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oraspoložite. Hvala i ostatku mog ”13-og kata” – Danku, Dorijanu i Filipu– za pozitivan

stav i bodrenje do zadnjeg dana pisanja disertacije. Zahvaljujem i ostalim kolegama iz

LARES-a te zavodskim kolegama za pomoć i razumijevanje.
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Abstract

Model predictive control of battery systems in a

microgrid

The research is focused on the control of heterogeneous battery storage systems by taking

into account the chemical processes inside a battery which are reflected in variable battery

efficiency and consequently, battery longevity. This is motivated by economic benefits that

stem from more efficient control of microgrid components in microgrid optimal power

flow problems. The control objective is formulated as a model predictive control problem

and the control structure is decomposed into two levels. The higher level is in charge of

microgrid optimal power flows and is based on a high level of abstraction model of storage

system. The lower level is based on a detailed storage system model and is in charge of

delivering the demanded power profiles in the most efficient way. The battery converter

model includes power-dependent efficiency in the form of look-up-tables and the internal

resistor of the battery model is a function of battery states. The parameters are obtained

by model-based identification techniques.

Keywords: battery storage system, microgrid, two level control problem, optimal

power flow, efficient battery charging and discharging, microgrid components, grid

converter control, variable efficiency models, parameter identification, model predictive

control
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Sažetak

Modelsko prediktivno upravljanje baterijskim

sustavima u mikromreži

U današnje vrijeme, mnogo se pažnje pridaje mikromrežama. Integracija obnovljivih izvora

energije, koja se u zadnjem desetljeću potiče kroz različite energetske i ekološke politike,

olakšana je uključivanjem spremnika energije u mikromreže. Time se omogućava vremenski

pomak izmed̄u proizvodnje i potrošnje električne energije što doprinosi energetskoj i

cjenovnoj efikasnosti. Ideja mikromreže takod̄er omogućava napajanje lokalnih tereta, čime

se smanjuju gubitci energije u prijenosu, te povećava pouzdanost i stabilnost (otočni rad

tijekom poremećaja u glavnoj mreži). Ravnoteža izmed̄u proizvodnje i potrošnje u svakom

vremenskom trenutku omogućena je proračunom optimalnih tokova snaga uz minimalne

operativne troškove. Zbog ekološke i ekonomske koristi mikromreža, odnosno optimalnih

tokova snaga u mikromrežama, javlja se potreba za razvojem različitih optimizacijskih

algoritama i efikasnim upravljanjem komponentama mikromreže.

Uzimajući u obzir cijenu i vijek trajanja, baterije se trenutno smatraju najpriklad-

nijim sustavom skladǐstenja energije u mikromrežama iz tehno-ekonomske perspektive.

Matematički modeli baterija preduvjet su za napredne upravljačke algoritme kojima se

postiže visoka efikasnost sustava. Jednostavnim modelima ne može se precizno obuhvatiti

dinamika baterije, a precizni modeli su računalno zahtjevni što ograničava primjenu istih

u upravljanju u stvarnom vremenu.

Najjednostavniji model promatra samo energiju razmijenjenu izmed̄u mikromreže i

spremnika energije. Ovaj pristup zanemaruje unutarnje procese baterije te rezultira sub-

optimalnim ponašanjem sustava koji upravlja baterijama (engl. battery management

systems, BMS). Detaljniji modeli dijele se u dvije kategorije: elektrokemijski i električni

modeli. Elektrokemijski modeli pomoću parcijalnih diferencijalnih jednadžbi opisuju

elektrokemijske reakcije u baterijama tijekom punjenja/pražnjenja. Iako su to najprecizniji

modeli, njihova kompleksnost uzrokuje visoke računalne troškove. Električni modeli (engl.

electrical circuit models, ECMs) sastoje se od nadomjesnih naponskih/strujnih izvora,

otpornika, kondenzatora i zavojnica kako bi se opisalo ponašanje baterije.
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Najčešće korǐsteni ECM je Theveninov model. Osnovni Theveninov model sastoji

se od konstantnog napona otvorenog kruga te serijskog otpornika. Serijski otpornik

predstavlja unutarnji otpor elektrolita propagaciji iona. Prijelazni odziv napona na

stezaljkama baterije modelira se dodavanjem paralelnih RC krugova osnovnom krugu. Iako

model postaje precizniji dodavanjem većeg broja RC krugova sa različitim vremenskim

konstantama, za većinu primjena, dovoljna su dva RC kruga. Nedostatak Theveninovog

modela je što se ne može odrediti vrijeme trajanja baterije.

Hibridni model je još jedna popularna vrsta ECM-a. Hibridnim modelom modelira

se i vrijeme trajanja baterije i naponski odzivi. Model se smatra vrlo preciznim, a

istovremeno jednostavnijim u usporedbi s elektrokemijskim modelima. Sastoji se od dva

kruga. Prvi se krug sastoji od kondenzatora, koji predstavlja naboj baterije, i strujno-

upravljanog strujnog izvora te se njime modelira baterijsko stanje napunjenosti (engl.

state of charge, SOC). Drugi je krug sličan Theveninovom modelu. Najčešće se sastoji

od serijskog otpornika i dva RC kruga koji modeliraju prijelazni odziv napona baterije.

Naponski izvor nije konstantan, već ovisan o SOC-u, a budući da se radi o nelinearnoj

ovisnosti, model postaje nelinearan.

Jedan od obećavajućih modela, iz perspektive jednostavnosti i povećane preciznosti,

je model s dva kondenzatora tzv. double-capacitor model (DCM). Sastoji se od dva

kondenzatora različitih kapaciteta, čime se imitira dinamika površine elektrode (koja se

puni brže) i unutrašnjosti elektrode (koja se puni sporije). Ovim modelom oponaša se efekt

oporavka napona (engl. charge recovery effect). Kako bi se postigao precizniji prijelazni

odziv napona baterije može se dodati RC krug kao i kod Theveninovog modela.

Nakon odabira prigodnog modela, potrebno je identficirati parametre modela baterije.

Identifikacija se najčešće provodi korǐstenjem velike količine eksperimentalno dobivenih

podataka te izvod̄enjem zaključaka ili na temelju nekog prethodnog empirijskog znanja ili

temeljeno fizikalnim pretpostavkama o sustavu. Metode temeljene na mjerenim podacima

dijelimo na aproksimacijske metode i metode estimacije pomoću Kalmanovog filtra.

Aproksimacijski problemi većinom se rješavaju pomoću različitih metoda najmanjih

kvadrata (engl. least-square, LS), poput LS sa regijama povjerenja ili rekurzivni LS,

genetskih algoritama, neuronskih mreža i metoda potpornih vektora. Različiti Kalmanovi

filtri (KF) koriste se za za online identifikaciju, uključujući prošireni KF i različite tipove

KF sa sigma točkama.

Metode upravljanja postupkom punjenja baterija takod̄er možemo podijeliti u skupine

ovisno o tome temelje li se na modelu baterije ili ne. Profili punjenja, metoda kod kojih se

ne koriste modeli baterija, unaprijed su definirani koristeći heuristiku i empiričko znanje.

Ovakav način upravljanja jednostavan je za implementaciju, med̄utim ne uzima u obzir

unutarnje procese u baterijama. U takve metode ubrajamo: punjenje konstantnom strujom

(CC), punjenje konstantnim naponom (CV) i pulsno punjenje. Metode temeljene na

modelima uključuju različite elektrokemijske i električne modele, te estimatore stanja.

U takve metode ubrajamo neizrazito upravljanje, vǐse-kriterijsko upravljanje, linearno
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kvadratno upravljanje i modelsko prediktivno upravljanje (MPC). MPC je najpopularniji

pristup, med̄utim primijenjuje se većinski na linearnim sustavima. Navedeni pristupi su

većinom usmjereni na očuvanje integriteta (SOH) baterije. Modeli baterija na kojima se

temelje upravljački algoritmi često su pojednostavljeni i linearizirani.

Baterije su, kao dio sustava skladǐstenja energije, često dio optimizacije tokova snaga s

ciljem minimizacije troškova rada u mikromrežama. Strategije usmjerene na optimizaciju

uključuju dinamičko programiranje, genetske algoritme, neuronske mreže te modelsko

prediktivno upravljanje. Kod definicije optimizacijskog problema na razini mikromreže,

mogu se primijeniti različiti ciljevi poput: i) uključivanja u tržǐste ”dan unaprijed” ili u

”stvarnom vremenu”, s ciljem minimizacije troškova rada, ii) korǐstenje spremnika energije

za rezanje vrhova potrošnje (engl. peak-shaving), iii) degradacija baterije.

Med̄utim, mnogi pristupi koriste jednostavne ”modele energija” ili pojednostavljene

i linearizirane Theveninove modele sa konstantnim efikasnostima. U ovoj disertaciji,

istraživanje se fokusira na upravljanje heterogenim baterijskim sustavima za pohranu,

uzimajući u obzir kemijske procese unutar baterija koji se odražavaju u obliku promjenive

učinkovitosti, a posljedično i dugotrajnosti sustava. Istraživanje je motivirano ekonom-

skom korǐsću koja proizlazi iz efikasnijeg upravljanja mikromrežnim komponentama

prilikom rješavanja problema optimalnih tokova snaga u mikromreži. Upravljački problem

rastavljen je na dvije razine. Vǐsa razina upravlja tokovima snaga u mikromreži, a temelji

se na pojednostavljenom modelu baterijskog sustava. Niža razina temelji se na detaljnom

modelu, a zadužena je za ostvarivanje traženih profila snaga na najefikasniji način. Model

baterijskog pretvarača uključuje promjenjivu efikasnost ovisnu o snazi, a unutarnji otpor

modela baterije funkcija je trenutnog stanja baterije. Vrijednosti parametara dobivaju se

metodama identifikacije temeljenim na metodama najmanjih kvadrata.

Doktorska disertacija podijeljena je u 6 poglavlja. Uvodno, Poglavlje 1, donosi pregled

trenutnog stanja te motivaciju za provedeno istraživanje.

Poglavlje 2 opisuje različite vrste baterija i osnovne pojmove vezane uz baterijske

sustave pohrane energije. Budući da se rezultati disertacije temelje na litij-ionskim

baterijama, iste su detaljnije opisane u poglavlju.

Poglavlje 3 opisuje identifikaciju parametara ovisnih o stanju napunjenosti litij-ionske

ćelije. Odabran je Theveninov nadomjesni model kao temelj identifikacije, a identifikacija

se temelji na metodi najmanjih kvadrata. Uspored̄eni su rezultati identifikacije za tri

modela različite složenosti: i) model s unutarnjim otporom (R0 model), ii) model s

jednim paralelnim RC krugom (1RC model), te iii) model s dva RC kruga (2RC model).

Na temelju rezultata, 2RC model je odabran za izradu modela efikasnosti. Na kraju

poglavlja, definiran je model efikasnosti baterije ovisan o stanju napunjenosti te struji

punjenja/pražnjenja.

Poglavlje 4 fokusirano je na upravljanje strujom punjenja/pražnjenja baterijskog

sustava pohrane, temeljeno na prethodno razvijenom nelinearnom modelu. Baterijski

sustav pohrane obuhvaća bateriju te pripadajući energetski pretvarač. Opisane su
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tipične konfiguracije baterijskih pretvarača i učestale upravljačke strukture. Algoritam

upravljanja koristi nelinearno modelno prediktivno upravljanje za izračun sekvence struja

punjenja ili praženjena, koja će rezultirati razmjenom energije izmed̄u baterije i ostatka

mikromreže u traženom iznosu. Algoritam proširuje prethodni postupak primijenjen na

olovne baterije s konstantnim parametrima, korǐstenjem varijabilnog modela. Dobiveni

algoritam, temeljen na varijabilnom modelu, rezultira efikasnijim radom u vidu vǐseg

rezidualnog stanja napunjenosti te nižim amplitudama punjenja/pražnjenja koje pozitivno

utječu na životni vijek baterijskog sustava.

Poglavlje 5 daje pregled rada različitih komponenti mikromreže. Razumijevanje

pojedinačnih algoritama svake komponente mikromreže bitno je zbog koordinacije svih

komponenata te implementacije optimalnih tokova snaga, proračunatih optimizacijskim

problemom. Ovisno o vrsti komponente i tipu mikromreže, različiti DC/DC i/ili DC/AC

pretvarači koriste se pri povezivanju jedinica na zajedničku sabirnicu te zatim na glavnu

energetsku mrežu. Pretvarači snage predstavljaju kontrolne točke sustava koje osiguravaju

stabilnost i kvalitetnu opskrbu energijom, budući da se željeni tokovi snaga, proračunati

nekim optimizacijskim algoritmom, postižu upravljanjem strujama/naponima pretvarača.

Upravljive komponente mikromreže obuhvaćaju obnovljive izvore (fotonaponske panele

i vjetroturbine) te pripadajuće pretvarače. Mrežni pretvarač zadužen je za održavanje

napona DC sabirnice. U upravljačkom krugu DC napona invertera primijećeni su problemi

s nestabilnošću uzrokovani parametarskom nesigurnošću te odstupanjem od radne točke.

Prikazan je sistematični pristup pri sintetiziranju upravljačkog algoritma DC napona,

gdje su u obzir uzete i promjenjivost mrežne impedancije i nelinearnosti DC kruga.

Mrežna impedancija uzeta je u obzir dodavanjem dodatnog seta strujnih senzora na

mjesto spajanja s mrežom. Upravljački algoritam sintetiziran je korǐstenjem modelskog

pristupa - Truxal-Guillemin, uzimajući na taj način u obzir i nelinearnosti i nestabilnosti.

Provedena je i analiza stabilnosti i robusnosti na promjene parametara te se model

pokazao stabilnim. Model je takod̄er uspored̄en s konvencionalnim metodama upravljanja

koje mogu izazvati nestabilnost prilikom većeg udaljavanja od radne točke. Dobiveni

regulator je eksperimentalno verificiran. U ovom poglavlju, definiran je i nelinearni

problem optimalnih tokova snaga u mikromreži temeljen na MPC-u. Upravljački algoritam

koristi pojednostavljeni, energetski, model baterijskog sustava pohrane te proračunava

optimalnu razmjenu energije baterijskog sustava i mikromreže. Implementiran je model

baterijskog sustava pohrane s promjenjivom efikasnošću. Prediktivni algoritam nastoji

slijediti točku maksimalne efikasnosti s ciljem minimiziranja troška razmjene energije.

Provedene su provjere algoritma za jednodnevno i sedmodnevno vrijeme rada, koje

rezultiraju dodatnim uštedama u odnosu na konvencionalno upravljanje. Nadalje, dobiveni

algoritam je proširen na heterogeni sustav pohrane, pri čemu je svaki sustav definiran

svojim promjenjivim modelom.

Disertacija završava zaključkom u Poglavlju 6, gdje je dan osvrt na rezultate te su

predložene daljne mogućnosti predložene metodologije.



xv

Istaknut je sljedeći znanstveni doprinos disertacije:

� Metoda identifikacije modela litij-ionskih baterijskih sustava pohrana s prom-

jenjivom učinkovitosti pretvarača i baterije, pogodna za primjenu u modelskom

prediktivnom upravljanju

� Modelsko prediktivno upravljanje strujom punjenja i pražnjenja baterije uzimajući

u obzir identificirani nelinearni matematički model baterijskog sustava pohrane s

ciljem postizanja njegove maksimalne učinkovitosti

� Modelsko prediktivno upravljanje mikromrežom koja sadrži heterogene baterijske

sustave pohrane s ciljem njenog cjenovno optimalnog rada

Ključne riječi: baterijski spremnici nenergije, mikromreža, upravljački problem na dvije

razine, optimalni tokovi snaga, efikasno punjenje i pražnjenje baterija, komponente

mikromreže, upravljanje mrežnim pretvaračem, modeli s promjenjivom efikasnošću,

identifikacija parametara, modelsko prediktivno upravljanje
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Chapter 1

Introduction

Nowadays, a lot of attention is given to the concept of microgrids. One of the main

advantages of microgrids is enhanced renewables integration. By introducing energy

storages, time shifts between production and consumption towards energy and cost

efficiency, are enabled. Other advantages of microgrids include decreased transmission

losses by powering local loads and increased reliability and stability (islanded mode during

disturbances in the main grid). The operating levels of different microgrid components are

often determined as part of the optimal power flow problem. The objective is to preserve

the balance between power production and consumption, while minimizing operating

costs. Because of overall economic and environmental benefits of microgrids and optimal

power flow, the need for development of different optimization strategies and efficient

control of microgrid components is recognized [1], [2].

Considering price and service life, battery storages are currently the most suitable

system for the microgrids from the techno-economical perspective. Mathematical models of

batteries are pre-requisite for advanced model-based control algorithms that achieve high

efficiency of the system. While simple models fail to capture battery dynamics accurately,

and accurate models are computationally too complex which limits their application in

real-time control. For identification of model parameters, data-based models are validated.

These methods include extensive experiments and the parameters are extracted from

measurement results. The most commonly used methods are data fitting and Kalman

filters (KF). Data fitting problems are solved using different least-squares (LS) methods,

such as trust region nonlinear LS or recursive LS [3], genetic algorithms, neural networks

and support vector machines [4]. A variety of KF solutions are presented in the literature

including extended KF and different types of sigma-point KF [5]. Although most authors,

for simplicity reasons, consider parameters constant, in the proposed research parameters

related to the current battery state are considered. This is similar to the approaches

described in [6] and [3] where LS problem formulations with state of charge (SOC)

dependent internal resistance are introduced.

Microgrid optimal power flow problems (OPF) aiming to minimize the operational

1



2 Chapter 1. Introduction

costs mostly include and utilize batteries, as storage systems [7]. Optimization-based

strategies include dynamic programming, genetic algorithms, neural networks, and model

predictive control [8]. Different optimization goals for microgrid operation are described in

literature such as: i) participating in day-ahead and real-time markets (energy trading) to

minimize operating costs [9], [10], ii) addressing renewable energy sources uncertainty [11]

using a mixed-integer problem formulation, and iii) energy storage scheduling for peak-

shaving applications [12], [13]. In [13] and [14], battery degradation is added to the cost

function. Many approaches use simple battery energy models or simplified or linearized

Thevenin models with constant efficiencies. In [14] both the converter and the battery

variable efficiencies are mentioned. For problem formulation, the converter efficiency is

averaged, and the battery efficiency is approximated with two affine functions over the

whole operating range. The battery storage system model considered in the thesis includes

both the battery and converter energy losses models. Converter losses are modelled using

efficiency curves, variable against charging and discharging energies. The battery model is

based on variable parameters which affect battery efficiency depending on its (SOC) and

the applied charging/discharging current.

The second objective of the thesis is to develop model predictive control (MPC) for

battery storage system charging/discharging based on a battery with variable efficiency

over the prediction horizon. To validate the approach its performance is compared with the

already established MPC with a constant-efficiency model. The MPC approach is utilized

because of its ability to efficiently handle constrained problems and suitability for real-

time applications. Through the performed analysis it is showed that the variable-efficiency

model with the corresponding MPC algorithm achieved additional energy savings and

increased cost efficiency of the battery and microgrid systems and expanded the lifespan

of the battery storage system components.

The thesis is organized in 6 chapters as follows:

� Chapter 2 describes battery fundamental terms and gives an overview of battery

equivalent models.

� In Chapter 3, identification methods for a variable parameter battery model are

described. The methods are compared and the best model is further used for battery

charging and discharging control. Based on this model, battery efficiency curves are

obtained and used in microgrid power flow optimization problems.

� Battery charging and discharging control algorithm based on MPC formulation

is presented in Chapter 4. An existing control algorithm for adherence to energy

exchange commands is supplemented with the variable battery model obtained in

Chapter 3 in order to remove model errors and increase the accuracy and efficiency

of the charging/discharging processes.

� An overview of microgrid components and their optimal control strategies is given

in Chapter 5. After describing each component, a microgrid power flow optimization
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problem is formulated. Several simulation scenarios are described. The optimization

problem contains variable battery system efficiency over the prediction horizon

and a sequential-linear-programming (SLP) based microgrid control algorithm is

developed. The developed algorithm is also verified by including heterogeneous

storage systems.

� The thesis is concluded in Chapter 6 by an overview of the results and with final

remarks.





Chapter 2

Electrochemical batteries and

equivalent models

Energy storages have an important role in modern power systems. Some applications

include energy management, ancillary services, and integration of renewables. The storage

systems are classified into mechanical, electrical, and electrochemical. The oldest types

are mechanical storages. Pumped hydro and compressed air storages are suitable for

large scale applications because of their large capacity, low operational costs, and long

lifetimes. However, they are limited to appropriate geographic locations. Flywheels are

advantageous in ancillary services because of their quick response times. They have long

life and operational costs. On the other side, it has high self-discharge and low energy

density. Electrical storage systems include super-capacitors and superconducting energy

storages, which store energy in electrical or electromagnetic form. As no additional energy

transformations are needed, they are characterized with high efficiency. Electric storages

have short response times and high-power density, however they also have high self-

discharge. Electrochemical storages include different types of batteries offering modularity

[15,16].

Batteries are energy storages that convert chemical energy into electrical and vice-

versa. They consist of one or more electrochemical cells (connected in series or in parallel)

with external connections. Each cell consists of two electrodes and an electrolyte which

serves as a buffer for internal ion flow between the electrodes (lithium-ion, nickel-cadmium)

or is an active participant in electrochemical reactions as for example in lead-acid batteries.

Batteries are divided into two categories: primary and secondary batteries. Primary

cells are used until all the chemicals that generate power are depleted and then are

discarded. Secondary batteries are rechargeable and are therefore suitable for a variety of

applications including electric vehicles (EVs) and battery storage systems. Specific power

(loading capability, [W/kg]) is the ability to deliver high current. Energy density (specific

energy) is the amount of energy stored in a given system per unit volume. The higher

energy density, the more energy may be stored for the same amount of volume. Depending

5
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Figure 2.1. Vanadium flow battery [17].

on the materials used for electrodes and electrolyte there are different battery types:

lead-acid, nickel-cadmium, lithium-ion, sodium-ion, redox-flow etc. Lead-acid and nickel-

cadmium batteries are used since the 19th century and are well researched technologies

which contributes to their low costs. Lead-acid batteries have a high cell voltage and

have a good power density, however they have limited energy density and short lifetimes.

Nickel-cadmium batteries can be charged with high current rates and have a long lifetime.

Their disadvantages are the memory effect which causes loss of capacity if it is not fully

discharged periodically and the construction with toxic materials. Flow batteries are

unconventional electrochemical batteries. They consist of two external tanks filled with

electrolytes that contain redox pairs as shown in Fig.2.1. The electrolytes are pumped to

a compartment with electrodes where oxidation and reduction occur. The power depends

on the number and size of the cells and the energy depends on the tank size. Its advantages

are operating safety, long lifetime and deep discharging capability. Its disadvantage is low

energy density [17].

A promising new battery technology is the sodium-ion battery which was originally

developed in 1970s. However, the interest for this technology declined due to lithium-ion

technology which was being developed at the same time. In the last decade its popularity

increased because it operates similar to lithium-ion batteries, replacing the costly lithium

with sodium. This technology is environmentally friendly, has a long lifetime, and can

operate in cold temperatures but has lower cell voltages and energy density, compared to

lithium-ion batteries [15,18].

Lithium-ion batteries are currently mostly used types in electronics, transportation

and power grid applications due to their high charge density, long lifetime and high cell

voltages. On the other hand, their disadvantages are high costs and sensitivity to high



2.1. Lithium-ion battery chemistry and characteristics 7

temperatures and consequently the need for protective circuits [19].

The comparison of the different types of storages, their advantages, and disadvantages,

show the dominance of the pumped hydro storages (PHS) and the lithium-ion batteries.

PHS is the oldest and more mature technology and the best solution for large energy

storage applications storing over 95% of energy storage capacity worldwide, however the

battery storages technologies are developing rapidly. Battery storages, specifically lithium-

ion batteries, are mostly used in ancillary services. However, their utilization in energy

management applications is growing nowadays. This is the result of the decreasing costs

because of the availability of materials and their improving characteristics [16].

The thesis research is focused on lithium-ion batteries, therefore its characteristics are

described in more detail in subsequent sections.

2.1 Lithium-ion battery chemistry and characteristics

Lithium-ion batteries (Li-ion) are lightweight, have high energy density, high efficiency,

rather long life cycle and low self-discharge, compared to other battery types. The negative

electrode is made of carbon (often graphite) and the positive electrode is made of a

metal oxide, such as cobalt oxide (LCO), iron phosphate (LFP) or manganese oxide

(LMO). The electrolyte is non-aqueous because lithium is highly reactive with water.

The electrolyte should have high ionic conductivity, allowing the ions to flow and be

resistant to the flow of electrons. Lithium has the tendency to give up the outer electron.

The migration of ions in the Li-ion battery is depicted in Fig.2.2. During discharge,

at the anode, oxidation reaction produces positively charged lithium ions and negatively

charged electrons. The lithium ions are transported through the electrolyte. The electrons

are transported through an external circuit and recombined at the cathode with the

cathode material in a reduction reaction. During charging, lithium ions combine with

the external electrons and are deposited as atoms between carbon layers. Copper and

aluminum collectors on the anode and the cathode collect and distribute electrons. Both

electrodes allow lithium ions to move in and out of their structure (insertion-intercalation

and extraction-deintercalation) [20,21].

In a typical LCO battery, the anode is graphite (where Lithium is intercalated), and

the cathode is cobalt oxide, Co4+O2−
2 , where the cobalt wants to gain back an electron by

lithium intercalation. The lithium balances the charge build up:

CoO2 + Li+ + e− ←→ LiCoO2 (2.1)

LiCn ←→ Cn + Li+ + e− (2.2)

During charging/discharging, the voltage at the terminals is not equal to the open-

circuit battery voltage (OCV). The OCV is the terminal potential difference when no

current flows and is caused by chemical forces in the battery. The maximal potential
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Figure 2.2. Lithium ion migration during charge or discharge [20].

difference is called electromotive force (EMF) and its value for Li-ion batteries ranges

from 2.4 V to 3.8 V, depending on the electrode types. The dynamics of a Li-ion battery

contains multiple timescales. During charging/discharging the voltage at the terminals has

an instant drop, due to the electrode material resistance and the electrolyte resistance,

and a transient behavior caused by polarization.

2.1.1 Li-ion battery parameters

A battery’s capacity is the amount of electric charge it can deliver at the rated voltage.

The more electrode material contained in the cell, the greater its capacity. The capacity

is usually expressed in Ampere-hours (Ah). For example, the capacity of 1 Ah equals to

1A of current flowing for an hour and is equal to 3600 Coulombs. In energy optimization

problems the capacity is expressed in Watt-hours, defining the amount of energy a battery

can provide. The performance of the battery and the achievable capacity depends on the

operating conditions. The internal processes of the Li-ion battery depend on the current

rate, the state of charge and temperature of the battery.

Current rate (C-rate) is the rate at which a battery is being charged/discharged. It

compares the current through the battery to the theoretical current draw under which the

battery would deliver its nominal rated capacity in one hour. For example, for 500 mAh,

discharge rate of 5000 mA corresponds to a C-rate of 10 (C-rate = 5000 mA/500 mA =

10).

The lithium intercalation and deintercalation are not uniform in the electrode. An ion

concentration gradient is formed within the electrodes which causes the diffusion of ions
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Figure 2.3. Lithium ion rate capacity effect [22].

within the electrodes (solid phase diffusion). The transport of lithium ions to the active

material surface through the electrolyte is called liquid phase diffusion and is quicker than

the solid phase diffusion [21]. At higher C-rates, the active material at the electrode surface

is depleted much quicker resulting in lower usable battery capacity. During relaxation

periods, when no current is applied, the ion concentration reaches equilibrium and capacity

recovery effect occurs due to the diffusion processes in the battery.

The broad usage of batteries nowadays caused the need for battery management

systems which are in charge of monitoring the battery states, such as state of charge (SOC)

and state of health (SOH) and different charging/discharging algorithms. State of charge

is the level of charge of an electric battery relative to its capacity (0% - empty battery,

100% full battery). Depth of discharge (DOD) is the complement of SOC. However, in

energy management systems (EMS), the traditional SOC is replaced with the state of

energy index (SOE), since it incorporates the battery’s internal losses and the effects of

the variable OCV. The SOE is defined as the ratio between the consumed energy during

a time interval and the total available energy and it offers useful information about the

available discharging/charging energy [23].

At lower temperatures, the battery internal resistance increases because of decreased

chemical activity, resulting in a reduced battery capacity. The internal resistance

represents the electrode material and electrolyte resistance which hinder the current flow.

At higher temperatures due to improved electrochemical reactions battery performance is

improved however prolonged exposure shortens the battery life [24]. The internal resistance

is also affected by the battery SOC, increasing at high and low states with a lower, less

variable value in the middle ranges [25].

Battery state of health is the ratio between the current battery capacity and the
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battery nominal capacity. The battery capacity fades with cycling and calendar aging

as a consequence of electrolyte decomposition, active material dissolution and the solid

electrolyte interface (SEI) growth [22]. The SEI is a semi-porous protective layer generated

by the manufacturer to prevent the overexposure of the anode to the electrolyte. High

temperatures and charging currents cause degradation [26,25]. The heat energy causes

more lithium ions to react with the electrolyte leading to SEI growth which increases the

battery internal resistance inhibiting the free flow of electrons. Also, at high temperatures,

side reactions occur, resulting in the evolution of highly flammable gases [27]. Charging

at low temperatures slows down the reaction rate depositing Lithium ions on the surface

of the anode, without intercalation [24].

2.2 Battery equivalent models

Depending on the application, different battery models are consequently developed in

order to simulate battery dynamics. A state-of-energy (SOE) model, described in [28],

observes the energy exchanged with the microgrid and storage but omits internal battery

processes and results in sub-optimal management systems. More detailed models mainly

fall into three categories: mathematical models, electrochemical models, and equivalent

circuit models.

Mathematical models are mostly analytical or data fitting black-box models that rely

on high amount of input/output data to model battery dynamics. These models are not

reliable at different operating conditions and often cannot capture the battery current-

voltage (I-V) characteristics. Peukert’s law is an empirical expression for determining

battery runtime as a function of the discharge rate [29]. Another popular analytical

model is the Kinetic Battery Model (KiBaMo) (Fig.2.4) which describes the chemical

processes by a kinetic process. The charge distribution is modelled via two connected

tanks. The outgoing flow, regulated with a valve, simulates battery discharging and the

height of the fluid inside the corresponding tank represents the available charge. The

second tank represents the charge inside the electrode and the flow between them simulates

the diffusion process inside the electrode, thus imitating current rate effect as well as

capacity recovery [30].

Figure 2.4. Kinetic Battery Model [30].
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Electrochemical models, for example single particle models (SPMs) (Fig.2.5), involve

partial differential equations which describe electrochemical reactions in a battery during

charging/discharging [31]. Although these models accurately simulate battery behavior,

they require physical and chemical characteristics of the batteries and their complexity

induces high computational costs.

Figure 2.5. Single particle model [31].

2.2.1 Equivalent circuit models

Equivalent circuit models (ECMs) use electric circuits consisting of voltage/current

sources, resistors, capacitances, and inductances in order to replicate the battery behavior

[32]. Impedance based models use ac-equivalent impedance to fit the impedance spectra.

They work for a fixed SOC and are not able to predict battery runtime. Runtime based

models predict battery runtime however, have limited transient behavior accuracy.

Most commonly used model is the Thevenin model. The basic Thevenin’s model

consists of a constant open-circuit voltage and a series resistor. The series resistor

represents the internal resistance of the electrolyte to the propagation of the ions. The

battery terminal voltage transient response is modeled by adding parallel RC circuits
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...

OCV(SOC)

R0

R1 Rn

C1 Cn

ibat

ubatvc1 vcn

Figure 2.6. Thevenin equivalent circuit model.

to the basic model. The model becomes more accurate by adding several RC circuits

with different time constants (Figure2.6). However, for most applications one or two

RC circuits are proven to be accurate enough. Thevenin-based models however, fail to

capture battery voltage steady-state variations and runtime information [32], [4]. Another

Figure 2.7. Hybrid electrical circuit model [32].

popular ECM is the hybrid model which is capable of predicting the battery runtime and

voltage responses. The hybrid model is considered the most precise of the four while it

is still simple in comparison with electrochemical models. It consists of two parts (Fig.

2.7). The first part consists of a capacitor, which represents the batteries charge, and a

current-controlled current source. This part models the battery’s state of charge (SOC).

The second part is similar to a Thevenin-based model. It typically consists of a series

resistor and two RC circuits which capture the transient response. The voltage source

is SOC-dependent and since this dependency is nonlinear, the model becomes nonlinear

[32].

...

OCV(SOC)

R0

R1 Rn

C1 Cn

ibat

ubatvc1 vcn

Rb Rs

ibat

Cb Csvb vs

Figure 2.8. Nonlinear double-capacitor equivalent circuit model.



2.2. Battery equivalent models 13

The double-capacitor model is recently proved as a promising approach from the

perspective of model simplicity and increased accuracy [33]. The capacitors differ in

capacitance thus imitating the electrode surface (which charges more quickly) and its bulk

inner part (charging slowly). The surface capacitor voltage rises/declines more quickly at

high currents thus simulating the current rate effect. The capacitor recovery is the result of

the charge migration from one capacitor to the other, during relaxation period. However,

this model cannot describe the battery’s nonlinear behaviour. This is improved in [6]

where a nonlinear double-capacitor model (NDC) is presented. This model consists of two

parts as depicted in Fig.2.8. The first part models the electrode behaviour, simulating

the distribution and migration of the charge and the second part models the voltage

transients. The choice of the model for control application is a trade-off between accuracy

and complexity.

Although all the described models have their advantages and disadvantages, the

Thevenin model is chosen for control aglorithm design, as a good trade off between model

complexity and accuracy.





Chapter 3

Identification of a nonlinear

battery model

3.1 Battery model parameter identification methods

Different battery states and parameters identification methods are found in literature.

The common methods of estimating the battery state of charge (SOC) include coulomb

counting, open-circuit voltage (OCV) method and different Kalman filters (KFs). The

coulomb counting method measures the battery current and integrates over time. This is

the simplest method for SOC estimation, but its accuracy highly depends on the sensor

accuracy and accurate initial SOC. The OCV method consists of measuring the battery

voltage in steady-state and reading the SOC from the OCV-SOC curve. This method isn’t

applicable in online estimation because it’s accuracy depends on the battery relaxation

time which is several hours. The most popular method are different Kalman filters such

as extended KF and sigma-point KF [5,34,35]. The state of energy (SOE) estimation

is similarly categorized into three methods: direct methods, model-based methods and

data-driven methods. The power integration method is the simplest. However, like the

coulomb counting method it is prone to error accumulation due to sensor accuracy. Model

based approaches consist of different Kalman filters while data-driven methods rely on

artificial intelligence [23,36,37]. Parameter estimation is divided into online and offline

estimation. Offline estimation is based on already collected data. The parameters can

be read off the voltage curves obtained from pulse tests [38,39]. Also, different artificial

intelligence and standard least square (LS) are common examples of offline identification.

The drawback of these methods is its inability to adapt to different operating conditions.

Joint and dual KFs are often used with SOC estimation [40,41]. Another widely used

method is the LS method and variations for online identification. In [42] moving horizon LS

is presented, where during a time interval the SOC is presumed to be constant, parameter

identification is performed. Then, after a new measurement is available, the first data

sample is replaced with it and identification is performed again. This procedure is repeated

15
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every time instant. Recursive LS with forgetting factor is described in [34,43] where

a more weight is put on new incoming data in order to avoid data saturation. A LS

and extended Kalman filter (EKF) combination is used in [44], where temperature and

SOC dependencies are observed. Repeated tests are performed to obtain data sets for

different SOC and temperatures and identification is performed for each data set to obtain

an accurate model which is then used for SOC estimation with EKF. The obtained LS

problem for parameter estimation is solved using Simulink Design Optimization toolbox.

In the following sections, parameter identification method based on LS is presented.

Different complexity Thevenin models are used for the identification: i) internal resistance

model (R0 model), ii) one RC circuit model (1RC model), and iii) two RC circuit model

(2RC model). The results are compared and advantages and disadvantages of each model

are discussed. The 2RC model showed best results and is the base for the battery efficiency

model developed at the end of this chapter.

3.2 Battery model identification procedure using Linear

least-squares (LLS) method

The battery and microgrid control algorithms require a known variable battery model.

Therefore, offline identification is preferred for this work. The goal is to obtain parameters

that depend on SOC. The environment temperature is assumed constant and current rate

effects are incorporated via power losses over the identified parameters. A 2RC Thevenin

model, depicted in Fig.3.1is chosen for the battery equivalent model because it models

the fast and the slow transients. The state space model is given with following equations:

O
C
V
(S
O
C
)

ibat

R0

R1

C1

Vbat

R2

C2

Figure 3.1. Two RC circuit Thevenin model.

ẋ =


˙vc1

˙vc2

˙SOC

 =


− 1

R1C1
0 0

0 − 1
R2C2

0
0 0 0




vc1

vc2

SOC

+


1

C1

1
C2

− 1
Cbat

 ibat (3.1)

OCV(t) = f(SOC(t)), (3.2)

ubat(t) = OCV(t)− uRC(t), (3.3)
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where ubat and ibat are the battery terminal voltage and current, uRC(t) is the voltage drop
over the internal resistance R0 and the two RC circuits, and x encompasses model states:

fast transient RC circuit voltage vc1, slow transient RC circuit voltage vc2, and battery

state of charge SOC. The discharging current in this model is positive. The LS methods

are the most common offline solution in literature for the parameter identification process,

however all the aforementioned methods neglect battery hysteresis in order to simplify the

model. In order to increase the accuracy of the model, which is further used in control

algorithms, a LS method described in [45] is chosen for identification. The method is

based on the detrended battery voltage and standard LS method. The parameters are

divided into several SOC intervals and considered constant within each interval. In [45],

both the OCV curve and the SOC dependent parameters are determined using one set

of measurements - one full charging/discharging cycle is performed with a noisy current

profile, removing the need for separate identification procedure for the OCV-SOC curve

identification. The measured voltage is into intervals and detrended. Detrending removes

polynomial trends from data. An example of removing a linear trend from a dataset is

shown in Fig.3.2. The blue line represents the original data and the orange line is the

data obtained by removing the linear trend (yellow line) from the original data. The same

procedure is applied to voltage measurements assuming a linear OCV trend in smaller

time intervals.

Figure 3.2. Example of removing a linear trend from a dataset.

In this way the OCV curve and the contribution of the gain of the model are removed.

The accuracy of the detrending increases by increasing the number of intervals, however, in
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this way the complexity of the model is also increased. The data obtained after detrending,

∆ubat(t), is:

ubat(t) = OCV(t)−Kībat(t)−∆uRC(t) → ∆ubat = ∆uRC(t) = G(s)∆ibat(t), (3.4)

G(s) = uRC(t)
ibat(t)

= R0T1s
2 + (R0T1 + R0T2 + R2T1 + R1T2)s + K

T1T2s2 + (T1 + T2)s + 1 , (3.5)

where K = R0 +R1 +R2 is the model gain and T1 = R1C1, T2 = R2C2 are the RC circuits

time constants. The identification procedure is performed on a 4.8 Ah Li-ion battery

with a 0.2C current. The sample time is set to Ts = 1 s, an order of magnitude smaller

than the expected time constant of the fast RC circle T1. However, the identification

of the time constant of the slower RC circuit, which is several magnitudes higher than

the chosen sample time, was not successful in every time interval because its effect is

less visible in the data in small time intervals and with such a small sampling time.

The problem can be solved by using a different current profile, higher sampling time

and bigger time intervals, however without any knowledge about the magnitude of the

considered battery parameters the identification procedure becomes less general. Also, by

reducing the number of intervals, the accuracy of the model is also reduced, which affects

the control algorithm. Therefore, the order of the ECM is reduced, and previous data is

resampled to Ts = 10 s which is deemed big enough to capture the slow RC circuit effect

and still small enough to capture the fast voltage transients. The previous model then

becomes:

G(s) = URC(s)
Ibat(s) = R0T1s + K

T1s + 1 , (3.6)

K = R0 + R1, T1 = C1R1. (3.7)

The first order continuous transfer function in the discrete domain is:

G(z) = ∆Ubat(z)
∆Ibat(z) = b1z + b0

z + a0
= b1 + b0z

−1

1 + z−1 . (3.8)

The discrete transfer function (3.8) can be written in form of difference equations:

∆Ubat(k) = −a0∆Ubat(k − 1) + b1∆Ibat(k) + b0∆Ibat(k − 1), (3.9)

where Ubat(k) is the detrended measurement data at the k -th time instant and Ibat(k) is

the detrended current at the k -th time instant. The model written in vector form is:

Φx = U, x = [a0 b1 b0]⊤ (3.10)

Φ = [−Uk−1 Ik Ik−1], (3.11)

U = [∆Ubat(2) · · ·∆Ubat(n)]⊤, (3.12)

Uk−1 = [∆Ubat(1) · · ·∆Ubat(n− 1)]⊤, (3.13)
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Ik = [∆Ibat(2) · · ·∆Ibat(n)]⊤, (3.14)

Ik−1 = [∆Ibat(1) · · ·∆Ibat(n− 1)]⊤, (3.15)

where n is the number of samples in one SOC interval. The coefficients are then calculated

using the expression:

Φx = U → x⊤ = (Φ⊤Φ)\Φ⊤U. (3.16)

After calculating the coefficients of the discrete function, inverse zero-order-hold (ZOH)

method is used in order to obtain the parameters R0, R1 and T1 of the continuous transfer

function from (3.6). The parameters with respect to SOC are shown in Fig.3.3, where

the battery SOC is divided into 10 intervals, resulting in a 10% ∆SOC between each

interval. The parameters are a combination of the slow and fast dynamics which is

visible in the T1 fluctuations. The OCV curves are obtained from (3.4) by calculating

the charging/discharging gain in each SOC interval and then fitting the curve to a 5th

order polynomial as suggested in [45]. The hysteresis is observed in all results, however a

more distinct difference in OCV curves was expected, especially in the lower SOC ranges.

Simulation of the identified model is shown in Fig.3.4. The model is simulated with the

same current with which the identification is performed and the comparison of the initial

voltages and the voltages obtained from the model is shown in the second subfigure. The

error between the voltages is shown in the third subfigure. The error is more prominent

at lower SOC values, which is expected since the parameters are higher in this interval,

resulting in higher errors from the simplified model.

The same identification procedure is performed with 20 and 40 SOC intervals which

correspond to 5% ∆SOC and 2.5% ∆SOC (Figs.3.5-3.7). The accuracy of the model

is improved with more SOC intervals which is observed from the voltage comparison

subfigure for every case. The models, obtained with more SOC intervals, show the

hysteresis effect in the OCV-SOC curves as well as the parameters. A comparison of

the mean-square errors (MSE) for all three identified models and the algorithm execution

times are presented in Table3.1. The best result is, as expected, obtained with 40 SOC

intervals. The execution time is the longest in this case, however, the calculation is under

one 1 s for all the three identification models.

Table 3.1. Comparison of the MSE and execution times for the LLS algorithm of the 1RC
model.

∆SOC 10% 5% 2.5%
MSE 0.0051 0.0024 6.4205e-4
tex 0.06 s 0.11 s 0.22 s

Using the same procedure, a simple model with only the internal resistance is also

identified and compared to the 1RC model in order to see how the model accuracy is

affected by this model simplification. The results are shown in Figs.3.9and3.10. The

internal resistance values are similar in both models, for all SOC intervals.
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Figure 3.3. Parameters of the battery 1RC model dependent on the SOC, ∆SOC = 10%.

Figure 3.4. Simulation of the identified 1RC battery model, ∆SOC = 10%.
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Figure 3.5. Parameters of the battery 1RC model dependent on the SOC, ∆SOC = 5%.

Figure 3.6. Simulation of the identified 1RC battery model, ∆SOC = 5%.
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Figure 3.7. Parameters of the battery 1RC model dependent on the SOC, ∆SOC = 2.5%.

Figure 3.8. Simulation of the identified 1RC battery model, ∆SOC = 2.5%.
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However, the OCV charging and discharging curves are different than the previous

model. The algorithm achieved a good model accuracy by adjusting these curves, resulting

in MSE = 5.3455e-4. Since this is a better result than the model with the RC circuit, both

models are validated on a different current profile (Figs.3.11and3.12). The 1RC model

matches better with the validation dataset1, especially during periods with transients as

shown in Fig.3.13. The MSE of the R0 model is 0.0017 while the MSE of the 1RC circuit

model is 6.8217e-4, showing that the added RC circuit is more accurate.

The described algorithm successfully identifies the basic and the first order Thevenin

model and offers insight into how model simplification deteriorates the remaining

parameters in order to achieve a good fit to the measurement data. Since the slow

time constant cannot be successfully identified with this algorithm, another identification

procedure is proposed in the subsequent section.

Figure 3.9. Parameters of the R0 model dependent on the SOC, ∆SOC = 2.5%.

1Experimental data from the battery cell are obtained from the company Rimac Technology d.o.o. as
part of cooperation of FER with the company Rimac Technology d.o.o. on the project EVBattPredtect
– Dynamic Predictive Health Protection of an Electric Vehicle Battery, co-financed from the European
Regional Development Fund via Operative Programme Competence and Cohesion 2014-2020 (project no.
KK.01.1.1.07.0029).
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Figure 3.10. Simulation of the identified R0 model, ∆SOC = 2.5%.

Figure 3.11. Simulation of the identified R0 model based on a new dataset1.
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Figure 3.12. Simulation of the identified 1RC battery model on a new dataset1.

Figure 3.13. Comparison of the 1RC model with the R0 model during transients on a new
dataset1.
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3.3 Constrained combined least-square parameter identifi-

cation

In this section, the identification is performed on the 2RC model, using a constrained

least-square optimization formulation as follows:

min
x
||Ubat −Ubat,mj||2, (3.17)

x = [C OCV R0 R1 T1 R2 T2 uc1(0) uc2(0) SOC(0)]⊤, (3.18)

OCV = [OCVdch OCVch]⊤, (3.19)

R0 = [R0,dch R0,ch]⊤, (3.20)

R1 = [R1,dch R1,ch]⊤, (3.21)

T1 = [T1,dch T1,ch]⊤, (3.22)

R2 = [R2,dch R2,ch]⊤, (3.23)

T2 = [T2,dch T2,ch]⊤. (3.24)

Several constraints are added to assure an applicable solution:

OCVdch(k) <= OCVdch(k + 1), k = 1 · · ·n, (3.25)

OCVch(k) <= OCVch(k + 1), k = 1 · · ·n, (3.26)

OCVdch(k) <= OCVch(k), k = 1 · · ·n, (3.27)

R1(k) <= R0(k), k = 1 · · · 2n, (3.28)

R2(k) <= R0(k), k = 1 · · · 2n, (3.29)

2T2(k) <= T1(k), k = 1 · · · 2n, (3.30)

T1(k) <= Tmax, k = 1 · · · 2n. (3.31)

The problem is solved using a MATLAB built-in function which uses an interior-point

algorithm. The model parameters are divided into 40 intervals with ∆SOC = 2.5%, and

bounded from below to zero. The OCV is added to the problem as an additional parameter

in every time instant. The initial point is set randomly to a feasible value: R0 = R1 = R2 =
10 mΩ, T1 = 150 s, T2 = T1/2. The initial parameters are constant over the whole SOC

range and the initial OCV curve is linear OCV = (OCVmax −OCVmin)SOC + OCVmin.

The parameters are identified using one week voltage measurement data with no

specific charging/discharging scenario. Since the data contains over 6 000 000 data

samples, two training sets are extracted1 - one consisting of approximately 40 hours of data

(where two deepest discharging/charging cycles are included) and the other consisting of

80 hours of data (Figs.3.14-3.17). The obtained model is then simulated using the whole

1-week current profile consisting of the training data and the validation data. The accuracy

of the model on only the training data and on the whole data set as well as execution
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times of the algorithm are summarized in Table3.2. Both models show high accuracy at

the expense of execution times which increased significantly. Also, the shape of the OCV-

SOC curve in both cases is less accurate since the hysteresis effect should be expressed,

especially at low SOC. An advantage of this method is that no specific experiment scenario

needs to be performed. However, the data must contain enough samples from every SOC

interval in order to identify the model accurately.

Table 3.2. Comparison of the MSE and execution times for the LLS algorithm based on
the 2RC model.

No. samples 2RC 0.5e6 2RC 1e6
MSE train 4.5497e-5 1.502e-4
MSE all 3.708e-4 2.0266e-4

tex 1.4011e4 s ≈ 3.89 h 2.88e4 s ≈ 8 h

Figure 3.14. Parameters of the battery 2RC model dependent on the SOC, based on the
constrained LS optimization problem.
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Figure 3.15. Simulation of the identified 2RC model, based on the constrained LS
optimization problem1.
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Figure 3.16. Parameters of the battery 2RC model dependent on the SOC, based on the
constrained LS optimization problem and a bigger training dataset.
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Figure 3.17. Simulation of the identified 2RC battery model, based on the constrained LS
optimization problem and a bigger training dataset1.

3.3.1 Constrained least-square parameter identification with a known

OCV curve

The results shown in Fig.3.17show high accuracy, however we observe that the parameters

(except the internal resistance) do not show a falling or rising trend with respect to

SOC. Also, the charging and discharging OCV curves should be noticeably different at

lower SOCs, which is not obtained with this optimization procedure. In order to obtain

more realistic results, some adjustments were made. First, the OCV curve is determined
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separately, using measurements while charging and discharging with a small current, thus

ensuring the approximation ubat ≈ OCV (Fig.3.18). Second, the parameters are expected

to have a convex-like shape which is obtained by adding additional constraints. In order

to ensure the desired shape the second derivation of the parameters as functions of SOC

is constrained to non-negative values:

f(x) = k2x
2 + k1x + k0 ⇒ ∂2f(x)

∂x2 = 2k2 ⇒ −k2 ≤ 0. (3.32)

The coefficent k2 can be expressed for each interval using three adjacent parameter values:

− 1
∆SOC(k)R0(k) +

(
1

∆SOC(k) + 1
∆SOC(k + 1)

)
R0(k + 1)− 1

∆SOC(k + 2)R0(k + 2) ≤ 0, (3.33)

− 1
∆SOC(k)R1(k) +

(
1

∆SOC(k) + 1
∆SOC(k + 1)

)
R1(k + 1)− 1

∆SOC(k + 2)R1(k + 2) ≤ 0, (3.34)

− 1
∆SOC(k)T1(k) +

(
1

∆SOC(k) + 1
∆SOC(k + 1)

)
T1(k + 1)− 1

∆SOC(k + 2)T1(k + 2) ≤ 0, (3.35)

− 1
∆SOC(k)R2(k) +

(
1

∆SOC(k) + 1
∆SOC(k + 1)

)
R2(k + 1)− 1

∆SOC(k + 2)R2(k + 2) ≤ 0, (3.36)

− 1
∆SOC(k)T2(k) +

(
1

∆SOC(k) + 1
∆SOC(k + 1)

)
T2(k + 1)− 1

∆SOC(k + 2)T2(k + 2) ≤ 0, (3.37)

Figure 3.18. OCV-SOC curves for the 4.8 Ah battery.

where k = 1, . . . , n − 2. The identification is performed on 1 week measurement data

obtained with high current charging/discharging profiles1. The identification is performed
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for different number of intervals and the model accuracy comparison is summarized in

Table3.3and depicted in Fig.3.19. The accuracy of the model increases until 20 intervals.

After that, the accuracy does not improve significantly with additional intervals resulting

in the choice of the 20 SOC interval model as the best solution.

Table 3.3. Comparison of the MSE and execution times for the LLS algorithm based on
the 2RC circuit model with different number of SOC intervals.

No. intervals 12 16 20 24 28
MSE all 3.104 · 10−4 3.005 · 10−4 2.957 · 10−4 2.980 · 10−4 2.982 · 10−4

tex 7.96 11.52 17.06 19.28 23.77

Figure 3.19. Comparison of MSE and execution times for different SOC intervals.

In Figs.3.20and3.21the obtained model parameters, for 20 SOC intervals, and the

system simulation are shown. We observe that the ohmic resistances have much higher

values at low SOC, while they are mostly flat in the middle range. The time constants,

however show a higher dependency on the SOC, ranging from 300 s to around 20 s (fast

response) and from 150 s to around 1 s (slower time constant). The results show expected

results, respecting the second derivation constraint, and are considered the closest to

the expected real parameter behavior. Figure3.21shows a comparison of the measured

voltage, training and validation data, and the data obtained with the obtained battery

model. The voltage error is shown in the third subplot. The error noticeably increases in
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two time intervals. When comparing these time intervals with the SOC values shown in

the last plot, it is observed that they coincide with lower SOC values. This is expected

since there is only one deep discharge in the training data. The accuracy of the model at

lower SOC values is affected by the lack of training data leading to the conclusion that the

data for the identification should contain a more uniform charging/discharging pattern.

Figure 3.20. Obtained battery 2RC model parameters for 20 SOC intervals.
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Figure 3.21. Comparison of simulated voltage response with the measured voltage, training
and validation data1.

The first presented identification method is the simplest of the three and with the

shortest execution times. Its accuracy greatly depends on the number of SOC intervals

resulting in a more complex model. Also, the inability to obtain a higher order model

affects the overall accuracy. However, this algorithm is suitable for online identification

because there is an explicit solution. The second method successfully identifies the second

order parameters and the OCV-SOC curve, but the resulting parameter variations do not

correspond to expected trends. This is fixed by adding additional constraints, however
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this does not solve the problem with the OCV curve. Finally, identification of parameters

with a known OCV curve, which is obtained from separate measurements and then used

in the LS optimization problem, is presented. The results obtained with this method (Fig.

3.20) are the closest to the expected and used in the battery model.

3.4 Variable battery efficiency model

Since the identification is performed on a 4.8 Ah battery cell, in order to obtain the

capacity and voltage levels appropriate for the microgrid topology, the final model is

scaled by connecting the cell in several parallel and series connections. Battery parallel

connection, shown in Fig.3.22increases battery capacity while conserving the voltage

levels:

...

OCV1(SOC)

R0,1

R1,1

C1,1

ibat

ubatvc1,1OCVn (SOC)

R0,n

R1,n

C1,n

vc1,n

...

...
..
.

ibat,n

ibat,1

Figure 3.22. Battery cells parallel connection.

ibat = ibat,1 + . . . + ibat,n =
n∑

i=1
ibat,i, (3.38)

ubat = ubat,1 = . . . = ubat,n (3.39)

ubat = OCV1 −R0,1ibat,1 − vc1,1

...

= OCVn −R0,nibat,n − vc1,n

(3.40)

ubat =
∑n

i=1 OCVi

n
− R0

n

n∑
i=1

ibat,i −
∑n

i=1 vc1,i

n
. (3.41)

In Eq (3.41) we assumed R0 = R0,1 = . . . = R0,n because cells of the same type are being

connected. Also,
∑n

i=1 OCVi/n = OCVi, again, under assumption that the cells have the

same OCV-SOC curves. The total internal resistance of the module can be deduced from
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(3.41) as:

R0,tot = R0

n
, (3.42)

and the remaining parameters are extracted from the RC circuit voltage expressions. The

RC circuit voltage of the module is equal to:∑n
i=1 v̇c1,i

n
= v̇c,tot = − 1

T1,tot
vc,tot + R1,tot

T1,tot
ibat. (3.43)

The left side of Eq. (3.43) is substituted with:

∑n
i=1 v̇c1,i

n
= 1

n
(v̇c1,1 + . . . + v̇c1,n) =

= − 1
n

( 1
T1

vc1,1 + . . . + 1
T1

vc1,n

)
+− 1

n

(R1

T1
ibat,1 + . . . + R1

T1
ibat,n

)
=

= − 1
T1

∑n
i=1 vc1,i

n︸ ︷︷ ︸
vc,tot

+R1

n

1
T1

n∑
i=1

ibat,i︸ ︷︷ ︸
ibat

. (3.44)

Then, by combining (3.44) with (3.43) we obtain:

T1,tot = T1, R1,tot = R1

n
. (3.45)

The total capacity of the parallel connection is calculated from:

˙SOCtot = ˙SOC1 = . . . = ˙SOCn, (3.46)

˙SOCi = − 1
Ccap

ibat,i, (3.47)

n∑
i=1

˙SOCi = − 1
Ccap

n∑
i=1

ibat,i → ˙SOCtot = − 1
nCcap

ibat. (3.48)

The total capacity is then Ccap,tot = nCcap and n is the number of parallel connections

needed to obtain the desired capacity. The series connection of battery cells is depicted

OCV1(SOC)

R0,1

R1,1

C1,1

ibatubat

vc1,1OCV1(SOC)

OCV2(SOC)

R0,2

R1,2

vc1,2

...

Figure 3.23. Battery cells series connection.

in Fig.3.23. With this connection the terminal voltage is increased while the battery
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capacity is not affected:

ubat = OCV1 + R0,1ibat + vc1,1 + . . . + OCVn + R0,nibat + vc1,n =

= nOCV + nR0ibat +
n∑

i=1
vc1,i, (3.49)

v̇c1,tot =
n∑

i=1
v̇c1,i = − 1

T1

n∑
i=1

vc1,i + R1

T1
nibat, (3.50)

where it is assumed, as in the parallel connection example, that all cells are equal. From

(3.49) and (3.50) the expressions for the scaled parameters are determined:

R0,tot = nR0, R1,tot = nR1, T1,tot = T1. (3.51)

The combined expressions for series and parallel connections are then:

Ccap,tot = npCcap, (3.52)

OCVtot = nsOCV, (3.53)

R0,tot = ns
R0

np

, (3.54)

R1,tot = ns
R1

np

, (3.55)

T1,tot = T1, (3.56)

where ns and np are the number of series and parallel connections. In order to obtain a 100

Ah battery with approximately 12 V terminal voltage, 3 series and 20 parallel connections

are necessary and the parameters are scaled using (3.52)-(3.56).

3.4.1 Efficiency of the second order ECM

The efficiency of the battery depends on the SOC and on the discharging/charging battery

current. The efficiency is calculated with:

ubat(SOCi) = OCV(SOCi)− (R0(SOCi) + R1(SOCi) + R2(SOCi))ibat. (3.57)

ηch = Pch − Ploss

Pch
, Pch = ubat(SOCi)ibat, Ploss = −(R0(SOCi) + R1(SOCi) + R2(SOCi))i2

bat,

(3.58)

ηdch = Pdch − Ploss

Pdch
, Pdch = OCV(SOCi)ibat, Ploss = (R0(SOCi) + R1(SOCi) + R2(SOCi))i2

bat.

(3.59)
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The parameters obtained in Section3.2(Fig.3.20) are scaled and the resulting battery

model is depicted in Fig.3.24.

Figure 3.24. Scaled parameters of the 2RC battery model.

The efficiency depending on SOC and the charging/discharging power is shown in

Fig.3.25. We can see that for increasing power and decreasing SOC the efficiency has

a falling trend. Since the parameters, while discharging, are mostly higher than while

charging, especially at low SOC, the discharging efficiency graph is deeper than the

charging efficiency graph. The voltage at battery terminals depends on the current and

the SOC, therefore a graph of achievable charging and discharging powers for different

combinations of currents and corresponding battery voltages is shown in Fig.3.26. The

graph shows that the maximal battery power changes with the battery SOC.

The efficiency curves for a given SOC, over a power span from zero to nominal power,

are shown in Fig.3.27. The discharging efficiency is higher than the charging efficiency

for 20% and 90% SOC and vice versa for 50% SOC which is the result of higher charging

resistances than discharging, in the first case and higher discharging resistances than the

charging, in the second case.
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Figure 3.25. Discharging and charging efficiencies of the 2RC model, depending on the
SOC and the normalized discharging/charging power.

Figure 3.26. Discharging and charging powers of the 2RC model, depending on the battery
voltage and the discharging/charging current.
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Figure 3.27. Discharging and charging efficiencies of the 2RC model for SOC=20%,
SOC=50% and SOC=90%.



Chapter 4

Model predictive control of

battery charging and

discharging current

The battery storage system consists of a battery and a power converter as depicted in

Figure4.1. The power converter enables connection to the microgrid bus by adjusting

its voltage. Depending on the type of the microgrid, the converters are either AC/DC or

DC/DC, however they are always bidirectional to enable energy flow in both directions.

Additionally, the configurations are divided into single-stage and double-stage conversions.

Buck converters are used when the output voltage should be lower than the input voltage,

B
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B
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O
S
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E
ch

E
dch

E
bat

ch dch

...

OCV(SOC)

R0

R1 Rn

C1 Cn

ibat

ubatvc1 vcn

Ebat =
t0 
t
ubatibatdt

 

Figure 4.1. Battery storage system model and energy flow.

boost converters increase the output voltage. The third type, buck-boost converters, can

adjust the output voltage to both higher and lower level than the input voltage [46].

41
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Depending on the battery and microgrid possible voltage values, one of these three types

of converters is used. The converter is also the control point of the system because it

realizes the control actions demanded from a higher-level controller. And for that reason,

it is important to understand how to control the converter and what control input it

should receive.

4.1 Storage system converter model and efficiency

Modeling of the DC/DC converters includes switched models and averaged models.

Averaged models omit high-frequency ripple in the current and voltage waveforms [47,48].

Some converters accept power as the control input however, conventional control mode

of the DC/DC converters is voltage control mode [49] whereas current control mode

introduces improvements such as inherent current limiting and easier control system design

[50,51,52]. Some converters can operate in voltage and current control mode. In voltage

control operation different scenarios of microgrid operation in terms of distributed and

centralized voltage control configuration are possible which offers flexibility of system

configuration and operation [53,54].

In [55], an averaged model of a double-half bridge buck-boost DC-DC converter for

microgrid storages is shown. The converter is a bidirectional buck-boost type that consists

of two mirrored bidirectional buck topology converters and a common higher voltage DC

bus (Fig.4.2). This topology is popular because of its simplicity and superior fault isolation

at the expense of an increased component count [46]. The converter from [55] can either

control the storage side current or operate as master and control the microgrid voltage.

Since both sides are bidirectional, they can operate in buck or boost mode, depending

on the current flow. This way, both V1 and V2 are flexible and able to ensure the voltage

of up to the value Vbc. In this topology, V1 is considered as a storage-side voltage for

istorage

S1 S2

S3 S4

d1 d2

L1 RL1 RL2 L2

C1 C2

Cbc

iL1 iL2

is1 is2

iug

v1 vx1 vx2 v2

Vbc+ +

+

+ +

-- - - - -

OUTPUT 

LOOP

STORAGE SIDE MICROGRID SIDE

+ -vL2
+- vL1

Figure 4.2. Bidirectional DC/DC converter topology.
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controlling the charge/discharge process of a battery. Voltage V2 is the microgrid voltage

rated value. If the reference current directions of both sides are defined as in Fig.4.2,

both the microgrid-side and the storage side are modeled as buck converters. This model

thereby offers understanding of the basic converter topology as well.

djT T

vLj

djT T

iLj

vbc-vj

-vj

iLmax

iLmin

iL 

0

0

Figure 4.3. Inductor voltage and current.

In an ideal buck converter, the inductor voltage and current are represented as in

Fig.4.3, where the voltage vLj represents the voltage drop on the inductor Lj and its

corresponding resistance RLj. By controlling the average value of the inductor current the

storage current is set to the requested value. Since the averaged values of the inductor

voltage and current depend on the duty cycle the differential equation of the output loop

of a buck converter is given by:

v̄xj = Lj
dīLj

dt
+ RLj īLj + v̄j, j = 1, 2, (4.1)

where bar notation represents average values, and the index j indicates that the same

expression is used for both the microgrid and the storage side of the converter (see Fig.

4.2). Since the converter is connected to a microgrid, no load is modelled in the output

loop, but it is replaced with a constant voltage value (microgrid voltage). The same

approach was used on the storage side. The average switch voltage, v̄xj is shown in Fig.

4.4and its value is calculated by integrating over one period:

v̄xj = dj v̄bc. (4.2)

The voltage v̄xj from (4.1) is then substituted by (4.2):

v̄bcdj = Lj
dīLj

dt
+ RLj īLj + v̄j, j = 1, 2. (4.3)
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djT T

TdjT

iLmax

iLmin

isj

is

vx

vxj

vbc

Figure 4.4. Switches S3 or S4 voltage and switches S1 or S2 current over one period.

Both the DC link voltage and the duty cycle are variable, which is denoted by lower-

case letters. The equation (4.3) is linearized around the operating point value Vbc0 and a

transfer function between the duty cycle and the inductor current is:

Gp,j = ĪLj(s)
Dj(s) = Vbc0

sLj + RLj

, j = 1, 2. (4.4)

where ĪLj and Dj are Laplace transforms of small changes of the mean inductor current

and the duty cycle, with respect to their values in the operating point. The transfer

function from (4.4) is suitable for design of the current controller.

vbc reg

iL2 reg PWM2

v2 reg
iL1 reg PWM1

c

vbc

vbc ref

iL2

iL2 ref

v2

v2 ref

iL1 ref

iL1 ref

iL1 

Figure 4.5. Converter control scheme. Variable c denotes the control signal that switches
between the current control mode and microgrid voltage control mode.

The DC bus voltage control is then enforced through a cascade control form as an outer

control loop (see Fig.4.5). In Fig.4.5, PWM1 denotes the driving block for generating
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pulse width modulation (PWM) switching signals for switches S1 and S3, while PWM2

generates signals for switches S2 and S4. Signals with index ’ref’ denote reference values

for controllers of the respective variables. Following from this, a relation that connects the

inductor current with DC bus voltage is required. The DC bus voltage dynamics is given

below:

Cbc
dv̄bc

dt
= īs1 − īs2. (4.5)

The average switch current is shown in Fig.4.4and equals to:

īsj = dj īLj, j = 1, 2. (4.6)

By substituting the currents in (4.5), a nonlinear model is obtained:

Cbc
dv̄bc

dt
= −d1īL1 − d2īL2. (4.7)

Negative sign in (4.7) is added to īL1 because its reference direction is opposite to the

reference direction of the switch current as in Fig.4.2. Since only the grid side inductor

current īL2 is included in the DC link control, a relation between this current and the DC

voltage is derived, after linearization around a steady state duty cycle:

Gp,dc = V̄bc(s)
ĪL2(s)

= −D20

sCbc

, (4.8)

where D20 is the value of d2 in the operating point. These equations describe the converter

model in current control. The current reference iL1ref from Figure4.5is obtained from a

battery control algorithm.

The model for the microgrid voltage control operation is of lesser importance for this

work, but it is also derived in [55].

4.2 Battery charging and discharging approaches

Battery charging control approaches are be divided into model-free and model-based

approaches. The charging profiles of model-free strategies are predefined using heuristics

and empirical knowledge. These models are easy to implement but are unable to reflect

the battery’s dynamics. Model-free approaches include constant-current (CC), constant-

voltage (CV) and pulse charging. Model-based approaches use physics-based models,

mostly different electrochemical and ECMs, state estimators and model-based controllers.

These include fuzzy control, multi-objective optimization, linear quadratic control and

model predictive control (MPC). MPC is the most popular strategy, however it is

mostly applied to linear systems [56], [57]. Model-based approaches are mostly concerned

with health-aware charging approaches. An MPC tracking problem is described in [56].

The battery models on which the control algorithms are based are often simplified
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and linearized. Nonlinear multi-objective optimizations are described in [58], [31]. The

proposed algorithms offer a trade off between battery degradation and charging times. In

[59], an explicit-MPC real-time health-aware charging control is described based on the

nonlinear double-capacitor model (NDC). The nonlinear problem is simplified by piecewise

linear approximation.

In [60], a control algorithm for efficient adherence to energy exchange commands is

presented. The authors proposed an algorithm which offers information about the available

charging/discharging energies, while respecting the system constraints. The optimization

problem is formulated aiming to maximize the residual SOC thus achieving maximal

efficiency during demanded energy exchange. In this work, the energy exchange of the

battery storage system (BSS) is defined at a higher stage, namely the microgrid energy

flow optimization and the BSS control algorithm is in charge of achieving the demanded

battery energy. The previously described algorithm offers valuable information about the

system states and is therefore a starting point for the control of a variable battery storage

system model.

4.3 Variable battery storage system model control

In this section, the 2RC model obtained in section 3.3, subsection 3.3.1. of the third

chapter, is used. The charging and discharging energies obtained as solutions of the

microgrid power flow optimization problem are transferred to the battery side by taking

into account the converter efficiency:

Ebat =


ηch(Ech)Ech if Ech ≠ 0

1
ηdch(Edch)E

dch if Edch ≠ 0
(4.9)

The converter efficiency is variable and depends on the converter energy. The obtained

energy at the battery side of the power converters is the input for the battery storage

system control algorithm. The battery energy is defined as:

Ebat =
∫ t

t0
ubat(τ)ibat(τ)dτ. (4.10)

The BSS control algorithm is in charge of injecting/extracting energy demanded from the

microgrid MPC algorithm. In order to charge and discharge the battery in the most

efficient way, while respecting the system constraints, the BSS MPC optimization is

formulated as in [60]:

max
Ibat

= SOC(N), (4.11)

s.t. IT
batHIbat + x(0)⊤F ⊤Ibat = Ebat, (4.12)

Ibat,max ≥ Ibat(k) ≥ −Ibat,max, k = 0, . . . , Nbs − 1, (4.13)
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Ubat,min ≤ Ubat(k) ≤ Ubat,max, k = 0, . . . , Nbs − 1, (4.14)

Ubat,min ≤ U−
bat(k) ≤ Ubat,max, k = 1, . . . , Nbs, (4.15)

SOCmin ≤ SOC(k) ≤ SOCmax, k = 1, . . . , Nbs, (4.16)

where Nbs is the prediction horizon of the BSS control, Ibat,max is the maximal

allowed charging/discharging current, Ubat,min, Ubat,max are the battery voltage limits and

SOCmin, SOCmax are the minimal and maximal allowed SOC. The voltage U−
bat(k) is the

voltage at time instant k, before the next current value is applied and is defined as:

U−
bat(k) = lim

t→kT −
Ubat(t) = OCV(k)− Vc1(k)− Vc2(k)−R0Ibat(k). (4.17)

The objective of the control algorithm is maximizing SOC at the end of the prediction

horizon and can be rewritten as:

max
Ibat

= SOC(N) = SOC(0) + CmIbat, Cm = [−Tbs/Cbat, · · · ,−Tbs/Cbat], (4.18)

where Tbs is the sample time of the BSS and Cbat is the battery capacity. Matrices H and

F from the energy equality constraint (4.12) are obtained from (4.10) by substituting the

battery voltage as follows [60]:

ẋ =


˙OCV
˙vc1

˙vc2

 =


0 0 0
0 − 1

R1C1
0

0 0 − 1
R2C2


︸ ︷︷ ︸

A


OCV
vc1

vc2

+


− k1

Cbat
1

C1

1
C2


︸ ︷︷ ︸

B

ibat, (4.19)

y = ubat =
[
1 −1 −1

]
︸ ︷︷ ︸

C


OCV
vc1

vc2

− R0︸︷︷︸
D

ibat. (4.20)

x(t) = x(iTbs)eA(t−iTbs) +
∫ t

iTbs
BeA(t−τ)ibat(τ)dτ, (4.21)

Ebat =
∫ NTbs

0
ubat(t)ibat(t)dt =

N−1∑
i=0

∫ (i+1)Tbs

iTbs
ubat(t)ibat(t)dt =

=
N−1∑
i=0

∫ (i+1)Tbs

iTbs
(Cx(t) + Dibat(t))ibat(t)dt.

(4.22)

Then, x(t) is substituted with (4.21) and we obtain:

Ebat =
N−1∑
i=0

(∫ (i+1)Tbs

iTbs
Cx(iTbs)eA(t−iTbs)i2

bat(t)dt+ (4.23)
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+
∫ (i+1)Tbs

iTbs
C

(∫ t

iTbs
BeA(t−τ)ibat(τ)dτ

)
ibat(t)dt +

∫ (i+1)Tbs

iTbs
Di2

bat(t)dt

)
. (4.24)

The battery energy equation can be rewritten so its depends only on the initial states and

the battery vector:

Ebat =
N−1∑
i=0

fix(0)ibat(i) + hii
2
bat(i) + hi,jibat(i), (4.25)

fi =
∫ (i+1)Tbs

iTbs
CeAtdt, (4.26)

hi =
∫ (i+1)Tbs

iTbs
C

(∫ t

iTbs
eA(t−τ)Bdτ + D

)
dt, (4.27)

hi,j =
∫ (i+1)Tbs

iTbs
C

(∫ (j+1)Tbs

jTbs
eA(t−τ)Bibat(j)dτ

)
dt, j = 0, . . . , i− 1. (4.28)

H =



h1 h1,0/2 h2,0/2 · · · hNbs−1,0/2
h1,0/2 h2 h2,1/2 · · · hNbs−1,1/2
h2,0/2 h2,1/2 h3 · · · hNbs−1,2/2

...
...

...
. . .

...

hNbs−1,0/2 hNbs−1,1/2 hNbs−1,2/2 · · · hNbs−1


, F =



f1

f2
...

...

fNbs−1


. (4.29)

The algorithm tests if the initial battery state is inside a constrained set based on

battery constraints and Lagrange multipliers. If the initial state is within boundaries

of this set, minimal and maximal Lagrange energies are computed and compared with

the commanded battery energy. The solution of the Lagrange optimization problem with

equality constraint can be explicitly calculated, maximizing the objective function i.e.

residual SOC. If the commanded energy is not within this energy interval, minimal

and maximal attainable energies are calculated using sequential linear program (SLP)

and quadratic program (QP). Then an initial solution is calculated and the objective is

maximized by iterative sliding along the ellipsoid of the commanded energy. The detailed

procedure and algorithm description is described in [60].

The continuous battery model defined with (4.19) and (4.20) is defined with constant

battery parameter values. Since the parameters are SOC dependent, their values change

over the charging/discharging horizon. The above mentioned algorithm is modified in

order to include a variable battery model over the prediction horizon. First, an initial

solution is found with the original algorithm and then using the obtained current vector,

the SOC values over the horizon are calculated. Then, a set of continuous SOC-dependent

state-space matrices is calculated using the corresponding model parameter values. Since

the parameters are constant within SOC intervals, additional constraints are added:

SOClb(k) ≤ SOC(k) ≤ SOCub(k), k = 1, . . . , N − 1, (4.30)
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where k is the time instant and subscripts lb and ub denote lower and upper bound of the

SOC interval. In order to write the system inequality constraints in vector form, the system

is written in the discrete form, which is obtained using zero-order-hold discretization:

Ad(SOCk) =


1 0 0

0 e
Tbs

T1(SOCk) 0

0 0 e
Tbs

T2(SOCk)

 , Bd(SOCk) =


−k1Tbs

Cbat

R1(SOCk)(1− e
Tbs

T1(SOCk) )

R2(SOCk)(1− e
Tbs

T2(SOCk) )

 , (4.31)

Cd = C, Dd(SOCk) = D(SOCk).

The discrete model is then stacked over the prediction horizon:

Y = CsAs0x(0) + (CsBs0 + Ds)Ibat, Y = [Ubat(0), . . . , Ubat(Nbs − 1)]T (4.32)

Y− = CsAsx(0) + (CsBs + Ds)Ibat, Y− = [Ubat(1), . . . , Ubat(Nbs)]T , (4.33)

As0 =



I

Ad(SOC0)
...

Ad(SOC0)Ad(SOC1) · . . . ·Ad(SOCN−1)

 , (4.34)

Bs0 =



0 0 · · · 0

Bd(SOC0) 0 · · · 0
...

...
. . .

...

Ad(SOC1)Ad(SOC2) · . . . ·Bd(SOC0) Ad(SOC2) · . . . ·Bd(SOC1) · · · 0

 ,

(4.35)

As =



Ad(SOC0)
...

...

Ad(SOC0)Ad(SOC1) · . . . ·Ad(SOCN)


, (4.36)

Bs =



Bd(SOC0) 0 · · · 0

Ad(SOC1)Bd(SOC0) Bd(SOC1)
. . .

...

...
...

. . .
...

Ad(SOC1)Ad(SOC2) · . . . ·Bd(SOC0) Ad(SOC2) · . . . ·Bd(SOC1) · · · Bd(SOCN−1)


,

(4.37)
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Algorithm 1 BSS control algorithm with variable model parameters

x(0), SOC(0), Ebat
Solve MPC Battery optimization (4.11), with A(SOC(0)),B(SOC(0)),D(SOC(0))
while condition
Calculate SOC = CmIbat
Determine SOC interval boundaries ∀ SOC(k) and add to the constraints vector.
Calculate A(SOC(k)),B(SOC(k)),D(SOC(k)), k = 0, . . . , N − 1
Calculate (4.39) - (4.44)
Solve MPC Battery optimization (4.11)
if
i ≥ imax
OR
SOCavg,i − SOCavg,i−1 ≤ ε, SOCavg,i = (SOCi + SOCi−1 + SOCi−2)/3
break
end if
end while

Cb = diag(Cd), Db = diag(Dd). (4.38)

The constraints (4.13) - (4.16) are then defined:

Au =
 I

−I

 , Bu =
Ibat,max

Ibat,max

 , AuIbat ≤ Bu, (4.39)

Ay =
−(CsBs0 + Ds)

(CsBs0 + Ds)

 , By =
−Ubat,min + CsAs0x(0)

Ubat,max −CsAs0x(0)

 , AyIbat ≤ By, (4.40)

A−
y =

−(CsBs + Ds)
(CsBs + Ds)

 , B−
y =

−Ubat,min + CsAsx(0)
Ubat,max −CsAsx(0)

 , A−
y Ibat ≤ B−

y , (4.41)

Csoc =



−Tbs/Cbat 0 · · · 0

−Tbs/Cbat −Tbs/Cbat · · · 0
...

...
. . .

...

−Tbs/Cbat · · · · · · −Tbs/Cbat

 , (4.42)

Asoc =
−Csoc

Csoc

 , Bsoc =
−SOCmin + SOC(0)

SOCmax − SOC(0)

 , AsocIbat ≤ Bsoc. (4.43)

B∆soc =
−SOClb + SOC(0)

SOCub − SOC(0)

 , AsocIbat ≤ B∆soc. (4.44)

The pseudocode of the proposed changes to the original control algorithm are described

in Algorithm1. The initial state space matrices are calculated using the current SOC.

After obtaining the initial solution and calculating the SOC values over the horizon, the

problem formulation is repeated using the variable battery model. Then, the optimization
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problem is iteratively solved as long as the SOC values over the horizon change intervals

and the residual SOC improves. After convergence is detected, the algorithm ends.

4.3.1 Open-loop simulation of a variable BSS control

The proposed algorithm is implemented in MATLAB and two scenarios are simulated.

The scaled parameters from subsection 3.3.1. are used for the problem formulation. The

BSS sampling time is set to 1 min and the horizon length is N = 10. The battery capacity

is, for the algorithm verification, scaled to 50 Ah in order to achieve more SOC interval

changes over the horizon. In both scenarios, three cases are observed:

� Case 1: Constant model over the horizon, with model parameters around the

SOC ≈ 0.5

� Case 2: Constant model over the horizon, with model parameters around the

SOC ≈ SOC(0)

� Case 3: Variable model over the horizon, using the procedure described in

Algorithm1

The SOC interval for the first case is chosen because the parameter curves are mostly

flat in the middle SOC ranges, resulting in smaller model errors for a broad range of

SOC. In the first scenario, the battery is charged for 10 minutes from 20%. The charging

energy Ebat = −80 Wh is chosen to be high, however still from the Lagrange interval.

The results of all three simulation cases are shown in Fig.4.6. Comparing the results of

the constant parameter models (blue dotted and green dashed lines), the improvement of

the residual SOC is evident, showing that just by pairing the model with the initial state,

better results are obtained. The variable model and the constant model paired with the

initial state show similar SOC at the end of the simulation horizon. Another indicator of

the algorithm performance is the actual amount of charging energy. Table4.1compares

the charging energies and the residual SOC for this scenario. Comparing the energies we

observe that in the first case the battery is slightly overcharged and in the second case

slightly undercharged which is expected since the battery resistances are in the range of

mΩ.

Table 4.1. Comparison of the achieved energies and residual SOC, in a 10 min charging
period with SOC(0) = 0.2 and Ebat = -80 Wh.

Case 1 Case 2 Case 3
SOC(N) 0.3441 0.4085 0.4095
Ech [Wh] -80.53 -79.8 -80

In the second scenario, a battery is discharged for 10 min, from (0) = 0.9 with Ebat = 87
Wh and the results are shown in Table4.2and Fig.4.7. Again, an evident improvement
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Figure 4.6. Simulation of a 10 min charging period with SOC(0) = 0.2 and Ebat = -80 Wh.

in results is achieved by pairing the model with the initial SOC. The resulting discharging

energies are again higher or lower than the requested energy when a constant model is

used. In this scenario, the residual SOC is higher with the model, which is constant around

the initial state, than with the variable model. However, the total energy discharged with

this solution is lower than the requested energy, thus contributing to the obtained result.

Table 4.2. Comparison of the achieved energies and residual SOC, in a 10 min discharging
period with SOC(0) = 0.9 and Ebat = 87 Wh.

Case 1 Case 2 Case 3
SOC(N) 0.7185 0.7342 0.7278

Edch [Wh] 90.77 84.21 87

The results of the two scenarios show improvements in the control algorithm by adding

the variable battery model to the problem formulation. The improvements are present even

with a constant model over the horizon, with parameters corresponding to the initial state.
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Figure 4.7. Simulation of a 10 min charging period with SOC(0) = 0.9 and Ebat = 87 Wh.





Chapter 5

Model predictive control of a

microgrid with heterogeneous

battery storage systems

A grid-connected DC microgrid is depicted in Fig.5.1. consisting of renewables production

(photovoltaics EPV and wind EWT energy generation), load EL and battery storage is

considered, as depicted in Fig.5.1The grid energy exchange is denoted with EG and Edch

and Ech are the battery system discharging and charging energies.

A DC microgrid is connected to the utility grid via a bidirectional AC/DC converter.

The grid converter is the master on the microgrid DC bus and maintains the DC bus

voltage, and all other devices can freely operate by injecting/drawing power on the

microgrid bus. Depending on the type of components and the type of microgrid, various

DC/DC and/or AC/DC converters are used to connect the components to the common

bus. Power converters represent control points in a microgrid that assure system stability

and quality of power supply since the desired flows are ultimately achieved by converter

current or voltage control. Therefore, it is important to understand the individual control

algorithms for each of the microgrid components in order to enable the coordination of

all the components and to implement requested power flows that are calculated from

the optimization problem. In this chapter an overview of microgrid components, such as

converters and renewables, as well as a control algorithm for the microgrid are described.

The battery storage system and the optimal control algorithm are described in the previous

chapters.

5.1 Photovoltaics and wind turbine control

Controllable microgrid components include renewables: photovoltaics and wind turbine

and their corresponding converters. Converters are mostly modeled using the averaged

model to omit high-frequency ripple in the current and voltage waveforms. The PV

55
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Figure 5.1. The considered microgrid topology.
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converters are mainly buck or boost converters, depending on the required voltage levels

while wind turbines (WTs) demand for more complex converter topologies.

5.1.1 Wind turbine model

Wind turbines with horizontal axis have two operating regions. Below rated wind speed

all the available wind power is captured and transferred to electricity. Above rated wind

speed, power production is saturated at the rated power with passive control or active

pitch control. Wind turbine power production model in the below rated speed region is

given with [61] [62]:

P k
W T = 1

2ρairR
2πCP (λ, β)(vk)3, (5.1)

where ρair is the air density, R is the radius of blade disc, CP is the power coefficient that

reflects the aerodynamical property, dependent of blade aerodynamical property β and of

the tip-speed-ratio λ. The speed v is determined from meteorological data and predictions.

In Fig.5.2the power coefficient curves with respect to the coefficients β and λ are shown.

It is evident that all the curves have a maximal value for a specific tip-speed-ratio.

Figure 5.2. Power coefficient CP curve [62].

Therefore, in order to optimize the power production in this operation region, the

control aim is to achieve the optimal value of λ [61]. Tip-speed-ratio is defined as the

ratio between the tip speed of a blade and the wind speed:

λ = ωR

v
, (5.2)
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where ω is the rotor speed in [rad/s]. Originally, wind turbines were fixed speed, where

the speed was determined by the utility grid. By introducing a power converter between

the wind turbine and the grid, the turbine can operate with variable speed thus enabling

optimal power production. The frequency of the generated AC voltage is not constant but

can be adjusted to the desired frequency via the power converter.

5.1.2 Wind turbine generator converter model

For the generator side converter, only the AC current control loop is needed. The generator

side aims to achieve specific generator torque dictated by the aerodynamic torque. Namely,

aerodynamic torque is set so that the captured power is at its maximum and the generator

torque needs to follow it. The torque reference is given by [63]:

T ∗
g = Kλω2

g , Kλ = 1
2λ3

opt
ρairπR5CP max. (5.3)

The speed is set to optimal value by a speed controller and executed by pitch control.

This torque reference is then achieved with FOC by shaping the stator currents with

variable amplitude and frequency to place the generator at the required operating point.

The currents are formed, similarly to the currents on the grid side, by proper switching

of the power converter transistors. The output of the converter is series of voltage pulses

with fundamental harmonic of the required reference voltage. Rotor flux-based FOC is

used. The control scheme depends on the generator type, for instance for a squirrel-cage

induction machine the model is given by [63]:

disd

dt
= 1

Ll

(usd − ksisd + ∆usd), (5.4)

disq

dt
= 1

Ll

(usq − ksisq + ∆usq), (5.5)

dimr

dt
= 1

Tr

(isd − imr), (5.6)

dρ

dt
= kmrimrisq. (5.7)

And the decoupling voltages are:

∆usd = 1
Tr

L2
m

Lr

imr + Llωeisq, (5.8)

∆usq = −ωe
L2

m

Lr

imr − Llωeisd. (5.9)

Reference current isq is calculated from torque reference and reference current isd is set

to the rated value in normal operation or calculated to maintain constant power in the
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above-rated-speed operation [63]:

isq =
T ∗

g

kmimr

, (5.10)

isd = ωgn

ωg

. (5.11)

Both current components, magnetizing current and the angle are estimated with unscented

Kalman filter (UKF) and then used in control scheme (Fig.5.3). Other machine type

models can be found in [64] and [65].

Figure 5.3. Field-oriented control loop [63].

5.2 Photovoltaic array

Power production of a photovoltaic system (PV) is given with the expression:

P =UPVIP V (U̇PV, Ec,tot, T ) = f(UPV, Ec,tot, T ), (5.12)

∂P

∂UPV
> 0, for UPV < UPV,max, (5.13)

∂P

∂UPV
< 0, for UPV > UPV,max, (5.14)

where ∂ is the partial derivative, Ec,tot is the total irradiance and T is the temperature.

Photovoltaic systems are described with a power voltage (P-V) characteristic that changes

with temperature and irradiance of the system, where every curve has a distinct maximum

(Fig.5.4).

The goal is to keep the PV system at the maximum power point. From (5.12), it is

evident that, since the current depends on the voltage, in order to control the power,

control of the PV output voltage is needed. The conventional MPPT algorithms are

Incremental conductance perturb and observe (P&O) shown in Algorithm2. It includes
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Figure 5.4. P-V characteristic of a photovoltaic system, depending on the irradiance [66].

Algorithm 2 P&O algorithm [67]

Pk−1 = UP V,k−1IP V,k−1
if (Pk−1 < Pk−2 && UP V,k−1 < UP V,k−2) || (Pk−1 > Pk−2 && UP V,k−1 > UP V,k−2) then

UP V,k = UP V,k−1 + ∆U, ∆U > 0
else

if (Pk−1 < Pk−2 && UP V,k−1 > UP V,k−2) || (Pk−1 > Pk−2 && UP V,k−1 < UP V,k−2)
then

UP V,k = UP V,k−1 −∆U, ∆U > 0
end if

end if

a perturbation in the voltage causing power variation of the PV array. The PV output is

compared with the previous power. If the power increases the same process is repeated

otherwise the perturbation is reversed. If a positive perturbation causes an increase in

power, the operating point is left of the MPP and vice versa. The P&O algorithm is

the most widely used. Other MPPT algorithms are based for example on fuzzy logic

controllers, genetic algorithms, particle swarm optimization [68,69].

The MPPT algorithms calculate the reference voltage, which is then forwarded to the

converter. Photovoltaics are connected through a DC/DC converter to the DC microgrid.

Often, the PV output voltage is several times greater than the DC bus voltage, therefore

buck converters are used [70]. The topology of a buck converter is presented in Fig.4.2,

denoted with dashed blue lines (microgrid side of the buck-boost converter). For the

control circuit, equations (4.1)-(4.8) derived in Section4.1can be applied. In (4.8) the

storage side current −d1īL1 is replaced with the PV output current iP V .

5.3 Grid converter control

In this section the grid DC/AC converter topology and averaged model are shown. This

converter operates as the master and is in charge of maintaining the DC link voltage level.

After reviewing the conventional control algorithm implementations of the grid converter
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topology, a problem with the DC link stability is observed however, this problem is scarcely

investigated in the literature. Since the grid converter is in charge of evacuating/injecting

the calculated optimal energy flows, its stable operation is critical to the whole system.

In succeeding sections, a stability analysis is performed and a robust controller design

procedure is proposed. The proposed controller is robust to parameter inaccuracy which

is important due to varying operating conditions in a microgrid.

Conventional converter control relies on proportional integral (PI) or proportional

resonant (PR) controllers, for current control. Voltage control is designed using a

cascaded structure. Control loops performance is significantly affected by the parameter

accuracy, mainly contributed by the grid impedance [71,72], which varies with the load

characteristics and overall grid conditions [73,74]. In order to increase the robustness,

damping techniques are considered and different control algorithms, specifically designed

to achieve robustness against parameter inaccuracy and/or harmonics attenuation, are

developed [75,76,77]. All the aforementioned mostly concerns with current control loops

while DC link control is less investigated. The PI controllers are the most common choice

for DC link voltage control due to simplicity and easy implementation as presented in

[78,79] The nonlinearities present in the DC link, however, deteriorate the performance

of the PI controller when it deviates from the operating point. Sophisticated algorithms

such as adaptive control [80], feedback linearization [81], neural networks and fuzzy logic

[82,83,84], model predictive control (MPC) [85,86] and sliding-mode control (SMC)

[87,88] are also found in literature however, deeper and systematic modeling of a DC link

and corresponding controller design is scarcely present. Most of the approaches imply a

single capacitor in a DC link. In [89], a stability analysis is performed. In [90], similar

conclusions are drawn with an added additional DC link filter. In the listed literature, the

authors unanimously identify and highlight the need for robust controllers and usually

rely on parameter tuning experience.

A systematic approach for DC link voltage control is proposed, further relied on the

inner current control loops in order to reduce approximations and neglected components.

The unstable pole of the DC link is respected and system is stabilized by using an

analytical approach. The controller parameters are defined by the inner control loop and

the model function. There is only a single degree of freedom, that adjusts the speed

of the closed loop and the overshoot. The method based on Truxal-Guillemin approach

[91] introduces proportionate settling times but with a somewhat larger overshoot when

compared with conventional approaches, however the approach is:

� robust to operating point changes regardless of only a single one chosen for

linearization

� based on the real model of the system

� robust to DC link or grid filter and grid impedance parameter variations.
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5.4 Current control
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In a typical voltage control mode, the current control loop is responsible for setting the

converter voltage reference value. The first step in modeling is to obtain the voltage to

current transfer function. In Fig.5.5, considered back-to-back configuration scheme is

shown. The complex DC link topology is introduced by connecting two motor drives via

the common DC link, thus adding additional inductances and capacitances (filter) into

the DC link. The grid side of the configuration consists of an inverter and an LC filter.

The grid impedance effects are taken into account by adding additional current sensors

at the point-of-connection (PCC) and synchronizing the control system to the voltage

at the capacitance terminals of the filter. The grid impedance is therefore excluded from

the derived model. Variables iL and ig denote the converter and grid currents. Variable u

denotes the converter phase voltage and e represents the phase voltage at the connection

point to the grid. The current dynamics is separated into a cascade. The inner loop controls

the converter current and sets the converter voltage reference while the outer loop controls

the grid current as shown in Fig.5.5[92].

5.4.1 Converter current control

A step-by-step modelling of the current control loops is presented in [92] in detail. A

concise version is given in the sequel for the reader’s convenience. The differential equation

of the inductive part of the filter Lf , with its corresponding resistance RLf , is for the three

phases given by:

Lf
diLk

dt
+ RLfkiLk = uk − ek, k = a, b, c, (5.15)

and transferred to (d,q) coordinate system rotating with frequency ω and aligned with

the grid voltage vector. The derived L filter transfer functions are:

Gidd = ILd

∆Ud

= 1
sLf + RLf

, Giqq = ILq

∆Uq

= Gidd. (5.16)

Note that the derived model is tied to the voltage difference ∆Ud = Ud − Ed,

∆Uq = Uq − Eq rather than the grid voltage, which makes it more independent of the

grid impedance.

The control algorithm is implemented in discrete-time domain and the effect of

discretization is taken into account together with converter delay. The inner open transfer

function is therefore:

G0,in = IL

I∗
L − IL

= KR,in
sTI,in + 1

sTI,in

Gidd
1

1 + s(Tds + Tsw/2) , (5.17)

where Tds and Tsw are controller sample time and converter switching period [93]. Both

transfer functions are first-order lag type with a clear dominant time constant suitable

for applying a proportional-integral (PI) controller based on a magnitude optimum (MO)
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approach [94]. The inner loop controller parameters are chosen:

TI,in = Lf

RLf
, KR,in = 1

2
Lf

0.5Tsw+Tds
. (5.18)

The process transfer functions Gidd and Giqq are equivalent and therefore (5.17) and (5.18)

are applied to both axes.

5.4.2 Grid current control

Figure 5.6. Root locus curves tuning the grid current (middle) control loop.

For the grid current control loop, the capacitor part of the filter is modeled by following

the same procedure as for the inductive part in order to relate iL and ig, and the following

coupled relations are obtained:

Igd = ILd −GcddEd + GcqdEq, → Igd

ILd

= 1, (5.19)

Igq = ILq −GcqqEq + GcdqEd → Igq

ILq

= 1. (5.20)

The corresponding transfer and decoupling functions are derived in [92]. Open loop

transfer function of the outer loop is:

G0,out = Ig

I∗
g − Ig

= GR,outGc,in = KR,out

s + 1
TI,out

s
Gc,in, (5.21)

where Gc,in is the closed loop transfer function of the converter current loop, Gc,in =
G0,in/(1 + G0,in), and G0,in is the open loop transfer function obtained in (5.17).
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The outer loop controller GR,out is of the PI type and its parameters are chosen by using

a root locus approach [95] in order to achieve at least two times slower dynamics than

the converter current loop, which is necessary to respect the cascaded control and avoid

the control loops interference. First, the controller integrator gain is varied while keeping

the proportional unity gain. The root locus curves for TI,out = [1, 0.1, 0.01, 0.001, 0.0001]
are shown in Fig.5.6. The objective is to place the zero further away from the imaginary

axis, which would make its effect on the closed-loop dynamics negligible. However, from

the root locus curves, it is concluded that by increasing the zeros, the curves approach

the imaginary axis and even cross it for TI,out = 0.0001 (blue dot-dashed line). The

integral gains TI,out = [0.01, 0.001] are chosen as a good trade-off and are used in the gain

analysis. Figure5.7shows open loop and closed loop Bode plots, and the step response for

KR,out = [10, 100, 1000]. Increase of the gain also increases the bandwidth of the system.

The phase characteristic of the system with TI,out = 0.001 is more uniform over a wide

range of frequencies with steady phase margin for different gains. The main objective of

this controller design is to have a fast and robust response while respecting the inner loop

dynamics. Comparing with the inner control loop time constant (approximately 0.0012

s) and looking at the shape of the transient response (Fig.5.7(c)), the light blue line

(TI,out = 0.001, KR,out = 100) is chosen as a starting point for further tuning. Controller

parameters are further tuned until a satisfying result is found (green full line): KR,out =
371.76, TI,out = 0.00035. The block scheme of the current control loops is shown in Fig.

5.8, where red denotes measured variables and dashed lines denote coupled variables. The

coupling and decoupling transfer functions of the current control loops are defined in [92].
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5.5 Voltage control loop

The DC voltage control loop maintains the balance between the machine power (generated

or consumed) and the power delivered to the grid. The DC link topology is shown in Fig.

5.5. In [92], the grid side of the DC link is modelled (blue part) while neglecting the

machine part of the DC link (red side). This, however, proved as unjustified decoupling,

confirmed also by simulation and experimental results, as will be described later.

Following the same procedure as in [92], the full state space model of the DC link is

given by:

ẋ =



−Rdc

Ldc
0 1

2Ldc
− 1

2Ldc
0

0 −Rdc

Ldc
0 1

2Ldc
− 1

2Ldc

− 1
Cc

0 0 0 0
1

Cdc
− 1

Cdc
0 0 0

0 1
Cc

0 0 0


x +



0 0
0 0
0 1

Cc

0 0
− 1

Cc
0


u, (5.22)

where x =
[
iLs,dc iL,dc us udc uc

]⊤
and u =

[
ic,dc is,dc

]⊤
. Two additional states in the form

of inductance current iLs,dc and capacitor voltage uc on the machine-side are added. The

DC converter current from (5.22) is substituted by grid power Pg in order to relate the

model with the AC side of the converter model. The source side current is,dc is substituted

by source AC power thus describing the model using two comparable variables:

ic,dcuc = Pg

ηg

, is,dcus = ηsPs, (5.23)

where η is the converter efficiency. After the substitution, the model from (5.22) becomes

nonlinear and the linearization is performed:

∆ic,dc = 1
ηguc0

∆Pg −
ic,dc0

uc0
∆uc,

∆is,dc = ηs

us0
∆Ps −

is,dc0

us0
∆us.

(5.24)

The dependence between the DC link voltage and the inputs is obtained by solving

the set of linear equations from (5.22) and (5.24), and is given by:

∆Udc = GPg∆Pg + GPs∆Ps, (5.25)

GPg = − n2pgs2 + n1pgs + n0pg

s5 + d4s4 + d3s3 + d2s2 + d1s + d0
∆Pg, (5.26)
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GPs = n2pss
2 + n1pss + n0ps

s5 + d4s4 + d3s3 + d2s2 + d1s + d0
∆Ps. (5.27)

where n0pg − n2pg, n0ps − n2ps and d0 − d4 are the transfer function coefficients. The AC

power Ps is considered as a disturbance and only the transfer function GPg is used in the

DC voltage control loop, shown in Fig.5.8:

G0,dc = Udc

U∗
dc − Udc

= GR,dc
Udc

I∗
gd

= GR,dc
Igd

I∗
gd

Pg

Igd

Udc

Pg

= GR,dcGc,outGpcGPg . (5.28)

A power to current conversion is added: Pg = GpcIgd and Gpc = 3
2Ed,0 is introduced to

relate DC link voltage transfer functions with the current controllers. It is assumed that

PLL forces Eq to 0.

The open loop transfer function from (5.28) results with an unstable pole. For the

design of a DC link controller, Truxal-Guillemin (TG) approach is chosen[91]. The method

is well established, systematic model-based approach, also known to be highly sensitive

to model parameters variation, which is here avoided by introducing ∆U dependency in

(5.16), rather than E. The model discrepancy that arises from variations in resistances,

capacitances, and inductances, but mostly deviation from chosen linearization operating

point (5.24), is compensated by robust PI controllers of the inner loops, which is also

examined in the experimental results. The current closed loop from (5.21) has three poles:

two complex and one real pole, and is simplified to a first order lag system. The time

constant is calculated by minimizing the mean squared error between the real and the

approximated function [92]. In the TG approach, first the desired closed loop transfer

function is modelled. The pole excess of the model function is chosen equal or greater to

the pole excess of the process function. The pole excess of the open loop process function

is 4. The denominator is chosen to be a n-order polynomial with fixed coefficients while

coefficients of the numerator are adjustable. This finally enables pole stabilization. The

desired model function is written in form of:

Gm(s) = α(s)
β(s) = GR,dcGc,outGpcGp

1 + GR,dcGc,outGpcGp

. (5.29)

Following from (5.29), the controller is defined as:

GR,dc = 1
Gc,outGpcGp

α

β − α
. (5.30)

The expression β−α contains the unstable pole since the objective of this approach is

to relocate it and not to cancel it with the controller zero. This condition is mathematically

written as: β − α = (s − sp)P (s), where P (s) is an auxiliary polynomial and sp is the

unstable pole. Since the order of α(s) and β(s) is not specified (only the ratio is), the



70 Chapter 5. MPC of a microgrid with heterogeneous battery storage systems

following possibility is considered as a starting point:

β4s
4 + β3s

3+β2s
2 + β1s + β0 − α0 = (s− sp)(P3s

3 + P2s
2 + P1s + P0). (5.31)

Following from (5.31), a set of equations is obtained, where the βi coefficients are

defined by the choice of the numerator polynomial type and α0 = β0 is chosen in order

to ensure a unity gain. Since the system from (5.31) has no real roots, the numerator and

denominator order is increased by one and the approach is repeated until a solution is

found. The final model function for the considered DC link is:

Gm(s) = α1s + ω5
n

(s + ωn)5 , (5.32)

α1 =(5ω4
n + 10spω3

n + 10s2
pω2

n + 5s3
pωn + s4

p),

where the parameter ωn determines the closed loop dynamics. The controller is obtained

by putting (5.32) into (5.30):

GR,dc = −a6s
6 + a5s

5 + a4s
4 + a3s

3 + a2s
2 + a1s + a0

s6 + b5s5 + b4s4 + b3s3 + b2s2 + b1s + b0
. (5.33)

The root locus of the open loop with the controller from5.33is shown in Fig.5.9.

Figure 5.9. Root locus curves for the DC link voltage open loop transfer function.
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5.6 Robustness analysis

The robustness of the proposed controllers is studied in this section. Figure5.10shows

the change of the Bode plot of the open-loop system when grid filter, grid impedance and

DC link filter parameters change. In Fig.5.10(a), Bode plot for the grid current open loop

from (5.21) is shown for LC grid filter parameter changes of ±25% and± 50%. The phase

and gain margins (PM and GM) of the original system are 23.7 dB and 74.4◦. The gain

margin barely changes with parameter variations. The phase margin varies between 85.8◦

for -50% (red line) and 65.1◦ for 50% (green line), while providing a safe distance from the

edge of stability for all cases and thus the high robustness of the approach. Figure5.10(b)

shows the Bode plot for grid impedance changes from a stiff grid (Zg = 0.003 Ω) to a

weak grid without and with the reactive component. For all the cases the current loop

remains stable with phase margin between 77◦ and 82◦. In Fig.5.10(c), Bode plot of the

DC voltage open loop from (5.28) for DC link filter parameter changes of ±10% and±20%
is shown. The GM and PM of the original system are 8.19 dB and 33.8◦. The GM changes

from 9.84 dB for +20% (green line) to 6.14 dB for -20% (red line). The PM changes

between 36◦ (green line) and 29.2◦ (red line). The system remains stable, with similar

stability margins despite the significant changes of the parameters.

The robustness to the operating point variation (linearization) is shown in Fig.5.11.

The Bode plots are given for the DC link voltage open loop from (5.28). Figure5.11(a)

shows±2.5%,±5% changes from Udc,0. The stability margins change approximately ±5.5%
for GM and ±2.5% for PM. In Figure5.11, deviations of the disturbance current is,dc

from the operating point are shown. The gain margin stays in the same span as in

the former example. The phase margin changes ±22% from the original system. The

last example shows converter efficiency variations (Fig.5.11(c)). The changes have little

or no impact on the phase margin while the gain margin changes in the range ±3%.

According to the analysis, the designed control algorithm is able to operate in a broad

range of operating points without becoming unstable. The proposed algorithm is also

compared with conventional control methods. The outer loop controller is substituted

by a PI controller with parameters of the outer loop controller chosen according to the

symmetric optimum approach [94] and uses a simplification of the DC link process function

(the additional components are neglected): GUdc = − 1
sCΣUdc0

, CΣ = Cc + Cdc + Cc. For

the inner loop, three control structures are observed: i) the cascaded current control loop

proposed in this paper, ii) current control loop consisting only of the L filter function

while neglecting the capacitance (common method [90,96]) with a PI controller, iii)

current control loop from previous example with the PR controller. The PR controller

is designed using the gains of the inner loop PI controller described in the paper and

choosing ωc = 1 rad/s in order to avoid the infinite gain problems with the ideal PR

controller [97,98]. In Fig.5.12a, Bode plots of the DC link voltage open loop for all

three examples are shown. The GM is approximately 25.8 dB for all examples and the

PM changes between 67.7◦ and 75.5◦. In Fig.5.12(b), Bode plots for different values
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of the parameter a are shown for the PI+PI topology. The parameter a (parameter of

symmetric optimum design) determines the speed of the system. However, simulations

show problems with the DC-link PI controller when deviating from the operating point

while the control loop becomes unstable. By increasing a, the phase margin also increases.

The tuning process is repeated several times in order to achieve an acceptable response

(Fig.5.12(c)). The same problem occurs with the PI+PI+PI topology. As a conclusion,

conventional controllers show larger robustness (higher margins) for a particular linearized

model and selected grid impedance but are more sensitive when system deviates from the

initial assumptions, which is expected to occur regularly in normal operation.
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5.7 Experimental results

The experimental setup consists of an induction machine and a permanent magnet

synchronous machine with coupled shafts, where one acts as a wind turbine emulator and

the other is used as a generator with corresponding generator and grid side converters, i.e.

back-to-back converter. Both converters on the generator side are Danfoss FC302 motor

drives of rated power and current of 7.5 kW and 16 A, respectively, connected to the

common DC-link bus to form a back-to-back converter topology with complex DC link

(Fig.5.5). The rated DC link voltage is 600 V. Control boards are replaced by custom-

designed boards for achieving controllable IGBTs. The developed control algorithm is

implemented on a real-time dSPACE 1103 controller. The switching frequency of the

converters used in experiments is fsw= 8 kHz with sample time of Tds= 0.4 ms.

The setup is installed in the laboratory with a large share of renewables where

voltage conditions are highly dependable on the loads of the rest of the building. The

experiments are performed during high and low load conditions: ”low grid impedance

scenario” and ”high grid impedance scenario”. The grid impedance is determined by the

method described in [99], and presented in Table5.1as well as grid converter parameters

and controller parameters for all three controllers. The DC controller coefficients are

obtained for ωn = 90 rad/s. Simulation results are obtained by using the co-simulation

of MATLAB/Simulink and PLECS. Figure5.13shows a comparison of simulation and

experimental results for a step increase in DC link voltage from 570 V to 630 V. For the

case of controllers design, while taking into account partial DC link model (as in [92]),

there is a clear discrepancy between simulation and experimental results as shown in Fig.

5.13. Response ”full model” depicts the results with the full DC link model (5.22) and

the controller from (5.30). Since PI controllers are robust, the system is still stable but

underperformed and the decoupling is therefore not justified. Results obtained with the

controller from (5.30) show matching simulation and experimental results in terms of rise

time, overshoot and settling times, as shown in Fig.5.14.

Figure5.15shows DC link voltage and d, q grid currents responses for a DC link voltage

reference step change of 60 V in high and low grid impedance scenarios. The disturbance is

compensated after 0.14 s transient for the chosen ωn = 90 rad/s in (5.30). The figure also

shows coinciding results for the case of high and low grid impedance, which confirms the

robustness of the proposed control structure. Introduction of additional pre-filter would

eliminate the overshoot but would also introduce significant delay in the response, which

is not favorable in the current application.

The experiment is also performed for a step increase in generator power from 3.15 kW

to 3.75 kW. The experiments are conducted for high and low grid impedance scenarios,

which is shown in Fig.5.16as a barely noticeable difference in responses. Increased current

in the DC link causes a temporary increase of the DC link voltage, which is compensated

by larger current injected to the grid. The proposed control structure compensates the

disturbance with 1% DC link voltage deviation.
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Figure 5.13. Comparison between experimental and simulation results with the controller
from [92].

Figure 5.14. Comparison between experimental and simulation results with the controller
from (5.30).
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Table 5.1. Parameters used for results

Parameter Value Parameter Value
High Zg 0.059-j1.366 Ω a0 6.175·1012

Low Zg 0.345-j0.92 Ω a1 4.159·1011

Lf 53.1 mH a2 1.162·109

RLf 0.32 Ω a3 6.278·105

Cf 10 µF a4 1246.0
Cdc 100 nF a5 8.993·10−5

Cc 500 µF a6 1.413·10−7

Ldc 1.135 mH b0 0
Rdc 0.15 Ω b1 6.918·1012

KR,in 57.4054 b2 7.509·1010

TI,in 0.1713 s b3 4.213·108

KR,out 0.1301 b4 1.025·106

TI,out 0.00035 s b5 588.8

Figure 5.15. Experimental results with respect to udc,ref step change from 570 V to 630 V.

The three-phase grid current is shown in Fig.5.17. Total harmonic distortion (THD)

of the currents in case of low grid impedance is approximately 6.01%, while for high

grid impedance THD is 6.41%. The THD is further significantly reduced by the utility

grid transformer (55.1 mH, 10/0.4 kV, 8 MVA) resulting in satisfying the grid codes

and keeping the THD below 5%. The THD increase for approximately 40% higher grid
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Figure 5.16. Experimental results with respect to Ps change from 3.15 kW to 3.75 kW.

Figure 5.17. Three phase grid current.

impedance is very low, and mainly due to basic phase-locked loop (PLL) used [100]. Basic

PLL topology is designed to capture a single voltage harmonic, which is enough for stiff

grid conditions. In the current example of different grid impedances and highly expressed

third harmonic, the basic PLL topology is not able to respect this for transformation of
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Figure 5.18. DC link response with respect to ωn changes.

Figure 5.19. DC link response with respect to parameters changes.

(a,b,c) to (d,q) coordinate system. Deteriorated PLL performance therefore also causes

errors in the feedback (d,q) components, and as a consequence this is finally reflected as

a higher THD. Application of a more elaborated PLL structure is expected to further

improve the overall control performance, as discussed in [101,102].

Figure5.18shows the DC link step responses for various cases of chosen ωn that



5.8. Control of a battery system with variable efficiency 81

determine the controller dynamic. The increase of ωn also increases system dynamics at

the cost of larger overshoot/undershoot.

The robustness of the controller is also tested with respect to DC link parameters

variation. This is performed by designing the controller based on the ”wrong” DC

link model parameters. Although the parameters are significantly changed, the system

performance remains similar as shown in Fig.5.19.

The results show high robustness to grid conditions and ± 20% parameter inaccuracy

for the proposed cascaded control with total harmonic distortion increase of only 0.4% at

the grid connection point for 40% increase of the grid impedance.

5.8 Control of a battery system with variable efficiency

In the previous sections, microgrid components and their control algorithms are described.

The goal of each component control is to achieve stable and efficient operation. In this

section a control algorithm for microgrid optimal power flow problem is proposed, with

emphasis on a variable battery storage system (BSS) efficiency.

B
U

C
K

B
O

O
S

T

Energy flow
optimization

EG

EPV EWT

EL

Ech Edch

Figure 5.20. Microgrid topology with heterogeneous battery storage systems.
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Most of developed advanced control approaches use models with constant battery

efficiency and neglect energy losses of power conversions. However, converter efficiency is

affected by conducting and switching losses of the electronic switches but also of normal

operation requirements such as motherboard power consumption or cooling system with

fans. Therefore, the converters efficiency curve is usually characterized with a distinct

maximum [103]. In [104], constant converter efficiency is included in the optimization

model. Power losses are estimated within a control loop with proportional-integral

controller in [105], comparing reference power and the total power from renewable energy

sources and storage units from the previous time step. In [14], the variable converter

efficiency is averaged and respected by control as such. The variable converter efficiency

is modelled in [106], and a genetic algorithm is used. However, the authors omit a more

detailed description of the algorithm. The authors in [107] present a mixed-integer linear

program (MILP) problem formulation for optimal power flow, which includes the variable

converter efficiency. At each time step, the converter efficiency is updated by using the

current measurements and is considered constant over the prediction horizon.

The microgrid power flow is depicted in Fig.5.20. In the microgrid model, production

and load powers are used as known measured disturbances and the energy exchanged with

the utility grid is determined by MPC. Battery storage system includes the battery and

its corresponding power converter, and its dynamics is modelled via the state-of-energy

(SOE), denoted with x. Variable efficiencies η of the storage system are included in order

to achieve a more accurate model:

x(t) = x(t0)−
1
C

∫ t

t0

1
ηdch(P dch)P dch(τ)dτ − 1

C

∫ t

t0
ηch(P ch)P ch(τ)dτ, (5.34)

where C denotes the storage capacity in [Wh] and P denotes battery converter power at

the microgrid side as shown in Fig.5.20. Powers and efficiencies are split into discharging

and charging components, denoted respectively with ’dch’ and ’ch’ subscripts, since the

observed system has separate discharging and charging converters. However, the same

formulation applies for a bi-directional converter, thus avoiding the integer formulation of

the problem [108]. Charging powers have a negative sign and discharging powers have a

positive sign.

5.8.1 Linearization

The discrete-time model is obtained by describing the state of the continuous-time system

at time instances tk, k ∈ Z+, where tk+1 = tk + Ts and Ts is the sampling time. After the

substitutions t0 = tk and t = tk+1 in (5.34) the discrete-time model of the battery storage

system is formed:

x(tk+1) = x(tk)− 1
C

∫ tk+1

tk

1
ηdch(P dch)P dch(τk)dτ − 1

C

∫ tk+1

tk

ηch(P ch)P ch(τk)dτ. (5.35)
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This model is further simplified by assuming mean powers during the sampling interval

Pk = P (tk) = P (t),∀t ∈ [tk, tk+1) and the notations xk+1 = x(tk+1), xk = x(tk) are

introduced:

xk+1 = xk −
1
C

1
ηdch(P dch

k )P dch
k Ts −

1
C

ηch(P ch
k )P ch

k Ts. (5.36)

The converter efficiency (ηconv) curve is imported in the form of a look-up-table (LUT)

from the chosen converter datasheet (depicted with orange and green circles in Fig.

5.21). Two converters, a XP Power QSB40024S48 boost converter and a Delta Electronics

Q48SC12042NRDH buck converter (Table5.2), are used in order to achieve a bidirectional

energy flow. The battery efficiency is defined as power loss over the battery internal

resistance for the nominal range of converter currents (first subfigure in Fig.5.21) and

combined with the converter efficiency data. The considered battery model with internal

resistance value of Rint = 10 mΩ is taken from [37].

Table 5.2. Converter parameters.

Converter type Vin Vout Pout
XP Power QSB40024S48 9-36 V 48 V 400 W

Delta Electronics Q48SC12042NRDH 36-75 V 8-13 V 500 W

Both curves are adjusted for the normalized input power range. The resulting data has a

distinct maximum, and is fitted to an exponential curve (Fig.5.21) which has proved to be

more accurate than the higher order polynomials, and less complex than spline functions:

η(Pnorm) = apnebpnPnorm + cpnedpnPnorm ,

∂η

∂Pnorm
= apnbpnebpnPnorm + cpndpnedpnPnorm .

(5.37)

In the lower power ranges the switching losses are more prominent and greatly affect

the efficiency. Therefore, for the power range below maximal efficiency, the mean power

(given by the SLP control algorithm) is further modulated within the sampling period.

The battery is charged/discharged with the maximal efficiency power during a shorter

period, achieving maximal efficiency and the converter switches are inactive for the rest

of the period. This is reflected in the implemented efficiency curve by holding maximal

efficiency in the lower power range. The final curve is depicted with blue line in the

lower two subfigures (Fig.5.21) and it corresponds to the battery storage system overall

efficiency in charging and discharging ηch,BSS and ηdch,BSS, with taken into account the

possibility of modulation of power converter operation within the sampling interval.

In both cases, the maximum of the approximated curve is between 40 % and 50 %

of the nominal power, which corresponds to power ranges 160 W - 200 W for the boost

converter and to power range 200 W - 250 W for the buck converter.

The model from (5.34) is rewritten with the substitution Edch
K = P dch

k Ts, Ech
k = P ch

k Ts

and then linearized around the point Edch,0
k , Ech,0

k :
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Figure 5.21. Battery storage system efficiency curves. The dashed lines represent instan-
taneous power and the full lines represent the mean power with the possibility of time
modulation.

∂xk+1

∂Edch
k

∣∣∣∣∣
Edch,0

k

= − 1
C

1
η(Edch,0

k )
+ 1

C

Edch,0
k

η(Edch,0
k )2

η̇(Edch,0
k ), (5.38)

∂xk+1

∂Ech
k

∣∣∣∣∣
Ech,0

k

= − 1
C

(
η(Ech,0

k ) + Ech,0
k η̇(Ech,0

k )
)

, (5.39)

∆xk+1 = ∆xk +
(

∂x

∂Edch
k

∣∣∣∣∣
Edch,0

k

∆Edch
k + ∂x

∂Ech
k

∣∣∣∣∣
Ech,0

k

∆Ech
k

)
, k = 0, ..., N − 1, (5.40)

where Edch
k , Ech

k are the mean discharging and charging energies within the sampling time

and k is the time step. Using (5.40), and by introducing the vector ∆uk = [∆Edch
k ∆Ech

k ]⊤

and notation with the operator ∇uk
:= [ ∂

∂Edch
k

∂
∂Ech

k
] the linearized model around the point

u0
k = [Edch,0

k , Ech,0
k ] is defined:

∆xk+1 = ∆xk +∇uk
x|u0

k
∆uk, ∆uk = uk − u0

k,
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∆xk+1 = xk+1 − x0
k+1 → xk+1 = x0

k+1 + ∆xk+1. (5.41)

The vector x0
k+1 is the SoE achieved by implementing the control input u0

k.

5.8.2 Problem formulation

The objective of the considered microgrid operation is to achieve maximum economic

gain:

J = min
uk

N−1∑
k=0

ckEG
k = min

u
cEG, (5.42)

s.t.

Edch
k ≥ 0, Ech

k ≤ 0, (5.43)

EG
k = EL

k − Eres
k − 1uuk, (5.44)

xmin ≤ xk ≤ xmax, (5.45)

umin ≤ uk ≤ umax, (5.46)

P G
minTs ≤ EG

k ≤ P G
maxTs, (5.47)

where ck is the energy price at each sampling interval, the maximum grid converter power

is denoted with P G
max and P G

min and umax and umin represent the maximum battery converter

energy. The maximum and minimum SoE of the battery are represented with xmax and

xmin. For MPC implementation, the constraints are written in a matrix form over the

horizon N . The linearized model (5.41) over the horizon N thus becomes:

∆x = Ad∆x0 + Bd∆u, (5.48)

x =



∆x1

∆x2
...

∆xN

 , ∆u =



∆u0

∆u1
...

∆uN−1

 ,

Ad =


1
...

1

 ,
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Bd =



∇u0x|u0
0

0 · · · 0

∇u0x|u0
0
∇u1x|u0

1
· · · 0

...
. . . . . .

...

∇u0x|u0
0

· · · · · · ∇uN−1x|u0
N−1

 ,

where x and u are the state and input vectors stacked over the prediction horizon.

The constraints from (5.43), rewritten in matrix form become:

Ieu ≤ Be, (5.49)

ie =
−1 0

0 1

 , Ie =



ie 0 · · · 0

0 ie · · · 0

...
. . . . . .

...

0 · · · · · · ie

 , (5.50)

be =
0
0

 , Be =


be
...

be

 . (5.51)

The energy balance equation from (5.44) is rewritten as:

−IEG + Agu ≤ Bg (5.52)

Ag = −Iu, Bg = (Eres − EL), (5.53)

iu =
[
1 1

]
, Iu =



iu 0 · · · 0

0 iu · · · 0

...
. . . . . .

...

0 · · · · · · iu

 , (5.54)

where Eres and EL are the renewables production and load stacked vectors. The SoE

constraint from (5.45) becomes:

Axu ≤ Bx, (5.55)

Ax =
 Bd

−Bd

 , Bx =
 xmax − x0 + Bdu0

−xmin + x0 − Bdu0

 , (5.56)
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where u0 is the initial input vector and x0 is the vector of SoE, achieved by implementing

u0. The grid and battery converter constraints from (5.46) and (5.47) are rewritten as

follows:

Auu ≤ Bu, (5.57)

Au =
 I

−I

 , Bu =
 umax

−umin

 , (5.58)

Apu ≤ Bp, (5.59)

Ap =
−Iu

Iu

 , Bp =
 PG

maxTs − EL + Eres

−PG
maxTs + EL − Eres

 , (5.60)

where PG
max, umax and umin denote the maximum grid converter power and the maximum

battery converter current over the prediction horizon. An additional constraint is added

to ensure that the SLP algorithm stays in the neighbourhood of the initial point in every

iteration:

−∆ ≤ u− u0 ≤ ∆ ⇒ A∆u ≤ B∆, (5.61)

A∆ =
I 0

0 −I

 , B∆ =
 u0 + ∆
−u0 + ∆

 , (5.62)

where ∆ determines the maximum deviation of the solution vector from the initial point

at each iteration.

The SLP algorithm is shown in Fig.5.22. At each time step, a control vector u0
1 is

chosen as an initial point and the problem is linearized. The algorithm solves the problem

from (5.42) and then replaces, at each iteration, the control vector u0
1 with the current

problem solution u∗
i and linearizes around it, until the exit condition is reached. For

this implementation, the comparison of average cost function values is chosen as the exit

condition. The algorithm calculates the average value of the cost function in the last three

iterations and compares it to the average calculated in the previous iteration in order

to determine if the exit condition Javg,i − Javg,i−1 < ε is reached, where ε is the chosen

convergence tolerance.

5.8.3 Simulation results

The control algorithm is implemented in MATLAB and several 7-day period simulations

are performed. The battery system model, depicted in Fig.5.1, is a combination of two

converters: XP POWER DC/DC boost converter and Delta Electronics buck converter
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Figure 5.22. Derived SLP algorithm.

(Table5.2) in order to achieve a bidirectional energy storage topology. The efficiency

curves include battery and converter variable efficiency as shown in Fig.5.21.

The proposed model is compared to a common approach with constant charging and

discharging efficiencies, i.e. η(P dch) = ηdch, η(P ch) = ηch. The efficiency curves from

Fig.5.21are approximated with a constant and the best approximation (using least-

square-error) is chosen: ηdch = 87.83%, ηch = 94.49% (dashed red lines in Fig.5.21).

Therefore, charging equation (5.34) takes the linear form.

The discretization time is Ts = 10 min which corresponds to the production and load
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Figure 5.23. Comparison of MPCs 7-day operation with constant (linear) and variable
efficiencies (SLP).

energy data acquisition period. The prediction horizon for both models is N = 144 in order

to capture both tariffs of the considered two-tariff energy pricing model. In simulations,

receding horizon control (RHC) is implemented, where the optimization problem from

(5.42) is solved every 10 min and only the first control input is applied to the nonlinear

storage system model. In Fig.5.23, grid energy exchange, battery charging/discharging
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energies and the battery SoE are shown over a 7-day period. The orange dashed line

denotes the responses obtained by MPC that uses a linear model and the blue line

represents the responses obtained with MPC that uses the introduced model with variable

efficiency. The control inputs obtained with the latter control strategy clearly follow the

efficiency curve since all the charging/discharging energies are lower than the nominal.

Moreover, the charging and discharging mean powers are mostly kept between 0.4−0.5Pn,

which is around the maximum of the approximated curve. All the simulations were done

with the full nonlinear model and the results are summarized in Table5.3. The table

compares the total cost and the total charging/discharging battery energies over the 7-

day period. The initial condition x0 is the same for both models. At the end of the observed

simulation time, both models charge the batteries to maximum allowed percentage (90%).

In all three categories, the SLP algorithm shows better results with higher profit, less

energy used for charging, and more energy discharged and injected into the grid. The

savings achieved with the variable efficiency are approximately 7% over a 7-day period,

however these savings come with higher computational cost since the average computation

time of a time step k is 0.03 s for the linear model and 0.78 s for the SLP model on a 3.40

GHz machine with 8 GB RAM. The savings would increase more in such conditions where

the storage system is frequently charged/discharged, especially if higher/nominal powers

are thereby demanded. Systems with older batteries (higher internal resistance) would also

benefit from the SLP algorithm because of a higher efficiency drop with higher currents

(powers) as is shown in Fig.5.24. The internal resistance is increased to Rint = 20 mΩ and

the same simulation scenario is repeated. The SLP algorithm again follows the maximum

of the approximated curve (Fig.5.25) which results in approximately 11% savings over

the 7-day period. The results of this model are summarized in Table5.4.

Table 5.3. Charging and discharging energies and profit.

MPC algorithm
∑

Ech [kWh]
∑

Edch [kWh]
∑

cost [e]
Linear, 7 days -12.71 9.72 -1.56
SLP, 7 days -12.53 10.63 -1.69

Table 5.4. Charging and discharging energies and profit for storage system with battery
internal resistance Rint = 20 mΩ.

MPC algorithm
∑

Ech [kWh]
∑

Edch [kWh]
∑

cost [e]
Linear, 7 days -12.96 9.17 -1.47
SLP, 7 days -12.64 10.55 -1.67
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Figure 5.24. Battery storage system efficiency curves with internal resistance Rint = 20
mΩ.
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Figure 5.25. Comparison of MPCs 7-day operation with constant (linear) and variable
efficiencies (SLP), with battery internal resistance Rint = 20 mΩ.
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5.9 MPC of a microgrid with n battery storage systems

In this section, the microgrid power flow optimization algorithm is modified in order to

include more than one battery storage system (Fig.5.26). The cost function and the

constraints are defined as in (5.47):
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Figure 5.26. Microgrid topology with heterogeneous battery storage systems.

J = min
ua

k

N−1∑
k=0

ckEG
k = min

ua
cEG, (5.63)

s.t.

Edch
j,k ≥ 0, Ech

j,k ≤ 0, j = 1, . . . , nb, (5.64)

EG
k = EL

k − Eres
k − 1uua

k, (5.65)

xmin ≤ xa
k ≤ xmax, (5.66)

umin ≤ ua
k ≤ umax, (5.67)

−∆ ≤ ua
k ≤ ∆, (5.68)

P G
minTs ≤ EG

k ≤ P G
maxTs, (5.69)
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where xa
k = [x1,k, . . . , xnb,k]⊤ and ua

k = [u1,k, . . . , unb,k]⊤ are augmented state and

control vectors and nb is the number of battery storage systems in the observed microgrid.

The j -th control vector contains the discharging and the discharging energies uj,k =
[Edch

j,k Ech
j,k]⊤ as defined in section 5.9. The storage systems energy model from The

constraints from (5.48) and the constraints from (5.49) are rewritten as:

Aa
d =


Ad1 · · · 0
...

. . .
...

0 · · · Adn

 , Ba
d =


Bd1 · · · 0
...

. . .
...

0 · · · Bdn

 . (5.70)

Ia
e =


Ie · · · 0
...

. . .
...

0 · · · Ie

 , Ba
e =


Be

...

Be

 , (5.71)

In the energy balance constraint (Eq. (5.53)), only the matrix Ag is augmented:

Aa
g =

[
Ag · · · Ag

]
, (5.72)

The SOE and battery and grid converter constraints from Eqs. (5.55) - (5.59) are also

augmented:

Aa
x =


Ax1 · · · 0
...

. . .
...

0 · · · Axn

 , Ba
x =


Bx1

...

Bxn

 , (5.73)

Aa
u =


Au · · · 0
...

. . .
...

0 · · · Au

 , Ba
u =


Bu1

...

Bun

 , (5.74)

Aa
p =

[
Ap · · · Ap

]
, Ba

p =


Bp1

...

Bpn

 , (5.75)

The constraint on the control input change (5.62) for the SLP algorithm is rewritten as:

Aa
∆ =


A∆ · · · 0
...

. . .
...

0 · · · A∆

 , Ba
∆ =


B∆1

...

B∆n

 . (5.76)

The algorithm was tested on the same microgrid topology from Section 5.8. with

additional battery systems. In the simulation scenario, the microgrid consists of six BSSs

- three storage systems with a ”new” battery and three with an ”old” battery. The new
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Figure 5.27. Heterogeneous battery storage system efficiency curves, variable battery
model.

battery efficiency curve is obtained from the model identified in Chapter 3. For simplicity

reasons, at this point, the efficiency curve is considered constant with respect to SOC and

the curve for SOC = 100% is used in this simulation scenario. Battery ageing is reflected

in the capacity fade and internal resistance rise, therefore the old BSS is modelled with

50 % less capacity and 10 times higher internal resistance. The drastic difference in ohmic

resistances is chosen in order to achieve a noticeable difference in efficiency curves, which

would simplify the evaluation of the optimization results. The charging and discharging

efficiencies are depicted in Fig.5.27. The maximum of the discharging curve for the new

BSS is achieved at around 0.425Pn and for the old BSS at 0.354Pn. The difference between

charging curves is even bigger, decreasing from 0.47Pn to 0.34Pn. A 1-day operation of

a microgrid with heterogeneous BSSs is shown in Figs.5.28and5.29. At the beginning

of simulation, all batteries are at 90% SOE which is the upper constraint. From the

cumulative BSS energy exchange subfigure and the charging energy subfigure (Subfigures

1 and 3 on Fig.5.29) we observe that all the BSSs are charging at the same time while the

energy price is low and discharging during high energy price period. The control algorithm

charges the batteries for a longer time with lower energies, as expected. In this scenario,

with heterogeneous battery systems, we observe that the charging and discharging energies

of the old battery systems (BSS4-BSS6) are lower corresponding with their efficiency

curves. Also, they are charged/discharged more quickly than the new BSSs, as depicted in

the SoE subfigure of Fig.5.29). These results show that the algorithm successfully tracks
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the maximum eficiency of each BSS. The profit of the 1-day heterogeneous BSS microgrid

operation is approximately 0.9 e, and the average time step execution time is 12.17 s.

Figure 5.28. Microgrid 1-day operation with 6 BSS, part 1.

The same system is simulated over a 7-day period achieving the profit of 5.1 e. The

average execution time of the algorithm at each time step is 12.53 s, which is slightly

longer than the execution time in the 1-day scenario, it is still significantly smaller than

10 minutes which is the sample time of the system. The system behavior is consistent

throughout the whole simulation.
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Figure 5.29. Microgrid 1-day operation with 6 BSS, part 2.
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Figure 5.30. Microgrid 7-day operation with 6 BSS, part 1.
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Figure 5.31. Microgrid 7-day operation with 6 BSS, part 2.





Chapter 6

Conclusion

In this thesis, a control algorithm of a microgrid battery storage system (BSS) is

proposed. The control algorithm is separated into two levels, microgrid and BSS, with

the mutual goal of efficient system operation. Microgrid components and their optimal

control strategies are described offering insight into how each component contributes to

the operation of the whole system. A stability problem with the grid converter, the

key component in charge of the stability of the whole microgrid, was detected. The

conventional and modern DC link controllers may become unstable due to varying grid

conditions. Also, the varying operating point of the converter may also be the cause of

instability. Therefore, effort was invested into designing a controller robust to varying

operating conditions. A thorough robustness analysis as well as experimental verification

proved the efficacy of the proposed controller design method. Further research of the

microgrid components showed continuous neglecting of the battery and converter variable

efficiencies in control algorithms. At the BSS level, a variable parameter battery model

was introduced in order to achieve efficient battery charging or discharging. The model in

the form of state of charge (SOC) interval dependent look-up-tables (LUTs) was obtained

using least-square parameter identification. This representation was chosen because it

offers enough information for the control algorithm without adding complexity. Three

variations of the least-square method were used during the identification process, each

having their advantages and disadvantages. On both levels, the inclusion of the variable

battery model resulted in improved system operation. The results of the BSS control

algorithm with the variable model compared with the constant model algorithm show

improvement in model accuracy and residual SOC. At the microgrid level, the power

flow optimization problem is solved. The BSS model combines power dependent converter

efficiency and the battery efficiency obtained from the variable model. This model is

included in the microgrid optimization flow and compared to the conventional constant

efficiency control. In order to achieve the maximum profit, the algorithm tracks the BSS

maximal power point which results in more efficient system operation and decreased stress

on the components. Future work will be focused on accurate SOC and SOE estimation,

101
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as a prerequisite for closed loop BSS control. At the microgrid level, with the SOC and

SOE information, the whole SOC-dependent efficiency model could be included leading

to even more profitable microgrid operation.

The following scientific contributions are the result of the thesis:

� Method for model identification of lithium-ion battery storage systems with variable

converter and battery efficiencies, suitable for application in model predictive

control.

� Model predictive control of battery charging and discharging current considering the

identified nonlinear mathematical model of a battery storage system for achieving

its maximum efficiency.

� Model predictive control of a microgrid with heterogeneous battery storage systems

for achieving its cost-optimal operation.
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[54]M. Gulin, M. Vašak, and T. Pavlović. Dynamical behaviour analysis of a DC

microgrid in distributed and centralized voltage control configurations. 2014 IEEE

23rd International Symposium on Industrial Electronics (ISIE), pages 2365–2370,

2014.
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distributed model predictive control strategy for back-to-back converters. IEEE

Transactions on Industrial Electronics, pages 5867–5878, 2016.

[87]J. Liu, S. Vazquez, L. Wu, A. Marquez, H. Gao, and L. G. Franquelo. Extended

state observer-based sliding-mode control for three-phase power converters. IEEE

Transactions on Industrial Electronics, 64(1):22–31, Jan 2017.

[88]W. Luo, T. Zhao, X. Li, Z. Wang, and L. Wu. Adaptive super-twisting sliding mode

control of three-phase power rectifiers in active front end applications. IET Control

Theory Applications, 13(10):1483–1490, 2019.

[89]Y. Huang, X. Yuan, J. Hu, and P. Zhou. Modeling of VSC connected to weak grid

for stability analysis of DC-link voltage control. IEEE Journal of Emerging and

Selected Topics in Power Electronics, pages 1193–1204, 2015.

[90]M. Davari and Y. A. I. Mohamed. Dynamics and robust control of a grid-connected

VSC in multiterminal DC grids considering the instantaneous power of DC- and

AC-side filters and DC grid uncertainty. IEEE Transactions on Power Electronics,

pages 1942–1958, 2016.

[91]J.G.Truxal. Automatic Feedback Control System Synthesis. McGraw Hill, 1955.
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predictive control of a microgrid with a variable efficiency battery storage system.

IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Society,

2022
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