this case, we shall calculate both even and odd case in order to be able to
distinguish between different positions of the transmitter coil with respect to
the boundaries z = ±H. Also, this opens the possibility of comparison of
coefficients Codd

1 and Cevn
1 between homogenous and two-layered formation.

Eigenvalues αi remain the same: αi = iπ
H

for the odd parity solution and
αi = (2i−1)π

2H
for the even parity solution. This difference in the eigenvalues

is the only difference between the odd and even parity case. The rest of the
equations is the same for both cases. Since σb = σa, we have pi = qi = ai and
thus:

βi =
√

α2
i + jωµ0µrσt,

γi =
√

α2
i + jωµ0σl,

κi =
√

α2
i + jωµ0σa.

In the homogenous case, matrix P is identity matrix of size N and we are
allowed to reshape diagonals of matrices Mxy given in (2.53) into correspond-
ing column vectors mxy. Normalisation relations (2.66) and (2.67) as well as
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2 Forward problem

definitions of V, l1, l2, l3 and x from section 2.4 are the same for the case of
homogeneous formation. Matrix S in the two-layered case is now a column
vector s whose i-th element s (we omitted index i as in 2.4) is:

s = m∗
11 −

l1
l2

m∗
21.

Instead of time-consuming iterative methods for solving (2.74), column vector
of coefficients D∗

5 is in this case simply obtained using:

D∗
5 =

[x]

[s]
,

where the right side notation is element-wise (Hadamard) division of two vec-
tors or matrices (with the same number of rows and columns). An element C∗

1

of vector C∗
1 is:

C∗
1 =

detV

l2
m∗

21D
∗
5 −

l3
l2

.

2.5.1 Induced current density

According to the Maxwell-Faraday equation:

∇× E = −∂B

∂t
,

electric field E has only the ϕ component if the problem geometry is axially
symmetric and the magnetic field has only r and z components. The electric
field is related to the potentials via:

E = −∇φ − ∂A

∂t
.

The gradient of the scalar potential φ vanishes because of the axial symmetry,
leaving in the frequency domain:

Eϕ = −jωA.

Using the Ohm’s law J = σE we can write for the induced currents in the
casing and surrounding medium:

Jn = −jωσnAn, (2.78)

where index n denotes a region. The induced currents in the case of the axial
symmetry as in Fig. 2.1 have only the ϕ component.
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Chapter 3

Space-frequency analysis

You know my methods. Apply them!

Sherlock Holmes

Sir Arthur Conan Doyle,
“The Sign of Four,” Ch. 6, p. 112, 1890

In this chapter we use the model developed in Chapter 2 to analyse the sensitiv-
ity of the outputs, i.e. measured electrical quantities (magnetic field, induced
voltage and coil impedance), to the changes of the inputs (tube and formation
properties). We are concerned with the questions of how far from the trans-
mitter coil we should position the receiver coils and what excitation frequency
we should use in order to selectively maximise sensitivity to a certain tube
or formation property; hence the name space-frequency sensitivity analysis.
As the final result of the analysis, we will be able to propose proper sensor
configurations, i.e. number of the coils, their characteristics and mutual posi-
tions. Requirements for the sensor interface (transmitting and data-acquisition
circuitry) will be discussed in Chapter 6.

Fig. 3.1 is a good illustration of the fundamental reason why the coil separa-
tion and excitation frequency need to be chosen carefully. It shows attenuation
of the magnetic field of a transmitter loop caused by the presence of a ferro-
magnetic casing. In the interesting ranges of the frequency and separation,
one can expect attenuation of more than 200 dB and magnetic fields as small
as 10 pT.

3.1 Formation conductivity

3.1.1 Phase difference

Following [52], we shall analyse effects of variations in the formation con-
ductivity mainly observing a phase difference between voltages UR induced
in the receiver for two different surrounding media. For brevity, we will use
∆ϕhom (σ1; σ2) to denote the phase difference between the induced voltages for

38



3 Space-frequency analysis

Figure 3.1: Amplitude of the magnetic field Bz as a function of distance z from
the transmitter coil and excitation frequency f . For the simulation details see sec-
tion 3.1.2.

two homogenous media with conductivities σ1 and σ2, i.e.:

∆ϕhom (σ1; σ2) = arg UR (σ1) − arg UR (σ2) ,

where both arg UR (σ1) and arg UR (σ2) are measured or calculated with the
same casing, coil, and excitation properties. If the second medium is air
(σ2 = 0 S/m), we will write only ∆ϕhom (σ1). In the model from Chapter 2, a
homogenous medium can be achieved by setting σl = σa = σb, Fig. 2.1.

The phase difference for the formation consisting of two layers with con-
ductivities σa and σb with respect to the case of a homogenous medium with
conductivity σ2 is:

∆ϕ (σa, σb; σ2) = arg UR (σa, σb) − arg UR (σ2) .

We assume that σb = σ2 if we denote the phase difference as ∆ϕ (σa; σb). In
contrast to ∆ϕhom, ∆ϕ depends on the sonde position.

For the sake of clarity, we will introduce a shorthand description of the
casing and surrounding media.

• C (r1, c, σt, µr) describes the casing with the listed properties.

• Mhom (σform) describes the homogenously conductive surrounding medium,
σform = σl = σa = σb.

• Mcyl (r3, σl, σform) describes the cylindrical two-layered formation (layers
A and B are assumed equally conductive, σform = σa = σb), Fig. 2.1.

• M (2zf , σa, σb) describes the two-layered formation with the specified
thickness of layer A is 2zf , Fig. 3.8.
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3.1 Formation conductivity

3.1.2 Homogenous surrounding formation

In order to answer the question of the choice of the excitation frequency and
transmitter-receiver distance required for the measurement of rock conductiv-
ity, we can without any loss of generality assume homogenous surrounding
formation. Phase difference ∆ϕhom (1 S/m) and induced voltage UR (1 S/m)
are depicted in Figs 3.2 and 3.3, respectively, as functions of excitation fre-
quency f and distance z from the transmitter coil for C(100 mm, 10 mm,
4.6 MS/m, 100). The phase difference is larger for higher excitation frequen-
cies and larger coil separations, whereas the induced voltage rapidly decreases
with the frequency and distance.

Accurate phase measurement, sensitive to changes in the formation conduc-
tivity, requires larger phase difference and amplitude of the induced voltage,
what is contradictory. Furthermore, increasing coil separation decreases the
vertical resolution, section 3.1.3. For the shaded area in Fig. 3.4, obtained
combining Figs. 3.2 and 3.3, amplitude of induced voltage UR is larger than
10 µV and absolute value of phase difference |∆ϕhom (1 S/m) | is larger than
0.1◦. This effectively establishes minimum requirements for the sensor inter-
facing circuitry, which we discuss in greater detail in Chapter 6.

Within the bounds of the analysis presented here, the primary criteria
for selecting the excitation frequency and coil separation is one presented as
the shaded area of Fig. 3.4. Fig. 3.5 shows the induced voltage and phase
difference as functions of the excitation frequency at the distance z = 5 m.
For the excitation frequency of 60 Hz, we can expect the induced voltage
around 100 µV and phase difference of approximately −0.35◦.

Space-frequency dependence of induced voltage UR for C(50 mm, 10 mm,
4.6 MS/m, 100) is depicted in Fig. 3.6. In comparison to Fig. 3.3, one can
immediately notice attenuation of the amplitude for the factor of 10. However,
the choice (5 m, 60 Hz) still meets the criteria mentioned above.

Fig. 3.7 shows the dependence of induced voltage UR on casing inner ra-
dius r1 for the transmitter coils of different radii (K1 being the smallest) and
magnetic moments. The design and properties of the transmitter coils are
described in Chapter 6. For now, we give the most important properties in
Table 3.1. It can be concluded that the measurement of formation conductiv-
ity is expected to be easier in casings with larger radius primarily because of
a larger achievable magnetic moment of the transmitter.

Table 3.1: Some properties of the transmitter coils, see Chapter 6.

Designation Mean radius Number of turns Magnetic moment (air)
K1 32.5 mm 2344 41 Am2

K2 47.5 mm 2344 81 Am2

K3 62.5 mm 2344 122 Am2

K4 80.0 mm 1875 158 Am2
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Figure 3.2: Phase difference ∆ϕhom (1 S/m) as a function of distance z from the
transmitter coil and excitation frequency f .
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3.1 Formation conductivity

Figure 3.4: Shaded area contains all pairs (z, f) for which |UR| > 10 µV and
|∆ϕhom (1 S/m) | > 0.1◦. See Figs. 3.2 and 3.3.
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Figure 3.5: Amplitude of the induced voltage UR (the blue solid line) and phase
difference ∆ϕhom (1 S/m) (the red dashed line) as functions of frequency f at z =
5 m.
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3 Space-frequency analysis

Figure 3.6: Amplitude of the induced voltage UR as a function of distance z from
the transmitter coil and excitation frequency f (casing inner radius 50 mm). For the
red dashed line, ∆ϕhom (1 S/m) = −0.1◦.
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r1 for distance z = 5 m and excitation frequency f = 60 Hz. Properties of the coils
are given in Table 3.1.
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3.1 Formation conductivity

3.1.3 Vertical spatial resolution

Response of the two-coil sonde in a layered surrounding medium, Figs. 2.1 and
3.8, to the change in conductivity of a layer (σa) is a function of the layer thick-
ness (2zf ), conductivities of the adjacent layers (σb), position of the middle of
the sonde with respect to the middle of the layer (zs) and transmitter-receiver
separation (sonde length, Ds) [11]. Instead of the true layer conductivity, the
sonde response represents the apparent conductivity, i.e. the conductivity of
a homogenous medium that would produce the same signal response as the
present layered medium [12, 65].

r

S
Ds

2

Ds

2

zf

−zf

0

σa

σb

C (r1, c, σt, µr)

zs

z

Tx

Rx

Figure 3.8: Coordinate system and sonde position, see Fig. 2.1.

Fig. 3.9 depicts results obtained using our model and the geometry in
Fig. 3.8 with the same properties of the coils, casing and surrounding medium
as in [52]: the casing C(100 mm, 10 mm, 1 MS/m, 6.25), the medium M(5 m,
2 S/m, 0.2 S/m), and the excitation frequency 100 Hz. The results quan-
titatively agree with the ones in [52], what supports validity of the model.
Maximum of the phase difference occurs when the middle of the sonde (point
S in Fig. 3.8) coincides with the middle of layer A, i.e. when zs = 0. As ex-
pected, the phase difference increases with the coil separation, but the vertical
resolution decreases. The phase differences for two different casings C(100 mm,
10 mm, 1 MS/m, 6.25) and C(100 mm, 10 mm, 4.6 MS/m, 100) are shown
in Fig. 3.10. Although the penetration depth for the latter casing is smaller
for more than 8 times, the phase logs overlap. This feature is of the utmost
interest and will be discussed in more details in section 3.3. Figs. 3.11 and 3.12
show the phase logs at f = 60 Hz for thicknesses of layer A 3 m and 20 m, re-
spectively. Although the conductivity of layer A in both figures is σa = 1 S/m,
maximum absolute value of ∆ϕ (1 S/m; 0 S/m) is larger for the thickness of
20 m. This is clearly shown in Fig. 3.13. Extreme value of ∆ϕ (1 S/m; 0 S/m)
for a given coil separation Ds approaches its homogenous limit ∆ϕhom (1 S/m)
as the layer thickness increases. For the coil separation of 1 m the homogenous
limit is achieved for layers thicker than 3 m, whereas for the coil separation of
5 m, the limit is not achieved even for layers thicker than 20 m.
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3 Space-frequency analysis

Figure 3.9: Relationships of phase differences ∆ϕ (2 S/m; 0.2 S/m) and sonde posi-
tion zs for five transmitter-receiver separations Ds. Casing and excitation frequency
are chosen according to [52]: C (100 mm, 10 mm, 1 MS/m, 6.25) and f = 100 Hz.

Figure 3.10: Comparison of phase differences ∆ϕ (2 S/m; 0.2 S/m) for two casings:
C (100 mm, 10 mm, 1 MS/m, 6.25) and C (100 mm, 10 mm, 4.6 MS/m, 100). There
is no significant difference between the curves. For other settings see Fig. 3.9.
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3.1 Formation conductivity

Figure 3.11: Phase differences ∆ϕ (1 S/m; 0 S/m) for the range of coil separation
Ds from 1 m to 6 m. Dotted lines bound layer A. The casing parameters are
C (100 mm, 10 mm, 4.6 MS/m, 100), and the medium is M (3 m, 1 S/m, 0 S/m).

Figure 3.12: Phase differences ∆ϕ (1 S/m; 0 S/m) for the range of coil separation
Ds from 1 m to 6 m. Dotted lines bound layer A. The casing parameters are
C (100 mm, 10 mm, 4.6 MS/m, 100), and the medium is M (20 m, 1 S/m, 0 S/m).
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3 Space-frequency analysis

Figure 3.13: Maximum of ∆ϕ (1 S/m; 0 S/m) (at zs = 0 m) as a function of the
thickness of layer A for several coil separations. All curves approach homogenous
limit ∆ϕhom (1 S/m) (dotted lines) as the layer thickness increases.

Based on this analysis, we can conclude that the simplest two-coil sonde for
the cased-hole measurement shows the same limitations of the vertical resolu-
tion as for the open-hole case [12, 65]. The problem is even more severe con-
sidering that a typical open-hole sonde has several times smaller transmitter-
receiver separation (about 1 m or 40′′) than it can be expected for the cased-
hole sonde (about 5 m). In open-hole induction logging, the vertical resolution
was improved using focused tools which were replaced by multi-array and tri-
axial induction tools in the early 1990s [1]. Because of the similarities between
the responses of probes to the properties of surrounding rocks in the cased
and open-hole situations, we expect that the vertical resolution of cased-hole
probes can be ameliorated using similar techniques as in open-hole induction
tools, namely multi-receiver tools and inverse problem solving techniques [1].

3.1.4 Radius of investigation

Radius of investigation is a radial distance from the axis of a borehole that
describes how far into the formation a tool can measure its properties [3,
66]. The term is more appropriate than “depth of investigation” for axially
symmetric measurements [66]. For resistivity measurements, the radius of
investigation can vary considerably depending on formation homogeneity and
electrical conductivity. Thus, one should always specify the conditions for
which the stated radius of investigation is valid.
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3.1 Formation conductivity

We will investigate the radius of investigation using the geometry depicted
in Fig. 3.14. The formation consist of two cylindrical layers: the inner layer
with conductivity 0 S/m, and the outer layer with conductivity 1 S/m. The
boundary between the layers is at r = r3. By varying r3, we can determine
at what distance from the borehole axis the effect of formation on the phase
difference becomes negligible.

r
0

C (r1, c, σt, µr)

r2 r3

z

Tx

Rx
Ds

1 S/m

Figure 3.14: Definition of the radius of investigation. Medium surrounding the
casing consists of two cylindrical layers with boundary at r = r3. The inner layer
has conductivity of 0 S/m and the outer layer 1 S/m. See Fig. 2.1.

Phase difference ∆ϕroi in the case of geometry from Fig. 3.14 is a function
of r3, and, as usual, we define it with respect to the phase at the same position
in the case of the same casing surrounded by the nonconductive medium (air).
The phase difference ∆ϕroi is maximal for r3 = r2, i.e. ∆ϕroi (r3 = r2) =
∆ϕhom (1 S/m). Since we are interested in the relative decrease of the phase
difference as r3 increases, we will define the normalised phase difference:

∆ϕnorm =
∆ϕroi (r3)

∆ϕroi (r3 = r2)
=

∆ϕroi (r3)

∆ϕhom (1 S/m)
. (3.1)

Fig. 3.15 depicts ∆ϕnorm for three values of coil separation Ds = 1 m, 5 m
and 10 m. As expected, ∆ϕnorm decreases as r3 increases, but more slowly for
the larger coil separation. This confirms the fact, well-known in the open-hole
logging, that with increase of the coil separation, the influence of more remote
parts of the formation increases [11]. The formation parts beyond r3 > Ds

contribute less than 40% to 50% of the total phase difference, and around 20%
for r3 > 2Ds. If we accept 20% as the limit, we can establish a rule of thumb
for assessment of the radius of investigation: for coil separation Ds the radius
of investigation is around 2Ds.

Radial dependence of the modulus (normalised to 1) of the current density
in the formation is shown in Fig. 3.16 for z = 2 m, 5 m and 10 m. We
calculated the current density using (2.78). Again, it is clear that the more
distant receiver means larger radius of investigation. Furthermore, we can
see that there is a radial distance for every z at which the current density
is maximal. The parts of the medium with higher current density build up
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3 Space-frequency analysis

Figure 3.15: Relationship of normalised phase difference ∆ϕnorm, see (3.1), and
radial boundary r3 from Fig. 3.14 for three values of coil separation Ds.

the greatest part of the formation contribution to the receiver signal. This
means that by choosing the coil separation, we choose a radial interval of the
formation to which our sonde will have the greatest sensitivity or resolution.

The radial resolution is closely connected to the radius of investigation [66].
The change in the remote part (r3 = 18 m) of formation from 0 S/m to 1 S/m
results in the phase difference that is 10% of the maximum phase difference in
the homogenous case, Fig. 3.15.

3.2 Casing properties

Inductive measurement of the oil-well casing properties is discussed by a num-
ber of authors [44, 46, 48, 49, 63, 67–70]. The main principle of the inductive
measurements of the casing’s properties is based on a careful selection of the
coil separation and excitation frequency. For the measurement of the inner
radius one should use transmitter and receiver coils (known as calliper coils)
placed next to each other or a single-coil method based on the impedance
measurement [68, 71]. In both cases, excitation frequency is on the order of
10 kHz. For measurement of the wall thickness one uses so-called remote-field
technique, where the coil separation is 2 to 5 times larger than the casing inner
diameter and excitation frequency is on the order of 10 Hz [48, 67]. The casing
electromagnetic properties are measured using a transmitter-receiver pair at
mutual distance “somewhere” in between distances used for the calliper coils
and thickness coils [20]. The choice of the excitation frequency is such that
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Figure 3.16: Radial dependence of the normalised modulus of current density in
surrounding medium at three heights z from the transmitter.

the measurement is unaffected by the casing wall thickness.
In summary, the casing properties are measured using three transmitter-

receiver pairs and at least three excitation frequencies. Firstly, the inner radius
is measured. Then, the measurement of the electromagnetic properties are cor-
rected for variations in the inner radius. Finally, the wall thickness is obtained,
corrected for variations in the electromagnetic properties [20].

In the rest of this section we will analyse the choice of separations and
frequencies using the analytical derivatives of the magnetic field with respect
to the casing properties. Without such an analysis, and based on simplified
models or empirical results only, one has difficulties to justify chosen spacings
and frequencies or to find the optimal choice [44].

3.2.1 Spectrum of induced voltage

Figs. 3.17 show amplitude spectra of the field-frequency product Bzf (propor-
tional to the voltage picked-up by the receiver) depending on wall thinning
(inner or outer) for three coil separations Ds = 0.8 m = 4 ID, Ds = 0.45 m =
2.25 ID and Ds = 0.2 m = 1 ID, where ID denotes casing’s inner diameter.
The energy of the spectrum has distinctive low and high frequency bands as
discussed in our papers [48, 63]. For larger coil separations as in Fig. 3.17(a),
the energy is concentrated at low frequencies, while at locations closer to the
transmitter the energy of the higher band dominates, Fig. 3.17(c). At inter-
mediate distances from the transmitter, both bands are visible, Fig. 3.17(b).
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3 Space-frequency analysis

In Figs. 3.17, casings 2 and 3 have the same wall thickness, which is smaller
than thickness of casing 1. Casings 1 and 2 have the same inner radii, whereas
casings 1 and 3 have the same outer radii. Casings with the same wall thickness
have similar low-frequency bands regardless of the actual values of their radii,
Fig. 3.17(a). Casings with the same inner radius have the same high-frequency
band regardless of their wall thickness, Fig. 3.17(c). In Fig. 3.17(b), one can
observe a boundary frequency that divides the spectra into low and high bands
related to wall thickness variations and inner radius variations, respectively.
It is customary to say that a receiver is in a direct zone if the choice of the
separation and frequency is such that the sensitivity to the inner radius is high.
Similarly, the receiver is said to be in a remote zone if the chosen separation
and frequency result in the high thickness sensitivity [48, 67].

The separation of the spectrum into two bands and their commensurability
at intermediate distances can be exploited for simultaneous measurement of
inner radius and thickness with only one transmitter-receiver pair. This is
achieved using a pulsed excitation for which the induced voltage has radius-
and thickness-dependent parts “separated in time”, as discussed in our paper
[48].

3.2.2 Wall thickness and electromagnetic properties

In addition to being complex, the derivatives of Bz over casing properties are
incommensurable because the thickness, permeability and conductivity have
values on the scale from 10−2 to 106. In order to have comparable measures
of sensitivity, we will define the relative sensitivity of the magnetic field with
respect to a casing property x (thickness c, conductivity σt or relative perme-
ability µr) as:

Sx = | x

Bz

∂Bz

∂x
|.

Sx is an absolute value of the ratio of the relative change of the magnetic
field and the relative change of a casing property. Since the induced voltage
is proportional to the field, Sx also represents the relative sensitivity of the
voltage.

Figs. 3.18 and 3.19 depict spatial dependencies of relative sensitivities Sc,
Sσ and Sµ for excitation frequencies 60 Hz and 200 Hz, respectively. For both
frequencies and at large distances from the transmitter, all three casing pa-
rameters have a significant effect on the magnetic field. As the coil separation
decreases, Sc decreases more rapidly than Sσ and Sµ. This is especially no-
ticeable in Fig. 3.19 for 200 Hz, where Sc is smaller than Sσ and Sµ as far as
z = 0.5 m. In the transmitter’s vicinity Sc is smaller for almost four orders of
magnitude. This illustrates the aforesaid principle of the measurement of the
electromagnetic properties.
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3.2 Casing properties

Figure 3.17: Amplitude spectra of Bzf for three values of coil separation Ds and
casings: 1—C(100 mm, 10 mm, 4.6 MS/m, 100); 2—C(100 mm, 8 mm, 4.6 MS/m,
100), outer thinning with respect to case 1; and 3—C(102 mm, 8 mm, 4.6 MS/m,
100), inner thinning with respect to case 1. ID denotes casing’s inner diameter.

52



3 Space-frequency analysis

0 0.2 0.4 0.6 0.8 1
10

−3

10
−2

10
−1

10
0

10
1

10
2

Distance,  z  [m]

S
en

si
tiv

ity
,  S

 S
c

 Sµ

 Sσ

Figure 3.18: Relative sensitivities of the magnetic field to the casing properties at
60 Hz.
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Figure 3.19: Relative sensitivities of the magnetic field to the casing properties at
200 Hz.

53



3.2 Casing properties

3.2.3 Casing factor and permeability-conductivity ratio

As we will see in Chapter 4, for the inverse problem of determination of the
casing properties from the measured magnetic field, it is of interest to know
a levelset LC = {(c, σt, µr) |Bz (c, σt, µr) = Bz (c0, σt0, µr0)} for a given triple
(c0, σt0, µr0). For now, we will focus ourselves to finding the approximate shape
of such a levelset.

Magnetic field Bz can be written as a function of logarithmic values of the
casing properties, namely ln c, ln σt and ln µr. If we consider these logarithmic
values as Cartesian coordinates, the gradient of Bz in a point with coordinates
(ln c0, ln σt0, ln µr0) is a vector normal to the tangential plane containing the
point [72]. The plane is a very good approximation of the levelset even in
a larger area around the point. We confirmed this by extensive numerical
simulations, which we skip here for the sake of shortness.

The components of the gradient of Bz are:

Cc =
∂Bz

∂ ln c
= c

∂Bz

∂c
,

Cσ =
∂Bz

∂ ln σt

= σt
∂Bz

∂σt

,

Cµ =
∂Bz

∂ ln µr

= µr
∂Bz

∂µr

.

If we define the normal vector n = [1 Cµ/Cσ Cc/Cσ]T and radius vectors t =
[ln σt ln µr ln c] and t0 = [ln σt0 ln µr0 ln c0], we can write for the tangential
plane:

n · (t − t0) = 0.

The thickness-related component of vector n, ratio Cc/Cσ is zero in a region
close to the transmitter, Fig. 3.20. This region of insensitivity to the thickness
is wider for higher frequencies, as already discussed in section 3.2.2. After
a transition zone in which both parts are commensurable, imaginary part of
the ratio becomes zero again, whereas the real part levels at a constant value
between 1.85 and 2 depending on the frequency. The permeability-related
component of the normal vector, ratio Cµ/Cσ has similar spatial dependence
of the imaginary part as Cc/Cσ, Fig. 3.21. In the vicinity of the transmitter the
imaginary part is zero and the real part is −1. Far from the transmitter and
after the transition zone, the imaginary part is zero again and the real part is a
constant value between 0.85 and 0.92, depending on the frequency. Because the
imaginary parts of the ratios vanish in the vicinity of the transmitter and in the
remote zone, the real and imaginary parts of Bz have the same levelsets in these
regions, thus containing the same information about the casing properties.

The levelset can be written as:

LC = cνcµνµ

r σt = cνc

0 µ
νµ

r0σt0 = const., (3.2)
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Figure 3.20: Real (full lines) and imaginary (dash-dot lines) parts of ratio Cc/Cσ

against distance from the transmitter for three excitation frequencies.

where νc = Cc/Cσ and νµ = Cµ/Cσ. For small coil separations and high
excitation frequencies, νc = 0, νµ = −1 and, from (3.2), the levelset is the
permeability-to-conductivity ratio PCR,

LC =
σt

µr

=
1

PCR
.

For larger coil separations and lower frequencies, νc is close to 2 and νµ is close
to 1, so the sought levelset is approximately equal to the square value of a
casing factor:

LC ≈ C2
f = c2µrσt. (3.3)

LC with its spatially and frequency dependent exponents νc and νµ consol-
idates the notion of PCR and Cf as values that can be successfully resolved
from the measured impedance or voltage, even in the case of degraded accu-
racy [49, 73]. While PCR is a good representation of LC in the vicinity of the
transmitter, casing factor Cf as defined in (3.3) is only the first approximation
of LC in the remote zone and one must use it with a caution.

Although we made this analysis for a particular casing, its validity can be
corroborated by the model laid out in Chapter 2. Under the assumption of
large values of βr1 and βr2, Bessel’s functions involving these arguments can be
replaced by their asymptotic exponential form [72]. After straightforward but
laborious algebraic manipulations, it becomes evident that the casing proper-
ties are involved only through βc and µr/β. For small values of α, arguments
βc and µr/β are proportional to Cf and

√
PCR, respectively. Interaction of
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Figure 3.21: Real (full lines) and imaginary (dash-dot lines) parts of ratio Cµ/Cσ

against distance from the transmitter for three excitation frequencies.

expressions involving βc and µr/β results in the space-frequency dependence
of LC as we discussed previously.

3.3 Correction for casing effect in case of known

casing properties

At a large distance from the transmitter loop its vector potential can be ap-
proximated with the potential due to a magnetic dipole of moment m = Itπr2

0.
The axial component of the magnetic field of the transmitter in air along z
axis is given with:

Bz,air (r = 0, z) = µ0
m

2π|z|3 , (3.4)

for z >> r0. Comparison of the transmitter field calculated using the model
and the dipole approximation (3.4) is depicted in Fig. 3.22. For distances
larger than 1 m (10 casing’s radii) the difference between the two models is
indistinguishable.

If the transmitter loop is positioned inside the casing, the magnetic field at
distances z >> r0 will be severely attenuated but its magnitude will still be
proportional to the factor r2

0|z|−3. Because of that proportionality, the field of
the dipole with moment m inside the casing can be related to a dipole with
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Figure 3.22: Axial component of the magnetic field of a transmitter loop along z
axis: the model prediction (full line), dipole approximation (dashed line).

effective magnetic moment mc = kcm:

Bz,c (r = 0, z) = µ0
mc

2π|z|3 = µ0
kcm

2π|z|3 = kcBz,air (r = 0, z) ,

where complex function kc is a casing attenuation factor, which depends on
the casing properties and excitation frequency. The axial dependence of the
modulus and phase of kc for casing C(100 mm, 10 mm, 4.6 MS/m, 100) is
shown in Fig. 3.23. It can be seen that |kc| does not depend significantly on
z for distances larger than 1 m, thus confirming the dipole character of Bz,c.
However, the phase of kc depends on the distance for the entire range of interest
(up to 10 m).

If a magnetic dipole is placed in an open borehole in homogenously conduc-
tive medium, the magnetic field along z axis also shows r2

0|z|−3 dependence.
Similarly to the previous situation with casing alone, we can write for an
effective moment of the dipole in the open borehole mf = kfm. The for-
mation factor kf depends on the formation conductivity, excitation frequency
and borehole radius. A closed-form solution can be found for borehole ra-
dius r1 = 0 m (i.e. a dipole embedded in a homogenous conductive medium)
[65, 74]:

Bz,f = µ0
mf

2π|z|3 = µ0
kfm

2π|z|3 ,
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3.3 Correction for casing effect in case of known casing properties

where

kf = (1 + jκfz) exp (−jκfz) , (3.5)
κ2

f = −jωµ0σf . (3.6)

It can be expected that kf shows similar dependence for a borehole of finite
radius.
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Figure 3.23: Modulus and argument of the casing attenuation factor along z axis for
C(100 mm, 10 mm, 4.6 MS/m, 100)

We can assume that the surrounding medium changes the far field of a
dipole inside the casing in the same way as it changes the field of a dipole in
the open borehole. This can be justified by the dipole nature of the magnetic
field of a current loop inside the casing at large distances and by the fact
that the casing is uncoupled from the surrounding medium, meaning that the
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induced current flowing in the medium has no effect on the current distribution
within the casing. Similar conclusions were corroborated by numerical and
scaled experimental studies for other configurations, e.g. surface-to-borehole
measurements in [29]. Thus, when the casing and formation are present:

Bz,c+f = kfBz,c = kfkcBz,air. (3.7)

Importance of (3.7) lies in a simple correction of the formation conductivity
measurement for variations in the casing properties. The casing attenuation
can be calculated and compensated if one measures the casing properties. In
other words, the casing acts as a filter for which the inverse of its transfer
function can be calculated for known casing properties [30].

The homogenous phase difference for two surrounding media of conductiv-
ities σ1 and σ2, defined in section 3.1.1 can be calculated using the magnetic
field instead of the induced voltage:

∆ϕhom (σ1; σ2) = arg Bz,c+f (σ1) − arg Bz,c+f (σ2) , (3.8)

where the casing for both fields is the same. It follows from (3.7) that:

Bz,c+f = |kf ||kc|Bz,air exp (j (arg kf + arg kc)) , (3.9)

where we took into account that Bz,air is real-valued. Combining (3.8) and
(3.9) we get:

∆ϕhom (σ1; σ2) = arg kf (σ1) − arg kf (σ2) . (3.10)
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Figure 3.24: Phase difference ∆ϕhom (1 S/m) calculated for 36 different casings (over-
lapped gray lines, see text for properties), open borehole (black, full line) and using
closed form solution for borehole radius 0 m (black, dashed line).
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3.3 Correction for casing effect in case of known casing properties

The casing attenuation factor kc is cancelled out in (3.10), leaving the phase
difference independent of the casing properties.

Fig. 3.24 illustrates the cancellation of the casing effect. We calculated
the phase difference ∆ϕ (1 S/m) for 36 different casings. Each casing is a
combination taken from the set of all possible combinations of four values of the
permeability (1, 50, 100 and 200), three values of the conductivity (1 MS/m,
4.6 MS/m and 10 MS/m) and three values of the thickness (2 mm, 10 mm and
20 mm) for the inner radius of 100 mm. In spite of these very different casings
and, consequently, values of kc, the curves of the phase difference overlap.
Furthermore, they deviate on average only 0.005◦ from the phase difference
at z = 5 m in the situation without the casing. The phase difference using
closed-form solution (3.5) for borehole radius 0 m is also in a good agreement
with the rest of the curves, indicating the correctness of our assumption that,
at such large distances, the contribution of the borehole can be neglected in
the first approximation. The insensitivity of the phase difference to the casing
properties is also evident in the case of inhomogeneous surrounding medium,
as already shown in Fig. 3.10.
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Chapter 4

Inverse problem

We must take care not to admit as true

anything, which is only probable.

Benedictus de Spinoza (1632–1677)

Letter 56(60), to Hugo Boxel, 1674

In this chapter we develop a stochastic formulation of the inverse problem
of determination of the casing properties and conductivity of the surrounding
homogenous medium from the magnetic field measured at multiple distances
from the single transmitter. The inversion procedure is based on the Monte
Carlo Markov chain (MCMC) method and the analytical model presented in
previous chapters.

4.1 Sensitivity analysis and ill-conditioning

The most important requirement for the successful correction procedure from
section 3.3 is the ability to estimate the magnetic field in the case of the
nonconductive surrounding medium. In a practical realisation, the estimation
is based on the field values measured at two or more positions closer to the
transmitter. This immediately raises the question of a relationship between
the uncertainties of the estimated and measured values of the magnetic field.
For a successful correction, small uncertainties of the measured values should
result in small uncertainty of the estimated magnetic field. We examine this
issue using the Jacobian of the magnetic field.

Let the real and imaginary parts of the magnetic field be Bre and Bim,
respectively. We can order the real and imaginary parts of the magnetic field
measured at locations z1, z2, . . . , zn (in the region insensitive to the formation
of the surrounding medium) into a vector BC = [Bre,1 Bim,1 . . . Bre,n Bim,n]T.
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4.1 Sensitivity analysis and ill-conditioning

The Jacobian matrix of BC is:

JC (µr, σt, c) =





∂Bre,1

∂µr

∂Bre,1

∂σt

∂Bre,1

∂c

∂Bim,1

∂µr

∂Bim,1

∂σt

∂Bim,1

∂c
...

...
...

∂Bre,n

∂µr

∂Bre,n

∂σt

∂Bre,n

∂c

∂Bim,n

∂µr

∂Bim,n

∂σt

∂Bim,n

∂c





.

The first-order approximation of the relationship between changes of the casing
properties and magnetic field is:

∆BC = JC




∆µr

∆σt

∆c



 . (4.1)

A component of ∆BC can be viewed as an uncertainty of the measurement of
the corresponding real or imaginary part of the magnetic field. We can assume
that these uncertainties are proportional to the magnitude of the field and not
to the real or imaginary part in question, see section 4.5. Thus:

∆BC =





|B1| 0 · · · 0 0
0 |B1| · · · 0 0
... . . . ...
0 0 · · · |Bn| 0
0 0 · · · 0 |Bn|









pB1

pB1
...

pBn

pBn




. (4.2)

In terms of the relative changes, we have:

∆BC = JC




µr 0 0
0 σt 0
0 0 c








∆µr/µr

∆σt/σt

∆c/c



 . (4.3)

If we introduce:

pB =

∥∥∥∥∥∥∥∥∥∥∥

pB1

pB1
...

pBn

pBn

∥∥∥∥∥∥∥∥∥∥∥

, (4.4)

pem =

∥∥∥∥∥∥

∆µr/µr

∆σt/σt

∆c/c

∥∥∥∥∥∥
, (4.5)

Sem =





1/|B1| 0 · · · 0 0
0 1/|B1| · · · 0 0
... . . . ...
0 0 · · · 1/|Bn| 0
0 0 · · · 0 1/|Bn|




JC




µr 0 0
0 σt 0
0 0 c



 , (4.6)
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we obtain a measure of stability of the electromagnetic properties with respect
to the small variations in the measured magnetic field. From (4.1)–(4.6) we
have:

pem 6
∥∥S†

em

∥∥ pB,

where S†
em

is the Moore-Penrose pseudoinverse of Sem what guarantees the
minimal value of pem [75]. The norm

∥∥S†
em

∥∥ represents the sought measure of
stability which we will call an error ratio for the casing properties. Its exact
value is determined by our choice of the Euclidian matrix norm. If the error
ratio is large, one can expect large relative errors in the determination of the
electromagnetic properties.

Similarly, we can derive an error ratio for the casing’s lump parameters
— casing factor Cf = c

√
µrσt and permeability-to-conductivity ratio PCR =

µr/σt. The Jacobian matrix JL of the lump parameters with respect to the
casing properties is:

JL =

[ ∂Cf

∂µr

∂Cf

∂σt

∂Cf

∂c

∂PCR
∂µr

PCR
∂σt

PCR
∂c

]
=

[
Cf

2µr

Cf

2σt

Cf

c

1
σt

−PCR
σt

0

]
.

Using:

pL =

∥∥∥∥
∆Cf/Cf

∆PCR/PCR

∥∥∥∥ ,

and:

SL =





1/|B1| 0 · · · 0 0
0 1/|B1| · · · 0 0
... . . . ...
0 0 · · · 1/|Bn| 0
0 0 · · · 0 1/|Bn|




JCJ

†
L

[
Cf 0
0 PCR

]
, (4.7)

the measure of stability of the casing’s lump parameters is:

pL 6

∥∥∥S
†
L

∥∥∥ pB. (4.8)

Let B′
n+1 be the estimated field at location zn+1 in the case of the non-

conductive surrounding medium. The measured magnetic field Bn+1 depends
on the conductivity of the surrounding medium. As discussed in section 3.3,
the phase difference between Bn+1 and B′

n+1 is independent of variations in
the casing properties. Uncertainty of the estimation ∆B′

n+1 depends on the
uncertainty of the casing properties:

[
∆B′

re,n+1

∆B′
im,n+1

]
= JC,n+1J

†
L

[
Cf 0
0 PCR

] [
∆Cf/Cf

∆PCR/PCR

]
, (4.9)

where JC,n+1 is the Jacobian matrix of the real and imaginary parts of B′
n+1.

Using (4.7)–(4.9), p′B =
[
∆B′

re,n+1/|B′
n+1| ∆B′

im,n+1/|B′
n+1

]T, and error ratio
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4.1 Sensitivity analysis and ill-conditioning

for the magnetic field ‖SB‖, we can link measurement uncertainty pB and
estimation uncertainty p′B as:

p′B 6 ‖SB‖ pB,

where matrix SB is given as:

SB =
1

|B′
n+1|

JC,n+1J
†
C

[
Cf 0
0 PCR

]
S
†
L
.

Fig. 4.1 depicts a frequency dependence of error ratio ‖SB‖ for casing
C(100 mm, 10 mm, 4.6 MS/m, 100). The field is measured at locations
z1 = 0.15 m and z2 = 0.9 m, and estimated for location z3 = 5 m. Since
the error ratio is over 1, the uncertainty of the estimation is greater than
the measurement uncertainty. However, the fact that the error ratio is lower
than 2 indicates that the procedure for estimation of the magnetic field at a
large distance from the two values measured closer to the transmitter is well
conditioned. For the excitation frequency of 60 Hz, the error ratio is about
1.45. This means that the magnetic field measured at two locations with e.g.
100 ppm uncertainty allow us to estimate the far field with uncertainty better
than 145 ppm at 60 Hz.

The fact that the error ratio depends on the receivers’ positions z1 and
z2 can be used for minimisation of the estimation uncertainty. In a practical
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Figure 4.1: Ratio of the relative uncertainty of the estimated field at location z3 =
5 m and relative uncertainties of the field measured at locations z1 = 0.15 m and
z2 = 0.9 m. Casing is C(100 mm, 10 mm, 4.6 MS/m, 100).
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Figure 4.2: Ratio of the relative uncertainty of the casing lump parameters and
relative uncertainties of the field measured at locations z1 = 0.15 m and z2 = 0.9 m.
Casing is C(100 mm, 10 mm, 4.6 MS/m, 100).

realisation, it is much easier to vary the excitation frequency for the same pur-
pose. We are, off course, limited by the lowest detectable voltage as discussed
in section 3.1.2. It is interesting to note that there is a frequency for which
the error ratio is the highest, i.e. the estimation uncertainty is the worst. In
case of Fig. 4.1, that frequency is about 35 Hz.

Frequency dependence of the error ratio of the casing lump parameters∥∥∥S
†
L

∥∥∥ is depicted in Fig. 4.2 for casing C(100 mm, 10 mm, 4.6 MS/m, 100)
and measurement locations z1 = 0.15 m and z2 = 0.9 m. The error ratio is
between 5 and 10 what indicates that the uncertainty of determination of the
casing lump parameters is the order of magnitude larger than the uncertainty
of the magnetic field measurement. Similarly to Fig. 4.1, maximum of the
error ratio is at 35 Hz.

The error ratio for the casing properties
∥∥S†

em

∥∥ is very high indicating that
the determination of the casing properties µr, σt and c is ill-conditioned. For
example,

∥∥S†
em

∥∥ is 121 at 60 Hz for casing C(100 mm, 10 mm, 4.6 MS/m, 100)
and measurement locations z1 = 0.15 m and z2 = 0.9 m. The situation does
not improve even if we introduce multiple receivers.
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4.2 Theoretical considerations

4.2.1 Elements of probabilistic inverse problem theory

Let M be a space of all conceivable states of a system. We need to choose a
particular parametrisation, i.e. a coordinate system over M that joins a set of
numerical values {m1, . . . ,mn} to each point in M. We will use a shorthand
notation m = {m1, . . . ,mn}. Only in a case that M is a linear space, m can
be called a vector. Similarly, let D be a space of all conceivable measurement
results (observable data) and let d be a set of numerical values describing a
measurement result from D. We will call M a model space and D a data space.
Points m and d are realisations of random variables M and D, respectively.

We assume that our knowledge on the random variables M and D can
be represented using probability densities. Our a priori information on the
model parameters M and measurement result D is described with a joint
prior probability density function π (d,m).

Situations where we have an exact theoretical relation between model pa-
rameters and measured quantities are rare. Instead of an exact relation:

d = Γ (m) , (4.10)

where Γ (·) is a mathematical model of the physical system, we have to write:

d ≈ Γ (m) . (4.11)

In the probabilistic approach, (4.11) can be described by a theoretical joint
probability density function θ (d,m). Besides being useful for representation
of approximate theoretical relations, θ (d,m) arises naturally in empirical re-
lations between m and d based on the accumulation of observations.

Noninformative prior probability distributions (or just “priors”) are used in
Bayesian analysis in situations when no or minimal prior knowledge about pa-
rameters is available [76]. The first obvious choice is to assign equal likelihood
to each value of a parameter. This is called Laplace’s prior or “principle of in-
sufficient reason” [77]. The main criticism of Laplace’s prior is that it depends
on parametrisation of the model space. The most widely used noninforma-
tive priors, Jeffreys priors are proportional to square root of the determinant
of the Fisher information matrix that is invariant under reparametrisation
[76, 77]. Detail accounts on the Jeffreys rule can be found in [78] and ref-
erences therein. Geometric explanation of the Jeffreys approach is based on
the key idea that natural volume elements generate homogenous measures in
the sense that equal probability is assigned to regions having equal volumes
[79]. Similar approach, given in [80] by Tarantola and adopted here, is based
on the notion of a distance between parameters from which a volume element
is deduced. In contrast to the Bayesian literature, Tarantola in [80] uses the
name homogeneous distribution instead of noninformative distribution mainly
to stress its relation to volume elements and the fact that it carries minimal,
but existing information on the parameters.
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Let dV (x) = v (x) dx be volume element of manifold X, where x ∈ X. If
A ⊆ X then volume of A is:

V (A) =

∫

A

v (x) dx.

If X has a finite volume V then the homogeneous probability density function is
ν (x) = v (x) /V . It assigns equal probability to A ⊆ X and B ⊆ X if they have
the same volume, V (A) = V (B). If X has an infinite volume, the homogeneous
probability density function is improper (it cannot be normalised). In that
case one can simply take ν (x) ∝ v (x) as this generally causes no problems
as long as one ensures that the posterior density functions are proper [76, 80].
The consequence of this definition is that the homogeneous probability density
function does not need to be constant (take for example a volume element of
the spherical coordinate system, dV = r2 sin θ dr dθ dϕ).

A posteriori information in form of a posterior joint probability density
function π′ (d,m) can be obtained as:

π′ (d,m) = k
π (d,m) θ (d,m)

ν (d,m)
. (4.12)

Equation (4.12) is based on a notion of the conjunction of states of information
(given as probability density functions), which bears intuitive resemblance to
the “and” operation as described in [81]. It is quite general and first we will
introduce some simplifications that are readily met in practical inverse prob-
lems.

The a priori information on model parameters is independent of observa-
tions. This is valid for both distributions, the prior and homogeneous, and we
can write π (d,m) = π (d) π (m) and ν (d,m) = ν (d) ν (m). The theoretical
joint density function θ (d,m) can be written as:

θ (d,m) = θ (d|m) ν (m) .

Taking the above into the account, for the solution of the inverse problem, we
have:

π′ (d,m) = k
π (d) π (m) θ (d|m)

ν (d)
. (4.13)

We will assume that the wanted solution of the inverse problem is the marginal
posterior probability density function for model parameters:

π′ (m) =

∫

D

π′ (d,m) dd. (4.14)

Combining (4.13) and (4.14), we obtain a practicable version of (4.12) as:

π′ (m) = kπ (m)

∫

D

π (d) θ (d|m)

ν (d)
dd = kπ (m) L (m) , (4.15)
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where L (m) is the likelihood function:

L (m) =

∫

D

π (d) θ (d|m)

ν (d)
dd. (4.16)

Solution of the inverse problem can be given in a more familiar version of
the Bayes theorem [82]. If we take that:

π′ (m|d) =
π′ (d,m)

π (d)
,

where we assumed equal marginal posterior and prior probability densities of
the measurement data, we arrive to:

π′ (m|d) ∝ π (m) θ (d|m) ,

which corresponds to the Bayes theorem for inverse problems [82]. More formal
procedure for obtaining the Bayes theorem from (4.12) can be found in [81].

Conditional probability density functions are not invariant under coordi-
nate transformations, as illustrated by the Borel-Kolmogorov paradox [83]. In
order to avoid the problems arising in calculation of the conditioning limit
as in [83], Tarantola et al. proposed (4.12) or its simplified version with the
marginal probability density (4.15) [81, 84].

4.2.2 Gaussian theoretical and measurement uncertain-

ties

An important case for application of (4.15) is when theoretical and measure-
ment results are distributed normally. Instead of the exact theoretical relation
d = Γ (m) we have the theoretical probability density function:

θ (d|m) ∝ exp

(
−1

2
(d − Γ (m))T

C−1
T (d − Γ (m))

)
, (4.17)

where CT is a covariance matrix that expresses uncertainties attributed to the
theoretical relation Γ (·). Similarly, for the distribution of the measurement
data we can write:

π (d) ∝ exp

(
−1

2

(
d − d̄

)T
C−1

D

(
d − d̄

))
, (4.18)

where CD and d̄ is the covariance matrix and mean of the measurement data,
respectively.

If we assume that D is a linear space, the homogeneous density function
for the measurement data is ν (d) = const. Acknowledging that the covariance
matrices are symmetric and positive-definite, it can be shown that combining
(4.17) and (4.18) with (4.16) yields [80]:

L (m) ∝ exp

(
−1

2

(
Γ (m) − d̄

)T
C−1

L

(
Γ (m) − d̄

))
, (4.19)
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where:
CL = CD + CT. (4.20)

Equations (4.19) and (4.20) show that theoretical and measurement uncer-
tainties, if Gaussian, combine by addition of their covariance matrices into one
Gaussian uncertainty with the covariance matrix CL.

4.2.3 Random and systematic uncertainties

Although our knowledge about the measurement data is described by a single
probability density function π (d) in the theory of stochastic inverse prob-
lems, we have to discuss briefly errors arising in the measurement process and
their effect on our knowledge of the measurand. This will be very important
for interpretation of the results of the proposed inversion procedure in Sec-
tion 4.5 and for the discussion on the electronic instrumentation requirements
in Chapter 6. Also, this discussion will serve us as a basis for generation of the
synthetic data and for setting the numerical experiments conducted in order
to illustrate the inversion procedure.

Imperfections in a measurement are caused by what is traditionally recog-
nised as random and systematic effects [85]. By definition, random variations
in the result of the measurement can be described using a probability density
function with zero expected value. A part of the measurement uncertainty
caused by the random effects is a random uncertainty.

A recognised effect of an influence quantity on a measurement result is a
systematic effect. It can be quantified and compensated for using a correc-
tion procedure. It is generally assumed that the measurement result has been
corrected for all recognised significant systematic effects. However, correction
values are not perfectly known either. This introduces additional uncertainty
in the corrected measurement result known as a systematic uncertainty [86].
All we know about a certain systematic effect is that it shifts the measurement
result within a certain interval. Since the systematic effect are assumed con-
stant during one measurement or experiment, we cannot say anything about
the density function of the systematic uncertainty connected with a single sys-
tematic effect. The most pessimistic view is to assume uniform probability
density function in the given interval. However, according to the central limit
theorem we will have an asymptotic convergence to the normal distribution as
the number of independent systematic effects is increased.

Thus, in a complex measurement setting, it is arguable that there is a
number of independent systematic effects whose total contribution to the mea-
surement is normally distributed. Using that assumption, the result of the
correction procedure is a normally distributed random variable with the mean
value equal to the corrected measurement result and the variance estimated
to the best of one’s knowledge [86]. If the correction procedure is good and
the variance is determined correctly, the true value of the measurand will fall
within some small interval around the corrected measurement result. What is
precisely the error of the measurement cannot be known, since the true value
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of the measurand is unknown. Both, random and systematic uncertainties can
be determined using Type A and Type B evaluation according to [85]. The
sum of two independent normally distributed random variables is normal, with
the mean value equal to the sum of the two means, and the variance equal to
the sum of the two variances.

From the above discussion and for the purpose of this thesis, we will assume
that the measurand is a normally distributed random variable with the mean
value equal to the measurement result corrected for the systematic effects and
the variance equal to the sum of the variances of the random and systematic
uncertainties. The distribution in question is π (d). The true value of the
measurand cannot be determined from the repeated measurements because
the systematic uncertainties take on the same value each time, unless the set-
ting and environment of the experiment is changed [86]. In the theory of the
inverse problems, the summation of the random and systematic uncertainties
can also be viewed in light of the summation of the Gaussian theoretical and
measurement uncertainties in 4.2.2. The theoretical and systematic uncertain-
ties are compatible notions since the correction procedure can be recognised
either as a part of the model or processing of the raw measurement data.

4.3 Monte Carlo Markov chain methods

The posterior probability density function can be obtained by extensive explo-
ration of the model space only in case of a very small number of dimensions
and computationally very simple forward problems [80]. Monte Carlo methods
are much more efficient since they result in samples of the posterior distribu-
tion from which all usual characteristics, like mean or standard deviation, can
be determined [87, 88]. Monte Carlo methods such as importance sampling or
rejection sampling require that we can sample from distributions that are simi-
lar to the targeted distribution and they are practical only for one-dimensional
spaces [87]. Another possibility is a dependence sampling where next sample
is drawn from a proposal distribution depending exclusively on the previous
sample. Because of the dependence on the previous sample only, this random
walk is a Markov chain. Dependence sampling methods based on the Markov
process are called Monte Carlo Markov chain methods (MCMC) [89]. A dis-
tinguished example of MCMC methods is the Metropolis-Hastings algorithm,
which is generalisation of the Gibbs and Metropolis sampling methods and a
starting point for a number of other MCMC methods [90–93]. In the rest of
this section we will explain the basic Metropolis-Hastings algorithm and its
application to inverse problems.

4.3.1 Metropolis-Hastings algorithm

For the sake of a simpler notation, we will not use bold font to denote vectors
in the description of the Metropolis-Hastings algorithm, although we should
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bear in mind that multidimensionality is implied. Our objective is to generate
samples from the absolutely continuous probability density p (x) = kf (x)
where x ∈ R

n, f (x) is unnormalised density and k is the normalising constant
that can be unknown as we will see shortly. A proposal x′ for the next sample
x(t) is generated from a proposal density q

(
x′; x(t−1)

)
, e.g. X ′ ∼ N

(
x(t−1), Σ

)
.

The probability of accepting x′ as the next sample is equal to:

α
(
x′; x(t−1)

)
= min

{
f (x′) q

(
x(t−1); x′

)

f (x(t−1)) q (x′; x(t−1))
, 1

}
. (4.21)

In practice, this is achieved by taking a realisation u of the uniformly dis-
tributed random variable in the interval [0, 1]. If u 6 α

(
x′; x(t−1)

)
, the pro-

posal is accepted, i.e. x(t) = x′. Otherwise, the proposal is discarded and the
next sample is the same as the previous one, x(t) = x(t−1).

The result of N iterations of the Metropolis-Hastings algorithm is the
Markov chain

{
x(1), x(1), . . . , x(N)

}
with the transition probability density equal

to q
(
x(t); x(t−1)

)
α

(
x(t); x(t−1)

)
. Such a choice of the transition probability den-

sity and the acceptance rule (4.21) results in the stationary distribution of the
Markov chain equal to the targeted distribution p (x) [90]. Since the accep-
tance rule depends only on the ratio p (x′) /p

(
x(t−1)

)
, the normalising constant

k is not required.
The application of Metropolis-Hastings algorithm to the solution of an

inverse problem is straight-forward. The posterior distribution, which we want
to take samples from, is given by (4.15) and repeated here because of its
importance:

π′ (m) = kπ (m) L (m) . (4.15)

The acceptance probability (4.21) in this case is:

α
(
m′;m(t−1)

)
= min

{
π (m′) L (m′) q

(
m(t−1);m′

)

π (m(t−1)) L (m(t−1)) q (m′;m(t−1))
, 1

}
. (4.22)

If the prior probability density function π (m′) is uniform and q
(
m(t−1);m′

)
=

q
(
m′;m(t−1)

)
, we get the acceptance probability as in [80]:

α
(
m′;m(t−1)

)
= min

{
L (m′)

L (m(t−1))
, 1

}
.

In case of a non-uniform prior probability density function one can first obtain
its sample by applying:

α1

(
m′;m(t−1)

)
= min

{
π (m′) q

(
m(t−1);m′

)

π (m(t−1)) q (m′;m(t−1))
, 1

}
,

and then accept it as a sample of the posterior distribution with probability:

α2

(
m′;m(t−1)

)
= min

{
L (m′)

L (m(t−1))
, 1

}
.
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This is the cascaded version of the algorithm that is, by induction, applicable
to the product of any number of densities π (m) = kπ1 (m) π2 (m) . . . πn (m)
[80].

4.3.2 MCMC output analysis

The elements of the resultant Markov chain are samples of the posterior dis-
tribution after the chain reaches the equilibrium. The elements in the burn-in
phase before the chain reached the equilibrium are discarded. The formal
analysis of duration of the burn-in phase does not seem necessary in prac-
tice in which the burn-in phase is determined visually followed by the routine
discarding of at least 1% or 2% of a run [94, 95].

The acceptance ratio, i.e. the ratio of the accepted proposals and the total
number of samples is a crucial indication of the quality of the sampler. A very
high acceptance ratio can indicate that the proposal distribution generates
samples only within a small region of the parameter space and that we don’t
explore the space fast enough. A very low acceptance ratio can indicate that
we waste computational resources to test the samples with the low likelihood.
The acceptance ratio depends directly on the width of the proposal distribu-
tion (smaller steps — higher acceptance ratio). The rule of thumb says that
the acceptance ratio should be about 20% to 50%. For the normal posterior
and proposal densities the acceptance ratio should be about 45% for a one-
dimensional case and around 25% for as low as six dimensions, whereas the
limit for infinite number of dimensions is around 23% [92, 96]. However, it will
be sometimes necessary to design the sampler with as low as 10% acceptance
ratio in order to achieve lower autocorrelations, as discussed below [88].

The law of large numbers holds for any ergodic Markov chain [89]. This
means that for the ergodic Markov chain {X1, . . . , XN} with a stationary distri-
bution p (x) and for a statistic f (·) we can estimate the expectation Ep (f (X))
by averaging the Markov chain [89]:

lim
N→∞

f̄N = lim
N→∞

1

N

N∑

k=1

f (Xk) = Ep (f (X)) . (4.23)

In practice, (4.23) is usually used for estimation of the mean and variance of
X ∼ p (x).

Average f̄N is a random variable (because we will always get different set
of N realisations of X), which, according to the central limit theorem weakly
converges to a normal distribution with zero mean and variance σ2

f [89, 94, 95]:

√
N

(
f̄N − Ep (f (X))

) D−−−→
N→∞

N
(
0, σ2

f

)
.

If the realisations of X are independent, variance of the estimator f̄N is:

σ2
f =

var (f (X))

N
.
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For dependent realisations of X, such as the Markov chain {X1, . . . , XN},
variance of the estimator f̄N is larger for τf [94]:

σ2
f =

τf var (f (X))

N
,

where τf is called the integrated autocorrelation time (IACT) in physics lit-
erature or autocovariance time in statistics literature [97]. It can be shown
that:

τf = 1 + 2
∞∑

s=1

ρff (s) , (4.24)

where ρff (s) is the normalised autocovariance function:

ρff (s) =
Cff (s)

Cff (0)
=

cov (f (Xn) , f (Xn+s))

cov (f (Xn) , f (Xn))
.

The autocovariance function of a stationary stochastic process does not depend
on the position n and for finite-length sequences it can be approximated using:

Cff (s) =
1

N

N∑

n=1

f
(
x(n)

)
f

(
x(n+s)

)
− 1

N2

[
N∑

n=1

f
(
x(n)

)
]2

. (4.25)

In practice, the normalised autocovariance ρff is calculated using the finite-
length approximation (4.25). Since lims→∞ ρff (s) = 0, we can let ρff (s) =
0, ∀s > M , which avoids effects of numerical summation errors in the calcu-
lation of τf [97]. Thus, the autocovariance time is usually determined using:

τf = 1 + 2
M∑

s=1

ρff (s) . (4.26)

There are several methods for evaluation of M , but a good and simple approx-
imation is to use lag s at which ρff reaches the abscissa [94, 95, 97].

If the elements of the ergodic Markov chain are Nd-dimensional vectors
{X(i)}N

i=1, X(i) ∈ Ω ⊂ R
Nd , they are distributed according to the stationary

distribution X(i) ∼ p (x) in the equilibrium. The chain’s ergodicity allows us
very simple calculation of the marginal distribution of each component of X(i)

without numerical integration of the joint distribution p (x) [95]. Elements of
the chain taken separately for each of the components {x(i)

j }N
i=1, j = 1, . . . , Nd

are samples of the corresponding marginal distributions pj (xj) , j = 1, . . . , Nd,
that is to say:

Xj ∼ pj (xj) , j = 1, . . . , Nd,

where:
pj (xj) =

∫

Ω1

. . .

∫

ΩNd

p (x) dx1 . . . dxj−1dxj+1 . . . dxNd
.

From the above theoretical considerations, we are now in position to sum-
marise the apparatus we will use in the analysis of the output of the MCMC
simulations in section 4.5:

73



4.4 Formulation of the inverse problem

1. Burn-in phase is determined visually and we routinely discard at least
5% of a run.

2. The acceptance ratio is targeted between 10% and 25% because of the
multidimensionality and in order to achieve lower autocovariance times.

3. Samples of the marginal distribution of a component of the resulting
Markov chain can be obtained discarding the remaining components of
the chain because of its ergodicity.

4. Stationarity and ergodicity of the resulting Markov chain allows us to
estimate the expectation of a statistic by the simple averaging of the
chain.

5. The variance of the estimators is calculated using the central limit the-
orem for Markov chains, namely the autocovariance time.

6. The efficiency of the sampling process is determined by observing the nor-
malised autocovariance and the autocovariance time. We want rapidly
decreasing autocovariance and low values of the autocovariance time.

7. We will use histograms in visualisation of the marginal distributions. All
elements of the chain are countable because of the chain’s ergodicity and
stationarity.

4.4 Formulation of the inverse problem

In this section, we will adapt the theoretical foundations developed in the pre-
vious sections of this chapter to the inverse problem of determination of the
casing properties and conductivity of the surrounding formation. First, we will
parameterise the model space M and the data space D. Coordinates in the
model space are casing’s relative magnetic permeability µr, electrical conduc-
tivity σt, wall thickness c and conductivity of the homogeneous surrounding
formation σf . The vector of the model parameters is:

m =





µr

σt

c
σf



 .

Coordinates in the data space are the measured real and imaginary parts of the
magnetic field at several distances from a single transmitter coil. The vector
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4 Inverse problem

of distance is z = [z1 z2 . . . zn]T and the vector of the measured data is:

d =





Bre(z1)
Bim(z1)
Bre(z2)
Bim(z2)

...
Bre(zn)
Bim(zn)





, (4.27)

where indices re and im denote real and imaginary parts, respectively.

4.4.1 A priori information

We will assume that we have quite elementary information on the model pa-
rameters in form of their minimum and maximum values. Although from theo-
retical analysis in section 3.2.3 we can introduce some correlations between the
casing properties through the casing factor and permeability-to-conductivity
ratio, we chose not do so. Introduction of such a knowledge would most likely
require some first, rough analysis of the measurement data and that would vi-
olate our assumption of independency between a priori information on model
parameters and observations, see section 4.2.1 and [80].

Electrical conductivity and resistivity are a Jeffreys pair, meaning that we
have to treat them symmetrically [80]. This is satisfied by the logarithmic dis-
tance between two samples of a casing or formation defined as | log(σ2/σ1)| or
equivalently | log(ρ2/ρ1)|. Thus, the homogeneous probability density function
for electrical conductivity is uniform for log(σ), i.e. proportional to 1/σ. This
fits well with the levelsets — casing factor and permeability-to-conductivity
ratio, whose logarithmic values depend linearly on the logarithmic values of the
casing properties. We will use logarithmic distance and log-uniform homoge-
neous probability density function for relative magnetic permeability because
it is also a Jeffreys quantity logarithmically connected with the casing con-
ductivity through PCR. Since the expected values of the wall thickness c are
only a small fraction of the casing’s radii we choose the uniform homogeneous
density for c.

We can finally state the chosen prior probability density of the parameters.
Let M0 be the set defined by the specified minimum and maximum values:

M0 = {m | (µr,min 6 µr 6 µr,max) ∧ (σt,min 6 σt 6 σt,max) ∧
(cmin 6 c 6 cmax) ∧ (σf,min 6 σf 6 σf,max)}.

The joint prior probability density of the model parameters is the product of
the corresponding marginal probability densities:

π(m) =






k

µrσtσf

if m ∈ M0,

0 otherwise,
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4.4 Formulation of the inverse problem

where k is the normalisation constant.
Typical values of the properties of the oil-well casings are standardised and

tabulated [13]. We assume that information available from the oil-well casing
completion plans is reliable enough to allow us formulation of the a priori
intervals based on the casing standards [14]. These intervals can be further
narrowed by other inspection methods.

4.4.2 Measurement data

We will assume that the measurement data d given by (4.27) have Gaussian
uncertainties defined by the covariance matrix CL. According to the discus-
sion in sections 4.2.2 and 4.2.3, these uncertainties include both random and
systematic (theoretical) uncertainties. In the situation of a perfect knowledge,
without random and theoretical uncertainties, the modelling result would be
equal to the measurement result. We will denote this value with d0. In a re-
alistic situation under Gaussian assumption, the measurement result is given
as d ∼ N

(
d̄,CL

)
, what results in the likelihood L (m) given by (4.19).

4.4.3 Transition probability distribution

Correlation of the casing properties through the strong dependance of the
magnetic field on the permeability-to-conductivity ratio and casing factor must
be reflected in our choice of the proposal density function q

(
m′;m(t−1)

)
if we

want to construct the effective Metropolis-Hastings sampler. Simple choice
of the mutually independent random walks for the four dimensions of the
parameter space result in a very low acceptance ratio or high autocovariance
of the resultant Markov chain.

Instead of using the chosen parametrisation of M for construction of the
random walk, we will propose new samples m′ by making a move in M pa-
rameterised by:

m∗ =





log Cf

log PCR
log c
log σf



 ,

from which we easily calculate m. The random walk can be defined using the
normal distribution with mean m∗ and covariance matrix K:

m∗′ ∼ N (m∗,K) .

The covariance matrix K is diagonal:

K =





k2
cf 0 0 0
0 k2

pcr 0 0
0 0 k2

c 0
0 0 0 k2

form



 .
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For easier notation, we define k = [kcf kpcr kc kform]T.
Because the logarithmic values of Cf and PCR are linearly related to the

logarithmic values of µr, σt and c, the proposal distribution can be written as:

m′
L ∼ N

(
mL,HKHT

)
,

where mL = [log µr log σt log c log σf ]
T and:

H =





1 1/2 −1 0
1 −1/2 −1 0
0 0 1 0
0 0 0 1



 .

Matrix H satisfies mL = Hm∗.
The proposal probability density function is not symmetric for the parametri-

sation m, i.e. q
(
m′;m(t−1)

)
6= q

(
m(t−1);m′

)
. Because the distribution is

log-normal, following holds:

q
(
m(t−1);m′

)

q (m′;m(t−1))
=

µ′
rσ

′
tc

′σ′
f

µ
(t−1)
r σ

(t−1)
t c(t−1)σ

(t−1)
f

. (4.28)

4.4.4 Metropolis-Hastings algorithm

We will use the cascaded version of the Metropolis-Hastings algorithm. In
the first step we need to determine whether a proposal comes from the prior
distribution. For the prior density, we have π(m) ∝ 1/(µrσtσf ), ∀m ∈ M0.
Taking this and (4.28) into account, the acceptance probability for the prior
distribution is:

α1

(
m′;m(t−1)

)
= min

{
π (m′) q

(
m(t−1);m′

)

π (m(t−1)) q (m′;m(t−1))
, 1

}
=

= min

{
c′

c(t−1)
, 1

}
.

(4.29)

Equation (4.29) is valid for m′ ∈ M0, whereas for m′ 6∈ M0 the acceptance
probability is α1

(
m′;m(t−1)

)
= 0. In the second step, the proposal is accepted

as a sample of the posterior distribution with probability:

α2

(
m′;m(t−1)

)
= min

{
L (m′)

L (m(t−1))
, 1

}
, (4.30)

where L (m) is calculated from (4.20). Pseudocode of the inversion procedure
is shown in Algorithm 3.
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4.4 Formulation of the inverse problem

Algorithm 3 Monte Carlo Markov chain inversion procedure for determina-
tion of the casing properties and conductivity of the surrounding formation

Require: d̄, CL, z, m(1), M0, N , for additional requirements see Algorithms 1
and 2.

Ensure: Markov chain {m(1),m(2), . . . ,m(N)} with the stationary distribution
π′(m)

1: for t = 2 to N do
2: Generate proposal m′ from N

(
m

(t−1)
L ,HKHT

)

3: if m′ ∈ M0 then
4: Calculate α1

(
m′;m(t−1)

)
using (4.29)

5: else
6: α1 = 0
7: end if
8: Draw u ∼ U (0, 1)
9: if u > α1 then

10: Reject the proposal
11: Copy the previous sample, m(t) ⇐ m(t−1)

12: else
13: Calculate the forward problem for m′ // The most time-

consuming section! See Algorithms 1 and 2.
14: Calculate the likelihood L (m′) using (4.19)
15: Calculate α2

(
m′;m(t−1)

)
using (4.30)

16: Draw u ∼ U (0, 1)
17: if u > α2 then
18: Reject the proposal
19: Copy the previous sample, m(t) ⇐ m(t−1)

20: else
21: Accept the proposal as a sample of the posterior distribution,

m(t) ⇐ m′

22: Increase the number of accepted samples, a ⇐ a + 1
23: end if
24: end if
25: end for
26: Calculate the acceptance ratio, a/N
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4.5 Solution of the inverse problem

In this section we will apply the presented stochastic formulation of the inverse
problem for the synthetic data generated using the forward model. Detailed
output analysis will be made for introductory example in section 4.5.1. In
sections 4.5.2 and 4.5.3 we answer the two very important questions:

1. What is the maximal uncertainty of the magnetic field measurement that
satisfies given criteria of useful inference about the formation conductiv-
ity?

2. How big is the effect of the systematic (theoretic) uncertainties?

Although we will use only one casing in the following analysis, this does not
weaken the generality of the conclusions because of the two reasons. Firstly,
the effects of the casing and the surrounding formation are separable for a
large interval of the casing properties as shown in section 3.3. Secondly, the
permeability-to-conductivity ratio and casing factor are stable forms of the
levelset for the direct and remote zone, respectively, which are in turn scal-
able with the casing’s inner radius and relatively insensitive to other casing’s
properties, see section 3.2.3 and references therein.

The casing used in the following sections is C(100 mm, 10 mm, 4.6 MS/m,
100). Radius of the transmitter and the receiver coils is 80 mm. The three
receivers are positioned at distances z = [0.15 m 0.9 m 5 m]T. Excitation
frequency is 60 Hz. The measurement covariance matrix is:

CL = p2
B





|B1|2 0 0 0 0 0
0 |B1|2 0 0 0 0
0 0 |B2|2 0 0 0
0 0 0 |B2|2 0 0
0 0 0 0 |B3|2 0
0 0 0 0 0 |B3|2




,

where pB is the relative measurement uncertainty.
The form of CL is such that the variances of the real and imaginary parts of

the magnetic field are proportional to the absolute value of the magnetic field.
This stems from the fact that both measurements for a receiver are made
by comparing a record of the receiver signal with the orthogonal reference
signals using the digital lock-in technique, see Chapter 6. Strictly speaking,
this introduces covariances between measurements of the real and imaginary
parts. However, it makes a little difference in the final results because of
the similar levelsets for real and imaginary parts of the magnetic field, see
Figs. 3.20 and 3.21 in section 3.2.3. For the sake of simplicity, we assumed
independent measurements and the same relative measurement uncertainty
pB for all receivers. Matrix CL is calculated for the true values of the casing
properties.
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4.5 Solution of the inverse problem

The boundaries that define our prior knowledge are:

M0 = {m | (20 6 µr 6 300) ∧ (1 MS/m 6 σt 6 7 MS/m) ∧
(1 mm 6 c 6 20 mm) ∧ (10−3 S/m 6 σf 6 10 S/m)}.

The boundaries of the casing properties can be corroborated by the available
literature [13, 14, 48, 68]. Furthermore, the chosen prior intervals are much
wider than the posterior intervals obtained from the measurements with the
expected uncertainties—consequently, the prior intervals have the minimal ef-
fect on the posterior knowledge. The conductivity of the formations of interest
may range from 10−3 S/m (e.g. “tight” limestone, oil sand) to 2 S/m (e.g. clay,
shale, saltwater sand), see section 3.3 in [1]. Our choice of the prior interval
for formation conductivity acknowledge the range for typical formations from
[1] as well as no available additional information of the formation in question.

4.5.1 Introductory example

In this section we show detailed output analysis for the case of the total mea-
surement uncertainty pB = 10−3 and formation conductivity σf = 1 S/m.
The parameters of the proposal distribution are given in Table 4.1. These
parameters are obtained experimentally by observing the acceptance ratio of
a number of short MCMC runs (N < 10000). The final acceptance ratio is
about 17%. The large value of coefficient kform, which controls the variance
of the formation-conductivity component of the proposal distribution, reflects
our expectation of the large statistical dispersion of the posterior distribu-
tion of the formation conductivity. In order to achieve faster convergence of
the simulation, kform can be adaptively changed under the condition that one
keeps only the elements of the chain corresponding to the last value of kform

[98].
The four components of the Markov chain obtained in MCMC run 1 (N =

250000) are depicted in Fig. 4.3. The burn-in phase lasts for approximately
20000 iterations, but we discarded the first 50000 iterations prior to the further
analysis. Fig. 4.4 shows the random walk in the space of the casing parameters
µr, σt and c.

The autocovariance functions are shown in Fig. 4.5. The zero-crossings for
all four parameters are around 550, what indicates the length of the sum in
(4.26) for calculation of the autocovariance time shown in Fig. 4.6. The exact
values for autocovariance zero-crossings and IACT are given in Table 4.2. The
largest value of the autocovariance time τf = 295 indicates that it is enough

Table 4.1: Parameters of the proposal distribution for the introductory example.

Run pB/10−3 σf/Sm−1 kcf kpcr kc kform

1 1 1 2.5 · 10−4 3 · 10−3 1 · 10−2 0.6
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4 Inverse problem

Figure 4.3: MCMC run 1 with the burn-in phase shown. Starting point is
C0(100 mm, 15 mm, 3 MS/m, 30) and σf = 10−3 S/m.

Figure 4.4: Random walk in the space of parameters µr, σt and c, see Fig. 4.3.
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Figure 4.5: Autocovariance functions for the chains in Fig. 4.3, Table 4.2.
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Figure 4.6: Autocovariance time for the chains in Fig. 4.3, Table 4.2.

to take every 300-th element of the Markov chain in order to get independent
samples of the posterior distribution.

The normalised histograms of the marginal posterior distributions of the
model parameters are shown in Fig. 4.7. Normality hypothesis for the poste-
rior distributions of log µr, log σf and c cannot be rejected by the Kolmogorov-
Smirnov test at 5% significance level. The posterior distribution of the for-
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Table 4.2: Introductory example. Sampling efficiency: acceptance ratio, autocovari-
ance zero-crossing and autocovariance time.

Run pB/10−3 σf/Sm−1 ar
ρZC IACT

µr σt c σf µr σt c σf

1 1 1 17% 562 546 552 550 265 295 280 272

mation conductivity shows the heavy tail in the direction of decreasing con-
ductivities due to the chosen prior distribution proportional to 1/σf , as well
as relatively high measurement uncertainty, see section 4.5.2. Because of the
normality of posterior distributions for the casing parameters, we will use the
mean and standard deviation as measures of the central tendency and disper-
sion. In case of the formation conductivity, we will use mode, if it can be
determined, and different quantiles, e.g 10% or 90% of all samples.

Table 4.3 shows the central tendency and dispersion measures of the pos-
terior marginal distributions of the model parameters. The relative error of
the mean values of the casing parameters compared to the true values is less

Figure 4.7: Normalised histograms of the marginal posterior distributions of the
model parameters.
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Table 4.3: Introductory example. Properties of the marginal posterior distributions.
Multipliers: casing conductivity – 105 S/m, casing thickness – 0.1 mm, formation
conductivity – 1 S/m, casing factor – 1

√
Sm, PCR – 1 µΩm.

Run 1
Mean

µ̄r 99.3

σ̄t 45.57

c̄ 100.9

C̄f 214.513

PCR 21.795

Standard deviation
sµr

2.8

sσt
1.41

sc 3.0

sCf
0.088

sPCR 0.170

St. dev. of mean
sµ̄r

0.1

sσ̄t
0.05

sc̄ 0.1

sC̄f
0.003

sPCR 0.006

Mode of π′(σf ) 1.005

Quantiles of π′(σf )

10% 0.174

25% 0.506

50% 0.814

75% 1.094

90% 1.338

than 1%. Standard deviations of the casing properties is around 3% rela-
tively to the true values. However, a complete picture about the effect of the
measurement uncertainty on the uncertainty of the casing properties will be
obtained in section 4.5.2 with introduction of the measurement error — dif-
ference between the corrected value and the true value of the measurand, see
section 4.2.2. Standard deviation of the mean estimator for µr and c is around
0.1, indicating that the number of samples and achieved autocovariance times
are appropriate for the mean estimation up to the first decimal place. The

84



4 Inverse problem

mode of the posterior density function for the formation conductivity is close
to the true value of 1 S/m. More than 80% of the samples of the posterior
distribution is between 0.5 S/m to 1.5 S/m or 0.5 decades out of four decades
of the prior interval (1 mS/m – 10 S/m). The relative standard deviation for
the casing factor is only 0.04% and 0.7% for PCR, what confirms that the pro-
cedure for determination of the casing’s lump parameters is well-conditioned,
see section 4.1.

4.5.2 Maximal measurement uncertainty

A very important question for the discussion of the practical realisability of
the formation conductivity evaluation is about the maximal uncertainty of the
magnetic field measurement that satisfies some given criteria of useful infer-
ence about the formation conductivity. As a criterium, we take the difference
between the posterior marginal distributions of the formation conductivity for
two true values of the formation conductivity, 0.1 S/m and 1 S/m. An accept-
able level of the measurement uncertainty is one for which we can differentiate
between the two formations.

We investigate the uncertainty levels of 10−4, 10−3, 2 · 10−3, and 5 · 10−3 (8
runs). Details on the simulations and the corresponding proposal distributions
are given in Table 4.4. The autocovariance zero-crossings and IACT are given
in Table 4.5.

Table 4.4: MCMC simulations for the analysis of max. measurement uncertainty.
Parameters of the proposal distribution.

Run pB/10−3 σf/Sm−1 kcf kpcr kc kform

2 0.1 0.1 3 · 10−5 5 · 10−4 1.5 · 10−3 0.3

3 0.1 1 3 · 10−5 5 · 10−4 1.5 · 10−3 0.05

4 1 0.1 2.5 · 10−4 3 · 10−3 10−2 0.5

5 1 1 2.5 · 10−4 3 · 10−3 10−2 0.5

6 2 0.1 5 · 10−4 6 · 10−3 2 · 10−2 0.75

7 2 1 5 · 10−4 6 · 10−3 2 · 10−2 0.75

8 5 0.1 1.25 · 10−3 1.5 · 10−2 5 · 10−2 1

9 5 1 1.25 · 10−3 1.5 · 10−2 5 · 10−2 1

Figs. 4.8–4.11 depict the normalised histograms of the marginal posterior
distributions π′(σf ) for the four values of the measurement uncertainty. From
the figures, one can immediately observe that the maximal measurement un-
certainty in the sense of the above criterium is between 2 · 10−3 and 5 · 10−3,
Figs. 4.10 and 4.11. With increase in the measurement uncertainty, the poste-
rior density functions of the formation conductivity transform from the gaus-
sian to uniform shape. The posterior distribution for 0.1 S/m has no distin-
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guished mode already at pB = 10−3, Fig. 4.9. Using two-sample Kolmogorov-
Smirnov test to compare the posterior distributions for 0.1 S/m and 1 S/m,
one can reject the hypothesis that the distributions are the same at 5% signif-
icance level. However, the p-value of the test for the case of pB = 6 · 10−3 (not
shown here) is 0.022 indicating that pB = 5 · 10−3 is the largest uncertainty
at which we can at least hope to establish differences between 0.1 S/m and
1 S/m.

Table 4.5: MCMC simulations for the analysis of max. measurement uncertainty.
Sampling efficiency: acceptance ratio, autocovariance zero-crossing and autocovari-
ance time.

Run
pB σf

ar
ρZC IACT

×10−3 [S/m] µr σt c σf µr σt c σf

2 0.1 0.1 17% 710 790 781 1700 207 263 241 360

3 0.1 1 12% 456 453 453 497 149 171 162 141

4 1 0.1 27% 297 311 300 568 99 104 101 185

5 1 1 19% 1554 1630 1570 1800 331 385 365 360

6 2 0.1 26% 359 352 352 524 103 107 104 111

7 2 1 24% 485 499 492 621 166 199 179 234

8 5 0.1 25% 256 245 252 176 92 87 87 69

9 5 1 25% 251 321 321 451 103 107 101 113

Table 4.6 contains properties of the marginal posterior distributions. Only
at pB = 10−4 is the mode of the posterior distribution well-defined for both
conductivities 0.1 S/m and 1 S/m. The insensitivity to low values of the
formation conductivity is apparent in Figs. 4.8–4.11. Besides the histogram
and depending on the measurement uncertainty, the result of the inversion
procedure for the formation conductivity can be described using a quantile
range or as the interval bounded from above by a quantile. For pB = 10−3,
90% of the samples are below 0.257 S/m for the true value of 0.1 S/m, or below
1.291 S/m for the true value of 1 S/m. As it can be seen from Table 4.6, such a
description of the marginal posterior distribution of the formation conductivity
is applicable for pB < 2 · 10−3. For higher uncertainties, the resolution of the
formation conductivity is unacceptably low. The relative standard deviations
of µr, σt and c increase linearly with the measurement uncertainty by a factor
of approximately 22. The casing factor and PCR are given in Table 4.7.
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Figure 4.8: Normalised histogram of the posterior distribution π′(σf ) for MCMC
runs 2 and 3. The relative measurement uncertainty is pB = 10−4.

Figure 4.9: Normalised histogram of the posterior distribution π′(σf ) for MCMC run
4 and 5. The relative measurement uncertainty is pB = 10−3.
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Figure 4.10: Normalised histogram of the posterior distribution π′(σf ) for MCMC
run 6 and 7. The relative measurement uncertainty is pB = 2 · 10−3.

Figure 4.11: Normalised histogram of the posterior distribution π′(σf ) for MCMC
run 8 and 9. The relative measurement uncertainty is pB = 5 · 10−3.
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Table 4.6: MCMC simulations for the analysis of max. measurement uncertainty. Properties of the marginal posterior distributions.
Multipliers: casing conductivity – 105 S/m, casing thickness – 0.1 mm, formation conductivity – 1 S/m.

Run
Mean Standard deviation St. dev. of mean Mode of Quantiles of π′(σf )

µ̄r σ̄t c̄ sµr
sσt

sc sµ̄r
sσ̄t

sc̄ π′(σf ) 10% 25% 50% 75% 90%

2 99.90 45.94 100.12 0.28 0.14 0.29 0.01 0.01 0.01 0.100 0.019 0.049 0.079 0.106 0.129
3 99.99 46.00 100.01 0.26 0.13 0.27 0.01 0.01 0.01 0.993 0.954 0.974 0.999 1.023 1.044
4 99.98 45.97 100.09 2.31 1.00 2.22 0.05 0.02 0.05 - 0.002 0.005 0.022 0.099 0.257
5 99.12 45.44 101.16 2.79 1.37 2.96 0.12 0.06 0.13 0.999 0.106 0.459 0.783 1.058 1.291
6 100.42 46.20 99.75 4.45 1.94 4.25 0.11 0.05 0.10 - 0.002 0.006 0.033 0.168 0.464
7 97.92 44.71 102.80 4.83 2.22 5.00 0.15 0.07 0.16 1.165 0.003 0.014 0.163 0.688 1.253
8 102.41 47.15 98.76 11.76 5.11 10.62 0.27 0.11 0.23 - 0.002 0.007 0.047 0.301 0.976
9 98.45 44.90 103.28 11.20 4.87 11.05 0.27 0.12 0.26 - 0.002 0.008 0.063 0.453 1.407

Table 4.7: MCMC simulations for the analysis of max. measurement uncertainty. Properties of the marginal posterior distributions.
Multipliers: casing factor – 1

√
S/m, PCR – 1 µΩm

Run
Mean Standard deviation St. dev. of mean

C̄f PCR sCf
sPCR sC̄f

sPCR

2 214.4803 21.7451 0.0084 0.0168 0.0004 0.0005
3 214.4763 21.7392 0.0077 0.0166 0.0002 0.0005
4 214.480 21.747 0.050 0.144 0.001 0.004
5 214.522 21.813 0.086 0.170 0.004 0.006
6 214.468 21.734 0.096 0.274 0.002 0.006
7 214.583 21.902 0.128 0.302 0.005 0.008
8 214.439 21.713 0.236 0.687 0.005 0.016
9 214.592 21.922 0.252 0.713 0.006 0.017
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4.5 Solution of the inverse problem

4.5.3 Repeated experiments and systematic uncertainty

One of the “inverse crimes” as described by Kaipio and Somersalo in their
book is to use numerically simulated data produced by the same model that
is employed in the inversion of the data [82]. This fits well with our discussion
about the random and systematic uncertainties in section 4.2.3. In order to
evaluate the effect of the total measurement uncertainty and to observe the
inversion procedure in a realistic measurement situation (and, thus, avoid the
“inverse crime”), we will conduct the MCMC simulations using the procedure
below.

Firstly, we calculate the error-free data d0 = Γ(m0) using the true values
of the casing and formation parameters m0. Secondly, the measurement data
are randomly drawn as d̄ ∼ N (d0,CL). Finally, the MCMC simulation is run
with the normally distributed measurement data with mean d̄ and covariance
matrix CL. Thus, we enter the inversion procedure with the mean value of
the measurement data that is different from the error-free value. The error-
free value is unknown for the procedure, but it is with probability of 68.2%
somewhere in the region whose width is determined by the covariance matrix
CL, which includes random and systematic uncertainties. Difference between
d0 and d̄ can be viewed as due to the systematic effects.

For fixed m0 and a chosen measurement uncertainty, the described pro-
cedure was carried out six times in order to simulate repeated experiments
with different systematic effects and, consequently, different d̄. The posterior
distributions obtained from such repeated experiments are equivalent in sense
that each of them is a solution of the inverse problem conditioned on the accu-
racy of the procedure for the compensation of the systematic effects. We take
that six experiments are a good trade-off between the required computational
burden and our need to estimate the average quality of the inversion procedure
at a chosen level of the measurement uncertainty.

From the analysis of the maximal measurement uncertainty in section 4.5.2,
it is evident than only for pB < 2 · 10−3 one can expect to obtain acceptably
well differentiation between 0.1 S/m and 1 S/m. Thus, in this section, we pay
more attention to uncertainties pB = 10−4 and pB = 10−3. We conducted
simulations for the formation conductivities of 0.01 S/m, 0.05 S/m, 0.1 S/m,
0.5 S/m, 1 S/m, and 5 S/m, at each of the two uncertainty levels. For each
choice of the conductivity and uncertainty, we made 7 MCMC runs; the first
one with error-free measurement data d̄ = d0, and other six simulations with
measurement data drawn from N (d0,CL).

Because of the large number of simulations, parameters of the proposal
distributions and analysis of sampling efficiency are not given in detail. How-
ever, one can obtain a good insight into the quality of the MCMC simulations
by knowing that the resulting acceptance ratios were between 12% and 25%,
whereas autocovariance times were mostly between 50 and 250, and have never
exceeded 450. We used 200000 iterations with the properties of the proposal
distribution similar to ones in the previous sections.

90



4 Inverse problem

Table 4.8 contains the parameters of the marginal posterior distribution of
the casing properties for pB = 10−4. The posterior distributions of the casing
properties resemble the normal distribution, so mean and standard deviation
are appropriate descriptors. The actual value of the formation conductivity
has negligible effect on the posteriors of the casing properties, so all 42 simu-
lations in Table 4.8 can be viewed as repeated measurements of the same true
situation. The runs marked with number 0 are made using the error-free data.
The number of iterations and the autocovariance time below 450 for all cases
ensure that the number of significant decimal places in an estimated mean
value is at least for one place larger than the first non-zero decimal place of
the corresponding standard deviation. Relative standard deviations (with re-
spect to the true values) for permeability, conductivity and wall thickness are
in all cases around 3 · 10−3. This is by itself a small number, but it is 30 times
larger than the measurement uncertainty, what indicates an ill-conditioned
procedure, as already discussed in section 4.1. Relative errors of the mean
values of permeability, conductivity and thickness with respect to their true
values reach 6 ·10−3, but for the most of the cases the errors are below 3 ·10−3.
Casing factor has a relative standard deviation smaller than 5 · 10−5, what
is only a half of the measurement uncertainty. For PCR, the boundary is at
8.3 · 10−4, or about 8 times higher than pB. Relative errors of the mean values
are below 9 · 10−5 for Cf , and below 1.7 · 10−3 for PCR.

Table 4.9 contains the parameters of the posteriors of the formation con-
ductivity for pB = 10−4. The histograms of the distributions for runs 1–6 for
all six true values of the formation conductivity are shown in Figs. 4.12–4.17.
Two lowest true values of the formation conductivities, 0.01 S/m and 0.05 S/m
can not be measured at this level of the measurement uncertainty, Figs. 4.12
and 4.13. The main feature of these two sets of the posteriors is that they
kept the shape of the prior assumption of logarithmic uniform distribution of
the formation conductivity up to 0.1 S/m, as seen in Figs. 4.12(a)–(d), 4.13(a)
and (c). The situation is somewhat better in Fig. 4.14 for 0.1 S/m, where one
notices the presence of a heavy tail caused by the prior assumption, but also
the presence of a distinct mode mostly in the range of 0.07 S/m–0.11 S/m.
However, there are distributions that could be placed in either of the three
groups, Figs. 4.12(e), (f); 4.13(b), (e), (f); and 4.14(b) (or runs 5 and 6 for
0.01 S/m; 2, 5 and 6 for 0.05 S/m; and 2 for 0.1 S/m from Table 4.9). The
results of the simulations for 0.5 S/m, 1 S/m and 5 S/m are more accurate,
Figs. 4.15–4.17. The distributions are bell-shaped without heavy tails. Both
the median (50% quantile) and the mode are very close and typically within
5% from the true value. Also, 70% of the samples of a distribution are within
the interval shorter than 0.09 S/m. From these results, we corroborate that,
assuming the uncertainty of pB = 10−4, the formation conductivity can be
measured if it is higher than 0.1 S/m. For lower conductivities, one may be
forced to come up with the weaker, but still quantitative conclusion that the
result is with certainty lower than 0.1 S/m.

The summary of the simulations for the measurement uncertainty pB =
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10−3 is given in Tables 4.10 and 4.11, whereas the histograms of the forma-
tion conductivity posteriors are depicted in Figs. 4.18–4.23. Relative standard
deviations of the permeability, conductivity and wall thickness are around
3 ·10−2, and relative errors of the mean values are below 7 ·10−3. Casing factor
has relative standard deviation around 4 · 10−4, whereas for PCR the value
is 8.3 · 10−3. Relative errors of the mean values are below 8.6 · 10−4 for Cf

and 2.7 · 10−2 for PCR. Ten times higher measurement uncertainty resulted
in an almost tenfold increase in the relative standard deviations and errors of
the casing parameters. There is no significant difference between the distribu-
tions for 0.01 S/m–0.5 S/m, Figs. 4.18–4.21. Although the distributions for
1 S/m as depicted in Fig. 4.22 show the heavy tail on the left with 70% of the
samples within 0.9 S/m range on average, Table 4.11, there is a significant dif-
ference in comparison to the lower conductivities. Distributions for 5 S/m have
their mode within ±0.5 S/m around the true value, and 70% of the samples
within 0.77 S/m range. Assuming the uncertainty of pB = 10−3, the lowest
measurable formation conductivity is about 1 S/m. For a lower conductivity,
a posterior distribution is no more informative than the statement that the
conductivity is with certainty lower than 1 S/m.

From this analysis it follows that the properties of the distributions are
scalable with the measurement uncertainty with roughly the same coefficient
(10 in this case). We have to bear in mind that the results obtained in this
section are made with homogeneous prior distributions. Any additional infor-
mation as well as combination of the results from the repeated experiments
would certainly improve our posterior knowledge of the formation conductivity
and the casing properties.
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Table 4.8: MCMC simulations of repeated experiments for pB = 10−4. Properties of the marginal posterior distributions of the casing
parameters. Multipliers: conductivity – 105 S/m, thickness – 0.1 mm, casing factor – 1

√
S/m, PCR – 1 µΩm, relative errors – 10−6.

True
Run

Permeability, µr Conductivity, σt Thickness, c Casing factor, Cf PCR
σf µ̄r sµr

pµr
σ̄t sσt

pσr
c̄ sc pc C̄f sCf

pCf
PCR sPCR pPCR

0
.0

1
S
/m

0 100.02 0.23 200 46.01 0.10 261 99.98 0.22 200 214.4755 0.0051 3 21.739 0.014 6

1 100.34 0.22 3400 46.12 0.10 2696 99.70 0.22 3000 214.4790 0.0049 13 21.754 0.014 684

2 100.08 0.24 800 46.05 0.11 1087 99.90 0.23 1000 214.4742 0.0055 9 21.734 0.014 236

3 99.53 0.23 4700 45.80 0.10 4261 100.45 0.22 4500 214.4811 0.0048 23 21.729 0.014 466

4 99.90 0.22 1000 46.01 0.10 174 100.04 0.21 400 214.4718 0.0049 20 21.714 0.014 1156

5 99.85 0.25 1500 45.98 0.12 435 100.09 0.26 900 214.4708 0.0069 25 21.715 0.015 1110

6 99.98 0.25 200 46.00 0.12 0 100.01 0.25 100 214.4742 0.0067 9 21.734 0.015 236

0
.0

5
S
/m

0 99.91 0.25 900 45.95 0.12 1087 100.10 0.25 1000 214.4799 0.0067 18 21.745 0.015 270

1 100.19 0.24 1900 46.04 0.11 870 99.87 0.24 1300 214.4848 0.0059 41 21.762 0.015 1052

2 100.00 0.26 0 46.00 0.12 0 100.00 0.27 0 214.4775 0.0073 7 21.738 0.016 52

3 99.38 0.23 6200 45.72 0.11 6087 100.63 0.23 6300 214.4869 0.0057 50 21.737 0.014 98

4 99.77 0.24 2300 45.93 0.11 1522 100.19 0.24 1900 214.4770 0.0061 4 21.721 0.015 834

5 99.87 0.28 1300 46.00 0.14 0 100.07 0.29 700 214.4700 0.0082 28 21.713 0.017 1202

6 99.99 0.29 100 46.01 0.14 217 100.00 0.30 0 214.4738 0.0084 11 21.734 0.017 236

0
.1

S
/m

0 99.91 0.28 900 45.95 0.14 1087 100.10 0.29 1000 214.4799 0.0085 18 21.745 0.017 270

1 100.05 0.28 500 45.95 0.14 1087 100.04 0.29 400 214.4888 0.0084 59 21.773 0.017 1558

2 99.69 0.25 3100 45.84 0.11 3478 100.34 0.25 3400 214.4876 0.0065 54 21.750 0.015 500

3 99.62 0.27 3800 45.77 0.13 5000 100.46 0.28 4600 214.4926 0.0080 77 21.766 0.017 1236

4 100.04 0.29 400 46.02 0.14 435 99.95 0.30 500 214.4753 0.0086 4 21.737 0.017 98

5 100.31 0.29 3100 46.07 0.14 1522 99.77 0.30 2300 214.4835 0.0084 34 21.773 0.017 1558

6 99.84 0.27 1600 45.91 0.13 1957 100.18 0.28 1800 214.4810 0.0078 23 21.749 0.017 454

continued on next page
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True
Run

Permeability, µr Conductivity, σt Thickness, c Casing factor, Cf PCR
σf µ̄r sµr

pµr
σ̄t sσt

pσr
c̄ sc pc C̄f sCf

pCf
PCR sPCR pPCR

0
.5

S
/m

0 99.99 0.26 100 46.00 0.13 0 100.01 0.27 100 214.4764 0.0076 1 21.740 0.016 40

1 99.98 0.27 200 45.99 0.13 217 100.02 0.27 200 214.4763 0.0077 1 21.739 0.016 6

2 100.41 0.27 4100 46.18 0.13 3913 99.60 0.27 4000 214.4745 0.0077 7 21.743 0.016 178

3 99.81 0.26 1900 45.86 0.13 3043 100.26 0.27 2600 214.4874 0.0078 53 21.765 0.017 1190

4 99.89 0.26 1100 45.98 0.13 435 100.08 0.27 800 214.4710 0.0076 24 21.726 0.016 604

5 99.87 0.27 1300 45.96 0.13 870 100.12 0.27 1200 214.4767 0.0077 3 21.730 0.016 420

6 99.70 0.26 3000 45.90 0.13 2174 100.26 0.27 2600 214.4714 0.0075 22 21.722 0.016 788

1
S
/m

0 100.00 0.26 0 46.00 0.13 0 100.00 0.27 0 214.4762 0.0077 0 21.739 0.016 6

1 100.17 0.27 1700 46.11 0.13 2391 99.80 0.27 2000 214.4693 0.0078 32 21.725 0.017 650

2 100.25 0.27 2500 46.11 0.13 2391 99.75 0.27 2500 214.4734 0.0076 13 21.741 0.017 86

3 100.23 0.27 2300 46.19 0.13 4130 99.68 0.27 3200 214.4573 0.0078 88 21.701 0.016 1754

4 99.97 0.26 300 45.95 0.13 1087 100.07 0.27 700 214.4814 0.0076 25 21.755 0.016 730

5 100.11 0.26 1100 46.03 0.13 652 99.91 0.27 900 214.4770 0.0076 4 21.748 0.016 408

6 99.91 0.26 900 45.95 0.12 1087 100.10 0.26 1000 214.4781 0.0076 9 21.742 0.016 132

5
S
/m

0 100.01 0.24 100 46.00 0.12 0 99.99 0.25 100 214.4759 0.0074 1 21.739 0.016 6

1 100.18 0.24 1800 46.10 0.11 2174 99.8 0.24 2000 214.4690 0.0073 33 21.731 0.016 374

2 99.97 0.25 300 45.94 0.12 1304 100.08 0.25 800 214.4833 0.0075 34 21.760 0.017 960

3 100.14 0.24 1400 46.06 0.12 1304 99.86 0.25 1400 214.4750 0.0075 5 21.741 0.017 86

4 99.95 0.24 500 45.94 0.11 1304 100.09 0.24 900 214.4819 0.0073 27 21.755 0.016 730

5 99.61 0.24 3900 45.87 0.11 2826 100.33 0.24 3300 214.4730 0.0075 14 21.715 0.017 1110

6 100.06 0.25 600 45.95 0.12 1087 100.03 0.25 300 214.4875 0.0075 53 21.773 0.016 1558
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Table 4.9: MCMC simulations of repeated experiments for pB = 10−4. Properties
of the marginal posterior distributions of the formation conductivity. Multiplier is
1 S/m.

Run
True Quantiles

Mode
True Quantiles

Mode
σf 15% 50% 85% σf 15% 50% 85%

0

0
.0

1
S
/m

0.00 0.01 0.03 -

0
.5

S
/m

0.46 0.50 0.53 0.51

1 0.00 0.01 0.02 - 0.47 0.51 0.54 0.51

2 0.00 0.01 0.04 - 0.47 0.51 0.54 0.52

3 0.00 0.00 0.02 - 0.41 0.45 0.48 0.45

4 0.00 0.01 0.02 - 0.46 0.49 0.53 0.49

5 0.00 0.02 0.06 0.05 0.44 0.48 0.51 0.47

6 0.00 0.02 0.06 0.06 0.47 0.50 0.54 0.51

0

0
.0

5
S
/m

0.00 0.02 0.06 0.04

1
S
/m

0.96 1.00 1.04 1.00

1 0.00 0.01 0.04 0.03 0.99 1.03 1.07 1.03

2 0.00 0.03 0.08 0.07 0.96 0.99 1.03 0.99

3 0.00 0.01 0.04 0.03 1.03 1.07 1.11 1.06

4 0.00 0.01 0.05 0.03 0.94 0.97 1.01 0.97

5 0.03 0.08 0.12 0.09 0.96 0.99 1.03 1.00

6 0.03 0.07 0.11 0.10 0.98 1.01 1.05 1.01

0

0
.1

S
/m

0.03 0.08 0.12 0.09

5
S
/m

4.96 5.00 5.04 5.00

1 0.02 0.06 0.11 0.09 4.99 5.03 5.07 5.03

2 0.00 0.02 0.06 0.04 4.96 5.00 5.04 4.99

3 0.01 0.05 0.09 0.07 4.98 5.02 5.05 5.02

4 0.05 0.10 0.14 0.11 4.94 4.98 5.02 4.98

5 0.06 0.10 0.14 0.10 4.95 4.99 5.03 4.98

6 0.01 0.04 0.08 0.07 4.89 4.93 4.97 4.94
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4.5 Solution of the inverse problem

(a) (b)

(c) (d)

(e) (f)

Figure 4.12: Normalised histograms of posterior distributions of the formation con-
ductivity for different measurement data, measurement uncertainty pB = 10−4 and
true value σf = 0.01 S/m.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.13: Normalised histograms of posterior distributions of the formation con-
ductivity for different measurement data, measurement uncertainty pB = 10−4 and
true value σf = 0.05 S/m.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.14: Normalised histograms of posterior distributions of the formation con-
ductivity for different measurement data, measurement uncertainty pB = 10−4 and
true value σf = 0.1 S/m.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.15: Normalised histograms of posterior distributions of the formation con-
ductivity for different measurement data, measurement uncertainty pB = 10−4 and
true value σf = 0.5 S/m.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.16: Normalised histograms of posterior distributions of the formation con-
ductivity for different measurement data, measurement uncertainty pB = 10−4 and
true value σf = 1 S/m.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.17: Normalised histograms of posterior distributions of the formation con-
ductivity for different measurement data, measurement uncertainty pB = 10−4 and
true value σf = 5 S/m.
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Table 4.10: MCMC simulations of repeated experiments for pB = 10−3. Properties of the marginal posterior distributions of the casing
parameters. Multipliers: conductivity – 105 S/m, thickness – 0.1 mm, casing factor – 1

√
S/m, PCR – 1 µΩm, relative errors – 10−3.

True
Run

Permeability, µr Conductivity, σt Thickness, c Casing factor, Cf PCR
σf µ̄r sµr

pµr
σ̄t sσt

pσr
c̄ sc pc C̄f sCf

pCf
PCR sPCR pPCR

0
.0

1
S
/m

0 100.4 2.3 4 46.2 1.0 4 99.6 2.2 4 214.463 0.049 0.06 21.72 0.14 1

1 103.7 2.3 37 47.4 1.0 30 96.8 2.1 32 214.499 0.046 0.11 21.88 0.14 6

2 100.9 2.3 9 46.5 1.0 11 99.0 2.2 10 214.455 0.051 0.10 21.69 0.14 2

3 95.7 2.0 43 44.2 0.9 39 104.3 2.1 43 214.518 0.045 0.20 21.63 0.14 5

4 99.2 2.2 8 46.2 1.0 3 100.3 2.1 3 214.429 0.046 0.22 21.49 0.13 11

5 98.4 2.3 16 45.8 1.1 4 101.1 2.4 11 214.429 0.062 0.22 21.50 0.15 11

6 99.7 2.4 3 46.0 1.1 0 100.3 2.4 3 214.461 0.063 0.07 21.70 0.15 2

0
.0

5
S
/m

0 100.2 2.2 2 46.1 1.0 2 99.9 2.2 1 214.471 0.049 0.02 21.73 0.14 0

1 103.5 2.4 35 47.3 1.0 28 97.0 2.1 30 214.506 0.047 0.14 21.89 0.14 7

2 100.8 2.3 8 46.4 1.0 9 99.2 2.2 8 214.461 0.051 0.07 21.69 0.14 2

3 95.5 2.0 45 44.1 0.9 40 104.5 2.1 45 214.524 0.045 0.22 21.64 0.14 5

4 99.1 2.2 9 46.1 1.0 2 100.4 2.1 4 214.433 0.046 0.20 21.49 0.13 11

5 98.4 2.4 16 45.7 1.1 7 101.2 2.5 12 214.431 0.064 0.21 21.51 0.15 11

6 99.6 2.4 4 45.9 1.1 2 100.3 2.4 3 214.465 0.064 0.05 21.70 0.15 2

0
.1

S
/m

0 100.0 2.3 0 46.0 1.0 0 100.0 2.2 0 214.479 0.050 0.01 21.75 0.14 1

1 103.3 2.4 33 47.2 1.0 26 97.2 2.1 28 214.513 0.048 0.17 21.90 0.14 7

2 100.6 2.4 6 46.4 1.1 9 99.4 2.3 6 214.469 0.053 0.03 21.71 0.14 1

3 95.3 2.0 47 44.0 0.9 43 104.8 2.1 48 214.532 0.046 0.26 21.65 0.14 4

4 98.8 2.2 12 45.9 0.9 1 100.7 2.1 7 214.443 0.047 0.15 21.50 0.14 11

5 98.3 2.5 17 45.7 1.2 7 101.2 2.6 12 214.434 0.068 0.20 21.51 0.15 11

6 99.5 2.4 5 45.8 1.1 4 100.5 2.5 5 214.468 0.066 0.04 21.71 0.15 1

continued on next page
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True
Run

Permeability, µr Conductivity, σt Thickness, c Casing factor, Cf PCR
σf µ̄r sµr

pµr
σ̄t sσt

pσr
c̄ sc pc C̄f sCf

pCf
PCR sPCR pPCR

0
.5

S
/m

0 98.9 2.5 11 45.3 1.1 15 101.4 2.5 14 214.527 0.066 0.24 21.81 0.15 3

1 99.1 2.5 9 45.7 1.2 7 100.8 2.6 8 214.492 0.069 0.07 21.68 0.16 3

2 100.6 2.3 6 45.8 1.0 5 100.0 2.2 0 214.563 0.048 0.41 21.99 0.14 12

3 100.5 2.6 5 46.3 1.3 7 99.5 2.7 5 214.468 0.075 0.04 21.72 0.16 1

4 102.8 3.1 28 47.7 1.5 37 96.9 3.0 31 214.378 0.089 0.46 21.54 0.17 9

5 100.6 2.2 6 45.4 0.9 13 100.4 2.1 4 214.621 0.045 0.68 22.16 0.14 19

6 96.5 2.3 35 44.6 1.0 30 103.4 2.4 34 214.496 0.062 0.09 21.65 0.15 4

1
S
/m

0 99.1 2.9 9 45.5 1.4 11 101.1 3.1 11 214.519 0.092 0.20 21.80 0.18 3

1 101.4 2.8 14 46.1 1.3 2 99.4 2.8 6 214.593 0.082 0.55 22.01 0.17 12

2 100.3 2.7 3 46.2 1.4 4 99.8 2.9 2 214.483 0.086 0.03 21.72 0.17 1

3 93.5 2.4 65 43.0 1.2 65 107.1 2.9 71 214.616 0.082 0.65 21.77 0.17 1

4 97.4 2.6 26 45.1 1.3 20 102.5 2.8 25 214.507 0.082 0.14 21.59 0.16 7

5 99.1 2.6 9 46.1 1.3 2 100.3 2.7 3 214.401 0.078 0.35 21.47 0.16 12

6 100.1 2.7 1 46.2 1.3 4 99.8 2.8 2 214.440 0.082 0.17 21.67 0.17 3

5
S
/m

0 100.0 2.4 0 46.0 1.2 0 100.1 2.5 1 214.480 0.075 0.02 21.75 0.16 1

1 99.7 2.4 3 46.4 1.2 9 99.7 2.5 3 214.369 0.074 0.50 21.48 0.16 12

2 99.2 2.4 8 45.1 1.1 20 101.5 2.5 15 214.578 0.074 0.48 22.00 0.17 12

3 97.9 2.3 21 45.3 1.1 15 101.9 2.4 19 214.507 0.073 0.14 21.61 0.17 6

4 96.5 2.3 35 44.8 1.1 26 103.2 2.5 32 214.463 0.075 0.06 21.54 0.17 9

5 101.5 2.5 15 46.9 1.2 20 98.3 2.4 17 214.411 0.073 0.30 21.64 0.16 5

6 102.1 2.5 21 45.7 1.2 7 99.4 2.5 6 214.660 0.073 0.86 22.33 0.17 27
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Table 4.11: MCMC simulations of repeated experiments for pB = 10−3. Properties
of the marginal posterior distributions of the formation conductivity. Multiplier is
1 S/m.

Run
True Quantiles

Mode
True Quantiles

Mode
σf 15% 50% 85% σf 15% 50% 85%

0

0
.0

1
S
/m

0.00 0.02 0.17 -

0
.5

S
/m

0.00 0.09 0.53 0.51

1 0.00 0.02 0.12 - 0.00 0.10 0.59 0.51

2 0.00 0.02 0.21 - 0.00 0.02 0.17 -
3 0.00 0.01 0.11 - 0.01 0.23 0.73 0.52

4 0.00 0.01 0.11 - 0.09 0.65 1.10 0.91

5 0.00 0.07 0.46 0.45 0.00 0.01 0.10 -
6 0.00 0.07 0.45 0.43 0.00 0.08 0.47 0.44

0

0
.0

5
S
/m

0.00 0.02 0.17 -

1
S
/m

0.22 0.80 1.23 0.97

1 0.00 0.01 0.12 - 0.05 0.52 0.97 0.84

2 0.00 0.02 0.23 - 0.51 0.96 1.35 1.09

3 0.00 0.02 0.12 - 0.03 0.48 0.94 0.82

4 0.00 0.02 0.14 - 0.12 0.61 1.03 0.86

5 0.00 0.10 0.51 0.45 0.95 1.34 1.72 1.47

6 0.00 0.09 0.49 0.46 0.92 1.32 1.70 1.48

0

0
.1

S
/m

0.00 0.02 0.19 -

5
S
/m

4.59 4.98 5.36 5.03

1 0.00 0.02 0.14 - 5.16 5.54 5.93 5.64

2 0.00 0.03 0.25 - 4.13 4.50 4.88 4.49

3 0.00 0.02 0.13 - 4.42 4.80 5.18 4.81

4 0.00 0.02 0.13 - 4.59 4.98 5.36 4.90

5 0.00 0.13 0.58 0.51 5.13 5.52 5.89 5.55

6 0.01 0.12 0.56 0.62 3.72 4.09 4.46 4.14
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4 Inverse problem

(a) (b)

(c) (d)

(e) (f)

Figure 4.18: Normalised histograms of posterior distributions of the formation con-
ductivity for different measurement data, measurement uncertainty pB = 10−3 and
true value σf = 0.01 S/m.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.19: Normalised histograms of posterior distributions of the formation con-
ductivity for different measurement data, measurement uncertainty pB = 10−3 and
true value σf = 0.05 S/m.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.20: Normalised histograms of posterior distributions of the formation con-
ductivity for different measurement data, measurement uncertainty pB = 10−3 and
true value σf = 0.1 S/m.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.21: Normalised histograms of posterior distributions of the formation con-
ductivity for different measurement data, measurement uncertainty pB = 10−3 and
true value σf = 0.5 S/m.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.22: Normalised histograms of posterior distributions of the formation con-
ductivity for different measurement data, measurement uncertainty pB = 10−3 and
true value σf = 1 S/m.
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4.5 Solution of the inverse problem

(a) (b)

(c) (d)

(e) (f)

Figure 4.23: Normalised histograms of posterior distributions of the formation con-
ductivity for different measurement data, measurement uncertainty pB = 10−3 and
true value σf = 5 S/m.
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Chapter 5

Experimental results

If your experiment needs statistics, you

ought to have done a better experiment.

Ernest Rutherford (1871–1937)

Langworthy Professor of physics at
University of Manchester

Norman T. J. Bailey, “The Mathematical
Approach to Biology and Medicine,” 1967

Physical scale modelling is an important technique for obtaining the electro-
magnetic response of a large systems that would be otherwise impossible to
realise in a laboratory [99–101]. We will use this technique in order to develop
a laboratory model of a cased well surrounded with a low-conductive medium.
The results of the experiments made with the scaled model and the character-
istics of the employed electronic instrumentation will indicate the feasibility of
such a measurement in a real situation as well as the sensor interface require-
ments. At the end of the chapter, we will discuss the single-coil method and
the remote-field technique, both used for the casing inspection.

5.1 Scaled model

5.1.1 Scaling relations

In what follows, these definitions will be useful: a field system or model is an
actual, target measurement situation with realistic dimensions; a scaled model
of a field system has all dimensions scaled, as well as the frequency or time
range, the electromagnetic properties of the medium, and the intensity of the
electromagnetic field [100]. The field system must be made only of materi-
als with linear electromagnetic properties. The scaling factors of dimensions,
electromagnetic properties and the fields are interdependent.

Using kl for the length scale factor, the coordinates in the field system are
related to the coordinates in the scaled model by the transformations:

x = klx
′, y = kly

′, z = klz
′, (5.1)
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where primed quantities belong to the scaled system. In order to keep the
Maxwell’s equations invariant under transformation (5.1), it is necessary to
scale fields E, H and time t or frequency f [100]:

E (x, y, z, t) = keE
′ (x′, y′, z′, t′) , (5.2)

H (x, y, z, t) = khH
′ (x′, y′, z′, t′) , (5.3)

t = ktt
′, (5.4)

f =
1

kt

f ′, (5.5)

where ke, kh, and kt are the scale factors for electric field, magnetic field, and
time, respectively. These transformations result in the following relationships
between the properties of the media in the scaled model and the field system:

σ′ =
klke

kh

σ, (5.6)

ε′ =
klke

khkt

ε, (5.7)

µ′ =
klkh

kekt

µ. (5.8)

Scaling relations for voltage, current and impedance can be derived from Fara-
day’s and Ohm’s laws:

U ′ =
1

kekl

U, (5.9)

I ′ =
1

kekt

I, (5.10)

Z ′ =
kt

kl

Z. (5.11)

According to Sinclair, models in which (5.6)–(5.8) are obeyed and in which
ke and kh are established separately are called “absolute” models. For such
models all quantities (including power levels and the fields) can be used to
calculate corresponding full-scale quantities [99]. The other class of models
are “geometrical” models where only the ratio of ke and kh is known (equal
to 1 if µ′ = µ and ε′ = ε). As a consequence, in geometrical models one can
establish relations only between few scaled and full-scale quantities such as
resistance, inductance or capacitance but cannot do so in case of e.g. power
levels or field magnitudes [99].

It is difficult to find the suitable materials that would satisfy equations
(5.6)–(5.8). The problem can be ameliorated if we assume that µ′ = µ and
ε′ = ε and if we ignore displacement currents. In that case, the following
relations need to be satisfied:

ke

kh

=
kl

kt

, (5.12)

σ′ =
k2

l

kt

σ. (5.13)
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We can now establish the basic criteria and relations valid for our scaled
model that we will present in more details in section 5.1.2. We will assume
that all materials in the field and scaled systems have the same electromag-
netic properties. This significantly simplifies the construction of the laboratory
model. Equation (5.12) guarantees that µ′ = µ and ε′ = ε, and if σ′ = σ, from
(5.13) it follows that:

kt = k2
l .

In order for our model to be absolute, we must fix the values of ke and kh.
We will make it so by choosing equal transmitter currents in the full-scale and
scaled case. From (5.10) and I ′ = I we get kekt = 1, what in combination with
(5.12) results in khkl = 1.

To summarise, for our scaled model following scaling relations hold:

kl, arbitrary, (5.14)
kt = k2

l , (5.15)

ke =
1

kt

=
1

k2
l

, (5.16)

kh =
1

kl

. (5.17)

Electromagnetic properties and transmitter currents are the same in the field
and scaled systems, whereas magnetic field in the field system is weaker kl

times compared to the field in the scaled model.

5.1.2 Cased borehole model

The laboratory scaled model of a cased borehole is schematically depicted in
Fig. 5.1. The metal tube can be easily inserted into a plastic tube coaxi-
ally fixed within the plastic tank filled with a saline solution, which could
be drained using the valve at the bottom of the tank. The solution represents
low-conductive rocks (formation) surrounding the casing. The transmitter and
receiver coils are placed inside the metal tube in the vertically symmetrical po-
sition with respect to the solution. The thermocouple inside the tube is used
to monitor the temperature of the coils. The transmitter and receiver coils are
connected to their respective interfaces, section 5.1.3.

Based on the typical dimensions of the field system and available materials,
we decided to use the time scale factor kt = 200, or the length scale factor
kl =

√
200 according to (5.15). Dimensions of the scaled model and the field

system are given in Table 5.1. The resulting field system is similar to the cases
examined in Chapters 3 and 4. The material properties are unaffected by the
scaling as discussed in section 5.1.1. The radius of the tank is less than one
half of the coil separation and corresponding radius of investigation, according
to section 3.1.4. Since the response of the inductive sonde depends on both
volume and conductivity of the surrounding formation, see [11], we will use
solution that is more conductive than its real-world counterpart for a factor of
about 5, which stems from the ratio of the coil separation and tank radius.
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5.1 Scaled model

Figure 5.1: Schematic representation of the scaled model of the cased borehole.

Table 5.1: Properties of the scaled model and the field system for the time scale
factor kt = 200.

Quantity Scaled model Field system
Metal tube
Outer radius 11 mm 155.6 mm
Wall thickness 1 mm 14.14 mm
Length 1.9 m 27 m
Tank (formation)
Radius 15 cm 2.12 m
Height 0.48 m 6.8 m
Coils
Height 40 mm 560 mm
Mean radius 4.1 mm 58 mm
Mean separation 34 cm 4.8 m
Frequency 12 kHz 60 Hz
Materials Identical
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5.1.3 Signal generation, acquisition and processing

The coils were wound on the cylindrical formers made of the MACOR machine-
able glass-ceramic with length of 40 mm and radius of 3.5 mm. The transmitter
coil had 266 turns of 0.4 mm wire in 3 layers. The receiver coil had approx-
imately 1000 turns of 0.25 mm wire in 8 layers. At 12 kHz the transmitter
coil had inductivity of 104 µH and serial resistance of 1.08 Ω (impedance of
7.92 Ω), whereas the receiver coil had 1.51 mH and 10.59 Ω.

The transmitter coil was fed from an amplifier built around LM3875T au-
dio power amplifier driven by a function generator (Agilent HP3245A). The
excitation current, around 1.55 App, was monitored with a current probe (Tek-
tronix TM502A). The temperature of the coil was monitored by Fluke 80TK
thermocouple connected to Fluke 45 multimeter.

The receiver coil was connected to a proprietary differential amplifier, orig-
inally aimed for EEG applications [102]. The amplifier has a guard shield,
input impedance of around 130 MΩ, CMRR of 120 dB at frequencies below
200 Hz, differential gain 2000, cut-off frequency of 29 kHz, and equivalent input
voltage noise of 4.18 nV/

√
Hz [102].

The outputs of the current probe, the receiver amplifier and the multimeter
were digitised using a 16-bit USB digital acquisition module (National Instru-
ments, NI USB-6211) connected to a battery powered laptop. The software for
monitoring, processing and logging of the measurement data was implemented
in the NI LabVIEW platform, Fig. 5.2.

The main task of the monitoring application was the implementation of
a digital phase-sensitive amplifier (lock-in) for the measurement of the phase
difference between the excitation current signal and the voltage induced in the
receiver [103–106]. The two signals in ±200 mV range were simultaneously
sampled with 125 kHz each. Number of samples multiplied by the 12 kHz
digital reference signal and its π/2 shifted replica was 30000. The in-phase
and quadrature components of the input signals were determined by averaging
the multiplication results. The final result, the phase difference between the
input signals, was determined by averaging the results of 30 iterations. The
phase difference was measured every 10 seconds, what can be easily estimated
from the sampling frequency, and the number of samples and iterations.

5.1.4 Interference reduction

The sources of interference in this experimental set-up were thermal variations,
electrical mains coupling, and capacitive coupling of the transmitter and re-
ceiver coils. The latter is by far the most conspicuous, because we measured
very small inductive coupling of the transmitter and receiver through the saline
solution (i.e. formation). The thermal variations were handled by a careful de-
sign of the experimental procedure, section 5.1.5, whereas the electrical mains
coupling were taken care of in the process of minimising the capacitive coupling
of the coils, and by the phase sensitive detection.
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5.1 Scaled model

Figure 5.2: Screenshot of the monitoring application developed in the NI LabVIEW
package. Controls of the acquisition and digital lock-in amplifier are on the left. The
graphs on the right shows time logs of phase difference, coil temperature, excitation
current and induced voltage.

The capacitive coupling was reduced below the level of the inductive ef-
fects by shielding the coils, guarding the receiver’s shield and connecting the
transmitter coil and the metal tube to the common point. The coil shields
were made of thin, parallel, isolated wires of the ribbon cable short-circuited
at one end, Fig. 5.3. Such a construction minimises the eddy current effect; the
impedances of the coils with and without the shield remained unchanged for
frequencies below 100 kHz. The shielded receiver coil was connected through a
screened twisted pair to the receiver amplifier. The cable and coil shields were
guarded with the common-mode voltage, Fig. 5.4 [108, 109]. The transmit-
ter coil was connected to the power amplifier through double-shielded cable,

Figure 5.3: Coil shield made from a ribbon cable short-circuited at one end.
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Figure 5.4: Connection of the shielded receiver coil and cable with the amplifier using
guarding with the common-mode voltage, according to [102, 107, 108].

Power amp.
Double shield Coil shield

LT

Hall probe amp.

Figure 5.5: Connection of the transmitter coil and power amplifier through double-
shielded cable.

Fig. 5.5. The inner shield serves as a return path for the excitation coil, what
cancels the excitation current’s field [109]. The outer shield drains the leakage
current flowing through the coil-shield capacitance into the amplifier common.
Position of the Hall’s probe ensures that one measures only the current flowing
out of the coil.

Fig. 5.6 depicts the equivalent circuit of the measurement with the coils
inside the casing. We assume that the remnants of the electrical mains cou-
pling are negligible because of the phase sensitive detection at 12 kHz. The
impedance of the transmitter and receiver coils are ZT and ZR, respectively.
There are lump impedances ZTS between the transmitter coil and its shield,
and ZSC between the shield and the casing. Similarly on the receiver side,
we have ZRS and ZSC . Let Z1 = ZTS + ZSC and Z2 = ZRS + ZSC . Let
XM = jωM(ω) be the mutual inductance between the transmitter and re-

117



5.1 Scaled model

Ug

Rg Z1 Z2

ZC R

R

IT IR

XMIR XMIT

U1

U2

ZT ZR

ZTS ZSCZSC ZRS

∆U

Tr
an

sm
.

Sh
ie
ld

Sh
ie
ld

C
as
in
g

R
ec
ei
ve

r

Figure 5.6: Equivalent circuit of the inductive measurement.

ceiver including contributions of the casing and surrounding formation. The
impedance between the casing and the earth is ZC . The power amplifier is
depicted as a voltage generator Ug with the output resistance Rg. The trans-
mitter current is IT , and the receiver current is IR. The components of the
receiver current are due to the mutual inductance and the current that leaked
across the current divider ZC , Z2.

We are interested in the transfer function H between the induced voltage
∆U = U1 − U2 and the transmitter current IT . After somewhat demanding
algebraic manipulations, we obtain:

H =
∆U

IT

=

=

(
RXM (−XMZC + 2Z2ZC + R (Z1 + ZC) + 2Z1 (Z2 + ZC))+RZCZRZT

) /

(
RZ1 (R + 2Z2) + RZC (R − XM + 2 (Z1 + Z2)) +

+ZR (Z1 (R + Z2) + ZC (R + Z1 + Z2))

)
. (5.18)

In the idealised situation, there is no capacitive coupling between the coils and
casing, i.e. Z1 → ∞, Z2 → ∞, and:

Hideal =
2RXM

2R + ZR

. (5.19)

Since R ≫ ZR, it follows from (5.19) that H ≈ XM , i.e. the transfer function
is proportional to the mutual inductance as predicted by the equations in
Chapter 2. In reality we must ground the shields and the casing in order
for the model to approximate the measured transfer function. Grounding the
casings results in ZC = 0 and the transfer function is:
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Hgnd =
XM

1 +
ZR

R

R + Z2

R + 2Z2

. (5.20)

It is interesting to note that, according to (5.20), the transfer function in
case of the grounded casing does not depend on the capacitances between the
transmitter, its shield and the casing. Impedance Z2 is reduced by grounding
the receiver shield (ZSC is short-circuited). Finally, because of R ≫ ZR, we
have H ≈ XM . From this discussion follows single most important measure of
reducing the unwanted capacitive coupling — connection of the casing to the
reference point of the electronic circuitry.

5.1.5 Results

We have conducted a number of experiments in order to rule out the possibility
of the capacitive coupling between the coils. Experiments included variation
of the casing’s environment and its capacitance, such as a person touching
the casing, introduction of metallic objects (grounded or not) near the casing,
etc. In all measurement situations variations in the receiver’s output were
significant if the casing and shields were not grounded, and nonexisting if the
casing was grounded. For the sake of shortness and clarity, these experiments
are omitted here.

The objective of the experiments explained herein was to establish if there
was a detectable phase difference between the cases when the tank was empty,
full of tap water, or full of the NaCl solution. A single experiment consisted
of three steps. Firstly, we measured the phase difference with the empty tank.
Then the tank was filled with the water or the saline solution, while we con-
tinued to measure the phase. Finally, the tank was drained and we obtained
another set of the measurement results with the empty tank. Thus, each
recorded phase difference log has three segments; first with the empty, second
with the full, and third with the empty tank again. The electrical conductivity
of the tap water is negligible. The electrical conductivity of the NaCl solution
was 15.5 S/m, which we measured with Mettler-Toledo S47 conductivity me-
ter. This conductivity is achieved by adding approximately 8 kg of salt into
50 L of the tap water. Both containers with the liquids were held for days in
the laboratory and the liquids achieved stable temperature of (26.3 ± 0.3) ◦C
in all experiments.

The phase difference logs for the two experiments made with the copper
casing are shown in Fig. 5.7. There is a distinctive change in the phase differ-
ence when the saline solution is poured into the tank. Such difference is not
visible for the case with the tap water in the tank. Furthermore, the phase
differences in both experiments for the empty tank are equal. This is seen
clearly in Figs. 5.8 and 5.9 that show the phase difference histograms of the
logs from Fig. 5.7 for each of the segments. The significant difference exists
only in the case of the saline solution in the tank.
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Logs of the transmitter current are depicted in Fig. 5.10. The current was
around 0.748 A, and its variations during experiments were less than 0.0008 A.
The receiver voltage, shown in Fig. 5.11, was around 1600 µV with variations
less than 25 µV. It is interesting to note that there is no visible difference in
the induced voltage when the content of the tank is changed. This confirms
our conclusions from Chapter 3 that the changes in the formation conductivity
are not observable in the amplitude of the induced voltage.

The transmitter temperature logs are depicted in Fig. 5.12. All experiments
started only after the temperature of the transmitter was stabilised. It took
about 1 h for the temperature to stabilise within ±0.1 ◦C. Although the effect
of adding a cooler liquid into the tank is clearly visible in the temperature logs,
the temperature changes are similar for the saline solution and tap water,
so they can be ruled out as a reason for the observed changes in the phase
difference.

Considering all of the above, we can conclude that the observed change of
the phase difference is exclusively due to inductive coupling with the conductive
saline solution.

Figure 5.7: Phase difference logs for the copper casing in the experiments with NaCl
solution (B) and tap water (A). The segments are approximately between indices
1–100, 101–200, and 201–300; respectively: a) before the solution was poured in the
tank, b) while the tank was filled with NaCl solution or tap water, and c) after the
tank was drained. The segments’ histograms are shown in Figs. 5.8 and 5.9
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Figure 5.8: Histograms of the three segments of the phase difference log from Fig. 5.7
for NaCl solution. See Fig. 5.7 for explanation of the segments. The mean value of
the first segment was reduced from all three segments.
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Figure 5.9: Histograms of the three segments of the phase difference log from Fig. 5.7
for tap water. See Fig. 5.7 for explanation of the segments. The mean value of the
first segment was reduced from all three segments.
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Figure 5.10: Variations of the transmitter current around the baseline of 0.78400 A
for the copper casing in the experiments with NaCl solution (B) and tap water (A).

Figure 5.11: Variations of the receiver voltage around the baseline of 1600 µV for
the copper casing in the experiments with NaCl solution (B) and tap water (A).
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Figure 5.12: Transmitter temperature for the copper casing in the experiments with
NaCl solution (B) and tap water (A).

5.1.6 Comparison with the analytical model

We calculated the expected phase difference using the analytical model from
Chapter 2. The casing had properties given in Table 5.1, C(10 mm, 1 mm,
56 MS/m, 1). The surrounding medium was M(42 cm, 15.5 S/m, 0 S/m).
The phase difference was obtained by subtracting the phases of the magnetic
fields for r3 = 2 cm and r3 = 15 cm. The phase difference, calculated in such
a way, does not contain effects of the casing and the formation beyond 15 cm.
The latter acknowledges the fact that the radius of the tank was only 15 cm.
We assumed that the interaction of the induced currents in the parts of the
formation is negligible, see section 3.3 and [11].

From the measurement results for the copper casing in Fig. 5.7, we obtained
the phase difference of (−0.81 ± 0.19)◦ for the saline solution, whereas the
model prediction for the single-turn transmitter and receiver is −0.75◦. The
model prediction and measurement result are alike considering the fact that
the experimental set-up was not calibrated in terms of the amplifier gain,
inter-turn coil capacitances, number of coil turns, etc. The measured induced
voltage was around (1600± 20) µV at the output of the amplifier. The model
prediction of the induced voltage, obtained using single-turn coils and corrected
for the magnetic moments of the real coils, is between 700 µV and 1200 µV
for 10% variations in the casing properties. Besides large sensitivity to the
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casing properties and aforementioned calibration of the experimental setup, the
discrepancy can be attributed mainly to the much longer tube in the modelling.

5.2 Single-coil method for inner radius

Measurement of the inner radius has been discussed in this author’s master’s
thesis entitled “Single-coil method for simultaneous measurement of multiple
parameters of a metal tube” [49, 71]. The measurement is based on minimisa-
tion of the Euclidian distance between the prediction of an impedance model
and the actually measured impedance of a single coil at a single frequency.
Here, we give a summary of the most important findings.

The coil impedance model, based on the work of Dodd and Deeds, was
implemented in Matlab [41]. We analysed the errors of the numerical imple-
mentation of the model and concluded that the accuracy of the calculated coil
impedance is at least 4 significant decimal digits.

The effect of finite tube wall thickness on the coil impedance is made neg-
ligible by a choice of higher excitation frequency. From the analysis of the
impedance sensitivity to the wall thickness, it follows that the excitation fre-
quency should be at least 10 kHz for the minimal wall thickness of 1 mm over
the expected ranges of permeability and conductivity. If these conditions are
met, inner radius, magnetic permeability and electrical conductivity remain
the only tube properties that the model needs to account for. Thus, the search
space for the optimisation procedure is 3-dimensional.

Coil resistance and inductance are between 10 Ω and 1 kΩ for coils that
fit typical tubing and casing. The sensitivity of the impedance to the inner
radius is between 1 Ω/mm and 10 Ω/mm. The optimisation procedure is ill-
conditioned with respect to permeability and conductivity, i.e. small errors
in impedance measurement (e.g. ±0.01 Ω in (10–1000) Ω range) will result
in poor accuracy of permeability and conductivity (between 10% and 50%).
On the other hand, permeability-to-conductivity ratio can be determined with
accuracy better than 5% if the excitation frequency is higher than 20 kHz
and the impedance measurement accuracy is better than 0.5 Ω. Separation of
permeability and conductivity would require very high impedance accuracy of
the order of ±0.001 Ω. In practice, only the inner radius and permeability-to-
conductivity ratio can be determined using the single-coil method.

From the Monte Carlo analysis it follows that inner radius and PCR will
be normally distributed for normally distributed errors in the impedance mea-
surement. Relative standard deviation of the inner radius is approximately 2.5
times smaller and deviation of PCR is 3 times greater than relative standard
deviation of the impedance.

An appropriate choice of the coil can significantly improve the quality (ac-
curacy and precision) of the measurement results. The radius of the coil should
be as close as possible to the radius of the inspected tube, i.e. fill-factor should
be close to 1. If the fill-factor decreases by 25%, sensitivities to inner radius
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and PCR are halved. Higher turn density and longer coil also improve the
sensitivities. However, a longer coil implies lower axial resolution.

Coil decentralisation, material non-idealities and environmental temper-
ature can influence the result of the single-coil method. We have assumed
practical realisability of the centralisation (using centralisers), relying on the
fact that the accuracies of other methods for testing tubular products depend
on centralisation too. Another possibility is to use vibrations, so called “road
noise,” of the probe while it travels along the tube — minimal coil resistance
corresponds to the perfectly centred coil [110]. The single-coil method results
in tube properties that are actually averaged circumferential distribution of
the inner radius and PCR (e.g. only a part of the tube circumference has in-
ternal corrosion or material inhomogeneity). Because of the small magnitude
of the coil excitation current, nonlinearity of ferromagnetic tube materials is
not considered to be a problem. The temperature at which the measurement is
carried out must be measured, and the impedance of the coil must be corrected
for its temperature variations.

We measured the inner radius and PCR of several tubes using the single-coil
method. The reported experimental results validated the proposed procedure
within the range of 10 kHz to 100 kHz for both nonmagnetic and ferromagnetic
tube materials. The results obtained at any two frequencies from the interval
differed less than 0.5% for the inner radius and 2% for PCR. Error of the inner
radius was of the order of 1% relatively to the nominal inner radius, specified
by the tube manufacturer. Error of PCR was between 1% and 10%, estimated
using the sensitivity analysis.

Coil parasitic capacities (interwinding and winding-to-tube) was identified
as having a significant effect on accuracy of measured inner radius and PCR.
Proposed procedure for correction of parasitic capacities uses a single lump
impedance to represent the effect of interwinding capacities only. Accuracy of
the method can be improved by the employment of a more realistic equivalent
circuit for the coil.

5.3 Remote-field technique

The theoretical background of the remote-field technique (RFT) or remote-field
eddy-current technique (RFEC), both names being somewhat of a misnomer,
was given in section 3.2. Instead of rewriting a number of experimental studies
on the casing inductive inspection we published so far, we will list only the most
important experimental results that goes hand in hand with the theoretical
findings of section 3.2.

1. Measured induced voltage spectrum shows distinctive low and high fre-
quency bands that correspond to the remote and direct zones, respec-
tively [48].

2. The direct zone is sensitive to the changes of the inner radius, whereas
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the remote zone exhibits much greater sensitivity to the wall thickness
than to the inner radius [48].

3. A response to a pulsed excitation calculated from the measured transfer
function fits well to the measured pulsed response [111].

4. The measurement system can be treated as a linear, time-invariant sys-
tem allowing applications of the system identification procedures [111].

5. Pulsed excitation and linearity of the system allows simultaneous mea-
surement of the inner radius and wall thickness using the zero-crossing
time and voltage peak value as respective signal features [48].

6. All of the measured results corroborate the analytical model based on
the Dodd-Deeds approach [63].

7. An instrument for casing inspection based of the transient inductive tech-
nique suitable for operation in harsh oil-well environment was success-
fully prototyped [112].

126



Chapter 6

Electronic instrumentation

They couldn’t hit an elephant at

this distance.

General John Sedgwick (1813–1864)

His last words few minutes before he was
hit by sniper fire at the battle of

Spotsylvania on 9 May, 1864

In this chapter, we will discuss the main factors that influence the electronic
instrumentation design and accuracy of the inductive measurement. Further-
more, we will describe the key system components (transmitter, receiver and
acquisition circuitry) and analyse the expected measurement uncertainty and
high-temperature operation.

6.1 Influential factors

The influential factors that restrain the overall measurement accuracy and
impose additional requirements on the system design are the presence of noise,
coil decentralisation, parasitic capacitances, nonlinearity of the casing material
and environmental temperature. We will pay due attention to the noise effect
in section 6.3, while in this section we discuss the remaining factors.

6.1.1 Coil decentralisation

Coil decentralisation or misalignment of the coils’ axes and the casing’s axis
are caused by the uncontrolled motion (wobble, “road noise”) of the coils inside
the casing during the measurement. The effect of the decentralisation weakens
with the distance between the receiver and transmitter coils. The remote field
technique at low frequencies is practically insensitive to the eccentricity [113].
Well-logging tools are usually equipped with the bow-spring centralisers in
order to reduce the wobble. If that is not enough, a model-based approach can
be tried, although it is analytically and computationally demanding [114, 115].
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The single-coil method for measurement of the inner radius is very suscep-
tible to the coil decentralisation [49]. In [116], we used an impedance model
based on the second-order vector potential for correction of the wobble effect
[115]. Another possibility, examined in [110], is to use the wobble and the
fact that the resistive part of the coil impedance is minimal when the coil
is perfectly centred. The minimal impedance is determined from a series of
measurements affected by the wobble.

6.1.2 Parasitic capacitances

Parasitic capacitances between the casing and coils are reduced using the coil
shields and proper grounding as described in section 5.1.4. However, there re-
main distributed parasitic capacitances of each coil: turn-to-turn capacitances
between turns in one layer, turn-to-turn capacitances between adjacent layers,
turn-to-core, and turn-to-shield capacitances, as discussed in [117].

All inductive methods require correction for non-ideal transfer function
of the employed coils [71, 118, 119]. Since the coil-to-casing capacitance is
made negligible by shielding and grounding, an equivalent lump capacitance
for the remaining coil parasitic capacitances can be experimentally obtained
measuring the coil’s frequency characteristic in the air. These results can be
combined with the analytical approach of [117] or [120], if one requires an
equivalent circuit more complicated than a simple parallel of an inductor and
a capacitor.

6.1.3 Nonlinearity of casing material

The fact that casings are usually made of ferromagnetic steel is rarely discussed
in the literature on the electromagnetic casing inspection beyond the observa-
tion that the relative permeability is on the order of 100 [69]. The prevailing
assumption of linearity of the ferromagnetic material, adopted in this thesis
too, holds for weak magnetic fields up to 100 A/m (small signal regime). The
proportionality constant between the magnetic field strength and induction un-
der the assumption of weak AC magnetic field is the incremental permeability
or, in limit when the field amplitude reaches zero, the reversible permeability
[121]. The reversible permeability depends on many factors: magnetic history
of the material, biasing magnetic field, imposed stress, temperature, frequency,
etc.

The frequency dependence of the permeability is a critical issue in the
multifrequency induction tools for the casing inspection, as noticed in [49].
Unfortunately, it seems that this is scarcely discussed in the available litera-
ture on the casing inspection topic—the notable exception is [69]. Sometimes,
the issue is neglected completely [119]. We deem necessary for any multifre-
quency system to count for the frequency dependence of the permeability. A
complex, frequency-dependent permeability due to a magnetic relaxation can
be described in terms of a Cole-Cole model [122]. Experimental results in
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e.g. [122, 123] show that the complex nature of the permeability cannot be
neglected even at frequencies as low as 10 Hz for various grades of steel. This
however does not violate the assumptions made in the modelling in Chapter 2
as long as the system operates in the small signal regime. The frequency de-
pendence of the permeability is the main reason we used only one excitation
frequency in this thesis. This guaranties that we can freely combine mea-
surements at different distances from the transmitter coil without a model of
frequency dependent permeability.

The mechanical properties of steel (strength, grade, hardness, etc.) are
interrelated with its magnetic properties (permeability, saturation magnetiza-
tion, etc.). Permeability measurement is potentially applicable to tube grade
identification and stress evaluation [124, 125]. The Jiles-Atherton model of
ferromagnetic hysteresis was proposed in their papers appearing between 1983
and 1986 [126–129]. Since then, the original model has been extended and gen-
eralized to include numerous experimentally observed features of ferromagnetic
behavior (effect of stress, asymmetric and minor loops, anisotropy, etc.) and
to improve the model’s computational effectiveness [130]. The Jiles-Atherton
model is now considered to be a classic model of ferromagnetic hysteresis (be-
side the Stoner-Wolhfarth model, the Globus model and the Preisach model)
[131]. At present, the model includes the effects of stress only in the elastic
region. Existing theoretical models are unable to accommodate inelastic defor-
mation and the full stress-strain history of the sample [124, 132, 133]. However,
attempts within the framework of the original work of Jiles and Atherton have
recently been made to include the effect of plastic deformation [134].

In the case of inhomogeneous casing material, it is expected that the mea-
surement would result in an effective permeability that is an average measure
of the electromagnetic property over all locations inside the inspected part of
the casing wall. Anisotropy of the electromagnetic properties in the radial and
axial direction can be taken into account within the scope of the modelling
methods in Chapter 2.

6.1.4 Environmental temperature

The temperature in a well at full depth reaches 175 ◦C and its variations affect
the impedance of the coils, electromagnetic properties of the casing material
and operation characteristics of the electronic circuitry [1]. In order to com-
pensate for the thermally induced variations in the tool response, it is essential
to measure the temperature at critical points in the system.

Temperature dependence of the casing conductivity and permeability is
discussed in [69] and [121]. Compensation of this dependence is important if
one wants to infer the state of the casing and examine potential stress induced
changes in the casing material using the electromagnetic methods [49, 69]. The
coil properties can be corrected for the temperature variations using a look-up
table.

Downhole electronic instrumentation must retain its functionality and per-
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formance in the whole temperature range [135]. High-temperature design of
the instrumentation is based on an approach that combines the application of
high-temperature rated parts and components specified for commercial or mil-
itary temperature ranges. The latter are usually the critical components such
as voltage references, oscillators, analog-to-digital converters and microcon-
trollers. Using a component outside the manufacturer’s specified temperature
range is possible through a process known as uprating, which is a collection of
procedures for assessing “the capability of a part to meet the functional and
performance requirements” in the high temperature range [136]. One often
finds that commercial parts can be uprated [136, 137]. We reference to the
possible choices of high-temperature rated components in section 6.2

A measurement method embodied by the electronic instrumentation must
be suited for the harsh environment as well. It is beneficial to reduce the
number of analog components in order to minimise measurement errors arising
due to deterioration of their performances at high temperatures (e.g. increase
in leakage currents and noise, decrease in open-loop gain). For the inductive
methods of casing inspection and formation evaluation, digital phase sensitive
(lock-in) detection of the voltages induced in the receivers conforms to these
requirements.

6.2 Key system components

The key components of the system, proposed in this thesis, for measurement of
the casing properties and the formation conductivity are one transmitter and
three receiver coils (shielded), transmitter circuitry and digital lock-in (phase
sensitive) amplifier built around an analog-to-digital converter and microcon-
troller, Fig. 6.1. Additional components, not shown in Fig 6.1, are clock gener-
ator, downhole-surface communication circuitry, power supply, etc. These are
present in almost any well logging tool and are not of primary interest to this
discussion.

6.2.1 Transmitter coil

The main design requirements for the transmitter coil are connected with
the operating frequency, power, dimensions and weight. The transmitter coil
should operate at low frequencies (< 100 Hz) and provide the magnetic field
strong enough to be detected several metres away by the receiver coils, while
remaining in the small signal-regime for the material’s ferromagnetic charac-
teristic. The magnetic field is proportional to the magnetic moment of the coil
given approximately as:

mT = πr̄2
T NT IT ke,

where r̄T is the transmitter’s mean radius, NT is number of turns, IT is the
excitation current, and ke is the moment enhancement due to the magnetic
core.
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Figure 6.1: Key components of the four-coil system for the measurement of the casing
and formation properties.

The choice of the number of turns, mean radius, maximum excitation cur-
rent and the wire diameter is not an easy one. The transmitter coil should
closely fit inside the casing in order to achieve higher magnetic moment. The
product of the number of turns and the current should be high, but this is lim-
ited by the output characteristics of the transmitter’s power supply circuitry.
The power supply is characterised with the maximum power Pmax, maximum
output voltage Umax, and maximum current Imax. We will assume that the
transmitter coil is tuned to the serial resonance with a capacitor [138]. Be-
cause of N ∝ RT , where RT is the wire resistance of the transmitter coil, the
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requirement (NT IT )max is identical to the requirement Umax = RT IT . Hence,
the operating point of the power supply is (Umax, IT = Pmax/Umax), whereas the
coil should have the number of turns NT such that RT = U2

max/Pmax. The wire
diameter must be chosen according to the specified current and self-heating
limitations. Downhole power supplies can routinely provide maximum power
of 150 W, at maximum voltage of 35 V and frequencies below 20 kHz [138].

Following this discussion, we calculated data for four transmitter coils in-
tended to span the range of the casing inner radius from 50 mm to 120 mm,
what covers typical surface casings, and all of the intermediate and produc-
tion casings, and liners [13, 14], Table 6.1. These coils are given here only to
gain insight into typical design parameters and their quantitative estimates.
The magnetic moment can be enhanced using the magnetic rod made of mu-
metal (a nickel-iron alloy) at frequencies below 1 kHz, or ferrite below 1 MHz
[138, 139].

Table 6.1: Transmitter coils for casing inner radius 50 mm–120 mm

Parameter K1 K2 K3 K4
Outer radius, rT2 [mm] 45 60 75 90

Inner radius, rT1 [mm] 20 35 50 70

Mean radius, r̄T [mm] 32.5 47.5 62.5 80

Length, lT [mm] 300 300 300 300

Wire diameter, dw [mm] 1.6 1.6 1.6 1.6

Turns, NT 2344 2344 2344 1875

Current, IT [A] 5.30 4.87 4.24 4.20

NT IT , [At] 12423 11415 9939 7866

Wire resistance, RT [Ω] 5.6 6.3 8.3 8.5

Magnetic moment, mT [Am2] 41 81 122 158

Magnetic field in air∗, |Bz| [nT] 65.6 129.6 195.2 252.8

Magnetic field in casing∗, |Bz| [nT] 0.25 0.5 0.78 1

∗
Magnetic field calculated at z = 5 m and 60 Hz. Casing is C(120 mm, 10 mm, 4.6 MS/m, 100)

6.2.2 Receiver coil

Small diameter casings represent the worst case for the design of a receiver
coil. The available space limits the magnetic moment of the transmitter and
the winding number of the receiver. As an example of the receiver design we
will take a coil that can fit into a casing with 50 mm inner radius. According
to Table 6.1 the minimum magnetic field at 5 m and 60 Hz is 250 pT. We
will evaluate the receiver parameters for the more severe casing attenuation
resulting in the magnetic field of 50 pT.
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Let the receiver have the same radii and length as transmitter K1 from
Table 6.1. If we choose 0.4 mm wire and coil packing factor of 0.75, the coil
will have number of turns NR = 35156 and wire resistance RR = 1040 Ω.
The inductance of the coil is around 11.4 H, calculated using the formula for
long multilayer solenoidal air-cored coils given in [140]. From (6.4) it follows
that receiver sensitivity at 60 Hz is SB = 44 µV/nT. The induced voltage is
UR = 2.2 µV for |Bz| = 50 pT.

The coil has to be wound with a special care in order to minimise its self-
capacitance [140]. One usually divides the coil into sections, each wound sepa-
rately using e.g. the deep narrow winding [140, 141]. Stray capacitances up to
40 pF have been reported for the coils of similar dimensions as the aforemen-
tioned receiver and number of turns up to 48000 [141, 142]. Under the realistic
assumption that the coil can be produced with the stray capacitance less than
1000 pF, its self-resonance frequency is 1490 Hz, what is quite acceptable for
measurements below 100 Hz. There is no need for flux-feedback preamplifier
to flatten the coil’s characteristic, because of the narrow band-pass nature of
the measurement [143].

Voltage spectral density of the coil noise is 4.93 nV/
√

Hz at the temperature
of 150 ◦C, or equivalently 112 fT/

√
Hz, see section 6.3.1. The noise power

and signal-to-noise ratio depend on the frequency bandwidth, which in turn
depends on the coil’s stray capacitance and the input impedance of the receiver
amplifier. Since the coil’s resonance frequency is above 1 kHz, we will assume
that the bandwidth is limited by the receiver amplifier with the first-order
low-pass transfer function with cut-off frequency at 200 Hz. In that case, we
obtain SNR = 25 dB at 50 pT. This number does not include the amplifier’s
contribution to the noise.

The sensitivity of the coil can be significantly increased using a magnetic
core [139]. The main disadvantages of using the core are additional magnetic
noise (Barkhausen noise) and nonlinearity. A core made of amorphous cobalt-
based alloy Metglas 2714A was reported to have low noise performance and
very high permeability of tens of thousands (continuous service temperature
of 90 ◦C and Curie temperature of 225 ◦C) [144, 145]. Using this material, the
coil in [145] approaches the theoretical noise limit at the room temperature.
If the permeability of the core’s material is high, the resultant permeability
and the sensitivity enhancement depend mostly on the geometry of the coil
and its core—the core should be long and of small diameter. For the receiver
described herein, the increase in sensitivity is estimated to be 30 times, or
SB ≈ 1300 µV/nT and UR = 65 µV for |Bz| = 50 pT.

6.2.3 Receiver amplifier

We can specify the requirements on the receiver amplifier following the dis-
cussion about the receiver’s properties in section 6.2.2. It is clear that the
right choice for the amplifier’s topology is the one of instrumentation amplifier
because of its high input impedance, common-mode rejection ratio and low
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offset, drift and noise.
In order to amplify the induced voltage of the receiver from the lowest range

of ∼ 10 µV to ∼ 10 mV, the amplifier should have the differential gain on the
order of 1000. The input impedance should be high enough not to interfere
with the receiver’s frequency characteristic; the input resistance should be on
the order of 10 MΩ and capacitance below 100 pF. The equivalent input
noise of the amplifier should not be considerably larger than the coil noise
(∼ 5 nV/

√
Hz) in order to keep the noise factor close to 1. The amplifier we

used in the experiment in Chapter 5 satisfies these criteria: input impedance
of around 130 MΩ, CMRR of 120 dB at frequencies below 200 Hz, differential
gain 2000, cut-off frequency of 29 kHz, and equivalent input voltage noise of
4.18 nV/

√
Hz [102]. Additional requirement is high-temperature operation.

High-temperature rated instrumentation amplifiers are commercially avail-
able. Amplifier INA129-HT (Texas Instruments) is rated for operation up
to 210 ◦C. The amplifier has differential impedance 1010 Ω and 2 pF, typ-
ical CMRR of 130 dB and 95 dB at 210 ◦C, gain up to 10000, noise below
20 nV/

√
Hz and 1 pA/

√
Hz at 100 Hz, and bandwidth of 7.5 kHz for 1000 gain

and 210 ◦C [146]. The same vendor offers also a range of high-temperature
operational amplifiers [147]. Another example of a high-temperature instru-
mentation amplifier is Micropac’s 52301, capable for operation up to 180 ◦C
[148].

6.2.4 Mixed-signal and digital circuitry

After the instrumentation amplifier, next in the measurement chain are mixed-
signal and digital circuitry, namely an analog-to-digital converter (ADC), and
microcontroller or digital signal processor. High-temperature digital signal
processors are available from Texas Instruments, see e.g. [149].

While there is a lot of high-speed and high-resolution analog-to-digital
converters available, those capable for high-temperature operation are still
extremely rare. We will summarise characteristics of a state-of-the-art high
temperature ADC understanding that converters for the lower temperature
range can easily match or surpass its performance. The converter in ques-
tion is ADS1278-HT (Texas Instruments) [150]. The converter is a 24-bit,
delta-sigma (∆Σ) ADC capable for 128 kHz simultaneous sampling of eight
channels and operation up to 210 ◦C. Specified maximal integral nonlinearity
is ±14 ppm of the full scale range, and maximal noise in the high-resolution
mode is 13 µVrms. The offset error is 2 mV and gain error is 0.5% of the
full scale. Total harmonic distortion is lower than −96 dB and spurious-free
dynamic range is typically 109 dB.

6.2.5 Digital phase-sensitive detection

We have already mentioned that the method of choice for the measurement of
the parameters of a sine wave in conditions of poor SNR and harsh environment
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Figure 6.2: Block scheme of the digital lock-in (phase sensitive) amplifier imple-
mented in a digital signal processor. The lock-in frequency is fL and the sampling
frequency is fS .

should be based on a digital phase sensitive (lock-in) amplifier [103–106]. The
basic principle of the lock-in detection is shown in Fig. 6.2. Quantised signal
U(n), containing noise, various harmonics and a spectral component of known
frequency fL, whose amplitude and phase we want to measure, is multiplied by
digital versions of the sine and cosine reference signals of the same frequency fL.
The multiplication with the cosine and sine references results in i(n) and q(n),
respectively. So-called in-phase and quadrature components, I(n) and Q(n),
obtained after the digital low-pass filtering correspond to the mean values of
i(n) and q(n); they are still time-dependent because of the finitely low cut-
off frequency of the filters with impulse response h(n). The mean values are
related to the amplitude and phase of the measured harmonic as:

I(n) = (h ∗ i)(n) ≈ 1

2
U0 cos φ,

Q(n) = (h ∗ q)(n) ≈ 1

2
U0 sin φ.

Estimates of the amplitude and phase, Û0(n) and φ̂(n) are readily obtained
as shown in Fig. 6.2. There is a trade-off between the requirements for low
cut-off frequency of the digital low-pass filter, corresponding to the accuracy
of Û0(n) and φ̂(n), and response time of the lock-in amplifier.
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6.3 Effects of noise and interferences

6.3.1 Scaled model vs. field system

We will concentrate here on thermal noise of the receiver coil since this is the
only noise source that depends upon the physical scaling. Noise sources of
the laboratory interface circuitry remain invariant under scaling and can be
considered as a good indication of requirements on the noise characteristics of
actual field instrumentation.

We will assume that the receiver is a cylindrical air coil with inner radius
rR1, outer radius rR2, length lR and NR turns of wire with diameter dw. Also,
let r̄R denote coil’s mean radius, r̄R = (rR1 + rR2)/2. Since the receiver is
placed far from the transmitter, we can assume that the magnetic field inside
the tube at the receiver’s location is uniform over the cross-section parallel to
z = 0 plane and that it decays slowly along the length of the receiver. Bearing
that in mind, we will introduce a mean uniform magnetic field B̄ which induces
the same voltage in the receiver coil as the magnetic field of the transmitter.
For the harmonic excitation, the voltage induced in the receiver coil is:

UR = N
dΦ

dt
= NB̄zS̄ω = 2π2fNr̄2

RB̄z, (6.1)

where Φ is total magnetic flux, S̄ mean cross-section and B̄z is a component of
the mean magnetic field in z direction. If we define the coil packing factor kp

as the ratio of the cross-section area taken by the coil winding and total coil
area, we can write for number of turns:

N = kp
(rR2 − rR1) lR

d2
w

. (6.2)

Inserting (6.2) into (6.1) we get:

UR = 2π2kpf
r̄2
R (rR2 − rR1) lR

d2
w

B̄z. (6.3)

Thus, the sensitivity of the receiver coil SB = U/Bz can be calculated as [139]:

SB = 2π2kpf
r̄2
R (rR2 − rR1) lR

d2
w

. (6.4)

The noise source of a coil is associated with DC resistance of the wire
[139, 142]. Power spectral density of the coil noise is:

ū2
N = 4kBTRdc,

where the Boltzmann constant kB = 1.3806504(24) · 10−23 JK−1, T is absolute
temperature (in kelvins) and Rdc is DC resistance of the coil. The total length
of the wire used in winding the coil is:

lw = 2πNr̄R = 2πkp
r̄R (rR2 − rR1) lR

d2
w

,
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and its resistance is:

Rdc =
1

σw

lw
Sw

= 8
kpr̄R (rR2 − rR1) lR

σwd4
w

,

where σw is conductivity of the wire and Sw its cross-section area. The noise
power U2

N for a given frequency bandwidth fbw is:

U2
N = 32kBT

kpr̄R (rR2 − rR1) lR
σwd4

w

fbw. (6.5)

Signal-to-noise ratio SNR of the receiver coil is

SNR =
U2

R

2U2
N

=
π4kp

16kBT

f 2

fbw

σwr̄3
R (rR2 − rR1) lRB̄2

z , (6.6)

where we divided UR with
√

2 to obtain RMS value of the induced voltage. It
is interesting to observe that, according to (6.6), SNR of the receiver does not
depend on the wire diameter and that the best way of increasing the ratio is
to increase the coil mean radius [139].

We can now compare signal-to-noise ratios of the field system SNR and
scale model SNR′:

SNR
SNR′ =

f 2r̄3
R (rR2 − rR1) lRB̄2

z

f ′2r̄′3R (r′R2 − r′R1) l′RB̄′2
z

f ′
bw

fbw

,

where primed quantities belong to the scaled model. Using the scaling relations
(5.1)–(5.5) and (5.14)–(5.17) we get:

SNR
SNR′ =

1

kl

f ′
bw

fbw

. (6.7)

Signal-to-noise ratio of the field system is reduced for the length scaling factor
kl. This scaling effect is compensated in some degree by the fact that one can
expect narrower frequency bandwidth fbw for the field system. If we assume
the relation f ′

bw/fbw > kl, then

SNR
SNR′ > 1,

what shifts the comparison of the signal-to-noise ratios in favor of the field
system.

6.3.2 Measurement channel

The noise and interferences in the received signal collected through the mea-
surement channel shown in Fig. 6.3 result in the errors of the lock-in detection.
As we have already discussed, the receiver coil introduces noise of its resistance
and magnetic core. The instrumentation amplifier and the anti-aliasing filter
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Figure 6.3: Block scheme of the receiver interface with digital lock-in amplifier and
main error sources.

result in the 1/f and white noise, whereas the analog-to-digital converter intro-
duces its input noise, quantisation noise and distortions. Other error sources,
such as changes in the receiver’s sensitivity, as well as gains and offsets of
the amplifier, anti-aliasing filter and ADC, require calibration. In order to
investigate the applicability of the digital lock-in detection and suitability of
the system electronic components discussed in the previous sections, we will
simulate the effects of the noise and interferences on the phase and amplitude
measurement in the AC coupled measurement channel. We will assume that
the channel is calibrated, i.e. its total gain is known.

The noise of the analog circuitry Un,an, the input noise of the analog-to-
digital converter Un,adc, quantisation noise Un,q and distortions Udist can be
lumped into the joint noise source Un,lump, band limited by the anti-aliasing
filter at fC . The root mean square (RMS) value of the lump noise source is:

U2
n,lump = U2

n,an + U2
n,adc + U2

n,q + U2
dist, (6.8)

where Udist includes all harmonics arisen due to the nonlinear effects of the
transfer functions of the ADC or the analog circuitry. If we divide the RMS
value of the signal with the lump noise, we obtain signal-to-noise-and-distortion
ratio:

SINAD = 20 log
U0√

2Un,lump

,

which is usually used for an analog-to-digital converter as a good indication
of its overall dynamic performance as a function of input frequency [151].
Since we have broadened the definition of SINAD to include the noise and
distortions before the ADC, it became a measure of the overall quality of the
receiver measurement channel.

Let the measured spectral component have the frequency fL = 60 Hz and
amplitude U0 = 10 mV or U0 = 100 mV. This is a voltage amplified by the
instrumentation amplifier with gain 1000 and it corresponds to the induced
voltage of the receiver on the order of 10 µV or 100 µV. According to our
previous analysis, the lowest voltage amplitude in the receiver coil is on the
order of 10 µV at distance z = 5 m from the transmitter and 60 Hz. The
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anti-aliasing filter has cut-off frequency fC = 200 Hz, what determines the
noise bandwidth for the analog part of the receiver interface circuitry. We
will assume that the signal is sampled by a 16-bit ADC at sampling rate of
32768 Hz. Using the Matlab, we produced the signal U(n) = U0 sin(2πfLn/fs+
φ) in the 16-bit precision with the input range of the quantiser ±2 V and added
the Gaussian lump noise band limited to 200 Hz with the total power depending
on SINAD and U0. Then, we estimated U0 and φ using the lock-in method
implemented in the 32-bit floating point arithmetic. We tested two digital
low-pass filters based on the simple averaging of N = 100000 or N = 500000
samples corresponding to the filter times of tf = 3 s and tf = 15 s, respectively.
This procedure is repeated for the phase range 10◦–170◦ with 1◦ steps at each
SINAD level, and for U0 = 10 mV and U0 = 100 mV.

Fig. 6.4 depicts the phase error defined as:

pφ = |φ − φ̂(N)|,

and Fig. 6.5 depicts the amplitude error defined as:

pU =

∣∣∣∣∣
U0 − Û0(N)

U0

∣∣∣∣∣ .

Both figures show the minimal (dashed lines) and maximal errors (full lines)
in the range of investigated signal phases. The errors depend on SINAD level
and not on the signal amplitudes. That is why we didn’t explicitly joined the
amplitude data to the curves on the figures. Three times longer averaging time
reduces the errors for 2 to 3 times. There is a significant difference between
the minimal and maximal errors—for two or, even, three orders of magnitude.
The phase error is less than 0.1◦ for SINAD > 25 dB and tf = 15 s, or less
than 0.04◦ for SINAD > 30 dB. The amplitude errors are less than 10−3 for
SINAD > 30 dB and tf = 15 s. These worst-case error boundaries are within
the uncertainties analysed in Chapter 4.

SINAD level of 30 dB means that the RMS value of the lump noise is
about 0.224 mV for U0 = 10 mV, or 2.24 mV for U0 = 100 mV. In the
terms of noise spectral density, this is 15.8 µV/

√
Hz for U0 = 10 mV, or

158 µV/
√

Hz for U0 = 100 mV at fC = 200 Hz. Table 6.2 lists conservative
estimates of the individual contributions of the error sources referred to the
ADC input. In the case of U0 = 10 mV, the RMS value of the noise is estimated
to 295 µV and SINAD to 27.6 dB for the situation without the magnetic
core, which is more likely considering the low amplitude of the signal. For
U0 = 100 mV and the magnetic core, the noise is about 652 µV resulting in
SINAD of 40.7 dB. From these results we can corroborate that the digital
lock-in amplifier, satisfying the accuracy requirements in Chapter 4, can be
implemented using the commercially available components, rated for high-
temperature operation.
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6.3 Effects of noise and interferences

Figure 6.4: Maximal (full lines) and minimal (dashed lines) phase errors of the lock-
in amplifier vs. SINAD for the filtering times 3 s and 15 s (denoted for full lines
only), and the sine waves of 60 Hz and amplitudes 10 mV and 100 mV (not denoted).
The noise bandwidth is 200 Hz.

Figure 6.5: Maximal (full lines) and minimal (dashed lines) amplitude errors of the
lock-in amplifier vs. SINAD, see Fig. 6.4.
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6 Electronic instrumentation

Table 6.2: Contributions of the individual error sources referred to the ADC input.

Source Conditions(1) U0 = 10 mV(2) U0 = 100 mV(2)

Receiver coil
Thermal noise 5 nV/

√
Hz 71 µV

Mag. core noise 30 nV/
√

Hz
(3)

424 µV
Instrum. amp.(4)

Total noise 20 nV/
√

Hz 283 µV
Low-pass filter
Total noise 100 nV/

√
Hz 1.4 µV

ADC, 16-bit(5)

Input noise 13 µV
Quantisation noise SNRQ = 96.2 dB 0.1 µV 1 µV
Distortions
All harmonics THD = 50 dB(3),(6) 40 µV 400 µV

Total
noise

With the core 516 µV 652 µV
Without the core 295 µV 495 µV

SINAD
With the core 22.7 dB 40.7 dB

Without the core 27.6 dB 43.1 dB

(1) Gain of the instrumentation amplifier is 1000, the filter cut-off frequency is 200 Hz, AC coupled
measurement channel.
(2) At the ADC input.
(3) Estimated.
(4) INA129-HT.
(5) ADS1278-HT, 23-bit, the last 7 bits neglected.
(6) Includes nonlinearity of the analog circuitry and ADC.
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Chapter 7

Conclusions

I almost wish I hadn’t gone down that

rabbit-hole—and yet—and yet—it’s rather

curious, you know, this sort of life!

Alice

Lewis Carroll, “Alice’s Adventures
in Wonderland,” Ch. 4, 1865

Resistivity (conductivity) measurement is an all-important method in the for-
mation evaluation. In the open-hole logging, the conductivity measurement,
either of electrode or inductive kind, distinguishes between the hydrocarbon
bearing formation (low conductivity) and formation containing brine (high con-
ductivity). Radiation methods can be applied to the same purpose through
the measurement of the water saturation, but they are beset by a number of
environmental effects and small radius of investigation. Still, the radiation
methods were the only ones applicable in a cased well before recent introduc-
tion of the electrode trough-casing resistivity device. This tool measures the
formation conductivity lower than 1 S/m at a few hertzs. Its main disadvan-
tage is the strong force required to establish a good contact between a casing
and the electrodes that can damage or rupture the casing. Another tool, com-
mercialised in 2009, is based on a cross-well inductive principle. It employs a
high power transmitter coil in one well, and an array of receiver coils in the
second well. The receiver well can be cased with steel only if the transmitter
well is open. The result of such a measurement is a tomographic resistivity
image of the interwell space. The through casing inductive resistivity measure-
ment from within a single steel-cased well would be applicable for evaluation
of formations with the conductivity higher than 1 S/m without the danger of
damaging the casing or need for two wells. The objective of this thesis was to
prove the concept of such a measurement. This was achieved in five steps.

First, we derived the analytical model of the magnetic field distribution
of a transmitter coil positioned inside the casing surrounded with the low-
conductive medium representing the formation. The medium is cylindrically
layered with one horizontal boundary. The model is based on the quasi-static
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approximation of the Maxwell’s equations and the truncated region method
with the eigenvalue expansion of the vector potential. Truncation of the prob-
lem domain in z direction leads to the discrete eigenvalues. This allows easier
numerical implementation (the set of eigenvalues is determined by the domain’s
height) and convergence control (on term-by-term basis in summation of the
solution sequence).

A special difficulty of this modelling approach arises due to the fact that
the eigenvalues are given as solutions of transcendental equations in complex
domain. We solved this problem using the argument principle based on the
Cauchy’s theorem. However, this can be time consuming if there are more hor-
izontal boundaries and there is a need to repeatedly change their positions or
conductivities of the neighboring regions. Faster numerical based models may
be required for the field application if one expects the surrounding formation
of several layers with the total height commensurable with the tool’s length.

High contrast in conductivities of the casing and formation causes large
dynamics of arguments of the Bessel functions. Thus, we took special care in
rearranging the final expressions of the model into the ratio of Bessel functions
in order to obtain stable numerical implementation of the model in double
precision floating point arithmetic. The model proved to strike a good bal-
ance between its analytical complexity and primary application to assess the
proposed measurement concept.

Second, using the model, we investigated the space-frequency dependence
of the measurement sensitivity to the casing and formation properties. Unlike
the amplitude of the induced voltage, its phase difference with respect to the
transmitter’s current is sensitive to the conductivity of the surrounding forma-
tion. The sensitivity increases with the frequency and transmitter-to-receiver
separation. The lowest detectable voltage for a given transmitter and receiver
coils determines the highest applicable frequency and the largest separation.
For the excitation frequency of 60 Hz and coil separation of 5 m, one can ex-
pect phase difference on the order of 1◦ for 1 S/m formation and voltage on the
order of 10 µV depending on the casing. The vertical resolution is better for
shorter coil separations; this is the weakest spot of this method since it requires
several times larger transmitter-receiver separation than the first generation
of the open-hole induction logging tool (about 1 m). On the other hand, large
separation between the coils improves the radius of investigation. The parts of
the formation with radius larger than two coil separations contribute less than
20% of the total phase difference. This is a handy rule of thumb for estimation
of the radius of investigation (10 m for separation of 5 m).

We defined the levelset of the induced voltage as a surface in the space of
casing parameters (µr, σt, c) for which the induced voltage is constant for given
coil separation and frequency. Space-frequency analysis of the sensitivity to
the casing properties showed that the levelset transforms with separation from
the surface of constant permeability-to-conductivity ratio, PCR = µr/σr, to
the surface of constant casing factor, Cf = c

√
µrσt. By placing two receiver

coils in the corresponding positions, we restricted the solution of the inverse
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problem to the trajectory determined by the intersection of the two surfaces.
The effects of the casing and formation are separable. The measured phase

difference is a sum of two mutually independent terms: the formation contribu-
tion and the casing contribution. The latter can be compensated if the casing
properties are known, and we demonstrated this on a number of different cas-
ings. As already stated, the casing effect can be quantified by placing two
additional receivers near the transmitter. We proposed positioning of the first
receiver coil at 0.15 m to measure the casing’s permeability-to-conductivity
ratio, the second receiver at 0.9 m to measure the casing factor, and the third
receiver coil at 5 m to measure the casing and formation effects. The proposed
excitation frequency is 60 Hz. We proposed the use of single-frequency excita-
tion in order to avoid the problems arising with the frequency dependence of
the reversible permeability of the casing steel.

Third, we employed the stochastic approach to the inverse problem of de-
termination of the casing and formation properties using the proposed mini-
mal configuration of the coils. The stochastic inversion is based on the rep-
resentation of the measurement quantities, a priori knowledge of the sought
properties and their theoretical relationships in form of probability distribu-
tions. Posterior information on the properties of interest is obtained applying
the Bayes theorem. The posterior distributions are sampled using the Monte
Carlo Markov chain method based on the Metropolis-Hastings algorithm. The
stochastic formulation gave us a relatively easy but detailed insight into the
quality of the inverse-problem solution obtainable using the proposed config-
uration of the coils. We ran a number of Monte Carlo simulations in order to
examine the effects of accuracy and precision of the magnetic field measure-
ment on the posterior uncertainty of the formation conductivity. The finite
accuracy of the measurement stems from limitations of the calibration proce-
dure, whereas the finite precision is due to the inherent noise of the overall
measurement system.

Based on the results of the Monte Carlo simulations, we concluded that
the relative uncertainty of the magnetic field measurement must be between
10−4 and 10−3 in order to achieve the lowest measurable formation conduc-
tivity between 0.1 S/m and 1 S/m. For even lower formation conductivities
and with these uncertainty levels, it is only possible to state that the formation
conductivity is with the certainty lower than the specified minimal value. Mea-
surement results for true values of the formation conductivity around 5 S/m
are typically off by 5% or 10% from the true value. Uncertainty of the casing
properties (thickness, conductivity and permeability) are about 30 times larger
than the uncertainty of the magnetic field, what indicates the ill-conditioned
procedure. However, resulting uncertainty of the casing factor is only one
half of the measurement uncertainty, and 8 times larger for permeability-to-
conductivity ratio.

Fourth, we produced the laboratory scaled model of the cased borehole in
order to corroborate the proposed measurement technique. We used the scal-
ing relations that preserve the same material properties in the field and scaled
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systems. The dimensions were scaled for the factor of
√

200 and frequency was
increased 200 times, from 60 Hz in the field system to 12 kHz in the scaled
system. The instrumentation was built around the 16-bit digital phase sensi-
tive (lock-in) amplifier. Special care was taken of the shielding and grounding
in order to remove all capacitive coupling. The basic experiment affirmatively
answered the question of whether or not the system distinguishes the saline so-
lution from very low-conductive tap water or air trough the highly conductive
metal tube. The phase difference due to the presence of the saline solution was
off by 0.06◦ or 8% from the model prediction of 0.75◦. The experiment proved
the feasibility of such a measurement using the proprietary wound air-cored
coils, differential amplifier and 16-bit analog-to-digital converter.

Fifth, we analysed the requirements on the electronic instrumentation and
its realisability using the commercially available components. The influential
factors that restrain the achievable measurement accuracy are noise, coil de-
centralisation, parasitic capacitances, nonlinearity of the casing material, and
environmental temperature. These influences must be accounted for when
one designs the electronic instrumentation (centralisers, shielding, grounding,
single excitation frequency, small signal regime, high-temperature rated com-
ponents) or in the data processing (calibration and filtering).

The key system components are transmitter and receiver coils, transmitter
circuitry and digital lock-in amplifier built around an analog-to-digital con-
verter and a digital signal processor. The transmitter coil should be designed
to match the output characteristic of the transmitter circuitry. We proposed
several transmitter coils covering the entire range of the production casing
diameters. The achieved magnetic moments or the power consumption can
be improved using the magnetic cores. We showed that it is possible to de-
sign the receiver coil that fits into the casing and has required sensitivity of
∼ 50 µV/nT without the magnetic core or ∼ 1300 µV/nT with the core. The
specifications of commercially available components (instrumentation ampli-
fier, analog-to-digital converter and digital signal processor) capable for opera-
tion up to 210◦ match those of the instrumentation we used in the experiment.
Their only recent availability will certainly improve and expedite development
of high-precision well logging instrumentation capable for operation in the
harsh environment of a well, as required by the proposed application. We
analysed the total noise and distortions of the complete receiver channel and
concluded that the worst case signal-to-noise-and-distortion ratio (SINAD) is
around 30 dB, what results in the phase error of 0.04◦ and relative amplitude
error less than 10−3 using the 16-bit single floating precision lock-in amplifier
and the averaging window of 15 s. This estimation puts the total errors of
the measurement channel within the uncertainty bounds obtained using the
Monte Carlo simulations.

The future work should proceed in several directions: investigation of new
transmitter-receiver patterns, prototyping of an actual field system, charac-
terisation of ferromagnetic materials in small-signal regime, and modelling of
more complex geometries. We will present few ideas for extending the current
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research along these lines.
In the thesis, for solving the inverse problem, we assumed that we had

only the results of the stationary measurement at our disposal, i.e. three
complex-valued voltages induced in the three receiver coils. However, the
voltages would be measured at several closely spaced positions in reality, so
one can expect to have several times larger measurement set for the same
length of the casing. Under the assumption, first mentioned in [52], that the
spatial frequency of changes in the casing properties is larger than that of the
formation conductivity, one can filter out the casing effect to some degree.

By designing the coils in such a way that they can switch their role and act
either as transmitters or receivers, one can in principle achieve a better evalua-
tion of the casing properties and, consequently, more accurate measurement of
the formation conductivity. Throughout the thesis, we stressed the importance
of the interdependent selections of coil separations and excitation frequencies
in order to achieve satisfactory sensitivity to the formation conductivity and
casing properties. Since the coil separations are fixed by the design, the vari-
able frequency would allow the system to adapt itself to changing conditions
inside the well, such as different casing grades, radii or thickness. Furthermore,
by continuous monitoring of the received signal strength and SNR, the system
could operate at the highest possible frequency to increase the sensitivity to
the formation conductivity. An appealing fact in the tool prototyping is a
possibility to modify and use the components of existing tools for casing in-
spection and open-hole inductive tools in order to speed up the development
process and to cut down its costs.

In order to use the multi-frequency excitation, models of the ferromagnetic
behavior should be incorporated into the existing models, more specifically
frequency dependence of the reversible permeability. Development of fast nu-
merical codes for forward simulation of the inhomogeneous casing and multi-
layered formation would allow computationally efficient inversion procedures
as a support for off-line geophysical interpretation.

The single-well trough-casing inductive resistivity tool is feasible using com-
mercially available electronic components. The tool is applicable for measure-
ment of the formation conductivity larger than 1 S/m. The proposed method
with its inherent Bayes formalism should be viewed as a support to the long
term process of knowledge building about the well and surrounding formation
through time-lapse measurements.
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Summary

Rock conductivity measurement is a pivotal method in the open-hole well log-
ging for evaluation of hydrocarbon reservoirs. The conductivity measurement
is also required in cased wells as an addition to the radiation methods. Only a
contact conductivity tool is available for the cased well application. This thesis
proposes an inductive method for simultaneous measurement of the rock con-
ductivity and the casing properties (thickness, conductivity, and permeability)
from within single steel-cased well. The analytical electromagnetic model was
derived for a transmitter coil inside a steel casing surrounded by a cylindrically
and horizontally layered low-conductive medium. Using the space-frequency
analysis of the sensitivity on the casing and formation properties, the mea-
surement configuration consisting of one transmitter and three receiver coils
was proposed. The investigation radius, vertical resolution, and separability
of the casing and formation contributions were discussed. The inverse prob-
lem of determination of the casing and formation properties was based on the
Bayesian approach. The method was corroborated on the scaled laboratory
model of the cased well. The requirements were established for the electronic
instrumentation that would embody the proposed method. The single-well
trough-casing inductive tool is found to be feasible for operation in the high-
temperature environment using commercially available electronic components.
The method is applicable for the rock conductivity larger than 1 S/m with the
investigation radius of 10 m.

Keywords: cased well, rock resistivity, casing inspection, inductive measure-
ment, analytical electromagnetic modelling, inverse problems, Monte Carlo
Markov chains, scaled modelling, electronic instrumentation, high tempera-
ture environment.
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Sažetak

Mjerenje otpornosti stijena induktivnom metodom u zacijevljenoj
bušotini

Mjerenje vodljivosti stijena je ključna metoda u geofizičkom ispitivanju ležišta
ugljikovodika iz nezacijevljenih bušotina. Mjerenje vodljivosti je potrebno i u
zacijevljenim bušotinama kao dodatak radioaktivnim metodama. Za primjenu
u zacijevljenim bušotinama raspoloživo je samo kontaktno mjerenje vodlji-
vosti. U ovome radu je predložena induktivna metoda za istodobno mjerenje
vodljivosti stijena i značajki zaštitne cijevi (debljina stijenke, vodljivost i per-
meabilnost) u zacijevljenoj bušotini. Izveden je analitički elektromagnetski
model odašiljačke zavojnice unutar čelične zaštitne cijevi okružene cilindrično
i horizontalno slojevitim slabo vodljivim medijem. Na temelju prostorno-frek-
vencijske analize osjetljivosti na značajke zaštitne cijevi i okolnih stijena, pred-
ložen je mjerni sustav od jedne odašiljačke i tri prijamne zavojnice. Istraženi su
polumjer ispitivanja, vertikalna razlučivost te odvojivost doprinosa zaštitne ci-
jevi i stijena. Inverzni je problem odredivanja značajki cijevi i stijena temeljen
na Bayesovom pristupu. Metoda je potvrdena na skaliranom laboratorijskom
modelu zacijevljene bušotine. Utvrdeni su zahtjevi na izvedbu elektroničke in-
strumentacije kojom bi se realizirala mjerna metoda. Potvrdeno je da komer-
cijalno dobavljive elektroničke komponente dopuštaju izvedivost induktivnog
uredaja za mjerenje u zacijevljenoj bušotini u okolišu s visokom temperaturom.
Mjerna metoda je primjenjiva za vodljivosti stijena veće od 1 S/m s polum-
jerom ispitivanja od 10 m.

Ključne riječi: zacijevljena bušotina, otpornost stijena, ispitivanje zaštitne
cijevi, induktivno mjerenje, analitičko elektromagnetsko modeliranje, inverzni
problemi, Monte Carlo Markovljevi lanci, skalirano modeliranje, elektronička
instrumentacija, visokotemperaturno okruženje.
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