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Abstract 

Focusing on the improvements in detecting brain state transitions, this thesis specifically 

investigates the transition from a waking state to a drowsy state during driving. Driver 

drowsiness is a significant road safety concern that contributes to numerous accidents and 

fatalities worldwide. The conducted research focuses on the detection and prediction of driver 

drowsiness using multichannel electroencephalography (EEG) signals. The published review 

paper [Pub1] systematically examines EEG signal features, drowsiness detection systems, and 

discusses potential improvements. A key insight found during the review is that current methods 

focus on a single brain region, while frequency-domain features from different brain regions 

behave differently during transition to drowsiness state. 

Based on this insight, a novel brain state transition detection method that extracts 

multichannel frequency-domain features for improved drowsiness identification was developed 

[Pub2]. Further research also revealed that male and female subjects have different brain states 

and brain state transitions when experiencing drowsiness during driving [Pub4]. Incorporating 

information on the driver's sex improved drowsiness detection accuracy, and a reliable sex 

classifier was constructed using EEG data [Pub3]. 

For future research, developing a unified definition of drowsiness and creating a publicly 

accessible database with diverse datasets would enable more reliable comparisons of different 

models. Additionally, enhancing the developed method by allowing operations other than 

adding in the construction of the ratio-based indices could yield even better results. 
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Prošireni sažetak 
Naslov:  

Metoda izlučivanja značajki višekanalnoga elektroencefalograma u frekvencijskoj domeni 

za detekciju promjene stanja moždane aktivnosti 

 

Prošireni sažetak: 

Ova disertacija usmjerena je na poboljšanje detekcije prijelaza između stanja moždane 

aktivnosti, s posebnim fokusom na prijelaz iz budnog stanja u stanje pospanosti tijekom vožnje. 

Pospanost vozača veliki je problem za sigurnost na cestama jer značajno pridonosi nesrećama 

i smrtnim slučajevima diljem svijeta. Smanjena sposobnost prosuđivanja i prostorne percepcije 

te odgođeno vrijeme reakcije uzrokovani pospanošću ometaju vozačevu sposobnost da 

učinkovito reagira na dinamične uvjete na cesti. Rješavanje pospanosti vozača važno je za 

spašavanje života i ublažavanje ekonomskih posljedica povezanih s prometnim nesrećama. 

Pospanost tijekom vožnje može se mjeriti ljestvicama za subjektivnu procjenu, matematičkim 

modelima dinamike spavanja, mjerama temeljenim na karakteristikama vožnje, mjerama 

temeljenim na ponašanju vozača u vožnji te mjerenjem elektrofizioloških signala vozača. 

Subjektivne ljestvice pospanosti od ispitanika zahtijevaju periodičnu samoprocjenu 

pospanosti zbog čega nisu prikladne za mjerenje u realnim uvjetima već se pretežito koriste u 

laboratorijskom okruženju. Najpoznatija subjektivna ljestvica pospanosti naziva se Karolinska 

ljestvica pospanosti gdje se pospanost procjenjuje na ljestvici od jedan do devet. Svaka razina 

pospanosti ima pridijeljeni tekstni opis, a dodatni nedostatak primjene Karolinske ljestvice je 

mala razlika među opisima susjednih razina. Zbog toga je i korištenje ljestvice otežano. 

Matematički modeli dinamike spavanja također nisu prikladni za korištenje u realnim uvjetima 

jer se temelje na malom broju parametara i prvenstveno su zamišljeni za primjenu kod 

određivanja smjena radnika.  

Modeli temeljeni na karakteristikama vožnje su trenutno najčešći u upotrebi u realnim 

uvjetima. Senzori automobila daju informacije o parametrima vožnje kao što su promjene kuta 

volana, frekvencija promjene kuta volana, jačina pritiska papučice gasa, pozicija automobila u 

traci i slično. Praćenjem navedenih parametara kroz vrijeme može se napraviti procjena 

pospanosti vozača. Takve procjene temelje se na istraživanjima koja su utvrdila određene 

korelacije s pospanošću. Glavni nedostatak ovih modela je njihova ovisnost o vozačevoj 

motivaciji (vozač svjesno može utjecati na parametre koji se mjere) i nemogućnost rane 

detekcije pospanosti. Modeli temeljeni na ponašanju vozača su obećavajuć pristup za koji se 
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pretpostavlja da će u budućnosti biti korišten u realnim uvjetima. U većini slučajeva takvi 

sustavi oslanjaju se na informacije s kamera u prostoru vozača automobila. Glavni problem je 

što tehnologija još uvijek nije dovoljno kvalitetna da bi se iz slika vozača kontinuirano i 

pouzdano izlučile ponašajne značajke vozača. Značajke koje se često koriste u ovim sustavima 

su stupanj zatvorenosti oka, broj treptaja, frekvencija treptaja, pozicija glave, detektirano 

zijevanje i slično.  

Mjerenje elektrofizioloških signala vozača također predstavlja pouzdanu i obećavajuću 

metodu detekcije pospanosti. Glavni nedostatak ovog pristupa je njegova nametljivost, koja 

ujedno narušava slobodu kretanja vozača u vožnji. Zbog navedenog nedostatka malo je 

vjerojatno da će takav pristup biti korišten u realnim uvjetima ukoliko ne dođe do drastičnog 

smanjenja nametljivosti korištenih tehnologija. Međutim, zbog visoke pouzdanosti tih sustava, 

oni su često korišteni u laboratorijskom okruženju. Najčešće korišteni elektrofiziološki signali 

za detekciju pospanosti vozača su elektroencefalogram (EEG), elektrokardiogram i 

elektromiogram. U ovoj disertaciji pospanost se detektira korištenjem signala EEG-a.  

U sklopu istraživanja proveden je opsežan pregled literature [Pub1], sustavno ispitujući 

značajke signala EEG-a i sustave za otkrivanje pospanosti. Pregledni rad dao je četiri ključna 

doprinosa: (1) temeljito ispitivanje i sistematizacija značajki izlučenih iz EEG signala, (2) 

opsežan pregled postojećih sustava temeljenih na EEG signalu za otkrivanje pospanosti vozača, 

(3) komparativnu analizu sličnih pregleda i (4) raspravu o mogućim poboljšanjima 

najsuvremenijih sustava za detekciju pospanosti kod vozača. Osim toga, pregledni rad je dao i 

nekoliko prijedloga i smjernica za buduća istraživanja, kao što je povećanje veličine uzorka, 

validacija sustava za otkrivanje pospanosti temeljenih na EEG-u s neviđenim ispitanicima i 

stavljanje javno dostupnih skupova podataka koji bi omogućili poštene usporedbe različitih 

modela. 

Pregledane značajke EEG-a svrstane su u kategorije: značajke vremenske domene, 

frekvencijske domene, vremensko-frekvencijske domene, nelinearne značajke, entropije, 

prostorno-vremenske značajke i značajke kompleksnih mreža. U istraživanju su korišteni strogi 

kriteriji za uključivanje članaka kako bi se osiguralo da samo najkvalitetniji sustavi za detekciju 

pospanosti budu uključeni. Kriteriji su: 1) članak je objavljen u znanstvenom časopisu, 2) 

objavljen je 2010. godine ili kasnije, 3) članak ima minimalno 3 citata za svaku godinu od 

objave, 4) članci iz zadnje dvije godine koji nemaju dovoljan broj citata uključeni su ako su 

objavljeni u časopisu iz prvog kvartila prema bazi Web of Science, i 5) broj ispitanika u 

eksperimentu mora biti veći od deset. Koristeći navedene kriterije uključeno je 39 članaka. 

Najzastupljenije su značajke frekvencijske domene koje se nalaze u ukupno 24 članka. 
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Pregledani sustavi za detekciju pospanosti uglavnom rade binarnu klasifikaciju, uz svega tri 

sustava koji rade klasifikaciju u više od dvije klase. Točnosti su u rasponu od 67% do 99,5%, s 

medijanom od 93,5%. Prilikom označavanja ciljne varijable signala za periode pospanosti 

dominira pristup subjektivne ljestvice pospanosti. 

Važan uvid stečen tijekom postupka pregleda bio je da se trenutne metode fokusiraju na 

jednu regiju mozga za izdvajanje značajki, unatoč činjenici da se značajke frekvencijske 

domene iz različitih regija mozga ponašaju različito prilikom prijelaza iz stanja budnosti u 

stanje pospanosti. Na temelju ovog zapažanja razvijena je nova metoda detekcije prijelaza 

stanja moždane aktivnosti koja izdvaja značajke frekvencijske domene iz višekanalnog EEG-a 

kako bi preciznije identificirala pospanost [Pub2]. Predložena metoda je pouzdana, a značajke 

frekvencijske domene temeljene na signalima iz više regija mozga nadmašuju one koje se 

temelje na jednoj regiji mozga u raznim metrikama. Također, metoda se može primijeniti u 

drugim domenama detekcije prijelaza stanja moždane aktivnosti. 

Razvijena metoda koristi višekriterijsku optimizaciju. Optimiraju se parametri za svaku 

pojedinu frekvencijsku značajku kako bi se dobio višekanalni omjer (omjer frekvencijskih 

značajki iz različitih regija mozga). Vrijednostima parametara određuje se utjecaj dodijeljene 

mu frekvencijske značajke na višekanalni omjer. Tako, primjerice, postavljanjem parametra na 

nulu isključujemo utjecaj dodijeljene mu značajke u konačnom višekanalnom omjeru, dok 

povećanjem vrijednosti parametra povećavamo i utjecaj dodijeljene mu značajke na konačni 

višekanalni omjer. 

Za višekriterijsku optimizaciju koristi se genetski algoritam Non-dominated sorting genetic 

algorithm II (NSGA-II). Konačni cilj je dobiti višekanalni omjer koji će izgledom biti što je 

moguće sličniji funkciji skoka. Zbog toga višekriterijska optimizacija koristi dvije 

suprotstavljene ciljne funkcije. Prva ciljna funkcija genetskog algoritma nagrađuje jedinke koje 

imaju veliku razliku između srednjih vrijednosti signala lijevo od skoka i desno od skoka. 

Ovakva funkcija sama po sebi nije dovoljna jer rezultira mnogim rješenjima u kojima nema 

vidljivog skoka, već se na jednoj od strana signala pojavljuje veliki šiljak koji onda stvara privid 

velike razlike srednjih vrijednosti lijeve i desne strane. Zbog tog problema uvedena je druga 

ciljna funkcija genetskog algoritma – minimizacija oscilacija signala višekanalnog omjera 

lijevo i desno od skoka. Takvom ciljnom funkcijom kažnjavaju se jedinke koje u sebi imaju 

velike oscilacije i velike šiljke. 

Kako u stvarnosti nije moguće ostvariti stvarnu funkciju skoka s trenutnim prijelazom iz 

jedna razine u drugu razinu uvedena je dodatna prilagodba u vidu prijelaznog prozora. Pomični 

prijelazni prozor korišten je u blizini sredine signala, odnosno u području gdje se očekuje 
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promjena iz jednog stanja u drugo. Signal unutar prijelaznog prozora se zanemaruje te se na 

tom dijelu signala ne računaju vrijednosti ranije objašnjenih ciljnih funkcija. Takvim 

prijelaznim prozorom signalu se daje vremena da promijeni vrijednost bez da pritom bude 

kažnjen temeljem ciljnih funkcija. 

Razvijena metoda primjenjiva je na bilo koji problem detekcije promjene stanja moždane 

aktivnosti, a u okviru ove disertacije njena primjena isprobana je na primjeru detekcije 

pospanosti [Pub2]. U tu svrhu korišteni su javno dostupni podatci, a kao područje pospanosti 

korištena je prva faza sna. Korištenjem ove metode dobivena su dva višekanalna omjera. 

Usporedbom sa sedam postojećih jednokanalnih frekvencijskih omjera pokazano je da dobiveni 

višekanalni frekvencijski omjeri imaju višu točnost i preciznost, bolje statističke pokazatelje, te 

smanjuju vrijeme potrebno za detekciju pospanosti. 

Dodatna istraživanja otkrila su da muški i ženski ispitanici pokazuju različita stanja 

moždane aktivnosti i prijelaze među stanjima moždane aktivnosti prilikom pospanosti tijekom 

vožnje [Pub4]. U sklopu ovog istraživanja korištene su značajke frekvencijske domene i 

značajke kvantificirajuće analize ponavljanja. Statističkim testovima pokazano je kako se 

pojedine značajke bitno razlikuju kod muškaraca i žena tijekom vožnje u pospanom stanju. 

Također, istraživanjem je utvrđeno kako postoje i značajne razlike u korelaciji značajki u 

različitim regijama mozga. Muški ispitanici imaju značajno više korelacije u usporedbi sa 

ženskim ispitanicima što može biti indikator jače sinkronizacije moždanih aktivnosti kod 

muškaraca.   

Razlike u značajkama EEG signala među muškarcima i ženama otprije su poznate, no 

većina istraživanja koja se bavila tom problematikom promatrala je ispitanike tijekom odmora 

sa zatvorenim očima. Ovim istraživanjem potvrđeno je da razlika u značajkama EEG signala 

postoji i tijekom kompleksne aktivnosti kao što je vožnja automobila.  

Slično vrijedi i za istraživanja koja su razvijala modele klasifikacije spola ispitanika 

temeljem značajki EEG signala. Postojeći modeli razvijani su koristeći podatke ispitanika u 

sjedećem položaju sa zatvorenim očima. Takvi modeli imaju visoke točnosti, u prosjeku oko 

98%. U sklopu ovog istraživanja razvijen je model za klasifikaciju spola ispitanika tijekom 

kompleksne aktivnosti – vožnje automobila [Pub3]. Razvijeni model na ispitanicima tijekom 

vožnje ima točnosti usporedive s onima iz prethodnih istraživanja.  

Dobiveni model iskorišten je za ostvarivanje dodatnog poboljšanja detekcije prijelaza iz 

stanja budnosti u stanje pospanosti tijekom vožnje. Uključivanjem podataka o spolu vozača 

dobivenih razvijenim modelom poboljšana je točnost detekcije pospanosti [Pub3]. Odvajanjem 

skupa podataka na jedan s muškim ispitanicima i jedan sa ženskim ispitanicima postižu se 
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značajna poboljšanja detekcije pospanosti – 3% za muške ispitanike i 7% za ženske ispitanike. 

Takav pronalazak nije iznenađujuć s obzirom na značajne razlike u EEG značajkama muškaraca 

i žena. 

U budućem radu u području detekcije pospanosti vozača temeljenog na EEG-u, ključno je 

omogućiti pouzdanije usporedbe različitih modela. Dva glavna aspekta mogu pridonijeti ovom 

napretku: (1) razvijanje jedinstvene, standardne definicije pospanosti koju prihvaća istraživačka 

zajednica, smanjujući subjektivnu pristranost i olakšavajući usporedbu među različitim 

studijama, i (2) stvaranje javno dostupne baze podataka s više od 100 ispitanika, što omogućuje 

pravednu usporedbu različitih modela.  

Također, dodatna poboljšanja razvijene metode za dobivanje višekanalnih omjera u okviru 

istraživanja [Pub2] mogla bi dati još bolje rezultate. Trenutna metoda stvara višekanalne omjere 

na temelju omjera zbrojeva između značajki frekvencijske domene iz različitih regija mozga. 

Uključivanje ostalih matematičkih operacija u konstrukciju višekanalnih omjera bio bi 

obećavajući korak naprijed u istraživanju.  

 

Ključni pojmovi: detekcija pospanosti, eeg značajke, značajke frekvencijske domene, 

višekanalne frekvencijske značajke 
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Chapter 1  

 

Introduction 

Brain state transition occurs many times during a day. It can be caused by many diverging 

factors like sensory stimuli, stress, hormonal fluctuations, illness, medications, weather, etc. 

Brain state transition can be very simple and fast or complex and slow. Opening one's eyes is 

an example of a simple and fast action that causes a simple brain state transition [1], while 

changing from the preclinical stage of dementia to the late stage of dementia can be slow and 

complex in terms of brain changes [2]. Another example of a brain state transition is changes 

in sleep stages [3], which is closely related to the changes between wake and drowsy state [4]. 

Early and reliable detection of these and many other brain state transitions can lead to improved 

quality of life and/or saving lives. For this reason, methods for the detection of brain state 

transition recently emerged as an important research question and is the topic of this thesis [5]–

[7]. The rest of this chapter is structured as follows: first, the background and the motivation 

for the thesis are further elaborated, followed by the detailed definition of the thesis scope, then 

the main scientific contributions of the thesis are introduced and the description of the thesis 

structure is provided. 

1.1 Background and motivation 

Early detection of certain changes in the brain states can have a positive impact on the 

observed subject and his surroundings. Monitoring the brain states of patients during surgery 

makes the anesthesiologist's job easier and reduces the risk of patient awareness during surgery 

[8]. Epileptic seizures can last from seconds to minutes and can cause impaired consciousness 

and convulsions which may lead to drowning, driving accidents and other risks for an observed 

subject and its surrounding. Early detection of the transition from a normal state to a seizure in 

epileptic patients can improve their quality of life and reduce the risk of severe injuries and 
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fatalities [9]. High exposure to stress can have a negative long-term effect on well-being, as 

well as a negative short-term effect on functioning and performance. All workers are prone to 

risks caused by stress, but occupations like healthcare workers or air-traffic control officers can 

be exposed to extreme levels of stressful situations at the workplace. At the same time, a 

decrease in their performance can be life-threatening, so monitoring their stress levels and 

changes in their emotional states can reduce the risk of life-threatening situations occurrence 

[10]. Early detection of the transition from a waking state to a drowsy state during driving 

reduces the risk of car accidents that can lead to severe injuries and fatalities [11]. 

There is various medical equipment that can measure brain activity or structure – 

electroencephalography (EEG), magnetoencephalography (MEG), functional magnetic 

resonance imaging (fMRI), magnetic resonance imaging (MRI), computed tomography (CT), 

and others. The measuring device for early detection of brain state transitions must be able to 

measure in real time. The most commonly used devices capable of real-time measurement of 

brain activity are EEG, MEG and fMRI. Out of these, the EEG device is the most accessible 

and affordable one. Also, many research groups work on small and wearable EEG devices [12]. 

These facts make EEG the most probable device for application in real-world scenarios. 

1.2 Scope of the thesis 

The central point of this thesis is research on improvements in detection of brain state 

transitions. As mentioned above, each individual has many brain state transitions during each 

day that are caused by different sources. To ensure that the research is not too extensive but 

narrow and specific, it was constrained to one specific category of brain state transitions – the 

detection of a transition from a waking state to a drowsy state during driving. 

Some researchers define the term drowsiness as a state between the wake state and sleep 

[13]–[15]. Tiredness and sleepiness are sometimes used as synonyms for drowsiness [16]–[18]. 

According to Gonçalves et al. [19], 17% of drivers encountered microsleep during driving, with 

7% of them experiencing accidents due to drowsiness. The high frequency and prevalence of 

drowsiness-related accidents highlight the need for early detection systems. Researchers are 

working towards finding solutions for early detection of drowsiness in drivers [20]. While 

vehicle-based systems are most common in commercial use, they are mostly unreliable and 

depend heavily on the driver's motivation [20], [21]. Therefore, physiological signals are being 

seen as a promising alternative for reliable drowsiness detection [22]. 
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According to a recent review on the EEG-based driver drowsiness detection systems, 61% 

of included papers used frequency-domain features [23]. There are also other groups of features 

that are less used than frequency-domain features, like entropies [24] or nonlinear features [25]. 

The prevalence of frequency-domain feature usage can be attributed to the fact that the alpha 

wave was the first EEG feature ever used, back in 1924 [26], but also to their interpretability. 

Many common brain states are described with the usage of frequency-domain features, e.g., 

recognition of the different sleep stages is primarily based on the frequency-domain features 

[27]. Usually, these features are based on one specific EEG electrode, i.e., from a single brain 

region. Many researchers concluded that different features have different trends in different 

brain regions during drowsiness-related tasks [28], [29]. These findings suggest that 

multichannel features could bring new insights into the field of drowsiness detection. Based on 

the aforementioned studies, the focus of this thesis was mostly on the frequency-domain 

features. 

The brain activity of male and female subjects differs significantly [30]. The hypothesis is 

that male and female subjects have different brain states and brain states transitions. If the 

hypothesis is correct, it also suggests that it should be possible to classify subjects' sex based 

only on the EEG signal features, and the information about sex should also lead to the 

improvement of the brain state transitions. Research related to this hypothesis is also part of 

this thesis. 

1.3 Scientific contributions 

The main scientific contributions of this thesis are the following: 

• Multichannel electroencephalogram frequency domain features for brain activity 

state transition detection, obtained using combination ratios of power spectral 

densities in individual frequency bands 

• Computational method for multichannel electroencephalogram frequency domain 

feature extraction based on multicriteria optimization 

• Brain activity state transition detection model based on multichannel 

electroencephalogram features and subject's sex information 

The first contribution involves novel multichannel EEG frequency-domain features that 

improve driver drowsiness detection when compared with the single-channel features. These 

features are obtained using combination ratios of power spectral densities in individual 

frequency bands. The second contribution is the developed computational method for 
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multichannel electroencephalogram frequency domain feature extraction that applies to any 

brain state transition problem and its effectiveness is demonstrated in the driver drowsiness 

detection problem. As part of the third contribution, a predictive model that differentiates male 

and female subjects based on EEG signal features was developed, and the separation of a dataset 

based on the model's predictions leads to improvements in driver drowsiness detection.  

1.4 Organization of the thesis 

The thesis is structured as follows. Chapter 2 gives an overview of different approaches to 

measurement and detection of driver drowsiness. Chapter 3 provides theoretical backgroundof 

methods used in publications. Chapter 4 presents the main scientific contributions of the thesis. 

Chapter 5 concludes the thesis and provides guidelines for future research in the field. All 

publications that are included in the thesis are listed in Chapter 6. Chapter 7 summarizes the 

author's contributions to the publications. That is followed by the bibliography and then 

publications which contain detailed descriptions of the thesis' scientific contributions. 
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Chapter 2  

 

An overview of driver drowsiness detection methods  

There is no unique and broadly accepted definition of drowsiness, and different researchers 

have different views of drowsiness and its definition. Per [14], drowsiness is “the transient state 

between wakefulness and sleep, during which a reduction in vigilance (alertness, attentiveness) 

and performance is often observed.“ Such a definition is useful for a better understanding of 

drowsiness by humans, but it is too vague to be translated into a computer program for the 

automatic detection of drowsiness. In the definition, drowsiness is put in correlation with sleep. 

Sleep itself is relatively well defined, including the stage of wakefulness, three stages of non-

rapid eye movement (NREM) and one stage of rapid eye movement (REM) [31]. NREM and 

REM stages may repeat several times during sleep. The majority of authors agree that 

drowsiness is equivalent to the first NREM stage [21], [32]–[35], but some authors dispute that 

claim [36]. In the context of this thesis, drowsiness is considered to be equivalent to the first 

stage of NREM sleep.  

Terms like sleepiness, fatigue and tiredness have different meanings than drowsiness but 

are related. For example, mental fatigue is “a kind of subtle feeling that creates unwillingness 

toward performing any activity“ [37]. Mental fatigue's underlying cause can be generated by 

tasks with high workloads and prolonged work hours or sleep deprivation [38]. Based on the 

Oxford learner's dictionaries [39], tiredness is a synonym for fatigue, and its definition is “the 

feeling that you would like to sleep or rest“, while the definition of sleepiness is “the feeling of 

needing sleep or being ready to go to sleep.“ In the related literature, the terms sleepiness, 

fatigue and tiredness are often used as synonyms for drowsiness [16], [18], [21], [40], so the 

same applies to this thesis.  

Driver drowsiness detection methods are separated into categories – subjective measures of 

drowsiness, a mathematical model of the sleep-wake cycle, vehicle-based measures of 
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drowsiness, driver's behavior-based measures of drowsiness, and physiological measures of 

drowsiness. Physiological measures of drowsiness are further separated based on the type of 

the signal used to acquire the measures – EEG, electrocardiogram (ECG), electrooculogram 

(EOG), electromyogram (EMG), respiratory inductance plethysmography (RIP), galvanic skin 

response (GSR), and skin temperature (ST). Survey of EEG-based drowsiness detection is 

excluded from this chapter because [Pub1] brings an extensive overview of the EEG-based 

driver drowsiness detection systems together with an extensive overview of EEG features.  

In order to provide a more complete view of the topic, the rest of the chapter overviews 

other driver drowsiness detection methods. The overview of non-EEG-based methods of 

drowsiness detection is not as extensive as the one published in [Pub1] since these methods are 

not closely related to the field of this thesis. Yet, this overview is important for a better 

understanding the driver drowsiness detection and possibilities for future improvements. Since 

most authors conduct their research on datasets that are not publicly available, comparing the 

accuracies of different approaches is unreliable, which is why no such comparison is made in 

this chapter. Instead, this chapter emphasizes describing the most commonly used techniques 

in each category of driver drowsiness detection. Before proceeding to the specifics of each 

category, Table 2.1 brings the advantages and limitations of each category of drowsiness 

detection systems based on available literature [20], [41], [42].  

 

Table 2.1 Advantages and limitations for each category of driver drowsiness detection 

systems. Seven important criteria are evaluated – A) ease of use, B) objective, C) reliable, D) 

is not dependent on the subject's motivation (the subject can not consciously and intentionally 

influence the measurement), E) non-intrusive, F) continuous monitoring, and G) early 

detection. Sign „+“ indicates an advantage for a given criterion, while sign „-“ indicates a 

limitation. 

Category A B C D E F G 

Subjective measures + - - - + - - 

Mathematical model + + - - + + - 

Vehicle-based measures + + - - + + - 

Behavioral measures + + - - + + - 

Physiological measures - + + + - + + 
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2.1 Subjective measures of drowsiness 

Karolinska sleepiness scale (KSS) is the most commonly used subjective measure of 

drowsiness. KSS has nine levels with descriptions. The first four levels correspond to the 

different stages of alertness, the fifth level is neither alert nor sleepy, and the last four levels 

correspond to different drowsiness stages [43]. The descriptions for all levels of KSS are 

provided in Table 2.2. Other well-known subjective scales are the Stanford sleepiness scale 

(SSS) [44], with eight descriptive levels of drowsiness, and the Wierwille and Ellsworth 

drowsiness scale [45], with three levels of drowsiness – not drowsy, slightly drowsy and 

moderately drowsy.  

 

Table 2.2 Karolinska sleepiness scale. 

Scale Verbal description 

1 Extremply alert 

2 Very alert 

3 Alert 

4 Fairly alert 

5 Neither alert nor sleepy 

6 Some signs of sleepiness 

7 Sleepy, but no effort to keep alert 

8 Sleepy, some effort to keep alert 

9 Very sleepy, great effort to keep alert 

 

The measurement procedure is simple, the driver subjectively rates their drowsiness level 

periodically, usually every five minutes [46], [47]. There are several disadvantages of the 

subjective measures of drowsiness – the periodicity of assessment makes it impossible to detect 

sudden changes in drowsiness level, subjective rates can be misjudged, and frequent self-

assessment can influence driver's attention [48]. Because of these problems, subjective 

measurement of drowsiness is only used in the laboratory environment as an additional source 

of information about a driver's drowsiness level, which can be used to calibrate other drowsiness 

detection systems. 



An overview of driver drowsiness detection methods 

8 
 

2.2 Mathematical models of sleep-wake dynamics 

Mathematical models offer a quantitative analysis of the effect of sleep cycles on individual 

performance by incorporating inputs, such as circadian cycles, duration of sleep, duration of 

wakefulness, and sleep history, to predict the risk of fatigue and performance quality. The well-

known model is the two process model [49], based on the interaction of the circadian and 

homeostatic processes. An upgrade to that model is the three process model [50], which 

considers the duration of sleep and wakefulness as inputs. There are also several more recent 

models, like the aircrew fatigue evaluation model (SAFE) [51], or the sleep, activity, fatigue, 

and task effectiveness model (SAFTE) [52]. SAFE presents the alertness levels of the flight 

crew and it is based on laboratory experiments. SAFTE has applications in the military and 

industrial fields, and it is similar to the SAFE model but is based on both real-life and simulated 

data.  

Although mathematical models have been employed to predict drowsiness levels and 

cognitive performance in generic settings such as workplaces and factories, they have 

limitations. One key drawback is that these models cannot predict transient changes in 

drowsiness. Instead, they provide only one-time evaluations. Furthermore, recent advances in 

intelligent systems have shifted researchers' focus from mathematical models to more 

sophisticated approaches [53]. 

2.3 Vehicle-based measurements of drowsiness 

Drowsiness reduces the driver's ability to perform at a high level. An increase in the number 

of steering wheel adjustments, changes in the load distribution on the driver's seat, gear changes, 

speed corrections, and line crossings are all indicators of deterioration in performance [54]. 

Although vehicle-based measurement of drowsiness is entirely non-intrusive, it is hard to create 

a general model, since it is highly dependent on many factors, like weather, road quality, driver 

experience, vehicle type, and traffic conditions [55]. Furthermore, alterations in driver's 

behavior are not always caused by drowsiness; they can be influenced by factors like the driver's 

personality, experience, and motivation [56]. Despite all the mentioned limitations, these 

systems are the most common ones in commercial use. Based on the analysis of the largest car 

companies, four out of five companies use the vehicle-based measurements of drowsiness in 

their cars [21]. A review of the commercially available drowsiness detection devices also 

reveals prevalence in the number of vehicle-based systems [57].  
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In their review paper on predicting driver drowsiness using vehicle measures, Liu et al. [54] 

conclude that the most frequent discovery was that drowsiness reduced driver performance by 

increasing the frequency of lane departures. Moreover, drowsiness increased the variability of 

the steering wheel movements and the vehicle's lane position, indicating that these factors may 

be helpful in the prediction of the beginning and progression of driver drowsiness. Figure 2.1 

shows the difference between drowsy and awake drivers on the steering wheel movement 

frequency-amplitude graph. According to [58], most drowsiness-related crashes are run-off-

road crashes; therefore, many vehicle-based systems for drowsiness detection try to predict lane 

departures caused by drowsiness. In a more recent review, Lenne and Jacobs [59] conclude that 

subjective ratings using the KSS, blink duration, and steering behavior are the most promising 

features for detecting drowsiness-related lane crossing.  

 

 
Figure 2.1 Steering wheel movement-based detection of drowsiness. Source: [60] © 2019 

IEEE 

2.4 Driver's behavior-based measurement of drowsiness 

Measurement of driver's behavioral features is non-intrusive. It is done with an in-cockpit 

camera pointed at the driver. Despite recent advances in computer vision, there are still many 

challenges associated with extracting behavioral features from images. The obtained images 

vary significantly due to non-uniform illumination, out-of-plane orientations, glasses, 

movement, and facial deformations [61], [62]. These irregularities, in most cases, lead to 

inaccuracies in the measured behavioral features.  

There are many developed algorithms for face detection, like eigenfaces [63], local binary 

patterns [64], or the Viola-Jones algorithm [65]. Current state-of-the-art algorithms are based 

on deep learning techniques, i.e., DeepFace [66] or FaceNet [67]. Face detection is just the first 

step in the process of extracting features. Besides face detection, there are many other 
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algorithms used for feature extraction from facial images, e.g., face tracking [68], face 

landmarks localization [69], blink detection [70], eye closures [71], mouth dropping and yawing 

recognition [71], and head pose and movement [70].  

Driver's behavior-based drowsiness detection can be divided into three categories based on 

the types of features used: eye-related features, facial expression features, and head movement 

features [57]. The most commonly used behavioral feature for drowsiness detection is the 

percentage of eyelid closure (PERCLOS), which is part of an eye-related group of features [72]. 

Other features from this group that are commonly used are slow eye movement, rate of eye 

blinking, and average eye closure speed. Changes in the values of these features may indicate 

drowsiness, i.e., a decrease in blink rate or an increase in PERCLOS are indicators of 

drowsiness [73]. Facial expression features, like the presence of yawning, also indicate 

drowsiness [74]. Jaw drop, lip stretch, and raising of the inner and outer eyebrows are facial 

expression features that can indicate drowsiness [75]. Regarding the head position features, 

head nodding and scaling down usually occur when drowsiness is in a severe stage [76]. 

2.5 Human physiological signal-based measurements of 

drowsiness 

The foundation of physiological approaches is the extraction of features from driver's 

physical state. Measurement methods like EEG, ECG, EOG, EMG, RIP, GSR and ST represent 

this kind of approach. The most significant advantage of the physiological measures of 

drowsiness is their capability for early detection and reliability. At the same time, the important 

limitation is the intrusiveness of the system. There have been significant improvements in the 

field of wearable devices for measuring physiological signals in recent years [77]. Although 

these small and wearable devices reduce the effect of the aforementioned limitation, it will 

never be completely removed as long as there is the need for electrodes to be placed on the 

driver. There are several non-contact devices for measuring physiological signals, like non-

contact photoplethysmography (PPG) for real-time heart rate detection [78]. Despite significant 

recent advancements in the area of non-contact PPG, it is still challenging to obtain a 

trustworthy heart rate variability signal [79]. 

Figure 2.2 shows a typical block diagram for a physiological signal-based driver drowsiness 

detection system. Since the electrodes are used to acquire physiological signals, the skin-

electrode contact can cause motion artifacts aselectrodes have negligible internal resistance 

[80]. Besides the motion-related artifacts, the nearby powerline also adds noise to the measured 
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physiological signal [81]. The noise and artifacts should be removed before further processing 

of the acquired signal. After the physiological signals are cleared of noise, typically the feature 

extraction phase begins. At the end of the process, the extracted features are used together with 

machine learning algorithms to detect drowsiness.  

 
Figure 2.2 Block diagram representation of a typical physiological signal-based drivers’ 

drowsiness detection system using EEG sensors. Source: [21] © 2018 IEEE 

 
More details about filtering the physiological signals are presented in subchapter 3.1. The 

feature extraction step is specific for each type of physiological signal. In the following 

subchapters, the most common features for each type of physiological signals are presented. 

2.5.1 Electrocardiogram 

ECG signal records the heart's electrical activity through repeated cardiac cycles. The three 

main components of an ECG are the P wave, which denotes depolarization of the atria, the QRS 

complex, which denotes depolarization of the ventricles; and the T wave, which denotes 

repolarization of the ventricles [82]. This process represents one heartbeat. The physiological 

phenomenon of variability in the time between heartbeats is known as heart rate variability 

(HRV). The variation in the normal beat-to-beat interval is used to measure HRV [83]. To 

extract the HRV signal from the ECG, the detection of the QRS complex is the first step. There 

are few well-established algorithms for the detection of QRS complex, like Pan-Tompkins [84] 

or Elgendi's [85]. 

Various features extracted from the HRV signal are used to detect driver drowsiness. Heart 

rate (HR) is the number of heartbeats per minute, and a decrease in HR indicates drowsiness 

[86]. The power spectral density of the HRV signal provides significant features in the analysis 

of drowsiness. The HRV signal is divided into three distinct frequency bands: very low 

frequency (VLF), which typically falls between 0.008 Hz and 0.04 Hz; low frequency (LF), 

which ranges from 0.04 Hz to 0.15 Hz; and high frequency (HF) that spans from 0.15 Hz to 0.5 

Hz [87]. The LF to HF bands power ratio (LF/HF) is a common feature in the analysis of HRV 

signals. A decrease in the LF/HF feature indicates the process of falling asleep and losing 

alertness [87]. Also, a decrease in the VLF indicates drowsiness, according to the same study. 
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2.5.2 Electrooculogram 

Electrooculography is a technique employed to evaluate the corneoretinal standing potential 

between the anterior and posterior sections of the human eye, producing a signal called the EOG 

[88]. Unlike electroretinogram, EOG does not assess responses to individual visual stimuli. To 

monitor eye movement, pairs of electrodes are positioned either above and below the eye or on 

its left and right sides. As the eye moves toward an electrode, it "detects" the positive aspect of 

the retina. In contrast, the opposing electrode "detects" the negative aspect, leading to a potential 

difference between the two. The placement of EOG electrodes is crucial for collecting accurate 

data, as the strength of the received EOG signal decreases when electrodes are farther from the 

eyes [89]. Eye activity, including eye blinks and movements, can change this potential 

difference, leading to variations in the EOG signal [90]. A blink occurs when the upper eyelid 

comes into contact with the lower eyelid, which typically lasts between 200 and 400 

milliseconds [91].  

EOG features are reliable indicators of drowsiness. Usually, indicators of drowsiness based 

on eyelid movements include blink rate, blink amplitude, blink duration, latency of lid 

reopening, and PERCLOS. Increases in blink duration and frequency were found to be 

drowsiness indicators [16], [92]. Also, longer lid reopening indicates sleep propensity [93]. As 

mentioned in subsection 2.4, PERCLOS is an important indicator of drowsiness in driver's 

behavior-based systems. The same applies to the PERCLOS extracted from the EOG signal 

[94]. Slow eye movements (SEM) have been identified as reliable indicators of drowsiness. 

Experiments have shown that SEM is common in drowsy drivers and is present in a significant 

portion of accident cases involving drowsy driving, with the "thalamic gating" phenomenon 

causes sleep onset while eyes remain open [89]. 

2.5.3 Other physiological measures 

An EMG measures the electrical signals generated by muscle contractions [95], with surface 

EMG (sEMG) electrodes placed on the skin for non-invasive collection. Research has 

established a connection between muscle fatigue and EMG amplitude, as the amplitude 

represents muscle strength, which decreases with fatigue [96]. A decrease in the simple features 

like skewness and kurtosis of the EMG signal, as well as a decrease in the signal's frequency, 

were shown to indicate drowsiness [97], [98], [99].  

Functional Near-Infrared Spectroscopy (fNIRS) is a non-invasive neuroimaging technique 

that measures brain activity by using near-infrared light to monitor changes in blood 
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oxygenation and hemodynamics in the cerebral cortex. fNIRS is based on the principle of near-

infrared spectroscopy (NIRS), but it specifically focuses on the functional aspects of brain 

activity, i.e., it provides information about the neural activity in specific brain regions [100]. 

The oxygenated hemoglobin (HbO) level is a characteristic feature extracted from fNIRS. A 

notable increase in HbO levels during the transition from wakefulness to drowsiness can be 

used as an effective predictor of drowsiness [101]. 

GSR, also referred to as Electro Dermal Response (EDR), Psycho Galvanic Reflex (PGR), 

and Skin Conductance Response (SCR), measures skin conductance, which varies due to sweat 

gland secretion. The autonomic nervous system's sympathetic arousal controls sweat gland 

secretion. During drowsiness, the parasympathetic nervous system becomes more active, 

reducing sweating, increasing skin resistivity, and decreasing skin conductivity, or the opposite 

when arousal rises. However, a primary challenge with GSR is its high sensitivity to many 

internal and external factors like temperature, humidity, age, sex, time of the day, season, and 

emotions, which can affect the accuracy of the measurements [102]. 

RIP offers a non-invasive alternative for assessing breathing by tracking chest and 

abdominal wall movements, thus eliminating the need for cumbersome and invasive devices 

such as masks or mouthpieces [103]. This method utilizes recording belts placed around the 

thorax and abdomen, making it well-suited for continuous lung volume measurements. 

Respiration rate variability is a feature extracted from the RIP signal which can be used as an 

indicator of drowsiness [104].  

ST measurement techniques assess the skin's surface temperature, which typically ranges 

between 32°C-35°C for healthy individuals [105]. The thermoregulation system in humans 

primarily maintains body temperature within a specific range, with ST being a direct outcome 

of this process. In contrast to ST, core body temperature reflects the internal operating 

temperature of body organs. Studies have demonstrated a significant decrease in forehead 

temperature values when transitioning from an alert state to increased drowsiness, with the 

forehead temperature continuing to decline as drowsiness intensifies [106]. 

There are many other techniques for measuring physiological signals, such as fMRI, MRI, 

NIRS, CT, or MEG. However, to the best of my knowledge when writing this thesis, these 

signals have not been applied in the domain of drowsiness detection in drivers but in some 

relatively related fields. For instance, fMRI has been employed for the study of intoxicated 

drivers [107], MEG for the detection of driver distraction [108], and MRI for the analysis of 

drivers with mental illness [109].  
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2.6 Hybrid systems 

Hybrid drowsiness detection systems combine multiple methods, such as vehicle-, 

behavioral-, and physiological-based measures, to improve accuracy and reliability. These 

systems take into account the shortcomings of different approaches, leading to more robust 

drowsiness detection. The main idea behind the use of hybrid drowsiness detection systems is 

the improvement of drowsiness detection quality. However, sometimes the use of hybrid system 

adds additional limitations that initially were not there. For example, if EEG-based drowsiness 

detection is added to an existing vehicle-based system, the accuracy and reliability of the system 

would increase, but at the same time, the system would become more intrusive and harder to 

use. Research on drowsiness detection systems based on subjective, behavioral and 

physiological-based measures has resulted in significantly better detection compared to 

individual systems [110]. The same conclusion applies to the system based on behavioral and 

vehicle measures [111]. There are many other research studies with a hybrid approach in 

controlled environments [101], [112], [113], and it would be interesting to test the ability of 

these systems in a real-world environment [42]. 

 



 

15 
 

Chapter 3  

 

Theoretical background of methods used in publications 

This chapter will present the theoretical background of methods used in publications [Pub2, 

Pub3, and Pub4]. These methods were mentioned in the papers but not elaborated because the 

main focus was on the scientific contributions of each paper. Here, a detailed explanation of the 

methods will be provided, making it easier for readers to understand the research. The article 

[Pub1] is a review article; therefore, no methods were used that need further explanation. The 

chapter is divided into four parts: EEG signal processing, statistical methods, machine learning 

methods, and evolutionary multicriteria optimization. By the end of this chapter, readers should 

have a good understanding of the techniques used in the papers, which will contribute to a better 

comprehension of the published works and their scientific contributions. 

3.1 EEG signal processing 

In most cases, EEG signals need to be preprocessed after they are acquired and before they 

are ready for analysis. Preprocessing involves transforming or reorganizing data before 

analyzing it. Different preprocessing steps can either reorganize data, remove bad data, or 

modify otherwise clean data. Preprocessing is needed because EEG signals contain both useful 

information (signal) and unwanted information (noise). Separating the two during the 

preprocessing stage can be challenging, and it is hard to eliminate all the noise without losing 

some of the useful signal. When the signal is preprocessed, usually feature extraction techniques 

are applied. For extraction of frequency-domain features, the signal first needs to be 

transformed from time domain into frequency domain. In continuation of this subchapter, first, 

filtering methods used in [Pub2], [Pub3] and [Pub4] are introduced, and second, methods for 

frequency domain analysis are explained. 
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3.1.1 Signal preprocessing 

Filtering 

The most important part of preprocessing is filtering. Filtering data can reduce the impact 

of high-frequency artifacts and low-frequency drifts, and notch filters weaken electrical line 

noise. There are two types of filters – finite impulse response (FIR) and infinite impulse 

response (IIR). These concepts refer to how a filter reacts to an impulse signal. FIR filters have 

a finite response, meaning their response ends at a certain point, while IIR filters have an infinite 

response, meaning their response never ends. FIR filters are known for their stability and 

tendency to produce fewer nonlinear phase distortions. While FIR filters may have a higher 

computational cost due to their increased filter order, this is typically not a significant drawback 

with modern computation capability [114]. 

Independent Component Analysis (ICA) 

Independent Component Analysis (ICA) is a method for separating multivariate signals into 

additive, statistically independent components. In the context of EEG data, the measured signal 

at each electrode is a mixture of different signal sources: 

𝑥 = 𝑎1𝑠1 +⋯+ 𝑎𝑛𝑠𝑛 = 𝑨𝒔 (3. 1) 

where s represents the original signal (e.g., brain activity, eye movement artifacts, etc.), and 

𝑎𝑘 are the weights. The goal is to estimate the matrix A and vector s by making as general 

assumptions as possible. The first assumption is that the original signals s are statistically 

independent, and the second assumption is that the original signals must have a distribution 

different from Gaussian. After estimating matrix A, its inverse W can be calculated. With the 

matrix W, the original signals can be easily computed using the equation 3.2 [115]. 

𝑺 = 𝑾𝒙 (3. 2) 

In terms of EEG preprocessing, ICA is used to extract different components from signal 

and remove unwanted components. In most cases ICA is used to remove artifacts like eye 

movements or presence of heart beats in the EEG signal. 

3.1.2 Frequency domain analysis 

Fast Fourier transform (FFT) 

The Fast Fourier Transform (FFT) is an efficient algorithm used to compute a sequence's 

Discrete Fourier Transform (DFT). The DFT is a mathematical technique that converts a time-

domain signal into its frequency-domain representation, allowing analysis of the frequencies 

present in the signal. The DFT of a time series is defined with equation 3.3. 
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𝑋𝑘 = ∑ 𝑥𝑛𝑒
(−

2𝑖𝜋𝑘𝑛
𝑁

)

𝑁−1

𝑛=0

(3. 3) 

where 𝑥𝑛 is the input signal, 𝑋𝑘 is the output, N is the sequence length, and i is the imaginary 

unit. The FFT algorithm significantly reduces the computation time for the DFT by exploiting 

the symmetries in the calculation. The most common FFT algorithm is the Cooley-Tukey 

algorithm, which recursively breaks down the DFT calculation into smaller DFTs. It uses a 

divide-and-conquer approach that separates the input sequence into even and odd-indexed 

components. This process is repeated until the subproblems are small enough to be solved 

directly. 

The FFT reduces the complexity of the DFT calculation from 𝑂(𝑁2) in the case of the direct 

DFT computation to 𝑂(𝑁 ∗ log(𝑁)) using the Cooley-Tukey algorithm [116], making it much 

faster for large sequences. It can be said that an FFT is any method to compute the same results 

as DFT in 𝑂(𝑁 ∗ log(𝑁))operations.  

The resulting frequency-domain representation 𝑋𝑘 can be squared to obtain power spectral 

density (PSD). This approach of squaring the FFT output to obtain PSD is often referred to as 

a periodogram. Once PSD is obtained, it is used for spectral analysis of the signal. 

Welch's method 

Welch's method [117] is a technique used for estimating the PSD of a signal. It is an 

extension of the periodogram method, as it reduces noise and variance in the PSD in exchange 

for reducing the frequency resolution. The method involves dividing the input signal into 

overlapping segments, applying a window function to each segment, and then calculating the 

periodogram for each windowed segment. The periodograms are computed using the FFT. The 

final PSD estimate is obtained by averaging the periodograms across all segments. 

Thomson multitaper method 

The Thomson multitaper method [118] is an advanced technique for estimating the PSD of 

a signal. It improves upon traditional methods, such as the Periodogram and Welch's method, 

by reducing variance while maintaining frequency resolution. The multitaper method uses a set 

of orthogonal tapering functions known as Slepian sequences. Each taper is multiplied with the 

signal; then a periodogram is applied to these signals resulting in multiple tapered PSDs. By 

averaging these tapered PSDs, the final PSD is obtained. 
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3.2 Statistical methods  

3.2.1 Correlation 

The concept of correlation was utilized in [Pub3] and [Pub4]. In [Pub3], a new approach 

was taken where correlations between two features of EEG signal were used as novel features. 

These novel features proved to be good predictors of the driver's sex. In [Pub4], the correlation 

strength between male and female drivers was compared, and the study concluded that male 

drivers had stronger correlations between certain EEG features compared to female drivers. 

The calculation of the correlation between two signals results in the correlation coefficient. 

The correlation coefficient is a well-known basic measure of the relationship between variables 

and a starting point for various more complicated statistics. There are many types of correlation 

coefficients; the most common one is the Pearson correlation coefficient, which will be 

explained in the continuation of this subchapter [119]. 

In analyzing the relationship between two variables, researchers focus on two fundamental 

characteristics of correlation coefficients: direction and strength. The direction of a correlation 

coefficient can be either positive or negative. The values of the two variables move in the same 

direction when there is a positive correlation, whereas the opposite is true when there is a 

negative correlation. It is important to remember that a correlation does not necessarily indicate 

a causation relationship and that the found connection may not apply to every individual in the 

sample or population. The strength or magnitude of the relationship is the second essential 

characteristic of correlation coefficients. Ranging from -1.0 to +1.0, the coefficient quantifies 

the strength of the relationship between the variables. A coefficient of 0 indicates no 

relationship, while coefficients closer to -1.0 or +1.0 signify stronger relationships. 

Equation 3.4 shows how the Pearson coefficient is calculated, 

𝒓 =
∑(𝒛𝒙𝒛𝒚)

𝑵
(3. 4), 

where r represents the Pearson correlation coefficient, zx is the z score of variable X, zy is 

the z score of variable Y and N is the number of pairs of X and Y scores. z score represents a 

number obtained after the standardization of each sample, i.e., after subtracting the population's 

mean and dividing by the population's standard deviation. 

3.2.2 Hypothesis testing 

Hypothesis testing is a method employed to answer questions about a population based on 

sample data, as access to the entire population is typically unavailable. A degree of confidence, 
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such as 95% or 99%, is defined, but reaching 100% confidence in the results is unfeasible. Both 

parametric and non-parametric hypothesis tests can be used, with the former assuming a certain 

probability distribution for the sample data. The null hypothesis assumes no difference in the 

population data, while the alternative hypothesis assumes a real difference in the population 

data. Hypothesis testing generally involves examining data, formulating hypotheses, 

calculating a test statistic, and comparing it to a critical value to decide if the null hypothesis 

can be rejected. There are three prevalent use cases of hypothesis tests depending on the type 

of data: one-sample, two-sample paired data, and two-sample unpaired data. The one-sample 

data type involves a single sample with multiple measurements of the observed variable. Two-

sample paired data refers to cases where two measurements of the observed variable are 

collected on the same population before and after an experiment of interest. The two-sample 

unpaired data type arises when multiple measurements of the observed variable are gathered 

from two distinct sample groups [120]. 

Hypothesis testing was used in [Pub2] and [Pub3]. In [Pub2], two samples were paired, i.e., 

the same subjects were measured in the wake and drowsy states, so the used test was non-

parametric Wilcoxon signed-rank test. In [Pub3], two samples were unpaired, i.e., two 

independent samples – male and female drivers, were measured during driving, so the used test 

was a non-parametric Mann-Whitney U test. In continuation, these two tests are presented in 

more detail. 

Wilcoxon signed-rank test 

Wilcoxson signed-rank test was developed in 1945 by Frank Wilcoxon. The test is carried 

out with the following steps for the two-sample paired data: 

- Determining the null hypothesis – The null hypothesis states that the population's 

median consisting of paired data differences equals zero, while the alternative 

hypothesis suggests otherwise. 

- Compute the test statistics – compute the differences between the paired data samples, 

rank each sample based on the absolute value of difference, sum up the ranks of positive 

and negative differences and use a smaller value as the test statistic. 

- Compare the test statistic to a critical value – rejecting the null hypothesis occurs when 

the test statistic is smaller than the critical value. 

Critical values depend on the three pieces of information: sample size, significance level, 

and single-tailed or two-tailed test. Critical values are precomputed and organized in a table for 

all the most commonly used sample sizes and significance levels. The only assumption of the 

Wilcoxon signed-rank test is that the distribution of differences between the two samples is 
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symmetric. This assumption allows the conversion of the non-parametric test into a parametric 

one. Suppose the assumption is correct and the null hypothesis is true (the median of the 

population of differences is zero). In that case, there is the same number of different values 

larger and smaller than zero (because of the definition of median). The central limit theorem 

allows us to use the normal distribution to make inferences about the population based on the 

distribution of the rank sums. This brings us to the parametric test with parameters of normal 

distribution calculated based on the properties of the arithmetic series (since ranks are 

arithmetic series) [121]. 

Mann-Whitney U test 

The Mann-Whitney U test is similar to the Wilcoxon signed-rank test as it uses ranks. Since 

the data is unpaired, it can not rank the sample differences but ranks all values as the same 

distribution. The test is carried out with the following steps [121]: 

- Determine the null hypothesis – both populations have the same distribution, while the 

alternative hypothesis suggests that the two distributions share identical properties 

except for differing medians. 

- Compute the test statistics – pool both samples of sizes nc and nt into a single sample of 

size nc+nt, sort values and then rank them, calculate sums of ranks for control sample 

Rc and test sample Rt, calculate U statistic Uc (equation 3.5) and Ut (equation 3.6) and 

use the lower value as test statistics. 

𝑼𝒄 = 𝒏𝒕𝒏𝒄 + 𝟎. 𝟓𝒏𝒄(𝒏𝒄 + 𝟏) − 𝑹𝒄 (3. 5), 

𝑼𝒕 = 𝒏𝒕𝒏𝒄 + 𝟎. 𝟓𝒏𝒕(𝒏𝒕 + 𝟏) − 𝑹𝒕 (3. 6), 

- Compare the test statistics to a critical value – rejecting the null hypothesis occurs when 

the test statistic is smaller than the critical value. 

As with the Wilcoxon singed-rank test, common critical values are precomputed and 

organized in a table. The idea behind the Mann-Whitney U test is also to transform the non-

parametric problem into the parametric one. This time it is done using the U statistic, which is 

normally distributed and a parametric test can be applied to it [122].  

3.2.3 Bonferroni's correction 

Multiple hypothesis tests were conducted in [Pub2] and [Pub4]. However, conducting 

numerous hypothesis tests can increase the likelihood of Type I errors, which occur when the 

null hypothesis is rejected even though there is no actual difference in the population variable. 

To address this issue, Bonferroni's correction was applied to adjust each test's critical value.  
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Bonferroni's correction involves dividing the significance level α by the number of tests m 

being performed. This adjusted critical value helps maintain the risk of getting at least one Type 

I error despite the multiple tests conducted. Bonferroni's correction usage ensures that the 

analysis remains robust and avoids an inflated probability of Type I errors while exploring the 

relationships between various factors and the outcome of interest. 

3.3 Machine learning methods 

Machine learning, an integral subfield of data science, enables computers to learn from data 

and make informed decisions. Three primary learning paradigms are supervised, unsupervised, 

and reinforcement learning. Supervised learning involves labeled data and focuses on 

classification or regression tasks, while unsupervised learning seeks to discover hidden patterns 

in unlabeled data through clustering or dimensionality reduction techniques. Reinforcement 

learning, on the other hand, revolves around training agents to interact with an environment and 

optimize their actions based on rewards or penalties. This thesis focuses on supervised 

classification, which aims to accurately predict discrete class labels for new, unseen instances 

based on historically labeled data. Seven different classifiers have been utilized for brain state 

transition detection in publications [Pub2] and [Pub3]. These seven classifiers are naive Bayes, 

K-nearest neighbors, logistic regression, support vector machines, decision tree, random forest 

and XGBoost. In the following subsections, the theoretical background of each classifier is 

briefly presented to provide a better understanding of their underlying principles and 

functionality. 

3.3.1 Naive Bayes  

Naive Bayes refers to a group of probabilistic algorithms based on Bayes' theorem (equation 

3.7). In this subsection, the term naive Bayes refers to the Gaussian naive Bayes algorithm that 

assumes the conditional likelihood of the features to be Gaussian. The “naive“ part comes from 

the assumption that the features are mutually independent given the class variable. Although 

this assumption is often violated in practice, the naive Bayes algorithm is still known to work 

very well for some problems, like spam filtering. Bayes' theorem is defined with the following 

equation 3.7: 

𝑃(𝑦|𝒙) =
𝑃(𝑦)𝑃(𝒙|𝑦)

𝑃(𝒙)
(3. 7), 
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where:  

- y denotes class variable and x denotes feature vector  

- 𝑃(𝑦|𝒙) is the posterior probability – interpretation: given the observed feature vector x, 

what is the chance it belongs to class y? 

- 𝑃(𝑦) is the prior probability (prior knowledge) – interpretation: the probability that any 

new outcome is equal to y. 

- 𝑃(𝒙|𝑦) is the conditional probability (likelihood) – interpretation: How likely is it to 

observe feature vector x given that it belongs to class y? 

- 𝑃(𝒙) is called evidence – interpretation: the probability of encountering feature vector 

x. 

Naive independence of features is defined with equation 3.8. 

 𝑷(𝒙𝒊|𝒚, 𝒙𝟏, … , 𝒙𝒊−𝟏, 𝒙𝒊+𝟏, … , 𝒙𝒏) = 𝑷(𝒙𝒊|𝒚) (3. 8) 

With equation 3.8 applied for each i, conditional probability in equation 3.7 can be 

redefined, so the equation for posterior probability would now be 

𝑃(𝑦|𝒙) =
𝑃(𝑦)∏ 𝑃(𝑥𝑖|𝑦)

𝑛
𝑖=1

𝑃(𝒙)
(3. 9), 

which lead to the classification rule 

𝒚 = 𝐚𝐫𝐠𝐦𝐚𝐱
𝒚

𝑷(𝒚)∏ 𝑷(𝒙𝒊|𝒚)
𝒏

𝒊=𝟏
(3. 10). 

The evidence 𝑃(𝒙) is removed from the classification rule as it is only a scaling factor. The 

conditional probability (likelihood) of the Gaussian naive Bayes algorithm is defined with 

equation 3.11, 

𝑷(𝒙𝒊|𝒚) =
𝟏

√𝟐𝝅𝝈𝒚𝟐
𝐞𝐱𝐩(−

(𝒙𝒊 − 𝝁𝒚)
𝟐

𝟐𝝈𝒚𝟐
) (3. 11), 

where 𝜎𝑦 and 𝜇𝑦 are estimated using maximum likelihood. [123] 

3.3.2 K-nearest neighbors 

K-nearest neighbors (KNN) algorithm, in the process of decision-making about instance x, 

uses k nearest instances to x and makes a decision based on the majority voting among these 

instances [124]. KNN training is done by storing all the training instances in the memory. The 

optimal value for parameter k is data-dependent. Generally, higher k suppresses noise and 

makes classification boundaries more stable. In some implementations, weights can be used so 

that closer instances contribute more to the final decision. Since the KNN algorithm relies on 
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the distances between instances, the method is less effective in cases of highly dimensional data 

due to the “curse of dimensionality“ [125].  

3.3.3 Logistic regression 

Logistic regression is a statistical method used for binary classification. It estimates the 

probability of an observation belonging to a particular class. The relationship between the input 

features and the predicted probability is modeled using the sigmoid function, also known as the 

logistic function, defined with equation 3.12 and shown in Figure 3.1. 

𝝈(𝒛) =
𝟏

𝟏 + 𝒆−𝒛
(3. 12) 

Here, z represents the linear combination of input features X and their corresponding 

weights w, as expressed with equation 3.13. 

𝒛 = 𝒘𝑻𝒙 = 𝒘𝟎𝒙𝟎 +𝒘𝟏𝒙𝟏 +⋯+𝒘𝒎𝒙𝒎 (3. 13) 

 
Figure 3.1 Sigmoid function. 

During the training process, the algorithm adjusts the weights to minimize the differences 

between the predicted probabilities and the corresponding actual class labels. To find the best 

weights, the algorithm iteratively updates them based on the gradient of the log-likelihood 

function, as defined with equation 3.14.  

𝒘𝒋 = 𝒘𝒋 + 𝜼∑(𝒚(𝒊) − 𝝈(𝒛(𝒊))) 𝒙𝒋
(𝒊)

𝒏

𝒊=𝟏

(3. 14) 

Here, w represents the weights, η is the learning rate, and the sum represents the gradient of 

the log-likelihood function. In the log-likelihood function, the cost tends to zero when a correct 

prediction is made. On the other hand, when the prediction is incorrect, the cost tends toward 

infinity. The central idea is that erroneous predictions incur a progressively higher cost, 

effectively penalizing such inaccuracies. [126] 
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3.3.4 Support vector machines 

Support vector machines (SVM) are powerful supervised learning algorithms used for both 

classification and regression tasks. In the context of classification, SVMs aim to find the optimal 

hyperplane that separates the classes in the feature space with the largest margin possible. The 

margin represents the distance between the hyperplane and the closest data points from each 

class, known as support vectors. Maximizing the margin helps improve the generalization 

capabilities of the model, leading to better performance on unseen data. 

In its simplest form, the linear SVM seeks to maximize the margin while ensuring that all 

samples are correctly classified. The margin is the distance between the positive and negative 

hyperplane and is defined with equation 3.15. 

𝑴 =
𝟐

‖𝒘‖
(3. 15) 

The margin M needs to be maximized with the constraint that all the examples are classified 

correctly. This problem can be solved with quadratic programming.  

For the extension of SVM to non-linear classification problems, kernels play a crucial role. 

By employing kernel functions, it is possible to transform the input data into a higher-

dimensional space, making the classes linearly separable in this new space. This technique is 

known as the "kernel trick." The kernel trick involves computing the inner product between two 

data points in the higher-dimensional space without explicitly transforming the data points. A 

kernel function κ is defined with equation 3.16. 

𝜿(𝒙(𝒊), 𝒙(𝒋)) = 𝝓(𝒙(𝒊))
𝑻
𝝓(𝒙(𝒋)) (3. 16) 

Here, 𝑥(𝑖) and 𝑥(𝑗) are two input samples, and 𝜙 is the transformation function that maps 

the input samples to the higher-dimensional space. Popular kernel functions used in kernel 

SVMs include the linear, polynomial, Gaussian radial basis function, and sigmoid kernels. Each 

kernel function has a hyperparameter set that controls its behavior and decision boundary. [127] 

3.3.5 Decision tree 

Decision trees (DT) are non-parametric models whose main advantage is their 

interpretability. The primary goal is to recursively split the input data into subsets based on 

features, resulting in a tree-like structure with decision nodes and leaf nodes. Decision nodes 

represent splits based on feature values, while leaf nodes correspond to the predicted class 

labels. The process of constructing the decision tree involves selecting the most informative 

feature for each split. This is achieved by maximizing the information gain IG, which quantifies 
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the reduction in impurity achieved by splitting the dataset on a specific feature. Information 

gain is defined with equation 3.17. 

𝑰𝑮(𝑫𝒑, 𝒇) = 𝑰(𝑫𝒑) −
𝑵𝒍𝒆𝒇𝒕

𝑵𝒑
𝑰(𝑫𝒍𝒆𝒇𝒕) −

𝑵𝒓𝒊𝒈𝒉𝒕

𝑵𝒑
𝑰(𝑫𝒓𝒊𝒈𝒉𝒕) (3. 17) 

Here, f represents the feature used for splitting, while 𝐷𝑝 denotes the dataset of the parent, 

and 𝐷𝑙𝑒𝑓𝑡 and 𝐷𝑟𝑖𝑔ℎ𝑡 denote the dataset of the left and right child nodes. I is the impurity 

measure, 𝑁𝑝 refers to the total number of training examples at the parent node, and 𝑁𝑙𝑒𝑓𝑡 and 

𝑁𝑟𝑖𝑔ℎ𝑡 correspond to the number of examples in the left and right child nodes. As evident, the 

information gain is essentially the difference between the parent node's impurity and the sum 

of the child nodes' impurities. The greater the reduction in child node impurities, the higher the 

information gain.  

The most used impurity measures are entropy, Gini impurity and classification error. 

Entropy is defined with equation 3.18. 

𝑰𝑯(𝒕) = −∑𝒑(𝒊|𝒕) 𝐥𝐨𝐠𝟐 𝒑(𝒊|𝒕)

𝒄

𝒊=𝟏

(3. 18) 

In this case, 𝑝(𝑖|𝑡) represents the proportion of examples belonging to class i for a specific 

node, t. Entropy is zero if all examples at a node are from the same class, and it reaches its 

maximum value when there is a uniform class distribution. Consequently, it can be stated that 

the entropy criterion seeks to maximize the mutual information within the tree. On the other 

hand, Gini impurity criterion can be interpreted as a criterion to minimize the possibility of 

misclassification. Gini impurity is defined with equation 3.19. 

𝑰𝑮(𝒕) = −∑𝒑(𝒊|𝒕)(𝟏 − 𝒑(𝒊|𝒕))

𝒄

𝒊=𝟏

(3. 19) 

Like entropy, the Gini impurity reaches its maximum value when the classes are perfectly 

mixed. In practice, however, Gini impurity and entropy generally produce similar results. 

Classification error can also be used as impurity measure, but it is more often used as a criterion 

for tree pruning. Classification error is defined with equation 3.20. 

𝑰𝑬(𝒕) = 𝟏 −𝒎𝒂𝒙{𝒑(𝒊|𝒕)} (3. 20) 

 

3.3.6 Random forest 

The random forest (RF) [128] is an ensemble learning algorithm used for classification and 

regression tasks. It uses multiple decision trees during the training phase and combines their 
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predictions to produce a more accurate and robust result. By aggregating the outputs of multiple 

trees, RF reduces the chance of overfitting and improves generalization. 

Here's an overview of how the random forest classifier is trained: 

1. Select a random subset of the training data with replacement (bootstrap sample) for each 

tree in the forest. 

2. For each tree, randomly select a subset of features from the complete feature set. 

Usually, sqrt(M) is used as the size of the random subset, where M is a total number of 

features. 

3. Find the best split based on an impurity measure while using only the selected features. 

4. Continue growing the tree until a stopping criterion is met, such as a maximum depth 

or minimum number of samples per leaf. 

5. Repeat steps 1-4 for each tree in the forest. 

6. Once all trees are trained, predictions are made by aggregating the individual tree 

predictions. For classification, a majority vote is taken. 

By using bootstrapped samples and random feature selection, the RF introduces diversity 

among the trees, which  reduces overfitting and improves generalization. This ensemble 

approach results in a more accurate and robust model compared to a single decision tree. 

3.3.7 Extreme gradient boosting 

Extreme gradient boosting (XGBoost) is an open source implementation of the gradient 

boosting trees algorithm [129]. It is a powerful machine learning algorithm used for 

classification and regression tasks. It is an ensemble learning method based on gradient 

boosting, which builds multiple weak learners (typically decision trees) sequentially, improving 

the model by minimizing an objective function that measures the prediction error. 

Here's an overview of how the XGBoost method is trained: 

1. Initialize the model with a constant prediction value or a simple base learner, like a 

shallow decision tree. 

2. Calculate the residuals, which are the differences between the actual values and the 

current ensemble predictions. 

3. Fit a new decision tree to the residuals, learning to correct the mistakes made by the 

current ensemble. 

4. Update the model by adding the new decision tree, scaled by a learning rate, to the 

current ensemble. 
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5. Repeat steps 2-4 for a specified number of boosting rounds or until a stopping criterion, 

such as early stopping based on validation performance, is met. 

6. Once all rounds are complete, predictions are made by aggregating the outputs of all 

decision trees in the ensemble. 

XGBoost introduces several improvements to the standard gradient boosting algorithm, 

such as regularization terms to control model complexity and prevent overfitting, parallelization 

and distributed computing support for faster training. These features make XGBoost a highly 

efficient and accurate algorithm for various machine learning tasks. 

3.4 Feature selection 

Feature selection is an important step in the machine learning pipeline, where the most 

relevant features or variables are selected from the original dataset to build a more efficient and 

accurate model. The primary goal of feature selection is to reduce the dimensionality of the 

dataset, thus minimizing noise, computational complexity, and the risk of overfitting. Common 

feature selection approaches include filter, wrapper and embedded methods [130]. 

Filter methods are a category of feature selection techniques that evaluate the importance 

of individual features based on their statistical properties, independently of the model. Some 

popular filter methods include the chi-squared test, mutual information, and ANOVA F-test. In 

the paper [Pub3], these three methods were used.  

The chi-squared test measures the relationship between categorical features and categorical 

target variables. The chi-squared statistic is defined with equation 3.21. 

𝜒2 =∑
(𝑂𝑖 − 𝐸𝑖)

2

𝑖
𝑖

(3. 21) 

Here, 𝑂𝑖 is the observed frequency, 𝐸𝑖 is the expected frequency, and the summation is over 

all samples. If two features are independent, the observed frequency is expected to be similar 

to the expected frequency, resulting in a lower chi-squared value. Therefore, a high chi-squared 

value suggests that the hypothesis of independence is not valid. Features with high chi-squared 

values are considered more relevant for the target variable. 

The mutual information method quantifies the dependency between features and the target 

variable by measuring the amount of information one can obtain about the target variable by 

observing a specific feature. It is a similar concept to information gain that was defined in 

equation 3.17. Mutual information between feature X and the target variable Y is defined with 

equation 3.22. 
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𝑀𝐼(𝑋; 𝑌) = 𝐻(𝑋) − 𝐻(𝑋|𝑌) (3. 22) 

Here, 𝑀𝐼(𝑋; 𝑌) is the mutual information for X and Y, 𝐻(𝑋) is the entropy for X, and 

𝐻(𝑋|𝑌) is the conditional entropy for X given Y. Features with higher mutual information 

values indicate a stronger dependency between the feature and the target variable. 

ANOVA F-test measures the relationship between each continuous predictive feature and a 

categorical target variable. It assesses whether the means of two or more groups are 

significantly different. The F-test statistic is defined with equation 3.23. 

𝐹 =
𝑀𝑆𝑏𝑒𝑡𝑤𝑒𝑒𝑛
𝑀𝑆𝑤𝑖𝑡ℎ𝑖𝑛

(3. 23) 

Here, 𝑀𝑆𝑏𝑒𝑡𝑤𝑒𝑒𝑛 is the mean sum of squares between groups (i.e., the variance between 

predictive feature's and target variable's means), and 𝑀𝑆𝑤𝑖𝑡ℎ𝑖𝑛 is the mean sum of squares 

within groups (i.e., the variance within each group – variance of predictive feature and variance 

of target variable). Features with higher F-test values indicate a stronger association between 

the feature and the target variable. 

3.5 Evaluation metrics 

In the context of machine learning, proper evaluation of models is crucial for several 

reasons. First, it ensures the model's performance is accurately assessed, helping to avoid 

overfitting or underfitting by measuring generalization capabilities on unseen data. Second, 

evaluating models allows for effective comparison between different algorithms or 

configurations, enabling informed decisions in selecting the most suitable approach for a given 

task. In papers [Pub2] and [Pub3], two evaluation metrics were used – accuracy and precision. 

In continuation, they will be described, together with several other basic concepts important for 

better understanding. 

An important concept for evaluation is the confusion matrix, shown in Table 3.1 for binary 

classification. TN denotes true negative, FP denotes false positive, FN denotes false negative 

and TP denotes true positive. They are all represented with natural numbers. Based on these 

metrics, several other useful metrics can be calculated, as shown with the following equations. 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑁 + 𝑇𝑃

𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑃
(3. 24) 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(3. 25) 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(3. 26) 
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Accuracy (equation 3.24) is the number of correctly predicted samples divided by the total 

number of samples. Precision (equation 3.25) is the number of true positive predictions divided 

by the total number of class 1 predictions. Recall (equation 3.26) is the number of true positive 

predictions divided by the number of true class 1 samples.  

 

Table 3.1 Confusion matrix. 

 
Predicted 

Class 0 Class 1 

True 
Class 0 TN FP 

Class 1 FN TP 

 

3.6 Evolutionary multicriteria optimization 

Computational optimization is a field that focuses on finding the best possible solutions to 

complex problems by minimizing or maximizing objective functions, often subject to various 

constraints. Within this field, evolutionary optimization is a subdomain that employs bio-

inspired algorithms to mimic natural processes such as evolution, selection, and mutation to 

explore the solution space efficiently. Evolutionary multicriteria optimization (EMO) is a 

specialized area within evolutionary optimization which addresses problems with multiple 

conflicting objectives. When using EMO for non-trivial problems, no single solution minimizes 

all criteria simultaneously. Instead, there are Pareto optimal solutions – solutions that cannot be 

improved in any criterion without worsening another. Such solutions are also called non-

dominated. All Pareto optimal solutions are equally good in a mathematical sense, and the final 

decision on choosing one solution over the others is usually made externally, based on expert 

knowledge. 

Several widely-used algorithms have been developed for evolutionary multicriteria 

optimization, including the non-dominated sorting genetic algorithm II (NSGA-II), the strength 

Pareto evolutionary algorithm 2 (SPEA2), and the multi-objective particle swarm optimization 

(MOPSO). These algorithms employ different mechanisms for handling multiple objectives 

and maintaining diversity in the population of solutions, ensuring efficient exploration and 

convergence towards the Pareto front. The next subchapter brings a description of the NSGA-

II algorithm as it was used in [Pub2]. 
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3.6.1 Non-dominated sorting genetic algorithm 

The genetic algorithm is the base for the NSGA-II algorithm [131]. Genetic algorithms use 

local search to find the best solution by exploring the neighborhood of the current solution. 

Crossover and mutation are used to modify the current solution and create new ones. The best 

solutions are selected for reproduction in each generation until a stopping criterion is met. 

NSGA-II performs two steps before the operations characteristic for genetic algorithms. 

First, NSGA-II sorts the population of candidate solutions into multiple non-dominated Pareto 

fronts. A solution is said to dominate another if it is better or equal in all objectives and strictly 

better in at least one objective. The first front represents the best set of non-dominated solutions 

found so far. Second, the algorithm assigns a crowding distance to each solution within a front, 

which is a measure of the solution's proximity to its neighbors in the objective space. Higher 

crowding distances indicate sparser regions, and the algorithm prefers solutions with larger 

crowding distances to maintain diversity.  

Finally, NSGA-II uses genetic operators, such as crossover and mutation, to create a new 

population of solutions for the next iteration. The algorithm employs a selection process based 

on both non-domination rank and crowding distance to choose solutions for reproduction. This 

ensures that the new population includes diverse and non-dominated solutions that gradually 

converge toward the Pareto front. 
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Chapter 4  

 

The main scientific contribution of the thesis 

The main scientific contributions of this thesis are as follows: first, multichannel 

electroencephalogram frequency domain features for brain activity state transition detection, 

obtained using combination ratios of power spectral densities in individual frequency bands, 

and second, computational method for multichannel electroencephalogram frequency domain 

feature extraction based on multicriteria optimization; these contributions are presented in 

[Pub2]. The third scientific contribution, brain activity state transition detection model based 

on multichannel electroencephalogram features and subject's sex informatio is presented in 

[Pub3] and [Pub4]. [Pub1] is a review of EEG signal features and their application in driver 

drowsiness detection systems which indirectly contributed to all three scientific contributions 

of the thesis. 

4.1 Multichannel electroencephalogram frequency domain 

features for brain activity state transition detection, obtained 

using combination ratios of power spectral densities in 

individual frequency band 

The first contribution is the result of the method described in the second contribution when 

applied to the drowsiness detection problem. The dataset consisted of 28 subjects, out of which 

12 subjects were used exclusively as the test set to confirm the generalization ability of the 

obtained ratio index features. Two novel ratio index features are presented, one complex with 

13 addends and their coefficients in the equation, and one simple with only 5 addends and no 

coefficients [Pub2]. Both proposed multichannel ratio indices performed better in terms of 
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statistical significance, accuracy, precision, and execution time than the seven most used single-

channel ratio indices. 

4.2 Computational method for multichannel 

electroencephalogram frequency domain feature extraction 

based on multicriteria optimization 

The second contribution of the thesis is a multicriteria optimization method for the 

extraction of novel multichannel frequency-domain features. More specifically, the method 

extracts ratio index features that are based on individual frequency band features from different 

EEG channels. The method is constructed to preserve only the most informative frequency band 

features from each channel (i.e., brain region) that are combined together into novel ratio index 

features. It is applicable to any brain state transition problem and the only constraint for the 

method to work properly is that the dataset used for the extraction of novel features has the 

transition near the middle of the signal. The method is designed with the assumption that the 

transition is near the middle of the signal. For the application of the method on the datasets 

where that assumption is not satisfied, additional preprocessing and realigning of the signal is 

needed. The method tries to create a feature that will look like a step function. This is done with 

optimization based on the evolutionary metaheuristic algorithm called elitist non-dominated 

sorting genetic algorithm II (NSGA-II) [131] with two objective functions., The first one is to 

maximize the absolute difference between the left and right parts of the signal, and the second 

one is to minimize oscillations on each side of the signal. Since the transition of step function 

can not be instantaneous, a transition window of flexible size and position is used near the 

middle of the signal. The signal within the transition window is ignored by the objective 

functions. The used transition window enables the method to adjust to inaccuracies in the 

original transition labels, as shown in [Pub2]. 

4.3 Brain activity state transition detection model based on 

multichannel electroencephalogram features and subject's sex 

information 

The third contribution is brain activity state transition detection model based on 

multichannel electroencephalogram features and subject's sex information [Pub3] and [Pub4]. 

Within the [Pub3] paper, two sub-contributions are presented. The first one is the use of EEG 
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feature correlations as new features in a model for sex classification, and the second one is the 

improvements of drowsiness detection with information on driver's sex. The model for sex 

classification is based on the EEG frequency-domain features, recurrence quantification 

analysis features and correlations between them used as features. [Pub3] is extended research 

based on the [Pub4]. In [Pub4], the smaller dataset was used and only a statistical analysis of 

the difference between male and female drivers in terms of extracted EEG features was 

presented. 

 



 

34 
 

Chapter 5  

 

Conclusions and directions for future work 

5.1 The main conclusions of the thesis 

Driver drowsiness poses a significant risk to road safety, as it contributes to a substantial 

number of accidents and fatalities worldwide. The deceptive nature of drowsiness often results 

in impaired judgment, delayed reaction times, and reduced situational awareness, which 

collectively compromise a driver's ability to respond effectively to dynamic road conditions. It 

is important to address driver drowsiness as its mitigation saves lives and reduces economic 

consequences related to car accidents.  

The review paper [Pub1] offers four key contributions: (1) a thorough examination and 

systematization of EEG signal features, (2) an extensive review of drowsiness detection 

systems, (3) a comparative analysis of similar reviews, and (4) a discussion on potential 

improvements to the state-of-the-art drowsiness detection systems. Besides these contributions, 

a few suggestions and guidelines are given. First, larger sample sizes, around 100 participants 

or more, are needed to ensure diverse datasets and model robustness while minimizing inter-

individual differences. Second is the need for validation of the EEG-based drowsiness detection 

systems using data from unseen subjects. Third, the suggestion is to make datasets publicly 

available for fair comparisons.  

While working on the review, a gap in the body of knowledge related to the prediction of 

driver drowsiness was found. Many studies show that frequency-domain features from different 

brain regions behave differently when it comes to drowsiness. However, current methods only 

focus on a single brain region for the extraction of these features. This insight led to a novel 

brain state transition detection method, described in [Pub2]. The method was used to extract 

multichannel frequency-domain features that help identify drowsiness. The proposed method 
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is reliable and the frequency-domain features based on the signals from multiple brain regions 

have better performance on multiple metrics compared to the same type of features that are 

based on the single brain region. An additional benefit of the method is that it can be used for 

any brain state transition problem. 

Within the [Pub3] and [Pub4], the hypothesis that male and female subjects have different 

brain states and brain states transitions were investigated on the subjects that were experiencing 

drowsiness during driving. According to this part of the research, incorporating the information 

on driver's sex improves drowsiness detection accuracy. Moreover, a trustworthy driver's sex 

classifier based on the recorded EEG data was constructed. 

5.2 Further research directions 

In future work within the EEG-based driver drowsiness detection field, enabling a more 

reliable comparison of different models is of great importance. Two main aspects could 

contribute to this advancement. First, the development of a unified, standard definition of 

drowsiness should be developed and accepted by the research community, which would reduce 

subjective bias and facilitate easier comparison among various studies. Second, as mentioned 

in the previous subsection, creating a publicly accessible database with more than 100 subjects 

would significantly impact the field. This would allow for benchmarking different models and 

comparing their performance. 

Additional improvements in the developed method within [Pub2] could yield even better 

results. By default, the method creates the ratio of sums between frequency-domain features 

from different brain regions. Allowing operations other than just adding in the construction of 

the ratio-based indices would be a promising research step forward. 
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Chapter 6  

 

List of publications 

Pub 1 I. Stancin, M. Cifrek, and A. Jovic, “A Review of EEG Signal Features and 

Their Application in Driver Drowsiness Detection Systems,” Sensors, vol. 21, 

no. 11, p. 3786, May 2021, doi: 10.3390/s21113786. 

 

Pub 2 I. Stancin, N. Frid, M. Cifrek, and A. Jovic, “EEG Signal Multichannel 

Frequency-Domain Ratio Indices for Drowsiness Detection Based on 

Multicriteria Optimization,” Sensors, vol. 21, no. 20, p. 6932, Oct. 2021, doi: 

10.3390/s21206932. 

 

Pub 3 I. Stancin, M. Z. Zeba, K. Friganovic, M. Cifrek, and A. Jovic, “Information on 

Drivers’ Sex Improves EEG-Based Drowsiness Detection Model,” Applied 

Sciences, vol. 12, no. 16, p. 8146, Aug. 2022, doi: 10.3390/app12168146. 

 

Pub 4 I. Stancin, K. Friganovic, M. Z. Zeba, M. Cifrek, and A. Jovic, “Gender 

differences in EEG features while driving,” Proceedings of the 2nd International 

Conference on Advances in Signal Processing and Artificial Inteligence, p. 127, 

Nov. 2020 
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Chapter 7  

 

Author's contribution to the publications 

This doctoral thesis presents findings derived from research conducted between 2018 and 

2022 at the University of Zagreb Faculty of Electrical Engineering and Computing, located at 

Unska 3, HR-10000, Zagreb, Croatia. The research was part of the project supported in part by 

the European Regional Development Fund under Grant KK.01.2.1.01.0136 (DFDM). The 

thesis features four publications co-authored with several collaborators. The author contributed 

to each paper in several different categories. Categories of contribution evaluated for each 

contribution are conceptualization, methodology, validation, formal analysis, investigation, 

resources, data curation, writing – original draft preparation, writing – review and editing, 

visualizations, supervision, project administration and funding acquisition. In continuation, 

when stating contributions for each paper, authors are presented with their initials, so the author 

of this thesis is presented with the initials I.S. After presenting contribution evaluation of all 

papers, short summary of the author's contribution to the publications is given. 

[Pub1] The paper “A Review of EEG Signal Features and Their Application in Driver 

Drowsiness Detection Systems” have contributions among the authors as follows: 

conceptualization, I.S. and A.J.; methodology, I.S. and A.J.; validation, I.S., M.C. and A.J.; 

formal analysis, I.S. and A.J.; investigation, I.S.; resources, I.S.; data curation, I.S.; writing—

original draft preparation, I.S.; writing—review and editing, M.C. and A.J.; visualization, I.S.; 

supervision, A.J.; project administration, M.C. and A.J.; funding acquisition, M.C. All authors 

have read and agreed to the published version of the manuscript, including this categorization 

of contributions. 

[Pub2] The paper “EEG Signal Multichannel Frequency-Domain Ratio Indices for 

Drowsiness Detection Based on Multicriteria Optimization” have contributions among the 

authors as follows: conceptualization, I.S., N.F. and A.J.; methodology, I.S., N.F. and A.J.; 
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software, I.S. and N.F.; validation, I.S., N.F., M.C. and A.J.; formal analysis, I.S., N.F. and A.J.; 

investigation, I.S.; resources, I.S. and N.F.; data curation, I.S.; writing—original draft 

preparation, I.S. and N.F.; writing—review and editing, I.S., N.F., M.C. and A.J.; visualization, 

I.S.; supervision, A.J.; project administration, M.C.; funding acquisition, M.C. All authors have 

read and agreed to the published version of the manuscript, including this categorization of 

contributions. 

[Pub3] The paper “Information on Drivers’ Sex Improves EEG-Based Drowsiness 

Detection Model“ have contributions among the authors as follows: conceptualization, I.S., 

M.Z.Z., K.F., M.C. and A.J.; methodology, I.S., M.Z.Z., K.F. and A.J.; software, I.S.; 

validation, I.S., M.Z.Z. and A.J.; formal analysis, M.C. and A.J.; investigation, I.S., M.Z.Z. and 

K.F.; resources, M.C. and A.J.; data curation, I.S., M.Z.Z. and K.F.; writing—original draft 

preparation, I.S. and M.Z.Z.; writing—review and editing, I.S., M.Z.Z., K.F., M.C. and A.J.; 

visualization, I.S.; supervision, M.C. and A.J.; project administration, M.C. and A.J.; funding 

acquisition, M.C. and A.J. All authors have read and agreed to the published version of the 

manuscript, including this categorization of contributions. 

[Pub4] The paper “Gender differences in EEG features while driving” have contributions 

among the authors as follows: conceptualization, I.S., M.Z.Z., K.F., M.C. and A.J.; 

methodology, I.S., M.Z.Z., K.F. and A.J.; software, I.S.; validation, I.S., M.Z.Z. and A.J.; 

formal analysis, M.C. and A.J.; investigation, I.S., M.Z.Z. and K.F.; resources, M.C. and A.J.; 

data curation, I.S., M.Z.Z. and K.F.; writing—original draft preparation, I.S. and M.Z.Z.; 

writing—review and editing, I.S., M.Z.Z., K.F., M.C. and A.J.; visualization, I.S.; supervision, 

M.C. and A.J.; project administration, M.C. and A.J.; funding acquisition, M.C. and A.J. All 

authors have read and agreed to the published version of the manuscript, including this 

categorization of contributions. 

To summarize, the author of this thesis is the first author of all four publications, with the 

most contributions among the observed categories. The author was the main contributor in the 

most important categories – conceptualization and methodology. The author is the only author 

of the developed software in papers [Pub3] and [Pub4], while in [Pub2], the author is 

responsible for more than half of the developed software. The vast majority of writing the 

papers is also the author's merit. Finally, the core of the ideas behind the scientific contributions 

of this thesis and the developed methodologies for their realization is mostly the author's merit.  
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Abstract: Detecting drowsiness in drivers, especially multi-level drowsiness, is a difficult problem
that is often approached using neurophysiological signals as the basis for building a reliable system.
In this context, electroencephalogram (EEG) signals are the most important source of data to achieve
successful detection. In this paper, we first review EEG signal features used in the literature for a
variety of tasks, then we focus on reviewing the applications of EEG features and deep learning
approaches in driver drowsiness detection, and finally we discuss the open challenges and opportu-
nities in improving driver drowsiness detection based on EEG. We show that the number of studies
on driver drowsiness detection systems has increased in recent years and that future systems need
to consider the wide variety of EEG signal features and deep learning approaches to increase the
accuracy of detection.

Keywords: drowsiness detection; EEG features; feature extraction; machine learning; drowsiness
classification; fatigue detection; deep learning

1. Introduction

Many industries (manufacturing, logistics, transport, emergency ambulance, and
similar) run their operations 24/7, meaning their workers work in shifts. Working in shifts
causes misalignment with the internal biological circadian rhythm of many individuals,
which can lead to sleeping disorders, drowsiness, fatigue, mood disturbances, and other
long-term health problems [1–4]. Besides misalignment of the internal circadian rhythms
with a work shift, sleep deprivation and prolonged physical or mental activity can also
cause drowsiness [5–7]. Drowsiness increases the risk of accidents at the workplace [8–10],
and it is one of the main risk factors in road and air traffic accidents per reports from
NASA [11] and the US National Transportation Safety Board [12].

Drowsiness is the intermediate state between awareness and sleep [13–15]. Terms like
tiredness and sleepiness are used as synonyms for drowsiness [16–18]. Some researchers
also use fatigue as synonymous with drowsiness [19,20]. Definitions and differences
between drowsiness and fatigue are addressed in many research papers [21–23]. The main
difference between the two states is that short rest abates fatigue, while it aggravates
drowsiness [24]. However, although the definitions are different, drowsiness and fatigue
show similar behavior in terms of features measured from electroencephalogram (EEG)
signal [25–28]. Because of this fact, in this review paper, we consider all the research
papers whose topic was drowsiness, sleepiness, or fatigue, and we make no distinction
among them.

The maximum number of hours that professional drivers are allowed to drive in a
day is limited, yet drowsiness is still a major problem in traffic. A system for drowsiness
detection with early warnings could address this problem. The most commonly used meth-
ods for drowsiness detection are self-assessment of drowsiness, driving events measures,
eye-tracking measures, and EEG measures. Among these methods, drowsiness detection
systems based on the EEG signal show the most promising results [18,29].
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Brain neural network is a nonlinear dissipative system, i.e., it is a non-stationary
system with a nonlinear relationship between causes and effects [30]. One way to ana-
lyze brain neural network is through feature extraction from the EEG signal. The most
used techniques for feature extraction are linear, such as Fast Fourier Transform (FFT).
Although it is a linear method, FFT also assumes that the amplitudes of all frequency
components are constant over time, which is not the case with brain oscillations, since
they are non-stationary. Because of the complexity of brain dynamics, there is a need
for feature extraction methods that can properly take into account the nonlinearity and
non-stationarity of brain dynamics. With an increase of computational power in recent
years, many researchers work on improving the feature extraction methods, and there is a
growing number of various features extracted from the EEG signal.

This paper aims to review the features extracted from the EEG signal and the appli-
cations of these features to the problem of driver drowsiness detection. We review the
features since the large number of features described in the literature makes it difficult to
understand their interrelationships, and also makes it difficult to choose the right ones
for the given problem. To our knowledge, there is no similar review work that covers all
the features discussed in this review. After the EEG features review, we continue with the
review of driver drowsiness detection systems based on EEG. The main goal is to gain
insight into the most commonly used EEG features and recent deep learning approaches for
drowsiness detection, which would allow us to identify possibilities for further improve-
ments of drowsiness detection systems. Finally, the main contributions of our work are
the following: (1) Comprehensive review, systematization, and a brief introduction of the
existing features of the EEG signal, (2) comprehensive review of the drowsiness detection
systems based on the EEG signal, (3) comprehensive review of the existing similar reviews,
and (4) discussion of various potential ways to improve the state of the art of drowsiness
detection systems.

The paper is organized as follows: In Section2, we present the overview of the existing
review papers that are close to the topic of this paper, Section3provides the overview of the
different features extracted from the EEG signal, Section4reviews the papers dealing with
driver drowsiness detection systems, Section5provides a discussion about the features
and drowsiness detection systems, and Section6brings the future directions of research
and concludes the paper.

The search for the relevant papers included in our paper was done in the Web of
Science Core Collection database. The search queries used were: (1) In Section2.1—
“{review, overview} {time, frequency, spectral, nonlinear, fractal, entropy, spatial, temporal,
network, complex network} EEG features“, (2) in Section2.2—“{review, overview} driver
{drowsiness, sleepiness, fatigue} {detection, classification}”, (3) in Section3—“<feature
name> EEG feature”, (4) in Section4—“EEG driver {‘’, deep learning, neural network}
{drowsiness, sleepiness, fatigue} {detection, classification}”. Beyond the mentioned queries,
when appropriate, we also reviewed the papers cited in the results obtained through the
query. Additional constraints for papers in Section4were: (1) They had to be published in
a scientific journal, (2) they had to be published in 2010 or later, 2) at least three citations
per year since the paper was published, (3) papers from 2020 or 2021 were also considered
with less than three citations per year, but published in Q1 journals, and (4) the number of
participants in the study experiment had to be greater than 10. The goal of these constraints
was to ensure that only high quality and relevant papers were included in our study.

2. Related Work
2.1. Reviews of the EEG Signal Features

Stam [30] in his seminal review paper about the nonlinear dynamical analysis of the
EEG and magnetoencephalogram (MEG) signals included more than 20 nonlinear and
spatiotemporal features (e.g., correlation dimension, Lyapunov exponent, phase synchro-
nization). The theoretical background of these features and dynamical systems were also
covered. The paper gave an overview of the other research works that include explanations
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of the features from the fields of normal resting-state EEG, sleep, epilepsy, psychiatric
diseases, normal cognition, distributed cognition, and dementia. The main drawback of the
paper nowadays is that it is somewhat dated (from 2005) because additional approaches
have been introduced in the meantime. Ma et al. [31] reviewed the most-used fractal-based
features and entropies for the EEG signal analysis, and focused on the application of these
features to sleep analysis. The authors concluded that using fractal or entropy methods may
facilitate automatic sleep classification. Keshmiri [32], in a recent paper, provided a review
on the usage of entropy in the fields of altered state of consciousness and brain aging. The
author’s work is mostly domain-specific, as it emphasizes incremental findings in each area
of research rather than the specific types of entropies that were utilized in the reviewed
research papers. Sun et al. [33] reviewed the complexity features in mild cognitive impair-
ment and Alzheimer’s disease. They described the usage of five time-domain entropies,
three frequency-domain entropies, and four chaos theory-based complexity measures.

Motamedi-Fakhr et al. [34], in their review paper, provided an overview of more
than 15 most-used features and methods (e.g., Hjorth parameters, coherence analysis,
short-time Fourier transform, wavelet transform) for human sleep analysis. The features
were classified into temporal, spectral, time-frequency, and nonlinear features. Besides
these features, they also reviewed the research papers about sleep stages classification.
Rashid et al. [35] reviewed the current status, challenges, and possible solutions for EEG-
based brain-computer interface. Within their work, they also briefly discussed the most
used features for brain–computer interfaces classified into time domain, frequency domain,
time-frequency domain, and spatial domain.

Bastos and Schoffelen [36] provided a tutorial review of methods for functional con-
nectivity analysis. The authors aimed to provide an intuitive explanation of how functional
connectivity measures work and highlighted five interpretational caveats: The common
reference problem, the signal-to-noise ratio, the volume conduction problem, the common
input problem, and the sample size problem. Kida et al. [37], in their recent review paper,
provided the definition, computation, short history, and pros and cons of the connec-
tivity and complex network analysis applied to EEG/MEG signals. The authors briefly
described the recent developments in the source reconstruction algorithms essential for the
source-space connectivity and network analysis.

Khosla et al. [38], in their review, covered the applications of the EEG signals based on
computer-aided technologies, ranging from the diagnosis of various neurological disorders
such as epilepsy, major depressive disorder, alcohol use disorder, and dementia to the
monitoring of other applications such as motor imagery, identity authentication, emotion
recognition, sleep stage classification, eye state detection, and drowsiness monitoring. By
reviewing these EEG signal-based applications, the authors listed features observed in
these papers (without explanations), publicly available databases, preprocessing methods,
feature selection methods, and used classification models. For the application of drowsi-
ness monitoring, the authors reviewed only three papers, while other applications were
better covered.

Ismail and Karwowski [39] overview paper dealt with a graph theory-based modeling
of functional brain connectivity based on the EEG signal in the context of neuroergonomics.
The authors concluded that the graph theory measures have attracted increasing attention
in recent years, with the highest frequency of publications in 2018. They reviewed 20 graph
theory-based measures and stated that the clustering coefficient and characteristic path
length were mostly used in this domain.

Figure1shows the reviews presented in this section in chronological order of publication.
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2.2. Reviews of the Driver Drowsiness Detection

Lal and Craig [18], in their review of driver drowsiness systems, discussed the concept
of fatigue and summarized the psychophysiological representation of driver fatigue. They
concluded that most studies had found a correlation of theta and delta activity with the
transition to fatigue.

Lenne and Jacobs [40], in their review paper, assessed the recent developments in
the detection and prediction of drowsiness-related driving events. The driving events
observed were the number of line crossings, the standard deviation of lateral position, the
variability of lateral position, steering wheel variability, speed adjustments, and similar
events. The authors concluded that these driving performance measures correlate with
drowsiness in the experimental settings, although they stipulated that the new findings
from on-road studies show a different impact on performance measures. Doudou et al. [41]
reviewed the vehicle-based, video-based, and physiological signals-based techniques for
drowsiness detection. They also reviewed the available commercial market solutions for
drowsiness detection. When it comes to the EEG signal drowsiness detection, the authors
included six papers that consider frequency-domain features in this field.

Sahayadhas et al. [42] reviewed vehicle-based measures, behavior-based measures,
and physiological measures for driver drowsiness detection. The section on physiological
measures included 12 papers with only frequency-domain features. Sikander and An-
war [43] reviewed drowsiness detection methods and categorized them into five groups—
subjective reporting, driver biological features, driver physical features, vehicular fea-
tures while driving, and hybrid features. When it comes to drowsiness detection using
EEG signals, the authors focused more on explaining frequency-domain features used
for drowsiness detection rather than presenting research that had already been done in
this field.

Chowdhury et al. [44] reviewed different physiological sensors applied to driver
drowsiness detection. Observed physiological methods for measuring drowsiness included
electrocardiogram (ECG), respiratory belt, EEG, electrooculogram (EOG), electromyogram
(EMG), galvanic skin response (GSR), skin temperature, and hybrid techniques. Related to
EEG methods, the authors included papers based on the spectral power features, event-
related potentials, and entropies. The authors also discussed different materials used for
dry electrodes and the problem of measurement intrusiveness for the drivers.

Balandong et al. [45] split driver drowsiness detection systems into six categories based
on the used technique—(1) subjective measures, (2) vehicle-based measures, (3) driver’s
behavior-based system, (4) mathematical models of sleep–wake dynamics, (5) human
physiological signal-based systems, and (6) hybrid systems. The authors emphasized
human physiological signal-based systems, but only the systems that rely on a limited
number of EEG electrodes, as these kinds of systems are more practical for real-world
applications. The authors concluded that the best results were obtained when the problem
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was observed as a binary classification problem and that the fusion of the EEG features
with other physiological signals should lead to improved accuracy.

Other review papers of driver drowsiness systems are specialized for a certain aspect
of the field, e.g., Hu and Lodewijsk [46] focused on differentiating the detection of passive
fatigue, active fatigue, and sleepiness based on physiological signals, subjective assessment,
driving behavior, and ocular metrics, Soares et al. [47] studied simulator experiments
for drowsiness detection, Bier et al. [48] put focus on the monotony-related fatigue, and
Philips et al. [49] studied operational actions (e.g., optimal staff, optimal schedule design)
that reduce risk of drowsiness occurrence.

Figure2shows the reviews presented in this section in chronological order of publication.
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3. EEG Features

The purpose of this section is to introduce features that researchers extract from the
EEG signal. We will not go into the details of the computation for each feature. For
the readers who are interested in the detailed computation for each feature, we suggest
reading the cited papers. Instead, the main idea is to present, with a brief explanation, as
many features as possible, which will later allow us to identify opportunities for further
improvements in the area of driver drowsiness detection. Tables1and2show the list of all
the features introduced in the following subsections. In the rest of this Section, we will use
bold letters for the first occurrence of a particular feature name and italic letters for the first
occurrence of a particular feature transformation or extraction method name.

3.1. Time, Frequency and Time-Frequency Domain Features
3.1.1. Time-Domain Features

The simplest features of the EEG signal are statistical features, like mean, median,
variance, standard deviation, skewness, kurtosis, and similar [50]. Zero-crossing rate
(ZCR) [51] is not a statistical feature, yet it is also a simple feature. It is the number of times
that the signal crosses the x-axis. The period-amplitude analysis is based on the analysis of the
half-waves, i.e., signals between two zero-crossings. With the period amplitude analysis,
one can extract the number of waves, wave duration, peak amplitude, and instantaneous
frequency (IF) (based only on the single observed half-wave) [52].

Hjorth parameters are features that are based on the variance of the derivatives of the
EEG signal. Mobility, activity, and complexity [53] are the first three derivatives of the
signal and the most-used Hjorth parameters. Mean absolute value of mobility, activity, and
complexity can also be used as a features [54]. K-complex [55] is a characteristic waveform
of the EEG signal that occurs in stage two of the non-rapid eye movement sleep phase.
Energy (E) of the signal is the sum of the squares of amplitude.
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3.1.2. Frequency-Domain Features

The power spectral density (PSD) of the signal, which is the base for calculation
of the frequency domain features, can be calculated with several parametric and non-
parametric methods. Non-parametric methods are used more often and include methods
like Fourier transform (usually calculated with Fast Fourier transform algorithm, FFT [56]),
Welch’s method [57], or Thompson multitaper method [58]. Examples of parametric methods
for the PSD estimation are the autoregressive (AR) models [59], multivariate autoregressive
models [60], or the autoregressive-moving average (ARMA) models [61]. The non-parametric
models have a more widespread usage, because there is no need for selecting parameters
such as the model’s order, which is the case for autoregressive models.

Statistical features like mean, median, variance, standard deviation, skewness, kur-
tosis, and similar are also used in the frequency domain. Relative powers of the certain
frequency bands are the most used frequency-domain features in all fields of analysis of
the EEG signals. The most commonly used frequency bands are delta (δ, 0.5–4 Hz), theta
(θ, 4–8 Hz), alpha (α, 8–12 Hz), beta (β, 12–30 Hz), and gamma (γ, >30 Hz), band. There
is also the sigma band (σ, 12–14 Hz) that is sometimes called sleep spindles [62]. Several
ratios between frequency bands are widely used as features in the EEG signal analysis, i.e.,
θ/α [63], β/α [63], (θ + α)/β [64], θ/β [64], (θ + α)/(α + β) [64], γ/δ [65] and (γ + β)/(δ +
α) [65].

Table 1. The list of time-domain, frequency domain and nonlinear features reviewed in this work.

Group Feature Name Abbr. Group Feature Name Abbr.

Ti
m

e-
do

m
ai

n

Mean

Fr
eq

ue
nc

y-
do

m
ai

n θ/β
Median (θ + α)/(α + β)
Variance γ/δ

Standard deviation (γ + β)/(δ + α)
Skewness Reflection coefficients
Kurtosis Partial correlation coefficient

Zero-crossing rate ZCR Wavelet coefficients
Number of waves Phase coupling

Wave duration

N
on

lin
ea

r

Hurst exponent H
Peak amplitude Renyi scaling exponent

Instantaneous frequency IF Renyi gener. dim. multifractals
Hjorth parameters Capacity dimension D0 D0

Mobility Information dimension D1 D1
Activity Correlation dimension D2 D2

Complexity Katz fractal dimension KFD
K-complex Petrosian fractal dimension PFD

Energy E Higuchi fractal dimension HFD

Fr
eq

ue
nc

y-
do

m
ai

n

Mean Fractal spectrum
Median Lyapunov exponents LE
Variance Lempel-Ziv complexity LZC

Standard deviation Central tendency measure CTM
Skewness Auto-mutual information AMI
Kurtosis Temporal irreversibility

Delta δ Recurrence rate RR
Theta θ Determinism Det
Alpha α Laminarity Lam
Beta β Average diagonal line length L

Gamma γ Maximum length of diagonal Lmax
Sigma σ Max. length of vertical lines Vmax
θ/α Trapping time TT
β/α Divergence Div

(θ + α)/β Entropy of recurrence plot ENTR
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Table 2. The list of entropies, undirected and directed spatiotemporal (spt.), and complex network features reviewed in
this work.

Group Feature Name Abbr. Group Feature Name Abbr.

En
tr

op
ie

s

Shannon entropy

U
nd

ir
ec

te
d

sp
t.

Imaginary component of Coh
Renyi’s entropy Phase-lag index PLI
Tsallis entropy Weighted phase lag index wPLI

Kraskov entropy KE Debiased weighted PLI dwPLI
Spectral entropy SEN Pairwise phase consistency PPC

Quadratic Renyi’s SEN QRSEN Generalized synchronization
Response entropy RE Synchronization likelihood SL

State entropy SE Mutual information MI
Wavelet entropy WE Mutual information in freq. MIF

Tsallis wavelet entropy TWE Cross-RQA
Rényi’s wavelet entropy RWE Correlation length ξKLD

Hilbert-Huang SEN HHSE

D
ir

ec
te

d
sp

t. Granger causality

Log energy entropy LogEn Spectral Granger causality

Multiresolution entropy Phase slope index PSI

Kolmogorov’s entropy

C
om

pl
ex

ne
tw

or
ks

Number of vertices
Nonlinear forecasting entropy Number of edges
Maximum-likelihood entropy Degree D

Coarse-grained entropy Mean degree
Correntropy CoE Degree distribution

Approximate entropy ApEn Degree correlation r
Sample entropy SampEn Kappa k

Quadratic sample entropy QSE Clustering coefficiet
Multiscale entropy MSE Transitivity

Modified multiscale entropy MMSE Motif
Composite multiscale entropy CMSE Characteristic path length

Permutation entropy PE Small worldness
Renyi’s permutation entropy RPE Assortativity
Permutation Rényi entropy PEr Efficiency

Multivariate PE MvPE Local efficiency
Tsallis permutation entropy TPE Global efficiency

Dispersion entropy DisE Modularity
Amplitude-aware PE AAPE Centrality degree

Bubble entropy BE Closesness centrality
Differential entropy DifE Eigenvalue centrality

Fuzzy entropy FuzzyEn Betweenness centrality
Transfer entropy TrEn Diameter d

U
nd

ir
ec

te
d

sp
t. Coherence Eccentricity Ecc

Partial coherence Hubs
Phase coherence Rich club

Phase-locking value PLV Leaf fraction

Coherency Coh Hierarchy Th

The frequency domain of the signal can also be obtained using wavelet decomposi-
tion [66,67] and matching pursuit decomposition [68,69] methods. Unlike Fourier transform,
which decomposes a signal into sinusoids, wavelet decomposition uses an underlying
mother wavelet function for decomposition, and matching pursuit decomposition uses the
dictionaries of signals to find the best fit for the signal.

From autoregressive models, one can extract features such as reflection coefficients
or partial correlation coefficients. Wavelet coefficients obtained after applying wavelet
decomposition can also be used as features. PSD is usually used to obtain the second-order
statistics of the EEG signal. However, one can also consider the higher-order spectrum. For
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example, phase coupling [70] of different frequency components can be obtained with the
higher-order spectral analysis.

3.1.3. Time-Frequency Features

The analysis of the EEG signal in the domains of time and frequency simultaneously is
a powerful tool, since the EEG signal is a non-stationary signal [71,72]. The most important
component of time-frequency domain analysis is the possibility to observe changes in the
frequency over time. Short-time Fourier transform (STFT) is the simplest function that
uses uniform separation of the observed signal and calculates its frequency components.
A spectrogram [71] can be obtained with the application of STFT. Wavelet transform [73]
is the usual alternative method to spectrogram that also provides coefficients as features
from the time-frequency domain. The main advantage of wavelet transform compared to
spectrogram is a variable window size, dependent on spectrum frequencies.

3.2. Nonlinear Features

Brain dynamics constitute a complex system. A system is complex when it is con-
structed from many nonlinear subsystems that cannot be separated into smaller subsystems
without changing their dynamical properties. Fractal systems are often used for describing
the brain dynamics measured with the EEG signal. To explain fractal systems, first, we
need to introduce the scaling law. The scaling law is describing (asymptomatically) a
self-similar function F as a function of the scale parameter s, i.e., F(s) ∼ sα. When applied
to a self-affine signal, each axis should be scaled by a different power factor to obtain
statistically equivalent changes in both directions. If s is used in the x-axis direction, then
s′ = sH should be used in the y-axis direction. The power factor H is called the Hurst
exponent [74,75]. The Hurst exponent is a measure of long-term memory of the signal and
is related to the fractal dimension with the equation D0 = 2 − H for self-similar time-series,
where fractal dimension D0 is defined in the next paragraph. Time-series q is monofractal if
it is linearly interdependent with its Renyi scaling exponent τ(q), otherwise, it is multifrac-
tal. The Renyi generalized dimension of multifractals is defined as D(q) = τ(q)/(q − 1).
For more detailed explanations about fractality and multifractality of the time-series, we
refer the reader to [76–78].

In EEG signal analysis, all fractal dimensions are estimated based on the underlying
attractor (a geometric structure towards which stationary dissipative system gravitates in
its state space) of the signal [79]. In a strict mathematical sense, most time-series have the
one-dimensional support fractal dimension D0 (or capacity dimension or Hausdorff di-
mension) if there are no missing values. Regardless of the value of the D0, the information
dimension D1 and correlation dimension D2 [79–81] can be calculated. The correlational
dimension D2 can be calculated with both monofractal and multifractal approaches. The
Katz fractal dimension (KFD) [82], the Petrosian fractal dimension (PFD) [83], and the
Higuchi fractal dimension (HFD) [84] are different approaches to the estimation of the
fractal dimension. With multifractal time-series analysis, a fractal spectrum consisting of
multiple fractal dimensions can be obtained [85,86].

Methods for fractal time-series analysis can be classified [76] into stationary analysis
methods (such as Fluctuation Analysis [87], Hurst’s Rescaled-Range Analysis [74], and similar),
non-stationary analysis (such as Detrended Fluctuation Analysis [88], Centered Moving Average
Analysis [89], Triangle Total Areas [90], and similar), and multifractal analysis (such as
Wavelet Transform Modulus Maxima [91], Multifractal Detrended Fluctuation Analysis [92], and
similar). Each of these methods provides its own estimation of fractal dimension or scaling
exponent features.

Lyapunov exponents (LE) [93] are measures of the attractor’s complexity. If a system
has at least one positive Lyapunov exponent, then the system can be characterized as a
chaotic dynamical system. A positive Lyapunov exponent points to exponential divergence
of the two nearby trajectories in the attractor over time [94]. Lempel-Ziv complexity
(LZC) [95] is a measure of complexity that binarizes time-series and then searches for the
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occurrence of consecutive binary characters or “words” and counts the number of times
a new “word” is encountered. The Central tendency measure (CTM) [96] is a measure
of the variability of the observed time-series and represents the percentage of points on
the scatter plot that fall into a given radius. Auto-mutual information (AMI) [97] is a
mutual information measure applied to time-delayed versions of the same EEG time-series.
Temporal irreversibility [98] of a time-series implies the influence of nonlinear dynamics,
non-Gaussian noise, or both. It is a statistical property that differs based on the direction
in which time proceeds, e.g., any sequence of measurements has a different probability of
occurrence than its time reverse.

A recurrence plot [99] is a graphical method for the detection of reoccurring patterns
in the time-series. Recurrence quantification analysis (RQA) [100] is a group of algorithms
for the automatic quantification of recurrence plots. RQA is a noise resistant method,
meaning it gives good results even when the signal-to-noise ratio of considered signals
is unfavorable [101]. The recurrence rate (RR) is the probability that a specific state of a
time-series will reoccur. Determinism (Det) is the percentage of points that form diagonal
lines on the recurrence plot and laminarity (Lam) is the percentage of points forming
vertical lines in the recurrence plot. The average diagonal line length (L), maximum
length of diagonal (Lmax), and maximum length of vertical lines (Vmax) are also used
as RQA-based features. Trapping time (TT) is the average vertical line length and it relates
to the predictability of the time-series. Divergence (Div) is the reciprocal value of the
maximal diagonal line length and it can have a trend similar to the positive Lyapunov expo-
nents. Entropy of the recurrence plot (ENTR) reflects the complexity of the deterministic
structure of the system.

3.3. Entropies

Entropy was first introduced to the field of information theory by Shannon in
1948 [102,103]. Shannon’s information entropy is calculated based on the expression
− ∑

j
pj log

(
pj
)
, where pj is the probability distribution of the observed data. It is used

to measure uncertainty or randomness in the observed time-series. There are many
derived variations of information entropy used in EEG analysis. The entropies may be
considered as nonlinear features, but we describe them in a separate subsection due to
their specific calculation.

Rényi’s entropy [104] is defined with the expression − α
1−α ∑ log pα

k , where α > 0
and α 6= 1. It is a generalization of Shannon’s entropy in the case of a limited value
of α → 1 . Quadratic Rényi’s entropy (or just Rényi’s entropy) is the case where α = 2.
Tsallis entropy (q-entropy) [105] is a generalization of the Boltzman–Gibbs entropy from

statistical thermodynamics and is defined with the expression k
q−1

(
1 − ∑

i
pq

i

)
, where k is a

positive constant and q is the non-extensity parameter. For q > 1, the entropy has a more
significant reaction to the events that occur often, whereas for 0 < q < 1, the entropy has a
more significant reaction to rare events.

The three aforementioned entropies can be calculated from the raw EEG signal. Be-
sides that, they are a base for calculating several other entropies in the field of EEG
analysis. Kraskov entropy (KE) [50] is an unbiased estimator of Shannon’s entropy for a
d-dimensional random sample. Spectral entropy (SEN) [106] is calculated with the expres-
sion for Shannon’s entropy based on the normalized PSD of the EEG signal. Quadratic
Renyi’s spectral entropy (QRSEN) [107] is calculated with the usage of Renyi’s entropy
expression, and the difference compared to the spectral entropy is that it gives the higher
weights to the lower frequencies. Commercial M-Entropy Module [108] uses two different
components of spectral entropy—response entropy (RE) and state entropy (SE). State
entropy includes the spectrum between 0.8 and 32 Hz, while response entropy includes the
spectrum between 0.8 and 47 Hz.

Wavelet entropy (WE) [109,110] is somewhat similar to spectral entropy. The differ-
ence is that it is calculated based on the coefficients of the wavelet decomposition of the
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given time-series. There are two generalizations of wavelet entropy—Tsallis wavelet en-
tropy (TWE) and Rényi’s wavelet entropy (RWE) [111]. Hilbert–Huang spectral entropy
(HHSE) [112] applies Shannon’s entropy to the Hilbert–Huang spectrum, which is obtained
by the Hilbert–Huang transform [111,113]. Log energy entropy (LogEn) [114] is similar to
the wavelet entropy, but only uses summation of logarithms of the probabilities. Multires-
olution entropy [115] uses the combination of windowing and wavelet transform for the
detection of changes in parameters that define the observed process (i.e., the parameters of
brain dynamics).

Kolmogorov’s entropy [116] is an embedding entropy and is defined as the sum of
positive Lyapunov exponents. It represents the rate of information loss and a degree
of predictability (regularity) of the attractor. Accurate computation of Kolmogorov’s
entropy is computationally expensive, so several entropies are used for the estimation of
Kolmogorov’s entropy based on the less computationally expensive methods. Nonlinear
forecasting entropy [117] is the estimation of Kolmogorov’s entropy for time-series with
too few points. It is based on the forecasting of the time-series data, i.e., on the correlation
coefficient of the forecasted points with actually observed points. The estimation method is
independent of the forecasting method used. Maximum-likelihood entropy [118] is also
the estimation of Kolmogorov entropy. It is derived with the application of maximum-
likelihood to the correlation integral, which is treated as a probability distribution. Coarse-
grained entropy [119] is an estimation of the attractor’ entropy for cases where standardly
used dimensions, Lyapunov exponents, and Kolmogorov’s entropy are not suitable due to
the high dimensionality of the observed process. Correntropy (CoE) [120] is an estimation
of nonlinear autocorrelation.

Approximate entropy (ApEn) [121] is derived from Kolmogorov’s entropy and its
use in the analysis of the EEG signal (and other physiological signals) is widespread.
It addresses the irregularity of a time-series. Predictable time-series, i.e., time-series
with many repetitive patterns will have a small value of approximate entropy. Sample
entropy (SampEn) [122] was introduced as an improvement to approximate entropy. It
reduces the error of the approximate entropy by eliminating its two disadvantages—(1)
self-matches and (2) dependence on the time-series length. Sample entropy is also an
approximation of signal complexity. Quadratic sample entropy (QSE) [123] is SampEn
insensitive to the data radius parameter r. It allows r to vary as needed to achieve
confident estimates of the conditional probability. Multiscale entropy (MSE) [124] is
a generalization of an entropy measure (such as sample entropy) to different time
scales. Modified multiscale entropy (MMSE) [125] uses the same procedure as MSE,
but replaces coarse-graining with a moving average procedure. Composite multiscale
entropy (CMSE) [126] is a modification of the MSE that tackles the problem of increased
variance and error estimation for short time-series.

Permutation entropy (PE) [127] estimates signal variability based on the repetition of
the ordinal patterns. The algorithm requires parameter m (permutation order) to obtain
ordinal patterns and their probabilities of occurrence. These probabilities are then applied
in Shannon’s entropy expression. Moreover, Renyi’s permutation entropy (RPE) [128],
permutation Rényi entropy (PEr) [129], multivariate permutation entropy (MvPE) [130],
and Tsallis permutation entropy (TPE) [111] can be calculated for the ordinal patterns.
Dispersion entropy (DisE) [131] is a modification of permutation entropy that tackles
the problem of amplitude information loss (since permutation entropy only considers
the order of the amplitude values but not the values themselves). Amplitude-aware
permutation entropy (AAPE) [132] is based on the similar idea of using the value of the
signal with the permutation entropy. Bubble entropy (BE) [133] is similar to permutation
entropy with the main difference in the method used for ranking vectors in the embedding
space. Namely, permutation entropy uses repetition of the ordinal patterns and bubble
entropy uses the number of steps needed to sort a vector with the bubble sort algorithm.
Differential entropy (DifE) [134] calculation is based on Shannon’s entropy expression and
the estimation of the underlying probability density function of time-series. Fuzzy entropy
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(FuzzyEn) [135] is based on the concept of fuzzy sets, first introduced by Zadeh [136].
It is similar to sample entropy, but instead of using the Heaviside function for distance
calculation, it uses a fuzzy membership function. Transfer entropy (TrEn) [137] uses
concepts similar to mutual information (see Section3.4) with the ability to quantify the
exchange of information between two systems. It is an asymmetric measure for information
transfer from process X to process Y, which measures the effect of the past values of
processes X and Y on the present value of process Y.

3.4. Spatiotemporal Features

Features that were introduced above are all calculated based on a single EEG chan-
nel. Since EEG recording devices can have hundreds of channels nowadays, features
that describe the relationship between different channels bring further insight into the
understanding of brain functions. This is the main idea behind the usage of the spatiotem-
poral features—to describe the relationship between different brain regions for particular
states or events. Spatiotemporal features can be divided into two groups—directed and
non-directed. The non-directed ones relate to the synchronization of two or more channels
without any knowledge of the direction, while the directed ones include the causation
between them, i.e., they measure functional connectivity.

3.4.1. Non-Directed Spatiotemporal Features

Coherence [138] is a cross-correlation equivalent in the frequency-domain, i.e., the
cross-correlation of the PSD from two different channels. It reflects the synchronization
of the changes of frequency components between the observed channels. Partial coher-
ence [139] is an adjusted coherence with removed common signal’s linear effect based
on the third channel, which is not physically close to the two observed channels. Phase
coherence [140] is the coherence of the phases of the signals. It was introduced to overcome
the problem of detection of nonlinear dependencies between the two channels.

The phase-locking value (PLV) [141] represents the measure of the transient phase
locking that is completely independent of the signal’s amplitude, which is not the case for
the coherence measure. Coherency [142] is calculated similar to coherence, but without
applying the magnitude operator to the cross-spectral density of two channels. The
obtained complex-valued quantity is called coherency. The imaginary component of
coherency (iCoh) [143] reflects the nonlinear interaction between the two underlying time-
series. Phase-lag index (PLI) [144] is a measure of the asymmetry of the distribution of
phase differences between two signals. It brings improvement compared to the imaginary
component of coherency by removing the effect of amplitude information. The weighted
phase lag index (wPLI) [145] uses weights to reduce a phase lag index’s sensitivity to
noise, while the debiased weighted phase lag index (dwPLI) [145] additionally reduces a
sample-size bias. Pairwise phase consistency (PPC) [146] is a measure similar to PLV, but
it quantifies the distribution of all pairwise phase differences across observations.

Generalized synchronization [147] incorporates the nonlinear property of the dy-
namical systems into its calculation. The idea is to observe two dynamical systems, a
response system and a driving system, where the response system is a function of the
driving system. Authors propose a numerical method called mutual false nearest neighbors
for distinguishing between synchronized and unsynchronized behavior of the systems.
Arnhold’s measure [148] is another algorithm for measuring such interdependence between
two dynamical systems. Synchronization likelihood (SL) [149] brings several improve-
ments into these methods—it is sensitive to linear and nonlinear brain dynamics and is
suitable for an analysis of the non-stationary systems. It is calculated based on the similarity
of the time-delayed embeddings in the state space.

Mutual information (MI) [150] quantifies the amount of information obtained about
one time-series through observing the other time-series. It is a commonly used measure in
the information theory and is calculated based on Shannon’s entropy. Mutual information
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in frequency (MIF) [151] is a recently developed measure that calculates the mutual
information between the PSDs of two time-series. Its interpretation is similar to coherence.

Cross-recurrence quantification analysis [101] is similar to RQA, but instead of ob-
serving the self-similarity of a single signal, the similarity of two different channels is
observed. The features extracted are the same as in the case of single-channel RQA (see
Section3.2 ). The correlation length (ξKLD) [152] is a measure of the spatio-temporal disor-
der based on the Karhunen–Loeve decomposition.

3.4.2. Directed Spatiotemporal Features

Granger causality [153] is a well-known statistical test, which tests whether one
time-series forecasts (causes) the other time-series, and vice-versa. It is based on the
autoregressive forecast models of the two time-series. Spectral Granger causality [154]
can also be calculated and it is based on the estimation of the spectral transfer matrix and
the covariance of the autoregressive model’s residuals. The phase slope index (PSI) [155] is
a robust estimation of the information flow direction. It is insensitive to the mixtures of the
independent sources, which is the main problem for Granger causality. Transfer entropy,
which is explained in Section3.3, can also be considered a directed spatiotemporal feature.

3.5. Complex Networks

The features introduced in Section3.1, Section3.2, and Section3.3were based only on
a single channel of the EEG signal. Section3.4introduced features calculated based on the
pairwise interactions between the two channels. In this section, the main goal is to introduce
the features that observe the interactions between more than two channels. Complex
networks are a graph-theory-based approach to EEG signal analysis. A connectivity matrix
obtained by observing all pairwise connections between channels is used to obtain a graph.
Any method explained in Section3.4can be used to determine connectivity matrix, and
popular choices are correlation, PLI, or MI. Graphs can be weighted based on the values
of the connectivity matrix or unweighted by applying thresholding to the connectivity
matrix. A minimum spanning tree can also be used as a method for obtaining an acyclic
graph with all vertices included. For more details about graph construction and complex
networks, we refer the reader to papers [156,157]. In continuation of this section, we
introduce features that are calculated based on the obtained graph. These features are
functional connectivity features.

Once the graph is obtained, the number of vertices and the number of edges can be
used as features. The degree (D) [158] of a vertex is the number of edges connected to the
vertex. The mean degree of the network is a metric of density. The degree distribution is
a probability distribution of the degrees and it provides information about the structure
of the graph. Degree correlation (r) [159] is the correlation coefficient of degrees of pairs
of neighbors in a graph. Kappa (k) [159] is a measure of the degree diversity and it
measures the broadness of the degree distribution. The clustering coefficient [160] is a
measure of the vertices connectedness in a graph and it can be local (for a sub-graph) or
global. If the local clustering coefficient is equal to one, it means that the corresponding
local sub-graph is fully connected. The global clustering coefficient is sometimes called
transitivity [161]. A motif [162] is a generalized version of the clustering coefficient and
a pattern of local connectivity. The average of all pairwise shortest path lengths is called
characteristic path length [160]. Small worldness [163] is a second-order graph statistic
and its calculation is based on the trade-off between high local clustering and short path
length. Assortativity [164] is the measure of vertex tendency to link with other vertices
with a similar number of edges.

Efficiency [165] is a measure of the efficiency of the information exchange in the
graph. Local efficiency [165] is the inverse of the shortest path lengths between vertices
on the observed sub-graph, where the sub-graph consists of all neighbors of the observed
vertex. Global efficiency [165] is the average efficiency of the graph divided by the average
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efficiency of a fully connected graph. Modularity [166] describes the structure of the graph
and represents the degree to which a graph is subdivided into non-overlapping clusters.

Each vertex in the graph has a measure of centrality degree [167], which represents
the number of shortest paths in the graph that the observed vertex is involved in. Similarly,
each vertex in the graph has a measure of closeness centrality [168], which represents the
average distance of the observed vertex from all other vertices in the graph. Eigenvalue
centrality [169] is a measure of the ease of accessibility of a vertex to other vertices. It is
computed based on the relative vertex scores, with the basic idea that the high-scoring
connections should contribute more to vertex influence than the low-scoring vertices.
Betweenness centrality [170] is a measure of the importance of the vertex in a graph. It is
computed based on the number of times a vertex occurs along the shortest path between
two other vertices.

Diameter (d) [159] is the longest shortest path of a graph. Eccentricity (Ecc) [159]
is the longest shortest path from a referenced vertex to any other vertex in the graph.
Hubs [171] are vertices with high centrality. Hubs tend to be connected and this property
is called assortativity. Rich club [172] is a sub-graph of highly interconnected hubs. Leaf
fraction [159] of a graph is the number of vertices with exactly one edge. Hierarchy
(TH) [159] captures the ratio between a small diameter on one hand and overloading of the
hub nodes on the other hand.

4. Driver Drowsiness Detection Systems

The aim of this Section is to review the work on drowsiness detection focusing on the
features used. The inclusion criteria for the papers are stated in Section1. Tables3and4
show a summary of the reviewed work on driver drowsiness detection, and the rest of the
Section briefly presents each work.

Balam et al. [173] used a convolutional neural network (CNN) for the classification
based on the raw EEG signal from the Cz-Oz channel. They used data from the Sleep-EDF
Expanded Database and their ground truth for drowsiness was the S1 sleep stage. Since
the authors used a publicly available database, they compared their deep learning (DL)
approach with the other feature-based approaches, and they concluded that this approach
resulted in at least 3% better results. Chaabene et al. [174] used frequency-domain features
for defining the ground truth. They used CNN with raw EEG signal from seven electrodes
as input and achieved 90% drowsiness detection accuracy.

Yingying et al. [175] used a Long Short-Term Memory (LSTM) network to classify
sleepiness in two classes and their final classification accuracy achieved was 98%. Their
ground truth labels for classification were based on the alpha-blocking phenomenon and
the alpha wave attenuation-disappearance phenomenon. The authors claimed that these
two phenomena represent two different sleepiness levels, relaxed wakefulness and sleep
onset, respectively. The authors used only the O2 channel of the EEG signal and per-
formed a continuous wavelet transform to obtain the PSD. Zou et al. [176] used multiscale
PE, multiscale SampEn, and multiscale FuzzyEn. Their ground truth labels were based
on Li’s subjective fatigue scale and the accuracy achieved was 88.74%. Chaudhuri and
Routray [177] used only three entropies as features—ApEn, SampEn, and modified Sam-
pEn. Their experiment was designed to slowly increase the fatigue level of the participants
because of the effects of physical and mental workload, along with the effects of sleep
deprivation. The experiment was divided into 11 stages and stages 7 and later were labeled
as the fatigue state. The authors used SVM and achieved 86% accuracy.

Budak et al. [178] used MIT/BIH Polysomnographic EEG database in their study.
Their ground truth for binary classification was based on sleep stages labeled by an expert.
The awake stage was labeled the awake state and stage I of sleep was labeled the drowsy
state. The authors used ZCR, E, IF, and SEN as traditional features, and also used AlexNet
on the spectrogram images to obtain additional 4096 features (layers fc6 and fc7 of AlexNet).
The accuracy of the binary classification was 94.31%, which is the best result achieved on
this dataset, according to the authors. Mehreen et al. [179] used δ, δ/α, θ, θ/ϕ, δ/α+β+γ,
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and δ/θ EEG features, along with blink features and head movement features and achieved
92% accuracy of drowsiness detection. Based on EEG features only, the accuracy was
76%. The authors used subjective evaluation with Karolinska Sleepiness Scale (KSS) as the
ground truth. It is unclear how the authors converted nine levels of KSS into a two-level
ground truth. Chen et al. [180] used the clustering coefficient and characteristic path length
of the graph obtained for δ, θ, α, and β frequency bands. The graph was obtained using the
phase lag index. The ground truth labels were binary. The first three minutes of participants’
driving were labeled as alert state and the last three minutes as fatigue state. SVM was
selected for classification and achieved 94.4% accuracy. The authors conclude that the
functional connectivity of the brain differs significantly between the alert and fatigue state,
particularly in the α and β bands.

Table 3. The summary of metadata of the reviewed driver drowsiness detection papers.

Author Year Participants Electrodes

Chaabene et al. [174] 2021 12 14 channels
Balam et al. [173] 2021 23 Pz-Oz

Yingying et al. [175] 2020 12 O1 and O2
Zou et al. [176] 2020 16 32 channels

Chaudhuri and Routray [177] 2020 12 19 Channels
Budak et al. [178] 2019 16 C3-O1, C4-A1, and O2-A1
Chen et al. [179] 2019 14 14 channels

Mehreen et al. [180] 2019 50 AF7, AF8, TP9 and TP10
Martensson et al. [181] 2019 86 Fz-A1, Cz-A2 and Oz-Pz

Barua et al. [182] 2019 30 30 channels
Ogino and Mitsukura [183] 2018 29 Fp1

Chen et al. [184] 2018 15 30 channels
Chen et al. [185] 2018 15 30 channels
Chen et al. [186] 2018 12 40 channels

Hu and Min [187] 2018 22 30 channels
Dimitrakopoulos et al. [188] 2018 40 64 channels

Hong et al. [189] 2018 16 Ear channel
Li and Chung [190] 2018 17 O1 and O2

Min et al. [191] 2017 12 32 channels
Awais et al. [192] 2017 22 19 channels

Nguyen et al. [193] 2017 11 64 channels
Hu [194] 2017 28 32 channels

Chai et al. [195] 2017 43 32 channels
Chai et al. [196] 2017 43 32 channels
Mu et al. [197] 2017 11 27 channels
Fu et al. [198] 2016 12 O1 and O2

Ahn et al. [199] 2016 11 64 channels
Huang et al. [200] 2016 12 30 channels

Li et al. [201] 2015 20 O1 and O2
Chen et al. [202] 2015 16 9 channels

Sauvet et al. [203] 2014 14 C3-M2 and O1-M2
Lee et al. [204] 2014 20 Fpz-Cz and Pz-Oz

Garces Correa et al. [205] 2014 18 C3-O1, C4-A1 and O2-A1
Zhang et al. [110] 2014 20 O1 and O2

Hu et al. [206] 2013 40 Fz-A1, Cz-A2 and Oz–Pz
Picot et al. [207] 2012 20 F3, C3, P3 and O1
Zhao et al. [208] 2011 13 32 channels

Khushaba et al. [20] 2011 31 Fz, T8 and Oz
Liu et al. [209] 2010 50 13 channels



Sensors 2021, 21, 3786 15 of 29

Table 4. The summary of reviewed driver drowsiness detection papers. The meanings of the abbreviations are: TD—
time-domain, FD—frequency-domain, N—nonlinear, EN—entropies, CN—complex networks, SIG—signal-based labeling,
Li’s—Li’s subjective fatigue scale, SD—sleep deprivation, NREM1—labels based on the sleep stages, BE3—first and last
three minutes as two labels, BE5—first and last five minutes as two labels, BIH—behavior-based labeling, WIE—Wierwille
scale, RT—reaction time based labeling, EXP—expert labeling, LSTM—long-short term memory, KNN—k nearest neighbor,
SVM—support vector machine, RF—random forest, ELM—extreme learning machine, GBDT—gradient boosting decision
tree, NN—neural network, FLDA—Fisher linear discriminant analysis, SDBN—sparse deep belif network, HMM—hidden
Markov model, and Thres.—thresholding-based algorithm.

Author Features Target Algorithm No. Classes Acc.

Chaabene et al. [174] Raw SIG CNN 2 90.14
Balam et al. [173] Raw NREM1 CNN 2 94.00

Yingying et al. [175] FD SIG LSTM 2 98.14
Zou et al. [176] EN Li’s KNN 88.74

Chaudhuri and Routray [177] EN SD SVM 2 86.00

Budak et al. [178] TD, FD, EN and
special NREM1 LSTM 2 94.31

Chen et al. [179] CN BE3 SVM 2 94.40
Mehreen et al. [180] FD KSS SVM 2 92.00

Martensson et al. [181] FD, N and EN KSS RF 2 93.50
Barua et al. [182] TD, FD and EN KSS SVM 2 and 3 93.00 and 79.00

Ogino and Mitsukura [183] FD and EN KSS SVM 2 67.00
Chen et al. [184] CN KSS
Chen et al. [185] CN KSS KNN 2 98.60
Chen et al. [186] CN BE3 ELM 2 95.00

Hu and Min [187] EN BE5 GBDT 2 94.00
Dimitrakopoulos et al. [188] CN BE5 SVM 2 92.10

Hong et al. [189] FD, N and EN EBE SVM 5 99.50
Li and Chung [190] FD WIE SVM 5 93.87

Min et al. [191] FD and EN BE5 NN 2 98.30
Awais et al. [192] TD, FD and EN BIH SVM 2 80.00

Nguyen et al. [193] FD SIG FLDA 2 79.20
Hu [194] EN BE5 AdaBoost 2 97.50

Chai et al. [195] FD BE5 SDBN 2 90.60
Chai et al. [196] FD BE5 NN 2 88.20
Mu et al. [197] EN Li’s SVM 2 97.00
Fu et al. [198] FD KSS HMM 3 AUC 0.841

Ahn et al. [199] FD SD FLDA 2 75.90
Huang et al. [200] FD RT

Li et al. [201] FD BIH SVM 2 93.16
Chen et al. [202] FD, N and EN SIG ELM 2 95.60

Sauvet et al. [203] FD EXP Threshold 2 98.30
Lee et al. [204] TD and FD NREM1 SVM 4 98.50

Garces Correa et al. [205] TD and FD NREM1 NN 2 87.40
Zhang et al. [110] N and EN SIG NN 4 96.50

Hu et al. [206] FD KSS SVM 2 75.00
Picot et al. [207] FD SIG Threshold 5 80.60
Zhao et al. [208] FD Li’s SVM 3 81.60

Khushaba et al. [20] FD WIE LDA 5 95.00
Liu et al. [209] EN KSS and Li’s HMM 2 84.00

Martensson et al. [181] used θ, α, θ/(θ + α), α/(θ + α), (θ + α)/β, α/β, (θ + α)/(θ +
β), θ/β, SampEn, and HFD from three EEG channels together with features from EOG
and ECG signals. The authors performed a sequential forward floating feature selection
method for dimensionality reduction and six EEG features were selected—HFD, θ, α/(θ
+ α), θ/β, θ/(θ + α) and α. Random forest was selected as the best model and achieved
93.5% accuracy on the test set and 84% on the leave-one-subject-out validation scheme.
The ground truth was obtained with the KSS. The severely sleepy class was for a KSS score
greater than seven and the sufficiently alert class was for a KSS score of less than seven.
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KSS scores equal to seven were discarded as outlined. Barua et al. [182] used δ, θ, α, β,
γ, (θ + α)/β, α/β, (θ + α)/(α + β), and θ/β from 30 EEG channels along with features
from EOG and contextual information (e.g., time awake, duration of last sleep, and the
like). The authors achieved the best accuracy of 93% for binary classification and 79%
for classification into three classes. Self-evaluation with KSS score was used as ground
truth and KSS score was classified into three classes—alert class for KSS scores below six,
somewhat sleepy class for KSS scores below eight, and sleepy for KSS scores equal to
eight or nine. In the binary classification, the authors used two methods (fuzzy centroid
redistribution and SVM predicted redistribution) for redistribution of somewhat sleepy
classes into the alert and sleepy classes. Ogino and Mitsukura [183] used δ, θ, α, β, and γ

as frequency domain features, and parameters of the autoregressive model and MSE were
also added to the feature set. Only the Fp1 channel was used and the authors achieved
67% accuracy by using SVM. The ground truth labels were based on the KSS score, where
the alert class was for a KSS score less than four and the drowsy class was for a KSS score
greater than six.

Chen et al. [184] analyzed the difference in complex network features for each fre-
quency band (δ, θ, α, and β) between alert and drowsy states. The authors used the features:
Number of vertices, number of edges, D, leaf fraction, d, Ecc, betweenness centrality, k,
Th, and r. Their ground truth was based on the KSS score. A significant difference was
found in the four features of the δ-band and five features of the θ-band. In addition, the
authors suggested a more linear graph configuration in alert states and a more star-shaped
graph configuration in drowsy states. Chen et al. [185] used the same experiment for
drowsiness classification in a related study. Three complex network features (degree, de-
gree correlation, and kappa) were extracted for each frequency band (δ, θ, α, and β). The
ground truth was based on the KSS score and they performed binary classification. The
highest accuracy of 98.6% was achieved using the k nearest neighbor (KNN) algorithm.
Chen et al. [186] used phase synchronization, phase coherence, k, betweenness centrality,
and Th as features. The first three minutes of participants’ driving were labeled as an
alert state and the last three minutes as a fatigue state. The highest accuracy achieved was
95% using the extreme learning machine (ELM) algorithm. Dimitrakopoulos et al. [187]
used 64 channels and computed three complex network features—clustering coefficient,
characteristic path length, and small-worldness. The authors achieved 92.1% accuracy for
drowsiness classification. The network values of the first and the last 5-min windows were
used to indicate the states of maximum alertness and maximum fatigue, respectively.

Hong et al. [188] used δ, θ, α, β, ratio indices, frequency domain statistics, the gen-
eralized Hurst exponent, HFD, SEN, and PE from the ear channel together with photo-
plethysmography (PPG) and ECG. The highest accuracy achieved was 99.5%. The ground
truth labels were divided into five levels and were labeled by experts based on behavioral
expressions. The authors ranked the features using four different methods, and in each
method, at least four of the seven best-ranked features were nonlinear features. Hu and
Min [189] used 30 channels and four entropies from each channel—SEN, ApEn, SampEn,
and FuzzyEn. The authors achieved 94% accuracy in drowsiness classification. They
used a ground truth based on self-reported fatigue. If the measurement lasted longer
than 30 min before the participant self-reported fatigue, the signals from the 5th to 10th
minute were used as the normal state and the signals from the last five minutes before
the end of the experiment were used as the fatigued state. Li and Chung [190] used θ, α,
and β features from O1 and O2 channels along with gyroscope-based head movement
measurement. The subjective Wierwille scale was used to obtain five-level ground truth.
The achieved accuracy for five-level classification was 93% and for binary classification
it was 96%. Awais et al. [191] used mean, variance, minimum, maximum, E, SampEn, δ,
θ, α, β, and γ from 19 channels along with ECG signal. SVM was used for classification
and they achieved 80% accuracy for binary classification. When only EEG features were
used, the accuracy was 76%. The authors used video-based facial features including eye
blink duration, facial expressions, facial tone, eye blinking rate, and movements such as
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head-nodding and yawning for establishing ground truth. When a drowsy event began,
five minutes before it were marked as the alert state and five minutes after it were marked
as the drowsy state.

Min et al. [192] used SEN, ApEn, SampEn, and FuzzyEn for fatigue detection. These
four entropies gave better results than AR coefficients. An experiment was terminated
based on the subjective report of fatigue. To confirm these fatigue reports, the authors
utilized the Chalder Fatigue Scale and Li’s Subjective Fatigue Scale before and after the
experiment. The first five minutes of the recording were labeled as the normal state and the
last five minutes of the recording were labeled as the fatigued state. The authors achieved
an accuracy of 98.3%. Nguyen et al. [193] used δ, θ, α, β, and γ features from 64 channels
along with near-infrared spectroscopy (NIRS). EOG and ECG signals were also measured,
but they were only used to establish the ground truth labels. Fisher linear discriminant
analysis (FLDA) was used for binary classification with 79.2% accuracy when EEG and
NIRS were used. The accuracy when only EEG features were used was 70.5%. The authors
introduced the drowsiness detection index, a variable derived for drowsiness detection,
and they reported that it predicts the onset of drowsiness on average 3.6 s earlier. Hu [194]
used SEN, ApEn, SampEn, and FuzzyEn features from 32 channels of the EEG signal.
An experiment was terminated based on the EOG parameter associated with fatigue and
self-reported fatigue. The first five minutes were labeled as the normal state and the last
five minutes were labeled as the fatigue state. The AdaBoost classification algorithm was
used and achieved 97.5% accuracy. Chai et al. [195] used AR coefficients as features. The
ground truth labels were binary, with the first five minutes of driving labeled as the alert
state and the last five minutes of driving labeled as the fatigued state. An experiment was
terminated when the participant drove of the road for 15 s or when consistent signs of
fatigue (such as head nodding and prolonged eye closure) were detected. The authors
used NN for classification and achieved 88.2% accuracy. Chai et al. [196] used AR features
from 32 channels. The first five minutes of data were used as an alert state and the last five
minutes as a drowsy state. The authors used a sparse deep belief network as a classification
algorithm and achieved 90% accuracy. Mu et al. [197] used FuzzyEn from Fp1 and Fp2
channels and achieved 97% accuracy using the SVM algorithm. The ground truth labels
were binary with the first 10 min labeled as the normal state and the last 10 min labeled as
the fatigued state. The stopping criteria of the experiment were based on Li’s subjective
fatigue scale and Borg’s CR-10 scale.

Fu et al. [198] used θ, α, and β features from O1 and O2 channels along with EMG
and respiration. The ground truth was set based on the KSS score, where level one was KSS
score equal to one or two, level two was KSS score equal to three or four, and level three was
KSS score equal to five or six. The reported average area under the curve (AUC) was 0.841.
When only EEG features were used, the average AUC was 0.644. Ahn et al. [199] used δ, θ,
α, β, and γ along with EOG, ECG, and fNIRS. FLDA was used for binary classification with
79.2% accuracy using all the available sensors. The accuracy based only on the EEG signal
features was 59.7%. Binary ground truth was used with the well-rested group and the
sleep-deprived group. Huang et al. [200] used only the α feature. The system developed in
this study did not use a classification algorithm. It was based on measuring the response
times of the subjects. Drowsiness was labeled for the moments when the response time
was 2.5 times greater than the mean response time, which helped the authors to determine
a threshold for α feature value indicating drowsiness. An auditory warning system was
developed to help subjects to remain alert.

Li et al. [201] used θ, α, and β features from O1 and O2 channels. The ground truth
alert and drowsy data were labeled based on the percentage of eyelid closure (PERCLOS)
and the number of adjustments on the steering wheel. The best accuracy of 93.16% was
achieved using the SVM classifier and only θ and β features. The authors used the probabil-
ity of prediction instead of the discrete class label to develop an early warning system with
a probability threshold of 0.424. Chen et al. [202] used δ, θ, α, β, γ, ApEn, SampEn, Rényi’s
entropy, and RQA features, along with the EOG. Two neurologists manually labeled binary
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ground truth values based on the EOG features and frequency domain features. ELM was
used for classification based on the nonlinear features only and achieved 95.6% accuracy.
Sauvet et al. [203] used θ, α, β, (θ + α)/β, and fuzzy fusion of these features. Feature
thresholding was applied for classification and an accuracy of 98.3% was achieved. The
ground truth was based on expert scoring, but it is unclear how this scoring was performed.

Lee et al. [204] used δ, θ, α, β, time-domain statistics, ZCR, and several ratio indices
from Fpz-Cz and Pz-Oz EEG channels. The ground truth was classified into four classes:
Awake, slightly drowsy, moderately drowsy, and extremely drowsy. These classes were
determined by experienced physicians, with the first three classes being derived from
the awake-sleep stage and the extremely drowsy class corresponding to the N1 sleep
stage. SVM was used for classification and the best accuracy achieved was 98.5%. Garces
Correa et al. [205] used MIT-BIH Polysomnographic Database in their research. Eighteen
subjects were selected and δ, θ, α, β, γ, time-domain statistics, and frequency domain statis-
tics features were extracted. The ground truth alert and drowsy labels were determined
based on the awake and S1 sleep stages, respectively. A neural network was used for
classification and it achieved 87.4% accuracy. Zhang et al. [110] used LZC and peak-to-peak
versions of ApEn and SampEn. Peak-to-peak means that instead of using all the data
points of the features, the authors used only the difference between the maximum and
minimum values in the sliding window. Four levels of ground truth labels were used,
referred to as normal state, mild fatigue, mood swing, and excessive fatigue. These labels
were determined based on the various entropy patterns used in the paper, but it is unclear
exactly how the labels were determined. A neural network was used for classification and
it achieved 96.5% accuracy.

Hu et al. [206] used δ, θ, α, β, and frequency domain statistics along with EOG signal
features. The authors achieved a final drowsiness detection accuracy of 75%. Binary
ground truth labels were used. The alert state was defined with a KSS score less than 8 and
Karolinska drowsiness score (KDS) equal to 0, while drowsiness was defined with a KSS
score greater than 7 and a KDS score equal to or greater than 50. The KDS is an EEG/EOG-
based drowsiness scoring experiment where the final score is between 0% (alert) and 100%
(drowsy) [210]. Picot et al. [207] used only α and β features from the P3 channel together
with the EOG signal. The ground truth was labeled by experts based on the EEG and EOG
signal. Five levels were used in labeling the ground truth, but three levels were used to
evaluate the drowsiness detection system. The drowsiness detection system was based
on the statistical test to compare the two populations and thresholding, and achieved an
accuracy of 80.6%. Zhao et al. [208] used multivariate autoregressive coefficients as features
along with the EOG signal. The accuracy achieved with the SVM classifier was 81.6%.
The ground truth labels were based on Li’s subjective fatigue scale. Khushaba et al. [20]
introduced a hybrid type of EEG features called fuzzy mutual information-based wavelet-
packet features, and achieved a drowsiness detection accuracy of 95%. Their ground
truth had five levels and was based on Wierewille and Ellsworth criteria. Wierwille and
Ellsworth criteria [211] is a textual description of the drowsiness continuum based on
behavioral and facial signs that should prepare raters to rate participants’ drowsiness based
on observations of the video while driving. Liu et al. [209] used ApEn and Kolmogorov
entropy of the δ, θ, α, and β frequency bands. The ground truth was binary with pre-task
time as the alert state and post-task time as the fatigue state. The authors confirmed a
statistically significant increase in fatigue level based on the five different subjective scales—
KSS, Stanford sleepiness scale, Samn–Perelli checklist, Li’s subjective fatigue scale, and
Borg’s CR-10 scale. A hidden Markov model was used for classification and achieved
84% accuracy.

5. Discussion

Section3presented 147 features that were classified into 7 categories, as shown in
Tables1and2. As mentioned, Tables3and4show a summary of 39 reviewed papers on
drowsiness detection. The year with the most papers meeting the inclusion criteria is 2018
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with eight included papers. Figure3shows the number of included papers and the number
of papers as a result of the search query: “EEG driver drowsiness detection”. Based on
both trends, it can be seen that the number of papers on this topic is increasing.
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From 2013 to 2016, there were only two papers that used entropies and eight papers
that used only frequency domain statistics. Although there is a higher number of published
papers in recent years, there are fewer papers that rely only on frequency-domain features.
Nonlinear features, entropies, and complex network features have been increasingly used
in recent years. Reported drowsiness detection accuracies have remained more or less the
same over the years and are usually between 80% and 99%. There is an increasing body
of work that has been done with higher numbers of participants (30 or more), and it is
reasonable to assume that the accuracies from these works are the most reliable.

Although we often refer to accuracy as a quality measure for the developed system,
it must be noted that it is not possible to fairly compare the accuracy of different works
because most of the works have been performed with a private dataset based on different
experimental designs.

Besides the different datasets used, we observe that the methodology used for valida-
tion of the drowsiness detection systems is also a common problem. As mentioned earlier,
EEG signal is a non-stationary and nonlinear signal with high inter-individual differences.
Because of these properties, the only proper way for model validation is the validation on
the signals from an unseen subject. Empirical tests show that there is a large difference
in the accuracies between validation on the unseen subjects and validation on the unseen
parts of the signal [212]. Reporting of validation with improper methodology can create
overexpectation of the model performance, bad generalization on the unseen subjects, and
can lead other researchers in the wrong direction. This effect is visible through the examples
of papers that use validation on the unseen subjects, but also report about validation on
the unseen parts of the signal in order to be comparable with existing research [173]. The
fourth inclusion constraint defined in Section1was used to eliminate the papers that have
a low probability of achieving good generalization due to a low number of participants.

The highest accuracy achieved was 99.5% in the work of Hong et al. [188]. It is
interesting to note that the authors included features from three different categories. The
authors used standard frequency bands and ratio indices, the nonlinear generalized Hurst
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exponent and HFD, and the entropies SEN and PE. Although this is not a large number
of features, it is reasonable to assume that their diversity leads to the high accuracy of
drowsiness detection. It is difficult to say how reliable the given accuracy is because only
16 participants took part in the experiment and there may be a high sampling bias in the
data. The study by Martensson et al. [181] also used features from three different categories.
The features used were standard frequency domain features and ratio indices, entropy
SampEn, and nonlinear HFD. This study had the largest number of participants (86), and
the accuracy achieved was 93.5%. These two studies suggest that using different types of
features should result in high accuracy of drowsiness detection.

Complex network features for EEG signal analysis have become very popular in
recent years, and this is also true for drowsiness detection systems. There are four pa-
pers [179,184–186] that include complex network features. One of them only provides
analysis without classification and the remaining three have high accuracy—93%, 94%, and
98%. Complex networks are a promising approach, but confirming the reliability of such a
system, especially when combined with features from other categories, requires studies
with a large number of participants.

There is also a growing body of research on drowsiness detection using deep learning
models. Deep learning models are known for their high ability to learn hidden structures
in the data, but they often require a large amount of data for proper training. They can be
used with the raw data as input, but also with features, or both. There are five papers using
deep learning that met our inclusion criteria. In the first one, the authors used the LSTM
network with raw data and different types of features and achieved 94.4% accuracy [178].
Their research was based on only 16 participants. The second one also used LSTM, but for
prediction of the underlying alpha phenomena that is the base for determining drowsiness
level [175]. The other three papers used CNN as a classification method. The highest
accuracy achieved was 94% and the model used only raw data, without any pre-computed
EEG signal features [173].

The reported accuracies for these deep learning models are in line with the accuracies
of other models but, as we stated earlier, a direct comparison of the accuracies may lead
to the wrong conclusions. Balam et al. [173] provided a proper comparison of different
approaches. The authors used a publicly available dataset, so they were able to provide
a fair comparison of different approaches. Their CNN approach was compared with one
research based on the LSTM network and seven feature-based research studies. The best
accuracy was obtained with their proposed method, while the LSTM method had a slightly
lower accuracy. All seven feature-based approaches had more than 5% lower accuracy on
average. A similar comparison was provided in Budak et al. [178] on a different publicly
available dataset. Furthermore, the difference was that the authors used features and raw
data for their LSTM model. The comparison was made with one deep learning approach
and six other feature-based approaches. Again, the feature-based approaches had a lower
performance by about 7%, on average.

These two pieces of research suggest that the deep learning approach is more ap-
propriate and has higher performance for drowsiness detection than the feature-based
approach. Nevertheless, it must be noted that all of the feature-based approaches that had
lower accuracy used only time-domain and/or frequency-domain features. As shown and
discussed earlier, the addition of different types of features could lead to an improvement
of these models. From the inspected literature, it is currently unclear whether the inclusion
of additional features would outperform deep learning models. In addition, it would be
interesting to examine what effect would the addition of the features that are a measure
of signal’s memory (like Hurst exponent) have, since the LSTM model also relies on the
previous values of the signal. However, we can speculate that the addition of the memory-
based features would increase the accuracy of these feature-based models, but probably
not enough to outperform LSTM models. The reason for this is because deep models
have a higher capacity for learning hidden structures than the memory-based features, but
additional research should be made to support the speculation.
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A larger amount of data is needed for proper training of deep learning models com-
pared to non-deep learning models. Acquiring the data is often a problem when it comes
to EEG-based drowsiness detection. Authors of research studies that use deep learning
approaches often employ generative adversarial networks for the augmentation of the
dataset [175]. This process often leads to an improved performance of the model. Regard-
less of the possibilities for augmentation of the dataset, researchers should strive to gather
as much as possible real EEG signals. The larger number of participants would ensure
greater diversity of the dataset, reduce the influence of inter-individual differences in EEG
signals, make models more robust, and allow enough data for proper validation of models.

As we discussed earlier, there is evidence that different types of features improve
drowsiness detection models. In the papers that met our inclusion criteria, about 50 dif-
ferent features were used, while we introduced 147 EEG-based features in our review.
Approximately 100 unused features provide much room for further research. In par-
ticular, spatiotemporal features were only used to obtain a graph for complex network
features [184].

Another way to improve such systems is to set better ground truth labels. Currently,
many works use subjective self-evaluation as ground truth. The KSS is used most often for
this purpose. The KSS is a nine-level scale, with the first four levels describing alertness,
the 5th neutral level, and the last four levels describing sleepiness. The four levels for
alertness and sleepiness have detailed descriptions, and they are very similar. It is also
hard to tell if the scale is linear with the same distances between adjacent levels. Since it is
a subjective scale with small differences between adjacent levels, it may lead to subjectivity
bias and inconsistencies in the ground truth labels, which was confirmed in [191], where
the authors state after the statistical test results: “Subjective measures were not reliable
for detecting drowsiness alone, and that solely relying on self-reported measures may not
provide a meaningful measure of a person’s actual physiological state.” Future research on
how to provide a unified definition and description of drowsiness is needed to combat this
subjectivity bias.

For future research, we recommend the development of a drowsiness detection system
that consider raw data, features from all seven categories, and deep learning models.
Ground truth labels should be based on the unified, standard definition and description of
drowsiness. If there is not yet research providing such a unified definition of drowsiness,
then ground truth should be confirmed with multiple independent sources to reduce
subjectivity bias (even expert labels are prone to subjectivity). Because electrophysiological
signals have high interindividual differences, a large number of participants (about 100 or
more [181]) is needed to reduce sample bias and increase the chances of a model to have
good generalization.

6. Conclusions

With this review paper, we bring four contributions: (1) Comprehensive review,
systematization, and a brief description of the existing features of the EEG signal, (2) com-
prehensive review of the drowsiness detection systems, (3) comprehensive review of the
existing similar reviews, and (4) discussion of various potential ways to improve the state
of the art of drowsiness detection systems. In continuation, we summarize our suggestions
for the general improvement of the field of drowsiness detection systems.

A higher number of participants in the experiments (about 100 or more) is needed to
ensure diversity of a dataset, reduce the influence of inter-individual differences of EEG
signals, make models more robust, and allow enough data for proper validation of models.
Validation of EEG-based driver drowsiness detection should always be done based on
the data from unseen subjects (for example, using leave-one-subject-out cross-validation).
Whenever possible, datasets should be published publicly to allow fair comparison of
different approaches. Based only on the papers from this review, without additional
research, we were not able to identify a single feature or a feature category that guarantees
the best performance of the drowsiness detection system. What we can conclude is that
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a higher number of features from at least four different categories should lead to more
reliable drowsiness detection systems with lower sampling bias and higher generalization
ability. Deep learning models exhibit higher performance for drowsiness detection than
the considered non-deep learning models based on time and frequency-domain features.
Nevertheless, the use of pre-computed EEG signal features together with deep learning
models should always be considered (in addition to raw EEG data modeling), since in
some cases, the addition of pre-computed features to deep learning models additionally
boosted performance.

For future research that would have a strong impact on the field of drowsiness detec-
tion systems, we suggest the development of a unified, standard definition and description
of drowsiness, which would lead to a reduction in subjective bias and easier comparison of
different studies.
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Abstract: Drowsiness is a risk to human lives in many occupations and activities where full awareness
is essential for the safe operation of systems and vehicles, such as driving a car or flying an airplane.
Although it is one of the main causes of many road accidents, there is still no reliable definition of
drowsiness or a system to reliably detect it. Many researchers have observed correlations between
frequency-domain features of the EEG signal and drowsiness, such as an increase in the spectral
power of the theta band or a decrease in the spectral power of the beta band. In addition, features
calculated as ratio indices between these frequency-domain features show further improvements
in detecting drowsiness compared to frequency-domain features alone. This work aims to develop
novel multichannel ratio indices that take advantage of the diversity of frequency-domain features
from different brain regions. In contrast to the state-of-the-art, we use an evolutionary metaheuristic
algorithm to find the nearly optimal set of features and channels from which the indices are calculated.
Our results show that drowsiness is best described by the powers in delta and alpha bands. Compared
to seven existing single-channel ratio indices, our two novel six-channel indices show improvements
in (1) statistically significant differences observed between wakefulness and drowsiness segments,
(2) precision of drowsiness detection and classification accuracy of the XGBoost algorithm and
(3) model performance by saving time and memory during classification. Our work suggests that
a more precise definition of drowsiness is needed, and that accurate early detection of drowsiness
should be based on multichannel frequency-domain features.

Keywords: drowsiness detection; EEG; frequency-domain features; multicriteria optimization; ma-
chine learning

1. Introduction

Drowsiness is the intermediate state between wakefulness and sleep [1]. Terms such
as sleepiness or tiredness are used synonymously with drowsiness in related studies [2–4].
Although it is intuitively clear what drowsiness is, it is not so easy to determine exactly
whether a person is in a drowsy state or not. The reason for this is the unclear definition
of drowsiness. Some researchers define drowsiness as stage 1 sleep (S1) [5–9], which is
also known as non-rapid eye movement 1 (NREM 1) sleep. Da Silveira et al. [10] used
S1 sleep stage data in their research of drowsiness. Johns [11] claims that the S1 sleep
stage is equivalent to microsleep (episodes of psychomotor insensitivity due to sleep-
related wakefulness loss [12]), while drowsiness is stated to occur before S1 sleep, but it
is not stated when it begins and what characterizes it. Researchers who do not use any
of the aforementioned definitions of drowsiness typically use a subjective assessment of
drowsiness, e.g., the Karolinska sleepiness scale [13]. In this paper, the term drowsiness is
used as a synonym for the S1 sleep stage.

In a drowsy state, people are not able to function at the level required to safely perform
an activity [14], due to the progressive loss of cortical processing efficiency [15]. Drowsiness
is, therefore, a significant risk factor for human lives in many occupations, e.g., for air traffic
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controllers, pilots and regular car drivers [16]. According to the reports from NASA [17]
and the National Transportation Safety Board [18], one of the main factors in road and
air accidents is drowsiness. Gonçalves et al. [19] conducted a study across 19 European
countries and concluded that in the last two years, 17% of drivers fell asleep while driving,
while 7% of them had an accident due to drowsiness. The high frequency and prevalence
of drowsiness-related accidents speak in favor of the development of early drowsiness
detection systems, which is the subject of this paper.

Many researchers are trying to solve the problem of early detection of drowsiness in
drivers. Balandong et al. [20], in their recent review, divided the techniques for detecting
driver drowsiness into six categories: (1) subjective measures, (2) vehicle-based systems,
(3) driver’s behavior-based systems, (4) mathematical models of sleep–wake dynamics,
(5) human physiological signal-based systems and (6) hybrids of one or more of these
techniques. Currently, the most common techniques used in practice are vehicle-based
systems [5], but these systems are mostly unreliable and depend largely on the driver’s
motivation to drive as well as possible [20].

Physiological signals are the promising alternative for reliable drowsiness detec-
tion [21]. The main problem with this approach is that these systems are often not easy
to use and are intrusive to drivers [20]. Nevertheless, many researchers are working on
small, automated and wearable devices [21–24], or on steering wheel devices [25,26] in
order to overcome these obstacles. Techniques for detecting drowsiness based on phys-
iological signals can be further subdivided according to the type of signal used, such
as electroencephalogram (EEG) [27], electrooculogram (EOG) [28] or electrocardiogram
(ECG) [29].

The most studied and applied physiological signal to detect drowsiness is the EEG.
In this paper, frequency-domain features of the EEG signal are analyzed and two novel
multichannel ratio indices for the detection of drowsiness are proposed. Besides the
frequency-domain features, there are also other types of features: (1) nonlinear features [30],
(2) spatiotemporal (functional connectivity) features [31] and (3) entropies [32]. These three
groups of features have a lower frequency of use compared to the frequency-domain
features, so in this paper, we focus only on frequency-domain features. Based on the
recent review [33] of EEG-based drowsiness detection systems, 61% of the included papers
used frequency-domain features, 38% used entropies, 10% used nonlinear features and
10% used spatiotemporal features (some papers used multiple groups of features, so the
sum of the percentages is greater than 100%). This shows the difference in the use of
drowsiness detection systems, and the difference is even greater in the general field of
neurophysiological scientific papers. Although the three feature groups mentioned above
are used less frequently, there are still a certain number of papers that include them,
especially entropies.

Frequency-domain features estimate the power spectral density in a given frequency
band. The bands typically used in the analysis of EEG signals are delta (δ, 0.5–4 Hz), theta (θ,
4–8 Hz), alpha (α, 8–12 Hz), beta (β, 12–30 Hz) and gamma (γ, >30 Hz). An increase in theta
activity [34] and an increase in alpha activity [35] indicate drowsiness. An increase in the
beta activity, however, is a sign of wakefulness and alertness [36]. There are several widely
used frequency-domain ratio indices for detecting drowsiness. Eoh et al. [36] proposed the
θ/α and β/α ratio indices, Jap et al. [37] proposed the (θ + α)/β, θ/β and (θ + α)/(α + β)
ratio indices and da Silveira et al. [10] proposed the γ/δ and (γ + β)/(δ + α) ratio indices.
These ratio indices provide improvement in the detection of drowsiness compared to the
frequency-domain features alone and are shown to correlate with drowsiness.

All these frequency-domain features and ratio indices are calculated from a single EEG
channel, i.e., from a single brain region. In recent research, Wang et al. [38] showed that the
significance of a decrease in delta and an increase in (θ + α)/β indices depends on the brain
region. This significant diversity of the correlation of features with drowsiness in different
brain regions is the motivation for this research. Since all currently used frequency-domain
features and ratio indices are based on a single channel (single brain region), this work aims
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to use the best distinguishing features of each brain region for the detection of drowsiness
and to combine them into a single multichannel ratio index feature.

In our work, we use a computational method based on multicriteria optimization to
extract the multichannel EEG-based frequency-domain ratio index features. This method
allows us to discover new multichannel ratio indices that show improvements in the
detection of drowsiness compared to single-channel ratio indices. Finally, with the use
of machine learning models, we prove that multichannel indices detect drowsiness with
higher accuracy, higher precision, reduced memory and faster computation compared to
single-channel features.

In the Materials and Methods Section, we show the methodology of our work, in-
cluding a description of the dataset, preprocessing and feature extraction methods used.
Novel multichannel ratio indices and the multi-objective optimization method are also
described there. In the Results Section, we present the results of our work, including
statistical analysis, drowsiness prediction and computational properties of the proposed
indices. In the Discussion Section, we discuss in more detail the topics covered in this
paper. Finally, in the last section, we conclude the paper.

2. Materials and Methods
2.1. Dataset, Preprocessing and Feature Extraction

The data used in this paper were obtained from the PhysioNet portal [39], in particular
from the 2018 PhysioNet computing in cardiology challenge [40]. The original dataset
contains data records from 1985 subjects, and each recording includes a six-channel EEG,
an electrooculogram, an electromyogram, a respiration signal from the abdomen and chest,
airflow and oxygen saturation signals and a single-channel electrocardiogram during the
all-night sleep. The records were divided into training and test sets of equal size. The sleep
stages [41] of all subjects were annotated by clinical staff based on the American Academy
of Sleep Medicine (AASM) manual for the scoring of sleep [42]. There are six types of
annotations for different stages: wakefulness (W), stage 1 (S1), stage 2 (S2), stage 3 (S3),
rapid eye movement (REM) and undefined.

In this research, we wanted to use a training set (992 subjects) to detect drowsiness.
The officially provided way of acquiring the data is through torrent download, but we
managed to download only 393 subjects completely, due to a lack of seeders. Of these 393
subjects, EEG signal recordings from 28 subjects were selected, based on the condition that
each recording had at least 300 s of the W stage and, immediately after that, at least 300 s of
the S1 stage. From each recording, a fragment of 600 s (300 s of W stage and 300 s of S1
stage) was used for analysis. In the original dataset, each EEG signal recording consists of
six channels (F3, F4, C3, C4, O1 and O2, based on the International 10/20 System), with a
sampling frequency of 200 Hz. Table1shows the identification numbers of all the selected
subjects. The subjects were divided into two groups, one group used for training of the
model (16 subjects) and the other one for the test of the obtained models (12 subjects). The
training set was used to obtain novel ratio indices (with the method described below) and
the test set was used to check these novel indices on the unseen data.

Table 1. The identification numbers of all the selected subjects. The training set is in the upper part
and the test set is in the lower part of the table.

tr03-0092 tr03-0256 tr03-0876 tr03-1389
tr04-0649 tr04-0726 tr05-1434 Tr05-1675
tr07-0168 tr07-0458 tr07-0861 tr08-0021
tr08-0111 tr09-0175 tr10-0872 tr13-0204

tr04-0653 tr07-0127 tr09-0453 tr13-0170
tr05-0028 tr08-0157 tr12-0255 tr13-0508
tr05-0332 tr09-0328 tr12-0441 tr13-0653
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Before feature extraction, the EEG signal must be filtered. For this purpose, the DC
component was removed from the signal and the signal was filtered with a Butterworth
filter to remove high-frequency artifacts and low-frequency drifts. We used the sixth-order
Butterworth filter, the low-cut frequency of 1 Hz and the high-cut frequency of 40 Hz. In
the selected fragments of the recordings, there was an insignificant number of eye-related
artifacts, so we decided not to use the independent component analysis for their removal
in order to prevent potential information loss due to component removal.

The signals were divided into epochs to calculate features. The epochs were five
seconds long with a 50% overlap between them. Frequency-domain features are often used
in EEG signal analysis. These features were extracted from the power spectral density
(PSD) of the signal. To obtain the PSD of the signal, Welch’s method [43] was used. Welch’s
method is used more often than Fast Fourier transform in the field of EEG signal analysis
since it produces PSD with lower variance. The standard frequency-domain features
were calculated, i.e., delta (δ, 0.5–4 Hz), theta (θ, 4–8 Hz), alpha (α, 8–12 Hz) and beta (β,
12–30 Hz) bands. We also calculated the less frequently used frequency-domain features,
i.e., gamma (γ, >30 Hz), sigma (σ, 12–14 Hz), low alpha (α1, 8–10 Hz) and high alpha (α2,
10–12 Hz) bands [44].

2.2. Novel Multichannel Ratio Indices

Ratios between frequency-domain features have often been used as new features in
different areas of EEG signal analysis [10,36]. All these features have a simple mathematical
formulation but often lead to an improvement in detection and reduction of dimensionality
for drowsiness. Moreover, they are calculated based on a single channel only. The idea
behind the novel indices we present in this work is to design the feature formulation in such
a way that frequency-domain features from different channels can be combined. Figure1
illustrates the difference between these two approaches. For simplicity of visualization,
only four epochs, two channels (F3 and F4) and three features per channel are shown in
Figure1.

Figure 1. A visualization of tables with features. The green color represents the possibilities for
creating a ratio index, the first table (top) are the possibilities reported in the related work to create a
single-channel ratio index, while the second table (bottom) are the possibilities explored in our novel
multichannel approach.

We define a new index, I, for each epoch, e, which is calculated as a ratio of the feature
values, F(e), for all six channels in the epoch, e. In both the nominator and denominator,
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the feature value of each channel, j, is multiplied with a dedicated coefficient, Cij or Kij
respectively, as indicated in the Equation (1):

I(e) =
∑i= f eatures ∑j=channels CijFij(e)

∑i= f eatures ∑j=channels KijFij(e)
(1)

The purpose of the coefficients is to reduce or even eliminate the influence of certain
channels of frequency-domain features, by setting the value in the range [0, 1〉, or increase
the influence of certain channels of the frequency-domain features by setting the corre-
sponding coefficient to a value in the range [1, ∞〉. There are 48 (6 channels and 8 features
per channel) C coefficients and 48 K coefficients.

The ideal output of I(e) should look like a step function (or an inverse step function),
which would indicate a clear difference between the two stages: W and S1. Figure2
illustrates the main features of the output. The output can be divided into two parts: the
left one corresponds to stage W and the right one to S1. While the output in each part
should be as smooth as possible, i.e., with minimal oscillations, it is expected that there will
be a transition period between the phases, which may have significant oscillations. This
transition period would ideally be the step function, but in realistic settings, it is expected
that the transition between phases of brain activity will probably last several epochs and
would not be considered as either stage W or S1.

Figure 2. An illustration of all the elements needed for an evaluation of solutions of the multi-
objective optimization in drowsiness detection.

In order to determine the appropriate value of the coefficients that would provide the
output as close as possible to the ideal, at least two criteria must be taken into account: the
absolute difference between the mean values left and right of the transition window and
the quantification of the oscillations in each part. This can be defined as a multi-objective
optimization problem that we want to solve using a metaheuristic multi-objective evolu-
tionary optimization method, as described in the next section. To the best of our knowledge,
this state transition problem has never been approached with evolutionary computation.

2.3. Multi-Objective Optimization

The optimization of a step function that is representative of the problem of flat sur-
faces is generally a challenge for any optimization algorithm because it does not provide
information about which direction is favorable and an algorithm can get stuck on one
of the flat plateaus [45]. To overcome this challenge, instead of optimizing the function
according to one criterion, we define two objectives that we optimize simultaneously:
(1) to maximize the absolute difference between the mean value of I(e) output for the W
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and S1 stages, and (2) to minimize the oscillations of the output value around the mean
value in each stage. According to Figure2, the left part of the I(e) output occurring before
the transition phase corresponds to the W stage, and the right part, occurring after the
transition phase, corresponds to the S1 stage. Since optimization problems are usually
expressed as minimization problems, where the first objective function, O1, is defined as
the inverse absolute difference between the mean value of I(e) of the left part (avgleft) and
the right part (avgright), Equation (2) is established:

O1 =
1∣∣∣avgright − avgle f t

∣∣∣ (2)

The second objective function, O2, expresses the oscillations in the function and
is defined as the number of times the difference between the output values of I(e) for
two adjacent epochs was greater than a given limit. The exact value of this limit will be
discussed later in this section as it is closely related to the specifics of the optimization
method used. The main goal of the objective function O2 is to minimize the influence of
the biggest flaw in the way that the objective O1 is calculated, i.e., to use the averaging
function. For example, if a possible solution is a completely straight line, except for a large
negative spike in the left part and a large positive spike in the right part, based only on
the objective function O1, this would be a good solution, while the objective function O2
would penalize this solution.

As mentioned above, the transition between two stages will probably take several
epochs and show significant oscillations of the function output values. According to the
annotation made by clinical personnel, the transition phase should be approximately in the
middle of the I(e) output, but it cannot be determined exactly how long it will last. In our
work, which is based on expert knowledge of human behavior in the case of drowsiness,
we assume that it lasts about one minute, which corresponds to about 30 epochs. Within
the transition window, neither one of the two objective functions is calculated, since it is
assumed to belong neither to the W nor to the S1 stages. We also allow it to move around
the center, shifting left and right, due to a possible error of the human observer who marked
the data.

The multi-objective optimization problem can now be expressed as min{O1,O2}, where
O1 and O2 are the conflicting objective functions, as defined above. The evolutionary meta-
heuristic algorithm NSGA-II [46] was applied to solve this multi-objective optimization
problem. The genetic algorithms (GAs) are normally used to solve complex optimization
and search problems [47]. NSGA-II is one of the most popular evolutionary multicriteria
optimization methods due to its versatility and ability to easily adapt to different types
of optimization problems. The strong points of this MO algorithm are: (1) the fast non-
dominated sorting ranking selection method used to emphasize Pareto-optimal solutions,
(2) maintaining the population diversity by using the crowding distance and (3) the elitism
approach, which ensures the preservation of best candidates through generations without
the setting of any new parameters other than the normal genetic algorithm parameters,
such as population size, termination parameter, crossover and mutation probabilities. Ad-
ditionally, it was often used for the elimination of EEG channels with the similar purpose as
in our case-dimensionality reduction [48]. This paper uses the implementation of NSGA-II
provided by the MOEA framework [49] and is based on the guidelines defined in [46,50].

NSGA-II was used with the following configuration. The chromosome was divided
into two parts: in the first part, genes represented the nominator coefficient values (Cij),
and in the second part, genes represented the denominator coefficient values (Kij). In each
part, the genes were grouped by frequency-domain features and channels, as illustrated
in Figure3. The genes were encoded as real values in the range [0.0, 10.0], and standard
NSGA-II crossover and mutation operators were used to support operation on real values.
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Figure 3. An illustration of a chromosome structure in the proposed optimization problem solution.

Each solution is evaluated based on the values of objectives O1 and O2, as described
in the pseudocode in Algorithm 1. First, the chromosome is decoded (line 1). Then, for each
test fragment, two values are calculated: (1) the inverse absolute difference (IAD) between
the mean index value, I(e), of the left part and the right part, represented by the invAbsDiff
variable in the pseudocode, and (2) the oscillations in the function, represented by the
oscillation variable in the pseudocode (lines 3–5). Finally, the value of each objective O1 for
the given solution is defined as the average value of invAbsDiff for all test fragments, and
the value of objective O2 is defined as the average value of oscillation for all test fragments
(lines 7–8).

Algorithm 1. Evaluation.

1: decode chromosome to get coefficient values
2: for each fragment do
3: indexVals[[] = calculate index value for each epoch
4: invAbsDiff += IADCalc(indexVals[[], windowStart)
5: oscillation += OscillationCalc(indexVals[[], windowStart, winSize)
6: end for
7: objective1 = invAbsDiff/number_of_fragments
8: objective2 = oscillation/number_of_fragments

The algorithm for the IAD calculation is provided in the pseudocode in Algorithm 2.
The calculation of the IAD for each fragment was slightly modified compared to Equation
(1) to allow a faster convergence of the search algorithm. The transition phase was not
in the same position in each fragment but allowed to move more loosely away from the
center because the annotation in the original dataset was performed manually and there
was a possibility of human error in case the observer would register a transition from W
to S1 a little too early or too late. The algorithm allows the transition phase to begin no
earlier than 30 epochs from the fragment start, and end no later than 60 epochs before the
fragment end (line 2). The algorithm assumes the transition phase by looking for a window
of 30 epochs which has the maximum difference of index, I(e), values between the left and
the right part (lines 9–13).

The gradation of the absolute difference between the mean value of the left and the
right parts is also introduced (lines 19–22) to allow easier and faster convergence of the
algorithm. The optimization of the objective O1 can be considered as an optimization
problem with soft constraints that are related to how much O1 deviates from the optimal
value. However, it is quite difficult to determine the optimal value precisely a priori. As
indicated in [51,52], constraints are often treated with penalties in optimization techniques.
The basic idea is to transform a constrained optimization problem into an unconstrained
one by introducing a penalty into the original objective function to penalize violations of
constraints. According to a comprehensive overview in [51], the penalty should be based
on the degree of constraint violation of an individual. In [53], it is also recommended that
instead of having just one fixed penalty coefficient, the penalty coefficient should increase
when higher levels of constraint violation are reached. The greatest challenge, however, is
to determine the exact penalty values. If the penalty is too high or too low, evolutionary
algorithms spend either too much or too little time exploring the infeasible region, so it is
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necessary to find the right trade-off between the objective function and the penalty function
so that the search moves towards the optimum in the feasible space. As the authors have
shown in [54], the choice of penalty boundaries is problem-dependent and difficult to
generalize. Since we cannot strictly determine the optimal value of O1 in our case, we have
chosen several thresholds for the absolute difference value, with the penalty increasing
by a factor of 10 for each new threshold. The exact thresholds were selected based on the
experience gained from the first few trial runs of the algorithm. Based on the observations
from the trial runs, a third modification was also introduced: the difference is calculated
with a relative, instead of absolute, value of I(e). The relative value of I(e) is calculated by
using the lowest I(e) value as a reference point, instead of zero, i.e., the zero is “moved”, as
shown in code lines 16–18 in Algorithm 2.

Algorithm 2. IAD Calculation.

1: function IADCALC(indexVals[[], windowStart)
2: for j between 30 and (indexVals.size-60) do
3: maxAbsDiff = 0
4: left = 0
5: right = 0
6: avgLeft = average value of all Index values before j
7: avgRight = average value of all Index values after j+30
8: diff = ABS(avgRight–avgLeft)
9: if diff ≥ maxAbsDiff then
10: maxAbsDiff 0 diff
11: left = avgLeft
12: right = avgRight
13: windowStart = j
14: end if
15: end for
16: lowestVal = GETLOWESTVAL(indexVals)
17: movedZero = lowestVal–0.01*lowestVal
18: absDiff = ABS(right–left)/MIN(left–movedZero, right–movedZero)
19: if absDiff ≥ 5.0 then invAbsDiff = 1/absDiff
20: else if absDiff ≥ 1.0 then invAbsDiff = 10/absDiff
21: else if absDiff ≥ 0.5 then invAbsDiff = 100/absDiff
22: else invAbsDiff = 1000
23: end if
24: return invAbsDiff
25: end function

The pseudocode for calculating the oscillations in the function as the second objective,
O2, is provided in Algorithm 3. Again, the optimization of the oscillations can be considered
a constrained optimization problem, so that, in the same way as in the case of the IAD
calculation discussed previously, a gradation of the difference between the output values
of I(e) for two adjacent epochs is used to penalize the larger differences more severely (lines
7–10 and 15–18). The exact thresholds were chosen based on the experience gained from
the first few trial runs of the algorithm. In order to make the algorithm converge more
easily and quickly, the concept of “moved zero” was used again (lines 2, 3, 6 and 14).
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Algorithm 3. Oscillation Calculation.

1: function OSCILLATIONCALC(indexVals[[], windowStart, winSize)
2: lowestVal = GETLOWESTVAL(indexVals)
3: movedZero = lowestVal–0.01*lowestVal
4: oscillation = 0
5: for i between 1 and windowStart–1 do
6: absDiff = ABS((indexVals[i]-indexVals[i-1])/(indexVals[i-1] -movedZero))
7: if absDiff ≥ 5.0 then oscillation += 1000
8: else if absDiff ≥ 1.0 then oscillation += 100
9: else if absDiff ≥ 0.5 then oscillation += 10
10: else if absDiff ≥ 0.25 then oscillation += 1
11: end if
12: end for
13: for i between windowStart+winSize and indexVals.size()-1 do
14: absDiff = ABS((indexVals[i]-indexVals[i-1])/(indexVals[i-1] -movedZero))
15: if absDiff ≥ 5.0 then oscillation += 1000
16: else if absDiff ≥ 1.0 then oscillation += 100
17: else if absDiff ≥ 0.5 then oscillation += 10
18: else if absDiff ≥ 0.25 then oscillation += 1
19: end if
20: end for
21: return oscillation
22: end function

Finally, to further minimize the oscillations, and help the search algorithm converge
more quickly, the maximum change in the I(e) value between two adjacent epochs is set to
10% of the first of the two epochs. The mathematical formulation of this limit is provided
in Equation (3):

Index(e) =


1.1 ∗ I(e − 1), i f I(e) > 1.1 ∗ I(e − 1)
0.9 ∗ I(e − 1), i f I(e) < 0.9 ∗ I(e − 1)

I(e), else
(3)

3. Results

The optimization algorithm was executed over 107 generations, using 100 randomly
selected chromosomes as a starting point. Ideally, the optimization algorithm would
have many C and K coefficients equal to zero and only a few non-zero coefficients in
order to obtain a simple and easily understandable mathematical formulation of a novel
multichannel ratio index. Unfortunately, even the best solutions of the optimization
algorithm had only up to 20 C and K coefficients equal to zero. Although such a novel
multichannel ratio index showed good behavior in detecting drowsiness, it is impractical
to use a formula with 76 coefficients. We consider anything above 15 coefficients to
be impractical.

In order to reduce the number of coefficients and to simplify the formulation of the
novel multichannel ratio index, some coefficients were manually set to zero. In order
to decide which coefficients have the least influence on the final solution, we counted
how often a large value of the coefficient is fixed to a certain frequency-domain feature.
By analyzing the coefficients of all solutions in the final population of the optimization
algorithm, we concluded that the most frequently selected features were δ, α, α1 and α2.
After manually fixing the coefficients of all other frequency-domain features to zero, the
search range for the optimization algorithm was reduced to half.

Although 48 C and K coefficients remained in the solution at that time, the algorithm
provided equally good results in terms of drowsiness detection, but with a much simpler
mathematical formulation. In addition to the 48 coefficients that were manually set to zero,
the algorithm often set many more coefficients to zero. A decision on the best solution in the
final population was made based on the O1 and O2 values of the optimization algorithm
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in combination with the number of coefficients set to zero after using the floor operator
on the coefficients. The floor operator was used to simplify the equation by removing the
decimal numbers. Preferred solutions are those with a higher number of coefficients set to
zero. Our choice was the solution with 13 non-zero coefficients, as shown in Equation (4):

I1(e) =
αF3 + 4αO2 + 9α1F3 + 3α1C3 + 9α1C4 + α1O2 + 4α2O1 + 8α2O2

δF3 + 3δF4 + 3δC3 + 2δC4 + 9δO2
(4)

All C and K coefficients were rounded to a lower value (floor operator). Here, e repre-
sents the current epoch and all the features on the right side were from that same epoch.

The goal of the second condition of the optimization algorithm was to minimize the
oscillations of the I(e) function. The results were much better with this condition than
without it, but the resulting function still oscillated strongly. In order to additionally
minimize the oscillations, a limitation was performed. The maximum change between any
two adjacent samples was set to 10% of the value of the first sample. Equation (5) shows
the mathematical formulation of this limitation of the maximum change:

Index1(e) =


1.1 ∗ I1(e − 1), i f I1(e) > 1.1 ∗ I1(e − 1)
0.9 ∗ I1(e − 1), i f I1(e) < 0.9 ∗ I1(e − 1)

I1(e), else
(5)

where I1(e) is defined by Equation (4) and e is the current epoch. Limiting the maxi-
mum change of adjacent samples further improves the detection model, and therefore
Equation (5) presents the first novel multichannel ratio index.

We have tried to further simplify the formulation of the multichannel ratio index. This
time, brute force search for the best solution was applied with the following constraints: (1)
encoding of all C and K coefficients was set to integer values of zero or one for the sake of
simplicity, and (2) a maximum of five addends in the equation was allowed. With these
constraints, we obtained Equation (6):

I2(e) =
δF3 + δF4 + δO2

αC3 + α2O2
(6)

Again, similar to the first index, the maximum change was limited, so that the final
equation for the second ratio index was obtained as:

Index2(e) =


1.1 ∗ I2(e − 1), i f I2(e) > 1.1 ∗ I2(e − 1)
0.9 ∗ I2(e − 1), i f I2(e) < 0.9 ∗ I2(e − 1)

I2(e), else
(7)

where I2(e) is defined by Equation (6) and e is the current epoch. After obtaining the
two novel indices, they were normalized to the range [0, 1] for each subject to eliminate
interindividual differences between the subjects.

The two novel multichannel ratio indices defined by Equations (5) and (7) were compared
with the seven existing indices θ/α and β/α [36], (θ + α)/β, θ/β and (θ + α)/(α + β) [37],
and γ/δ and (γ + β)/(δ + α) [10]. The indices γ/δ and (γ + β)/(δ + α) were calculated
based on the wavelet transform, i.e., in the same way as in the original paper. Figure4
shows a comparison of our novel indices with the best and the worst channel for θ/α and
(θ + α)/β single-channel indices for subject tr08-0111. These two single-channel indices
were selected because they are the best predictors of drowsiness for a given subject among
all single-channel indices.
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Figure 4. The comparison of the two novel multichannel indices with the best and the worst channel for θ/α and (θ + α)/β
single-channel indices for subject tr08-0111. The white part of the diagram represents an awake state, while the yellow part
of the diagram represents stage 1 of sleep, i.e., a drowsiness state.
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3.1. Statistical Analysis

The Wilcoxon signed-rank test [55] was used to analyze the statistical differences
between the awake state and the S1 state. This test was chosen because it refers to data that
do not necessarily follow the normal distribution. Table2shows p-values for each subject
in the training set and each index. The significance level α0 = 0.01 was used together with
the Bonferroni correction [55] to reduce the probability of false-positive results, as the test
was repeated 144 times (16 subjects and 9 indices), giving us the final αp = 6.9 × 10−5. For
the existing indices, the p-value was calculated for each channel, but only the p-values of
the best channel (the lowest average of p-value for all subjects) are shown in Table2.

The two novel indices show p-values lower than αp for most subjects. From this, we
can conclude that, for Index1, 14 of 16 subjects show two different distributions for the W
stage and the S1 stage, while 13 of 16 subjects show significantly different distributions
of the W stage and the S1 stage for Index2. There are only two existing indices where the
p-value is lower than αp in more than ten cases. These are θ/β and (θ + α)/(α + β), both
by Jap et al. [37].

Table3shows p-values for each subject in the test set and each index. Again, the two
novel indices, together with the (γ + β)/(δ + α) [10] index, show p-values lower than αp
for most subjects.

3.2. Drowsiness Prediction Analysis

An additional comparison of ratio indices was performed by analyzing the drowsiness
detection accuracy and precision, as obtained with the XGBoost algorithm [56]. Default
parameters were applied: learning rate eta equal to 0.3, gamma equal to 0 and a maximum
depth of a tree equal to 6. For a detailed comparison of the indices, classification accuracy
and precision were calculated for each subject. Namely, each subject has 238 epochs of
the measured signal, with the first half representing the W state and the second half the
S1 state. The algorithm classified the subject’s state for each epoch (238 classifications per
subject), and the accuracy for each subject was calculated based on these classifications.
The leave-one-subject-out cross-validation method was applied on the training set, i.e., the
algorithm was trained on the data of 15 subjects and tested on the subject excluded from
the training set, and this was repeated 16 times to evaluate drowsiness detection on each
subject from the training set. Table4shows the classification accuracy achieved on the
training set.

Table 2. Statistical significance p-values were obtained by the Wilcoxon signed-rank test for distinguishing the awake state
from the S1 state. The shaded green cells with bold text represent the lowest p-value for each subject in the training set. At
the bottom, the index having p-values lower than αp for most subjects is marked in the same way.

Subject Index1 Index2 θ/α β/α (θ + α)/β θ/β (θ + α)/
(α + β) γ/δ (γ + β)/

(δ + α)
This Work Eoh et al. [36] Jap et al. [37] da Silveira et al. [10]

tr03-0092 1.12 × 10−6 4.82 × 10−3 1.23 × 10−4 7.22 × 10−1 4.97 × 10−2 1.62 × 10−08 1.41 × 10−9 1.06 × 10−6 3.09 × 10−4

tr03-0256 3.92 × 10−8 1.43 × 10−13 2.42 × 10−6 6.88 × 10−4 1.11 × 10−3 4.04 × 10−2 3.60 × 10−1 9.08 × 10−3 1.51 × 10−9

tr03-0876 1.37 × 10−20 3.87 × 10−17 5.06 × 10−3 1.63 × 10−7 9.80 × 10−14 2.94 × 10−6 1.58 × 10−5 1.09 × 10−1 2.09 × 10−1

tr03-1389 9.77 × 10−11 1.35 × 10−8 9.64 × 10−2 2.06 × 10−1 2.86 × 10−4 1.27 × 10−1 1.91 × 10−1 1.82 × 10−1 3.01 × 10−1

tr04-0649 5.85 × 10−21 4.11 × 10−21 5.71 × 10−12 2.38 × 10−9 8.12 × 10−7 1.89 × 10−1 2.18 × 10−5 3.33 × 10−7 6.13 × 10−3

tr04-0726 2.96 × 10−20 3.19 × 10−20 5.90 × 10−20 2.31 × 10−16 9.40 × 10−9 2.78 × 10−14 2.62 × 10−15 2.36 × 10−19 2.19 × 10−20

tr05-1434 7.90 × 10−10 9.79 × 10−13 6.76 × 10−9 3.70 × 10−10 1.62 × 10−1 3.96 × 10−17 2.00 × 10−19 5.42 × 10−17 1.08 × 10−11

tr05-1675 1.71 × 10−13 1.85 × 10−11 1.24 × 10−9 7.82 × 10−3 1.48 × 10−1 1.10 × 10−14 4.47 × 10−16 1.58 × 10−2 4.62 × 10−10

tr07-0168 2.88 × 10−21 5.15 × 10−21 1.75 × 10−13 4.73 × 10−11 8.08 × 10−6 1.05 × 10−8 4.49 × 10−11 8.87 × 10−16 1.01 × 10−1

tr07-0458 8.34 × 10−11 1.77 × 10−16 1.66 × 10−4 1.77 × 10−4 5.51 × 10−1 1.32 × 10−2 6.62 × 10−3 3.68 × 10−4 4.17 × 10−1

tr07-0861 2.88 × 10−21 3.11 × 10−21 3.14 × 10−3 3.55 × 10−7 3.64 × 10−2 9.96 × 10−8 1.11 × 10−6 1.49 × 10−17 1.50 × 10−12

tr08-0021 2.88 × 10−21 2.88 × 10−21 4.09 × 10−2 2.54 × 10−9 4.55 × 10−8 3.34 × 10−10 4.91 × 10−5 4.19 × 10−13 2.10 × 10−6

tr08-0111 2.88 × 10−21 2.88 × 10−21 4.41 × 10−2 7.54 × 10−5 1.94 × 10−20 2.04 × 10−20 3.92 × 10−4 4.50 × 10−15 3.41 × 10−3

tr09-0175 7.78 × 10−5 7.92 × 10−2 4.64 × 10−2 3.10 × 10−4 5.35 × 10−14 2.23 × 10−5 2.68 × 10−6 7.18 × 10−2 1.30 × 10−5

tr × 10-0872 2.62 × 10−15 1.96 × 10−14 1.76 × 10−2 3.89 × 10−2 5.91 × 10−3 5.09 × 10−6 7.52 × 10−5 2.14 × 10−5 2.33 × 10−5

tr13-0204 1.71 × 10−3 6.62 × 10−1 6.30 × 10−4 4.91 × 10−5 6.36 × 10−5 2.91 × 10−10 2.63 × 10−10 5.59 × 10−1 2.16 × 10−2

No. subjects
with p < 6.9

× 10−5
14 13 6 9 8 12 11 9 8
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Table 3. Statistical significance p-values were obtained by the Wilcoxon signed-rank test for distinguishing the awake state
from the S1 state. The shaded green cells with bold text represent the lowest p-value for each subject in the test set. At the
bottom, the index having p-values lower than αp for most subjects is marked in the same way.

Subject Index1 Index2 θ/α β/α (θ + α)/β θ/β (θ + α)/
(α + β) γ/δ (γ + β)/

(δ + α)
This Work Eoh et al. [36] Jap et al. [37] da Silveira et al. [10]

tr04-0653 3.19 × 10−9 2.71 × 10−9 2.61 × 10−7 1.80 × 10−5 6.83 × 10−1 3.63 × 10−9 2.17 × 10−8 2.69 × 10−6 3.33 × 10−10

tr05-0028 1.26 × 10−9 2.36 × 10−7 3.78 × 10−3 2.99 × 10−1 3.45 × 10−1 3.56 × 10−1 5.16 × 10−2 1.70 × 10−1 4.36 × 10−2

tr05-0332 2.88 × 10−21 2.88 × 10−21 8.04 × 10−16 2.10 × 10−5 2.66 × 10−3 7.39 × 10−14 8.17 × 10−18 1.84 × 10−16 3.00 × 10−16

tr07-0127 3.71 × 10−18 1.27 × 10−15 8.92 × 10−2 1.44 × 10−2 3.44 × 10−5 1.38 × 10−2 2.51 × 10−5 9.07 × 10−16 3.36 × 10−16

tr08-0157 2.88 × 10−21 2.88 × 10−21 6.51 × 10−5 1.26 × 10−7 9.66 × 10−1 6.67 × 10−3 1.85 × 10−3 2.82 × 10−11 5.92 × 10−11

tr09-0328 1.80 × 10−10 1.14 × 10−2 7.90 × 10−10 9.56 × 10−7 1.70 × 10−7 2.01 × 10−1 1.92 × 10−3 3.54 × 10−2 7.01 × 10−5

tr09-0453 2.73 × 10−1 7.80 × 10−4 1.63 × 10−1 2.96 × 10−1 1.03 × 10−7 3.89 × 10−2 3.17 × 10−2 8.30 × 10−16 6.45 × 10−9

tr12-0255 1.37 × 10−2 5.55 × 10−10 4.31 × 10−19 2.17 × 10−18 1.89 × 10−16 2.20 × 10−19 8.22 × 10−19 1.11 × 10−7 2.33 × 10−7

tr12-0441 2.76 × 10−11 9.26 × 10−9 6.95 × 10−4 6.89 × 10−1 2.46 × 10−3 3.63 × 10−13 1.53 × 10−4 2.13 × 10−3 5.68 × 10−8

tr13-0170 7.59 × 10−7 3.60 × 10−5 3.74 × 10−2 4.73 × 10−2 1.91 × 10−4 9.71 × 10−4 2.16 × 10−2 6.07 × 10−17 5.23 × 10−16

tr13-0508 2.69 × 10−1 7.61 × 10−2 1.87 × 10−5 1.99 × 10−2 1.10 × 10−9 9.17 × 10−2 6.22 × 10−5 7.26 × 10−5 7.26 × 10−2

tr13-0653 1.09 × 10−16 7.36 × 10−20 4.90 × 10−8 4.16 × 10−4 8.05 × 10−2 1.66 × 10−2 1.03 × 10−9 3.47 × 10−2 1.40 × 10−5

No. subjects
with p < 6.9

× 10−5
9 9 7 5 5 4 6 7 9

Table 4. The classification accuracy was obtained with the XGBoost algorithm for each subject in the training set. The
shaded green cells with bold text show the highest accuracy obtained for each subject. At the bottom, the best mean accuracy
for each ratio index is marked in the same way.

Subject Index1 Index2 θ/α β/α (θ + α)/β θ/β (θ + α)/
(α + β) γ/δ (γ + β)/

(δ + α)
This Work Eoh et al. [36] Jap et al. [37] da Silveira et al. [10]

tr03-0092 0.5420 0.5252 0.6387 0.5168 0.5504 0.6092 0.6050 0.4684 0.5527
tr03-0256 0.5924 0.6303 0.5840 0.5504 0.5672 0.6345 0.6345 0.4473 0.4346
tr03-0876 0.6387 0.5672 0.6008 0.6218 0.4748 0.6471 0.6303 0.5781 0.5992
tr03-1389 0.3487 0.3908 0.4874 0.5588 0.5042 0.5378 0.4664 0.5696 0.5148
tr04-0649 0.6975 0.8025 0.5462 0.5462 0.5630 0.4832 0.5210 0.6118 0.5527
tr04-0726 0.7983 0.7605 0.6681 0.6176 0.5966 0.6134 0.6765 0.7637 0.7511
tr05-1434 0.3739 0.3697 0.4160 0.6218 0.7059 0.5882 0.6933 0.5485 0.5063
tr05-1675 0.6849 0.6513 0.6933 0.5546 0.6218 0.5630 0.7227 0.5781 0.5781
tr07-0168 0.7773 0.8193 0.6008 0.5504 0.5630 0.6092 0.6303 0.4473 0.5105
tr07-0458 0.3109 0.2689 0.5378 0.4748 0.5084 0.5378 0.5504 0.4684 0.4979
tr07-0861 0.6933 0.7269 0.5378 0.5420 0.5504 0.5168 0.5714 0.6540 0.6160
tr08-0021 0.7857 0.6387 0.5630 0.4874 0.4664 0.3866 0.4748 0.6329 0.6245
tr08-0111 0.6891 0.8025 0.7143 0.7101 0.7227 0.5462 0.4748 0.6287 0.6118
tr09-0175 0.6050 0.5252 0.5966 0.4748 0.5420 0.6218 0.6008 0.5401 0.6498
tr10-0872 0.6134 0.6008 0.5084 0.5168 0.4874 0.5252 0.4832 0.5274 0.4810
tr13-0204 0.5042 0.4538 0.6597 0.4790 0.6387 0.6471 0.6303 0.5570 0.5570
Average 0.6035 0.5959 0.5846 0.5515 0.5664 0.5667 0.5853 0.5638 0.5649

Index1 has the highest average accuracy and the highest classification accuracy for
3 of 16 subjects. Index2 has the second-highest average accuracy and the highest clas-
sification accuracy for 4 of 16 subjects, which is the most of all indices. θ/α [36] and
(θ + α)/(α + β) [37] are the only other indices with an average classification accuracy above
0.58, while θ/α [36] and θ/β [37] are the only other indices with the highest accuracy for
3 of 16 subjects. The β/α [36] index has the lowest average classification accuracy on the
training set (0.5515).

Table5shows the classification accuracy on the test set. Index1 has the highest average
accuracy and the highest classification accuracy for 3 of 12 subjects. Index2 has the third-
highest average accuracy and the highest classification accuracy for 4 of 12 subjects, which
is the most of all indices. The only other index with comparable accuracy is θ/α [36], with
the second-highest average accuracy. All other indices have at least 2.5% lower accuracy
than the two novel indices.

Table6shows the degree of precision of drowsiness detection on the training set.
Index2 has the highest average precision of drowsiness detection and the highest precision
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of drowsiness detection for five subjects, which is the highest of all indices. Index1 has the
second-best average precision of drowsiness detection. (θ + α)/(α + β) [37] and γ/δ [10]
have a precision of drowsiness detection comparable to Index1 and Index2, while all other
ratio indices have lower precision.

Table 5. The classification accuracy was obtained with the XGBoost algorithm for each subject in the test set. The shaded
green cells with bold text show the highest accuracy obtained for each subject. At the bottom, the best mean accuracy for
each ratio index is marked in the same way.

Subject Index1 Index2 θ/α β/α (θ + α)/β θ/β (θ + α)/
(α + β) γ/δ (γ + β)/

(δ + α)
This Work Eoh et al. [36] Jap et al. [37] da Silveira et al. [10]

tr04-0653 0.5672 0.6345 0.6303 0.5042 0.5168 0.5840 0.5630 0.5612 0.5738
tr05-0028 0.4454 0.4202 0.5294 0.5588 0.4664 0.4076 0.5462 0.5021 0.5443
tr05-0332 0.8067 0.8277 0.7563 0.5630 0.5294 0.6555 0.6134 0.5654 0.6118
tr07-0127 0.5462 0.6092 0.4916 0.5294 0.5252 0.5000 0.4118 0.4304 0.4051
tr08-0157 0.6303 0.6681 0.5294 0.5294 0.5000 0.5084 0.5294 0.5232 0.4810
tr09-0328 0.6050 0.5084 0.5966 0.5168 0.5000 0.5042 0.5672 0.5738 0.5401
tr09-0453 0.5588 0.5252 0.5714 0.5420 0.5294 0.5504 0.5840 0.5105 0.4557
tr12-0255 0.5420 0.5546 0.6639 0.5462 0.4748 0.5630 0.5924 0.6329 0.5654
tr12-0441 0.6891 0.5756 0.5840 0.5168 0.5378 0.5630 0.5798 0.6498 0.5274
tr13-0170 0.6008 0.5630 0.5924 0.5546 0.6261 0.6471 0.5336 0.5612 0.4430
tr13-0508 0.4538 0.5084 0.6555 0.6008 0.5588 0.6261 0.6092 0.5654 0.5443
tr13-0653 0.6807 0.6303 0.5210 0.5462 0.5630 0.5336 0.6008 0.5359 0.5063
Average 0.5938 0.5854 0.5935 0.5424 0.5273 0.5536 0.5609 0.5510 0.5165

Table 6. The precision of drowsiness detection was obtained with the XGBoost algorithm for each subject in the training set.
The shaded green cells with bold text show the highest precision obtained for each subject. At the bottom, the best mean
precision for each ratio index is marked in the same way.

Subject Index1 Index2 θ/α β/α (θ + α)/β θ/β (θ + α)/
(α + β) γ/δ (γ + β)/

(δ + α)
This Work Eoh et al. [36] Jap et al. [37] da Silveira et al. [10]

tr03-0092 0.5439 0.5439 0.5439 0.5439 0.5439 0.5439 0.5439 0.5439 0.5439
tr03-0256 0.6222 0.6348 0.5676 0.5349 0.5571 0.6127 0.6096 0.4270 0.3974
tr03-0876 0.6514 0.5800 0.6765 0.5973 0.4808 0.7397 0.7123 0.5804 0.6264
tr03-1389 0.2273 0.3774 0.4906 0.5455 0.5034 0.5391 0.4556 0.5519 0.5120
tr04-0649 0.7582 0.8273 0.5733 0.7895 0.7778 0.4878 0.5294 0.9063 0.6000
tr04-0726 0.8318 1.0000 0.7128 0.6373 0.6055 0.6627 0.7333 0.8370 0.7706
tr05-1434 0.4051 0.4083 0.1429 0.6028 0.7168 0.7692 0.7805 0.6571 0.5027
tr05-1675 0.6642 0.6011 0.6885 0.5607 0.6559 0.5862 0.7265 0.5425 0.5433
tr07-0168 0.7500 0.7923 0.5759 0.5375 0.5397 0.5730 0.5963 0.4488 0.5156
tr07-0458 0.2816 0.0492 0.5437 0.4789 0.5088 0.5446 0.5732 0.4500 0.4930
tr07-0861 0.6264 0.6688 0.5338 0.5342 0.5349 0.5105 0.5521 0.6216 0.5780
tr08-0021 0.7464 0.6854 0.6119 0.4717 0.4535 0.4000 0.4688 0.6325 0.6355
tr08-0111 0.6692 0.8214 0.7297 0.8205 0.7912 0.5314 0.4840 0.6500 0.5985
tr09-0175 0.6404 0.5263 0.5742 0.4762 0.5379 0.6142 0.6053 0.5273 0.6207
tr10-0872 0.6174 0.5909 0.5045 0.5130 0.4892 0.5254 0.4882 0.5349 0.4627
tr13-0204 0.5054 0.4545 0.6357 0.4820 0.6170 0.6636 0.6348 0.6032 0.5970
Average 0.5963 0.5976 0.5691 0.5704 0.5821 0.5815 0.5934 0.5946 0.5623

Table7shows the degree of precision of drowsiness detection achieved on the test set.
Index1 has the highest average precision. θ/α [36] and γ/δ [10] have 1% lower precision
than Index1, while all other indices have at least 4% lower precision. Index2 has the
second-highest average precision.
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Table 7. The precision of drowsiness detection was obtained with the XGBoost algorithm for each subject in the test set.
The shaded green cells with bold text show the highest precision obtained for each subject. At the bottom, the best mean
precision for each ratio index is marked in the same way.

Subject Index1 Index2 θ/α β/α (θ + α)/β θ/β (θ + α)/
(α + β) γ/δ (γ + β)/

(δ + α)
This Work Eoh et al. [36] Jap et al. [37] da Silveira et al. [10]

tr04-0653 0.5769 0.6569 0.6742 0.5030 0.5133 0.6000 0.5862 0.5795 0.5914
tr05-0028 0.3818 0.4296 0.5178 0.5385 0.4762 0.4214 0.5364 0.5000 0.5862
tr05-0332 0.7483 0.9333 0.7905 0.5547 0.5321 0.7846 0.6709 0.8571 0.8824
tr07-0127 0.5401 0.6512 0.4722 0.5294 0.5231 0.5000 0.3600 0.4309 0.4207
tr08-0157 0.5812 0.6087 0.5158 0.5574 0.5000 0.5048 0.5153 0.5122 0.4886
tr09-0328 0.6147 0.5078 0.5650 0.5137 0.5000 0.5041 0.5678 0.5620 0.5372
tr09-0453 0.5398 0.5176 0.5436 0.5301 0.5248 0.5306 0.5538 0.5049 0.4721
tr12-0255 0.5316 0.5351 0.6054 0.5342 0.4826 0.5393 0.5545 0.5886 0.5389
tr12-0441 0.8000 0.5789 0.5633 0.5093 0.5249 0.5478 0.5785 0.6496 0.5231
tr13-0170 0.6333 0.5466 0.5724 0.5355 0.6056 0.6296 0.5313 0.6944 0.3478
tr13-0508 0.4337 0.5091 0.6331 0.5674 0.5443 0.6154 0.6140 0.5478 0.5352
tr13-0653 0.7048 0.6000 0.5177 0.5314 0.5419 0.5213 0.5845 0.5392 0.5037
Average 0.5905 0.5896 0.5809 0.5337 0.5224 0.5582 0.5544 0.5805 0.5356

3.3. Computational Analysis

With regard to the classification and the use of machine learning algorithms, an
advantage of using the novel multichannel indices compared to the existing single-channel
indices is also the saving of memory and time, due to the reduction of dimensionality. The
accuracies of Index1 and Index2 from Table4were achieved with the model constructed
from the single feature only, while all other indices had six features since the dataset
contains six EEG channels. For this reason, storing the novel indices consumes six times
less memory. The time consumption was measured as an average of 100 executions. The
measured time included classifier initialization, classifier training, classifications on the
test subject and calculation of classification accuracy. Table8shows the results of time
consumption measurements. The use of the novel multichannel indices saves about 30% of
time compared to all other traditionally used single-channel ratio indices.

Table 8. The average time of 100 executions of the XGBoost classifier’s initialization, training, classifications on the test
subject and calculation of classification accuracy, expressed in milliseconds. The shaded green cells with bold text represent
the best values for each subject and the best average value.

Subject Index1 Index2 θ/α β/α (θ + α)/β θ/β (θ + α)/
(α + β) γ/δ (γ + β)/

(δ + α)
This Work Eoh et al. [36] Jap et al. [37] da Silveira et al. [10]

tr03-0092 86.3772 86.9689 122.7764 124.0313 129.9221 129.5543 130.6956 128.6490 128.9000
tr03-0256 86.7446 87.1034 123.3161 123.2911 130.3844 130.2867 130.6147 128.6415 128.7518
tr03-0876 86.3508 87.0188 122.6970 123.5249 130.2485 130.7789 130.6456 128.7160 128.3419
tr03-1389 85.9344 86.8811 122.1586 123.8243 130.4414 130.1170 131.3382 129.2281 128.8390
tr04-0649 86.9833 87.5527 123.6650 124.0832 130.2565 130.0574 130.2316 129.2234 128.8357
tr04-0726 86.5498 87.5921 123.7690 123.6945 129.6285 129.6750 130.6256 128.9002 128.6363
tr05-1434 86.5450 86.6549 123.0505 130.6853 131.9267 130.6205 131.3138 130.6215 131.3438
tr05-1675 87.0534 87.4627 123.3135 130.0399 130.4660 129.1552 129.5943 130.5365 128.9256
tr07-0168 86.9143 87.2251 122.9559 129.6185 130.5158 130.1070 129.7780 129.6381 128.7795
tr07-0458 86.5651 86.8690 122.6074 129.9533 130.1468 130.2667 130.4915 128.8906 129.5788
tr07-0861 86.8634 87.2801 122.7545 130.2319 130.0104 128.1135 129.9124 129.3949 128.7760
tr08-0021 86.9239 88.9566 123.0910 130.0868 129.1948 130.0221 130.1670 129.3241 129.1652
tr08-0111 86.6697 87.4626 122.7216 130.3879 130.5019 130.4011 129.8419 128.8413 129.1940
tr09-0175 87.3240 87.3827 123.4803 129.6729 130.9953 130.1271 131.1785 128.7062 128.9786
tr10-0872 86.9690 87.5381 124.0918 130.5091 129.4638 130.6490 130.2964 129.4843 129.3599
tr13-0204 87.2509 87.1135 123.2010 131.7928 130.4062 131.4087 130.3568 128.9199 128.1530
Average 86.7512 87.3164 123.1031 127.8392 130.2818 130.0838 130.4426 129.2322 129.0350
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4. Discussion

The main idea of our research was to combine frequency-domain features from differ-
ent brain regions into a multichannel ratio index to improve frequency-domain features
for the detection of drowsiness and to gain new insights into drowsiness. The results
in Tables2–8 suggest that two novel multichannel ratio indices improve the detection
of drowsiness based on the frequency-domain features and reduce the time required
for detection.

We must note that the main idea of this research was not to create the best possible
model for drowsiness detection but only to bring improvement into frequency-domain
features that are often used for drowsiness detection. Our focus was on developing
the method for obtaining these novel indices, which is explained in Section2.3“Multi-
Objective Optimization”. In order to confirm that our conclusions also hold for other
classifiers besides XGBoost, Table9shows the average accuracy on the test set obtained
with Naïve Bayes, k nearest neighbors, logistic regression, decision tree, random forest
and support vector machine classifiers (using the scikit-learn library at default settings).
The average accuracies of two novel indices vary from 56% to 65% among the algorithms.
All the algorithms show that our novel multichannel indices are better than existing
single-channel indices.

Table 9. The average accuracy was obtained on the test set with different classification algorithms. Each row is colored
with a pallet of colors ranging from dark green for the highest number in the row to dark red for the lowest number in the
row. The algorithms are: NB—Naïve Bayes, KNN—k nearest neighbors, Logistic—logistic regression, DT—decision tree,
RF—random forest and SVM—support vector machine.

Algorithm Index1 Index2 θ/α β/α (θ + α)/β θ/β (θ + α)/
(α + β) γ/δ (γ + β)/

(δ + α)

This Work Eoh et al. [36] Jap et al. [37] da Silveira et al. [10]

NB 0.6399 0.6535 0.5947 0.5462 0.5432 0.5308 0.5663 0.5316 0.5277

KNN 0.5785 0.5840 0.5588 0.5387 0.5399 0.5452 0.5525 0.5378 0.5277

Logistic 0.6396 0.6543 0.6029 0.5131 0.5383 0.5626 0.5735 0.5793 0.5613

DT 0.5717 0.5629 0.5456 0.5050 0.5074 0.5420 0.5267 0.5356 0.5223

RF 0.5719 0.5659 0.5762 0.5380 0.5360 0.5549 0.5501 0.5321 0.5222

SVM 0.6325 0.6526 0.6200 0.5695 0.5714 0.5731 0.5801 0.5541 0.5478

Our results were compared with the seven existing single-channel ratio indices that
are currently state-of-the-art frequency-domain features. The newest one was introduced
in 2016 [10], but all of these single-channel ratio indices are often used in the more recent
drowsiness detection papers [57–59].

The authors in the aforementioned research report 92% accuracy as the best-obtained
accuracy [57]. This accuracy was obtained based on the epoch-level validation. Epoch-level
validation is a cross-validation procedure on the epoch level, which means that there is a
very high probability that all subjects will have epochs in the training set and in the test
set at the same time. On the other hand, subject-level validation is validation where it
is ensured that subjects in the test set are not contained in the training set. An example
of a subject-level validation is the leave-one-subject-out cross-validation that we used in
this research. The only proper way for model validation is subject-level validation, as it
represents the real-life setting in which the data from a new subject are used only for testing
the model. Empirical tests conducted in related research showed a large difference in the
accuracies between epoch-level validation and subject-level validation [60].

In a study from Mehreen et al. [57], the authors also provide subject-level validation,
and the accuracy achieved was 71.5% based on 15 frequency-domain features. The highest
accuracy achieved in our research is shown in Table9, and it was 65.45%, achieved by
logistic regression. This 65.45% accuracy is relatively close to 71.5%, and it must be noted
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that it was obtained based only on the Index2 feature, with a simple algorithm and without
any parameter optimization. Due to this, we are confident that the addition of our two
multichannel ratio indices would lead to an improvement in all state-of-the-art drowsiness
detection systems that use frequency-domain features. Again, our aim was not to create the
best possible drowsiness detection model but to prove that the novel multichannel indices
are better than the existing single-channel frequency-domain features.

The Equations (4) and (6) for these multichannel ratio indices, obtained after opti-
mizing the parameters with the optimization algorithm, suggest that alpha and delta are
two of the most important frequency power bands for drowsiness detection. Equation (6)
suggests that delta power in the frontal region describes drowsiness better than in the
central region, while alpha power in the occipital and central regions describes drowsiness
better than in the frontal region.

These results are consistent with several previous research papers on drowsiness de-
tection that reported the importance of increasing alpha power [22,35,61,62]. Delta power is
usually only present in deep sleep stages [36], so some researchers studying drowsiness do
not include delta in their research [63]. However, there is still much research that includes
delta power. The increase in delta power is considered to be an indicator of drowsiness [4].
Our research found that theta and beta powers are not as good drowsiness indicators
as alpha and delta powers, while many other research studies disagree. A decrease in
beta power was found to be an indicator of drowsiness in [4,36,64,65] and an increase in
theta power was found to be an indicator of drowsiness in [27,34,61,62,65]. Wang et al. [38],
in their study of microsleep events, found that alpha and delta rhythms characterize
microsleep events. As mentioned earlier, there is an inconsistency in terminology, and
some researchers consider sleep stage S1 as drowsiness [5–9], while Johns [11] considers
it equivalent to microsleep events in the driving scenario. We used the data from sleep
stage S1 and referred to it in this research as drowsiness. Since our results suggest that
delta and alpha are the most significant for the detection of drowsiness, as in the work of
Wang et al. [38] on microsleep events, our work suggests that sleep stage S1 may be more
similar to microsleep events than to drowsiness, but further research is needed to support
this as a fact.

Apart from the indication that drowsiness is closely related to microsleep events, it
may also be closely linked to driver fatigue. Some researchers even use the term fatigue as
a synonym for drowsiness [66]. Fatigue is a consequence of prolonged physical or mental
activity [67] and can lead to drowsiness [68]. Normally, rest and inactivity relieve fatigue,
however, they exacerbate drowsiness [69]. Lal and Craig [70] found that delta and theta
band activities increase significantly during fatigue. Craig et al. [71] reported significant
changes in the alpha 1, alpha 2, theta and beta bands, while they did not find any significant
changes in the delta band when observing driver fatigue. Simon et al. [68] report that alpha
band power and alpha spindles correlate with fatigue.

These three research papers [68,70,71] all use visual inspection to define the ground
truth of fatigue. This approach to defining the ground truth is prone to subjectivity. A
similar problem occurs when drowsiness is defined by using subjective drowsiness ratings,
such as the Karolinska sleepiness scale [72].

Driver drowsiness, driver fatigue and microsleep events are defined as different inter-
nal states of the brain, but show similar behavior when observing the features obtained
from the EEG. Possible explanations could be that fatigue, drowsiness and microsleep have
a similar effect on brain functions and cause the driver’s inability to function at the desired
level. Most researchers of these three driver states only use frequency-domain features,
while there are a number of other features (nonlinear features [30], spatiotemporal fea-
tures [31] and entropies [32]) that could be used. Further studies with these features could
find some features of the EEG signal that distinguish drowsiness, fatigue and microsleep.
Distinguishing features of these three brain states could lead to the exact definitions of
these terms. Precise and standardized definitions of fatigue, drowsiness and microsleep
would help researchers to compare their work more easily.
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Figure4shows that the proposed procedure for creating the novel ratio indices has
succeeded in creating step-like indices for a given subject. In addition to Index1 and Index2,
which show desirable behavior, the indices (θ + α)/β and θ/β show similar, favorable
behavior for a few channels. Figure5shows a comparison of novel ratio indices with the
best and the worst channel for γ/δ and (γ + β)/(δ + α) single-channel indices for subject
tr04-0726. Index1, index2, θ/α [36], (θ + α)/β, (θ + α)/(α + β) [37] and γ/δ [10] show
similar behavior. These indices seem to detect drowsiness well, but with about a 50 epochs
delay. Since several different single-channel indices that were previously shown to correlate
with drowsiness together with two novel multichannel indices show the same delay in
detecting drowsiness, this suggests that there may be shortcomings in the labeling of the
initial signals. The manual for scoring sleep [42] provides guidelines for labeling, and it
may be possible that the professionals who labeled the sleep signals labeled an approximate
time of transition from the W state to the S1 state, as it is known that labeling any kind of
several-hour-long EEG signal is a very tedious, hard and time-consuming job [73]. For this
reason, the loose transition window is applied in the optimization algorithm, as described
in Section2.3.

The main shortcoming in applying our approach is the need to place six EEG electrodes
on the driver’s scalp while driving. Apart from being intrusive, there is also a problem
with noise in real-world applications that cannot be neutralized with the current state-of-
the-art filter technology. All electrophysiological signals measured with wearable devices
have a similar problem with intrusiveness and noise. ECG measurements, for example,
are somewhat less susceptible to noise than EEG. Several recent works have shown that
ECG can be used as a good predictor of sleep stages based on deep learning classifiers.
Sun et al. [74] combined ECG with abdominal respiration and obtained a kappa value of
0.585, while Sridhar et al. [75] obtained a kappa value of 0.66. Combining EEG and ECG
measurements has also been proposed in the context of driver drowsiness detection under
simulator-based laboratory conditions [76]. Despite the problems of intrusiveness and noise
susceptibility, research based on the electrophysiological signals brings a shift towards a
precise definition of drowsiness. Once there is an exact definition of drowsiness or at least
guidelines and manuals that accurately describe drowsiness (similar to the manuals for
evaluating sleep stages), a big step will be taken to solve the problem of early detection
of drowsiness [77]. It is doubtful that a wearable system based on electrophysiological
signals will ever be widely used in real-world driving, but they still need to be developed.
In our opinion, such wearable electrophysiological devices are more likely to be used for
calibration/validation of non-intrusive systems (such as the driving performance-based or
video-based systems) in controlled/simulated driving scenarios. In such scenarios, it is
possible to control ambient noise, leading to a reduction in the effects of noise sensitivity.

An additional limitation of this work is that we were able to download data from 393
of 992 subjects completely, and only 28 of these 393 subjects were included in our study
due to the inclusion condition that we described in Section2.1”Dataset, Preprocessing and
Feature Extraction”. Although it is a small subset of data, with the use of 12 subjects as
a test set, we showed that the dataset is large enough to provide a good generalization
(as seen in Tables3,5and7). In a recent review paper about state-of-the-art drowsiness
detection [33], the authors reviewed 39 papers, and the average number of subjects in the
included works is 23.5, which also indicates that our number of subjects included in the
current study (28) is acceptable.
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Figure 5. The comparison of the two novel multichannel indices with the best and the worst channel for γ/δ and
(γ + β)/(δ + α) single-channel indices for subject tr04-0726. The white part of the diagram represents the awake state, while
the yellow part of the diagram represents the stage 1 of sleep, i.e., the drowsiness state.
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5. Conclusions

This paper presented two novel multichannel ratio indices for the detection of drowsi-
ness obtained by multi-objective optimization based on evolutionary computation. The
results suggested that alpha and delta powers are good drowsiness indicators. The novel
multichannel ratio indices were compared with seven existing single-channel ratio indices
and showed better results in detecting drowsiness measured with precision and in the
overall classification accuracy of both states using several machine learning algorithms.
Our work suggests that a more precise definition of drowsiness is needed, and that accurate
early detection of drowsiness should be based on multichannel frequency-domain ratio
indices. The multichannel features also reduced the time needed for classification. The
process of obtaining these indices by using a multi-objective optimization algorithm can
also be applied to other areas of EEG signal analysis.

Research such as this, together with research on small hardware for physiology-
based drowsiness detection, can eventually lead to an easy-to-use, non-intrusive device
that reliably detects drowsiness. In addition, research on a reliable and standardized
definition of drowsiness is needed and it would lead to improvements in the field of
drowsiness detection.
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Abstract: Objective detection of a driver’s drowsiness is important for improving driving safety, and
the most prominent indicator of drowsiness is changes in electroencephalographic (EEG) activity.
Despite extensively documented behavioral differences between male and female drivers, previous
studies have not differentiated drowsiness detection models based on drivers’ sex. Therefore, the
overall aim of this study is to demonstrate that drowsiness detection can be improved with the use of
drivers’ sex information, either as a feature or as separate sex-dependent datasets. Additionally, we
aim to provide a reliable EEG-based sex classification model. The used dataset consists of 17 male
and 17 female drivers which were evaluated during alert and drowsy sessions. Frequency-domain
and recurrence quantification analysis EEG features were used. Four classification algorithms and
three feature selection methods were applied to build the models. The accuracy of drowsiness
detection based on sex-dependent datasets is 84% for male drivers and 88% for female drivers,
which is 3% and 7% better, respectively, than the classification without information about driver’s
sex (81%). The model for sex classification based on EEG achieved high accuracy: 97% correctly
identified participants in alert sessions and 96% in drowsy sessions. All participants were correctly
classified after the application of majority voting on five algorithm runs. The results suggest that
sex-dependent datasets improve the accuracy of drowsiness models, which may be relevant to a
variety of drowsiness detection systems currently being developed in the field.

Keywords: drowsiness detection; EEG features; machine learning; recurrence quantification analysis;
sex classification; sex differences

1. Introduction

Driving requires various cognitive skills such as visual perception, attention, memory,
executive functions, and motor skills [1]. Performance in these cognitive domains is related
to driving performance and driving ability. In addition, psychophysiological aspects such
as drowsiness and fatigue can affect cognitive processes during driving and lead to traffic
accidents [2]. Moreover, fatigue and drowsy driving are some of the major causes of traffic
accidents [3,4]. Therefore, objective detection of a driver’s drowsiness is an important factor
that could improve driving safety.

However, drowsiness in drivers is not easy to detect. The most used measures are
self-assessments of drowsiness. The European Union regulation for the type-approval of
motor vehicles with regard to their drivers’ drowsiness and attention warning systems is
based on the self-assessment of drowsiness with the Karolinska Sleepiness Scale [5]. Other
methods for inferring correlates of drowsiness are image-based methods, vehicle-based
methods, physiological-based methods, and hybrid methods [6]. Each of these categories
can be further split into subcategories, e.g., physiological-based methods can be based
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on electroencephalogram (EEG), electrocardiogram (ECG), respiration, electrooculogram,
electromyogram, galvanic skin response, or skin temperature [7].

ECG records the heart’s electrical activity (heartbeats), while heart rate variability
(HRV) refers to the variations in times between two adjacent heartbeats. HRV is considered
a good drowsiness predictor and accuracies of drowsiness detection based on HRV range
from 56.6% to 95% among studies [8]. Respiration can be derived from HRV but is also
measured using several other techniques. Siddiqui et al. [9], in their recent research, used
radar for non-invasive respiration measurement and obtained 87% drowsiness classification
accuracy. Measuring skin temperature can also be used for the assessment of drowsiness.
Gielen and Aerts [10] measured temperature on the nose and wrist, and obtained accuracies
of 68.4% and 88.9%, respectively. Electrooculogram measures eye movement characteristics.
It is often used for drowsiness detection, achieving accuracies that range from 64% to 99%
among studies [11].

EEG provides a very accurate assessment of the driver’s mental state [12], achiev-
ing accuracies of drowsiness detection that range from 67% to 99% among studies [13].
Furthermore, changes in EEG activity are considered biomarkers of mental fatigue and
drowsiness [14]. The most prominent indicator associated with mental fatigue and drowsi-
ness is increased theta activity in frontal, central, and posterior cortical sites. In addition,
increased alpha activity is associated with individual variability in cortical changes re-
lated to mental fatigue and drowsiness. Many studies also use ratio indices between
these frequency bands as indicators of drowsiness [15], and a recent study suggests that
multichannel ratio indices could bring an additional increase in drowsiness detection accu-
racy [16]. However, the results obtained are from studies with male participants or males
and females as a group, without separating them by sex.

Differences in driving behavior between men and women have been extensively docu-
mented using experimental driving tasks, attitudes toward driving, behavioral analysis,
risk perception, and the number of accidents.

Drowsiness also has differential effects on driving behavior between men and women.
For example, self-rated levels of drowsiness while driving tend to be higher in women than
in men [17]. Women also tend to report longer ideal sleep durations than men [18]. As a
result, it appears that women’s greater need for sleep leads to higher ratings of drowsiness.

Studies also report sex differences in brain organization that influence the regulation
of brain activity during awake state and sleep [19]. In addition, sleep deprivation has a
differential effect on brain activity between females and males. Therefore, it is reasonable to
assume that changes in EEG activity related to drowsiness differ between men and women.

There are various methods of EEG signal analysis to detect drowsiness and alert-
ness in drivers. They are mostly based on the different types of features extracted from
the signal (i.e., frequency-domain features, recurrence quantification analysis features,
entropies, etc.) [20–25]. To the best of our knowledge, there is no research that includes
drivers’ sex information in drowsiness detection systems.

A preliminary version of this work has been reported [26] and it shows the statistical
difference between EEG features of alert male and female drivers. The main goal of
this substantially extended study is to improve drowsiness detection by including the
information about drivers’ sex in the classifier. This is done in two ways: (1) by considering
sex as a feature, and (2) by separating the datasets into male and female. In addition, the
study aims to develop a reliable EEG-based sex classification model, where correlations
between features are introduced as a novel feature that differentiates between male and
female drivers.

2. Methodology
2.1. Experimental Design

In our study, 34 healthy participants were recorded during two sessions in a driving
simulation. All participants had a valid driver’s license and drove a car regularly but
are not professional drivers. The EEG was recorded with a 32-channel actiCHamp EEG
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amplifier (Brain Products, Munich, Germany) with passive sintered Ag/AgCl electrodes.
The electrodes were located at prefrontal (Fp1, Fp2), frontal (F3, F4), central frontal (FC5,
FC1, FC2, FC6), inferior frontal (F7, F8), midline frontal (Fz), central (C3, C4), midline
central (Cz), midline parietal (Pz), central parietal (CP5, CP1, CP2, CP6), midline occipital
(Oz), inferior temporal (T7, T8), posterior temporal (TP9, TP10), parietal (P3, P4), inferior
parietal (P7, P8), posterior occipital (PO9, PO10), and occipital scalp sites (O1, O2). The
electrodes were positioned according to the International 10–20 system guidelines. The
electrode at the FCz position was used as a reference. A ground electrode was placed on
the forehead. BrainVision Recorder software was used for impendence check and on-line
monitoring. The EEG signals were recorded with a 1000 Hz sampling rate. A simulation
scenario was shown on three wide LCD screens. The car was controlled with a professional
steering wheel joystick and pedals. All participants were instructed to follow the traffic
rules. Male participants averaged 30.24 of age with a standard deviation of 6.86 years and
female participants averaged 30.12 years of age with a standard deviation of 6.98 years.
The driving scenario was the same for all participants and consisted of driving on state
roads and highways, and in an urban environment. The study was approved by the Ethics
Committee of the University of Zagreb, Faculty of Electrical Engineering and Computing.

Each participant had two recording sessions. The first recording session (alert session)
began at 2:00 p.m. and the second one (drowsy session) began at midnight. The sessions
were recorded on different days. The driving scenario was the same for both sessions:
after 15 min of adaptation driving (simple acceleration, braking, and turning exercises), all
participants were instructed to drive on a highway for 90 min, with adjusted day/night
lighting according to the time of the session. Highway driving was monotonic, with very
few other cars in traffic, and did not include any unexpected events (such as road crossings
of animals or pedestrians). Room lighting, temperature, and humidity were controlled and
were the same for both sessions.

Each EEG recording was divided into 10 s epochs with five seconds’ overlap between
epochs. The first 250 epochs (~21 min) of highway driving in the alert session were labeled
as periods with the highest alertness level for all participants. The last 250 epochs of the
drowsy session (approximately after 70 min of highway driving) were labeled as periods
with the highest drowsiness level for all participants. This labeling, where the beginning
of the session is labeled as alert, and the end is labeled as drowsy, is commonly used in
practice [27–30].

These classifications of two-phase classes were additionally confirmed by an expert in
psychophysiological behavior based on their self-assessment of drowsiness (Karolinska
Sleepiness Scale) before and after the session, and visual inspection of participants. Par-
ticipants indicated their drowsiness level on the Karolinska Sleepiness Scale for the alert
session as extremely alert, very alert, alert, or fairly alert. Additionally, their total score on
the Fatigue Assessment Scale indicated no fatigue before the alert session. Table1shows
the number of male and female drivers in each class.

Although we used a 32-channel EEG, we wanted to describe dependencies and differ-
ences between specific brain regions—front left (FL), front right (FR), occipital left (OL),
and occipital right (OR) regions. We calculated the mean value for each feature from five
channels in each region (see Table2). In addition to the channels from these four regions,
we also included Oz, Pz, and Cz channels in our analysis.

Table 1. The number of participants in each class.

Male Female

Alertness 17 17

Drowsiness 17 17



Appl. Sci. 2022, 12, 8146 4 of 13

Table 2. Channels in brain regions.

Region Channels

Front left (FL) F7, F3, FC5, FC1, T7

Front right (FR) F8, F4, FC6, FC2, T8

Occipital left (OL) O1, P7, P3, CP5, CP1

Occipital right (OR) O2, P4, P8, CP6, CP2

2.2. Preprocessing and Feature Extraction

The first step of preprocessing was to filter the raw EEG signals to remove unwanted
artifacts from the signal. For filtering, we used a Butterworth bandpass filter from 0.5 Hz to
40 Hz.

In this way, we filtered out the line noise (50 Hz). Independent component analysis
(ICA) was also used to remove artifacts such as eye movements [31]. The Infomax ICA algo-
rithm was used for separating the original signal into independent components [32]. If there
were waveforms between these components that were characteristic of eye movements,
we removed these eye movements from the signal. Blinks were removed for all partici-
pants and left–right eye movements were removed whenever present (in approximately
50% of participants).

EEG features were calculated based on 10 s epochs with a five-second overlap between
epochs. We computed the basic frequency-domain features: the relative power of the
delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (12–30 Hz), and gamma (30–50 Hz)
frequencies. They were calculated using the Thomson multitaper method [33] to obtain
the power spectral density. We also used recurrence quantification analysis (RQA) [34–36]
features: determinism (Det), laminarity (Lam), recurrence rate (RR), trapped time (TT),
determinism divided by recurrence rate (Det/RR), longest diagonal (Lmax), longest vertical
line (Vmax), average diagonal line length (Adll), divergence (Div), and entropy (Ent). The
RQA features were calculated from the recurrence plot (RP) of the signal. RP is a 2D
representation of the phase space trajectory of the signal [37]. It is a matrix with dimensions
N × N, where N is the length of the signal. The position (i, j) in the matrix is marked as one
if the i-th and j-th points in the signal are close to each other.

The total number of extracted features was 15 per channel/region. We used four
regions (with averaged feature value from 5 channels) and three additional channels (see
above), which gave us a total of 105 features.

2.3. Drowsiness Detection

The 105 features described in Section2.2served as the initial feature set for the first
drowsiness detection model. The aim of this analysis was to investigate whether sex as a
feature could improve drowsiness detection.

The best combination of algorithms and hyperparameters was optimized using a
grid search approach. The experiment was conducted using four classification algorithms
(XGBoost, naïve Bayes, random forest, and support vector machines) and three feature
selection algorithms (chi2, information gain, and ANOVA F-test). Table3shows the
hyperparameters that were explored for classification algorithm selection on the training
set. In addition, we also searched for the optimal number of features to include in the
model (selection of 10, 20, 30, 40, 50, 60, and 100). Grid search was applied to all these
hyperparameters, classification algorithms, and feature selection methods simultaneously.
The decision was made based on maximizing the accuracy of a model without including
sex as a feature.
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Table 3. Table of optimization hyperparameters with a grid search approach. Naïve Bayes had no
hyperparameters to optimize.

XGBoost

Eta—{0.1, 0.3, 0.4, 0.9} reg_alpha—{0, 0.5}
gamma—{0, 1, 5} reg_lambda—{0.5, 1}

learning_rate—{0.05, 0.1, 0.5, 1}

Random Forest

n_estimators—{30, 100, 200, 500}
min_samles_split—{2, 4, 6}

Support Vector Machine

C—{0.5, 1, 10} kernel—{linear, rbf}

Once the best algorithm and feature set were obtained, the evaluation metrics for the
drowsiness detection model without sex as a feature were calculated. The classification was
performed for each epoch of each participant, resulting in a total of 17,000 epochs (both
classes with 34 recording sessions, each session with 250 epochs) for drowsiness detection.
A random 66% of the dataset was used for training the classifier and the remaining 33%
was used for testing the classifier.

Then, sex as a feature was added to the dataset, and classification was performed in
the same way. In the second analysis, to further investigate the influence of driver’s sex on
drowsiness detection, the dataset was divided into two subsets containing only male and
female drivers, respectively. The classification was performed in the same way for these
two subsets of data.

2.4. Sex Classification Model

A reliable EEG-based sex classification model was developed to make previous find-
ings applicable in cases where the dataset does not contain information about drivers’ sex.
For the sex classification model, we divided each channel/region of each participant into
nine segments (the first eight segments with 27 epochs and the ninth segment with the
remaining 34 epochs). The values of each feature in each of these segments were averaged,
as shown in Figure1. We chose nine segments to increase our dataset for classification to
306 records (34 participants with 9 segments each), which was sufficient to properly split
the dataset into training and test subsets. Moreover, each of the nine segments had enough
epochs to compute correlations between features. The final feature set consisted of 105
features, explained in Section2.2, and the correlations between each pair of features as
new features. In total, this amounted to 5565 features. The training dataset consisted of
each participant’s six randomly selected segments and the test dataset consisted of each
participant’s remaining three segments. We also used leave-one-subject-out evaluation
(LOSOCV). Hyperparameter optimization and algorithm selection were performed on
the training dataset using 5-fold cross-validation. The same grid search approach as in
Section2.3was used for hyperparameter optimization.
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Figure 1. Illustration of segment averaging.

3. Results
3.1. Improvement of Drowsiness Detection with Addition of Sex as a Feature

Based on the optimization of grid search hyperparameters, XGBoost with default
parameters, along with 50 features selected by the chi2 method, was selected for our
drowsiness detection model. The decision was made based on maximizing the accuracy of
a model without including sex as a feature.

Table4shows the evaluation metrics’ scores of the drowsiness detection model with
and without sex as a feature. Including sex as an additional feature in the feature set
resulted in only an incremental improvement in the evaluation metrics. However, when
the dataset was split into two datasets based on the sex information, it led to a significant
improvement in the drowsiness detection evaluation metrics. Table4shows that the
accuracy of the drowsiness detection is 84% for male drivers and 88% for female drivers, which
is 3% and 7% better, respectively, than the classification without information about driver sex.
Additionally, precision and recall are higher in both groups for both male and female drivers.

Table 4. Results of the drowsiness classification model.

Without Sex Information

Precision Recall Accuracy

Alertness 0.81 0.82
0.81

Drowsiness 0.82 0.80

With sex information

Precision Recall Accuracy

Alertness 0.81 0.83
0.82

Drowsiness 0.82 0.81

Only male drivers

Precision Recall Accuracy

Alertness 0.82 0.86
0.84

Drowsiness 0.86 0.82

Only female drivers

Precision Recall Accuracy

Alertness 0.87 0.89
0.88

Drowsiness 0.89 0.87
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3.2. Model for Sex Classification

The best classification model for drivers’ sex classification was XGBoost. The following
hyperparameters were selected as the best ones and were the same for both groups: eta
equals 0.1, gamma equals 0, max_depth equals 10, reg_alpha equals 0, reg_lambda equals
1, and learning_rate parameter equals 0.1. The chi2 method was selected as the feature
selection method, and the 40 best-ranked features were selected for our final classifica-
tion model.

Interestingly, among the selected features, there were no frequency-domain features.
There were 36 selected RQA features and four selected correlation features. The same
features were selected for all seven channels/regions—Det, Lam, Det/RR, Lmax, and
Vmax. Besides these 35 features, the model also selected the RR feature from the Cz
channel, the correlation between Cz Theta and Cz Delta, the correlation between FL Theta
and Cz Gamma, the correlation between FR Theta and Cz Gamma, and the correlation
between OL Theta and OL Delta. All the selected correlations for the drowsy group were
between frequency-domain features. Among the selected features, the distribution of
channels/regions was almost uniform, 5 ± 1 of all channels/regions were selected.

In general, the final accuracy of any classification model may vary with a different
selection of the test set. Since we randomly selected our test set as described in Section2.4,
we applied the methodology described there five times (as seen in Tables5and6) to verify
the stability and robustness of the classification model.

Table 5. Classification accuracies on the test data for alert participants.

Participant
Accuracy Target

Class
Correctly Classified

Run1 Run2 Run3 Run4 Run5 Avg Run1 Run2 Run3 Run4 Run5 Avg
1 1.00 1.00 1.00 1.00 1.00 1.00 F 1 1 1 1 1 1
2 1.00 1.00 1.00 1.00 1.00 1.00 F 1 1 1 1 1 1
3 1.00 1.00 1.00 1.00 1.00 1.00 F 1 1 1 1 1 1
4 0.67 1.00 1.00 0.67 1.00 0.87 M 1 1 1 1 1 1
5 1.00 1.00 1.00 1.00 1.00 1.00 M 1 1 1 1 1 1
6 1.00 1.00 1.00 1.00 1.00 1.00 F 1 1 1 1 1 1
7 0.67 1.00 1.00 1.00 1.00 0.93 M 1 1 1 1 1 1
8 1.00 1.00 1.00 1.00 1.00 1.00 M 1 1 1 1 1 1
9 1.00 1.00 1.00 1.00 1.00 1.00 M 1 1 1 1 1 1
10 1.00 1.00 1.00 1.00 1.00 1.00 F 1 1 1 1 1 1
11 1.00 1.00 1.00 1.00 1.00 1.00 M 1 1 1 1 1 1
12 1.00 1.00 1.00 1.00 1.00 1.00 F 1 1 1 1 1 1
13 1.00 1.00 1.00 1.00 1.00 1.00 M 1 1 1 1 1 1
14 1.00 1.00 0.67 1.00 1.00 0.93 M 1 1 1 1 1 1
15 1.00 1.00 1.00 1.00 0.67 0.93 M 1 1 1 1 1 1
16 1.00 1.00 1.00 1.00 1.00 1.00 F 1 1 1 1 1 1
17 1.00 1.00 0.67 0.67 0.67 0.80 F 1 1 1 1 1 1
18 1.00 1.00 0.67 0.67 1.00 0.87 M 1 1 1 1 1 1
19 1.00 1.00 1.00 0.67 1.00 0.93 F 1 1 1 1 1 1
20 1.00 1.00 1.00 1.00 1.00 1.00 M 1 1 1 1 1 1
21 1.00 1.00 1.00 1.00 1.00 1.00 F 1 1 1 1 1 1
22 1.00 1.00 1.00 1.00 1.00 1.00 F 1 1 1 1 1 1
23 1.00 1.00 1.00 1.00 1.00 1.00 F 1 1 1 1 1 1
24 1.00 1.00 1.00 1.00 1.00 1.00 F 1 1 1 1 1 1
25 1.00 1.00 1.00 1.00 1.00 1.00 M 1 1 1 1 1 1
26 0.67 0.67 1.00 1.00 0.67 0.80 M 1 1 1 1 1 1
27 1.00 1.00 1.00 1.00 1.00 1.00 M 1 1 1 1 1 1
28 1.00 0.67 0.67 1.00 1.00 0.87 M 1 1 1 1 1 1
29 0.33 0.67 0.67 1.00 0.67 0.67 M 0 1 1 1 1 0.8
30 0.33 0.33 1.00 0.67 0.67 0.60 F 0 0 1 1 1 0.6
31 1.00 0.67 0.67 0.67 0.67 0.73 F 1 1 1 1 1 1
32 1.00 1.00 0.33 0.33 1.00 0.73 F 1 1 0 0 1 0.6
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Table 5. Cont.

Participant
Accuracy Target

Class
Correctly Classified

Run1 Run2 Run3 Run4 Run5 Avg Run1 Run2 Run3 Run4 Run5 Avg
33 1.00 1.00 1.00 1.00 1.00 1.00 M 1 1 1 1 1 1
34 1.00 1.00 1.00 1.00 1.00 1.00 F 1 1 1 1 1 1

Average: 0.93 0.94 0.92 0.92 0.94 0.93 Sum: 32 33 33 33 34 33
Accuracy: 0.94 0.97 0.97 0.97 1.00 0.97

Table 6. Classification accuracies on the test data for drowsy participants.

Participant
Accuracy Target

Class
Correctly Classified

Run1 Run2 Run3 Run4 Run5 Avg Run1 Run2 Run3 Run4 Run5 Avg
1 1.00 1.00 1.00 1.00 1.00 1.00 F 1 1 1 1 1 1
2 0.67 1.00 0.33 1.00 0.67 0.73 F 1 1 0 1 1 0.8
3 1.00 1.00 0.67 1.00 1.00 0.93 F 1 1 1 1 1 1
4 1.00 1.00 1.00 1.00 1.00 1.00 M 1 1 1 1 1 1
5 1.00 0.67 1.00 0.67 0.67 0.80 M 1 1 1 1 1 1
6 1.00 1.00 1.00 1.00 0.67 0.93 M 1 1 1 1 1 1
7 1.00 0.67 1.00 1.00 0.67 0.87 F 1 1 1 1 1 1
8 1.00 1.00 1.00 1.00 1.00 1.00 M 1 1 1 1 1 1
9 1.00 1.00 0.67 1.00 1.00 0.93 F 1 1 1 1 1 1
10 0.67 1.00 1.00 0.67 0.67 0.80 M 1 1 1 1 1 1
11 0.33 1.00 0.33 1.00 0.67 0.67 M 0 1 0 1 1 0.6
12 1.00 1.00 0.67 1.00 0.67 0.87 M 1 1 1 1 1 1
13 1.00 1.00 1.00 1.00 1.00 1.00 M 1 1 1 1 1 1
14 1.00 1.00 1.00 0.67 1.00 0.93 F 1 1 1 1 1 1
15 0.67 1.00 1.00 0.67 0.67 0.80 M 1 1 1 1 1 1
16 1.00 1.00 1.00 1.00 1.00 1.00 F 1 1 1 1 1 1
17 1.00 1.00 1.00 1.00 1.00 1.00 M 1 1 1 1 1 1
18 1.00 1.00 1.00 1.00 1.00 1.00 F 1 1 1 1 1 1
19 1.00 1.00 1.00 1.00 1.00 1.00 F 1 1 1 1 1 1
20 0.67 0.67 0.67 1.00 0.33 0.67 F 1 1 1 1 0 0.8
21 1.00 1.00 1.00 1.00 1.00 1.00 F 1 1 1 1 1 1
22 1.00 1.00 1.00 1.00 1.00 1.00 F 1 1 1 1 1 1
23 1.00 1.00 1.00 1.00 1.00 1.00 M 1 1 1 1 1 1
24 1.00 1.00 1.00 1.00 1.00 1.00 M 1 1 1 1 1 1
25 0.67 0.67 1.00 0.33 1.00 0.73 M 1 1 1 0 1 0.8
26 1.00 1.00 1.00 1.00 1.00 1.00 F 1 1 1 1 1 1
27 1.00 1.00 1.00 1.00 1.00 1.00 M 1 1 1 1 1 1
28 1.00 1.00 1.00 1.00 1.00 1.00 M 1 1 1 1 1 1
29 1.00 1.00 1.00 1.00 1.00 1.00 M 1 1 1 1 1 1
30 1.00 0.67 0.33 1.00 0.67 0.73 F 1 1 0 1 1 0.8
31 1.00 0.67 1.00 1.00 1.00 0.93 F 1 1 1 1 1 1
32 1.00 1.00 1.00 1.00 1.00 1.00 M 1 1 1 1 1 1
33 1.00 1.00 1.00 1.00 1.00 1.00 F 1 1 1 1 1 1
34 1.00 1.00 1.00 1.00 1.00 1.00 F 1 1 1 1 1 1

Average: 0.93 0.94 0.90 0.94 0.89 0.92 Sum: 33 34 31 33 33 32.8
Accuracy: 0.97 1.00 0.91 0.97 0.97 0.96

Tables5and6show the accuracy of the classification models for alert and drowsy
participants, respectively. Each participant had three randomly selected segments in the
test set. The classification accuracy of these segments is marked with blue. If at least
two out of three of these segments have a correctly classified sex (accuracy 0.67 or 1.00),
the participant is marked as correctly classified in the right, green part of the table. The
average classification accuracy was calculated for each participant and each run of the
methodology. The average classification accuracy of the segments (marked in blue) was
93% (alert participants) and 92% (drowsy participants), while the average classification
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accuracy of the participants (marked in green) was 97% (alert participants) and 96% (drowsy
participants). The classification accuracy with LOSOCV was 82%.

4. Discussion

Splitting the dataset into two subsets, male and female, resulted in a significant
improvement in drowsiness detection (confirmed with Mann–Whitney U test). After adding
sex as a feature to the dataset, drowsiness detection was only incrementally improved, but
splitting into two sex-dependent datasets yielded a 3% and 7% improvement for male and
female drivers, respectively. Precision and recall were higher for alert and drowsy states
for both male and female subsets. Interestingly, precision and recall were higher for female
drivers than for male drivers. This increase in prediction accuracy, precision, and recall for
female drivers suggests differential changes in EEG activity associated with drowsiness
compared to male drivers.

Theoretically, approaches using sex as a feature and manual split of the dataset could
have the same accuracy. The reason why this is not the case could be the relatively high
dimensionality of the dataset and the relatively small number of examples in the dataset.
For this reason, the algorithm was unable to optimize the hyperplane to artificially separate
the data based on the sex feature.

A recent review of EEG signal features and their application in driver drowsiness
detection systems summarized 39 papers, none of which used participant’s sex as a fea-
ture [13]. Based on our results, it is reasonable to assume that the model accuracy presented
in many of these papers could be further increased by using sex as a feature or by splitting
the dataset into male and female subsets.

For these results to be applicable to all datasets, a high-accuracy sex classifier is needed.
The average classification accuracy of the segment’s sex (blue markers in Tables5and6) is
93% and 92% for alert and drowsy drivers, respectively. On average, the classifiers correctly
classify 97% of the alert participants and 96% of the drowsy participants (green markers in
Tables5and6). When majority voting is applied to each participant across all five runs, the
accuracy of both classifiers is 100%.

Other studies with high accuracy of sex classification models based on EEG were those
of Kaur et al. [38] and Kaushik et al. [39]. Their classification accuracy was 96.7% and 97.5%,
respectively. The experimental design was the same in both papers, participants were
measured in a relaxed resting position with their eyes closed. In both works, the discrete
wavelet transform was used to obtain the frequency-domain features. Their final classifiers
were based only on these frequency-domain features. In comparison, our participants were
measured while driving, which is a complex mental activity. Kaur et al. achieved their
accuracy with the usage of LOSOCV on the 60 participants. Their high accuracy suggests
that a higher number of participants could increase our LOSOCV closer to the segments
split based accuracy.

Our previous work showed that frequency-domain features and RQA features differ
significantly between alert male and female drivers [26]. Similar statistical results were
found when brain activity was analyzed between male and female drowsy drivers. Female
drowsy drivers showed significantly higher relative beta power in all regions and signif-
icantly higher relative alpha power in all regions except the Cz electrode. Male drowsy
drivers showed significantly higher relative delta power in all regions and relative theta
power in the occipital region. On the other hand, relative gamma power showed a differ-
ent pattern between male and female drowsy drivers. In female drowsy drivers, relative
gamma power was significantly higher in the occipital region, whereas in male drowsy
drivers, relative gamma power was higher in the frontal region. Furthermore, the results of
this paper showed that the features in the frequency domain are more correlated in males
than in females during both alert and drowsy sessions.

In the current work, Figure2shows the difference between the average feature value
for all male and all female drowsy drivers for two RQA features with the smallest p-values
(Vmax in the OR region and Lmax in the Pz channel) and two frequency-domain features
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(beta in the OR region and the OL region). Figure3shows a high correlation (0.79) between
the Det feature from the FR region and the Lam feature from the Cz channel for male
drowsy drivers. The right part of Figure3shows the same features for female drowsy
drivers, which are only weakly correlated (0.37). These differences in the correlation of the
features are the main reason for their use as features.
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Figure 3. Left: highly correlated (0.79) determinism (Det) from the FR region and laminarity (Lam)
from the Cz channel for male drivers; right: weakly correlated (0.37) determinism (Det) from the FR
region and laminarity (Lam) from the Cz channel for female drivers. The Y-axis shows the values
of the observed features. The bold line is the mean of the feature, and the filled area represents the
standard deviation.

It should be noted that, although our dataset consisted of frequency-domain features,
our feature selection method filtered out all the frequency-domain features for sex clas-
sification. The final feature sets for the sex classification model thus consisted of only
RQA features and correlation features. Since RQA features discriminate male and female
drivers better than frequency-domain features in our work, it is reasonable to assume that
the studies (Kaur et al. [38] and Kaushik et al. [39]) reporting high accuracy of the sex
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classification models would report even higher results with the inclusion of RQA features,
but further research should be conducted to confirm this assumption.

Our system is based on the 10 s epochs with 5 s overlaps between them so the
application in the real-world scenario could make a decision every 5 s. Classifiers make
their decisions in less than a second, which means that if epochs would have a step of one
second instead of five, the system would still be able to make decisions on time.

There are also some drawbacks to this work. One is the not very large dataset with
34 participants in 68 recording sessions. This results in a lower LOSOCV (82%) and the
increase in the number of participants would increase accuracy. Another drawback is the
exclusive use of binary drowsiness classification. In real-world applications, at least three
levels of drowsiness are usually targeted [39,40].

For future work, the number of participants and the number of features considered
should be increased. For example, an interesting point would be to observe driving
performance data (e.g., line crossings, distance from an ideal position on the road) based
on participants’ sex and EEG features. Since our data suggest functional differences
between males and females during drowsy driving, the next step would be to investigate
whether these differences are related to driving performance. Investigating the relation
between driving performance and EEG features could provide insight into how people
drive and explain potential differences. The underlying mechanisms related to driving
would therefore provide a more accurate model for driving safety systems. Another
interesting topic for future work is to investigate the influence of driver’s sex as a feature
on deep learning models that have lately been used extensively and are showing promising
results [40]. In addition, combining our findings (sex as a feature and RQA features as good
drowsiness predictors) with decreasing the number of electrodes used [41] could lead to a
reliable system that is also easy to implement in practice. Such a system’s accuracy could
also benefit from the usage of blink-related features derived from EEG [42].

5. Conclusions

This research has shown that including the information about driver’s sex increases
the accuracy of drowsiness detection. Furthermore, a reliable sex classifier based on EEG
signals was developed. Although it is hard to implement exactly the same system in a
real-time environment, due to the high number of electrodes, these important findings may
benefit all other systems that are less intrusive simply by including sex as a feature in the
existing systems.

The drowsiness detection model for drivers is usually based on the EEG features and
without sex as a feature. After adding sex as an additional feature in the dataset, only
incremental improvements in drowsiness detection accuracy were achieved. With the
further step of manually splitting the dataset into male and female subsets, the drowsiness
detection model accuracy increased by 3% and 7% for male and female datasets, respectively.
We consider these results relevant to a variety of drowsiness detection systems currently
being developed in the field.

The sex classification model based on EEG features achieved high accuracy. All
participants were correctly classified after applying majority voting to the results of all five
runs. Correlations between features used as features scored high on the feature selection
list, suggesting that correlations between features from different brain regions/channels
should be used more frequently as features.
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Abstract: Gender differences in traffic are generally analyzed through the number of accidents reported to the police. Our 
research aims to observe gender differences in electroencephalographical signals (EEG) while participants are driving. Time-
frequency domain features and recurrence quantification analysis (RQA) features are calculated in order to analyze the 
differences. To compare male and female drivers, we used Mann–Whitney U test and compared correlations between features 
and brain regions. Female drivers showed significantly higher beta relative power in the occipital right region and significantly 
higher alpha relative power in the frontal regions, while male drivers showed significantly higher theta relative power in all 
regions except in the front right region. Most RQA features show a significant difference between male and female drivers. 
Also, male drivers showed significantly higher correlations between the RQA features, especially between different brain 
regions. These results could reflect the differences in the information processing strategies of male and female drivers, e.g. 
they tend to focus on different information when performing the task. That could account for reported gender differences in 
the number of traffic accidents and traffic behavior. 
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1. Introduction 

 
Gender differences in traffic are generally analyzed 

through the number of accidents reported to the police 
[1]. In Ireland, in 2001, it was ten times more likely for 
a male driver to be killed in an accident than for a 
female driver [2]. Although the number of female 
drivers is still increasing, this difference in the number 
of accidents is still large [3]. The argument used 
against gender difference in driving performance is 
that male drivers drive more often and more kilometers 
[4], while other research concludes that even with 
taking that into account, there are still more accidents 
involving male drivers [5].  

Behavioral and neurophysiological differences 
between genders should also be examined. 
International Transportation Forum reports that, in 
2018, male drivers still run higher risks while driving 
[6]. Another indirect reason for this kind of gender 
difference is that spatial orientation tasks are harder for 
women [7], which makes them more careful in traffic. 
Additionally, other researchers concluded that female 
drivers are involved in accidents due to errors of 
perceptual nature and judgment error [8].  

Gender differences based on the traffic statistics 
[2], [3], [5], [6] and from experiments while 
participants performing simple tasks [7], [9]–[12] are 
obvious. With our research, we aim to observe gender 
differences in electroencephalographical signals 
(EEG) while participants perform a complex task – 
drive a car, in order to provide a deeper understanding 
of differences between genders while driving, and in 
general. 

2. Methodology 
 
2.1. Experiment design 

 
In our study, we used a research-grade EEG 

recorder with 32 channels for recording signals from 
14 healthy participants (seven males and seven 
females) during a driving simulation. Although we 
used 32-channel EEG, we wanted to describe 
dependencies and differences between certain brain 
regions – front left (FL), front right (FR), occipital left 
(OL), and occipital right (OR) regions. We calculated 
the mean value for each feature calculated from five 
electrodes in that region (shown in Table 1). In 
addition to channels from these four regions, we also 
used Oz, Pz and Cz channels in our analysis. 

Simulation scenario was shown on the screen. 
Steering the car was done using a professional steering 
wheel joystick. All participants were instructed to 
drive following traffic regulations. Male participants 
were 27.14 years old on average with a standard 
deviation of 2.94 years, while female participants were 
26.0 years old on average with a standard deviation of 
3.66 years. The driving scenario was the same for all 

Table 1. Electrodes in brain region 

Region Electrodes 
Front left (FL) F7, F3, FC5, FC1, T7 

Front right (FR) F8, F4, FC6, FC2, T8 

Occipital left (OL) O1, P7, P3, CP5, CP1 

Occipital right (OR) O2, P4, P8, CP6, CP2 
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participants and consisted of driving on both state and 
highway roads, and in an urban city environment, for 
around 40 minutes. The recording sessions were held 
in the afternoon.  

EEG features were calculated based on 10 seconds 
epochs with five seconds of overlap between epochs. 
To represent differences in EEG features between male 
and female drivers, we averaged the values of each 
feature in each epoch for all male and female drivers, 
respectively, thus constructing time-series of each 
feature for both genders.  

For each feature, we calculated the Mann–Whitney 
U test between the time-series of both genders, with the 
usage of α0 = 0.001. Since we repeated our test 105 
times, we also used Bonferroni correction to reduce the 
chances for type I error, which gave us α=9.26*10-6. 
Also, the correlation for the time-series of each feature 
between the two genders was calculated and compared. 

 
2.2. Filtering and EEG features 

 
The first step of preprocessing was to filter raw 

EEG signals in order to remove unwanted artifacts 
from the signal. For filtering, we used a bandpass filter 
from 0.5 Hz to 40 Hz. In this way, we filtered out line 
noise (50 Hz). Independent component analysis (ICA) 
was also used for removing artifacts like eye 
movements. 

We calculated basic time-frequency domain 
features: relative power of alpha (8-12 Hz), beta (12-
30 Hz), theta (4-8 Hz), delta (0.5-4 Hz) and gamma 
(30-50 Hz) frequencies. They were calculated with the 
usage of the Thomson multitaper method [13] for 
obtaining power spectral density. We also used 
recurrence quantification analysis (RQA) features: 
determinism (Det), laminarity (Lam), recurrence rate 
(RR), trapped time (TT), determinism divided by 
recurrence rate (Det/RR), longest diagonal (Lmax), 
longest vertical line (Vmax), average diagonal line 
length (Adll), divergence (Div) and entropy (Ent). 
RQA features were calculated from the recurrence plot 
(RP) of the signal. RP is a 2D representation of the 
phase space trajectory of the signal [14]. It is a matrix 
of dimensions N x N, where N is the length of the 
signal. Position (i, j) in the matrix is marked with one 
if i-th and j-th point in the signal are close to each other.  

The total number of features extracted was 15 per 
channel/region. We used three channels and four 
regions, which gave us a total of 105 features. 

3. Results 
 
Although we used the conservative α0 = 0.001 with 

Bonferroni correction, we still got 93 features with a p 
value smaller than α. Table 2 shows p values for all 
features. Among 12 features that have p value larger 
than α, eight are from the occipital regions (six from 
the Oz channel); 10 of them are from Oz, Pz or Cz 
channels; and only one is from the frontal regions of 
the brain. Among 50 features with the smallest p 
values, there are mostly RQA features, with a few 
exceptions – five relative beta powers, one relative 

alpha power, and one relative theta power. Among the 
first nine features with equal (and smallest) p value, 
four of them are Lam and three of them are RR. Figure 
1 shows two RQA features with the smallest p values 
and two time-frequency domain features with the 
smallest p values. We can see that relative beta power 
is higher for female drivers than for male drivers on the 
Pz channel and in the OR region, which is also true for 
all other channels and regions. Female drivers also 
have significantly larger values for relative alpha 
power in the FR region, FL region and on the Cz 
channel, while all other channels and regions have 
similar values. Male drivers have significantly larger 
values for relative theta power in all regions, except on 
the Oz channel and in the FR region. Male drivers have 
higher values for the RR on all channels and in all 
regions, except for Cz, where female drivers have 
higher values (RR on the Pz channel shown in Figure 
1).  

Figure 2 shows all correlations for male and female 
drivers. Female drivers have a lot more white color 
present in Figure 2, which represents weak correlations 
(correlation between -0.4 and 0.4). Male drivers, in 
general, show much stronger correlations between 
different features than female drivers, especially 
between different regions of the brain. Even in cases 
where female drivers show some correlations between 
different channels and regions of the brain, male 
drivers, in general, have stronger correlations on these 
same channels and in the same regions. Figure 3 shows 
an example of a strong correlation between Det in the 
FR region and Lam in the FL region for male drivers, 
together with a weak correlation of the same features 
for female drivers. 

4. Discussion 
 
Brain electrical activity, as assessed by relative 

power and RQA features, was significantly different 
between male and female drivers. Female drivers 
showed significantly higher beta relative power in the 
OR region and significantly higher alpha relative 
power in the frontal regions, while male drivers 
showed significantly higher theta relative power in all 
regions, except in the FR region. In addition, male 
drivers showed significantly higher correlations 
between the RQA features. 

The higher alpha and beta relative power reported 
for women in other studies [10], [15] was confirmed 
by the present results. In addition, observed relative 
alpha power in our sample was the largest for the FR 
and FL regions, and Cz channel. Obtained results are 
in line with an fMRI study which found that females 
showed activation in frontal and parietal regions as 
they performed the spatial-cognition performance task, 
while men showed distinct activation of the left 
hippocampus [16]. Furthermore, the absence of a 
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reduction in relative alpha power has been related to 
information processing differences between men and 
women in spatial tasks [10]. 

Our results showed a higher contribution of theta 
relative power only in men. Increased relative theta 
power has been related to more active task-related 
processing [17]–[21]. Observed theta power was the 
largest for the FL region and Cz channel, which is in 
line with the previous results [11]. 

Neuroanatomical studies have shown that the 
hippocampus, the parietal lobes, and the right 
prefrontal areas are activated by visuospatial working 
memory tasks and are implicated in complex 
navigation [22], [23]. Also, allocentric or world-
centered representation of the environment has been 
linked to the functioning of the hippocampus, while the 
posterior parietal cortex is involved in egocentric or 
body-centered spatial cognition [24]. Therefore, 

Table 2. p values for all features 

Feature p value Feature p value Feature p value Feature p value 

 Pz_RR 1.15E-89  Pz_Det/RR 3.42E-89  Oz_Lam 3.04E-72  Cz_Adll 8.09E-25 
 Pz_Beta 1.15E-89  OR_Det 5.46E-89  OR_Theta 6.71E-72  Pz_Delta 1.67E-23 
 FL_Lam 1.15E-89  FL_Det/RR 1.42E-88  Cz_Theta 2.52E-70  Oz_Det 2.21E-23 
 Pz_Lam 1.15E-89  OL_Adll 1.90E-88  Cz_Alpha 1.22E-69  Oz_Alpha 5.45E-23 
 OL_Lmax 1.15E-89  Pz_Div 3.64E-88  FR_Beta 8.22E-69  Oz_Vmax 2.41E-21 
 OL_RR 1.15E-89  OR_Div 4.44E-88  Pz_Ent 1.33E-68  FL_Gamma 2.30E-17 
 OL_Lam 1.15E-89  OL_Ent 5.70E-88  Cz_Div 8.81E-68  FR_Div 8.22E-17 
 OR_RR 1.15E-89  FR_Vmax 5.87E-88  Cz_Delta 2.57E-65  FR_Gamma 4.93E-16 
 OR_Lam 1.15E-89  OL_Det/RR 8.22E-88  FR_Det 3.62E-64  FL_Delta 7.96E-15 
 FL_Vmax 1.16E-89  OR_Det/RR 8.49E-88  Pz_TT 9.11E-61  Oz_Theta 3.51E-08 
 OL_Div 1.16E-89  OL_TT 2.76E-87  FR_Adll 6.37E-59  Oz_Det/RR 6.42E-08 
 OR_Beta 1.17E-89  OR_Adll 4.95E-87  OR_Delta 1.56E-58  Oz_Delta 4.91E-06 
 FL_RR 1.18E-89  FL_Adll 1.37E-86  OL_Delta 1.15E-51  OL_Gamma 2.12E-04 
 FL_TT 1.19E-89  FL_Div 3.14E-86  FR_TT 2.93E-51  Oz_Div 1.03E-03 
 FL_Lmax 1.23E-89  Cz_Det/RR 6.43E-86  Cz_Lam 1.45E-50  OR_Gamma 2.21E-03 
 OR_Lmax 1.28E-89  OR_TT 1.42E-85  Oz_Lmax 4.43E-50  Oz_Beta 2.48E-03 
 OL_Det 1.29E-89  FL_Ent 6.69E-85  Cz_Lmax 7.31E-45  Oz_Ent 3.33E-03 
 OL_Beta 1.30E-89  OR_Ent 1.02E-84  FR_Delta 3.57E-42  Cz_Vmax 4.79E-03 
 Cz_Beta 1.33E-89  FL_Beta 1.49E-84  FL_Theta 5.45E-41  Oz_Gamma 4.92E-03 
 OL_Vmax 1.33E-89  Cz_RR 1.31E-82  Cz_Gamma 3.93E-38  Oz_Adll 1.00E-02 
 OR_Vmax 1.52E-89  Oz_RR 1.57E-82  FR_Det/RR 5.04E-34  Cz_TT 1.23E-02 
 FR_Lam 1.65E-89  FL_Alpha 8.39E-81  OR_Alpha 7.68E-34  Pz_Alpha 2.65E-01 
 FL_Det 1.74E-89  Pz_Theta 6.07E-80  OL_Alpha 2.72E-33  FR_Theta 5.86E-01 
 Pz_Det 2.02E-89  Pz_Vmax 1.27E-77  Oz_TT 8.58E-33  Cz_Ent 6.76E-01 
 FR_RR 2.27E-89  FR_Alpha 3.41E-76  Pz_Gamma 3.99E-28    
 FR_Lmax 2.37E-89  OL_Theta 4.12E-74  FR_Ent 4.71E-28    
 Pz_Lmax 3.15E-89  Pz_Adll 6.64E-73  Cz_Det 5.81E-27     

 

 
Fig. 1. Difference between male and female drivers: recurrence rate from Pz channel, laminarity (Lam) from FL region, 
relative alpha power from FR region and relative beta power from the Pz channel. Y-axis shows values of observed features. 
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observed differences between men and women in our 
sample could be related to different strategies used to 
perform the task, where men tend to focus more on the 
global-spatial information from the environment when 
performing the task, while women tend to use analytic 
information processing when performing the task [9].  

Analysis of correlations between features points to 
the similar behavior of two signals. Therefore, higher 
correlations between different channels and regions 
could indicate shared neuronal processes. In our 
results, male drivers showed significantly higher 
correlations between the RQA features with respect to 

female drivers. This could indicate stronger 
synchronization of neuronal activity for male drivers 
that are in line with the active task-related processing 
which has been reflected by increased relative theta 
power in men. 

RQA features are used to analyze non-linear 
relation between the recurrence of states x(i) in phase 
space [25]. They do not need assumptions about 
stationarity or length of signal and are not too sensitive 
to noise in the signal. These are all favorable 
characteristics for describing EEG signals, which are 
non-stationary and are often susceptible to noise [14]. 

 
 
Fig. 2. Correlations for males and females with color-coded values. White – correlation between -0.4 and 0.4, light green – 
correlation between 0.4 and 0.7, dark green – correlation between 0.7 and 1, light red – correlation between -0.4 and -0.7 and 
dark red – correlation between -0.7 and -1. TF represents time-frequency domain features and RQA represents features from 
reccurence quantification analysis. 

 

 
Fig. 3. On the left: highly correlated determinism (Det) from the FR region and laminarity (Lam) from the FL region for male 
drivers; on the right: weakly correlated determinism from the FR region and laminarity from the FL region for female drivers. 
Y-axis shows values of observed features. 
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The flaw of using RQA features is that they are harder 
to interpret.  

RR represents the density of recurrence points on 
the RP. Recurrence plot of white noise consists of 
many single dots, while RP of deterministic signal 
consists of many long diagonals. Det is the ratio of 
points forming diagonal lines with all points and can 
be interpreted as predictability of signal. Like Det, 
Lam is the ratio of points forming vertical lines and 
represents the number of laminar states in the 
dynamical system. Long vertical lines mean that the 
dynamical system has slow changes. TT is the mean 
length of vertical lines and indicates that changes of 
states are slow. Ent measures the complexity of the 
signal.  

Unfortunately, there are not many reliable studies 
including RQA features, especially related to gender 
differences. Therefore, it is hard to compare these 
features and results based on them directly with the 
existing studies about gender differences. Despite that, 
studies like ours are necessary for further expansion 
and acceptance of different kinds of features that show 
significant differences between the inspected groups. 

5. Conclusion 
 

The present results show that male and female 
drivers differ significantly in many ways in EEG 
features. Observed differences of the time-frequency 
domain features and RQA features, together with the 
strength of correlations between different features and 
brain regions, for male and female drivers, could 
reflect the differences in their information processing 
strategies during driving. Furthermore, these results 
could suggest that men and women tend to focus on 
different informations when driving. Therefore, 
observed results could account for reported gender 
differences in the number of traffic accidents and 
traffic behavior.  

This conclusion, with further research, may lead to 
improvements in a better understanding of gender 
differences in brain functions during different 
cognitive tasks and to a better understanding of brain 
functions in general. There is a large number of 
applications that could benefit from a better 
understanding of gender differences in brain functions 
(better understanding of inter-gender behavior in 
traffic; improved quality of disease detection; 
understanding of learning, memory, and emotions; and 
similar). 

In our further work, we plan to record more 
participants and implement more features, the ones that 
have already been used in studies related to gender 
differences in EEG signals, as well as the ones that 
have not yet been used in this field. With a larger 
number of features that can be related to existing 
studies, we hope that we will be able to provide better 
interpretations and explanations of differences 
between male and female drivers. At the same time, we 
would strive to lay the foundations for future studies 
that would analyze features which have not been 
inspected in the field of gender differences. 
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List of Abbreviations 

EEG Electroencephalogram 

MEG Magnetoencephalogram 

fMRI Functional magnetic resonance imaging 

MRI Magnetic resonance imaging 

CT Computational tomography 

NREM Non-rapid eye movement 

REM Rapid eye movement 

ECG Electrocardiogram 

EOG Electrooculogram 

EMG Electromyogram 

RIP Respiratory inductance plethysmography 

GSR Galvanic skin respons 

ST Skin temperature 

KSS Karolinska sleepiness scale 

SSS Stanford sleepiness scale 

SAFE Aircrew fatigue evaluation model 

SAFTE Sleep, activity, fatigue, and task effectiveness model 

PERCLOS Percentage of eyelid closure 

PPG Photoplethysmography 

HRV Heart rate variability 

HR Heart rate 

LF/HF Low frequency to high frequency bands power ratio 

SEM Slow eye movements 

sEMG surface EMG 

NIRS Near-infrared spectroscopy 

fNIRS Functional NIRS 

HbO Oxygenated hemoglobin 

EDR Electro dermal response 

PGR Psycho galvanic reflex 

SCR Skin conductance response 
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sEMG surface EMG 

FIR Finite impulse response 

IIR Infinite impulse response 

ICA Independent component analysis 

FFT Fast Fourier transform 

DFT Discrete Fourier transform  

PSD Power spectral density 

KNN K-nearest neighbors 

SVM Support vector machine 

DT Decision tree 

RF Random forest 

XGBoost Extreme gradient boosting 

EMO Evolutionary multicriteria optimization 

NSGA-II Non-dominated sorting genetic algorithm II 
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telekomunikacijskih ćelija iz vremenskih nizova mjerenih poziva" tvrtke HashCode d.o.o. i 

FER-a. 

Područje njegovog znanstvenog interesa obuhvaća obradbu i analizu vremenskih nizova te 

primjenu metoda umjetne inteligencije. Član je hrvatske sekcije IEEE-a. 


