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collaborations as well as philosophical and existential discussions, most notably on our

way to, during, and on our way back from sea trials. I would like to extend my sin-
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Abstract

Efficient mapping of an unknown large-scale marine area using a side-scan sonar on-

board an autonomous marine vehicle is often of great importance. It might also be

important to scan parts of an area in more detail and from more than one side. In

contrast to the standard offline static coverage problem solution for side-scan sonar

missions based on the overlapping all across-track sonar swaths in a lawnmower pat-

tern, several online sonar-data driven coverage path planning algorithms are proposed

in this thesis. The proposed algorithms provide a coverage solution based on local in-

formation gain computed from the side-scan sonar data during the mission execution,

which is then exploited for replanning. In addition, the proposed solution takes into

account the coverage path length/time to ensure equal information content about ar-

bitrarily defined interesting objects as in case of the standard lawnmower with much

less resources needed to complete the same mission.

One dynamical programming-based and three decision making-based coverage

path (re)planning algorithms are proposed herein. Their performance was thoroughly

examined in a grid-like coverage area cost map simulation over a whole range of cov-

erage mission parameters and randomly generated seafloor configurations to gain sta-

tistical metrics of their behavior. Also, their upper and lower performance bounds

are mathematically modelled w.r.t. some mission parameters, and were validated by

the thousands of simulation runs. Moreover, an existing realistic 3D simulation envi-

ronment was extended by the above-mentioned coverage path planners, mission con-

troller, and sonar data processing modules to gain further insights into the interplay of

coverage path planning, feasible path interpolation, vehicle dynamics and control.

Keywords: autonomous underwater vehicles, coverage path planning, sensor data-

driven coverage, side-scan sonar, image processing, anomaly detection, target detec-

tion, saliency



Planiranje putanje autonomnoga plovila zasnivano na

sonarskim podacima u svrhu potpunoga prekrivanja ve-

likih površina morskoga dna

Učinkovito mapiranje velikih nepoznatih područja morskoga dna korištenjem bočno

skenirajućeg sonara (engl. side-scan sonar) i autonomnoga pomorskog vozila je često

od velikog značaja. Takod̄er, često je bitno detaljnije snimiti zanimljive dijelove tog

područja i to s više od jedne strane. Predloženo je nekoliko online metoda prekri-

vanja područja zasnovanih na sonarskim podacima. Razvijene metode su pored̄ene

sa standardnim offline rješenjem problema prekrivanja sonarom, tzv. uzorkom kosil-

ice koji sve objekte neadaptivno snima sa obje strane bez obzira da li uopće postoje

ikakvi objekti na morskome dnu, i ako postoje da li su zanimljivi za trenutnu mis-

iju. Za razliku od toga, predloženi algoritmi nude rješenje problema (re)planiranja

prekrivanja područja zasnovano na sonarskim podacima u tijeku misije. Nadalje, oni

u dosta velikom području vrijednosti parametara misije nude jednako informativnu

snimku interesantnih objekata kao i neadaptivni pristup uz znatno skraćenje trajanja

misije/dužine putanje prekrivanja.

Jedan algoritam zasnovan na dinamičkom programiranju i tri algoritma zasnovana

na heurističkom donošenju odluka su predloženi u ovom radu. Njihove performanse

su detaljno ispitane na matričnoj mapi cijena prekrivanja i to za širok opseg vrijednosti

parametara misije i slučajno generarirane konfiguracije morskoga dna kako bi se do-

bio uvid u statistiku ponašanja navedenih algoritama. Takod̄er, njihove gornje i donje

granice performansi su matematički opisane u ovisnosti od parametara misije, te su va-

lidirane tisućama provedenih simulacija. Štoviše, postojeće realistično 3D simulacijsko

okruženje je prošireno sa gore navedenim planerima prekrivanja, kontrolerom misije, i

modulom obrade sonarske slike kako bi se stekao još i bolji uvid u med̄usobne utjecaje

modula planiranja putanje prekrivanja, interpolacije izvedivih putanja, te dinamike i

upravljanja vozilom.

Glavni cilj istraživanja ovog rada je bio razvoj vremenski učinkovitog algoritma

planiranja prekrivanja za autonomna podvodna vozila korištena za misije mapiranja

bočno skenirajućim sonarom sa posebnim naglaskom na dugotrajni rad, tj. velika

morska područja površine preko 1𝑘𝑚2.

Doktorski rad podijeljen je na osam poglavlja. Prvo poglavlje („1. Introduction“)

daje uvod u motivaciju istraživanja, definiciju problema koji se treba riješiti, te pregled

doprinosa teze i kratak opis sadržaja poglavlja.

Uvod u teoriju podsustava navigacije, vod̄enja i upravljanja kod autonomnih pod-



vodnih vozila uz poglavit osvrt na modelski prediktivno upravljanje dani su u drugom

poglavlju („2. Navigation, Guidance and Control of Marine Vehicles”). NGC sustav je

odgovoran za usmjeravanje pokretačkih sila i stabilizaciju vozila duž željene putanje.

Sustav NGC mora definirati putanju u stvarnom vremenu kako bi dosegao zadani

cilj i usmjerio vozilo duž željene putanje. Sustav za navod̄enje generira putanju za

postizanje cilja i željene naredbe za upravljanje vozilom kako bi se ostvarila putanja

u stvarnom vremenu. Sustav upravljanja vozilom prima naredbe za upravljanje od

sustava za navod̄enje i upravlja vozilom da slijedi željeni položaj bez obzira na sve

smetnje. Navigacija, navod̄enje i kontrola autonomnih plovila izazovan je zadatak,

uglavnom zbog sprege izmed̄u stupnjeva slobode, hidrodinamičkih učinaka i vrlo

nepredvidivih utjecaja na okoliš. Trošak rada na moru i postavljanja za različite tipove

autonomnih pomorskih vozila je visok, kao i rizik od gubitka vozila tijekom rada. Kao

posljedica toga, potrebni su dobri matematički modeli za ispravno testiranje i simu-

laciju NGC sustava prije. Modeliranje senzora i vanjskih poremećaja mora ispravno

približiti izazovnu i stohastičku prirodu podvodnog okruženja.

Pokazalo se da modelsko prediktivno upravljanje (MPC) ima dobre performanse

kada se koristi za planiranje kretanja podaktuiranog autonomnog pomorskog vozila.

Njegova glavna prednost kao metode planiranja gibanja je da generira kinematički (ili

čak dinamički, ovisno o modelu koji se koristi) izvedive putanje, za koje optimizira up-

ravljački signal(e) na takav način da dana ograničenja stanja sustava i upravljanja su

upoznati. Ova metoda uzima u obzir model, troškovnu funkciju i ograničenja tijekom

procesa optimizacije upravljačkog signala, za razliku od drugih metoda kao što su PID

i LCF kontrola, koje se ne bave eksplicitno ograničenjima, te ih zadovoljavaju even-

tualnim zasićenjem generiranog upravljačkog signala. Ovo a-posteriori zasićenje može

dovesti do značajnog pogoršanja performansi sustava, pa čak i nestabilnosti sustava u

nekim slučajevima.

Modularni MPC okvir za opću upotrebu razvijen je korištenjem softvera otvorenog

koda ACADO alata i integriran je s ROS-om. Ovisno o problemu upravljanja, model

sustava, ograničenja, funkcije cijene i parametri algoritma mogu se jednostavno mi-

jenjati. Implementacija MPC okvira u stvarnom vremenu postignuta je za problem

slijed̄enja linije koji je obrad̄en u ovom poglavlju. Rezultati simulacije i eksperimenta

pokazuju dobre performanse MPC regulatora u usporedbi s PID regulatorom. Glavna

prednost MPC nad PID regulacijom u ovoj perspektivi je njegova mogućnost da se

koristi kao opći okvir za optimizaciju regulacije.

Treće poglavlje ("3. Sonar Data-based Coverage Path Planning Algorithms") donosi

opis gore spomenutih algoritama prekrivanja baziranih na sonarskim podacima. Nji-

hove performanse su pored̄ene sa klasičnim uzorkom kosilice (LM) po pitanju trajanja
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misije/ukupne dužine putanje prekrivanja, ukupnog vremena (re)planiranja, te statis-

tičkim pokazateljima ponašanja algoritma za dane parametre misije. Misije praćenja

i istraživanja mora često uključuju kartiranje morskog dna temeljeno na sonaru. To

uključuje istraživanje biosfere, istraživanje podvodnih arheoloških nalazišta, pomorsku

sigurnost i mnoge druge primjene. Trenutačno se misije sonara za bočno skeniranje

izvode pomoću tzv. towfisha, korištenjem daljinski upravljanih ronilica (ROV), ili au-

tonomnih podvodnih vozila (AUV). Pokretanje privezane teglice s broda zahtijeva an-

gažiranje broda i njegove posade: operatera towfisha, operatera bočnog skeniranja i

naravno stručnjaka u znanstvenom području za koje se provodi istraživanje. Stoga,

bilo bi mnogo praktičnije i jeftinije postaviti AUV i pustiti ga da samostalno skenira

odred̄eno područje. Trebalo bi prikupiti više informacija o dijelovima područja

pokrivenosti koje smatra zanimljivim za trenutnu istraživačku misiju i podatke općeg

istraživanja niže rezolucije o drugim dijelovima područja.

Sljedeći korak prema gore navedenom cilju istraživanja bio je dizajn algoritma za

rješavanje problema online 2D pokrivenosti. Ideja je započeti misiju bez preklapanja

sonarnih opsega, tj. s LM trakama dvostruko širim od dometa sonara. Tijekom misije,

u slučaju da algoritam detektira nešto zanimljivo u traci LM kojom se trenutno prolazi,

algoritam za planiranje staze pokrivanja ponovno planira ostatak misije kako bi sonifi-

cirao te zanimljive objekte i sa suprotne strane, prikupljajući tako više informacija o

morfologiji od zanimljivih objekata.

Glavni doprinosi predloženih algoritama su: (1) CPP algoritmi zasnovani na di-

namičkom programiranju i heuristici zasnovani na online bočnom skeniranju sonara

za nepoznate terene koji vjerojatno sadrže relativno malo zanimljivih dijelova. Algo-

ritam pokriva područje u najboljem slučaju s dvostruko kraćim putem pokrivenosti

od klasičnog manevra pokrivenosti LM pokrivenosti statičkim statičkim preklapanjem

svih opsega sonara (odavde skraćeno kao metoda CL-CPP), (2) analitičke gornje i donje

granice performansi gore spomenutih CPP algoritama, potvrd̄enih opsežnim simulaci-

jama varijacija parametara misije, (3) statistička analiza performansi predloženih CPP

algoritama u odnosu neprilagodljivi LM manevar pokrivenosti sa statičkim prekla-

panjem svih opsega sonara ( CL-CPP metoda), i (4) metodologija za približan odabir

parametara misije istraživanja na temelju topologije područja pokrivenosti i očekivane

vjerojatnosti nailaska na zanimljive objekata u datom području. Ovo može biti od ve-

like koristi inženjerima sustava koji provode istraživačke misije s pomorskim vozilom.

Četvrto poglavlje ("4. Object detection in side-scan sonar imagery") daje pregled

metoda detekcije anomalija, tj. generički definiranih zanimljivih objekata na morskome

dnu koji se po bilo čemu razlikuju od okoline koja je većinom samo ravno pješčano dno.

S porastom sonarskih sustava visoke rezolucije dolazi i potreba za pohranjivanjem
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i/ili obradom ogromnih količina podataka. Slanje tih podataka u pokretu na neku

centraliziranu zemaljsku stanicu na obradu općenito nije nepremostiv problem za ze-

maljska i zračna vozila budući da je WiFi veza moguća. U podvodnom okruženju,

med̄utim, komunikacija je uvelike ograničena činjenicom da su elektromagnetski val-

ovi jako prigušeni čak i na malim udaljenostima, dok u isto vrijeme akustične ko-

munikacije imaju tako nisku propusnost da je slanje ogromnih količina sonarskih po-

dataka u letu još uvijek nemoguće. Zbog toga se svi podaci sonara pohranjuju na

ugrad̄eni tvrdi ili solid state disk kada se koriste AUV-ovi, što omogućuje samo offline

obradu sonarskih slika, bilo od strane ljudskog operatera ili nekog algoritma za obradu

slike. U oba slučaja podaci se ne mogu online analizirati tijekom misije, tako da ljudski

operater ili algoritam (ponovnog) planiranja misije ne mogu detaljnije pregledati neke

zanimljive objekte čim se pojave u podacima sonara.

Uzimajući u obzir pingove bočnog skeniranja naslagane zajedno (u takozvanom

"vodopadnom prikazu") kao sliku u sivim tonovima, u ovom su poglavlju implemen-

tirane i testirane različite metode otkrivanja slike anomalija/istaknutosti. Ove metode,

osim detekcije anomalija u podacima sonara bočnog skeniranja i vidljivosti temeljene

na grafikonu (GBVS), gotovo su se isključivo koristile za prirodne slike, metoda is-

taknutosti temeljena na kontrastu, Itti-Kochova istaknutost i Simpsal istaknutost kao

pojednostavljenje Itti-Koch metode. Gore spomenute metode su prvo uspored̄ivane u

Matlabu na skupu od 1500 skupa podataka simuliranih slika sonara bočnog skeniranja

koji sadrže jedan i više objekata različitih veličina i na različitim položajima. Metoda

otkrivanja anomalija prethodno primijenjena na sonarne slike imala je najbolju pre-

ciznost i performanse prisjećanja na skupu podataka simuliranih sonarskih slika. Te

su performanse zatim potvrd̄ene na stvarnom skupu podataka od 500 slika sonara

bočnog skeniranja, a i performanse preciznosti prisjećanja su bile zadovoljavajuće.

Peto poglavlje ("5. Simulation environment for coverage planning algorithms vali-

dation") opisuje razvijene module integrirane u postojeći realistični 3D simulator pod-

vodnih autonomnih vozila kako bi se mogli validirati simulacijski rezultati zasno-

vani na matričnim mapama cijena prekrivanja, te analizirati med̄usobni utjecaji mod-

ula za planiranje prekrivanja, generiranje izvedivih trajektorija, upravljanje i obradu

sonarskih podataka.

Algoritmi temeljeni na sonarnim podacima, naime CL-CPP, BA-CPP i OPTA-CPP,

spomenuti u poglavlju 3, implementirani su u okviru ROS simulacijskog okruženja

zajedno s algoritmima za detekciju anomalija sonara bočnog skeniranja spomenutim

u poglavlju 4. Ovo poglavlje opisuje integraciju ovih modula s UUV simulatorom

otvorenog koda koji je korišten kao osnova za validacijsko okruženje simulacije. Opisuje

se UUV simulator, implementacija gore spomenutih CPP algoritama kao i modul kon-
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trolera misije pokrivenosti. Dati su primjeri misija pokrivenosti korištenjem CL-CPP i

OPTA-CPP algoritama zajedno s usporedbom performansi.

Autonomna vozila koja su korištena za eksperimentalne validacije nekih od gore

navedenih podsustava opisana su u šestom poglavlju ("6. Systems"). Autonomna

pomorska vozila igraju važnu ulogu u današnjim misijama kartiranja i istraživanja

morskog dna i ovaj će se trend samo povećati u nadolazećim godinama. Ovo poglavlje

donosi tehničke opise različitih vozila koja se koriste u studijama slučaja iz stvarnog

svijeta predstavljenim u posljednjem poglavlju ove teze. Ova vozila su: LAUV Lupis

koje je naš istraživački laboratorij nabavio od tvrtke OceanScan; ASV PlaDyBath, pot-

puno razvijen od strane LABUST-a u okviru projekta BLUEMED; ASV Korkyra, razvi-

jen u okviru projekta HEKTOR, kao značajno veća verzija ASV PlaDyBath; i hibridni

ROV/AUV Europe, koji su razvili naši kolege iz CNR-a, Genova.

Sedmo poglavlje ("7. Case studies") donosi pet eksperimentalnih studija vezanih za

upravljanje pomorskim vozilima u cilju praćenja linijske putanje, lokalizaciju, snimanje

područja nepravilnog oblika, snimanje podvodnih arheoloških nalazišta s više vrsta

vozila i integracijaraznorodnih podataka, te validacija performansi algoritama obrade

sonarskih slika sa hardverom u petlji.

U ovom su poglavlju predstavljene eksperimentalne studije slučaja različitih pod-

sustava, tj. kontrolera za modelski prediktivno praćenje linije, modula za podvodnu

lokalizaciju temeljenog na proširenom Kalmanovom filtru, i modula za obradu sonarnih

slika bočnog skeniranja sa hardverom u petlji. Takod̄er su opisani rezultati opsežnih

ispitivanja s autonomnim pomorskim vozilima koja se koriste u limnološkim i podvod-

nim arheološkim primjenama. Iskustvo autonomnog operatera stečeno tijekom ovih

ispitivanja imalo je značajan utjecaj na dizajn predloženih algoritama za planiranje

staze pokrivenosti, uključujući mnoga ograničenja upotrebe sonara za bočno skeni-

ranje kao senzora za mapiranje. Takod̄er je rezultiralo značajnim skupom podataka -

slikama sonara bočnog skeniranja koji se kasnije koristio za provjeru performansi al-

goritama za obradu sonarske slike.

Temeljem upravljačkih algoritama i metodologija za validaciju algoritama razvi-

jenih unutar doktorata izdvojena su tri znanstvena doprinosa:

1.Algoritam planiranja prekrivanja velikih površina morskoga dna korištenjem au-

tonomnoga plovila zasnovan na sonarskim podacima.

2.Simulacijsko okruženje za testiranje i ocjenjivanje učinkovitosti algoritma plani-

ranja prekrivanja zasnovanog na sonarskim podacima.

3.Mjere za odre d̄ivanje učinkovitosti algoritma planiranja prekrivanja velikih površina

morskoga dna korištenjem autonomnoga plovila zasnovanog na sonarskim po-

dacima.
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Doktorski rad završava pregledom hipoteza i gore navedenih doprinosa te sažetkom

najvažnijih točaka disertacije. Na temelju prezentiranog sadržaja ponovno se postavl-

jaju te detaljnije razrad̄uju hipoteze i kao dokaz inovativnosti istraživanja nudi se popis

publiciranih znanstvenih radova.

Ključne riječi: autonomna podvodna vozila, planiranje putanje prekrivanja, prekri-

vanje bazirano na senzorskim podacima, bočno-skenirajući sonar, procesiranje sonarskih

slika, detekcija anomalija, detekcija meta, detekcija istaknutih objekata, modelski predik-

tivno upravljanje, podvodna lokalizacija
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Chapter 1

Introduction

1.1 Motivation

Knowledge of the Earth and its evolving environment is proving increasingly crucial.

Scientific, economic, political, and social decisions all depend at some time or another

on this knowledge, and we like to think that we know all there is to know about our

planet. One may be justified in doing so today, in the 21st century, by looking back at

those maps with white unexplored regions that were still prevalent at the beginning

of the 20th century. Yet, in many respects, we know more about the solid surface of

other planets than about our own Earth. Rovers driving on Mars for years on end,

landers on far-away Titan, and now the international missions to the Moon cannot

mask the fact that ocean bottom landscapes only a few kilometers from our shores are

still completely unknown [1].

More than half of the world’s population live within 100 km of the sea. Thirteen

of the 15 largest cities in the world are now located on or near the coast. The effects

of denser population and accelerating climate change include the disappearance of

ecosystems, coastal erosion, over-fishing, marine pollution, and higher vulnerability

to marine disasters such as tsunami or volcanic activity. But the oceans cover more

than two-thirds of the Earth’s surface, and are not accessible to direct observation. It is

only in the last 20 to 30 years that technological advances have allowed us to discover

and map the Earth’s seafloor, mostly through acoustic remote sensing [1].

Marine monitoring and exploration missions often include side-scan sonar based

seafloor mapping. This includes the exploration of the biosphere, exploration of un-

derwater archaeological sites, marine safety, and many other applications. Currently,

side-scan sonar missions are executed either by a tethered towfish equipped with a

side-scan sonar or by using remotely operated vehicles (ROVs) or autonomous under-

water vehicles (AUVs). Deploying a tethered towfish from a boat requires hiring a
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boat and its crew: a towfish operator, a side-scan operator, and of course experts in the

scientific field for which the survey mission is being conducted.

Towfish missions are executed mostly in three phases. The first phase is a gen-

eral survey mission at higher altitudes, whose goal is to identify possibly informative

contents of the region being covered. In this phase, the boat tows a towfish in a lawn-

mower (LM) pattern to cover as much area as possible, without or with a low percent

of overlapping side-scan sonar swaths. The goal of the second phase is to get some

more detailed low altitude side-scan sonar images of some potentially interesting ar-

eas which are manually tagged within the first phase. This goal is achieved by using

side-scan sonar’s swaths overlaid to sonify interesting objects from more than one side.

This way much more morphological information about the interesting objects can be

extracted. The third and final phase includes deploying an ROV and/or an AUV at the

several carefully selected locations of interest, and observing these locations usually

with a high-resolution camera.

Using an AUV to perform side-scan sonar mapping during a mission that is a

crossover between the first two phases of towfish survey can greatly simplify the whole

mapping process, make it potentially significantly faster, cheaper in the long term, and

safer.

1.2 Problem definition

The problem that is addressed in this thesis can be defined as: In order to cover a given

unknown area of interest of dimensions 𝐴 × 𝐵[𝑚] with a given side-scan sonar at a

constant surge speed 𝑢, and a constant depth/altitude ℎ𝑟𝑒𝑓 , generate an initial Lawn-

mower (LM) coverage pattern of length 𝐿 and width 𝑊 = 2𝑤𝑠𝑠𝑠. During the mission

adapt the coverage path depending on the detection of mission-specific interesting ob-

jects in sonar data. Thus complete coverage hear means getting the data from all infor-

mative objects (by sonifying them from both sides) as in case of the overlap-all-sonar-

swaths LM pattern, while not necessarily sonifying uninteresting parts of the area from

both sides. This way, assuming a large-scale area of approximately flat seafloor and a

small percentage of that area covered by interesting objects, coverage path (or mission

duration) can be significantly reduced without information loss about the detected in-

teresting objects.
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1.3 Thesis Contributions and Overview

The research goal of this thesis is to develop an online side-scan sonar data-driven cov-

erage path planning (CPP) algorithm for monitoring and surveying large-scale (over

1𝑘𝑚2) seafloor regions by an AUV, which would be much more convenient and less

costly to deploy than a towfish. The main objective of the initial phase of this research

is to analyze path planning algorithms and coverage path planning algorithms used

for problems similar to the problem defined above, with special attention to their ap-

plications in marine robotics and side-scan sonar imaging.

The stated hypotheses are as follows:

1. An online dynamical programming-based coverage path planning algorithm can

significantly reduce mission duration of side-scan sonar survey missions in a given

large-scale area of the sea floor w.r.t. the mission duration of the usual overlap-all-

sonar-swaths lawnmower pattern coverage plan.

2. An online heuristic decision making-based coverage path planning algorithm

can significantly reduce the duration of survey missions, as well as mission (re)planning

time w.r.t. the dynamical programming-based coverage planning algorithm, without

loss in the quality of the final side-scan sonar imaging result.

3. It is possible to design a metric which would quantify performance of the above

described survey mission objective. This metric can then be used to compare different

coverage planning algorithms in terms of performance and robustness.

4. A reference scenario can be designed in order to validate the performance of the

developed coverage path planning algorithms in a realistic simulation environment

and in terms of the proposed performance metric.

One dynamical programming-based and three decision making-based coverage

path (re)planning algorithms are proposed in this thesis. Their performance was thor-

oughly examined in a grid-like coverage area cost map simulation over a whole range

of coverage mission parameters and randomly generated seafloor configurations to

gain statistical metrics of their behavior. Also, their upper and lower performance

bounds are mathematically modelled w.r.t. some mission parameters, and were val-

idated by the thousands of simulation runs. Moreover, an existing realistic 3D sim-

ulation environment was extended by the above-mentioned coverage path planners,

mission controller, and sonar data processing modules to gain further insights into the

interplay of coverage path planning, feasible path interpolation, vehicle dynamics and

control.

Therefore, scientific contributions of this thesis are summarized as follows:

1.An online sonar data-based coverage path planning algorithm for large-scale

3
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seabed exploration missions using autonomous marine vehicles.

2.Simulation framework for implementing, testing, and evaluating performance of

sonar data-based coverage planning algorithms.

3.Metrics for evaluating performance of sonar data-based coverage planning algo-

rithms used in large-scale underwater survey missions.

The thesis is organized as follows: an introduction to the theory of navigation,

guidance and control subsystems in autonomous underwater vehicles with a focus

on model predictive control is given in the second chapter ("2. Navigation, Guidance

and Control of Marine Vehicles"). The third chapter ("3. Sonar Data-based Cover-

age Path Planning Algorithms") provides a description of the aforementioned cover-

age algorithm based on sonar data. Their performance was compared with a classic

model of a lawnmower in terms of mission duration/total length of coverage path, to-

tal (re)planning time, and statistical indicators of algorithm behavior for given mission

parameters. The fourth chapter ("4. Object detection in side-scan sonar imagery") pro-

vides an overview of anomaly detection methods, i.e. generically defined interesting

objects on the seabed that differ in any way from the environment, which is mostly

just a flat sandy bottom. The fifth chapter ("5. Simulation environment for coverage

planning algorithms validation") describes the developed modules integrated into the

existing realistic 3D simulator of underwater autonomous vehicles in order to be able

to validate the simulation results based on the coverage price matrix maps, and to an-

alyze the mutual influences of the coverage planning modules, generation of feasible

trajectories, vehicle control and processing of sonar data. Autonomous vehicles that

were used for experimental validation of some of the aforementioned subsystems are

described in the sixth chapter ("6. Systems"). The seventh chapter ("7. Case studies")

presents five experimental studies related to the control of marine vehicles in order to

follow the linear path, localization, recording of irregularly shaped areas, recording of

underwater archaeological sites with multiple types of vehicles and integration of di-

verse data, and validation of the performance of sonar processing algorithms imagery

with hardware in loop. The doctoral thesis ends with the elaboration of the hypotheses

and contributions presented in the content of the doctoral thesis.
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Chapter 2

Navigation, Guidance and Control of

Marine Vehicles

2.1 Introduction

The navigation, guidance and control (NGC) system is responsible for directing the ac-

tuating forces and stabilizing the vehicle along the desired path. The NGC system, an

example of which is given in Fig.2.1, has to define the trajectory in real time (shown

as the blue "Path following controller" block in Fig.2.1) to reach the specified target

and steer the vehicle along the desired path (shown as the green "Low-level speed

controller" block in Fig.2.1). The guidance system generates the trajectory to achieve

the target and desired vehicle steering command to realize the trajectory in real time.

The vehicle control system, receives the steering commands from the guidance system

and steers the vehicle to follow the desired attitude in the presence of all disturbances

[2,3]. Section2.2is dedicated to introducing and testing the use of MPC for underac-

tuated marine vehicles. The navigation system estimates the instantaneous state of the

vehicle based on its model, current system output measurements, and previously esti-

mated state and is represented as the red block "System states estimator" in Fig.2.1. A

case study of AUV navigation improvement by sensor fusion, published by the author

of this thesis in [4] is given in Section7.3.

Navigation, guidance and control of marine vehicles is a challenging task, mainly

due to coupling between degrees of freedom (DoFs), hydrodynamic effects and highly

unpredictable environmental influences. Sea operation and deployment cost for dif-

ferent types of autonomous marine vehicles is high, and risk of vehicle loss during

untethered operation of Autonomous Underwater Vehicles (AUVs) is high. As a con-

sequence, good mathematical models are needed to properly test and simulate NGC

systems beforehand. Sensor and external disturbance modelling has to correctly ap-
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Figure 2.1: Block scheme of the entire AUV system. NGC subsystem is marked by colored
blocks.

proximate the harsh and stochastic nature of underwater environments [5]. Therefore,

before NGC development, the vehicle, from high-level kinematics down to thruster

mapping, is mathematically modelled providing basis for navigation and controller

tuning [3].

2.2 Model predictive motion planning

In this section a model predictive control (MPC) method is introduced as a mid-level

yaw rate controller for AUV exploratory missions at constant depth with a predefined

constant surge speed. MPC has advantage over the classical control methods because it

does not generate its current control signal(s) based solely on the previous value of the

state error vector w.r.t. the steady-state or reference state value(s). Instead, it also takes

into account the mathematical model of the system and based on it and the constraints

which are imposed on system states, it predicts the behavior of the system on some

prediction horizon of an arbitrary duration. This duration is of course limited by the

sampling period and computational power of vehicle’s onboard computer. When the

optimal control problem is solved on this prediction horizon, and the best solution

is chosen w.r.t. some cost function, only a portion of the optimized control signals is

applied to the system. Of course for a real-time control of a vehicle with relatively fast

dynamics this open-loop control is set to the duration of one sampling period, after

which the system states are again estimated and the negative feedback is closed. Parts

of this section were previously published by the author in [6–9]. The block scheme

showing the overall view of the system with MPC controller as the "Path following

controller" (in red) is given in Fig.2.2.
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Figure 2.2: Block scheme of the entire AUV system.

The rest of this section is organized as follows: a short introduction of model pre-

dictive control (MPC) general concepts and framework is given in Section2.2.1. An

overview of model predictive motion planning methods for ground vehicles as well

as marine vehicles is given in Section2.2.2. Conceptual discussion about the design

of an MPC framework which takes into account the exteroceptive sensor(s) data into

the process of path planning and path following is given in Section2.2.3. Kinematic

model of line following with constant disturbance that was used for MPC is presented

in Section2.2.4. Section2.2.5describes a linear MPC scheme for path following having

in mind that its input path is actually an output from a path planning module, more of

which is given in Chapter3. Tuning the MPC controller is a very important step in or-

der to optimize its control but also execution time performance. Extensive simulations

with MPC parameters variation and the metric used to evaluate MPC controller perfor-

mance are given in Section2.2.6. Experimental results which validated the simulation

results are presented in Section7.2.

2.2.1 MPC: A short introduction

Lets assume a following situation: some person is driving a car. The person knows

some part of the road (path) ahead on a finite horizon. Also, the person knows the

behavior of the car (mental model of the car), and thus decides which control actions

to take (accelerator, brakes, and steering) in order to follow the desired path on the

road. It is important to add that the driver in this situation makes decisions about

controls by looking both backwards in the mirrors (past errors), but also buy knowing

the desired path which needs to be followed and predicting the behavior of the car

in advance. The controls are applied at each time instant, while the whole process of
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Figure 2.3: Comparison of the way MPC and PID work [11].

prediction and control generation are repeated. This car analogy from [10] depicts the

main principles of MPC. In the classical control schemes, such as PIDs, the decisions

about which control action to take are based only on looking backwards in the mirrors

(past errors), while in MPC schemes they are based on looking both backwards but

also forward, thus predicting the behavior of the car. This comparison of MPC and

Proportional-Integral-Derivative (PID) control is graphically represented in Fig.2.3.

Model predictive control (MPC) can be described as repeated solving of the Opti-

mal Control Problem (OCP) on a finite time horizon 𝑇𝑝 in open loop, while taking into

account system dynamics and constraints imposed on the states and the controls . Op-

timization is executed in each sampling time instant 𝑡𝑖 = 𝑖𝑇𝑠, 𝑖 = 0, 1, 2, . . . , where 𝑇𝑠
is the sampling period. Estimated states at each time instant 𝑡𝑖 are used as the initial

conditions of the OCP. Even though the solution of the OCP are controls in the open

loop, an implicit feedback is made with these initial conditions of the OCP. This way,

the MPC is made more robust w.r.t. the measurement and model noise, but also dis-

turbances. When the optimized controls are acquired, only a part of the duration 𝑇𝑐

is applied to the system, and in the next sampling instant 𝑡𝑖+1 the whole procedure is

repeated. 𝑇𝑐 is the so-called control horizon, and it is most often set as 𝑇𝑐 = 𝑇𝑠. MPC

can be, generally speaking, applied for nonlinear and linear, continuous and discrete

systems, with hard and soft constraints [10].

The underlying concepts behind MPC are not novel. They include Hamilton-Jacobi-

Bellman theory of dynamic programming [12], the maximum principle of optimality,

and Kalman’s observation that optimality does not imply stability [13]. MPC has been

used since the 1970’s in the areas of oil refining, petrochemicals and chemicals, but
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also pulp and paper, food processing, aerospace and automotive industries, gas, util-

ity, furnaces, mining and metallurgy [10,14]. The clock frequencies of processors are

constantly increasing, thus enabling faster computation of the OCP even for complex

systems. Therefore, MPC has long been used in the fields of industrial, field, aerospace,

and underwater robotics.

The general mathematical formulation of the MPC problem goes as follows: Let us

consider stabilizing a time-invariant (non)linear system described by

ẋ(𝑡) = f(x(𝑡),u(𝑡)), x(0) = x0 (2.1)

w.r.t. the state and control constraints:

u(𝑡) ∈ U , ∀𝑡 ≥ 0 (2.2)

x(𝑡) ∈X , ∀𝑡 ≥ 0 (2.3)

The solution of this problem is a control signal computed as a solution of the optimal

control problem

min
u(·)

𝐽(x(𝑡𝑖),u(·)) (2.4)

w.r.t. the constraints

ẋ = f(x(𝜏),u(𝜏)), x(𝑡𝑖) = x(𝑡𝑖), (2.5)

u(𝜏) ∈ U , x(𝜏) ∈X , 𝜏 ∈ [𝑡𝑖, 𝑡𝑖 + 𝑇𝑝], (2.6)

x(𝑡𝑖 + 𝑇𝑝) ∈ E (2.7)

where E is called the terminal region, and (2.7) is called the terminal region constraint,

which enforces system stability. The bar above the state and control vector symbols in

(2.4)-(2.7) denotes prediction variables internal to the controller itself. This distinction

between the real system’s and its model’s variables is necessary because their values

will not be the same in the general case.

The cost function 𝐽 which is being minimized on the prediction horizon 𝑇𝑝 > 𝑇𝑠 ≥ 0
is usually given as

𝐽(x(𝑡𝑖),u(·)) :=
∫︁ 𝑡𝑖+𝑇𝑝

𝑡𝑖
𝐹 (x(𝜏),u(𝜏)) d𝜏 + 𝐸(x(𝑡𝑖 + 𝑇𝑝)), (2.8)

where function 𝐹 is called the stage cost or Lagrange term, and function 𝐸 is often

called the terminal cost or Mayer term. The terminal cost 𝐸, i.e. the terminal region

constraint (2.7), does not need to be included in the cost function. The mathematical

formulation given here lacks mathematical rigour. It is given to describe the general
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concepts of the MPC without going into details.

Since the OCP described by (2.4)-(2.8) has to be solved on-line, this implies that the

finite horizons have to be used. The shorter the prediction horizon is, the less com-

plex and time consuming it is to solve the given OCP. However, if the finite prediction

horizon is used, closed-loop control and system trajectories will differ from the pre-

dicted trajectories in open-loop, even if there is no model noise or measurement noise

present [15]. Also, infinitely repeated finite horizon optimization in the sense of the

receding horizon does not lead to the optimal solution on the infinite horizon [16]. A

comprehensive overview of the MPC’s stability analysis is given in [17].

2.2.2 MPC based motion planning

MPC-based motion planning on rough terrains

Planning mobile robot’s motion along the path from some starting location to the de-

sired goal location, while at the same time minimizing some cost e.g. roughness of the

traversed terrain, can be done by using some of the classical path planning algorithms

(Dijkstra, A* for known terrains, or D*, Field D*, D* Lite for unknown of partially

known terrains, etc.). The resulting path, going from the start to the goal, usually has

sharp turning points, since the above mentioned algorithms are grid-based. This way

of generating the path does not consider the dynamics of the vehicle, its kinematic

and/or kinetic model. Smoothing of these paths can lead to the loss of optimality,

and even worse, the vehicle may hit an obstacle, roll-over, or slip, while following the

smoothed path.

The success of the mission, i.e. vehicle traversing the rough terrain from the starting

to the goal location, can be guaranteed if the path planner is designed in such a way

that it gives the trajectory of the vehicle w.r.t the vehicle’s model and state and/or

control constraints (in the sense of avoiding obstacles, preventing slipping, and rolling-

over), and the controls needed to execute that trajectory. MPC seems like an intuitive

choice for tackling this problem.

One such MPC-based planner for mobile robots on known large-scale rough ter-

rains is presented in [18]. It uses the interpolated roughness values, i.e. roughness

function as the Lagrange term in the OCP, for locally planning the smoothest path.

Also, the interpolation of the roughness-to-go map is used as the Mayer term in the for-

mulated OCP. Roughness-to-go map represents a global planner along the smoothest

path from the edge of the prediction horizon to the goal position. Roughness-to-go

map has been calculated by using either the optimal Dijkstra algorithm, or the sub-

optimal DRoughness based Navigational Function (RbNF) algorithm. Since RbNF al-
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gorithm cannot cope with arbitrarily large obstacles in order to give a near-optimal

cost-to-go map, it was further improved in [19]. Wavefront Roughness based Naviga-

tional Function (WRbNF) algorithm presented in [19] is a near optimal cost-to-go map

and it can also be used for large scale rough terrains with an arbitrary number and

size of obstacles. The algorithm has an inherent parallel structure and the code can be

parallelized, so it can be significantly faster than the Dijkstra algorithm when an ade-

quate amount of computer resources is used. In [9], WRbNF algorithm was used as a

terminal cost term in the MPC-based path planner for mobile robots on rough terrains.

Another solution, given in [20], is to use D* algorithm as a global planner for path

planning on the unknown or partially known rough terrains. The D* cost is then used

as the terminal cost in the MPC, while using the interpolated roughness values for local

planning.

MPC-based motion planning in marine robotics

MPC has started being used in marine robotics field approximately from the 2000’s

onward. This is most probably due to the speed up of the computational power of

computers, as well as vehicle on-board microcontrollers.

MPC scheme for path planning in a dynamically changeable environment with ob-

stacles and sea currents is presented in [21]. Map of the environment is built using

forward-looking sonar data, and 𝐷* algorithm is used to generate waypoints, interpo-

lated by using B-splines, for MPC to follow. Sampling based model predictive control

(SBMPC) scheme with input sampling and obstacle avoidance is presented in [22].

MPC can be also used for safety motivated path planning, e.g. for ships at the open sea

with high waves, in order to minimize the possibility of capsizing due to roll and pitch

oscillations [23]. Strong currents have a great impact on energy consumption of the

AUVs. MPC approach using A* algorithm for computing the path along the weakest

current flows in the ocean in presented in [24]. A comprehensive overview of the MPC

framework for path planning schemes is given in [25].

Even with the use of path planning algorithms, there remains the issue of tracking

the path which was computed. This can pose a problem, especially in the case of

unfeasible sharp turns between consecutive waypoints along the path. Path tracking

is solved by MPC in a number of approaches. MPC scheme with a Shrinking horizon

model predictive control (SHMPC) is presented in [26]. This approach shrinks the

prediction horizon as the vehicle approaches the goal position, in order to relieve the

computation burden of optimization solver. To reduce the posibility of capsizing in

ship maneuvering, it is important to constrain roll and rudder turning rate, together

with canceling the disturbances caused by high waves. MPC has been used to tackle
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this problem in [27,28]. Piece-wise linear paths can be tracked very efficiently using

Line-of-Sight (LOS) approach, which was integrated into MPC framework in [29,30].

2.2.3 Informational gain guided MPC motion planning: A transition

from land to sea

In this subsection, we discuss two possible frameworks of the informational gain guided

MPC based motion planning for the AUV during sonar scanning missions.

Characteristic waypoint following

The first approach to informational gain guided MPC based motion planning for the

AUV is pretty straightforward, see Fig.2.4. It uses gathered sonar data to compute

informational gain values of the scanned sea floor, and uses a D*-like (near-) optimal

global path planner. This planner at its output gives a series of waypoints in the grid

map for the AUV to follow. Since these paths often contain many sharp turns which the

AUV cannot perform, it is necessary to smooth out the computed path, e.g. by using B-

spline basis functions. The problem which remains with this smoothing process is that,

in the presence of obstacles, the smoothed path can collide with them, even though the

original path’s waypoints perfectly avoid the obstacles.

After a global or local parametrization of the path with a smooth continuous func-

tion, MPC can be used for path following, as some sort of a local planner. Of course,

MPC with AUV’s kinematic model can be used for high-level control, giving the refe-

rence velocities to the low-level controllers, which in turn give forces and torques at

their output. Another option is to include both kinematic and dynamic models into

MPC, so that it directly optimizes forces and torques. The decision on which MPC

model to use depends mainly on the fact whether the optimization execution times are

still real-time.

Informational gain guided MPC

Another approach would be to integrate the cost-to-go values from the global planner

directly into the MPC optimization framework, see Fig.2.5. This can be done as in [9,

20], to use the global planner values as the terminal cost term 𝐸 in (2.8). It is also

possible to extend the local MPC planner 𝐹 with the locally interpolated informational

gain values. This way, the vehicle would move along the path which is maximizing

the informational gain, both locally and globally.

Adding the terminal cost in a form of the interpolated values of the cost-to-go map,

and/or adding the interpolated local informational gain in the optimization criterion
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Figure 2.4: Block diagram of the first proposed approach: Global path planner for computing
the discrete path in the grid based map, which is then smoothed, and tracked with MPC path
following control algorithm as a local planner.

Figure 2.5: Block diagram of the second proposed approach: Global path planner for comput-
ing the terminal cost in the MPC framework. Possible augmentation of the local MPC planner
with the roughness values on the prediction horizon (dashed line).

of the OCP can cause the optimization problem to become more complex to solve. Of

course, there should be a trade-off between the complexity which is imposed on the

optimization solver, and the vehicle’s performance improvement.

2.2.4 Kinematic model of line following with constant disturbance

Let us assume that we need to use some underactuated marine vehicle for a sea floor

sonar scanning mission. Also, let us assume that for accomplishing that mission, the

vehicle should move only in a constant depth plane. In this context, we define un-

deractuatedness of the vehicle as its inability to directly control pitch, roll, and sway.

Heave motion is neglected since we are assuming that the vehicle is already at the

desired depth. Moving in the marine environments necessarily means dealing with

different kinds of disturbances, i.e. wind and waves for missions on the surface, sea
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current for underwater missions. These disturbances can also represent unmodeled

system dynamics. Let us furthermore assume that these disturbances are constant, but

not observable, and denote them as 𝜁𝑑. Since we are assuming a sonar scanning mis-

sion, it is preferable for the vehicle to maintain a constant surge speed w.r.t. water

𝑈𝑟 > 0, 𝑈𝑟 > 𝜈, 𝑈𝑟 = 𝑐𝑜𝑛𝑠𝑡., while the change in heading is controlled by yaw rate 𝑟.

This leaves us with a task to control yaw rate in such a way that the vehicle follows

the straight lines of the desired lawnmower pattern, i.e. minimizing the distance to the

current line (cross-track error) 𝑑. Also, heading error 𝛽 = 𝜓 − 𝜓𝑑, i.e. the difference

between the vehicle’s heading 𝜓, and current line’s heading 𝜓𝑑, should be minimized.

With all the above assumptions taken into account, kinematic model of line follow-

ing in a horizontal plane is given as

�̇� = 𝑈𝑟 sin 𝛽 + 𝜈 ≃ 𝑈𝑟𝛽 + 𝜁𝑑 (2.9)

�̇� = 𝑟 (2.10)

˙𝑑𝑖𝑛𝑡 = 𝑑 (2.11)

where the symbol ≃ denotes linear approximation for small values of 𝛽 [31].

The linearized kinematic model of line following given by (2.9) and (2.10), is thus

extended with an additional state given by (2.11), which represents the integral ofthe

cross-track error.

Furthermore, vehicle’s position and orientation [𝑥 𝑦 𝜓] in the earth-fixed frame ⟨𝑒⟩
are expressed as

�̇� = 𝑈𝑟 cos𝜓 + 𝜁𝑥 (2.12)

�̇� = 𝑈𝑟 sin𝜓 + 𝜁𝑦 (2.13)

�̇� = 𝑟 (2.14)

where 𝜁𝑥, 𝜁𝑦 are 𝑥 and 𝑦 components of the current speed, respectively [31].

2.2.5 Linear model predictive control framework for line following

In order to minimize the computation complexity, and be able to implement our control

framework on a real marine vehicle, in our approach we used linear MPC as a high

level yaw rate controller. Linearized kinematic model of line following with constant

disturbance from Eqs. (2.9)-(2.14) was used Low level PID controllers are delegated

to control constant surge speed throughout the whole mission, but also to track the

reference yaw rate set by the high level MPC controller.

This model extension is a common practice in robust MPC schemes with distur-
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bance rejection, as in [32], which enables stabilization of the system around the setpoint

even in the presence of an external disturbance.

This integral state should not be confused with the direct integration block which is

added to the system in the PID control schemes for line following in order to reject the

disturbance, as in [31]. State 𝑑𝑖𝑛𝑡 is merely implicitly, through its presence in the cost

function, causing MPC controller to take into account the effects of the disturbance,

thus optimizing the control which rejects it.

In order to solve control optimization in a MPC fashion, we used Toolkit for Auto-

matic Control and Dynamic Optimization (ACADO) [33], as the control optimization

tool. Optimization was even more sped up by the use of RealTimeAlgorithm class,

which enabled us to make MPC controller ready to be used in real-time. MPC frame-

work which has been used is given here. Cost function 𝐽 is expressed as

𝐽 =
∫︁ 𝑡𝑖+𝑇𝑝

𝑡𝑖

(︂
𝐾𝑑𝑑

2(𝜏) +𝐾𝛽𝛽
2(𝜏) +𝐾𝑑𝑖𝑛𝑡

𝑑𝑖𝑛𝑡
2(𝜏)

)︂
𝑑𝜏 (2.15)

subject to

−𝜋 ≤ 𝛽(𝜏) ≤ 𝜋, ∀𝜏 ∈ [𝑡𝑖, 𝑡𝑖 + 𝑇𝑝] (2.16)

−20°/𝑠 ≤ 𝑟(𝜏) ≤ 20°/𝑠, ∀𝜏 ∈ [𝑡𝑖, 𝑡𝑖 + 𝑇𝑝] (2.17)

where 𝑡𝑖 = 𝑘𝑇𝑠, 𝑘 ∈ N0 is initial time of the prediction horizon which lasts for 𝑇𝑝[𝑠],
with sampling time 𝑇𝑠 = 125𝑚𝑠. Another MPC design parameter in ACADO was

𝑁𝑠𝑡𝑒𝑝𝑠 parameter. This parameter implicitly sets the duration of the control horizon,

since 𝑇𝑐 = 𝑁𝑠𝑡𝑒𝑝𝑠𝑇𝑠[𝑠] holds. Terms 𝑁𝑠𝑡𝑒𝑝𝑠 and 𝑇𝑐 will be used interchangeably from this

point forward.

2.2.6 Simulation results

Tuning of MPC controller is often done ad hoc, choosing its parameters which give just

good enough results. Our idea was to vary MPC controller’s parameters (𝑇𝑝, 𝑁𝑠𝑡𝑒𝑝𝑠,

𝐾𝑑, 𝐾𝛽 , and 𝐾𝑑𝑖𝑛𝑡
) for the particular model and environment setting in some relatively

wide, but sensible range, simulate the system in the closed-loop, and asses the quality

of the system performance numerically. Problem space for tuning all the parameters

at the same time was too big, so we divided it into two stages of parameter variation.

In the first simulation stage, 𝑇𝑝 and 𝑁𝑠𝑡𝑒𝑝𝑠 were varied, and in the second stage 𝐾𝑑, 𝐾𝛽 ,

and 𝐾𝑑𝑖𝑛𝑡
were varied.

It is important to note here that the set value of the surge speed for the vehicle in

the simulations was 𝑈𝑟 = 0.5𝑚/𝑠, and that the disturbance was simulated as 𝜈 = 𝜈𝑥 =
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0.2𝑚/𝑠, 𝜈𝑦 = 0. Steady-state 𝜖-zone is defined as 𝜖 = 0.1𝑚.

Indices for line following performance evaluation

Since in the parameter variation simulations many responses get generated, it is of

our interest to grade these responses in some objective way. This was done using the

methodology proposed in [34]. It enabled us to analyze and quantify performance of

different parts of the vehicle’s path towards convergence to the desired line, i.e. turn

phase, approach phase, and settling and steady-state phase. Graphical explanation of

all the parameters in all three phases is given in Fig.2.6.

As defined in [34], line following performance during the turn phase is parametrized

by 𝐻||[𝑚], 𝐴1[𝑚2], and 𝐻⊥[𝑚], see Fig.2.6.

The second phase is the so-called path approach phase, and it is parametrized by

𝐴2[𝑚2], 𝜒[𝑚/𝑠], and 𝜒𝑚𝑎𝑥[𝑚/𝑠], see Fig.2.6. Here 𝜒[𝑚/𝑠] denotes the mean of cross-

track error rate normalized by the duration of the approach phase, while 𝜒𝑚𝑎𝑥[𝑚/𝑠] is

the maximum value of cross-track error rate during the approach phase.

The third and the last phase is the settling and steady-state phase, in which cross-

track error is within some 𝜖-zone around the followed path. This phase is parametrized

by four parameters, namely 𝐻2[𝑚], 𝐴*
3[𝑚], 𝑡𝑠[𝑠], Δ𝑟[deg /𝑠], see Fig.2.6. Settling time

𝑡𝑠 has been added as an additional analysis parameter. Also, instead of computing

the rudder stress 𝑅 as in [34], here we computed yaw rate stress index Δ𝑟, and thus

implicitly the energy consumption.

In addition to using the quantitative analysis of line following from [34], in this

approach all of the indices quantifying the response quality were scaled relative to the

minimum/maximum value of that index throughout all simulations. The scaling was

done so that we could easily compare system response qualities from our simulations,

and make some generalized weighted cumulative performance function denoted as Σ.

The value of this performance measure can tell us for which MPC parameter 𝑛-tuple

we get the best control performance.

Scaling by the minimum value of the performance index was done due to the fact

that smaller values of 𝐻||, 𝐴1, 𝐻⊥, 𝐴2, 𝐻2, 𝐴
*
3, 𝑡𝑠,Δ𝑟 mean better system performance.

Conversely, scaling by the maximum value was done due to the fact that greater val-

ues of performance indices 𝜒 and 𝜒𝑚𝑎𝑥, and also of the overall performance measure Σ,

mean better system performance. If we generalize parameter 𝑝 as 𝑝 ∈ {𝐻||, 𝐴1, 𝐻⊥, 𝐴2, 𝜒,

𝜒𝑚𝑎𝑥, 𝐻2, 𝐴
*
3, 𝑡𝑠,Δ𝑟,Σ}, then the scaling by the minimun value is given by

𝑝𝑖𝑗,𝑠 = 𝑚𝑖𝑛{𝑝1𝑗, 𝑝2𝑗, · · · , 𝑝𝑁𝑠𝑖𝑚𝑠𝑗}
𝑝𝑖𝑗

100[%] (2.18)
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Figure 2.6: Performance indices of path following [34].

and scaling by the maximum value of the performance index is given by

𝑝𝑖𝑗,𝑠 = 𝑝𝑖𝑗
𝑚𝑎𝑥{𝑝1𝑗, 𝑝2𝑗, · · · , 𝑝𝑁𝑠𝑖𝑚𝑠𝑗}

100[%] (2.19)

where 𝑖 = 1, 𝑁𝑠𝑖𝑚𝑠 denotes the index of the simulation, 𝑗 = 1, 𝑁𝑝𝑎𝑟𝑎𝑚𝑠 denotes the index

of the performance index, 𝑁𝑠𝑖𝑚𝑠 denotes the overall number of conducted simulations,

i.e. the number of specific parameters’ combinations, and 𝑁𝑝𝑎𝑟𝑎𝑚𝑠 denotes the number

of performance indices evaluated. The overall performance score Σ𝑖 of one set of varied

MPC parameters is calculated as a weighted sum of all scaled performance indexes for

𝑖-th simulation, given by

Σ𝑖 =
𝑁𝑝𝑎𝑟𝑎𝑚𝑠∑︁
𝑗=1

𝑤𝑗𝑝𝑖𝑗,𝑠𝑐𝑎𝑙𝑒𝑑 (2.20)

where 𝑤𝑗 denotes the weight, i.e. the importance of 𝑗-th parameter. All weights were

as 𝑤𝑗 = 1,∀𝑗 = 1, 𝑁𝑝𝑎𝑟𝑎𝑚𝑠. After this, all the performance scores are scaled by the

maximum principle given by (2.19).

Choosing prediction and control horizon

The first stage of parameter variation procedure was to vary parameters 𝑇𝑝 and 𝑁𝑠𝑡𝑒𝑝𝑠

(thus implicitly varying the control horizon 𝑇𝑐). Prediction horizon duration 𝑇𝑝 has

a very important role in the overall stability of the controlled system in closed-loop.

Apart from varying 𝑇𝑝 and 𝑁𝑠𝑡𝑒𝑝𝑠, we also varied the initial distance of the vehicle w.r.t.

the line to follow, in order to choose 𝑇𝑝 such that the system stabilizes in both cases.

On the other hand, control horizon duration 𝑇𝑐 can cause the system to destabilize

if 𝑇𝑐 is chosen too short. If 𝑇𝑐 is chosen too long, it causes faster response in most cases,

but also an additional control optimization burden. Large value of 𝑇𝑐 can also cause

the controls to change too rapidly, which can lead to shortened life of actuators in the

long term.
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The first set of simulations was conducted with varying 𝑇𝑝 ∈ {1, 5, 10, 20, 30, 60}[𝑠]
and 𝑁𝑠𝑡𝑒𝑝𝑠 ∈ {1, 5, 10, 15, 20}. The initial conditions of controller internal system model

were 𝑑0 = 0, 𝛽0 = 𝜋, 𝑑𝑖𝑛𝑡0 = 0. For these experiments cost function parameters were

set as 𝐾𝑑 = 1, 𝐾𝛽 = 0.001, and 𝐾𝑑𝑖𝑛𝑡
= 0.01. For each 𝑇𝑝 the best response with

corresponding 𝑇𝑐 has been shown in Fig.2.7a. The second set of initial conditions was

𝑑0 = 5, 𝛽0 = 𝜋, 𝑑𝑖𝑛𝑡0 = 0. The corresponding best system responses for each 𝑇𝑝 are

shown in Fig.2.7b.

It can be noted that longer 𝑇𝑝 cause the response to have a larger overshoot (see also

𝐻2 column of Table2.1). Also, shorter 𝑇𝑝 caused the system to have a longer settling

time, which is apparent in 𝑡𝑠 column of Table2.1.

It is interesting to note that the vehicle’s heading in the steady-state phase is not

aligned with the followed line’s heading, see Fig.2.7aand2.7b. This is due to the

fact that the vehicle orients itself at an angle to compensate against the current at the

assumed constant surge speed.

For the sake of brevity, we did not include the turn phase indices values here. We

found that all three turn phase performance indices have the same values 𝐻|| = 1.46𝑚,

𝐴1 = 8.49𝑚2, and 𝐻⊥ = 1.17𝑚, invariant to the chosen stabilizing MPC parameters.

The vehicle tries to turn as fast as possible in this phase, so these indices depend only

on the surge speed and yaw rate bounds.

Table2.1shows the unscaled performance indices of the approach, and steady-state

phase, but also the overall scaled score of each 𝑇𝑝−𝑁𝑠𝑡𝑒𝑝𝑠 combination. It can be noted

that the score does not grow with the increase of 𝑇𝑝, but is some nonlinear function

of 𝑇𝑝. This leads to the conclusion that longer prediction horizon does not always

guarantee better MPC controller performance.

Also, it can be noted that as the fraction 𝑇𝑐/𝑇𝑝 increases, the vehicle approaches

the line faster. This means that, as 𝑇𝑝 gets shorter, the system cannot predict its future

trajectories far in time, so as 𝑇𝑐 takes up a bigger part of 𝑇𝑝, MPC generates more

aggressive controls (see Δ𝑟 column of Table2.1and Fig.2.7c) which in turn cause

the vehicle to approach the line faster. Based on Table2.1, we chose 𝑇𝑝 = 30𝑠, and

𝑁𝑠𝑡𝑒𝑝𝑠 = 10.

Another thing which we were trying to asses empirically, was the estimation of

the optimization duration in each sampling period. It is important to note here that

the machine which was used for simulations had an Intel® Core™ i5-3210M processor

with clock frequency of 2.5 − 3.1𝐺𝐻𝑧, and 6𝐺𝐵 of Random-access memory (RAM).

In Fig.2.7dit can be seen that the distributions of execution times of simulations for

each pair (𝑁𝑠𝑡𝑒𝑝𝑠, 𝑇𝑝) have been repeated 10 times to gain some statistical credibility. It

is evident that the complexity, i.e. execution time is dependent only on the number of
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(a) Vehicle’s path in a constant depth plane during line following maneuver . Reference line
(dashed black line). Initial conditions 𝑑0 = 0[𝑚], and 𝛽0 = 𝜋[𝑟𝑎𝑑]. Heading of the vehicle (black
triangles).
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(b) Vehicle’s path in a constant depth plane during line following maneuver . Reference line
(dashed black line). Initial conditions 𝑑0 = 5[𝑚], and 𝛽0 = 𝜋[𝑟𝑎𝑑]. Heading of the vehicle (black
triangles).
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Figure 2.7: Simulation results for for various 𝑇𝑝 and 𝑁𝑠𝑡𝑒𝑝𝑠 values.
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Table 2.1: Prediction and control horizon variation. Quantitative analysis of response quality of
the approach and steady-state phase, control stress, and final score. Initial conditions: 𝑑0 = 0,
𝛽0 = 𝜋, 𝑑𝑖𝑛𝑡0 = 0. For # referencing to 𝑇𝑝 and 𝑁𝑠𝑡𝑒𝑝𝑠 values see Fig.2.7alegend.

# 𝐴2 𝜒 𝜒𝑚𝑎𝑥 𝐻2 𝐴*
3 𝑡𝑠 Δ𝑟 Σ𝑖,𝑠

1 2.984 0.039 0.069 0.88 0.105 56.5 4.54 77.8

2 2.986 0.038 0.065 0.72 0.048 50.8 1.31 86.9

3 2.988 0.038 0.064 0.86 0.026 39.8 1.19 92.9

4 3.016 0.037 0.059 0.96 0.018 37.0 1.12 97.3

5 3.105 0.036 0.053 1.09 0.016 34.0 0.86 100

6 3.283 0.033 0.048 1.21 0.019 38.6 0.72 94.5

control steps being optimized at each MPC iteration For 𝑁𝑠𝑡𝑒𝑝𝑠 = 10, execution times

for any tested 𝑇𝑝 are under 5𝑚𝑠 , which is still far below the value of sampling time

𝑇𝑠 = 125𝑚𝑠. Even with the transition to real system’s lower performance on-board

computer, this way we could make sure that the execution time of OCP solver will be

real-time.

Choosing cost function parameters

After choosing prediction horizon 𝑇𝑝 and control horizon 𝑇𝑐, the next step was to

choose the parameters of cost function 𝐽 given by (2.15). Again, this was done through

parameter variation analysis for 𝐾𝑑 ∈ {0.01, 0.1, 1, 2, 5}, 𝐾𝛽 ∈ {0.001, 0.01, 0.1, 2, 5},
and 𝐾𝑑𝑖𝑛𝑡

∈ {0.001, 0.01, 0.1, 1, 2}. The best 6 resulting responses are chosen, and

shown in Fig.2.8.

Table2.2shows the unscaled performance indices of approach and steady-state

phase, but also the overall score of each 𝑇𝑝 − 𝑁𝑠𝑡𝑒𝑝𝑠 combination. Based on Table2.2,

we chose 𝐾𝑑 = 1.0, 𝐾𝛽 = 5.0, and 𝐾𝑑𝑖𝑛𝑡
= 0.001. Indeed, the response with these

parameters converges to the steady-state much faster than most of the other considered

responses, see Fig.2.8. Also, its overshoot over the line is second smallest among all

other responses taken into account.
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Figure 2.8: Cost function paratemers variation for 𝑇𝑝 = 30𝑠 and 𝑁𝑠𝑡𝑒𝑝𝑠 = 10. Initial conditions
𝑑0 = 0[𝑚], and 𝛽0 = 𝜋[𝑟𝑎𝑑]. Reference line (dashed black line). Heading of the vehicle (black
triangles).

Table 2.2: Cost function parameters variation. Quantitative analysis of response quality of the
approach and steady-state phase, control stress, and final score. Initial conditions: 𝑑0 = 0,
𝛽0 = 𝜋, 𝑑𝑖𝑛𝑡0 = 0. For # referencing to 𝐾𝑑, 𝐾𝛽 , and 𝐾𝑑𝑖𝑛𝑡

value see Fig.2.8legend.

# 𝐴2 𝜒 𝜒𝑚𝑎𝑥 𝐻2 𝐴*
3 𝑡𝑠 Δ𝑟 Σ𝑖,𝑠

1 3.21 0.0334 0.048 1.42 0.01 46.0 0.7 94.5

2 3.47 0.0302 0.041 1.36 0.0094 47.3 0.6 94.9

3 3.07 0.0362 0.056 1.33 0.009 34.8 0.9 99.8

4 3.08 0.0358 0.054 1.19 0.0133 30.1 0.9 95.5

5 3.09 0.0355 0.054 1.22 0.0097 31.5 0.8 100

6 3.04 0.0365 0.058 1.45 0.0089 38.6 1.1 98.1
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2.3 Conclusion

This chapter brought a brief introduction about navigation, guidance and control sys-

tems of autonomous marine vehicles and their challenges. MPC has been shown to

have good performance when used for motion planning of the underactuated au-

tonomous marine vehicle. Its main advantage as a motion planning method is that

it generates kinematically (or even dynamically, depending on the model being used)

feasible paths, for which it optimizes control signal(s) in such a way that the given

constraints on system states and controls are met. This method takes into account the

model, cost function, and constraints during the process of control signal optimization,

as opposed to other methods such as PID and Lyapunov Control Function (LCF) con-

trol, which do not deal with the constraints explicitly, and satisfy them by eventually

saturating the generated control signal. This a posteriori saturation can lead to signifi-

cant system performance deterioration and even system instability in some cases.

A modular MPC framework for general use has been developed using open-source

software ACADO toolkit, and it has been integrated with Robot Operating System

(ROS). Depending on the control problem, the system model, constraints, cost func-

tions and algorithm parameters can be easily changed. Real-time MPC framework

implementation has been achieved for the line following problem which has been ad-

dressed in this section. Simulation and experimental results show good performance

of MPC controller when compared to PID controller. The main advantage of MPC

over PID control in this perspective is its possibility to be used as a general control

optimization framework.

Next chapter brings introduction to coverage path planning algorithms in general,

but also specifically for autonomous marine vehicles and presents the developed cov-

erage path planning algorithms and their performance in simulation environment.
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Chapter 3

Sonar Data-based Coverage Path

Planning Algorithms

3.1 Introduction

Marine monitoring and exploration missions often include side-scan sonar based seafloor

mapping. This includes the exploration of the biosphere, exploration of underwater

archaeological sites, marine safety, and many other applications. Currently, side-scan

sonar missions are executed either by a tethered towfish equipped with a side-scan

sonar, [35], or by using remotely operated vehicles (ROVs) or autonomous underwa-

ter vehicles (AUVs), [36]. Deploying a tethered towfish from a boat requires hiring a

boat and its crew: a towfish operator, a side-scan operator, and of course experts in the

scientific field for which the survey mission is being conducted.

Towfish missions are executed mostly in three phases. The first phase is a general

survey mission at higher altitudes, whose goal is to identify possibly interesting parts

of the region being covered, [35]. In this phase, the boat tows a towfish in a LM pattern

to cover as much area as possible, without or with a low percent of overlapping side-

scan sonar swaths. The second phase has the goal of getting detailed low altitude

side-scan sonar images of the manually tagged possibly interesting areas from the first

phase with side-scan sonar’s swaths overlaid to remove any sonic shadows, [35]. The

third and final phase includes deploying and Remotely Operated underwater Vehicle

(ROV) and/or an AUV, and capturing the identified interesting locations with its high-

resolution camera, as proposed in [36]. On the other hand, it would be much more

convenient and less costly to deploy an AUV and let it autonomously scan the given

area, executing all three above-mentioned area survey phases. It should gather more

information about parts of the coverage area that it finds interesting for the current

exploration mission, and lower resolution general survey data about other parts of the
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Figure 3.1: Block scheme of the entire AUV system.

area.

Our research goal was to develop an online side-scan sonar data-driven coverage

path planning (Coverage Path Planning (CPP)) algorithm for monitoring and survey-

ing large-scale (over 1𝑘𝑚2) seafloor regions by an AUV, which would replace all three

above-mentioned phases of survey missions when using a towfish. Lawnmower pat-

tern is one of the most commonly used solutions for the 2D coverage of an area to be

scanned, [37,38]. In marine robotics, it is typically used as a reference path for marine

vehicles equipped with side-scan sonar for surveying missions, [35], or as a coverage

pattern for vehicles equipped with other sensors, [38].

After designing a mid-level MPC-based surge-yaw controller in Section2.2, the

next step towards the above-mentioned research goal was to design an algorithm for

solving an online 2D coverage problem, which is a mix between the first and the sec-

ond mission with a towfish. The idea is to start the mission without overlapping sonar

swaths, i.e. with LM lanes twice wider than the sonar range. During the mission, in

case that the algorithm detects something interesting in the currently traversed LM

lane, coverage path planning algorithm replans the rest of the mission in order to

sonify these interesting objects from the opposite side as well, thus gathering more

information about the morphology of the interesting objects. Also, it is necessary to

develop a control layer for the marine vehicle, in order for it to be able to track the path

which the CPP algorithm computes. The block scheme showing the overall view of the

system with CPP module denoted as the "Coverage path planner" (in red) is given in

Fig.3.1.

Main contributions of the proposed algorithms are: (1) an online side-scan sonar

data-driven dynamical programming- and heuristics-based CPP algorithms for large-

scale unknown terrains presumably containing relatively few interesting parts. The
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algorithm covers the area at best with a twice shorter coverage path than the classical

static overlap-all-sonar-swaths LM coverage maneuver (from here on abbreviated as

the Classical static overlap-all-sonar-swaths coverage maneuver (CL-CPP) method),

(2) analytical upper and lower bounds on performance of the above-mentioned CPP

algorithms, validated through extensive mission parameters variation simulations, (3)

statistical performance analysis of the proposed CPP algorithms w.r.t. the coverage

path length compared to the nonadaptive static solution of overlap-all-sonar-swaths

LM coverage maneuver CL-CPP method, and (4) a methodology for approximately

choosing survey mission parameters based on coverage area topology and expected

probability of coming across interesting objects in the given area. This can be of good

use to system engineers operating survey missions with a marine vehicle. Parts of this

chapter were previously published by the author in [6,19,39–41].

The rest of this chapter is organized as follows: an overview of sensor data-based

path and more specifically coverage path planning algorithms applied for ground,

aerial, and especially marine vehicles is given in Section3.2. Assumptions and def-

initions which are made for the proposed coverage path planning algorithms in this

thesis are given in Section3.3. A generic formulation of how the coverage path plan-

ning algorithms based on side-scan sonar data acquired online should behave is given

in Section3.4. A dynamic programming side-scan sonar data-based algorithm, which

is an extension of the existing Wavefront Roughness-based Navigation Function al-

gorithm used for path planning on rough terrains for ground vehicles, is presented

in Section3.5. Section3.6introduces a heuristics-based side-scan sonar data adap-

tive coverage path planning algorithm named Basic Accordion Coverage Path Plan-

ning (BA-CPP) algorithm. The following sections, namely Section3.7and Section3.8

propose extensions and improvements of the BA-CPP algorithm. The performance

of all four proposed algorithms is analyzed based on extensive mission parameters’

variation simulations. These performance metrics are summarized in Section3.9. Sec-

tion3.10concludes this chapter.

3.2 Coverage path planning algorithms in marine robotics

For a vehicle to reach some predefined goal position, starting from some arbitrary po-

sition, while at the same time avoiding the obstacles, it has to use some kind of path

planner to successfully execute this task.

There exist several concepts when approaching the path planning problem in ma-

rine robotics. Some approaches use optimization techniques to improve the path of

the vehicle while avoiding the obstacles, namely: constrained optimization and semi-
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infinite constrained optimization, [42], sequential quadratic programming (Sequential

quadratic programming (SQP)) with constructive solid geometry (Constructive Solid

Geometry (CSG)) representation of the obstacles,[43], or mixed integer linear program-

ming for adaptive sampling of the ocean measurements, [44].

Another option is to use Virtual Force Fields (Virtual Force Fields (VFF)) as in

[45]. One of the algorithms which are being used really often in the robotics field is

a relatively simple and fast sampling-based Rapidly Exploring Random Tree (Rapidly-

exploring random tree (RRT)) algorithm, and its RRT* extension, [46]. Metaheuristic

algorithms have also been used to solve the time-energy-optimal path planning prob-

lems for marine vehicles, such as genetic and evolutionary algorithms in [47,48], and

also ant colony algorithm in [49]. Grid-based path planning algorithms have also been

used, i.e. 𝐴* algorithm for minimum energy consumption path in strong currents envi-

ronments in [50], Fast Marching* (FM and FM*) algorithms for maximum turning rate

constrained path generation with a multiresolution method to speed up the path plan-

ning process in [51], and Sliding Wavefront Expansion (Sliding Wavefront Expansion

(SWE)) Dijkstra-like algorithm for generating minimum duration paths for the AUVs

in strong currents, [52]. A comprehensive overview of the path planning algorithms

used in marine robotics is given in [53].

Solutions to problems similar to the one defined in Subsection1.2can be found in

ground and aerial robotics literature, e.g. in [54–57] and [58]. An offline camera-based

LM-like coverage path planning (CPP) algorithm is proposed in [54] as an optimiza-

tion framework for UAVs monitoring areas of different uncertainty levels which are

assumed to be known prior to mission start. A multi-vehicle camera-like sensor-based

convergent CPP algorithm was proposed in [55], and further extended with receding

horizon (Receding horizon control (RHC)) control level in [59]. A similar concept of

exploring different parts of coverage area in different detail, while minimizing cover-

age path, was the motivation of research in [56], where no more than 0.016𝑘𝑚2 was

covered. The authors had the advantage of using a Unmanned aerial vehicle (UAV)

with a camera, which could assess from higher altitude in which way to decompose

the area (no more than 0.016𝑘𝑚2) into cells and optimize the order in which to visit

interesting areas and cover them by using LM pattern.

The problem of visual data being occluded from UAV’s camera view due to differ-

ent height of covered objects, which is a problem similar to sonic shadows, is explored

in an offline CPP vehicle routing problem-based approach for areas of no more than

0.0625𝑘𝑚2 in [57]. A so-called modified Zamboni pattern for UAVs, which solves CPP

offline and gives a solution with as less sharp turns as possible, is presented in [58], for

areas no more than 40× 15[𝑚],
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In marine robotics literature, one of the first papers to mention AUVs used for an

online 2D/3D coverage path planning (CPP), which uses camera data in order to gen-

erate a photomosaic, is [60]. It guarantees complete coverage and uses standard LM

pattern to cover cell-decomposed coverage area. In [61] an online CPP algorithm gen-

erates an adaptive but constant-width LM pattern in order to remove the gaps in mea-

surements, for coverage areas no more than 0.48𝑘𝑚2. The twice wider LM pattern is

used only as a limit case solution when no disturbance is present. An online infor-

mation/entropy based CPP approach for AUVs with side-scan sonar is proposed in

[62] with application in target localization. It plans paths which reduce the expected

entropy of the surrounding environment w.r.t. coverage path length and total turning

angles, on areas of approx. 0.04𝑘𝑚2. Target (hydrothermal vents) localization online

adaptive CPP approach with temperature spreading model and multi-vehicle cooper-

ation on areas of 1.4𝑘𝑚2 is presented in [63].

An online approach to mapping of ever-changing marine habitat by an AUV equipped

with a camera and multi-beam sonar is given in [64]. It covers arbitrarily identified re-

gions of interest (ROIs), area of 0.0375𝑘𝑚2 from previous mapping missions in such a

way to minimize repeated coverage. The accent of this approach is more on Region of

interest (ROI) identification and coverage path minimization through intra-ROI path

length minimization, not adapting the standard LM pattern inside each decomposed

cell. Another sonar-based survey path planning approach in [65] uses a-priori known

bathymetric data of the coverage area of approx. 0.06𝑘𝑚2 in order to find salient points

and cover them while minimizing vehicle position and sensing uncertainties. In [66]

side-scan sonar data is improved for search missions through adapting the width of

LM lanes w.r.t. pose estimation and sonar data uncertainty. A comprehensive overview

of CPP methods, with an emphasis on their application in underwater robotics, is given

in [38]. A solution to the problem of LM lane visiting order, in the case when lanes are

narrower than the minimum turning radius of the vehicle, is presented in [67].

Majority of the above-mentioned CPP methods use a camera-like sensor, while

side-scan sonar sensing suffers from the problem of sonic shadows behind some ob-

jects. Also, in case they reconfigure LM pattern, they do it to minimize the number of

turns or the total turning angle. Otherwise, they generate paths which can be shorter

than LM pattern path but are not well suited for side-scan sonar applications. More-

over, only one of the above-mentioned CPP algorithms tackles the problem of large-

scale areas of over 1𝑘𝑚2, and the rest do not give performance guarantees in case of

coverage area scaling up.
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3.3 Assumptions and definitions

Definitions of informational gain metrics

Let 𝒯 denote a sea floor terrain (backscatter intensity) map which contains 𝑚 rows

and 𝑛 columns of square patches 𝑝𝑖𝑗 , whose size is dependent on the resolution of the

used sonar, and assume that the map 𝒯 is not a-priori known. Information gain in the

context of exploring the sea floor can be defined as the roughness of the sea floor, i.e.

the local variance of the side-scan sonar data.

Much of the roughness metrics research is related primarily to the Autonomous

Ground Vehuicle (AGV)s. In [68] the roughness metrics is based not only on the local

variance of the terrain map in the spatial domain, but it also takes into account terrain’s

intrinsic properties in the frequency domain. Several spatial measures of the terrain’s

roughness are presented in [69]. In marine robotics, roughness is mostly related to the

exploration of the seafloor relief complexity, [70], and also in the research related to

identifying benthic habitat types, [71].

Roughness value 𝑟𝑖,𝑗 represents the informational gain measure of a map patch 𝑝𝑖,𝑗
(how interesting or informational that patch is) and it is calculated as a standard de-

viation of the terrain map values of its neighboring map patches, [72]. 𝒩𝑖,𝑗 denotes a

set of 8-connected neighborhood patches of the patch 𝑝𝑖,𝑗 including the patch 𝑝𝑖,𝑗 itself.

Roughness value 𝑟𝑖,𝑗 is now defined as:

𝑟𝑖,𝑗 = 𝜇𝑖,𝑗
√︁

Var(𝒯 (𝒩𝑖,𝑗)), (3.1)

where 𝜇𝑖,𝑗 ∈ [0, 1] is a coefficient dependent on the terrain type of the map patch 𝑝𝑖,𝑗 ,

and Var denotes the variance operator.

In order to remove the slope of the terrain out of the roughness measure, i.e. to

remove the linear trend out of the sampled elevation values, it is possible to redefine

roughness as the standard deviation of the residuum values 𝜌𝑖,𝑗 w.r.t. the interpolated

plane through the patches 𝒩𝑖,𝑗 :

𝑟𝑖,𝑗 = 𝜇𝑖,𝑗
√︁

Var(𝜌(𝒩𝑖,𝑗)). (3.2)

Considering that the main idea of the research is to navigate the vehicle along the

way of maximum informational gain, i.e. roughness or minimum smoothness, it is

necessary to make a conversion of the roughness into smoothness. This way, after

propagation the smoothness costs in the dynamical programming-based coverage path

planning algorithm, a minimum-smoothness or maximum-information-gain path is

28



Sonar Data-based Coverage Path Planning Algorithms

obtained. Smoothness can be defined as:

𝑠𝑖,𝑗 =

⎧⎪⎨⎪⎩
1, if 𝑟𝑖,𝑗 = 0

1/𝑟𝑖,𝑗, otherwise.
(3.3)

Apart from defining the informational gain of side-scan sonar images as the local

variance of the backscatter data, which is heavily sensitive to noise, informational gain

can be defined as the output of some saliency/anomaly detection method applied to

side-scan sonar imagery. Overview of such methods, and the methodology of choosing

the most appropriate one for use with side-scan sonar data are given in Chapter4.

Assumptions related to lawnmower pattern

Let us denote LM line length by 𝐿𝑚, width between LM transects by 𝑊𝑚, and a pa-

rameter which denotes the ratio between LM segment length and width, denoted by

𝛼𝑙𝑚:

𝛼𝑙𝑚 = 𝑊

𝐿
. (3.4)

Furthermore, parameter𝑊 depends on side-scan sonar’s horizontal range𝑤𝑠𝑠𝑠𝑚which

an AUV operator sets, i.e. 𝑊 = 𝑓(𝑤𝑠𝑠𝑠). Generally, LM segments are set in such a way

that 𝛼𝑙𝑚 ≪ 1 holds, i.e. LM segments are much more elongated than its segments are

wide. Extreme cases when 𝛼𝑙𝑚 > 1 are also taken into account to test the proposed

CPP algorithm’s performance.

Assumptions related to AUV

Desired surge speed is assumed to be constant during the whole mission in order to

get equidistant along-track sonar beams, and is denoted as 𝑢[𝑚/𝑠]. Desired constant

altitude at which AUV is commanded to operate is denoted by ℎ𝑟𝑒𝑓 [𝑚]. Reference yaw

rate 𝑟𝑟𝑒𝑓 [𝑟𝑎𝑑/𝑠] is computed by a high-level model predictive controller (MPC) and is

tracked by a low-level PID-type controller.

Control side of mission execution is out of the scope of this thesis. Altitude control

is decoupled from 𝑥 − 𝑦 position control. It is assumed that external disturbance to

the vehicle is either not present, or properly rejected by the model predictive (MPC)

path following controller presented in [7]. The proposed CPP algorithm assumes the

vehicle to be a point mass without any dynamic behavior, so control level has the task

to follow paths which the CPP algorithm generates. It is also assumed that localiza-

tion is either perfect or improved by communication of the AUV with an autonomous

surface vehicle (Autonomous Surface Vehicle (ASV)) as in [73], or a fixed beacon(s) as

in [74]. Hence, the proposed approach does not minimize the number of turns during
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the mission, as does [75], in order to reduce dead reckoning error which increases the

most during turning maneuvers.

The blind spot of the side-scan sonar (nadir), is assumed not to be present (which

holds if nadir is covered with an additional multibeam sonar).

Assumptions related to sea floor configuration

The area which the vehicle should cover is assumed to be relatively sparsely populated

with objects of interest for a given mission. Definition of "interesting" could vary from

one mission to another, that is from one research area to another.

It could be a measure of seabed rugosity/roughness in coral and seabed relief ex-

ploration or marine archeology, a measure of the spectral density of return signal to

echosounder in Posidonia seagrass habitat research, the output of some object recogni-

tion and/or classification algorithm in marine archeology, security threats, or marine

biology. Here, information gain is defined as a measure of local side-scan sonar data

variation.

Moreover, it is assumed that the sea floor is approximately flat. In case that the

seafloor terrain is slanted dominantly along one direction, then the lawnmower pattern

mission should be oriented parallel to the terrain’s principal gradient. Since large-scale

open sea areas to survey with side-scan sonar are of authors’ research interest, obstacles

are not assumed to be present in the environment.

3.4 Generic formulation of the proposed coverage algo-

rithms

The initial solution of the proposed CPP algorithm is an LM pattern with lanes twice

as wide as sonar range. This is, of course, a good solution only if there is nothing of

interest for the mission in the area covered.

In case that the vehicle detects some interesting object(s) in its sonar data while

traversing the current LM line leg, the coverage path planning algorithm should replan

the rest of the mission in such a way to sonify the interesting object(s) from the opposite

side. Also, it should again (optimistically) assume that during the rest of the mission

it will not encounter any interesting objects, and thus it will again generate "stretched"

LM pattern for the remaining part of the mission. Moreover, in the limit case when

the sea floor area of interest is highly covered interesting objects, then the proposed

coverage path planning algorithm should behave as the CL-CPP.
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(a) (b)

Figure 3.2: Elementary period of the LM pattern for side-scan sonar survey missions. (a) CL-
CPP pattern. (b) The initial solution of the proposed CPP algorithm.

Since the proposed CPP solution is mostly a regular pattern, at least in the ini-

tial moment of the mission, elementary periods of the CL-CPP and the proposed CPP

approach are given in Fig.3.2aand3.2b, respectively. This is needed to analytically

predict the behavior of the CPP algorithms proposed in this thesis on a spatial period

of width 4𝑊 , which ends with a horizontal line. This way every LM pattern spatial

period starts with a vertical line and is of the same width.

Heuristics behind the area covering of CL-CPP, as well as finite state machine of

the proposed CPP algorithm, ensure that complete coverage is achieved by the end of

the mission, under the assumptions stated in Section3.2. That is why it is not required

that the algorithm achieves a full coverage of the current pattern spatial period, but

instead to achieve globally complete coverage in terms of acquiring all informative

data present within the whole coverage area.

3.5 Wavefront Roughness-based Navigation Function Cov-

erage Path Planning Algorithm

This section gives a short overview of the authors’ prior work on a path planning

algorithm named WRbNF algorithm, [19], and describes how it has been extended

for use in the CPP missions, thus proposing the Wavefront Roughness based Navi-

gational Function Coverage Path Planning (WRBNF-CPP) algorithm. Since Wavefront

Roughness-based Navigation Function plans a path from vehicle’s current position

to some goal position based on cost propagation, a proper cost function needs to be

defined in order for the algorithm to behave the way it is supposed to. The original

WRbNF algorithm was designed for path planning on rough terrains, i.e. to navigate

the vehicle along the least rough terrain. In the context of side-scan sonar data-based
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seafloor exploration, the algorithm actually needs to guide the vehicle towards places

which are interesting, i.e. which have greater informational gain for the exploration

mission. In that way, the algorithm stayed the same, but the concept of cost function

was inverted.

Various terms in the cost function and their respective weights were tested to see

which combination fit the side-scan sonar exploration mission the best. Also, analyti-

cal analysis of coverage performance w.r.t. its coverage path length was conducted and

verified by extensive simulations with mission parameters variation. This algorithm

was proven to perform better than the CL-CPP algorithm for most of the mission pa-

rameters’ values which are assumed in this dissertation. The results of WRBNF-CPP

algorithm are published in [40].

3.5.1 Wavefront Roughness-based Navigation Function

Wavefront Roughness-based Navigation Function (WRbNF) algorithm, [19], is an ap-

proximation of an optimal cost-to-go map, which estimates the traversability measure

from every location on the rough terrain to the goal position, and is an extension of the

Roughness-based Navigation Function (RbNF) algorithm, [76]. The (W)RbNF com-

putation is much easier than in the case of Dijkstra algorithm. The results show that

the majority of the computed values of the WRbNF map are near optimal regardless

of the terrain roughness, number and size of the obstacles. Since the WRbNF algo-

rithm has an inherently parallel structure, it can be coded to significantly outperform

the Dijkstra algorithm in terms of runtime by using an adequate amount of computer

resources, [19]. An example of the WRbNF algorithm used for generating a cost-to-go

map on a large scale rough terrain with obstacles is given in Fig.3.3.

The reason for using such an algorithm in coverage path planning missions was to

allow the path planner to autonomously lead the vehicle towards the most information-

rich areas of the sea floor, the same way WRbNF cost-to-go map leads the vehicle along

the least rough terrain.

3.5.2 Design of cost function

One of the first tasks that had to be solved in order to use WRbNF algorithm for the

CPP problem defined in Subsection1.2was to define which part of the obtained side-

scan sonar data will be used as the cost map for the current LM lane about to be cov-

ered, e.g. lane 𝑥 ∈ [100, 150][𝑚], and 𝑦 ∈ [0, 500][𝑚] shown in Fig.3.4a. The solution

is to use the (simulated) sonar data from the previous sonar swath’s half closer to the

current LM lane, i.e. area 𝑥 ∈ [50, 100][𝑚], and 𝑦 ∈ [0, 500][𝑚] in Fig.3.4a. This means
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(a) An example of the terrain map. (b) Roughness map computed based on
the terrain map.

(c) 2D projection of the WRbNF cost-to-go
map. Costs are propagated from the goal
position (100, 250).

(d) 2.5D manifold representing the cost-to-
go WRbNF map. Costs are propagated
from the goal position (100, 250).

Figure 3.3: An example of the WRbNF algorithm’s performance.
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Figure 3.4: (a) An example of the side-scan sonar cost map replication for the current LM
lane. Vehicle’s path in the LM lane 𝑥 ∈ [100, 150][𝑚], and 𝑦 ∈ [0, 500][𝑚] is planned based
on the sonar data from the previous sonar swath’s 𝑥 ∈ [50, 100][𝑚], and 𝑦 ∈ [0, 500][𝑚]. (b) An
example of the coverage path planning based on previous swath’s sonar data. (cyan) path of the
vehicle following the informational gain-guided CPP solution, (dark blue) low informational
gain areas, (yellow) high information gain objects, (red) side-scan sonar range.

that the vehicle locally plans a path to go along the most informative path based on the

cost map of the previous swath’s half, but globally it moves in the current LM lane, at

a distance of half a swath away from the interesting objects, thus removing their sonic

shadow. The desired behavior of the CPP algorithm is depicted in Fig.3.4b, where the

vehicle moves along the planned path (cyan line) in such a way to sonify (red lines

depicting side-scan sonar ranges) interesting objects’ sonic shadows from the opposite

side as well (side-scan sonar simulated range lines reaching all the way to the right

side of the interesting objects).

The second task addressed in order to use WRbNF algorithm described in Sub-

section3.5.1was to design such a cost function, which would reflect the desired ex-

ploratory behavior of the coverage path planner. It is supposed to plan a path which

maximizes along-path information gain for the mission at hand. In Subsection3.3it

was mentioned that informational gain in the context of maritime exploration by a

side-scan sonar could be modeled as the smoothness of the sea floor terrain. The cost

function of the WRbNF-based coverage path planning algorithm is thus defined as:

𝑐𝑖,𝑗 = 𝑠𝑖,𝑗 + 𝛼𝑑𝑑𝑙𝑖𝑛𝑒𝑖,𝑗
+ 𝛽𝑊𝑃𝑑𝑊𝑃 𝑖,𝑗

(3.5)

where 𝑠𝑖,𝑗 is the smoothness defined by Eq. (3.3), 𝑑𝑙𝑖𝑛𝑒𝑖,𝑗
is defined as a distance of

map patch 𝑝𝑖,𝑗 in the cost map from the current lawnmower line being followed (the

left or right edge of the map, depending on whether the vehicle moves upwards or

downwards in the local cost map), and 𝑑𝑊𝑃 𝑖,𝑗
is the distance of each map patch 𝑝𝑖,𝑗

from the currently set waypoint 𝑊𝑃 in the local cost map frame.
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3.5.3 WRbNF propagated from a lawnmower goal waypoint

WRbNF propagates costs from the current LM goal Waypoint (WP) outward in a radial

fashion, through square-shaped rims, as described in [19], see Fig.3.3d. This goal WP

is located either in the top-right, bottom-right corner of the cost map defined in Sub-

section3.5.2, depending on whether the vehicle’s current LM lane stretches upwards

or downwards in the cost map.

WRbNF with a goal WP of cost propagation chosen as the current LM WP (see

Fig.3.5a) has been proven to be of little use for CPP problem defined in Subsection1.2.

The main drawback of this approach is the way the goal WP is chosen. Neither ex-

tensive tuning of parameters 𝛼𝑑, nor 𝛽𝑊𝑃 , nor extremely low cost values of arbitrarily

placed interesting objects in the cost map, nor negative costs of interesting objects (due

to local minima and saddle points in the cost-to-go map) helped the WRBNF-CPP al-

gorithm to significantly diverge from the line if something interesting has been spotted

in the previous LM lane.

The cause of this problem has been discovered to be the way in which WRbNF

is propagated radially through square-shaped rims, but not along rims as well. This

leads to low cost (interesting) objects placed in inconvenient places in the cost map,

not "pulling" the WRbNF planner to diverge from the current LM line towards them.

A solution to this problem is presented in Subsection3.5.4.

3.5.4 WRbNF propagated from a dislocated goal waypoint

The novelty that is introduced in this approach is that the propagation of costs in

WRbNF is not done from the currently followed LM WP, but from a point outside

the cost map. This was done in order to eliminate the problem described in Subsec-

tion3.5.3. Coordinates of this point in the current LM lane are given by:

𝑥𝑊𝑃𝑛𝑒𝑤 = 𝑊/2, (3.6)

𝑦𝑊𝑃𝑛𝑒𝑤 =

⎧⎪⎨⎪⎩
−𝑊/2, 𝑖𝑓𝑑𝑜𝑤𝑛𝑤𝑎𝑟𝑑𝑚𝑜𝑡𝑖𝑜𝑛

𝐿+𝑊/2, 𝑖𝑓𝑢𝑝𝑤𝑎𝑟𝑑𝑚𝑜𝑡𝑖𝑜𝑛.
(3.7)

Graphical representation of such WP choice is given in Fig.3.5b. This way the costs

are propagated row-by-row upward or downward through the cost map, depending

on the movement direction of the vehicle. The starting point of the vehicle in the gen-

erated cost-to-go map is not the LM WP at the LM lane’s beginning, but a minimum

cost-to-go point on the topmost/bottom most row of the cost-to-go map, depending

on the movement direction of the vehicle. Analogously, the end point of vehicle’s path
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Figure 3.5: Choices of the goal position for cost propagation by the WRbNF algorithm for CPP
purposes. (a) Lawnmower pattern corner WP. (b) Goal WP dislocated out of the LM lane.
(green) waypoint generated for "upward" motion, (red) waypoint generated for "downward"
motion.

in the cost map is a minimum cost-to-go point in the bottom most/topmost row of the

cost map. The starting point has to be computed, and the ending point is reached by

simply moving down the WRbNF cost-to-go map.

Cost function parameters were set to the same values as when the WRbNF was

propagated from the current LM WP, i.e. 𝛼𝑑 = 0, and 𝛽𝑊𝑃 = 0.

3.5.5 Behavior of the proposed algorithm

The initial solution of the WRBNF-CPP algorithm is an LM pattern with lanes twice

as wide as sonar range, see Fig.3.6a. This is a good solution only if coverage area

is devoid of any interesting objects. It is important to note that the below presented

behavior of the WRBNF-CPP algorithm is analogous for cases when the vehicle movies

in the opposite direction (upward/downward) of the directions in the cases described

below.

If the vehicle detects something interesting to its right in the cost map, as it does

while moving along line 1 in Fig.3.6b, it will plan the path 3 (using WRbNF algorithm

on cost map based on right half of side-scan sonar’s swath along LM line 1) in order to

sonify interesting objects’ sonic shadow(s) from the opposite side.

If the vehicle detects something interesting to its right in the cost map, as it does

while moving along line 3 in Fig.3.6c, it will generate new WPs in order to perform a

loop back to its right side (lines 4, 5, 6, and 7), and thus sonify interesting objects’ sonic
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shadow(s) from the opposite side. In order to start the next LM pattern spatial period,

this CPP method will generate another LM line 8.

If the vehicle detects something interesting to its right in the cost map as while

moving along line 1 in Fig.3.6d, but it also detects something to the left/right while

moving along the planned WRbNF path 3, it will again generate new WPs in order to

perform a loop back to its right side (lines 4, 5, 6, and 7), and thus sonify interesting

objects’ sonic shadow(s) (that it made in the current LM lane 3) from the opposite side.

In order to start the next LM pattern spatial period, LM line 8 is generated.

If the vehicle detects something interesting to its left in the sonar image, as it does

while moving along line 3 in Fig.3.6e, it will plan the path 5 (using WRbNF algorithm

on cost map based on left half of side-scan sonar’s swath along LM line 3) in order to

sonify interesting objects’ sonic shadow(s) from the opposite side.

In case that the vehicle detects interesting object(s) to its right in the cost map, as it

does while moving along line 1 in Fig.3.6f, and then detects interesting object(s) to both

its left and right side while moving along path 3, the proposed WRBNF-CPP algorithm

will again generate new WPs in order to perform a loop back to its right side (lines 4,

5, 6, and 7), then line 8, and plan path 9 based on the cost map from the previous sonar

range.

Table3.1shows path lengths for all the above-mentioned cases in one LM pattern

spatial period, which are based on graphs depicted in Fig.3.6a-3.6f. The length of the

longest WRbNF generated path which diverges from the current LM line, as e.g. in

Fig.3.6b,3.6d,3.6e, and3.6f, is derived from the way in which WRbNF propagates its

costs. In case that there are interesting objects in the previous swath, placed in such a

way that WRbNF path forms consecutive isosceles right triangles, then the maximum

length of such WRbNF path 𝐿𝑊𝑅𝑏𝑁𝐹 is given by 𝐿𝑊𝑅𝑏𝑁𝐹 =
√

2𝐿.

3.5.6 Analysis of the upper and lower performance bounds

In this subsection the best- and the worst- scenarios for the WRBNF-CPP performance

are analyzed in order to predict upper and lower bounds of its performance. A per-

formance measure 𝑒𝑊𝑅𝑏𝑁𝐹−𝐶𝑃𝑃
𝐶𝐿−𝐶𝑃𝑃 𝑒𝑊𝑅𝑏𝑁𝐹−𝐶𝑃𝑃

𝐶𝐿−𝐶𝑃𝑃 is chosen to represent relative improve-

ment of the WRBNF-CPP generated coverage path 𝑙𝑊𝑅𝑏𝑁𝐹−𝐶𝑃𝑃 w.r.t. the CL-CPP path

length 𝑙𝐶𝐿−𝐶𝑃𝑃 . In case that the sea floor area which is being explored is devoid of any

interesting objects (see Fig.3.6a), then the best-case scenario improvement which the

WRBNF-CPP has over the CL-CPP algorithm, i.e. the upper bound on 𝑒𝑊𝑅𝑏𝑁𝐹−𝐶𝑃𝑃
𝐶𝐿−𝐶𝑃𝑃 , is

given by:

𝑒𝑏𝑒𝑠𝑡𝑊𝑅𝑏𝑁𝐹−𝐶𝑃𝑃
𝐶𝐿−𝐶𝑃𝑃 = 1

2(1 + 𝛼𝑙𝑚)100[%] (3.8)
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(a) Case 0: sea floor is completely barren (b) Case 1: something was detected in the
previous swath

(c) Case 2: nothing is detected in the previ-
ous swath and an interesting object was de-
tected in the current swath to the left of the
current lawnmower leg

(d) Case 3: something was detected in the
previous swath, but also to the left of the ve-
hicle’s current path

(e) Case 4: something is detected to the right
of the vehicle path in the current swath

(f) Case 5: something is spotted both to the
left and right of the vehicle’s current path

Figure 3.6: Characteristic cases for specific placement of interesting objects w.r.t. the previous
left, or right sonar swath.

38



Sonar Data-based Coverage Path Planning Algorithms

Table 3.1: Path lengths for different specific cases of the WRBNF-CPP algorithm behavior

Case Path length of the Path length of the

No. CL-CPP method WRBNF-CPP method

0 4𝐿+ 4𝑊 2𝐿+ 4𝑊

1 4𝐿+ 4𝑊 ≤ 𝐿(1 +
√

2) + 4𝑊

2 4𝐿+ 4𝑊 5𝐿+ 6𝑊

3 4𝐿+ 4𝑊 ≤ 𝐿(4 +
√

2) + 6𝑊

4 4𝐿+ 4𝑊 ≤ 𝐿(2 +
√

2) + 4𝑊

5 4𝐿+ 4𝑊 ≤ 𝐿(3 + 2
√

2) + 6𝑊

5’ 4𝐿+ 4𝑊 ≤ 𝐿(4 + 2
√

2) + 8𝑊

If parameter 𝛼𝑙𝑚 → 0, the improvement of the WRbNF-CPP method tends to

𝑒𝑏𝑒𝑠𝑡𝑊𝑅𝑏𝑁𝐹−𝐶𝑃𝑃
𝐶𝐿−𝐶𝑃𝑃 → 𝐸𝑊𝑅𝑏𝑁𝐹

𝑏𝑒𝑠𝑡 = 50%, ensuring a twice shorter coverage path than in case

of CL-CPP. On the other hand, if 𝛼𝑙𝑚 → ∞, the relative improvement tends to go to

𝑒𝑏𝑒𝑠𝑡𝑊𝑅𝑏𝑁𝐹−𝐶𝑃𝑃
𝐶𝐿−𝐶𝑃𝑃 → 0%.

In case interesting objects are positioned in such a way that the vehicle has do to

a maneuver shown in Fig.3.6f, with line 1 not being straight, but a diverged path

planned by WRbNF algorithm based on previous LM lane’s sonar data (as is line 5
in Fig.3.6c) in each LM pattern spatial period, and then do a loop back as in case of

Fig.3.6c, then the worst-case scenario improvement (case 5’ in Table3.1) which the

WRBNF-CPP has over the CL-CPP method, i.e. the lower bound on 𝑒𝑊𝑅𝑏𝑁𝐹−𝐶𝑃𝑃
𝐶𝐿−𝐶𝑃𝑃 , is

given by:

𝑒𝑤𝑜𝑟𝑠𝑡𝑊𝑅𝑏𝑁𝐹−𝐶𝑃𝑃
𝐶𝐿−𝐶𝑃𝑃 = −(2

√
2 + 4𝛼𝑙𝑚)

4(1 + 𝛼𝑙𝑚) 100[%] (3.9)

This means that for 𝛼𝑙𝑚 → 0, the worst relative improvement tends to go to

𝑒𝑤𝑜𝑟𝑠𝑡𝑊𝑅𝑏𝑁𝐹−𝐶𝑃𝑃
𝐶𝐿−𝐶𝑃𝑃 → −70.7%. On the other hand, if 𝛼𝑙𝑚 → ∞, the worst relative im-

provement tends to go to 𝑒𝑤𝑜𝑟𝑠𝑡𝑊𝑅𝑏𝑁𝐹−𝐶𝑃𝑃
𝐶𝐿−𝐶𝑃𝑃 → −100%. It is possible for the values of

𝑒𝑊𝑅𝑏𝑁𝐹−𝐶𝑃𝑃
𝐶𝐿−𝐶𝑃𝑃 to go even below the predicted lower bound in case of multiple loopbacks

throughout the whole coverage area.

3.5.7 Simulation results

In order to visually present the WRBNF-CPP algorithm’s behavior in simulated envi-

ronment, a few performance examples are given in Fig.3.7with values of 𝛼𝑙𝑚 = 0.01,

and the percentage of sonar ranges in the coverage area containing interesting objects

𝑝𝑜𝑏𝑗 ∈ {0, 20, 40, 60, 80, 100}[%]. It is clear that the WRBNF-CPP algorithm produces, in
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terms of mean values, coverage paths which are at best approximately 50% shorter than

CL-CPP pattern (see Fig.3.7a). In Fig.3.7c,3.7e, and3.7ffor 𝑝𝑜𝑏𝑗 ∈ {20, 40, 60, 80, 100}%,

improvements w.r.t. the CL-CPP method amount to

𝑒𝑊𝑅𝑏𝑁𝐹−𝐶𝑃𝑃
𝐶𝐿−𝐶𝑃𝑃 ∈ {10,−10,−15,−20,−40}%, respectively. As for the graphical repre-

sentation of the WRBNF-CPP performance, the better WRbNF-CPP performance, the

more CL-CPP (magenta) lines are left uncovered, see Fig.3.7cand Fig.3.7e. Worsened

WRBNF-CPP performance are equivalent to more CL-CPP (magenta) lines being over-

laid by WRBNF-CPP (cyan) lines, due to loop back maneuvers, here notable in Fig.3.7e

and3.7f.

3.5.8 Statistical analysis of algorithm performance

In order to gain further insight into the performance of the proposed WRBNF-CPP

algorithm, extensive parameter variation simulations have been conducted. Parameter

𝛼𝑙𝑚 took values 𝛼𝑙𝑚 ∈ {0.01, 0.1, 0.25, 0.5, 0.75, 1, 2}, while 𝑝𝑜𝑏𝑗 had values from 0 to

100% with a 5% step. The width of the sonar range was fixed to 𝑊 = 50𝑚, and thus

LM line length was computed as 𝐿 = 𝑊/𝛼𝑙𝑚. It is important to emphasize that the

performance measure has been chosen as relative w.r.t. the CL-CPP algorithm, thus

making the results independent on the absolute values of parameters 𝐿 and 𝑊 .

For each possible tuple (𝛼𝑙𝑚, 𝑝𝑜𝑏𝑗), 100 tests with appropriate information gain cost

maps have been generated, where the interesting objects have been dispersed ran-

domly. Coverage area 𝐶 had values 𝐶 ∈ {5.5, 3.8, 3.3, 2.73, 2.34, 2.05, 1.36}[𝑘𝑚2] for

each 𝛼𝑙𝑚, respectively. The value of the coverage area depended on LM parameters

𝐿 and 𝑊 , as well as maximum mission duration set to 15ℎ at a constant mean surge

speed of 1.5𝑚/𝑠. Cost maps values were binarised in a way that the value of 𝑐 = 0.1
meant noninteresting areas, while 𝑐 = 1 meant interesting areas. Relative coverage

path length improvement of the WRBNF-CPP algorithm over the CL-CPP pattern was

averaged over 100 tests per each (𝛼𝑙𝑚, 𝑝𝑜𝑏𝑗) parameter tuple.

The results of this analysis are shown in Fig.3.8a. It can be noted that the average

improvement of the WRBNF-CPP w.r.t. the CL-CPP is most significant in the area

defined by low 𝛼𝑙𝑚, 𝛼𝑙𝑚 ≤ 0.25, with 𝑝𝑜𝑏𝑗 ≤ 15%. In these cases, the WRBNF-CPP

generates coverage paths which are on average 20 − 50% shorter than the CL-CPP

paths.

As 𝛼𝑙𝑚 grows in value, the performance of WRbNF-based CPP algorithm decreases

when compared to its estimated performance, e.g. for 𝛼𝑙𝑚 = 1 WRbNF has mean

performance of approx. −100%, which is 110% worse than the estimated −47.75%.

This is due to the property of WRbNF-based coverage path planning algorithm to plan

the path along the current lawnmower segment w.r.t. the cost map generated from
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(a) 𝛼𝑙𝑚 = 0.01, 𝐶 = 5.5𝑘𝑚2, 𝑝𝑜𝑏𝑗 =
0%, 𝑒𝑤𝑟𝑏𝑛𝑓−𝑐𝑝𝑝

𝑐𝑙−𝑐𝑝𝑝 = 50%
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(b) 𝛼𝑙𝑚 = 0.01, 𝐶 = 5.5𝑘𝑚2, 𝑝𝑜𝑏𝑗 =
20%, 𝑒𝑤𝑟𝑏𝑛𝑓−𝑐𝑝𝑝

𝑐𝑙−𝑐𝑝𝑝 = 10%
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(c) 𝛼𝑙𝑚 = 0.01, 𝐶 = 5.5𝑘𝑚2, 𝑝𝑜𝑏𝑗 =
40%, 𝑒𝑤𝑟𝑏𝑛𝑓−𝑐𝑝𝑝

𝑐𝑙−𝑐𝑝𝑝 = −10%
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(d) 𝛼𝑙𝑚 = 0.01, 𝐶 = 5.5𝑘𝑚2, 𝑝𝑜𝑏𝑗 =
60%, 𝑒𝑤𝑟𝑏𝑛𝑓−𝑐𝑝𝑝

𝑐𝑙−𝑐𝑝𝑝 = −15%
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(e) 𝛼𝑙𝑚 = 0.01, 𝐶 = 5.5𝑘𝑚2, 𝑝𝑜𝑏𝑗 =
80%, 𝑒𝑤𝑟𝑏𝑛𝑓−𝑐𝑝𝑝

𝑐𝑙−𝑐𝑝𝑝 = −20%
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(f) 𝛼𝑙𝑚 = 0.01, 𝐶 = 5.5𝑘𝑚2, 𝑝𝑜𝑏𝑗 =
100%, 𝑒𝑤𝑟𝑏𝑛𝑓−𝑐𝑝𝑝

𝑐𝑙−𝑐𝑝𝑝 = −40%

Figure 3.7: Examples of the WRBNF-CPP algorithm performance compared to the CL-CPP
pattern, with the visual representation of coverage area and coverage paths. (cyan) path of the
vehicle following the WRBNF-CPP solution, (magenta) path of the vehicle following the CL-
CPP pattern, (dark blue) low informational gain areas, (yellow) high information gain objects.
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(a) (b)

Figure 3.8: (a) WRBNF-CPP algorithm averaged improvements relative to the CL-CPP algo-
rithm. (b) Coverage path length improvements distributions of the WRBNF-CPP relative to the
CL-CPP algorithm.

the previous side-scan sonar swath. In case that there is something interesting in one

swath, and nothing interesting further along the lawnmower pattern until the end of

the mission, the vehicle will diverge to cover sonic shadows of that previous interesting

swath, but will in turn diverge from all succeeding lawnmower lines, because it will

try to fill in the gap in the previous swath, left initially by the first divergence from the

set lawnmower line.

These results are important from a system engineer’s perspective since it allows an

estimate of possible survey mission duration reduction based on an a-priori known

value of 𝛼𝑙𝑚, and a rough estimate of 𝑝𝑜𝑏𝑗 .

Best- and worst-case scenario analysis validation

Distributions of relative coverage path improvements of the WRBNF-CPP algorithm

w.r.t. the CL-CPP for each fixed 𝛼𝑙𝑚, and varied 𝑝𝑜𝑏𝑗 , are shown in Fig.3.8b. Each of the

boxplots contains the respective improvement values obtained from 2100 simulations

ran per each 𝛼𝑙𝑚 value. It can be noted that the simulation results of the best-case sce-

narios match the predicted algorithm performance given by Eq.3.8almost perfectly.

On the other hand, the worst-case performance of the WRBNF-CPP for each 𝛼𝑙𝑚, de-

scribed in Subsection3.5.6go even below the predictions given by Eq.3.9, which has

been hypothesized in Subsection3.8b.
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Better mean performance probabilities

Fig.3.9ashows the percentage of simulations 𝑝𝑏𝑒𝑡𝑡𝑒𝑟, for each 𝛼𝑙𝑚, in which the WRBNF-

CPP algorithm generated shorter coverage paths than the CL-CPP algorithm. WRbNF

has been shown to have better performance than the CL-CPP in over 35% of the simu-

lations for 𝛼𝑙𝑚 ≤ 0.1.

Worst-case performance analysis

In order to gain further insight into the less good improvements of the WRBNF-CPP

algorithm w.r.t. the CL-CPP (shown in Fig.3.8a), Fig.3.9bshows the worst-case im-

provements of the coverage paths generated by the WRBNF-CPP algorithm w.r.t. the

CL-CPP method, for parameter 𝛼𝑙𝑚 taking values 𝛼𝑙𝑚 ∈ {0.01, 0.1, 0.25, 0.5, 0.75, 1, 2}.
It is notable that WRBNF-CPP worst-case relative performance is negative for each

value of 𝛼𝑙𝑚, which is probably caused by the loop-back maneuvers and further diver-

gences of the coverage path from the initially set LM lines.

Limit case performance analysis

Curves 𝑒𝑊𝑅𝑏𝑁𝐹−𝐶𝑃𝑃
𝐶𝐿−𝐶𝑃𝑃 (𝛼𝑙𝑚, 𝑝𝑜𝑏𝑗) , 0 = 𝑝𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝑜𝑏𝑗 (𝛼𝑙𝑚) are shown in Fig.3.9c. This curve

represents the limit case in which the performance of the WRBNF-CPP algorithm can-

not guarantee to have on average better performance than the CL-CPP method. It can

also be generated based on the graph in Fig.3.8aas a curve connecting zeros of all the

curves as a function of belonging 𝛼𝑙𝑚 values.

WRBNF-CPP algorithm has on average equal performance as the CL-CPP algo-

rithm when 𝑝𝑜𝑏𝑗 ≥ 30% for 𝛼𝑙𝑚 ≤ 0.25, which is a value much greater than the value of

𝑝𝑜𝑏𝑗 by which authors’ research is motivated.

Mission (re)planning execution time

Another criterion of performance was the total mission planning and replanning Cen-

tral processing unit (CPU) time. In Fig.3.9dare given mean execution times of missions

for various 𝛼𝑙𝑚 and 𝑝𝑜𝑏𝑗 values which were used in the statistical analysis benchmarks.

The "sawtooth" pattern visible in Fig.3.9dis due to 𝛼𝑙𝑚 changing its value. It can be

noted that WRBNF-CPP method’s execution times of the order of 10𝑠, which can still

be considered online, taking into account that the vehicle will need to replan its path

while it changes LM lanes at least 50𝑚 apart which takes around 30 − 50𝑠 to traverse

at the given surge speed of 1.5𝑚/𝑠.
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Figure 3.9: (a) Percentage 𝑝𝑏𝑒𝑡𝑡𝑒𝑟[%] of all simulations ran for the WRBNF-CPP method, for
each 𝛼𝑙𝑚, in which performance of that method is better than the CL-CPP algorithm. (b) Worst
case values of 𝑒𝑊𝑅𝑏𝑁𝐹−𝐶𝑃𝑃

𝐶𝐿−𝐶𝑃𝑃 for each varied value of 𝛼𝑙𝑚. (c) Comparison of the percentages
𝑝𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 of LM segments containing the interesting object(s) needed for the performance of the
WRBNF-CPP method to be the same as the CL-CPP method. (d) Mean execution times of the
WRBNF-CPP method for the whole mission for each pair of varied values (𝛼𝑙𝑚, 𝑝𝑜𝑏𝑗).
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System engineer’s interpretation of the results

The results shown in Fig.3.8aare important from a system engineer’s perspective,

since they simplify the choice of the mission parameters 𝐿, based on the chosen side-

scan sonar range 𝑊 = 𝑤𝑠𝑠𝑠, and an estimate of possible survey mission average du-

ration reduction for an a-priori known value of 𝛼𝑙𝑚, and a rough estimate of 𝑝𝑜𝑏𝑗 . It is

also possible to extrapolate the relative improvement performance function

𝑒𝑊𝑅𝑏𝑁𝐹−𝐶𝑃𝑃
𝐶𝐿−𝐶𝑃𝑃 (𝛼𝑙𝑚, 𝑝𝑜𝑏𝑗) based on the sampled mean performance values of the WRBNF-

CPP algorithm shown in Fig.3.8a.

3.5.9 Conclusion

In this section an online side-scan sonar data-driven complete coverage path planning

algorithm for unknown large-scale marine areas has been presented. The essence of

the above-mentioned algorithm is the goal to overlap neighboring sonar ranges only

if they contain high information gain defined specifically for the current mission, in

order to remove sonic shadows around the interesting objects at the sea floor. It is

designed bearing in mind that in most exploration and survey missions, LM segments

are significantly longer than wider and that only a small part of the coverage area is

interesting for the mission.

The proposed WRBNF-CPP uses path planning to diverge from the initial CPP so-

lution LM pattern in the case that it detects interesting objects in the previous LM lane’s

side-scan sonar image. Upper and lower algorithm performance bounds are estimated

analytically in terms of the coverage path and are validated through extensive mission

parameters variation simulations. Simulation results show significantly shorter cover-

age paths obtained by the proposed CPP algorithm compared to the CL-CPP approach,

which in a limiting case, results in a twice shorter coverage path.

The next goal was to further improve WRBNF-CPP algorithm by improving its

lower performance bound and also to minimize its coverage path length even fur-

ther. Also, a future research goal is to extend this general survey approach to planning

highly detailed sonar images of interesting locations at lower altitudes, and going even

deeper to get visual data of the interesting locations. Such a multi-level 3D mission

planner would provide at least equally informative, or even more informative side-

scan sonar images, as well as visual data of the interesting locations, in a completely

autonomous manner. Processing of the data could render 3D model from visual data

by using photogrammetry methods, or even merging of the side-scan sonar data with

the visual data, thus enabling further insight into many great wonders of the under-

water world still waiting to be discovered.
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3.6 Basic Accordion Coverage Path Planning Algorithm

In this Section, the proposed coverage algorithm which we named Basic Accordion

Coverage Path Planning Algorithm (BA-CPP) is described. It is a solution to the prob-

lem defined in Subsection1.2. The name "accordion" was inspired by the way this al-

gorithm rearranges the LM pattern, expands and contracts it in some parts, just as the

accordion bellows do while accordion is played. The idea for designing this algorithm

stemmed from the ever-present drive to improve the performance of CPP algorithms.

WRBNF-CPP presented in the previous section has much better performance than

the classical overlap-all-sonar-swaths CL-CPP algorithm when, as assumed, the in-

teresting objects are very sparse, and LM lines’ length is much greater than LM lane

width, which is mostly the case in side-scan sonar exploration missions. However, for

increased values of these mission parameters, the performance of the WRBNF-CPP al-

gorithm deteriorated and was in some cases even worse than CL-CPP algorithm w.r.t.

the coverage path performance metric. Also, its computation time is growing expo-

nentially with the increase in size of cost map, i.e. the area of each individual LM lane.

This section gives a description and performance analysis of a CPP algorithm based on

heuristics in an attempt to further improve and speed up side-scan sonar data-based

CPP algorithms. These results are published in [39].

3.6.1 Behavior of the proposed algorithm

The initial solution of the BA-CPP algorithm is an LM pattern with lanes twice as wide

as the sonar range. This is, of course, a good solution only if there is nothing of interest

for the mission in the area to be covered. In case that the vehicle detects some interest-

ing object(s) in its sonar data while traversing the current LM line, the coverage path

planning algorithm should replan the rest of the mission in such a way to sonify the

interesting object(s) from the opposite side, if that has not been already done. Also,

it should again (optimistically) assume that during the rest of the mission it will not

encounter any interesting objects, and thus it will again generate the "stretched" LM

pattern for the remaining part of the mission. Moreover, in the limiting case when

the sea floor area of interest is densely covered with interesting objects, the proposed

coverage path planning algorithm should behave as the CL-CPP.

Since the proposed CPP solution is a regular pattern, at least in the initial moment

of the mission, elementary periods of the CL-CPP and the BA-CPP approach are given

in Fig.3.10hand3.10a, respectively. This is needed to analytically predict the behavior

of the CPP algorithm proposed in this section on a spatial period of width 4𝑊 , which

ends with a horizontal line. This way every LM pattern spatial period starts with a
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vertical line and is of the same width. Heuristics behind the area covering of CL-

CPP, ensure that complete coverage is achieved by the end of the mission, under the

assumptions stated in Section1.2. This is why it is not insisted that the algorithm

achieves a full coverage of the current pattern spatial period, but instead to achieve

globally complete coverage in terms of acquiring all informative data present within

the whole coverage area.

Algorithm 1 Basic Accordion Coverage Path Planner

1: WPs = add_case_0(pose,W,𝛼𝑙𝑚,L,A)
2: 𝑘 = 0
3: while 𝑥𝑎𝑢𝑣 ≤ 𝐴 do
4: pose = WPs(k);
5: pose = move_to_next_wp(pose, WPs)
6: C = cost_map(sss_image(WPs(k):WPs(k+1)))
7: if contains_int_obj(C) then
8: if (obj_to_the_right&right_not_resonified) then
9: WPs(𝑘 + 1 : 𝑒𝑛𝑑) = [ ]

10: if (direction = ’down’) then
11: WPs.add_case_1(pose,W,L,A)
12: WPs.add_case_0(WPs(end),W,L,A)
13: else if (direction = ’up’) then
14: WPs.add_case_2(pose,W,L,A)
15: WPs.add_case_0(WPs(end),W,L,A)
16: else if (obj_to_the_left&left_not_resonified) then
17: WPs(𝑘 + 1 : 𝑒𝑛𝑑) = [ ]
18: if (direction = ’down’) then
19: WPs.add_case_3(pose,W,L,A)
20: WPs.add_case_0(WPs(end),W,L,A)
21: else if (direction = ’up’) then
22: WPs.add_case_4(pose,W,L,A)
23: WPs.add_case_0(WPs(end),W,L,A)
24: else if (obj_to_the_right&obj_to_the_left&
25: &right_not_resonified&left_not_resonified) then
26: WPs(𝑘 + 1 : 𝑒𝑛𝑑) = [ ]
27: if (direction = ’down’) then
28: WPs.add_case_5(pose,W,L,A)
29: WPs.add_case_0(WPs(end),W,L,A)
30: else if (direction = ’up’) then
31: WPs.add_case_6(pose,W,L,A)
32: WPs.add_case_0(WPs(end),W,L,A)
33: 𝑘 ← 𝑘 + 1

The characteristic behavior of the proposed algorithm in specific cases of interesting

objects’ distribution is formally described in Algorithm1, and graphically represented

in Fig.3.10(Case 0). If the vehicle encounters no interesting objects in the sonar image
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of the current LM line, which is the best-case scenario, it will follow the initial LM

pattern, see Fig.3.10a, line 1 in Algorithm1. Method add_case_0(pose, W, L, A) generates

LM waypoints (WPs) from the starting position pose, with LM lanes of width 2𝑊 and

length 𝐿 until LM lanes reach coverage area’s width 𝐴.

If the vehicle detects something interesting to its right in the cost map while moving

"downwards" along the line 3 as in Fig.3.10b(Case 1), it will generate new waypoints

in order to perform a loopback to its right side (LM lines 4, 5, and 6), and thus sonify

interesting objects’ sonic shadow(s) from the opposite side, given in lines 11 and 12 in

Algorithm1.

It is important to note that methods add_case_1-6(pose, W, L, A) generate LM way-

points (WPs) from the starting position pose, with LM lanes of width 𝑊 and length

𝐿 as graphically represented in Fig.3.10for each corresponding case analyzed. This

replans the coverage path based on local sonar information gain. Calling the method

add_case_0(pose, W, L, A) after this step generates LM lanes 2𝑊 apart until coverage

area’s edge, assuming no further interesting object detection.

If there is something in the current sonar range to the right of the vehicle, as is the

case while the vehicle moves "upwards" along line 1 in Fig.3.10c(Case 2), the BA-

CPP algorithm will generate new waypoints of LM line 3, 𝑊 meters to the right of the

LM line 1, to ensure sonar shadows sonification from the opposite side, and continue

generating 2𝑊 -wide LM pattern, see lines 14 and 15 in Algorithm1.

In case that the vehicle detects interesting objects to its left side, e.g. while travers-

ing "downwards" along the LM line 3 in Fig.3.10d(Case 3), BA-CPP will generate a

new LM line 5, which is 𝑊 meters to the left of the vehicle. After this line, it sets the

line 6, again assuming no further LM lanes containing interesting objects, see lines 19
and 20 in Algorithm1. If on the other hand, the vehicle encounters an interesting ob-

ject to its left side while traversing "upwards" along the LM line 3 in Fig.3.10e(Case 4),

BA-CPP will generate a new loopback LM line 5, which is 𝑊 meters to the left of the

vehicle, and add the line 6, again assuming no further LM lanes containing interesting

objects, see lines 22 and 23 in Algorithm1.

If the vehicle detects interesting objects both to its left and right side, e.g. while

following LM line 3 "downwards" in Fig.3.10f(Case 5), it will first do a loopback

maneuver to its right side (LM lines 4, 5, and 6), and follow a new LM line 7, which is𝑊

meters to the right of the LM line 3. After this line, it sets the LM line 8, again assuming

no further LM lanes containing interesting objects. This is given in pseudocode in lines

28 and 29 in Algorithm1. In the opposite case, when the vehicle moves "up" the LM

line 3 as in Fig.3.10g(Case 6), BA-CPP will generate a loopback to the left of the vehicle

(LM lines 4, 5, and 6), and line 7 in order to sonify acoustic shadows of the objects to
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the right of its current LM line 3. This process is described by pseudocode lines 31 and

32 in Algorithm1.

In the limiting case, in which each LM lane contains interesting objects, the BA-

CPP algorithm behaves as the CL-CPP, see Fig.3.10h(Case 7). The worst-case scenario

occurs when the vehicle encounters the characteristic layout of LM lanes containing

interesting objects, as shown in Fig.3.10i(Case 8). The coverage path length for the

current LM spatial period stays the same as in Cases 5 and 6, but in this case, the

vehicle has to start the next LM spatial period at a line which is 𝑊 away from line 7,

making its cumulative coverage path significantly longer. Table3.2shows path lengths

for all the above-mentioned cases in one LM pattern spatial period, which are based

on graphs depicted in Fig.3.10a-3.10i.

3.6.2 Analysis of the upper and lower performance bounds

In this subsection the best- and the worst-case scenarios for the BA-CPP performance

are analyzed (based on the coverage path lengths of the characteristic cases given in

Table3.2) in order to predict the upper and the lower bounds of its performance. Per-

formance measure, denoted by 𝑒𝐵𝐴−𝐶𝑃𝑃
𝐶𝐿−𝐶𝑃𝑃 , is chosen to represent the relative improve-

ment of the BA-CPP generated coverage path length 𝑙𝐵𝐴−𝐶𝑃𝑃 w.r.t. the CL-CPP path

length 𝑙𝐶𝐿−𝐶𝑃𝑃 . In case that the sea floor area which is being explored is devoid of

any interesting objects (see Fig.3.10a), then the best-case scenario improvement which the

BA-CPP has over the CL-CPP algorithm, i.e. the upper bound on 𝑒𝐵𝐴−𝐶𝑃𝑃
𝐶𝐿−𝐶𝑃𝑃 , is given by:

𝑒𝑏𝑒𝑠𝑡𝐵𝐴−𝐶𝑃𝑃
𝐶𝐿−𝐶𝑃𝑃 = 1

2(1 + 𝛼𝑙𝑚)100[%] (3.10)

If the parameter 𝛼𝑙𝑚 → 0, the improvement of the BA-CPP method tends to 𝑒𝐵𝐴−𝐶𝑃𝑃
𝐶𝐿−𝐶𝑃𝑃 →

𝐸𝑏𝑒𝑠𝑡 = 50%, ensuring a twice shorter coverage path than in case of the CL-CPP. On the

other hand, if 𝛼𝑙𝑚 →∞, the relative improvement tends to go to 𝑒𝐵𝐴−𝐶𝑃𝑃
𝐶𝐿−𝐶𝑃𝑃 → 0%.

In case that the interesting objects are positioned in such a way that the vehicle has

do to a maneuver shown in Fig.3.10fin each LM pattern spatial period, then the worst-

case scenario improvement which the BA-CPP has over the CL-CPP method, i.e. the

lower bound on 𝑒𝐵𝐴−𝐶𝑃𝑃
𝐶𝐿−𝐶𝑃𝑃 , is given by:

𝑒𝑤𝑜𝑟𝑠𝑡𝐵𝐴−𝐶𝑃𝑃
𝐶𝐿−𝐶𝑃𝑃 = −𝛼𝑙𝑚

2(1 + 𝛼𝑙𝑚)100[%] (3.11)

This means that for 𝛼𝑙𝑚 → 0, the BA-CPP is never worse than the CL-CPP, i.e. 𝑒𝐵𝐴−𝐶𝑃𝑃
𝐶𝐿−𝐶𝑃𝑃 ≥

0%. On the other hand, when 𝛼𝑙𝑚 → ∞, the relative improvement tends to go to

𝑒𝐵𝐴−𝐶𝑃𝑃
𝐶𝐿−𝐶𝑃𝑃 → 𝐸𝑤𝑜𝑟𝑠𝑡 = −50%.
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(a) Case 0: Best case,
sea floor area to be
covered is devoid of
interesting objects,
i.e. the initial solu-
tion of the proposed
BA-CPP algorithm.

(b) Case 1: some-
thing was detected to
the right of the vehi-
cle in the cost map,
while moving down-
wards along the line 3

(c) Case 2: some-
thing was detected
to the right of the
vehicle in the cost
map, while moving
upwards along the
line 1

L

W

1 3

2
...
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4W
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(d) Case 3: some-
thing was detected to
the left of the vehi-
cle in the cost map,
while moving down-
wards along the line 3

L

W

1 3

2 ...

4

4W

5

6

(e) Case 4: something
was detected to the
left of the vehicle in
the cost map, while
moving upwards
along the line 3

(f) Case 5: something
was detected both to
the left and to the
right of the vehicle in
the cost map, while
moving downwards
along the line 3

L

W

1 3

2

...4

4W

5

6

7

8

(g) Case 6: some-
thing was detected
both to the left and
to the right of the
vehicle in the cost
map, while moving
upwards along the
line 3

(h) Case 7: whole area
to be covered is fully
covered by interest-
ing objects, i.e. CL-
CPP pattern.

(i) Case 8: Worst case,
added third LM lane
in a row to have inter-
esting objects

Figure 3.10: Basic accordion coverage path planning algorithm: Characteristic cases of inter-
esting objects (white ellipses) placement in current LM pattern period left and/or right of the
current vehicle path in the cost map. Sonic shadows in side-scan sonar data are denoted by
gray areas.
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Table 3.2: Path lengths for different specific cases of the BA-CPP algorithm behavior. For refe-
rence to the BA-CPP algorithm’s special behavior cases see Fig.3.10.

Case Path length of the Path length of the

No. CL-CPP method BA-CPP method

0 4𝐿+ 4𝑊 2𝐿+ 4𝑊

1 4𝐿+ 4𝑊 3𝐿+ 6𝑊

2 4𝐿+ 4𝑊 3𝐿+ 4𝑊

3 4𝐿+ 4𝑊 3𝐿+ 4𝑊

4 4𝐿+ 4𝑊 3𝐿+ 6𝑊

5 4𝐿+ 4𝑊 4𝐿+ 6𝑊

6 4𝐿+ 4𝑊 4𝐿+ 6𝑊

7 4𝐿+ 4𝑊 4𝐿+ 4𝑊

8 4𝐿+ 4𝑊 4𝐿+ 6𝑊

3.6.3 Simulation results

In order to visually represent the BA-CPP algorithm’s behavior in a simulated en-

vironment, a few performance examples are given in Fig.3.11, with two values of

𝛼𝑙𝑚 ∈ {0.01, 0.75}, and percentage of sonar ranges containing interesting objects 𝑝𝑜𝑏𝑗 ∈
{0, 25, 75, 100}[%]. It is clear that, when 𝛼𝑙𝑚 = 0.01, the BA-CPP algorithm produces,

in terms of mean values, coverage paths which are at best approximately 50% shorter

than CL-CPP pattern (see Fig.3.11a), and at worst a coverage path of equal length (see

Fig.3.11d). An example for 𝛼𝑙𝑚 = 0.75 and 𝑝𝑜𝑏𝑗 = 75% is given in Fig.3.11cto show

when BA-CPP performance becomes worse than CL-CPP by 12%.

The better BA-CPP performance is, the more CL-CPP (magenta) lines are left un-

covered, see Fig.3.11aand Fig.3.11b. Worsened BA-CPP performance are equiva-

lent to more CL-CPP (magenta) lines being overlaid by BA-CPP (dashed cyan) lines,

due to loopback maneuvers shown in Fig.3.10band3.10d, here notable in Fig.3.11c

and3.11d.

3.6.4 Statistical analysis of algorithm performance

In order to gain further insight into the behavior of the BA-CPP algorithms, its per-

formance has been evaluated for various values of mission dependent parameters 𝛼𝑙𝑚
and 𝑝𝑜𝑏𝑗 . Parameter 𝛼𝑙𝑚 have been varied as 𝛼𝑙𝑚 ∈ {0.01, 0.1, 0.25, 0.5, 0.75, 1, 2}, while

𝑝𝑜𝑏𝑗 took values from 0% to 100% with a 5% step. For each possible tuple (𝛼𝑙𝑚, 𝑝𝑜𝑏𝑗),
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(a) 𝛼𝑙𝑚 = 0.01, 𝐶 = 5.5𝑘𝑚2, 𝑝𝑜𝑏𝑗 =
0%, 𝑒𝑏𝑎−𝑐𝑝𝑝

𝑐𝑙−𝑐𝑝𝑝 = 49.5%
(b) 𝛼𝑙𝑚 = 0.01, 𝐶 = 5.5𝑘𝑚2, 𝑝𝑜𝑏𝑗 =
25%, 𝑒𝑏𝑎−𝑐𝑝𝑝

𝑐𝑙−𝑐𝑝𝑝 = 36%

(c) 𝛼𝑙𝑚 = 0.75, 𝐶 = 2.34𝑘𝑚2, 𝑝𝑜𝑏𝑗 =
75%, 𝑒𝑏𝑎−𝑐𝑝𝑝

𝑐𝑙−𝑐𝑝𝑝 = −12%
(d) 𝛼𝑙𝑚 = 0.01, 𝐶 = 5.5𝑘𝑚2, 𝑝𝑜𝑏𝑗 =
100%, 𝑒𝑏𝑎−𝑐𝑝𝑝

𝑐𝑙−𝑐𝑝𝑝 = 0%

Figure 3.11: Examples of the BA-CPP algorithm performance compared to the CL-CPP pattern,
with the visual representation of coverage area and coverage paths. (cyan dashed) path of the
vehicle following the BA-CPP solution, (magenta) path of the vehicle following the CL-CPP
pattern, (dark blue) low informational gain objects, and (yellow) high information gain objects.
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100 tests with appropriate information gain cost maps have been generated, where

the interesting objects have been dispersed randomly. Coverage area 𝐶 had values

𝐶 ∈ {5.5, 3.8, 3.3, 2.73, 2.34, 2.05, 1.36}[𝑘𝑚2] for each 𝛼𝑙𝑚, respectively. Cost maps val-

ues were binarised in a way that the value of 𝑐 = 0.1 meant noninteresting areas, while

𝑐 = 1 meant interesting areas. Relative coverage path length improvement of the BA-

CPP algorithm over the CL-CPP pattern was averaged over 100 tests per each (𝛼𝑙𝑚, 𝑝𝑜𝑏𝑗)
parameter tuple.

The results of this analysis are shown in Fig.3.12a. It can be noted that the average

improvement of the BA-CPP w.r.t. the CL-CPP is most significant in the area defined

by low 𝛼𝑙𝑚, 𝛼𝑙𝑚 ≤ 0.25, with 𝑝𝑜𝑏𝑗 ≤ 20%. In these cases, the BA-CPP generates coverage

paths which are on average 25− 50% shorter than the CL-CPP paths. For 𝛼 ≤ 0.1, BA-

CPP coverage path is mostly shorter than the CL-CPP counterpart.

Best- and worst-case scenario analysis validation

The goal of the aforementioned parameter variation analysis was to validate analytical

best- and worst-case performance given in Subsection3.6.2. Aggregated distributions

of relative coverage path improvements of the BA-CPP algorithm w.r.t. the CL-CPP for

each fixed 𝛼𝑙𝑚, and varied 𝑝𝑜𝑏𝑗 , are shown in Fig.3.12b. Each of the boxplots contains

the respective improvement values obtained from 2100 simulations ran per each 𝛼𝑙𝑚

value. It can be noted that the simulation results of the best-case scenarios match the

predicted algorithm performance given by Eq.3.10. For each (𝛼𝑙𝑚, 𝑝𝑜𝑏𝑗) tuple 2 worst-

case scenarios, shown in Fig.3.10f, have been generated, and the performance of the

BA-CPP algorithm in these cases also matches the predictions given by Eq.3.11.

Fig.3.12cshows the percentage of simulations 𝑝𝑏𝑒𝑡𝑡𝑒𝑟, for each 𝛼𝑙𝑚, in which the

BA-CPP generated shorter complete coverage paths than the CL-CPP. It can be noted

that even for 𝛼𝑙𝑚 ≤ 0.25 over 70% of simulations gave better results using the BA-CPP

instead of the CL-CPP. This percentage jumps significantly to 90% and even 100% as

𝛼𝑙𝑚 decreases to values of 0.1, and 0.01, respectively. This fact serves as a good example

that shows how the BA-CPP generates shorter complete coverage paths than the CL-

CPP in a wide range of parameter 𝛼𝑙𝑚 values that mostly used in practice.

Limit case performance analysis

To generalize the conclusion about the BA-CPP algorithm performance, sample values

of improvement percentages 𝑒𝐵𝐴−𝐶𝑃𝑃
𝐶𝐿−𝐶𝑃𝑃 resulting from the statistical analysis of the BA-

CPP performance, have been interpolated by using a polynomial function of the third

order of parameters 𝛼𝑙𝑚 and 𝑝𝑜𝑏𝑗 by using Levenberg-Marquardt method. This function
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(a) BA-CPP algorithm averaged improve-
ments relative to CL-CPP method.

(b) Coverage path lenth improvements
distributions of the BA-CPP relative to the
CL-CPP.

(c) Percentage 𝑝𝑏𝑒𝑡𝑡𝑒𝑟[%] of 630 simulations
ran for each 𝛼𝑙𝑚 in which performance of
the BA-CPP was better than the CL-CPP
algorithm.

(d) Critical percentage of coverage area
populated with interesting objects 𝑝𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝑜𝑏𝑗

for which performance of the BA-CPP de-
teriorates to performance of the CL-CPP.

Figure 3.12: BA-CPP algorithm performance analysis.
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is given by the following equation:

𝑒𝐵𝐴−𝐶𝑃𝑃
𝐶𝐿−𝐶𝑃𝑃 (𝛼𝑙𝑚, 𝑝𝑜𝑏𝑗) =

3∑︁
𝑖=0

3∑︁
𝑗=0

𝑘𝑖𝑗𝛼
𝑖
𝑙𝑚𝑝

𝑗
𝑜𝑏𝑗 (3.12)

where 𝑘00 = 50.2, 𝑘10 = −52.42, 𝑘01 = −0.6427, 𝑘20 = 34.86, 𝑘11 = −0.09411, 𝑘02 =
−0.002369, 𝑘30 = −8.262, 𝑘21 = −0.05325, 𝑘12 = 0.00327,and 𝑘03 = 4.38𝑒−05 are nonzero

coefficients estimated within 95% confidence bounds. This result is important from a

system engineer’s perspective, since it allows an estimate of possible survey mission

average speed-up based on an a-priori known value of 𝛼𝑙𝑚, and a rough estimate of

𝑝𝑜𝑏𝑗 . Conversely, based on a desired mission speed-up 𝑒𝐵𝐴−𝐶𝑃𝑃
𝐶𝐿−𝐶𝑃𝑃 [%] and an expected

value of 𝑝𝑜𝑏𝑗 , it is possible to get the value of coverage mission design parameter 𝛼𝑙𝑚,

and divide coverage area accordingly if needed.

Curve 𝑒𝐵𝐴−𝐶𝑃𝑃
𝐶𝐿−𝐶𝑃𝑃 (𝛼𝑙𝑚, 𝑝𝑜𝑏𝑗) = 0 = 𝑝𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝑜𝑏𝑗 (𝛼𝑙𝑚) is shown in Fig.3.12d. This curve

represents the limit case in which performance of the BA-CPP algorithm cannot be

guaranteed to be on average better than performance of the CL-CPP. It can also be

generated based on the graph in Fig.3.12aas a curve connecting zeros of all the curves

as a function of belonging 𝛼𝑙𝑚 values.

The main conclusion that needs to be stressed is that even when 𝛼𝑙𝑚 = 1, the cover-

age area can contain even 35% of LM lanes populated with interesting objects in order

for the BA-CPP algorithm to have on average the same performance as the CL-CPP

method. For 𝛼𝑙𝑚 ≤ 0.25, the percentage of LM lanes of interest needs to be more than

70% for the BA-CPP to become equally inefficient as the CL-CPP. Since it is assumed

that 𝑝𝑜𝑏𝑗 ≪ 50%, the BA-CPP is thus expected to be better than the CL-CPP in almost

any case of large-scale underwater area scarcely populated with interesting objects.

3.6.5 Conclusion

The BA-CPP is an online side-scan sonar data-driven complete coverage path planning

algorithm for unknown large-scale marine areas. It is designed bearing in mind that

in most exploration and survey missions, LM segments are significantly longer than

wider, and that only a small part of the coverage area is interesting for the survey mis-

sion. The BA-CPP algorithm overlaps neighboring side-scan sonar swaths only if they

contain high information gain defined specifically for the current mission. The pro-

posed algorithm replans the rest of the coverage mission taking estimated local sonar

data information gain into consideration. Algorithm’s upper and lower performance

bounds are estimated analytically.

Its performance is tested through extensive mission parameters variation simula-
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tions, which validate the modeled performance bounds. Simulation results show sig-

nificantly shorter coverage paths obtained by the BA-CPP algorithm compared to the

CL-CPP approach, which in a limiting case, results in a twice shorter coverage path.

The next goal was to improve the BA-CPP algorithm by tightening its lower bounds

of performance when it becomes worse than the CL-CPP algorithm and also to mini-

mize coverage path length even further.

3.7 Extended Accordion Coverage Path Planning Algo-

rithm

The proposed coverage algorithm which we named Extended Accordion Coverage

Path Planning (EXTA-CPP) is described in this section. The idea for designing this

algorithm stemmed from the ever-present drive to improve the performance of CPP

algorithms. BA-CPP presented in the previous section has much better performance

than the classical overlap-all-sonar-swaths CL-CPP algorithm when, as assumed, the

interesting objects are very sparse, and LM lines’ length is much greater than LM lane

width, which is mostly the case in side-scan sonar exploration missions. BA-CPP algo-

rithm’s performance was even better than WRBNF-CPP algorithm’s performance on

a wider range of mission parameters. However, for increased values of these mission

parameters, the performance of the BA-CPP algorithm deteriorated and was in some

cases even 10% worse than CL-CPP algorithm w.r.t. the coverage path performance

metric.

This section gives a description and performance analysis of a CPP algorithm that

is based on heuristics of BA-CPP algorithm for initial adaptive mission (re)planning

w.r.t. the available side-scan sonar data. At some point, as seen in the previous section,

this adaptive behavior can lead to worse performance compared to nonadaptive CL-

CPP algorithm. Exactly this is the main idea behind extending the BA-CPP algorithm

into the EXTA-CPP algorithm, to start the mission with adaptive coverage planning,

but when the percentage of LM lanes containing interesting objects and the LM lane

width-to-length ratio reach critical values for which BA-CPP has the same performance

as CL-CPP - then switch to nonadaptive CL-CPP coverage planning in order to narrow

down the lower performance limit w.r.t. the coverage path length.

3.7.1 Behavior of the proposed algorithm

The main drawback of the results of statistical analysis of the BA-CPP algorithm [39]

is that its worst-case mean improvements in coverage path w.r.t. the CL-CPP method
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are negative and even below −10%.

This problem has been successfully alleviated as much as possible by the Extended

Accordion CPP (EXTA-CPP) algorithm presented in this Subsection. In essence, the

goal was to extend the BA-CPP algorithm so that it starts the CPP mission behaving

the same way as the BA-CPP algorithm (described in detail in [39]), but then switch to

behaving the same as the CL-CPP method as soon as it estimates that the percentage

𝑝𝑜𝑏𝑗 of LM lanes containing interesting objects has reached the critical value 𝑝𝑜𝑏𝑗 =
𝑝𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙(𝛼𝑙𝑚). The value of 𝑝𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙(𝛼𝑙𝑚) represents a function given by:

𝑝𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙(𝛼𝑙𝑚) = 𝑝𝑜𝑏𝑗 ∋ 𝑒𝑏𝑎−𝑐𝑝𝑝
𝑐𝑙−𝑐𝑝𝑝 (𝛼𝑙𝑚, 𝑝𝑜𝑏𝑗) , 0. (3.13)

Function 𝑒𝑏𝑎−𝑐𝑝𝑝
𝑐𝑙−𝑐𝑝𝑝 (𝛼𝑙𝑚, 𝑝𝑜𝑏𝑗) represents the relative coverage path/duration improve-

ment of the BA-CPP algorithm w.r.t. the CL-CPP method, which depends on mission

parameters 𝛼𝑙𝑚 and 𝑝𝑜𝑏𝑗 , and it can be extrapolated based on results shown in Fig.

3.12d, and values 𝑝𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙(𝛼𝑙𝑚) actually represent its zeros for corresponding values of

the mission parameter 𝛼𝑙𝑚. Coverage path lengths of the EXTA-CPP algorithm are thus

in the worst case equally long as the BA-CPP coverage paths.

3.7.2 Analysis of the upper and lower performance bounds

Since EXTA-CPP algorithm has been designed to improve only BA-CPP algorithm’s

worse performance w.r.t. the CL-CPP method, its best-case scenario performance im-

provement 𝑒𝑏𝑒𝑠𝑡 𝑒𝑥𝑠𝑡𝑎−𝑐𝑝𝑝
𝑐𝑙−𝑐𝑝𝑝 is equal to the best-case scenario performance improvement

of the BA-CPP algorithm, given by Eq. (3.14).

𝑒𝑏𝑒𝑠𝑡 𝑒𝑥𝑠𝑡𝑎−𝑐𝑝𝑝
𝑐𝑙−𝑐𝑝𝑝 = 𝑒𝑏𝑒𝑠𝑡𝐵𝐴−𝐶𝑃𝑃

𝐶𝐿−𝐶𝑃𝑃 = 1
2(1 + 𝛼𝑙𝑚)100[%] (3.14)

It can be deduced that in the worst-case scenario, the improvement of the EXTA-CPP

algorithm w.r.t. the CL-CPP, denoted by 𝑒𝑤𝑜𝑟𝑠𝑡 𝑒𝑥𝑡𝑎−𝑐𝑝𝑝
𝑐𝑙−𝑐𝑝𝑝 will be better than the one of the

BA-CPP algorithm 𝑒𝑤𝑜𝑟𝑠𝑡 𝑏𝑎−𝑐𝑝𝑝
𝑐𝑙−𝑐𝑝𝑝 given by Eq. (3.11), i.e.

𝑒𝑤𝑜𝑟𝑠𝑡 𝑒𝑥𝑡𝑎−𝑐𝑝𝑝
𝑐𝑙−𝑐𝑝𝑝 ≥

(︂
𝑒𝑤𝑜𝑟𝑠𝑡 𝑏𝑎−𝑐𝑝𝑝
𝑐𝑙−𝑐𝑝𝑝 = −𝛼𝑙𝑚

2(1 + 𝛼𝑙𝑚)100[%]
)︂
. (3.15)

This is due to the fact that EXTA-CPP algorithm avoids the negative effect of the

BA-CPP algorithm’s loop-back maneuvers in the worst-case scenario, and instead of

that plans the rest of the mission in a nonadaptive fashion as the CL-CPP method does,

without any further loop-backs. Also, the results show that 𝑒𝑒𝑥𝑡𝑎−𝑐𝑝𝑝
𝑐𝑙−𝑐𝑝𝑝 ≥ −5%,∀(𝛼𝑙𝑚, 𝑝𝑜𝑏𝑗).
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3.7.3 Statistical analysis of simulation results

In order to gain further insight into the performance of the proposed EXTA-CPP algo-

rithm, extensive parameter variation simulations have been conducted with the same

settings as described in [39] and [39]. Parameter 𝛼𝑙𝑚 was varied as

𝛼𝑙𝑚 ∈ {0.01, 0.1, 0.25, 0.5, 0.75, 1, 2}, while 𝑝𝑜𝑏𝑗 took values from 0% to 100% with a 5%
step. For each possible tuple (𝛼𝑙𝑚, 𝑝𝑜𝑏𝑗), 100 tests with appropriate information gain

cost maps have been generated, where the interesting objects have been dispersed ran-

domly. Coverage area 𝐶 had values 𝐶 ∈ {5.5, 3.8, 3.3, 2.73, 2.34, 2.05, 1.36}[𝑘𝑚2] for

each 𝛼𝑙𝑚, respectively. Relative coverage path length improvement of the presented

algorithms over the CL-CPP pattern was averaged over 100 tests per each (𝛼𝑙𝑚, 𝑝𝑜𝑏𝑗)
parameter tuple.

The results of this analysis are shown in Fig.3.13a. It can be noted that the average

improvement of the EXTA-CPP w.r.t. the CL-CPP is the most significant in the area

defined by low 𝛼𝑙𝑚, 𝛼𝑙𝑚 ≤ 0.25, with 𝑝𝑜𝑏𝑗 ≤ 20%. In these cases the EXTA-CPP gener-

ates coverage paths which are on average 25−50% shorter than the CL-CPP paths. For

𝛼 ≤ 0.1, EXTA-CPP coverage path is mostly shorter than the CL-CPP counterpart.

Comparing Fig.3.13aand Fig. 2a from [39] it can be noted that the inequality

𝑚𝑖𝑛{𝑒𝑒𝑥𝑡𝑎−𝑐𝑝𝑝
𝑐𝑙−𝑐𝑝𝑝 } ≥ 𝑚𝑖𝑛{𝑒𝑏𝑎−𝑐𝑝𝑝

𝑐𝑙−𝑐𝑝𝑝 } holds for every (𝛼𝑙𝑚, 𝑝𝑜𝑏𝑗) pair, which is in accordance

with Eq. (3.11).

Best- and worst-case scenario analysis validation

Distributions of relative coverage path improvements of the EXTA-CPP algorithm w.r.t.

the CL-CPP for each fixed 𝛼𝑙𝑚, and varied 𝑝𝑜𝑏𝑗 , are shown in Fig.3.13b. Each of the box-

plots contains the respective improvement values obtained from 630 simulations ran

per each 𝛼𝑙𝑚 value. It can be noted that the simulation results of the best-case sce-

narios match the predicted algorithm’s best performance (given in Subsection3.7.2).

The worst-case performance shown in Fig.3.13balso match the predictions given by

Eq.3.11. It is notable that EXTA-CPP algorithm’s design makes its performance al-

ways above the worst-case performance of the BA-CPP method, as was predicted by

Eq. (3.11).

Limit case performance analysis

Curve 𝑒𝐸𝑋𝑇𝐴−𝐶𝑃𝑃
𝐶𝐿−𝐶𝑃𝑃 (𝛼𝑙𝑚, 𝑝𝑜𝑏𝑗) = 0 = 𝑝𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝑜𝑏𝑗 (𝛼𝑙𝑚) is shown in Fig.3.13c. This curve repre-

sents the limit case in which performance of the EXTA-CPP algorithm cannot be guar-

anteed to be on average better than performance of the CL-CPP. The main conclusion

that needs to be stressed is that even when 𝛼𝑙𝑚 = 1, the coverage area can contain even
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(a) (b)

(c)

Figure 3.13: (a) Analysis of parameter variation simulations for EXTA-CPP method. (b) Upper
and lower bounds of EXTA-CPP algorithm performance validation. (c) Limit case performance
of EXTA-CPP performance w.r.t. the CL-CPP algorithm.
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30% of LM lanes populated with interesting objects in order for the EXTA-CPP algo-

rithm to have on average the same performance as the CL-CPP method. For 𝛼𝑙𝑚 ≤ 0.25,

the percentage of LM lanes of interest needs to be more than 67% for the EXTA-CPP

to become equally inefficient as the CL-CPP. Since it is assumed that 𝑝𝑜𝑏𝑗 ≪ 50%, the

EXTA-CPP is thus expected to be better than the CL-CPP in almost any case of large-

scale underwater area scarcely populated with interesting objects.

3.8 Optimized Accordion Coverage Path Planning Algo-

rithm

The main drawback of the EXTA-CPP algorithm is the fact that its performance dete-

riorates at approximately the same rate as the BA-CPP algorithm. The reason for this

behavior is that the EXTA-CPP, as well as any other online CPP algorithms, does not

know at what point the percentage of LM lanes containing interesting objects 𝑝𝑜𝑏𝑗 will

reach its critical value, after which accordion-based CPP methods show worse perfor-

mance than the CL-CPP method.

The results shown in Fig.3.13agave rise to another idea that an Optimized Accordion-

based Coverage Path Planning (OPTA-CPP) algorithm could be designed, which would

replan its mission taking into account not only if the vehicle detects some interesting

objects to the left and/or right of it in the current LM lane’s side-scan sonar data, but

also taking into account the range of dispersion of these objects along the LM lane.

3.8.1 Behavior of the proposed algorithm

The proposed OPTA-CPP algorithm starts off coverage mission behaving the same

way as the BA-CPP algorithm, but with shorter loopback paths in case that the vehicle

detects some interesting object(s) left and/or right of its current LM path. Character-

istic 9 cases of decision-making based on the current LM spatial pattern period con-

taining arbitrarily positioned interesting objects is described in detail in [39] and for

brevity is not repeated here. Cases 0, 1, 3, 4, 5, and 6 given in Fig. 1 in [39] are here

analyzed as cases 0, 1, 2, 3 in Fig.3.14.

Instead of traversing the whole leg length 𝐿 when an interesting object is detected,

the vehicle replans its coverage path to traverse only a portion of that length equal to

the range of interesting objects’ dispersion 100𝑘[%], 𝑘 ∈ [0, 1] in the current LM lane, see

Fig.3.14. Also, the vehicle in these cases would not, generally speaking, move along

horizontal lines of lawnmower segment width 𝑊 length, but instead, it would move

diagonally towards the portion of the newly generated LM line, which is 2𝑊 away
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from the currently followed line, see Fig.3.14. All characteristic cases of algorithm

behavior are given in Fig.3.14. Based on everything previously stated, and based on

the graphical representation of the above-mentioned characteristic cases in Fig.3.14,

coverage path lengths of the OPTA-CPP algorithm in such cases are evidently always

shorter than the ones that the BA-CPP approach generates, and thus 𝑒𝑜𝑝𝑡𝑎−𝑐𝑝𝑝
𝑐𝑙−𝑐𝑝𝑝 ≥ 𝑒𝑏𝑎−𝑐𝑝𝑝

𝑐𝑙−𝑐𝑝𝑝 .

The reason why BA-CPP has been chosen for the above-mentioned coverage path

optimization and not the EXTA-CPP algorithm (which has been shown to have much

tighter lower performance bounds) is because otherwise 𝑝𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 would have to be es-

timated for each 𝑘 ∈ [0, 1]. This is of course possible to do, and is a part of our future

work.

3.8.2 Analysis of the upper and lower performance bounds

Best-case scenario performance improvement 𝑒𝑏𝑒𝑠𝑡 𝑜𝑝𝑡𝑎−𝑐𝑝𝑝
𝑐𝑙−𝑐𝑝𝑝 of the OPTA-CPP algorithm could

be described the same way as for the BA-CPP algorithm (see Fig.3.14a), i.e. 𝑒𝑏𝑒𝑠𝑡 𝑜𝑝𝑡𝑎−𝑐𝑝𝑝
𝑐𝑙−𝑐𝑝𝑝 =

𝑒𝑏𝑒𝑠𝑡 𝑏𝐴−𝑐𝑝𝑝
𝑐𝑙−𝑐𝑝𝑝 .

Worst-case scenario for one LM pattern spatial period is shown in Fig.3.14d. Two

types of worst-case scenarios can be defined for the OPTA-CPP algorithm. Let us

assume that interesting objects shown in Fig.3.14dare located in the range of first

[𝑘%] of each LM lane length. Now the path length of the OPTA-CPP algorithm can be

parametrized by the parameter 𝑘 as well:

𝑙𝑜𝑝𝑡𝑎−𝑐𝑝𝑝 = 2𝐿+ 2𝑘𝐿+ 6𝑊 = 2𝐿(1 + 𝑘 + 3𝛼𝑙𝑚). (3.16)

With CL-CPP method’s fixed coverage path length per one spatial period (see Fig.3.2a)

𝑙𝑐𝑙−𝑐𝑝𝑝 = 4𝐿+ 4𝑊 , the relative improvement of the OPTA-CPP algorithm w.r.t. the CL-

CPP method in the worst case is given by:

𝑒𝑤𝑜𝑟𝑠𝑡 𝑜𝑝𝑡𝑎−𝑐𝑝𝑝
𝑐𝑙−𝑐𝑝𝑝 = 1− 𝑘 − 𝛼𝑙𝑚

2(1 + 𝛼𝑙𝑚) ≥ 𝑒𝑤𝑜𝑟𝑠𝑡 𝑏𝑎−𝑐𝑝𝑝
𝑐𝑙−𝑐𝑝𝑝 . (3.17)

In the worst-case scenario in which all the interesting objects are dispersed along the

whole length of all LM lanes, i.e. 𝑘 → 1, and thus we obtain:

𝑒𝑤𝑜𝑟𝑠𝑡 𝑜𝑝𝑡𝑎−𝑐𝑝
𝑐𝑙−𝑐𝑝𝑝 → −𝛼𝑙𝑚

2(1 + 𝛼𝑙𝑚) = 𝑒𝑤𝑜𝑟𝑠𝑡 𝑏𝑎−𝑐𝑝𝑝
𝑐𝑙−𝑐𝑝𝑝 . (3.18)

On the other hand, in the worst-case scenario in which all the interesting objects are

dispersed along an infinitesimally short part of each LM lane, at its bottom or top, i.e.
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(a) Case 0: best case - sea floor is com-
pletely barren

(b) Case 1: something was detected in the
swath to the left of the vehicle in the cost
map

(c) Case 2: nsomething was detected in the
swath to the right of the vehicle in the cost
map

(d) Case 3: something was detected in the
swaths both to the left and right of the ve-
hicle in the cost map

Figure 3.14: Optimized accordion coverage path planning algorithm: Characteristic cases for
specific placement of interesting objects left or right of the current vehicle path in the cost map.
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𝑘 → 0, and thus we obtain:

𝑒𝑤𝑜𝑟𝑠𝑡 𝑜𝑝𝑡𝑎−𝑐𝑝𝑝
𝑐𝑙−𝑐𝑝𝑝 → 1− 𝛼𝑙𝑚

2(1 + 𝛼𝑙𝑚) > 𝑒𝑤𝑜𝑟𝑠𝑡 𝑏𝑎−𝑐𝑝𝑝
𝑐𝑙−𝑐𝑝𝑝 . (3.19)

Based on Eq. (3.18) and (3.19), it can be concluded that the theoretical lower bound

on OPTA-CPP algorithm’s performance is the BA-CPP algorithm’s worst-case perfor-

mance. As the range of interesting objects’ dispersion along the LM lanes’ length de-

creases, i.e. 𝑘 → 0, so does the OPTA-CPP algorithm become increasingly better than

the BA-CPP algorithm.

3.8.3 Statistical analysis of simulation results

In order to gain further insight into the performance of the proposed OPTA-CPP algo-

rithm, extensive parameter variation simulations have been conducted with the same

settings as described in Subsection3.7.3. The results of this analysis for interesting ob-

jects dispersed in the lower 𝑘 = 10% of LM lanes are shown in Fig.3.15a. It can be

noted that the average improvement of the OPTA-CPP w.r.t. the CL-CPP is the most

significant in the area defined by low 𝛼𝑙𝑚, 𝛼𝑙𝑚 ≤ 0.5, with 𝑝𝑜𝑏𝑗 ≤ 20%. In these cases

the OPTA-CPP generates coverage paths which are on average 25 − 50% shorter than

the CL-CPP paths. For 𝛼 ≤ 0.5, OPTA-CPP coverage path is on average always shorter

than the CL-CPP counterpart.

Comparing Fig.3.13a,3.15a, and Fig. 2a from [39], it can be noted that the follow-

ing inequalities hold: 𝑚𝑖𝑛{𝑒𝑜𝑝𝑡𝑎−𝑐𝑝𝑝
𝑐𝑙−𝑐𝑝𝑝 (𝑘 = 0.1)} ≥ 𝑚𝑖𝑛{𝑒𝑏𝑎−𝑐𝑝𝑝

𝑐𝑙−𝑐𝑝𝑝 } and 𝑚𝑖𝑛{𝑒𝑜𝑝𝑡𝑎−𝑐𝑝𝑝
𝑐𝑙−𝑐𝑝𝑝 (𝑘 =

0.1)} ≥ 𝑚𝑖𝑛{𝑒𝑒𝑥𝑡𝑎−𝑐𝑝𝑝
𝑐𝑙−𝑐𝑝𝑝 }, for every (𝛼𝑙𝑚, 𝑝𝑜𝑏𝑗) pair, which is in accordance with Eq. (3.18)

and (3.19).

Best- and worst-case scenario analysis validation

Distributions of relative coverage path improvements of the OPTA-CPP for k=10% al-

gorithm w.r.t. the CL-CPP for each fixed 𝛼𝑙𝑚, and varied 𝑝𝑜𝑏𝑗 , are shown in Fig.3.15b.

Each of the boxplots contains the respective improvement values obtained from 630
simulations ran per each 𝛼𝑙𝑚 value. It can be noted that the simulation results of

the best-case scenarios match the predicted algorithm’s best performance (given in

Subsection3.8.2). Moreover, OPTA-CPP’s worst-case performance match the predic-

tions given by Eq. (3.18). It is notable that OPTA-CPP algorithm’s design makes its

worst-case performance always better than the worst-case performance of the BA-CPP

method for 𝑘 = 10%, which was predicted by Eq. (3.17).
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(a) (b)

(c) (d)

Figure 3.15: (a) Analysis of parameter variation simulations for OPTA-CPP method in case
that interesting objects are dispersed in 𝑘 = 10% of the LM lane length. (b) Coverage path lenth
improvements distributions of the OPTA-CPP relative to the CL-CPP for 𝑘 = 10%. (c) Limit
case performance of OPTA-CPP performance w.r.t. the CL-CPP algorithm for 𝑘 = 100%. (d)
Limit case performance of OPTA-CPP performance w.r.t. the CL-CPP algorithm for 𝑘 = 10%.
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Limit case performance function

Curve 𝑒𝑂𝑃𝑇𝐴−𝐶𝑃𝑃
𝐶𝐿−𝐶𝑃𝑃 (𝛼𝑙𝑚, 𝑝𝑜𝑏𝑗) = 0 = 𝑝𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝑜𝑏𝑗 (𝛼𝑙𝑚) is shown in Figs.3.15cand3.15dfor

cases when interesting objects are dispersed in 𝑘 = 100% and 𝑘 = 10% of the LM

lane length, respectively. This curve represents the limit case in which performance

of the OPTA-CPP algorithm cannot be guaranteed to be on average better than per-

formance of the CL-CPP. The main conclusion that needs to be stressed is that even

when 𝛼𝑙𝑚 = 1 and 𝑘 = 100%, see Fig.3.15c, the coverage area can contain over 35%
of LM lanes populated with interesting objects in order for the OPTA-CPP algorithm

to have on average the same performance as the CL-CPP method. For 𝛼𝑙𝑚 ≤ 0.25
and 𝑘 = 100%, the OPTA-CPP is always better than the CL-CPP. When 𝑘 = 10%, the

average performance compared to the CL-CPP become even better, so much so that

the OPTA-CPP is always better than the CL-CPP for 𝛼𝑙𝑚 going as high as 𝛼𝑙𝑚 ≤ 0.5.

Since it is assumed that 𝑝𝑜𝑏𝑗 ≪ 50%, the OPTA-CPP is thus expected to be better than

the CL-CPP in almost any case of large-scale underwater area scarcely populated with

interesting objects.

3.9 Comparison of the implemented coverage path plan-

ning algorithms

In order to see which of the coverage path planning algorithms proposed in this chap-

ter has the best performance w.r.t. the various performance metrics, in this section this

is given in an aggregated way. Performance metrics used to compare different aspects

of CPP algorithms’ performance were:

1.better mean performance probabilities - giving the dependence of the percentage

of simulations w.r.t. in which during extensive parameter variation CPP algo-

rithms presented in this chapter generated shorter coverage paths than the CL-

CPP algorithm,

2.worst-case performance analysis - shows the worst-case improvements of the

coverage paths generated by all the above-mentioned algorithms w.r.t. the CL-

CPP method,

3.limit (critical) case performance analysis - shows in which cases the performance

of the CPP algorithms presented in this chapter cannot guarantee to have on

average better performance than the CL-CPP method, and

4.mission (re)planning execution time - for coverage planning algorithm complex-

ity analysis and speed vs. improved coverage path trade-off analysis.
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3.9.1 Better mean performance probabilities

Fig.3.16ashows the percentage of simulations 𝑝𝑏𝑒𝑡𝑡𝑒𝑟, for each 𝛼𝑙𝑚, in which the CPP al-

gorithms presented in this chapter generated shorter coverage paths than the CL-CPP

algorithm. WRBNF-CPP approach from [40] has been shown to have better perfor-

mance than the CL-CPP in 35% of the simulations for 𝛼𝑙𝑚 ≤ 0.1. Accordion-based CPP

algorithms presented in this chapter have been shown to have better performance in

over 90% of the simulations for 𝛼𝑙𝑚 ≤ 0.1. BA-CPP and EXTA-CPP algorithms have

shown the same performance in this comparison criterion. It is interesting to note how

OPTA-CPP for 𝑘 = 10% outperforms all three of its predecessors, and is always better

than the CL-CPP algorithm for 𝛼𝑙𝑚 ≤ 0.25.

3.9.2 Worst-case performance analysis

In order to gain further insight into the less good improvements of the WRBNF-, BA-,

EXTA-, and OPTA-CPP algorithms w.r.t. the CL-CPP, Fig.3.16bshows the worst-case

improvements of the coverage paths generated by all the above-mentioned algorithms

w.r.t. the CL-CPP method, for parameter 𝛼𝑙𝑚 taking values 𝛼𝑙𝑚 ∈ {0.01, 0.1, 0.25, 0.5,
0.75, 1, 2}.

It is notable that WRBNF-CPP worst-case relative performance is negative for each

value of 𝛼𝑙𝑚, which is probably caused by the loop-back maneuvers and further diver-

gences of the coverage path from the initially set LM lines. Of all the accordion-based

CPP algorithms presented in this chapter, BA-CPP has the lowest worst-case values of

the relative improvement w.r.t. the CL-CPP algorithm, which has been expected due to

its unoptimized behavior. However, for values 𝛼𝑙𝑚 ≤ 0.1, worst-case performance of

all implemented CPP algorithms match, and are 0%, which means that in those cases all

mentioned CPP algorithms have performance which are not worse than the CL-CPP.

EXTA-CPP algorithm exhibits the mildest worst-case performance for 𝛼𝑙𝑚 ≥ 0.75,

limiting its worst-case relative improvement w.r.t. the CL-CPP method to around−5%.

OPTA-CPP algorithm for dispersion of interesting objects in the 𝑘 = 10% of LM lanes’

length, shows the best performance in the range 0 ≤ 𝛼𝑙𝑚 ≤ 0.5, which is the target

range for the application of the CPP algorithms presented in this chapter. In this range,

the OPTA-CPP algorithm never has worse performance than the CL-CPP algorithm.

3.9.3 Limit case performance analysis

Curves 𝑒𝐶𝐿−𝐶𝑃𝑃 (𝛼𝑙𝑚, 𝑝𝑜𝑏𝑗) , 0 = 𝑝𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝑜𝑏𝑗 (𝛼𝑙𝑚) are shown in Fig.3.16c. These curves

represent the limit cases in which the performance of the CPP algorithms presented in
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this chapter cannot guarantee to have on average better performance than the CL-CPP

method.

It can be noted that of all CPP algorithms proposed in this chapter, WRBNF-CPP al-

gorithm has on average equal performance as the CL-CPP algorithm when 𝑝𝑜𝑏𝑗 ≥ 50%,

which is a value much greater than the value of 𝑝𝑜𝑏𝑗 by which the research for this

chapter has been motivated. For 𝛼𝑙𝑚 ≤ 0.01, BA-CPP and EXTA-CPP algorithms’ per-

formances become equal to the performance of the CL-CPP algorithm only when the

coverage area contains interesting objects in each LM lane that the vehicle traverses.

When 𝛼𝑙𝑚 ≤ 0.5, and 𝛼𝑙𝑚 ≤ 0.1, performance of the OPTA-CPP algorithm for dis-

persion of the interesting objects in 𝑘 = 10%, and 𝑘 = 100% of the LM lanes’ length

becomes equal to the performance of the CL-CPP algorithm only when 𝑝𝑜𝑏𝑗 = 100%.

Furthermore, the OPTA-CPP algorithm’s performance drops slower than all the other

CPP algorithms’ proposed in this chapter, even with 𝑘 = 100%, which was expected.

Also, when the value of interesting objects’ dispersion along the lawnmower length

𝑘 drops to 𝑘 = 10%, a significant improvement over the case when 𝑘 = 100% is notable.

3.9.4 Mission (re)planning execution time

Another criterion, by which all CPP algorithms presented in this chapter have been

compared by, was the total mission planning and replanning CPU time for all con-

ducted simulations. In Fig.3.16dare given mean execution times of missions for var-

ious 𝛼𝑙𝑚 and 𝑝𝑜𝑏𝑗 values which were used in the statistical analysis benchmarks. The

"sawtooth" pattern visible in Fig.3.16dis due to 𝛼𝑙𝑚 changing its value. It can be

noted that WRBNF-CPP method’s execution times are manyfold longer than the ones

of the accordion-based methods, due to its use of dynamical programming for plan-

ning. Also, all accordion-based CPP methods show a similar complexity, which was

expected, since their design is only slightly different. Moreover, OPTA-CPP method

seems to be a bit faster than the other two accordion-based CPP methods, which is

most probably due to its shorter path, and less unneeded data readings.

3.10 Conclusion

In this chapter four online side-scan sonar data-driven complete coverage path plan-

ning algorithms for unknown large-scale marine areas have been presented. The essence

of all algorithms is the goal to overlap neighboring sonar ranges only if they contain

high information gain defined specifically for the current mission, in order to sonify

interesting objects at the sea floor from both sides. They are designed bearing in mind
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(a) (b)

(c) (d)

Figure 3.16: (a) Percentage 𝑝𝑏𝑒𝑡𝑡𝑒𝑟[%] of all simulations ran for each CPP method, for each 𝛼𝑙𝑚
in which performance of that method was better than the CL-CPP algorithm. (b) Comparison
of the worst-case performance of the CPP methods implemented in this chapter. (c) Compari-
son of the percentages 𝑝𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 of LM segments containing interesting object(s) needed for the
performance of each method presented in this chapter to be the same as the CL-CPP method.
(d) Comparison of the execution times of all CPP methods presented in this chapter.

68



Sonar Data-based Coverage Path Planning Algorithms

that in most exploration and survey missions, LM segments are significantly longer

than wider, and that only a small part of the coverage area is interesting for the mis-

sion.

One of the authors’ previously published methods named WRbNF-CPP [40], uses

path planning to diverge from the initial CPP solution LM pattern in case that it detects

interesting objects in it previous LM lane’s side-scan sonar image. Other three imple-

mented algorithms, namely BA-CPP published in [39], and EXTA-CPP and OPTA-CPP

published in [41], use a decision-making module to replan the coverage path for the

rest of the mission based on the sonar data from the previous LM lane.

Upper and lower performance bounds all the coverage algorithms presented in this

chapter are estimated and validated through extensive mission parameters variation

simulations. Simulation results show significantly shorter coverage paths obtained

by all the proposed CPP algorithms compared to the CL-CPP approach, which in a

limiting case, results in a twice shorter coverage path. Moreover, OPTA-CPP algorithm

shows the best performance in a wide range of mission parameters’ values.

This chapter assumed that the coverage path planning module gets interesting ob-

jects detections on its input, so it outputs locally replanned coverage path if needed.

Next chapter is related to the sonar imagery processing module that processes the col-

lected local sonar data on both sides of the vehicle. This is performed after each passed

lane along the full length of the coverage area, so that the output of the sonar imagery

processing module is the input of the coverage path planning module.
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Chapter 4

Object detection in side-scan sonar

imagery

4.1 Introduction

With the rise of high resolution imaging systems comes a need for storing and/or pro-

cessing enormous amounts of data. Sending these data on-the-go to some centralized

ground station for them to be processed is generally speaking not an insurmountable

problem for ground and aerial vehicles since WiFi connection is possible. In the under-

water environment, however, communication is greatly constrained by the fact that

electromagnetic waves are heavily attenuated even at short distances, while at the

same time acoustic communications have such a low bandwidth that sending huge

amounts of sonar data on-the-fly is still impossible. This is why all the sonar data are

stored on an onboard hard or solid state disk when AUVs are used, which allows for

only offline processing of sonar imagery, whether by a human operator or by some im-

age processing algorithm. In both cases the data cannot be analyzed online during the

mission, so human operator or mission (re)planning algorithm cannot inspect in more

detail some interesting objects as soon as they appear in sonar data [77].

In the past few decades AUVs mounted with high resolution side-scan sonars have

been increasingly used instead of side-scan sonar mounted towfish. One of their task

is to detect interesting objects lying on the seafloor. Automatic computer-aided de-

tection (CAD) and computer-aided classification (CAC) methods are used on sonar

imagery for several reasons: to develop consistent and reliable detection/classification

algorithms, which would free human operators of often long-lasting and boring task

of tagging objects of interest, but also to enable online decision-making for AUVs’ mis-

sion (re)planning algorithms to react and replan the survey mission to inspect interest-

ing objects in more detail [77]. This way, it would be much more convenient and less
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Figure 4.1: Block scheme of the entire AUV system.

costly to deploy an AUV and let it autonomously survey the given area. An AUV (or

multiple AUVs) should gather more high-resolution data about parts of the coverage

area that it finds interesting for the current exploration mission, and lower resolution

general survey data about other parts of the area.

Author proposed several online side-scan sonar data-driven CPP algorithms for

monitoring and surveying large-scale (over 1𝑘𝑚2) seafloor regions by an AUV (in

Chapter3), which would replace all three phases of survey missions when using a

towfish. One of the task execution algorithms needed for AUV to autonomously map

some area of interest is the module which detects interesting objects in side-scan sonar

data, shown in Fig.4.1as the "Interesting objects detector" (in red). For a given seafloor

area’s side-scan sonar image this module should output the coordinates of the inter-

esting objects (if detected) in the area and sends them to the coverage path planning

module which then replans the AUV’s path in order to inspect those objects in more

detail. The goal is to implement all the blocks shown in the scheme in Fig.4.1for Lupis

AUV. Parts of this chapter were previously published by the author in [78].

The rest of the chapter is organized as follows: a short introduction of what do

the terms saliency and anomaly mean, together with an overview of computer vision

methods used to model human visual attention is given in Section4.2. Pipeline devel-

oped for using saliency detection methods in the domain of side-scan sonar images is

given in Section4.3. Section4.4discusses the performance metrics used to assess how

well do the mentioned methods detect salient/anomalous objects in a controlled envi-

ronment of simulated side-scan sonar image dataset. The results and conclusions of the

best method chosen based on the analysis in Section4.4are validated on real side-scan

sonar image dataset in Section7.6.1. The method proven to have the best performance

is reimplemented to run on the target hardware of AUV Lupis, and its processing time,
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crucial for online applications, is analyzed in Section7.6.2. This chapter is concluded

in Section4.5.

4.2 Overview of saliency methods

4.2.1 Definitions of saliency and anomaly

Making sense of imagery is something that comes naturally to humans, but it remains a

challenge to provide a similar capability to computers and robotic systems. Neverthe-

less, computational image processing has progressed rapidly in the last twenty years

enabled by developments in image processing techniques and software and by rapid

advances in sensors and computer performance [77]. In order to design algorithms for

interesting objects detection in (sonar) images, it is first needed to understand how for

example human visual system notices interesting things which pop up from the rest of

the visual field.

Human visual system is very selective. This means that we inherently pay more

attention to some parts of the scene and neglecting other parts. This is apparent from

research studies on change blindness, which show that the scene can be changed even

significantly, but not registered by human viewer. The cause of our visual system to

be selective lies in the way that our brains process visual information. The optic nerve

receives visual information at a rate of approx. 3 × 106 bits/s, the brain processes

less than 104 bits/s of this information. It is astounding how the brain uses only a

small fraction below 1% of the input information to generate a representation of the

scene good enough for executing complex tasks in a dynamic environment. But what

mechanisms are responsible for such sparse yet very effective representation of the

scene [79]?

Two key processes of concentration are discussed in the literature: top-down, and

bottom-up. Top-down is voluntary, goal-driven and slow, i.e. usually within the range

of 100ms to a few seconds. The top-down attention is believed to be closely linked to

cognitive factors such as learning, perception, and reasoning. In comparison, bottom-

up focus (also known as visual saliency) is correlated with a scene’s qualities which

attract our attention to a specific location. These attributes include motion, contrast,

orientation, brightness and color. Mechanisms of the bottom-up attention are sponta-

neous, and quicker than from the top down [79]. Studies show that in search tasks,

such as looking for a target object among distractors, both bottom-up and top-down

mechanisms work together to guide our attention. While bottom-up attention is based

on elementary attributes of a scene, top-down is quite complex and strongly influenced
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by task demands [79].

Modeling the visual saliency has created much interest in the research community

over the past two decades. It has also paved the way for a number of computer vision

technologies, in addition to leading to understanding of human perception. These

applications include target detection, image and video compression, image segmen-

tation, context aware image resizing, robot localization, image retrieval, image and

video quality assessment, dynamic lighting, advertisement, artistic image rendering

and human–robot interaction [79].

To test the efficiency of visual saliency algorithms, the two-dimensional saliency

maps are contrasted with those picture regions that attract the attention of observers

by showing a set of images to the observers and using an eye tracker to monitor their

eye fixations. Therefore, a higher number of fixations was assumed to lead to promi-

nent picture areas. Thus, the reported fixations are correlated in a pairwise manner

with the corresponding visual saliency charts. However, experiments have shown that

viewers appear to focus more on the center of the image than on the periphery regions

when processing pictures. The existence of center bias in fixations makes it difficult

to determine the relationship between the fixed regions and the salient regions of the

picture [79].

The importance of anomaly detection is due to the fact that data anomalies translate

into relevant (and often critical) actionable information in a wide variety of application

contexts [80]. It is safe to say that interesting objects in (sonar) images are both salient

and anomalous w.r.t. the mostly sandy seafloor around them. Detection of anomalies

relates to the problem of finding variations of data that don’t correspond to planned

behavior. Anomalies and outliers are two words more widely used when identifying

anomalies; often interchangeably. Anomaly identification sees widespread use in a

broad variety of applications such as credit card fraud prevention, insurance or health

care, cyber-security intrusion detection, security critical systems’ failure detection and

enemy military monitoring [80].

Two wide types of the detection / classification of salient / anomalous artifacts

are in use:supervised algorithms, involving training data for target items in known lo-

cations, and unsupervised algorithms. Well-designed, supervised algorithms can be as-

sumed to have superior performance when equipped with sufficient data for specific

environments. The main limitation of implementing such techniques is that it is not

often possible or easy to obtain appropriate training data sets. The training data must

be thorough and obtained under comparable sonar and environmental conditions to

those in the data for which object detection is needed [80].

Unsupervised algorithms are constructed in the absence of training data to operate
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under a variety of conditions. Thus, they are easier to operationally incorporate with-

out the need for external surveys to collect appropriate training data[77]. Unsuper-

vised saliency map and anomaly detection algorithms applied in the field of computer

vision use a number of models, i.e. Bayesian, cognitive, decision theoretic, graphical,

information theoretic, pattern classification, spectral analysis, and many other types of

models. Interested reader is referred to ([79]) and ([80]) survey papers on unsupervised

saliency and anomaly detection methods. Supervised saliency map and anomaly de-

tection algorithms are implemented as artificial neural networks (ANNs) which need

exhaustive training data sets to have good performance and generalization under ar-

bitrary circumstances as in [81–83].

4.2.2 Methods for interesting objects detection in side-scan sonar im-

ages

Computer-aided detection / classification techniques (CAD / CAC) have been under

use of side-scan sonar imaging since the early 1990s. The most efficient strategies are

based on a combination of acoustic highlight and shadow correlated with an item lying

on the seabed [77]. In the context of detecting interesting objects or targets in side-scan

sonar images, several saliency/anomaly detection methods have been developed, both

unsupervised and supervised, e.g. [84–96].

4.3 Pipeline for the compared methods

Considering side-scan pings stacked together (in a so-called "waterfall view") as a

grayscale image, various anomaly/saliency image detection methods were implemented

and tested on simulated and real side-scan sonar images. These methods, except for the

anomaly detection in side-scan sonar data [95] were almost exclusively used in camera

images, namely Contrast-based saliency method [97], graph-based saliency [98], Itti-

Koch saliency [99], and Simpsal saliency [100] as a simplification of Itti-Koch method.

It is worth noting that other methods have also been tried out, namely [96], which uses

diffusion maps for anomaly detection, but was too slow to be considered for online use

on-board an AUV, even though it detected anomalous interesting object quite good.

Method for generating image signatures based on highlighting sparse salient objects

in an image, [101], was much worse than the other methods when used on side-scan

sonar images. Also, translating side-scan sonar grayscale image (or its parts) into its

fractal dimension to differ naturally occurring objects and man-made objects based on

method [102] was a few order of magnitude slower than the other methods even for
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small portions of sonar images.

A general pipeline was developed in order to use any of the five methods on any

side-scan sonar image. Pseudocode of this pipeline is given in Algorithm2. All the

above-mentioned methods process side-scan sonar image which is preprocessed with

nadir removal method (line 2 in Algorithm2), as well as along- and across-track nor-

malization with a moving average filter to compensate for the attenuation of the re-

turned signal towards the edges of the sonar range (line 3 in Algorithm2), and also

smoothing of the image to additionally suppress noise (line 4 in Algorithm2). Saliency/anomaly

detection methods mentioned above process the image on multiple scales (resolution

reduction spaces) in order to detect pixels which locally differ the most w.r.t. their

neighboring pixels, given in lines 5− 15 in Algorithm2. After saliency/anomaly map

is computed, it is then thresholded w.r.t. its mean value (line 16 in Algorithm2), and

then it is segmented into contours (lines 17− 19 in Algorithm2) which are thresholded

by their estimated area in 2D space (line 20− 22 in Algorithm2). Finally, detected ob-

jects are thresholded by their brightness (line 23 in Algorithm2) w.r.t. the fraction of

the maximum brightness in the image, and finally the bounding boxes of those con-

tours are computed for easier representation (line 24 in Algorithm2). The results this

pipeline’s performance testing are given in the following sections.

Pseudocode of the method for anomaly detection from [95], here named getAnoma-

lyMap method, is given in Algorithm3. The histogram difference metric for local vari-

ation of a pixel w.r.t. its neighbors through the entire Laplacian-over-Gaussian filtered

scaled down originals of the sonar image (lines 4−9 in Algorithm3), defined in [95] as

ℓ1 norm, is that algorithm’s serious bottleneck. It is here approximated as an 𝑁𝑑 kernel

(lines 10 − 12 in Algorithm3), which gives similar results to the original ℓ1 norm, but

in a fraction of the time.

Contrast based saliency method from [97] was originally used for saliency detection

in videos. Here it is named getContrSalMap and was extended to be used for side-scan

sonar images and also on multiple resolution scales just as getAnomalyMap method.The

only difference in getContrSalMap function’s code compared to method getAnomalyMap

is in line 6 (see Algorithm3). Instead of Laplacian over Gaussian filtering applied to

each downsampled sonar image, its brightness distance map is computed as described

in detail in [97].

4.4 Simulated dataset results

The first step to deciding which method is best used for the problem at hand, a simple

side-scan sonar images dataset of 1500 2𝑀𝑃 images was generated, mostly as noisy
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Algorithm 2 Pipeline for anomalous object detection

1: function DETECTANOMALIES(𝑖𝑚𝑔, 𝑝𝑎𝑟𝑎𝑚𝑠)
2: 𝑖𝑚𝑔 ← 𝑖𝑚𝑔.removeNadir(𝑝𝑎𝑟𝑎𝑚𝑠.𝑛𝑎𝑑𝑖𝑟_𝑤𝑖𝑑𝑡ℎ)
3: 𝑖𝑚𝑔 ← 𝑖𝑚𝑔.normalizePings(𝑝𝑎𝑟𝑎𝑚𝑠.𝑚𝑎𝑣𝑔_𝑀)
4: 𝑖𝑚𝑔 ← 𝑖𝑚𝑔.smooth(𝑝𝑎𝑟𝑎𝑚𝑠.𝑔𝑎𝑢𝑠𝑠_𝑘𝑒𝑟𝑛𝑒𝑙)
5: switch 𝑝𝑎𝑟𝑎𝑚𝑠.𝑠_𝑚𝑒𝑡ℎ𝑜𝑑 do
6: case ”𝑖𝑡𝑡𝑖− 𝑘𝑜𝑐ℎ”
7: 𝑖𝑚𝑔 ← 𝑖𝑚𝑔.getIttiKochMap(𝑝𝑎𝑟𝑎𝑚𝑠)
8: case ”𝑔𝑏𝑣𝑠”
9: 𝑖𝑚𝑔 ← 𝑖𝑚𝑔.getGBVSMap(𝑝𝑎𝑟𝑎𝑚𝑠)

10: case ”𝑠𝑖𝑚𝑝𝑠𝑎𝑙”
11: 𝑖𝑚𝑔 ← 𝑖𝑚𝑔.getSimpsalMap(𝑝𝑎𝑟𝑎𝑚𝑠)
12: case ”𝑎𝑛𝑜𝑚𝑎𝑙𝑦”
13: 𝑖𝑚𝑔 ← 𝑖𝑚𝑔.getAnomalyMap(𝑝𝑎𝑟𝑎𝑚𝑠)
14: case ”𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑠𝑡”
15: 𝑖𝑚𝑔 ← 𝑖𝑚𝑔.getContrSalMap(𝑝𝑎𝑟𝑎𝑚𝑠)
16: 𝑖𝑚𝑔 ← 𝑖𝑚𝑔.threshold(𝑝𝑎𝑟𝑎𝑚𝑠.𝑠𝑎𝑙𝑖𝑒𝑛𝑐𝑦_𝑡ℎ)
17: 𝑒𝑑𝑔𝑒𝑠← 𝑖𝑚𝑔.detectEdges(𝑝𝑎𝑟𝑎𝑚𝑠.𝑒_𝑚𝑒𝑡ℎ𝑜𝑑)
18: 𝑒𝑑𝑔𝑒𝑠← 𝑒𝑑𝑔𝑒𝑠.median(𝑝𝑎𝑟𝑎𝑚𝑠.𝑚𝑒𝑑𝑖𝑎𝑛_𝑘𝑒𝑟𝑛𝑒𝑙)
19: 𝑐𝑜𝑛𝑡𝑜𝑢𝑟𝑠← 𝑒𝑑𝑔𝑒𝑠.segment()
20: 𝑎𝑟𝑒𝑎𝑠← 𝑐𝑜𝑛𝑡𝑜𝑢𝑟𝑠.getArea()
21: 𝑎𝑟𝑒𝑎𝑠𝑡ℎ ← 𝑎𝑟𝑒𝑎𝑠.threshold(𝑝𝑎𝑟𝑎𝑚𝑠.𝑎𝑟𝑒𝑎𝑡ℎ)
22: 𝑐𝑜𝑛𝑡𝑜𝑢𝑟𝑠← 𝑐𝑜𝑛𝑡𝑜𝑢𝑟𝑠(𝑎𝑟𝑒𝑎𝑠𝑡ℎ)
23: 𝑐𝑜𝑛𝑡𝑜𝑢𝑟𝑠← 𝑐𝑜𝑛𝑡𝑜𝑢𝑟𝑠.threshold(𝑝𝑎𝑟𝑎𝑚𝑠.𝑏𝑟𝑖𝑔_𝑡ℎ)
24: 𝑏𝑏𝑜𝑥𝑒𝑠← 𝑐𝑜𝑛𝑡𝑜𝑢𝑟𝑠.getBBoxes(𝑐𝑜𝑛𝑡𝑜𝑢𝑟𝑠)
25: return 𝑏𝑏𝑜𝑥𝑒𝑠

Algorithm 3 Multiscale anomaly map

1: function GETANOMALYMAP(𝑖𝑚𝑔,𝑝𝑎𝑟𝑎𝑚𝑠)
2: 𝑓_𝑏𝑎𝑛𝑘 ← 𝑧𝑒𝑟𝑜𝑠(𝑖𝑚𝑔.𝑠𝑖𝑧𝑒(), 𝑝𝑎𝑟𝑎𝑚𝑠.𝑛𝑠𝑐𝑎𝑙𝑒𝑠)
3: 𝑓_𝑏𝑎𝑛𝑘 ← 𝑧𝑒𝑟𝑜𝑠(𝑖𝑚𝑔.𝑠𝑖𝑧𝑒(), 𝑝𝑎𝑟𝑎𝑚𝑠.𝑛𝑠𝑐𝑎𝑙𝑒𝑠)
4: for 𝑖← 1 to 𝑝𝑎𝑟𝑎𝑚𝑠.𝑛𝑠𝑐𝑎𝑙𝑒𝑠 do
5: 𝑖𝑚𝑔𝑠𝑑 ← 𝑖𝑚𝑔.scaleDown(𝑝𝑎𝑟𝑎𝑚𝑠.𝑠𝑐𝑎𝑙𝑒𝑠[𝑖])
6: 𝑖𝑚𝑔𝑙𝑜𝑔 ← 𝑖𝑚𝑔𝑠𝑑.LoG(𝑝𝑎𝑟𝑎𝑚𝑠.𝑙𝑜𝑔_𝑘𝑒𝑟𝑛𝑒𝑙)
7: 𝑖𝑚𝑔𝑠𝑢 ← 𝑖𝑚𝑔𝑠𝑑.scaleUp(𝑝𝑎𝑟𝑎𝑚𝑠.𝑠𝑐𝑎𝑙𝑒𝑠[𝑖])
8: 𝑖𝑚𝑔𝑠𝑢 ← 𝑖𝑚𝑔𝑠𝑢.normalize()
9: 𝑓_𝑏𝑎𝑛𝑘[𝑖]← 𝑖𝑚𝑔𝑠𝑢

10: 𝑘𝑒𝑟𝑛𝑒𝑙 = 𝑜𝑛𝑒𝑠(3, 3, 𝑝𝑎𝑟𝑎𝑚𝑠.𝑛𝑠𝑐𝑎𝑙𝑒𝑠)
11: 𝑘𝑒𝑟𝑛𝑒𝑙(2, 2, :) = −8
12: 𝑎𝑛𝑜𝑚𝑎𝑙𝑦𝑚𝑎𝑝 ← convolve(𝑓𝑖𝑙𝑡𝑒𝑟_𝑏𝑎𝑛𝑘, 𝑘𝑒𝑟𝑛𝑒𝑙)
13: 𝑎𝑛𝑜𝑚𝑎𝑙𝑦𝑚𝑎𝑝 ← 𝑎𝑛𝑜𝑚𝑎𝑙𝑦_𝑚𝑎𝑝.normalize()
14: return 𝑎𝑛𝑜𝑚𝑎𝑙𝑦𝑚𝑎𝑝
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Table 4.1: Table of interesting object detection methods’ parameters for simulated side-scan
sonar images dataset.

Anomaly Contrast-based Itti-Koch GBVS Simpsal

Detection Saliency Saliency Saliency Saliency

mavg_M 10 10 10 10 10

gauss_kernel_w 10 10 10 10 10

gauss_sigma 1.6667 1.6667 1.6667 1.6667 1.6667

saliency_th 7 7 3 3 3

e_method sobel sobel sobel sobel sobel

median_w 3 3 3 3 3

area_th 25x25cm 25x25cm 25x25cm 25x25cm 25x25cm

brigh_th 30.00% 30.00% 30.00% 30.00% 30.00%

scales [1, 3, 5 ] [1, 3, 5 ]

blur_fraction 0.002 0.002 0.002

feature channels IR IR IO IOR IO

grayscale images with a few (1− 5) objects and their simulated sonic shadows of vari-

ous sizes (1𝑥1, 1.5𝑥1.5, ..., 10𝑥10𝑚2) and position distributions in the sonar image. With

the assumed 50𝑚 across-track range of the side-scan sonar, the resolution of each pixel

was taken as 5× 5𝑐𝑚. Performance benchmarking of the above-mentioned five meth-

ods for salient/anomalous object detection was performed on a computer with a quad-

core 2.8𝐺𝐻𝑧 CPU with 16𝐺𝐵 of RAM and 4𝐺𝐵 Graphics processing unit (GPU). Soft-

ware used for benchmarking on the simulated dataset was MATLAB with its Image

Processing Toolbox and Parallel Computing Toolbox with Compute Unified Device

Architecture (CUDA) GPU Processing Support. All five methods used to detect in-

teresting objects in side-scan sonar images were optimized for execution on a GPU in

order to perform as fast as possible, having in mind that these methods would later

on be used in Gazebo simulator [103] in which Unmanned Underwater Vehicle (UUV)

simulator [104] and side-scan sonar simulator [105] environments would be integrated

with our sonar image processing, online coverage path planning ([39,40], and [41]),

and control modules ([7,8]).

All five methods were applied to the simulated side-scan sonar image dataset, and

were compared to the known ground truth of interesting objects pixels indices. Pa-

rameters of all these methods and steps in the interesting object detection pipeline

described in Section4.3are given in Table4.1.
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An example of such simulated side-scan sonar image and five methods’ perfor-

mance in detecting interesting objects standing out in those images is given in Fig.

4.2. It is clear that the anomaly detection method from [95] gives the most accurate

and precise detection results compared to other methods. In order to formalize this, a

precision-recall analysis was conducted. The so-called 𝐹 harmonic mean metric was

used to aggregate these two metrics, which is defined as:

𝐹 = 2× 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛× 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑟𝑒𝑐𝑎𝑙𝑙

. (4.1)

Fig.4.3ashows the results from all 1500 test conducted. It is clearly visible that at

90% F-measure, the anomaly detection method from [95] is much better than Itti-Koch,

Graph-Based Visual Saliency (GBVS), as well as contrast based saliency method. Simp-

sal is the closest with around 80% F-measure. Fig.4.3bshows execution times of all

1500 runs for each of the chosen 5 methods. It is obvious that Simpsal is much faster

than the anomaly detection method which is more precise and accurate in its detec-

tions. Taking into account that the target hardware on-board AUV Lupis is roughly

10 − 50 times slower than a high performance workstation computer used for bench-

marking, even then anomaly detection method running 1.5 − 7.5𝑠/𝑀𝑃 is considered

to be fast enough together with its winning precision/recall performance.

4.5 Conclusion

Considering side-scan pings stacked together (in a so-called "waterfall view") as a

grayscale image, in this chapter various anomaly/saliency image detection methods

were implemented and tested. These methods, except for the anomaly detection in

side-scan sonar data [95] and graph-based visual saliency (GBVS) saliency [98] were

almost exclusively used in for natural images, namely contrast-based saliency method

[97], Itti-Koch saliency [99], and Simpsal saliency [100] as a simplification of Itti-Koch

method. The above-mentioned methods were first benchmarked in Matlab on a set of

1500 simulated side-scan sonar images dataset containing a single and also multiple

objects of various sizes and at various positions. The anomaly detection method from

[95] had the best precision and recall performance on simulated sonar images dataset.

Its performance was then validated on a real 500 side-scan sonar images dataset, and it

also had satisfactory recall-precision performance. The next chapter describes the ROS

simulation framework used for coverage path planning algorithm validation.
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Figure 4.2: An example of interesting objects detection in simulated side-scan sonar data by
various image segmentation methods. Colorbar represents the saliency metric normalized by
its mean value to visualize which areas are the most interesting. Since anomaly and contrast
methods practically detect edges in multiple scales, the anomaly/saliency values in the upper
subfigures is covered with detection bounding boxes.
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(a) (b)

Figure 4.3: (a) Mean misdetection rates of the chosen anomaly detection methods. (b) Com-
parison of mean recall, precision, and combined metric usually used in image segmenta-
tion/detection methods
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Chapter 5

Simulation environment for coverage

planning algorithms validation

5.1 Introduction

Sonar data-based algorithms, namely CL-CPP, BA-CPP, and OPTA-CPP, mentioned in

Chapter3were implemented in ROS Melodic framework together with side-scan sonar

anomaly detection algorithms mentioned in Chapter4. This chapter describes the inte-

gration these modules with the open-source UUV simulator that was used as a base for

simulation validation environment. UUV simulator is described shortly in Section5.2.

Section5.3presents the implementation of the above-mentioned CPP algorithms as

well as the coverage mission controller module. Examples of coverage missions using

CL-CPP and OPTA-CPP algorithms together with performance comparison is given in

Section5.4. Section5.5concludes this chapter.

5.2 UUV simulator

UUV simulator [106] is a ROS package that contains ROS nodes and Gazebo plugins for

underwater robotics simulations of AUVs and ROVs. It was developed in the scope

of EU ECSEL SWARMs project. It is currently released for ROS Kinetic, Lunar, and

Melodic. The simulator offers a few Gazebo worlds to be used in different use-cases,

namely

•Empty underwater world - generates a world model with 3D current velocity

topics to simulate the effects of water current disturbances on vehicle control,

•Herkules shipwreck - offers a 3D reconstruction of M/S Herkules including blue

fog to emulate decreased visibility,

•Lake - with uneven lake floor topology,
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•Coast of Mangalia, Romania - with an approximated seafloor topology to that in

the vicinity of Mangalia,

•Munkholmen, Norway - recreation of a site close to the final SWARMs demon-

stration scenario,

•Ocean waves world - developed, as the name suggests, to animate waves during

simulation, and

•Subsea BOP panel - another scenario that was used for SWARMs project demon-

stration.

Moreover, it is possible to generate custom-made world models for any kind of simu-

lation. Manual control is enabled for RexROV and RexROV2 unmanned underwater

vehicles.

Apart from that, tuned low-level PID and sliding mode controllers enable the use

of various ROS services such as

•AddWaypoint - adds a Waypoint at the end of the existing WP list,

•ClearWaypoints - removes all WPs from the current WP list,

•GetWaypoints - returns WP list,

•GoTo - command the vehicle to go to the defined absolute position in ENU/NED

frame, with defined maximum velocity, start time, and path interpolator

•GoToIncremental - command the vehicle to go to the defined relative position

w.r.t. the vehicle’s current position in ENU/NED frame, with defined maximum

velocity, start time, and path interpolator

•Hold - starts station keeping mode; for fully actuated ROVs this means dynami-

cal positioning, while for underactuated AUVs it keeps them inside a predefined

circle to prevent to big of a drift,

•InitCircularTrajectory - initiates a circular trajectory with defined center in ENU/NED

frame, radius, and start time,

•InitHelicalTrajectory - initiates a helical trajectory with defined center in ENU/NED

frame, radius, number of turns, depth increments, and start time,

•InitWaypointSet - starts a trajectory based on Waypoint list that is passed to the

service at call, together with the desired start time, maximum velocity, and path

interpolator

•InitWaypointsFromFile - the same as InitWaypointSet, but the WP list is read

from a predefined .yaml parameter file.

This means that any path planning and perception algorithms can easily be built on

top of this existing framework. InitWaypointSet ROS service was mostly used by the

coverage mission controller to command the vehicle to follow the (re)planned path.

Hold service was used to keep the vehicle in place before starting the replanned path
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to preserve its stability.

Furthermore, the reference to the controllers are computed by using path interpola-

tors and then finite differentiation for velocity and acceleration set-points, in case they

are desired. This is done in order to achieve smooth paths, except in the case of linear

interpolator. Path interpolators that are available, and are passed as parameters in ROS

service requests, are:

•’linear’,

•’cubic’ - uses a cubic Bézier curve,

•’lipb’ - Linear interpolator with polynomial blends - linear segments between

each two WPs with fifth order Bézier curves interpolating the corners,

•’dubins’ - computes the shortest curve between two points.

UUV simulator also provides disturbance generators that can be used to test control

algorithm performance in the presence of thruster failure/reduced efficiency, or sea

currents. Disturbance manager node enables these disturbances to be configured and

started at desired times.

Gazebo and RViz views after running an exemplary PID controller scenario are

given in Figs.5.1and5.2. RexROV2 vehicle is fully actuated with 3 thrusters for heave

control in vertical plane, two thrusters at 45° angle in horizontal plane for yaw control,

and one lateral thruster for sway control. This means that it’s allocation matrix has full

rank and is directly invertible. It has GPS, IMU, DVL, particle concentration sensor,

magnetometer, pressure sensor, and 3 cameras (front, left, and right) looking forward

with a downward tilt. This sensor suite is extensible to any Gazebo sensor plugins

that are available. Furthermore, these senors can be used for sensor fusion in a state

estimation node, e.g. of ROS robot_ localization package, which is out of the scope of

this thesis.

Node graph of this scenario is shown in Fig.5.3. Node gazebo is responsible for

simulation and visualization of world and vehicle physics it send ground truth posi-

tion of the vehicle in local inertial frame to the /pose_ gt topic. Node rov_ pid _ controller

is responsible for controlling the vehicle in both manual and automatic control mode.

When in manual mode, it transforms the values from joystick axes to changes in po-

sition reference. In automatic or trajectory tracking mode, it transforms the position

error based on the vehicle position from /pose_ gt topic (that can easily be switched to

an output topic of some state estimator node) and the reference trajectory computed by

trajectory generator upon calling one of the above-mentioned ROS services to a vec-

tor of forces and torques that the thrusters need to achieve. Node thruster_ allocator

performs thruster allocation based on the thruster allocation matrix (TAM), the input

vector of desired forces and torques, as well as thruster limits. These values are then
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Figure 5.1: Gazebo view of RexROV2 vehicle in world model with loaded seafloor and waves.

Figure 5.2: RViz view of RexROV2 vehicle.

sent to /thruster/No./input topics that the gazebo node subscribes to in order to spin the

thrusters at the given rate. Node trajectory_ marker_ publisher subscribes to topics re-

lated to the waypoints and the interpolated reference trajectory and transcribes them

to RViz-readable format for visualization in RViz as well.

5.3 ROS implementation

5.3.1 Coverage planner

Nonadaptive CL-CPP algorithm, as well as sonar data-based coverage (re)planning al-

gorithms BA-CPP and OPTA-CPP, described in detail in Chapter3are implemented

in Python, and present by the class diagram in Fig.5.4. As the lawnmower pattern

generating algorithm is at the core of all three above-mentioned algorithms, it was im-

plemented as the bsae class named LawnmowerCoveragePathGenerator. It takes various

ROS parameters and initializes its attributes to those values. e.g. coverage area length,

width, and heading, starting waypoint, length of coverage area, offset length, as well

as sonar range (swath in the horizontal plane) and coefficient of lane width in terms

of sonar across-track swath. It initially generates all waypoints (WPs) in NED frame

(with constant depth as the input parameter) assuming that the vehicle moves from the

frame origin forward along the coverage area, and turns to the right across the cover-
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Figure 5.3: RViz view of RexROV2 vehicle.

age area so that the axes of the coverage area coincide with the axes of the local inertial

frame. After generating a waypoint set in this manner, axes flipping (in case that the

vehicle should cover the area turning always to the left, or if the simulator like Gazebo

uses ENU frame), rotation by the specified coverage area heading angle, as well as

translation to the desired starting WP in NED frame are performed, respectively.

BA-CPP algorithm implemented as BasicAccordionCoveragePathPlanner class in-

herits LawnmowerCoveragePathGenerator witout any additional attributes since it

initially assumes that the coverage area does not have any interesting objects and thus

start with the LM lanes twice wider than the sonar swath. It thus reimplements method

plan _ coverage so that if any anomalies are detected on the left and/or right side of the

vehicle it replans the coverage path locally (methods _ replan_ coverage_ path_ locally_

caseX in Fig.5.4) to adapt to the newly available information, but generates the twice

wider LM coverage pattern for the remainder of the coverage area. As in Lawnmow-

erCoveragePathGenerator, all the planning is done in NED frame from its origin with

zero heading and assuming rightward turns. For replanning purposes, the current and

previous coverage WPs, as well as coordinates of the aggregated anomaly detections

are transformed back to this frame, and after replanning the new local and remaining

global coverage path are transformed with a flip-rotate-translate sequence.

Since OPTA-CPP algorithm is based on BA-CPP algorithm with slight changes

when the vehicle must perform a loopback into the part of the coverage area that it

already passed, class OptimizedAccordionCoveragePathPlanner inherits BasicAccor-

dionCoveragePathPlanner with only a few method redefinitons for local replanning
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for cases 1, 4, 5, and 6, as shown in Fig.5.4.

5.3.2 Mission controller

Mission controller is also implemented as a Python class MissionController run inside

a ROS node. Its flowchart is shown in Fig.5.5. It initializes with loading ROS parame-

ters such as coverage planner name (CL-CPP, BA-CPP, or OPTA-CPP), and parameters

related to the trajectory generation such as maximum forward speed, radius of accep-

tance, and path interpolator. Depending on the picked coverage planner type, an object

of the corresponding planner class is instantiated for use during the mission.

Initial LM coverage path is generated by the planner and InitWaypointSet ROS ser-

vice is called so that the vehicle generates an interpolated trajectory and starts follow-

ing the first WP at the end of the first full LM line. When the starting offset WP is

reached, the controller notifies the Sonar data collector module to start stacking sonar

swaths into a waterfall image. Offset WPs are added, thus elongating the total cov-

erage lane length so that fan out effect in sonar data due to the vehicle turning at the

beginning of each lane is removed. Reaching the reference path’s WP is most of the

time unattainable, since the interpolated smooth trajectory doesn’t perfectly coincide

with the piece wise linear path. Thus, the vehicle is said to have reached the current

WP when it comes closer than 1𝑚 of the victory radius around the trajectory point

closest to the current WP.

As the ending offset WP for the current full length LM lane is reached, a stopping

signal is sent to the Sonar collector module, which then sends the sonar imagery to

Sonar data processor that send back number and spatial limits of the detected anoma-

lies, if any. As the vehicle reaches the end of the current lane, it updates lane coverage

for the lanes on its left and right side. Only anomalies detected in lanes that haven’t

been covered more than once are taken into account, and the others are rejected. This

prevents the vehicle from performing infinite looping along the same lane. The cover-

age planner then replans the coverage path locally in an adaptive way, and the remain-

der of global coverage path is again planned nonadaptively.

After that new trajectory is generated and the vehicle follows the replanned path

that always starts with a WP across-track the coverage area. When the across-track

WP is reached, depending on the replanning case, the vehicle can continue tracking

the next WP that is placed at the end of the following full length LM line, or it can

(only in case of OPTA-CPP algorithm) perform a loopback along a portion of a line

parallel to the current LM line. After this WP is reached, coverage numbers for both

left and right lane are increased by one. These state transitions happen cyclically de-

pending on the type of planner used and the distribution of lanes with interesting
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Figure 5.4: UML class inheritance graph for CL-CPP, BA-CPP, and OPTA-CPP coverage mis-
sion planners
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objects. After each path replanning the vehicle is put into station keeping mode for

2𝑠 to ensure its stability before continuing movement along the new coverage path.

Moreover, the vehicle automatically goes into station keeping mode when it reaches

the last WP in its trajectory. Thus, the mission is finished if the vehicle reached the last

full along/across/loopback WP, and it is station keeping for more than e.g. 5𝑠.

5.3.3 Integration of subsystems

Mission controller is integrated into the UUV simulator as depicted in Fig.5.6. It is

a part of a Supervisory subsystem together with Coverage planner that is contained in

the Mission controller. As mentioned previously, Monitoring subsystem is RViz node

that, depending on the usecase, visualizes the vehicle, its path, trajectory, sensor read-

ings, and velocity vector. It gets data about the set coverage path from the Mission

controller block, trajectory from the Control subsystem, and actuator/sensor data from

Gazebo physics simulator. When Mission controller gets WPs from the Coverage plan-

ner, it calls ROS services (inside Control subsystem block), which in turn call Trajectory

generator block. Generated reference trajectory is passed on to the Pose controller block,

after which Control allocator remaps reference forces and torques into reference RPMs

for the thrusters and sends those values to Thrusters block inside Physics subsystem.

Feedback loop sends sensor measurements from Gazebo to Sensory subsystem in

ROS. Navigation block fuses all sensor data to estimate vehicle pose. Here a ground

truth pose of the vehicle was used in the feedback loop. A case study on using naviga-

tion filter is given in Section7.3. For faster testing purposes and due to software ver-

sioning problems of a SSS simulator in UUV simulator, anomaly detections from block

Sonar processing are here implemented as randomly appearing, while a case studies on

this block and its HIL testing are given in Chapter4and Section7.6.

5.4 Results

An example of CL-CPP and OPTA-CPP algorithms performance validation in realistic

UUV simulator environment with simulated RexROV2 dynamics is presented in this

section. An area of 200 × 200𝑚 is chosen with sonar across-track swath of 𝑟𝑠𝑠𝑠 = 10𝑚
and 8 LM lanes of 20 lanes in total containing interesting objects. Maximum vehicle

velocity was set to 1𝑚/𝑠 as instructed in the UUV simulator.

For CL-CPP, Figs.5.7a-5.7cshow timeplots of vehicle’s control states. Since no re-

planning is performed, the vehicle is in automatic and trajectory tracking mode for the

whole duration of the mission, while in station keeping mode just before and after com-
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Figure 5.5: Coverage mission controller flowchart. (green) Mission start. (yellow) various
routines called during the mission. (blue) Mission controller states. (purple) Decision points.
(pink) Sonar data-related outer modules. (red) Mission end.

89



Simulation environment for coverage planning algorithms validation

Figure 5.6: Block scheme of software integration of various subsystems. (blue) UUV simulator
ROS nodes. (green) ROS nodes implemented in the scope of this thesis

pleting the mission. Time to target estimate, shown in Fig.5.7dshows a monotonous

linear decrease of estimated mission duration because no replanning is done. Pose

plot of vehicle in North-East plane is shown in Fig.5.8where ’lipb’ interpolation of the

path between the set WPs can be noticed as the vehicle follows it. It can be seen that the

coverage algorithm generates offset WPs to ensure that the vehicle has enough space

to make turns and proceed to the next LM line. Vehicle position is shown in a gradient

coloring from blue to red hues to show the time component for easier interpretation.

In case of OPTA-CPP, an example of vehicle moving along a line and detecting

something interesting on its right side, thus replanning the coverage path visualized

in RViz is shown in Fig.5.10. For that same example, Figs.5.11a-5.11cshow timeplots

of vehicle’s control states. Station keeping mode for a short time during the mission

represents times when the vehicle replanned its coverage path and paused to continue

moving along the new trajectory in a stable manner. This is shown in Fig.5.11cwhere

the vehicle performs replanning for 6 characteristic cases depending on if it moves "for-

ward" or "backward", and it detected interesting object(s) to its left/right/both side(s).

Estimated time to mission completion is shown in Fig.5.11dwhere the estimated in-

creases a little with every coverage replanning. In the end, however, the adaptive

mission lasts around 1200𝑠 or 27% shorter than the nonadaptive one, even with 40%
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(a)

(b)

(c)

(d)

Figure 5.7: Vehicle control states for OPTA-CPP mission. (a) Automatic control mode. (b)
Trajectory tracking mode. (c) Station keeping mode. (d) Time to target. 91
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Figure 5.8: Pose plot in NE plane for CL-CPP. (black) coverage area. (cyan) randomly generated
interesting objects. (green) coverage path. (blue-red) time color-coded vehicle pose.
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Figure 5.9: Pose plot in NE plane for OPTA-CPP. (black) coverage area. (cyan) randomly gen-
erated interesting objects. (green) coverage path. (blue-red) time color-coded vehicle pose.

of LM lanes containing interesting objects. Pose plot of vehicle in North-East plane is

shown in Fig.5.9.

CL-CPP and OPTA-CPP performance can be compared either in terms of the total

distance traversed for the complete coverage, or the rate of coverage. Fig.5.12shows

that the complete coverage path of CL-CPP algorithm is 4543𝑚 while for OPTA-CPP

this is 3568𝑚, which is performance improvement of 21.46%. Fig.5.13compares the

rate of convergence to complete coverage. Coverage percentage was formulated as

the percentage of lanes covered at least once. For CL-CPP it is linear since no online

replanning takes place. For OPTA-CPP this curve starts off with a twice faster rate but

then slows down only a bit. It is constant in cases when the replanned coverage path

included a loopback to cover the previous lane once more. CL-CPP finishes after 4320𝑠
while OPTA-CPP finishes after 3080𝑠, which is 28.70% performance improvement time-

wise.
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(a)

(b)

Figure 5.10: Visualization of mission replanning in RViz. (a) Vehicle moves along the line to the
right of which there is something interesting. (b) Vehicle starting to move along the replanned
coverage path.
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(a)

(b)

(c)

(d)

Figure 5.11: Vehicle control states for OPTA-CPP mission. (a) Automatic control mode. (b)
Trajectory tracking mode. (c) Station keeping mode. (d) Time to target.
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Figure 5.12: Comparison of distances traversed for CL-CPP and OPTA-CPP algorithms to reach
complete coverage.

Figure 5.13: Coverage over time CL-CPP and OPTA-CPP algorithms.
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5.5 Conclusion

This chapter introduced the UUV simulator as a framework into which the developed

coverage path planners and mission controller were integrated. Mission controller is

described and represented by a flowchart, and all the subsystems are presented as a

block scheme. Results shown here are consistent with the results presented in Chap-

ter3. The next chapter describes the autonomous marine vehicles (AUV, ASVs, and a

hybrid ROV/AUV) that were used in experimental validation trials.
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Systems

6.1 Introduction

Autonomous marine vehicle play an important role in today’s seafloor mapping and

exploration missions and this trend is only going to increase over the coming years.

This chapter brings technical descriptions of the various vehicles used in real-world

case studies presented in Chapter7. These vehicles are: LAUV Lupis, described in

Section6.2acquired by our research laboratory from OceanScan company; ASV Pla-

DyBath, fully developed by LABUST in the scope of BLUEMED project, as described

in Section6.3; ASV Korkyra, developed also in-house in the scope of HEKTOR project,

as a significantly larger version of ASV PlaDyBath, as described in Section6.4; and

a hybrid ROV/AUV Europe, developed by our colleagues at CNR, Genova, Italy, as

described in Section6.5.

6.2 LAUV Lupis

Lightweight Autonomous Underwater Vehicle (Lightweight Autonomous Underwa-

ter Vehicle (LAUV)) Lupis has been purchased from OceanScan – Marine Systems and

Technology, Lda. The LAUV system was originally developed by the Underwater Sys-

tems and Technology Laboratory (LSTS) from the Porto University and has been fur-

ther developed in cooperation with OceanScan – Marine Systems & Technology, Lda.

The complete LAUV system includes all the equipment required to communicate with

the vehicle, the command and control software, external aids for navigation, and a set

of optional devices to facilitate operation. LAUV Lupis is a lightweight, modular plat-

form prepared to integrate a set of different sensors and sonars. The vehicle is targeted

at cost-effective oceanographic, environmental and inspection surveys to fulfill a wide

range of applications.

98



Systems

Figure 6.1: LAUV Lupis.

On the software side, LSTS developed Inter-Module Communication Protocol (IMC),

which defines a common control message used by all vehicles and computers in a net-

worked environment. Unified Navigation Environment (DUNE) is a unified naviga-

tion environment, i.e. an embedded software with modules for control, navigation,

simulation, networking, sensing and actuation. Neptus is the command and control

framework, used to interface and control the LAUV vehicle. It includes two distinct

tools:

•The Operator Console supports the planning, execution, and (simplified) review

phases.

•The Mission Review and Analysis (MRA) is the interface used to visualize and

analyze data recorded by the LAUV vehicle.

6.2.1 Klein UUV3500 Side-Scan Sonar

Klein’s UUV-3500 Sonar is a high resolution, dual frequency (400 and 775𝑘𝐻𝑧) side-

scan sonar which uses wideband signal processing techniques to produce superior

resolution at long range. It has maximum slant range of 100𝑚 at 775𝑘𝐻𝑧 and 200𝑚 at

400𝑘𝐻𝑧, and it offers across-track resolutions of 1.2 − 19.2𝑐𝑚 depending on the trans-

mitted pulse length. Low power consumption is achieved through the use of long,

frequency modulated Chirp transmissions while integrated hardware signal process-

ing produces high fidelity acoustic images. The sonar electronics are packaged as an

integrated part of an AUV electronics assembly. The sonar transducers mount on the

exterior of the AUV, and are configured through-hull penetrators.

6.3 ASV PlaDyBath

An ASV equipped with a Norbit WBMS 400/700KHz multibeam echosounder/sonar

(MBES) and accompanying Applanix navigation system together with a high-precision
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(a)
(b)

Figure 6.2: (a) Autonomous surface vehicle (ASV) PlaDyBath with sonar mounted below, Trim-
ble GPS antennae in the back and a WiFi antenna on the left. (b) ASV PlaDyBath during a
monitoring mission.

Trimble GPS antennae was used to collect multibeam sonar data. This is one of the

many application dependent versions of the so-called Dynamic Positioning Platforms

(PlaDyPos or H2Omni-X), see Fig.6.2a. The surface vehicle has been developed by

LABUST and is used for a variety of applications, from support to underwater archae-

ology [107], as a dive monitoring platform that allows divers to navigate and monitor

from the surface [108], as communication router between underwater and aerial vehi-

cles [109], used in ASV swarms for long-term monitoring of the underwater environ-

ment [110], for mapping (obtaining photomosaic and bathymetry) of shallow water

areas [111] and for mine countermeasures [112].

The ASV is fully actuated with four electric thrusters that make up the X configura-

tion. This configuration allows horizontal movement in any orientation. The ASV has a

diagonal length of 1𝑚, is 0.35𝑚 high and weighs about 20−30𝑘𝑔 depending on the pay-

load configuration in the experiments. The maximum speed under ideal conditions is

1 m/s. Such a configuration of the vessel is very well suited for research purposes due

to its simple deployment procedure, robustness under real environmental conditions

and low energy consumption, [108,113].

6.3.1 Multibeam sonar Norbit iWBMSe

The Norbit iWBMSe multibeam sonar is the main sensor for ASV data acquisition,

shown in Fig.6.2b. The sonar is integrated with the latest GNSS-assisted inertial

navigation system (Applanix SurfMaster), has 80kH bandwidth, roll stabilization, an

Ethernet interface and integrated sound velocity measurement. The basic sonar fea-

tures are 5-210 degrees swath, adjustable measurement sector, 10mm resolution, 256-

512 beams, 200kHz-700kHz nominal frequency 400kHz, range 0.2-275m (160m typical

100



Systems

at 400kHz). Ping rate up to 60Hz or adaptive, resolution: longitudinal x transverse

standard 0.9x1.9degrees at 400kHz and 0.5x1.0degrees at 700kHz.

6.4 ASV Korkyra

The autonomous surface vehicle named Korkyra (see Fig.6.3) was developed as part

of the HEKTOR project [114], [115]. It was designed as a catamaran to provide better

stability and hydrodynamic properties in sea states up to state two. It is made of alu-

minum, 2000 mm long, 1000 mm wide, and has hollow hulls with a diameter of 240

mm. The upper deck consists of a carbon hull that houses all the electronics and com-

puters that enable the autonomy of the vehicle. The catamaran’s lower deck houses

IP67-rated watertight aluminum boxes that house additional batteries, motor electron-

ics, the NORBIT iWBMSc multibeam sonar system INS, and an expansion box that

provides easy plug-and-play power, Ethernet and USB connectivity for each payload.

The sonar, which is used in bathymetric applications of the ASV, is mounted in the

front of the ASV on a bracket that can be lowered or raised as needed. The roll bar

above the upper deck allows integration of maritime signal lights, surveillance cam-

era(s), possibly even LiDAR, etc.

It currently weighs 100 kg in the air. Mobility of the ASV on land and during de-

ployment from shore is provided by two rugged wheels on the rear of the hulls and a

swivel wheel on the front. The ASV’s stability and maneuverability at sea is further en-

hanced by 300 mm high keels at the front of each hull. On land, these keels act as front

legs on which the ASV stands, and they also protect the payload mounted beneath the

ASV.

The ASV Korkyra is equipped with various payloads, such as a multibeam sonar,

a remotely operated vehicle (ROV), a tether management system (TMS) for the ROV, a

landing platform for the LAAR, a pan-tilt-zoom (PTZ) Hikvision IP camera (mounted

on top of the roll bar), and a LiDAR on the upper and front lower parts of the ASV.

It can accommodate an additional 50 kg (in the air) of payload so that the hulls are

semi-submerged for best hydrodynamic characteristics.

Four 390 W electric T200 thrusters in X configuration enable it to navigate complex

marine environments at lower speeds (1-2 knots) in all directions. The thrusters are

mounted on movable masts that can be adjusted in height. Thruster orientation in the

horizontal plane can also be adjusted with a resolution of 45°. In addition, the 720

W Minn Kota RT 55 EM booster electric motor enables top speeds of 3-4 knots. The

booster motor is mounted in the rear of the ASV on the same height-adjustable bracket

as the sonar. The total energy the ASV can draw from its batteries is 252 Ah or 3.73
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(a) (b)

Figure 6.3: (a) ASV Korkyra with Blueye Pro ROV and TMS mounted in LABUST pool, Zagreb,
Croatia. (b) TMS and underwater acoustical localization system tests at Bistrina Bay, Croatia,
April 2022.

kWh. This means that the autonomy of the ASV Korkyra is between 3.5 h and 20 h. In

mixed consumption scenarios, however, the ASV has an average autonomy of 10-11 h.

The GNSS with inertial navigation system IMU, named Applanix SurfMaster, com-

bined with base station corrections over the Long-Term Evolution (LTE) network, en-

ables the ASV to localize itself globally with an accuracy of up to 10 cm. The main

computer uses ROS as a framework for mid- and high-level control, data processing

and mission control. Communication with the vehicle is via Wi-Fi (Ubiquity Bullet M2

and an omnidirectional antenna on both the ASV and operator side) with a peak trans-

mission speed of 100 Mbps over 400-500 m range. The option with Ubiquity Rocket M2

and Ubiquity 120° sector antenna was also tested to achieve longer range and better

bandwidth. Operator work and mission planning for ASV Korkyra will be facilitated

by open-source, graphical user interface-based software called Neptus.

6.5 Hybrid AUV/ROV robotic plaform e-URoPe

The hybrid AUV/ROV robotic platform e-URoPe (e-Underwater Robotic Pet) is an un-

manned marine robot developed by the CNR-ISSIA, and it is characterized by reduced

dimensions, 1.0 (length) x 0.7 (width) x 0.5 (height) m, and maximum operating depth

of 200 m, see Fig.6.4. New design methodologies and material choice have led to the

construction of a robust and highly reliable vehicle, as well as reduced weight and size

turning into lighter logistics constraints. The vehicle guarantees complete navigation

capabilities thanks to fully actuated propulsion configuration (4 horizontal and 4 ver-

tical thrusters) and the presence of inertial sensors for attitude and acceleration mea-

surements, combined with a DVL system for velocity reading. The integration of an

USBL device provides the relative position localization for a more accurate navigation
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Figure 6.4: e-URoPe hybrid AUV/ROV robotic platform used in the experiments.

capability during coordinated maneuvers. The exploitation of the optic fiber link (in

ROV mode) allows the transmission of high-bandwidth sensor data (as cameras and

multibeam sonar systems) as well as online functionality verification and debugging.
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Case studies

7.1 Introduction

This chapter presents a collection of case studies performed during numerous sea trials

on a timescale of three years from 2017 to 2019. Section7.2brings experimental valida-

tion results of the MPC-based line following guidance module presented in Section2.2

with simulation results. Underwater navigation is still a challenging problem in un-

derwater robotics. Although this issues is out of the scope if this thesis, an Extended

Kalman filter-based underwater navigation improvement module, mentioned first in

Section2.1is here presented in Section7.3. In Section7.4, multibeam dataset collection

trials at Plitvice Lakes National Park in Croatia were used for getting to know sonar

mapping missions from operator’s perspective and get ideas about autonomous cover-

age planning algorithms presented in Chapter3. Sea trials during which a significant

sonar dataset was collected at various underwater archaeological sites all around the

Mediterranean are described in Section7.5. This dataset is then used in Section7.6to

validate algorithms for anomalous object detection in side-scan sonar imagery, previ-

ously introduced in Chapter4.

7.2 Model predictive-based line following

7.2.1 Experiment setup

During the beginning of October 2016 we have conducted series of on-sea trials in

Biograd na moru to validate simulation results. The hybrid AUV/ROV robotic plat-

form e-URoPe ( e-Underwater Robotic Pet, shown in Fig.6.4) developed at Consiglio

Nazionale delle Ricerche (CNR) (Genoa, Italy) has been used for the experiments. Since

e-URoPe, which has been used in ROV mode, is an inherently fully actuated vehicle,
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sway, pitch, and roll controllers had to be shut down. This way, it has been artificially

transformed into an under-actuated vehicle, controlling only heave speed, surge speed,

and yaw rate. The existing heave controller, already developed for e-URoPe, has been

used to keep a constant depth. Experimental results validating the simulation results

are given in Subsections7.2.2and7.2.3for surface and underwater experiments, re-

spectively.

Firstly, the ACADO-ROS stand-alone simulator which was already developed

needed to be integrated with the ROS environment which was developed by CNR for

the e-URoPe ROV. The idea was to use MPC controller as yaw rate reference genera-

tor, while the e-URoPe simulator would be used for tracking of constant surge speed

reference, and the MPC-generated yaw rate reference. Controllers of surge speed and

yaw rate are PID controllers which have already been proven to have very good per-

formance. Secondly, this integrated dual simulator structure needed to be connected

with the e-URoPe ROV itself for the experiments to take place.

The line following model used in the experiments consisted of only states 𝑑, and 𝛽,

given by Eqs. (2.9) and (2.10), respectively. The reason for excluding (2.11) from the

model for the real system implementation was the increased oscillatory behavior of the

vehicle when it gets close to the line due to integral action. This was the consequence

of Global Positioning System (GPS) and Ultra Short Base-Line (USBL) measurement

noise switching the vehicle’s position from one side of the line to another. In order to

minimize the 𝑑𝑖𝑛𝑡 state, optimization algorithm tended to change the sign of the state

𝑑, resulting in unwanted oscillations of the vehicle around the lines of the lawnmower

pattern. This simplified approach gave much better control performance in the ex-

perimental results compared to the previously used approach. One of the reasons for

this is that in the simulations, the perfect knowledge of vehicle’s position, surge speed,

and yaw rate was assumed, so this case of measurement error conditioning the control

performance could not have happened.

Since the 𝑑𝑖𝑛𝑡 state was not used anymore, we have increased the 𝐾𝛽 coefficient to

𝐾𝛽 = 0.1 in order for the control optimization algorithm to put more effort into align-

ing the vehicle’s heading with the orientation of the line being followed. Victory radius

was increased to 𝑅𝑣𝑖𝑐𝑡𝑜𝑟𝑦 = 2𝑚. Surge speed reference was set to a value 𝑈𝑟 = 0.2𝑚/𝑠,
since the vehicle is more maneuverable when moving at a slower speed. Also, the

bounds for the yaw rate were lowered to |𝑟| ≤ 12°/𝑠. Larger values of yaw rate bounds

in the experiments have caused the controller to generate more aggressive control val-

ues near the bounds due to the position estimation errors, which in turn resulted in the

unwanted oscillations of the vehicle around the reference line.

Experiments testing the performance of the developed MPC-PID framework have
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been conducted both on the sea surface and underwater (at constant depth of 1.4𝑚).

Low level yaw rate controller was a P controller with 𝐾𝑝 = 0.4.

Also, both surface and underwater experiments were conducted with a guidance

scheme from [116]. It is composed of a Lyapunov-based virtual-target path-following

algorithm that generates a heading reference, combined with a PID heading controller

which directly generated a yaw torque command. We used this method to compare

the performance of the proposed MPC-PID framework with it.

7.2.2 Surface experiments

The first set of experiments has been conducted with

e-URoPe ROV on the sea surface, using GPS for localization. In Fig.7.1apath of the

ROV is shown when MPC-PID (red), and PID controller (blue) have been used. In

both cases, the ROV shows oscillatory behavior when moving in the close vicinity of

the given lines. MPC-PID controlled ROV converges to the line in a matter of 50𝑠 and

keeps on moving really close to the line (see Fig.7.1b).

However, its heading error w.r.t. the desired line does not converge to a constant

value, see Fig.7.1c. This value should be zero in case no disturbance is present, and

a nonzero value in case disturbance is present and rejected. Aforementioned oscilla-

tions have an amplitude of less than 0.5𝑚, which is a small value of the same order of

magnitude as the GPS sensor precision class. But in case that the ROV or any other

autonomous marine vehicle with this control algorithm on-board are deployed for sea

floor sonar scanning, the resulting interlaced sonar scans would be of greatly deterio-

rated quality.

In the Fig.7.1dit can be noted that the used low level yaw rate controller tracks

the reference yaw rate values with perhaps only a small delay which is tolerable. This

means that the subpar performance of the yaw rate tracking controller can be ruled out

as a possible cause of the vehicle’s oscillations around the given lines.

Oscillatory behavior could have been the consequence of the disturbances such as:

waves hitting the GPS sensor causing measurement error (and also swaying the vehicle

from the desired line), sea current, or unoptimized parameters of Kalman filter for

position estimation. Also, it could be the case that the flat square-shaped front side

of the ROV was causing it problems with movement on the sea surface due to the

hydrodynamic effects, increased drag, etc.
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(a) Reference lawnmower lines at a constant depth (black), defined
by given waypoints (green markers). Vehicle’s path while follow-
ing the lines of the set lawnmower pattern: MPC controller (red),
PID controller (blue). Heading of the vehicle controlled by MPC
(black triangles).
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(b) MPC controller. Distance to the given lawnmower line(s) (blue.
Zero reference for the distance (red dashed).

time (seconds)

0 25 50 75 100 125 150 175 200 225 250

β
 (

d
e
g
)

-180
-150
-120

-90
-60
-30

0
30
60
90

120
150
180

(c) MPC controller. Vehicle’s heading error w.r.t. the orientation
of the lawnmower line(s) being followed (blue). Zero reference
for the heading error (red dashed). Bounds of the heading error
values (red dash-dot).
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(d) MPC controller. Estimated tracking (red) of the reference yaw
rate (blue). Bounds of the yaw rate values (red dash-dot).

Figure 7.1: Surface experiments.
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7.2.3 Underwater experiments

In addition to the experiments on the sea surface with e-URoPe ROV, underwater ex-

periments were also conducted. During these experiments, USBL was used for local-

ization. For the same given lawnmower pattern segment as in the Subsection7.2.2, the

path of the vehicle is given in Fig.7.2a, for both MPC-PID framework (red) and PID

controller (blue). Compared to the line following on the surface, these underwater ex-

periment results are much better. The vehicle does not oscillate around the line (except

for a few position estimation outliers) in the case of both MPC-PID and PID controller.

The distance to the desired line for MPC-PID framework (see Fig.7.2b) converges to

zero in about 25𝑠, and stays close to zero.

Heading error w.r.t. the desired line orientation (see Fig.7.2c) also converges to zero

as soon as the vehicle steadily converges to the line, around 25𝑠 from the start of the

experiment. Since the experiments have been conducted in shallow waters, the effect

of sea current was negligible, so the vehicle has been able to follow the desired lines,

decreasing both the distance and the heading error to zero.

The same P controller mentioned in Subsection7.2.2has been used for yaw rate

tracking, whose tracking performance for the underwater experiment is shown in

Fig.7.2d. It can be noted that its performance is excellent, and that it has a short re-

sponse time, meaning that the reference is tracked fast and precise. Also, reference yaw

rate drops to value closer to zero as soon as the vehicle converges to the line, meaning

that the vehicle moves with a constant heading, aligned with the followed line.

Looking only at the Fig.7.1aand7.2a, and comparing the performance of MPC-PID

framework and PID line following controller alone, it can be deduced that there is not

a big difference between the control performance of the two approaches. However, if

yaw rate tracking graphs in Fig.7.1dand7.2dare analyzed, it can be noted that both

the reference and accomplished values of yaw rate are within the set bounds.

On the other hand, when the guidance scheme from [116] was used, estimated yaw

rate values violated the set bounds, which is shown in Fig.7.3. In this case, yaw rate

was not controlled directly, so it could not even be saturated. Even if a PID yaw rate

controller were used with a saturation block, this kind of control signal cut-off can, gen-

erally speaking, endanger the system’s stability and deteriorate system’s performance.

Also, this kind of constraints violation on control signal can make control allocation

problem much harder.
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(b) MPC controller. Distance to the given lawnmower line(s) (blue.
Zero reference for the distance (red dashed).

time (seconds)

0 25 50 75 100 125

β
 (

d
e
g
)

-180
-150
-120

-90
-60
-30

0
30
60
90

120
150
180

(c) MPC controller. Vehicle’s heading error w.r.t. the orientation
of the lawnmower line(s) being followed (blue). Zero reference
for the heading error (red dashed). Bounds of the heading error
values (red dash-dot).
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(d) MPC controller. Estimated tracking (red) of the reference yaw
rate (blue). Bounds of the yaw rate values (red dash-dot).

Figure 7.2: Underwater experiments.
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Figure 7.3: Estimated yaw rate signals caused by the use of PID controller. Surface experiment
(red), underwater experiment (blue). Bounds of the yaw rate values (red dash-dot).

7.2.4 Conclusion

Real-time MPC framework implementation has been achieved for the line following

problem which has been addressed in this section. Experimental results show good

performance of MPC controller when compared to PID controller. The main advantage

of MPC over PID control in this perspective is its possibility to be used as a general

control optimization framework. Parts of this chapter were previously published by

the author in [7,8].

7.3 AUV localization improvement

7.3.1 Introduction

In an underwater environment, Global Navigation Satellite System (GNSS) signals,

that are available and widely used for localization in numerous land and air applica-

tions, are absent due to the very weak propagation of electromagnetic waves through

the water. An electromagnetic homing system, presented in [117], is an example of

the alternative that can provide accurate measurement of the autonomous vehicle po-

sition and orientation to the dock during homing, but also with very limited range due

to same propagation constraints. Therefore, in the underwater environment acoustic

based localization techniques are predominantly used [3].

Underwater navigation systems can be categorized in three categories, [118]. First,

inertial navigation systems which use accelerometers and gyroscopes for increased ac-

curacy to propagate the current vehicle state. Methods in this category have position

error growth that is unbounded. Second, external acoustic systems are based on mea-

suring the time–of–flight of signals from acoustic beacons or modems to perform navi-

gation with bounded position error. Finally, geophysical navigation category contains

techniques that use external environmental information as references for navigation.

This is done with sensors and processing that are capable of detecting, identifying,
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Figure 7.4: Block scheme of the entire AUV system.

and classifying some environmental features, e.g. cameras, sonars. Beside these three

categories, when talking about localization we need to distinguish between two cases.

In one case we want to determine vehicle position aboard the vehicle, while in second

case, outside observer wants to determine vehicle position [3].

Since GPS is not available for UUVs’ localization when underwater, it is possi-

ble to use various other sensors in order to improve the localization accuracy. One

possibility is to augment UUV’s localization by using a USBL alongside Inertial Mea-

surement Unit (IMU), Doppler velocity logger (DVL), a Pressure sensor (PS), and GPS

when available, with Simultaneous localization and mapping (SLAM) used for ground

truthing, as presented in [119]. Other approaches use light beacons for close-range

localization, as shown in [120], cooperative localization of a UUV assisted by a Un-

manned Surface Vehicle (USV), as in [121] and [122], and a plethora of other sensors.

A comprehensive overview of localization methods for UUVs is given in [123].

In order to achieve the above-mentioned goal, the first objective is to obtain a data

set during sea trials involving one UUV and several USVs, and thus gather measure-

ments from various sensors used to localize the UUV. The objective is to improve the

existing localization of the UUV by augmenting its Extended Kalman Filter (EKF) lo-

calization filter in DUNE [124] with ground truthing UUV’s position by detecting it

one USV’s downward looking camera’s view, and in another USV’s multibeam sonar

images, as well as using range and bearing measurements of the USBL mounted below

the USV, as shown in Fig.7.5a. The implementation and testing of the augmented lo-

calization filter were done in the post-processing phase of the sea trials, in order to see

how much it enhances the accuracy of the existing UUV localization filter. The block

scheme showing the overall view of the system with EKF as a "System states estimator"

(in red) is given in Fig.7.4.
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In real–life conditions, measurements provided by sensors are not ideal. They are

noisy, may contain outliers, they are often delayed or intermittent. Some of them can-

not even be directly measured. Due to that, measurements are rarely used directly in

control systems. Instead, they are first estimated using some of many available filters.

Also, mathematical models in practice are mostly nonlinear. Several nonlinear esti-

mation techniques exist, some of which are the particle filter, unscented and extended

Kalman filter. Particle filtering is a brute-force statistical estimator offering superior

performance to Kalman filters for highly nonlinear systems. Unscented Kalman Filter

(UKF) applies unscented transformations providing more accuracy than linearization,

especially when propagating means and covariances. However, both the particle filter

and UKF require more computation resources than the extended Kalman Filter, [125].

Nonlinear extensions of the Kalman filter use model linearization around the operat-

ing point. The most famous and used extension, using a first order linearization, is

Extended Kalman Filter. Therefore, main equations are presented in this subsection

for overview while complete EKF derivations can be found in [125,126]. Let a discrete

nonlinear system be described with the following set of equations

x𝑘 = f𝑘−1 (x𝑘−1,u𝑘−1,w𝑘−1) (7.1)

y𝑘 = h𝑘 (x𝑘,v𝑘) (7.2)

w𝑘 ∼ (0,Q𝑘) (7.3)

v𝑘 ∼ (0,R𝑘) (7.4)

where 𝑥𝑘 are system states, 𝑦𝑘 outputs, and 𝑢𝑘 inputs.Vectors 𝑤𝑘 i 𝑣𝑘 represent process

and measurement noise described as Gaussian white noise with covariance matrices

𝑄𝑘 and 𝑄𝑘, respectively.The main difference between a Kalman filter and its extended

version is in the linearization of nonlinear 𝑓 and ℎ functions around the current state

estimate. The general EKF algorithm is then summarized as, [127]:

1.Initialize the filter with:

x̂ = E(x0) (7.5)

P+
0 = E

(︁(︁
x0 − x̂+

0

)︁ (︁
x0 − x̂+

0

)︁ᵀ)︁
(7.6)

where E(·) is a expectation operator and 𝑃 is the estimation error covariance

matrix.

2.For each time-step 𝑘:
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(a)Compute partial derivatives of the state equation:

𝐹𝑘−1 = 𝜕f𝑘−1

𝜕x

⃒⃒⃒⃒
⃒
x̂+

𝑘−1

(7.7)

L𝑘−1 = 𝜕f𝑘−1

𝜕w

⃒⃒⃒⃒
⃒
x̂+

𝑘−1

(7.8)

(b)Update the state estimate and covariance ( prediction):

x̂−
𝑘 = f𝑘−1(x̂+

𝑘−1,u𝑘−1, 0) (7.9)

P−
𝑘 = F𝑘−1P+

𝑘−1F𝑇
𝑘−1 + L𝑘−1Q𝑘−1L𝑇

𝑘−1 (7.10)

(c)Compute partial derivatives of the output equation:

𝐻𝑘 = 𝜕h𝑘
𝜕x

⃒⃒⃒⃒
⃒
x̂−

𝑘

(7.11)

M𝑘 = 𝜕h𝑘
𝜕v

⃒⃒⃒⃒
⃒
x̂−

𝑘

(7.12)

(d)Update the state estimate and covariance using the measurement innovation

(correction):

𝐾𝑘 = P−
𝑘 H𝑇

𝑘 (H𝑘P−
𝑘 H𝑇

𝑘 + M𝑘R𝑘M𝑇
𝑘 )−1 (7.13)

x̂+
𝑘 = x̂−

𝑘 + K𝑘

[︁
y𝑘 − h𝑘(x̂−

𝑘 , 0)
]︁

(7.14)

P+
𝑘 = (I−K𝑘H𝑘)P−

𝑘 (7.15)

where Kk is known as the Kalman filter gain.

EKF is commonly used in practice since the systems we want to estimate are non-

linear. Due to model linearization around the operating point EKF, which introduces

approximation error, is not an optimal estimator. If the initial state of the filter is cho-

sen poorly, or the process model has large errors, filter can easily diverge. Despite

that EKF gives satisfying performance, and presents de–facto standard in navigation

systems. Marine vehicles are equipped with different sensors which provide measure-

ments at different update rates. Hence, the navigation filter has a task to fuse available

measurements, and by using the mathematical models provide state estimates at an

update rate required by the control system.

Estimators which use dynamic models have several benefits over kinematic mod-

els. First, velocities are modelled exactly and generalized assumptions are not re-
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quired. Kinematic models update their velocity estimate with position measurements

which are often slow and infrequent, but command inputs to the kinetic model (𝑋 ,

𝑌 , 𝑍, 𝑁 ) are continuously available for velocity updates. Therefore, use of dynamic

models enables separate kinematic and kinetic controller design uniformly across a

wide range of vehicles and sensor suites, [5]. When dynamic model parameters are

available, the model can be used as velocity measurement input into the kinematic

model. However, combining the dynamic and kinematic model is more compact. The

combined model inputs are generalized forces and moments which propagate the es-

timator at the controller update rate.

This Section is organized as follows: data collection sea trials and equipment used

are described in Section7.3.2, after which the preprocessing filters of the gathered sen-

sor data are given in Section7.3.3. The design of the EKF implemented in this section

is presented in Section7.3.4, and its navigational accuracy is compared to the existing

EKF on-board the UUV in Section7.3.4. Section7.3.5provides localization accuracy

analysis of the implemented Extended Rauch-Tung-Striebel Smoother (ERTS) which

was run at each UUV resurfacing. Key results of this section are concluded in Sec-

tion7.3.6.

7.3.2 Sea trials and data collection

The sea trials took place in the Degaussing Station in the vicinity of the Lora naval base

in Split, Croatia, on 23-27 October 2017. The layout of the conducted experiments is

shown in Fig.7.5a. The UUV was planned to dive to around 5𝑚 depth (in order to

still be visible in the USV’s camera at that depth) and traverse a 200𝑚 long linear path.

After each linear path, the UUV resurfaces, and returns to the start of the set path,

doing this in total 5 times.

Torpedo shaped UUV Lupis (see Fig.7.5b) controllable in the surge, pitch, and yaw

was used for the experiments. When underwater, its onboard localization filter relies

only on dead reckoning, i.e. on IMU, compass, DVL, and PS measurements for local-

ization, while GPS measurements are not available. If available, i.e. the UUV is at the

surface, GPS fixes are also integrated into the UUV’s localization filter.

Overactuated USV Proteus [128] (see Fig.7.5b) was mounted with a downward

looking Logitech C920 HD Pro webcam, and a SeaTrac X150 USBL Beacon, shown

in Fig.7.5c. It was put in a Direct path (DP) mode approx. in the middle of the UUV’s

diving path, and oriented its bow towards the North, see Fig.7.5a.

Due to the second USV shipping problems Teledyne BlueView M450 Series 2D

multibeam imaging sonar could not be mounted onto the USV as planned. Instead,

it was mounted on a lightweight aluminum tubular platform (see Fig.7.5d) going 5𝑚
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(a) (b)

(c) (d)

Figure 7.5: Experiments setup. (a) The layout of the experiments. (b) UUV Lupis and USV
Proteus. (c) 3D model of the USV Proteus camera and USBL mount. (d) BlueView multibeam
sonar and its mount pole (left), battery pack and processing unit (right).

into the sea, which was fixed to one of the pillars in the Degaussian station’s waters,

looking straight to the North, see Fig.7.5a.

7.3.3 Preprocessing of the Measurements

After finishing the sea trials, datasets of visual, sonar, and USBL data were processed.

A simple online UUV visual detection algorithm was implemented. Also, the UUV

was manually detected in multibeam sonar data, logging its range and bearing w.r.t.

the sonar position. Range measurements of the USBL were shown to be useful while

bearing measurements were not reliable and were almost completely random.

Surge speed outlier rejection filter

Due to DVL measurement noise, UUV’s onboard EKF surge speed estimation had sud-

den and significant changes, even going from a positive to a negative value, which

is physically infeasible. Surge speed outlier rejection filter is implemented in order

to solve this problem and provide the EKF with feasible measurements. For a cur-

rent surge speed measurement 𝑢(𝑘), its previous value 𝑢(𝑘 − 1), and the reference

surge speed 𝑢 (which was kept constant in each mission), surge speed is filtered in
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a few steps. First, it goes through a saturation block with limits 𝑢𝑚𝑖𝑛 = 0[𝑚/𝑠] and

𝑢𝑚𝑎𝑥 = 2[𝑚/𝑠], and its output is denoted by 𝑢𝑠(𝑘).
After that the difference of the surge speed 𝑢𝑠(𝑘) and its expected reference mean

value 𝑢 is computed by 𝛿𝑢𝑢𝑠(𝑘) = |𝑢𝑠(𝑘)−𝑢|, by which 𝑢𝑠(𝑘) filtering is then conditioned

with:

𝑢*(𝑘) =

⎧⎪⎨⎪⎩
𝑢(𝑘 − 1) + sgn(𝛿𝑢(𝑘−1)

𝑢𝑠(𝑘) )𝛿𝑢𝑢𝑠(𝑘)/𝛿𝑝, 𝛿𝑢𝑢𝑠(𝑘) > 𝛿𝑡ℎ

𝑢𝑠(𝑘), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(7.16)

where 𝛿𝑢(𝑘−1)
𝑢𝑠(𝑘) is given by 𝛿

𝑢(𝑘−1)
𝑢𝑠(𝑘) = |𝑢𝑠(𝑘) − 𝑢(𝑘 − 1)|, 𝛿𝑝 = 25 is the predefined filter

parameter that represents the part of 𝛿𝑢𝑢𝑠 for which 𝑢𝑠(𝑘) can change in one discrete

time step, and 𝛿𝑡ℎ = 0.3[𝑚/𝑠] is the predefined filter parameter that represents the

threshold of 𝑢𝑠(𝑘) change w.r.t. its constant reference value 𝑢 in one discrete time step.

Results of surge speed estimation outlier rejection are given in Fig.7.6a. It can be

noted that numerous spikes in the range of samples 250−600 are successfully smoothed

by the filter. It is even more important that the filter copes well with sudden false

negative values of estimated surge speed, which are present in samples 800 − 900. In

these cases, the filter maintains the value of filtered surge speed around the expected

reference value 𝑢.

Visual detection filter

In order to detect the UUV in the USV’s downward looking camera’s view, a simple

visual detection algorithm is implemented. It counts the number of pixels in a frame

which has the hue in some range close to the calibrated hue of the UUV at the operating

depth. Good performance of both false positives and negatives rejection was achieved

by empirically based thresholding of the characteristic hue range pixels count, as well

as their outspread. centre of gravity (CoG) of all detected pixels in the set hue range is

set to be the ground truth UUV position measurement.

An example of the UUV caught in camera’s view is shown in Fig.7.6b, while the

estimated output UUV CoG position is shown in Fig.7.6c. The hull of the UUV is

approximated by the red lined minimum bounding box, while the red dot represents

UUV’s estimated position. It can be noted that the UUV visual detector works very

well. Equations of simple frame transformations from camera frame coordinates to

local 𝑁𝐸𝐷 frame coordinates (𝑥𝑐𝑎𝑚(𝑘), 𝑦𝑐𝑎𝑚(𝑘)) were omitted here for brevity.

Sonar image based detection filter

Detection of the UUV in multibeam sonar images was done manually, logging range

𝑟𝑢𝑢𝑣𝑠𝑜𝑛 and bearing 𝛽𝑢𝑢𝑣𝑠𝑜𝑛 of the UUV w.r.t. to the sonar position. Since side-scan sonar on-
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board the UUV was active throughout the mission, significant interferences are visible

in multibeam sonar’s imaging. In order to quickly get range and bearing measure-

ments, no automatic detection method was used, because it would need significant

amount of fine-tuning to prevent false positives and negatives. After the detection

phase, the polar coordinates range 𝑟𝑢𝑢𝑣𝑠𝑜𝑛 and bearing 𝛽𝑢𝑢𝑣𝑠𝑜𝑛 , with a known sonar location

(𝑠𝑜𝑛𝑁𝑎𝑏𝑠
, 𝑠𝑜𝑛𝐸𝑎𝑏𝑠

) in the local North-East-Down (NED) frame, were transformed into

the absolute UUV position measurements (𝑥𝑠𝑜𝑛, 𝑦𝑠𝑜𝑛). An example of the UUV detec-

tion in the sonar image is given in Fig.7.6d.

USBL range outlier rejection filter

In order to reduce USBL range measurement outliers, a simple range limiting filter is

used before the USBL’s range measurement 𝑟𝑢𝑢𝑣𝑢𝑠𝑏𝑙 is fed into the augmented EKF. The

basic idea is to accept the range measurement only if it is feasible taking into account

vehicle’s surge speed and time difference between two consecutive range measure-

ments. If the time difference of the two consecutive USBL measurements is no more

than 𝛿𝑢𝑠𝑏𝑙𝑡 = 3𝑠, then the range is filtered by:

𝑟𝑢𝑢𝑣𝑢𝑠𝑏𝑙(𝑘)←

⎧⎪⎨⎪⎩
𝑟𝑢𝑢𝑣𝑢𝑠𝑏𝑙(𝑘 − 1) + sgn(𝛿𝑢𝑠𝑏𝑙𝑟 )𝛿𝑢𝑠𝑏𝑙𝑟,𝑚𝑎𝑥, 𝛿

𝑢𝑠𝑏𝑙
𝑟 > 𝛿𝑢𝑠𝑏𝑙𝑟,𝑚𝑎𝑥,

𝑟𝑢𝑢𝑣𝑢𝑠𝑏𝑙(𝑘), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(7.17)

where 𝛿𝑢𝑠𝑏𝑙𝑟 = |𝑟𝑢𝑢𝑣𝑢𝑠𝑏𝑙(𝑘) − 𝑟𝑢𝑢𝑣𝑢𝑠𝑏𝑙(𝑘 − 1)| denotes the absolute change in range of two con-

secutive measurements, and 𝛿𝑢𝑠𝑏𝑙𝑟,𝑚𝑎𝑥 = 𝛿𝑢𝑠𝑏𝑙𝑡 𝑢 denotes the maximum feasible value of

𝛿𝑢𝑠𝑏𝑙𝑟 . Filtering of the USBL’s range measurements is shown in Fig.7.6e, for all 5 line

segments which the UUV traversed underwater. It can be noted that the raw range

measurements do not have many outliers, but the above-presented filter successfully

rejects even the relatively small number of range outliers.

7.3.4 Extended Kalman Filter Used for Sensor Fusion

Process Model

A six degrees of freedom (6DoF) discretized kinematic model of the underactuated

rudder-steered UUV is used as the process model of the EKF, with state vector 𝜂(𝑘) =
[𝑥(𝑘), 𝑦(𝑘), 𝜓(𝑘), 𝑢(𝑘), 𝑣(𝑘), 𝑟(𝑘)]𝑇 . where 𝑥, 𝑦 and 𝜓 denote x-, y- coordinates of the

UUV in the local NED frame, and its heading, respectively. Surge, sway, and yaw

velocities are denoted by 𝑢, 𝑣 and 𝑟, respectively.

The vertical component of the UUV’s position is neglected since the mission design

ensured that the vehicle moves at a constant depth plane during its linear path fol-
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(a) An example of the implemented surge speed outlier rejecting
filter output.
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500 1000 1500

200

400

600

800

1000

(c) An example of the automatic
UUV detection in the downward
looking camera frame.

(d) An example of manual UUV detection in a sonar image.
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(e) An example of filtering out USBL range measurements outliers.

Figure 7.6: Examples of the surge speed, camera, sonar, and USBL measurement preprocessing.
118



Case studies

lowing. Also, the 3DOF (𝑥, 𝑦, 𝜓) process model is extended with zero dynamics surge,

sway, and yaw velocities model. This way, the perturbation of the velocities’ values is

allowed through process noise parameters of the EKF.

Process noise covariance matrix 𝑄 is designed as a diagonal matrix with elements:

𝑞11 = 𝑞𝑥 = 0.01, 𝑞22 = 𝑞𝑦 = 0.01, 𝑞33 = 𝑞𝜓 = 0.001, 𝑞44 = 𝑞𝑢 = 0.001, 𝑞55 = 𝑞𝑣 = 0.01, and

𝑞66 = 𝑞𝑟 = 0.1 , which are taken from the existing localization filter of the Lupis UUV,

in its DUNE navigation layer [124].

Measurement Model

The measurement model of the EKF implemented in this section is made to be mod-

ular, i.e. it gets augmented whenever a new type of measurement is available. Basic

localization uses dead reckoning to localize the UUV, and it is being improved when

GPS, and/or camera, and/or sonar, and/or USBL measurements are available.

Dead reckoning module Basic localization of the UUV when underwater is dead

reckoning, so measurement vector 𝑧𝑚 contains only surge, sway, and yaw velocities

measurements, taken as the velocities estimates from the existing UUV’s EKF filter

𝑧𝑚(𝑘) = [𝑢(𝑘), 𝑣(𝑘), 𝑟(𝑘)]𝑇 , and measurement noise covariance matrix 𝑅 = diag(𝜌) is a

matrix with its diagonal elements taken from vector 𝜌, 𝜌1 = 𝜌𝑢 = 1𝑒-3, 𝜌2 = 𝜌𝑣 = 1𝑒-4,

and 𝜌3 = 𝜌𝑟 = 1𝑒-3, which were taken from the existing localization filter of the Lupis

UUV, in its DUNE navigation layer [124]. Measurement model values ℎ vector is given

by ℎ(𝑘) = [�̂�(𝑘−1|𝑘−1), 𝑣(𝑘−1|𝑘−1), 𝑟(𝑘−1|𝑘−1)]𝑇 , where �̂�(𝑘−1|𝑘−1), 𝑣(𝑘−1|𝑘−1),
and 𝑟(𝑘−1|𝑘−1) are the estimates of states 𝑢, 𝑣, and 𝑟 from the previous EKF iteration.

GPS localization module In case that the UUV is at the surface, GPS fix measure-

ments are available, so the dead reckoning measurement model is augmented with the

GPS fix coordinates and the corresponding estimated GPS variance. The measurement

vector 𝑧𝑚 is thus extended with the GPS fix latitude and longitude values converted

into the UUV’s local NED frame 𝑧𝑚(𝑘) ← [𝑧𝑚(𝑘), 𝑥𝐺𝑃𝑆(𝑘), 𝑦𝐺𝑃𝑆(𝑘)]𝑇 , and the measure-

ment noise covariance matrix 𝑅 diagonal is extended by two additional diagonal ele-

ments, i.e. 𝜌(𝑘) ← [𝜌(𝑘), 𝜌𝐺𝑃𝑆𝑥 (𝑘), 𝜌𝐺𝑃𝑆𝑦 (𝑘)]𝑇 , where 𝜌𝐺𝑃𝑆𝑥 (𝑘) = 0.1, and 𝜌𝐺𝑃𝑆𝑦 (𝑘) = 0.1.

The measurement model values ℎ vector is extended as ℎ(𝑘) ← [ℎ(𝑘), �̂�(𝑘 − 1|𝑘 −
1), 𝑦(𝑘 − 1|𝑘 − 1)]𝑇 , where �̂�(𝑘 − 1|𝑘 − 1), and 𝑦(𝑘 − 1|𝑘 − 1) are estimates of states 𝑥,

and 𝑦 from the previous EKF iteration.

Visual localization module In case that the UUV is detected in the USV’s downward-

looking camera, its position is calculated by the visual detection filter presented in
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Subsection7.3.3. The measurement vector 𝑧𝑚 is thus extended as

𝑧𝑚(𝑘) ← [𝑧𝑚(𝑘), 𝑥𝑐𝑎𝑚(𝑘), 𝑦𝑐𝑎𝑚(𝑘)]𝑇 , and the measurement noise covariance matrix 𝑅

diagonal is extended by two additional diagonal elements, i.e.

𝜌(𝑘) ← [𝜌(𝑘), 𝜌𝑐𝑎𝑚𝑥 (𝑘), 𝜌𝑐𝑎𝑚𝑦 (𝑘)]𝑇 , where 𝜌𝑐𝑎𝑚𝑥 (𝑘) = 0.1, and 𝜌𝑐𝑎𝑚𝑦 (𝑘) = 0.1. Measurement

model values ℎ vector is again extended with �̂�(𝑘 − 1|𝑘 − 1) and 𝑦(𝑘 − 1|𝑘 − 1) state

estimates.

Sonar localization module If the UUV is detected in the multibeam imaging sonar,

its position is calculated by the sonar image-based detection filter described in Subsec-

tion7.3.3. The measurement vector 𝑧𝑚 is thus extended as

𝑧𝑚(𝑘) ← [𝑧𝑚(𝑘), 𝑥𝑠𝑜𝑛(𝑘), 𝑦𝑠𝑜𝑛(𝑘)]𝑇 , and the measurement noise covariance matrix 𝑅 di-

agonal is extended by two additional diagonal elements, i.e. 𝜌(𝑘) ← [𝜌(𝑘), 𝜌𝑠𝑜𝑛𝑥 (𝑘), 𝜌𝑠𝑜𝑛𝑦 (𝑘)]𝑇 ,

where 𝜌𝑠𝑜𝑛𝑥 (𝑘) = 0.25, and 𝜌𝑠𝑜𝑛𝑦 (𝑘) = 0.25. The measurement model values ℎ vector is

extended again with �̂�(𝑘 − 1|𝑘 − 1) and 𝑦(𝑘 − 1|𝑘 − 1) state estimates.

USBL localization module As soon as the UUV dives, USBL fix from one of the

USVs becomes available, and UUV’s position is estimated only based on the range

measurements from the USBL, as presented in Subsection7.3.3. The measurement

vector 𝑧𝑚 is thus extended as 𝑧𝑚(𝑘) ← [𝑧𝑚(𝑘), 𝑟𝑈𝑆𝐵𝐿(𝑘)]𝑇 , and the measurement

noise covariance matrix 𝑅 diagonal is extended by an additional diagonal element,

i.e. 𝜌(𝑘) ← [𝜌(𝑘), 𝜌𝑈𝑆𝐵𝐿𝑟 (𝑘)]𝑇 , where 𝜌𝑈𝑆𝐵𝐿𝑟 (𝑘) = 0.1. The measurement model values

ℎ vector is extended with the state 𝑟𝑈𝑆𝐵𝐿(𝑘 − 1|𝑘 − 1) where 𝑟𝑈𝑆𝐵𝐿(𝑘 − 1|𝑘 − 1) is the

modeled range measurement that is equal to the Euclidean distance 𝑑𝑈𝑆𝑉𝑈𝑈𝑉 between the

UUV and the USV mounted with the USBL, i.e. 𝑟𝑈𝑆𝐵𝐿(𝑘− 1|𝑘− 1) = 𝑑𝑈𝑆𝑉𝑈𝑈𝑉 (𝑘− 1|𝑘− 1).

Results

The comparison of localization performance of the implemented EKFs with different

measurements available is given in Fig.7.7for one of the 5 linear paths that the UUV

tracked underwater. It can be noted that with each additional measurement added to

the filter, the better its performance is, i.e. the closer the UUV’s estimated position is to

the first stable GPS fix when resurfacing.

The comparison of x- and y-position covariance values for the EKF with different

measurements available is given in Fig.7.8. It can be noted that camera-aided local-

ization helps reduce the estimated uncertainty only in a few samples when the UUV is

visually detected. Sonar’s range is on an order of magnitude wider than camera’s, so

it reduces the estimated uncertainty for a much longer time. Finally, the USBL range
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Figure 7.7: An example of the implemented EKF localization of the UUV with different mea-
surements available. Start of the UUV traversing the transect is in the top right, while the end
of the transect is at the bottom left end of the transect.

is the longest, so it starts reducing UUV’s position estimate uncertainty as soon as the

UUV dives.

Table7.1shows the aggregated comparison of all EKF approaches which use dif-

ferent measurements for UUV’s localization improvement, for all 5 transects which

the UUV traversed in a racetrack mission. The performance by which the EKF ap-

proaches are compared is determined at the moment when the UUV resurfaces, as the

distance of the estimated UUV’s position from the first stable GPS fix. It can be noted

that with the gradual augmentation of the EKF its performance becomes better. It is

interesting to note that adding range-only USBL measurements improved the perfor-

mance of the EKF in 40% of the cases. However, when comparing camera, sonar, and

USBL-augmented to dead reckoning (DR) localization, and EKF with GPS fixes, the

improvement of the proposed approach is 40− 69%, and 33− 65%, respectively, which

represents a significant improvement.

7.3.5 Extended Rauch-Tung-Striebel Smoother

In applications in which it is needed to have higher precision localization a-posteriori,

e.g. in photogrammetry, bathymetry applications etc, it is useful to use a smoother in

the post-processing phase of the camera, sonar or other data acquisition. In this case,

after applying EKF filtering forward in time for each of the line paths, an Extended

Rauch-Tung-Striebel (ERTS) smoother of the first order was applied backward in time

in each resurfacing time instant. This yielded navigation uncertainty minimization and

consequently improvement of the smoothed localization w.r.t. the filtered localization.

The ERTS is used after each EKF with different measurements available, mentioned in
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Figure 7.8: An example of localization uncertainties of the implemented EKF w.r.t. the available
measurements. The evolution of (a) the covariance 𝑃𝑥𝑥, for North component of UUV’s position
in the local NED frame, (b) the covariance 𝑃𝑦𝑦, for East component of UUV’s position, and (c)
measurement availability. For legend, the reader should refer to Fig.7.8c. The black dashed
line represents navigation uncertainty of the UUV’s EKF from DUNE [124].
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Figure 7.9: An example of localization uncertainties of the implemented ERTS w.r.t. the avail-
able measurements. The evolution of (a) the covariance 𝑃𝑥𝑥, for North component of UUV’s
position in the local NED frame, (b) the covariance 𝑃𝑦𝑦, for East component of UUV’s position,
and (c) measurement availability. For legend, the reader should refer to Fig.7.9c.
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Table 7.1: Aggregated performance of the EKF localization improvement for 5 transects each
of which was 200𝑚 long. Performance measure: the distance of the estimated UUV’s position
from the first stable GPS fix while resurfacing.

#1 #2 #3 #4 #5

DR 27.15 28.29 25.99 33.35 18.96

GPS EKF 24.76 24.00 23.11 31.28 18.75

GPS+CAM EKF 18.05 20.30 20.12 20.96 18.75

GPS+CAM+SON EKF 14.12 16.05 13.55 16.65 6.24

GPS+CAM+SON+USBL

EKF
13.89 16.07 8.10 17.57 11.25

the previous section.

The performance measure used to compare four implemented ERTS smoothers is

given by:

𝐽 =
𝑁∑︁
𝑘=1
|𝑑(𝑘)|𝑃𝐸𝑅𝑇𝑆

𝑥𝑥 (𝑘)𝑃𝐸𝑅𝑇𝑆
𝑦𝑦 (𝑘)𝜋𝑇𝑠 (7.18)

where 𝑑(𝑘) is the Euclidean distance of the UUV from the set transect to follow, the

product 𝑃𝐸𝑅𝑇𝑆
𝑥𝑥 𝑃𝐸𝑅𝑇𝑆

𝑦𝑦 𝜋 is the area of the navigational uncertainty ellipsis, and 𝑇𝑠 de-

notes sampling time. This way, the computed distance of the vehicle to the given line

is weighted by the level of certainty that the smoother has about the accuracy of the

distance value.

Results

The comparison of x- and y-position covariance values for ERTSes with different mea-

surements available is given in Fig.7.9. It can be noted that the ERTS smoother dras-

tically reduces the localization uncertainty when compared to EKF given in Fig.7.8.

This is of course expected since the smoother has full information about the previous

measurements when propagating back in time.

Table7.2presents the aggregated results of ERTS performance in various scenarios

of different measurements’ availability. It can be noted that the more measurements are

available, the vehicle is estimated to follow the line better with its smoothed path. In

this case, the ERTS augmented with GPS and camera is more than twice more accurate

than the ERTS based only on GPS measurements. In case #5 there were no detections

of the UUV in the camera, so GPS and GPS+camera ERTS performances are the same.

Smoother which is augmented by the in-sonar UUV position measurements is about

25% more accurate than the ERTS using only GPS and camera. Lastly, ERTS further
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Table 7.2: Aggregated performance (scaled by 1000) of the ERTS smoothed localization im-
provement for 5 transects each of which was 200𝑚 long.

#1 #2 #3 #4 #5

GPS ERTS 4.91 4.85 4.60 3.27 5.85

GPS+CAM ERTS 1.89 1.73 1.78 1.48 5.85

GPS+CAM+SON ERTS 1.51 1.36 1.45 1.19 1.70

GPS+CAM+SON+USBL

ERTS
0.19 0.20 0.23 0.16 0.37

augmented with USBL measurements is approximately 6 times more accurate than the

ERTS using GPS, camera, and sonar for UUV localization. This presents a significant

improvement of the UUV localization with each added measurement type.

7.3.6 Conclusion

A modular measurement model EKF for UUV underwater localization is proposed.

Except for using measurements from UUV’s sensors, namely compass, IMU, DVL, PS,

and GPS, this EKF is augmented by USBL range and visual-data based localization

from a USV, and in-sonar image estimated UUV position. It is shown that the pro-

posed EKF significantly enhances UUV’s navigational accuracy through a collabora-

tive fusion of sensor data from multiple heterogeneous marine vehicles. Also, ERTS

smoother was run a-posteriori, to test how much it can improve UUV’s localization for

post-processing of the data acquired by the UUV (e.g. camera, side-scan sonar, multi-

beam sonar etc). It was shown that additional measurements of UUV’s position can

significantly improve line following accuracy. Parts of this section were published by

the author in [4,129].

7.4 Plitvice lakes dataset acquisition

7.4.1 Introduction

Plitvice Lakes National Park (cro. Nacionalni Park Plitvička jezera) is the oldest and

largest national park in the Republic of Croatia. The park is located in the mountainous

region of Croatia, as the map in Fig.7.10shows. With its exceptional natural beauty,

this area has always attracted nature lovers, and as early as 8 April 1949 it was declared

the first national park in Croatia. Dominik Vukasović, the parson of the Plitvice Lakes
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Figure 7.10: A simplified geological map of the Plitvice National Park modified after [133].
The shape of the lakes and the surrounding terrain closely reflect the underlying geological
structure. The bedrock of the Upper Lakes (denoted 1-12) is mainly the Upper Triassic dolomite
that is relatively impermeable and retain water, making Upper lakes resting in gently sloping
valley. The bedrock of the Lower Lakes (dentoed 13-16) is the Upper Cretaceous limestone that
was susceptible to karstification processes, making Lower lakes narrower and situated in deep
canyon. Courtesy of Josip Barbača from Croatian Geological Survey.

area in 1777, was the first to mention the name "Plitvička jezera". The name is most

likely derived from the Croatian word for shallow water (pličina, or plitvak), [130,131].

The process of tufa formation, which results in the building of the tufa, or travertine

barriers and thus to the creation of the lakes, is the outstanding universal value for

which Plitvice Lakes were internationally recognized on 26 October 1979 when they

were inscribed on the UNESCO World Heritage List UNESCO. In 1997, the boundaries

of the National Park were extended, and today it covers an area of almost 300𝑘𝑚2,

[132].

The lake system consists of 16 named and several smaller unnamed lakes, which

cascade into each other. Due to the geological substrate and the characteristic hydro-

geological conditions, the lake system was divided into the Upper and Lower lakes.

The twelve lakes that form Upper Lakes were formed on impermeable dolomite rock

and are larger, with more articulated and gentler shores than the lower lakes. The

Lower lakes were formed in permeable limestone substrate cut into a deep canyon

with steep cliffs. The lakes end in the impressive Sastavci waterfalls, with the Korana

River springing from the base of the falls.

Depth measurements and the characterization/classification of the lake bottom are

of utmost importance for research of tufa formation and eutrophication processes in

the lakes. Major Franz (Franjo) Bach was the first to carry out depth measurements of
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Plitvice Lakes in 1850, [130]. His work was improved by contributions from Franić in

1910, [131], Gavazzi in 1919, [134], and Petrik in 1958, [135]. All these studies involved

measuring depths directly by a rock tied to a wire, which was then thrown from a small

boat at as many points as possible. These measurements were very valuable for their

time, but they were not georeferenced and the depth measurements were much less

accurate compared to modern indirect depth measurement methods.

It is only in the last 20 to 30 years that we have been able to explore and map the

underwater world of the Earth, mainly through technical advances such as acoustic re-

mote sensing. Models based on acoustic data can be used to estimate how underwater

locations have changed both recently and far in the past, but also to predict how they

might change in the future, [136,137]. These models can then be used as powerful

tools in public commitment to environmental protection and conservation. Nothing

has advanced in underwater technologies and research areas as much as localization

and environmental imaging devices. Recently, photogrammetry, photo modeling, si-

multaneous localization and navigation (SLAM), organized light processing, multi-

beam and numerous other acoustic sensing techniques have become ubiquitous [138–

141]. In 2007 and 2010 Pribičević and his colleagues bring modern acoustic methods

of bathymetric measurements of the two largest lakes in Plitvice, namely Kozjak and

Prošćansko lake, [142] and [143].

There are many understandable logistical limitations to working in Plitvice Lakes

National Park. Due to the minimization of the carbon footprint that people leave be-

hind in the National Park, any type of gasoline-powered vehicles are strictly prohib-

ited, so only electrically powered vehicles come into play. Even access to the lakes with

all the research equipment can sometimes be extremely strenuous. The morphology of

the terrain is very rough and steep. Around some lakes there are forest paths only a

few meters wide, while some lakes are crossed by quite narrow wooden footbridges.

The installation of a multibeam sonar on a small boat with electric motor drive seems

to be a simple but effective solution. However, the main problem with this human-

operated surveying approach is that the planning and execution of surveying missions

is prone to human error and could therefore result in some parts of the lake bottom not

to be covered by the sonar.

7.4.2 Methodology

In March and April 2019 extensive bathymetric measurements were carried out on the

lakes in Plitvice Lakes National Park in Croatia. The aim of the depth measurements

of the lakes is to enable a detailed environmental monitoring of tufa formation and

changes over time. The bathymetric measurements were performed by ASV PlaDy-
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(a) (b)

Figure 7.11: (a) Start of survey operations at lake Okrugljak. Two-person manual deployment
of the ASV PlaDyBath from the shore of the lake. (b) Mission planning for the ASV PlaDyBath
from a makeshift workstation.

Bath. In total, three of four of the Lower Lakes, and eight of twelve of the Upper Lakes

were surveyed.

These lakes have never been surveyed with sonar technology, except the largest

lakes Kozjak and Prošćansko jezero, whose bathymetric surveys were carried out by

National Park and its partners some years ago, [142–144]. The remaining lakes were

either too shallow for safe operation of the ASV PlaDyBath or the deployment of the

vehicle was too complicated due to the terrain configuration. Processed sonar data

was delivered in a form of digital elevation maps (DEMs) to National Park Plitvice for

further analysis and research of the water column.

A high-resolution georeferenced orthophoto image based on the camera images of

the unmanned aerial vehicle (UAV) was used as a basis for the planning of survey

missions, as shown in Fig.7.12. The methodology to generate such a large-scale or-

thophoto is partly described in [145]. This model was calculated before the bathymetry

survey missions to serve as a crucial input for the safety of the ASV PlaDyBath. The

outlines of the lakes were extracted from these precisely georeferenced orthophoto

models with an offset of about 5− 10𝑚 from the shore to avoid shallow parts or other

potentially dangerous obstacles along the shore, as shown in Fig.7.13aand Fig.7.14a.

Particularly frequent obstacles were the tree trunks that fell into the lakes and were not

moved by the National Park staff, as any human intervention in the National Park is

strictly prohibited. It can also be noted that the outline of the exact lake boundary does

not match the map background from the map loaded in Neptus, because the resolution

of the Neptus map layer is not sufficient to recognize the boundaries of the lakes.

The missions were planned as follows: Plan the first mission along the perimeter of

the lake, with the sonar beams tilted 30-60° towards the shore and the swath angle at

128



Case studies

(a) (b)

Figure 7.12: High resolution digital orthophoto image of the Okrugljak lake. (a) Orthophoto
of the whole lake used for high precision georeferenced lake outline extraction. (b) Detail of a
tree trunk sunk in the shallow waters of Okrugljak lake. Such areas were then excluded from
the ASV’s planned missions.

90-120°. The rest of the lake was covered with a sonar tilt of 0° (looking directly under

the vehicle) and a swath angle of 90°. The ping rate of the sonar was set to adaptive

in order to obtain as much quality data as possible. This meant that the sonar pinging

frequency increased in shallow areas and was automatically reduced in deeper parts

of the lake. The ASV’s surge speed was set at 0.7 m/s, which has proven to be a good

compromise between energy consumption and surveying time during a number of

survey missions. Depending on how shallow/deep a lake is, the rest of the survey for

this lake was carried out as follows.

When a lake had a more or less convex shape, as is the case with Malo jezero shown

in Fig.7.13a., the interior of the lake was partially covered by the so-called lawn mow-

ing maneuvers with variable lawn mower cross-section widths. In the shallowest parts

of the lake denser transects were used, while in deeper parts of the lake wider transects

were used, as shown in Fig.7.13b.

If the lake was deep or had a rather non-convex shape, as is the case with Lake

Ciginovac (see Fig.7.14a), the interior of the lake was covered with concentric, bank-

shaped missions, as shown in Fig.7.14b. For this type of non-automated mission

planning, it is essential that the vehicle is in WiFi range throughout the time of each

circumferential pass, in order to check the depth at each waypoint it passes. The in-

ward offset of the next concentric mission from the waypoints of the current mission is

calculated as 𝑑 = 2(1−𝛼/2)ℎ tan(𝜓/2), where 𝑑 is the inward offset, ℎ is the depth read

by the WBMS software at the specific waypoint reached by the vehicle in the current

mission, 𝜓 is the sonar swath angle and 𝛼 ∈ (0, 100%] is the overlap percentage of adja-

cent sonar swaths. We have used 𝛼 = 20% and 𝜓 = 90°, which gives 𝑑 = 1.8ℎ. We also

smoothed sharp curves as much as possible to reduce the fan-out effects in the sonar

footprint, which result in much sparser sonar pings on the outside and unnecessary
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(a) (b)

Figure 7.13: Background: Satellite imagery of Lake Malo jezero loaded in Neptus mission plan-
ning software for the ASV PlaDyBath. (a) The initial survey mission: The safety outline 5-10m
from the lake shore imported from a shape file based on the high resolution orthophoto with a
centimeter georeferencing precision. This ensured that the ASV does not get stuck in shallow
water bellow 0.5𝑚 deep, or that it gets stuck into many tree trunks and branches which fell
into the lake. Survey mission waypoints are placed along this outline. (b) The rest of the lake
covered by lawnmower patterns of different widths depending on the estimated depth of the
lake.

multiple overlap of the pings on the inside of the turn towards the center of the lake.

While PlaDyBath performs its tasks autonomously, the operator processes sonar

data in low resolution using the Qimera software to monitor the quality of coverage.

As soon as the batteries are depleted (approx. every 1.5 − 2ℎ), the vehicle was lifted

to the lake shore, the batteries were changed, and high-quality sonar data were trans-

ferred to the computer of the ASV operator. Initially, the break in surveying operations

was used not only for data transfer but also for passive cooling of the Applanix Surf-

Master navigation system. During the 1.5− 2ℎ surveys on lakes, especially in shallow

lakes where the adaptive pinging rate would increase significantly, it heated up very

much. As mentioned before, the adaptive ping rate was used to get as much data as

possible w.r.t. of the given water column depth, therefore it was not an option to lower

it. After the first visit to Plitvice Lakes National Park a cooling system consisting of

a small fan and a heat outlet was developed, which significantly improved the per-

formance of the ASV during the second visit to Plitvice, as it solved the problem of

overheating.

7.4.3 Results

Bathymetric data of all survey lakes were processed in the QPS Qimera software to

create 2.5D manifolds representing interpolated depth profiles. The reconstruction pa-

rameters used for the reconstruction, based on sonar and IMU datasheets, were head-

ing uncertainty: 0.3°, roll and pitch uncertainty: 0.08°, and the unit cell size for surface
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(a) (b)

Figure 7.14: Background: Satellite imagery of Lake Ciginovac loaded in Neptus mission plan-
ning software for the ASV PlaDyBath. (a) The initial survey mission: The safety outline 5−10𝑚
from the lake shore imported from a shape file based on the high resolution orthophoto with a
centimeter georeferencing precision. This ensured that the ASV does not get stuck in shallow
water bellow 0.5𝑚 deep, or that it gets stuck into many tree trunks and branches which fell into
the lake. Survey mission waypoints are placed along this outline. (b) The rest of the lake cov-
ered by concentric circumference missions. Each inner mission is offset inwards by 1.8× 𝑑𝑒𝑝𝑡ℎ
measured at the waypoints of its neighboring outer mission.

interpolation was set to 0.2𝑚.

Digital elevation maps (DEMs) extracted from the 2.5D bathymetry manifolds were

then overlaid with the digital orthophoto of the area based on UAV camera images.

Upper Lakes DEM is shown in Fig.7.15and Lower Lakes’ DEM is given in Fig.7.16.

Note that the darker parts on the right side of the lakes are only the result of the stan-

dard shader in the Global Mapper software used to merge the bathymetric DEMs with

photogrammetric orthophotos in Figs.7.15and7.16. It is interesting to see how the

tufa-shaped lake bottom does not slope evenly from the shore to the middle of the

lake. On the contrary, it contains many depressions, which are the result of the inter-

action between water and tufa bottom.

It is important to note that Petrik in [135] gathered in total 5400 limnological mea-

surements of various types about all 16 lakes during a four-year period in the 1950s.

The total number of data points processed (or so-called cells in the interpolated sur-

faces) in the QPS Qimera software is over 7.5 million for 13 lakes. This number is an

order of magnitude lower than the number of raw sonar measurements. Collecting

the measurements took 7 working days, and processing the sonar data took another

8 days, for a total of 15 days. This means that the state-of-the-art autonomous robotic

systems, equipped with the latest visual and acoustic remote sensing technologies, en-
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Figure 7.15: Upper Lakes’ georeferenced bathymetric DEM layered over the digital orthophoto
of the area. Top right to bottom left: Burget, Gradinsko, Galovac, Malo, Veliko, Burget, Cigino-
vac, and Okrugljak lakes.

Figure 7.16: Lower Lakes’ georeferenced bathymetric DEM layered over the digital orthophoto
of the area. Top to bottom: Kalud̄erovac, Gavanovac, and Milanovac lake.
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abled the researchers to collect over 1400 times more bathymetric measurements in a

time frame more than 60 times shorter than that of [135].

7.4.4 Conclusion

A great potential for the use of autonomous vehicles in remote sensing studies is pre-

sented in this section. Here an autonomous surface vehicle and an unmanned aerial

vehicle were used for hydrology related autonomous remote sensing survey missions

of Plitvice Lakes National Park in Croatia. The efficiency of using autonomous vehi-

cles for such applications, the quality and quantity of data in time and the precision

of georeferencing the data, especially in larger areas as in the authors’ case study, has

been shown to far exceed human performance. A total of 11 of 16 lakes in the National

Park were surveyed using acoustic surveying methods with a multibeam sonar.

This section presents the scientific basis and methodology used in the modern au-

tonomous robot geodetic measurements in the area of Plitvice Lakes National Park,

its processing and the development of a digital three-dimensional geodetic models of

lakes. These digital bathymetric maps will be the basis for further research purposes

in GIS environment by experts in scientific disciplines such as biology, geology, hy-

drology, ecology, etc. Decisions on the way and form of protection of the underlying

phenomenon of tufa formation in Plitvice lakes would be made on the basis of these

state-of-the-art maps. Part of the results presented in this section are published in [146].

7.5 Underwater archaeology dataset acquisition

7.5.1 Intoduction

Sometimes new technologies take time to completely fulfill their potential uses. Hence,

technology is often a bridge between different disciplines. Methods for recording and

documenting underwater cultural heritage (UCH) sites have evolved significantly in

the last two decades. The combined use of optical and acoustic technologies enables

the provision of quality digital 3D reconstruction of large and complex underwater

scenarios, [111,140]. These technologies create the opportunity to study the UCH in the

laboratories onshore in a nonintrusive manner [147]. Resulting digital reconstructions

are often accepted for archaeological purposes, and in particular for documentation

and monitoring activities, [107,148]. These tools can be used to predict how sites have

changed, both recently and far into the past but also how they may change in the

future. These tangible results can be used as powerful aids in public engagement.
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Nothing has advanced as significantly in underwater archaeology as location and

environment imaging equipment has. Recently, photogrammetry, photo-modeling, si-

multaneous localization and navigation (SLAM), organized light processing, multi-

beam and numerous other acoustic remote sensing techniques were all used on Mediter-

ranean underwater sites, [138–141]. However, even as archaeologists are eager to ex-

change the laborious manual documentation process for more effective processes, no

particular system has shown enough straightforward advantages to be universally em-

braced or recognized as the current standard for digital site reporting. Price, precision,

durability, and time post-processing problems are typically of utmost importance. Of-

ten a challenge for archeologists who usually lack the expertise to process the data

themselves is the opportunity to incorporate multibeam sonar point clouds and photo-

mosaics to generate archeologically relevant diagrams and publication-quality charts.

Marine robotics is evolving as a powerful remote sensing aid in shallow sea, provid-

ing a broad variety of pre-disturbance survey possibilities (2.5D modelling of a location

or landscape without excavation). Marine robots are not confronted with the technical

difficulty of activities in deep water in these coastal underwater archaeological envi-

ronments, but are potentially met with a much greater obstacle when they reach direct

contact with human divers. Archaeologist scuba divers incorporate high versatility,

smart coordination, and a large variety of manual skills to reduce operational costs.

However, these human advantages tend to vanish when the region to be explored gets

larger, deeper, or the period required for field operations is shorter.

This section encompasses the case studies of activities regarding the use of the au-

tonomous marine vehicles for recording the underwater archaeological sites. It brings

in total eight case studies of marine robotics survey applications for UCH sites around

the Mediterranean. Applied methodology for data collection is described for each indi-

vidual site, since each one of them had its specifics. Depending on the site, the authors

used all or some of the autonomous marine vehicles (ASV, AUV, ROV, UAV) for data

collection. It is important to emphasize that most of the underwater archaeological

sites presented in this section were for the first time recorded by autonomous marine

vehicles, as well as by sonars. Part of the results presented in this section are published

in [107,136,148–150].

The rest of this section is organized as follows: data acquisition and processing

pipeline are described in Subsection7.5.2. Underwater archaeological sites surveyed

in the scope of BLUEMED project (2016-2019) are given in the following Subsections,

namely Underwater archaeological park of Baiae (Italy) in Subsection7.5.3, amphorae

cage and ancient dolii sites close to Cavtat (Croatia) in Subsection7.5.4, four ancient

Greek shipwreck from the Western Pegaseticos in Subsection7.5.5. Finally, the survey
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results of S.M.S. Szent Istvan shipwreck (sunk in 1918) made in 2019 are presented in

Subsection7.5.6. Concluding remarks are given in Subsection7.5.7.

7.5.2 Data acquisition and processing pipeline

Multibeam sonar data

When surveying with MBES one should be aware of the physical limitations of sonar

beam resolution as well as the performance limit of spatial resolution of samples seafloor

patches. The size of the "footprint" 𝛿𝑏 × 𝛿𝑏 which MBES beam sonifies for beam width

angle 𝛼 at depth ℎ can be estimated as:

𝛿𝑏 = 2ℎ tan 𝛼2 . (7.19)

If we take that the mean across- and along-track beam with of Norbit WBMSc sonar is

1°, we get 𝛿𝑏 = 0.02ℎ. Furthermore, spatial resolution of the MBES 𝛿𝑠, i.e. the distance

between adjacent sonar beams at the assumed flat seafloor, can be estimated as:

𝛿𝑠 = 2ℎ tan 𝜓

2𝑁 (7.20)

for a given swath angle 𝜓, number of beams 𝑁 and depth ℎ. For a swath angle 𝜓 = 90°

and 𝑁 = 256 which were used in most of the surveys, we get 𝛿𝑠 = 0.006ℎ. We used

these equations do determine the upper bound of the bathymetric model interpolation

grid cell size.

The autonomous surface vehicle (ASV) PlaDyBath’s survey path was designed

lawnmower-shaped survey missions along and across the area of interest. In order to

have as much quality coverage as possible, it is needed to overlap the adjacent lawn-

mower lanes with percentage 𝑘 ∈ (0, 1]. The distance between the lawnmower lanes

𝑑 for a given overlap percentage can be estimated for the assumed approximately flat

seafloor as:

𝑑 = 2
(︃

1− 𝑘

2

)︃
ℎ tan 𝜓2 . (7.21)

During the acquisition phase there were issues with swath width angle of 𝜓 = 120°,

especially at 700𝑘𝐻𝑧 frequency. This was due to the fact that the floater foams on port

and starboard of the ASV blocked some sonar beams or the sonar was not submerged

deep enough below the ASV. This was solved by using the 400𝑘𝐻𝑧 frequency for higher

range but with reduced swath angle at 𝜓 = 90°. With swath angle of 90° and overlap

𝑘 = 0.5 the distance between the lawnmower lanes was easily computed as 𝑑 = 1.5ℎ.

Norbit’s WBMS software was used for logging raw MBES data, both for the point
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cloud and backscatter data. QPS Qimera was used for processing the raw sonar data.

In order to process the data in Qimera, the .son format of raw sonar data decoupled

from the navigation data had to be exported to .s7k format which was then loaded

into Qimera. Applanix INS logged the navigation data into .pos format files that could

be directly imported into Qimera. Based on Applanix datasheet, the orientation data

uncertainty was set to 0.3° for heading and 0.08° for roll and pitch. The heading and

roll/pitch precision was based on patch tests performed by the instructions given by

Norbit. Precision of GPS position data was on the order of 10𝑐𝑚when only Trimble an-

tennae were used connected to the Applanix INS. This precision was improved to the

order of 1𝑐𝑚 if NTrip client was connected through a 4G modem, when we got access

to local base station system. Both GPS and INS data were used to merge sonar data

with navigation data and generate the bathymetric model. The bathymetric models

were georeferences in UTM system.

Raw sonar pings had to be filtered for outliers in Qimera. This was done by limiting

the range of depth values appropriate for the location as was read from the WBMS

software. Swath Editor was used to select across-track outliers for several tens of pings

at the same time, while Slice Editor was used to filter our the pings on the outside of the

delimited UCH area, as well as ping which were recorded while the ASV was turning

from one lawnmower lane to the next. The turning motion causes the so-called fan-out

effect, where the inside of the turning curve is sampled much more that the sparsely

sample outside part of the turning path. This unevenly sampled data was not desired

so it was deemed as outliers.

Interpolation was done using the default interpolant from Qimera. NOAA CUBE

interpolation was also used, but it did not show better results. The grid cell size for

the interpolation was based on calculations of 𝛿𝑠, which was the lower limit for this

parameter. Since Applanix INS does not have a heave sensor integrated, waves from

the surface were translated directly to the bathymetric model. This was solved using

Wobble Analysis tool in Qimera as well as additional spline interpolation for larger

areas with fewer details.

Side-scan sonar data

Survey missions for the LAUV Lupis mounted with the side-scan sonar were planned

in a form of the lawnmower pattern at constant altitude from the seafloor. Distance be-

tween adjacent lawnmower lanes was determined with the assuming that the seafloor

is locally approximately flat, and that the maximum slant range is ten times larger than

the operating altitude. Since all UCH sites except for one were at depth of 6− 30𝑚 op-

erating altitude was 2 − 3𝑚 for safety reasons so that the AUV does not collide with
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the artifacts at the seafloor if the amphorae/anchor mounds rose too suddenly from

the flat surrounding. Assuming locally flat seafloor the lawnmower lane width was

set in the range 15− 30𝑚. In some cases we got significant surface returns because the

AUV was relatively close to the surface, especially at Baiae UCH site where the depth

was 8𝑚 at most. The side-scan sonar was pinging at both low and high frequency, so

we could detect the differences in the resolution and object detection methods. For the

analysis we of course used only high frequency data.

We do not have direct access to the raw side-scan sonar data. Neptus Mission Re-

view and Analysis software downloads the mission logs from the LAUV Lupis either

over WiFi or from the USB located in the nose part of the vehicle. It then processes

raw side-scan sonar data, merges it with the navigation estimation data, and presents

it in the waterfall view. The position data represent the filtered dead reckoning esti-

mation augmented with the DVL and GPS measurements when available. The path

of the vehicle is corrected in the post-processing phase from the last stable GPS fix af-

ter resurfacing to the beginning of the dive. There is also an option for adjusting the

time varying gain (TVG) as needed. Except for TVG, the brightness of side-scan sonar

imagery can be equalized using Contrast Limited Adaptive Histogram Equalization

algorithm (CLAHE) [151] as shown by the authors in [78]. Finally, side-scan sonar

and all other navigation and control log data can be exported from Neptus in many

formats: .kml, .mat, .csv just to name a few.

AUV localization precision is on the order of 0.5−1𝑚 since a now very precise GPS

sensor gives the upper bound on localization precision. When underwater, the local-

ization uncertainty increases significantly as dead reckoning only accumulates error,

but is corrected by the DVL as soon as it gets bottom lock

Visual data

Visual surveys of some UCH sites and their surrounding both underwater (by BlueROV

and/or AUV Lupis) and above sea surface (by DJI Phantom UAV). Camera onboard

AUV Lupis has 1.4𝑀𝑃 and is fixed to capture things directly below the vehicle, so

it cannot be used for detailed full 3D modelling of a site. However, since it is syn-

chronized with an external flash it can be used for creating orthophotos or photomo-

saics. Images from AUV Lupis have timestamps and can be correlated with its posi-

tion estimation data to further simplify photo alignment of photogrammetric software.

BlueROV was used for capturing oblique HD images of some UCH sites and creation

of 3D photogrammetric models. It does not have any underwater localization system,

not even dead reckoning, so its images were fed "as is" into photogrammetric software

after batch automatic brightness filtering in Photoshop. UAV DJI Phantom captures
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Figure 7.17: The location of the Baiae underwater archaeological site

images in 20𝑀𝑃 resolution. It was used for capturing the shoreline in the vicinity of

the UCH sites. It has a GPS sensor, so it embeds it into metadata of the images which

photogrammetric software can read later on. The precision of UAV’s GPS is 1− 2𝑚.

Agisoft Metashape was the software used for photogrammetric processing of im-

ages captures by all three vehicles. Photo Alignment, Point Cloud generation and Mesh

processes were all set to high settings to get as detailed models as possible given the

quality of the input images. The use of underwater robots for photogrammetric record-

ing purposes was a use case to prove how effective these systems can be compared to

diver photographers, especially at depths of more than 50𝑚. Quality of the models is

graded rather subjectively since there are no precise models which could be used as

benchmarks.

7.5.3 Baiae site

Baiae, ancient city of Campania, Italy, is located on the west coast of the Puteoli Gulf

(Pozzuoli) and lies 16 km west of Naples, as shown in Fig.7.17. Baiae was called after

Ulysses’ helmsman Baios according to custom. Because of its curative sulfur springs

the city is known as Aquae Cumanae in 178 BC. The mild climate of Baiae, the thermal

springs and luxuriant vegetation made it a popular resort during the Roman Republic’s

later years. Many splendid villas, including those of Julius Caesar and Nero, were

established at Baiae. Owing to nearby seismic activity (bradyseism), more than 100

meters of the ancient site is now underwater in the harbor.

Methodology

In 2018, our team went to Baiae to record the underwater archaeological site at depths

of 6− 8𝑚. This was done under Interreg Mediterranean co-funded project BLUEMED.
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Figure 7.18: Side-scan sonar imagery mosaic recorded by LAUV Lupis

Survey operations at Baiae pilot site were conducted by our team on 14-18.5.2018. The

main emphasis of this operation was to gather as much bathymetric data of the site

as possible, so the ASV PlaDyBath was mostly deployed for survey missions. For this

reason, the ROV has not been used for visual inspection of the pilot site, and UAV has

not been used since we did not have an official permission for operating it in the Baiae

port area. The boundary of the survey area has been determined based on a GIS map

provided by the local diving center. Detailed survey missions were planned based on

the georeferenced mosaic of side-scan sonar imagery recorded by LAUV Lupis, see

Fig.7.18.

A boat was rented from the local diving center for the bathymetry and photogram-

metry data collecting operations by the surface and underwater autonomous marine

vehicles. It was quite spacious so deployment and recovery of the autonomous vehicles

by the crane was not problematic. The autonomous surface vehicle (ASV) PlaDyBath’s

survey path was designed lawnmower-shaped survey missions along and across the

area of interest in the Baiae bay. The missions were planned with 90−120° field of view

angle of the Norbit multibeam sonar used for bathymetry, having in mind to cover

the whole area with complete overlap between any two adjacent along-track survey

lines, and also having across-track survey lines to maximize the amount and quality of

the bathymetry data as much as possible, and to avoid holes in the bathymetry map.

As soon as one mission would finish, the sonar data and position/attitude data were

transferred from the ASV to a laptop, and bathymetry data were processed. Mean-

while, another mission was started, so data collection and processing were parallelized

as much as possible.
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(a)

(b) (c)

Figure 7.19: (a) Results of the whole Baia pilot site’s bathymetry. (b), Details of the submerged
Villa dei Pisoni. (c) Details of the submerged Villa Protiro. 2.5 bathymetric models are based
on MBES data collected by the ASV PlaDyBath.

Results

The georeferenced side-scan sonar mosaic shown of the Baiae underwater archaeolog-

ical park is shown in Fig.7.18. Results of multibeam sonar data postprocessing in QPS

Qimera software are shown in Fig.7.19. Bathymetric map of the whole survey Baiae

area is given in Fig.7.19a, with details of the sunken Vila dei Pisoni in Fig.7.19b, and

details of the sunken Vila Protiro in Fig.7.19c. It is notable that the walls of these villas

can clearly be distinguished from the surrounding seafloor.

Discussion

The precision of position in bathymetric model of Baiae site is on the order of 10𝑐𝑚
because there we were not given access to the local base stations for georeferencing

corrections through NTrip client. Since the beam of the MBES is around 1° this means

that its minimum trace on the seafloor is 0.01ℎ at the depth ℎ. This means that for the

depths of ancient Roman Baiae site in the range 6 − 8𝑚 the best resolution of sonar
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Figure 7.20: The location of the Cavtat underwater archaeological site

data was 6 − 8𝑐𝑚. The interpolation grid size in QPS Qimera was 10 × 10𝑐𝑚 since

higher resolution was not required by the archaeologists, and all the walls and masonry

details of villas are visible in bathymetric maps. In the initial bathymetric interpolated

model there were waves which translated from the surface to the sonar data. This

is a consequence of the INS system not having a heave sensor. However, Qimera’s

Wobble Analysis tool and further spline interpolation solved this problem in the post-

processing phase.

7.5.4 Cavtat sites results

The Adriatic Sea is teeming with undiscovered ancient shipwrecks and untold trea-

sures. Two remarkable underwater sites in Croatia, one with around 700 amphorae

and the other one with dolii are located in front of Cavtat, a town south of Dubrovnik,

as shown in Fig.7.20.

Merchant - ancient Greek sailing boat with dolii

One special feature, though, is the underwater site officially discovered in 1996, repre-

senting the only preserved site of large ancient ceramic vessels for cargo - dolii (Greek:

Pithos, Latin: dolium) on the eastern Adriatic coast. It is an intact location at the depth

of around 20𝑚. The site covers 10 × 20𝑚 area. Traces of the sunken boat have not

been noted though the dolii’s discovery may simply illustrate the unproven shipwreck.

Throughout the 2nd and 1st centuries B.C., dolii are also found on Roman warships in

the Antiquity. These became the primary way of shipping goods in the 1st century,

and the features of ancient tankers were taken over by vessels that transported them.

Their capacities ranged between 1,500 and 3,000 liters. Cavtat’s dolii date back to the

1st century and its estimated capacity ranged from 1,200 to 1,400 liters.
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Amphorae cage

It is an ancient Greek shipwreck believed to hold a cargo worth around $5− 8 million

in today’s value has been recently protected with a large cage to shield the ship’s cargo

from scuba looters who would be tempted to steal the objects. The wreck of these 700

vases was a Greek trade vessel of the second century bearing a shipment of earthen-

ware amphorae of olive oil and wine, which sunk just off the coast of a small town of

Cavtat, 20 km south of Dubrovnik, Croatia. In 1999, Boris Obradovic, the director of

a nearby Scuba Diving center discovered the wreck and now guides more seasoned

scuba divers down to the debris. The wooden ship is almost entirely decomposed, but

oddly enough the ceramic amphora’s holding the wine and olive oil are still intact and

lined in the ships holds row after row. This freight that has considerable historical im-

portance and interest on the black market is worth quite a bit of money, prompting the

Croatian authorities to cover the wreck with a huge heavy duty metal frame. The cage

itself is about 20 m long and 10 m high, and has a big hinged door that can be locked

closed.

Methodology

In 2018, LABUST team went to Cavtat to record the dolii and amphorae cage sites

which are only a few hundred meters apart. This was done under Interreg Mediter-

ranean co-funded project BLUEMED. The team worked from a catamaran work boat

anchored close to the underwater archaeological sites. The deployment of the bulky

ASV was simplified by using a mobile manual crane operated from the spacious flat

stern of the catamaran work boat. This enabled for the multibeam sonar mounted ASV

to perform survey missions and record bathymetric data more easily, thus losing less

time during the battery changes.

BLUEROV2 was used for visual data collection, as shown in Fig.7.23a, mainly at

the doliaisite. Easily deployable, and manually controlled, ROV has been shown to be

very useful, especially since there is a direct visual link through the tether back to the

operator’s screen.

One of the goals of this Cavtat trial was to gather dataset for photogrammetry of

the Supetar islet close to these two underwater archaeological sites. The UAV took HD

photos of the island in a crosshatch coverage plan, with 70% across- and along-track

overlap between adjacent photos, at an altitude of 40m for safety reasons.
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(a)

(b)

Figure 7.21: Side-scan sonar imagery of the sites. (a) Dolii site. (b) Amphorae cage site

Results

Precise positions of of both sites were determined from the georeferenced side-scan

sonar imagery of the area, recorded by the LAUV Lupis, as shown in Fig.7.21. The

resulting bathymetric map of the area is given in Fig.7.22.

In the post-processing phase, a 3D model of one dolium was generated from down-

sampling a 25fps HD video from ROV’s logs, as shown in Fig.7.23b. The biggest prob-

lem with the use of frames extracted from the recorded video is motion blur, which

renders 3D models of relatively less quality compared to the ones generated from still

photographs of a DSLR camera with an external high-power flash. Nonetheless, this

opens a possibility to document an underwater archaeological site much faster and

with much less logistics compared to the case when divers record the site. The result

of the photogrammetry post-processing of the Supetar islet aerial photos is given in

Fig.7.23c.

Discussion

The precision of the navigation data at Cavtat site was on the order of 1𝑐𝑚 since correc-

tions w.r.t. the local CROPOS base station system were available through NTrip client

connected over a 4G modem onboard the ASV. Since the beam of the MBES is around

1° this means that its minimum trace on the seafloor is 0.01ℎ at the depth ℎ. This means

that for the depths of the amphorae cage and dolii site in the range 20 − 25𝑚 the best

resolution of sonar data was 0.2𝑚. The interpolation grid size in QPS Qimera was

20× 20𝑐𝑚 since higher resolution was not required by the archaeologists.
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Figure 7.22: Bathymetry map of the underwater archeological sites in front of Cavtat, Croatia.
2.5 bathymetric model is based on MBES data collected by the ASV PlaDyBath.

(a) (b)

(c)

Figure 7.23: (a) Operating BLUEROV2 at Dolia site in Cavtat, Croatia, with a direct HD video
feedback on a high-contrast screen.(b) Photogrammetric 3D reconstruction of a dolium based
on frames from ROV’s camera. (c) 3D reconstruction of the island Supetar in front of Cavtat
bay, close to the diving locations of the amphorae cage and dolia locations.
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Figure 7.24: The locations of the underwater archaeological sites in Western Pagaseticos.

7.5.5 Western Pagaseticos sites

Four underwater archaeological sites were surveyed by our autonomous vehicles in

the Westerns Pagaseticos, Greece, a map of which is shown in Fig.7.24.

Alonissos - Peristera shipwreck

This shipwreck was found early in the nineties. The uncovered pieces of the wooden

ruin of Peristera have been rotting away for a long time, but the remaining cargo has

a fantastic 4,000 amphorae seascape. The ship, claimed by historians to be a huge

Athenian barge holding wine-filled amphorae, presumably sunk at the end of the fifth

century B.C. The hull still lies submerged at around 30𝑚, and archaeologists believe it

is the biggest ship of its type found beneath the sea.

At this site the team first obtained a georeferenced mosaic of the collected side-scan

sonar data collected by the AUV Lupis around the pilot site is given in Fig.7.25a. The

ASV was used to gather bathymetric data of the pilot site in more detail, with a narrow

angle of view of the sonar, and high percentage of swath overlap between neighboring

survey lawnmower lanes. A wider sonar angle of view, but again with high percentage

of overlap between consecutive survey lanes were used to gather bathymetric data of

the pilot site’s surrounding area. The overlay of all survey missions planned as well as

wide area detailed bathymetry map of the pilot site itself are given in Fig.7.25b.

UAV DJI Phantom 4 UAV was used to gather photos of the Peristera island part

just in front of the pilot site. It was programmed to execute a crosshatch mission at

altitude of 40m, and a 70% along- and across-track overlap between photos. Results of

the 3D reconstruction of the Peristera island part is given in the Fig.7.25c, based on

381 photos.

Merging of the low-resolution acoustic model of the seafloor with the high-resolution

textured photogrammetry model is shown in Fig.7.26, which is one of the results stem-

145



Case studies

(a) (b)

(c)

Figure 7.25: (a) Side-scan sonar mosaic of the Peristera site georeferenced and shown in Google
Earth, based on SSS data collected by LAUV Lupis. (b) Results of bathymetry of the area sur-
rounding the Peristera pilot based on MBES data collected by ASV PlaDyBath. (c) 3D recon-
struction of the part of Peristera island in front of the pilot site locations, based on visual data
collected by UAV DJI Phantom 4.

ming from the aforementioned BLUEMED project and collaboration with our partners

from University of Calabria led by Fabio Bruno [107,148]. The reason why this merger

was performed is that one of the BLUEMED project goals was to preserve the under-

water cultural heritage sites in a digital form, so that visitors of the museum in the

vicinity of the site can experience the diving visit to the site by wearing a virtual reality

set. This allowed for the low-resulotion acoustic model of the area to provide the geo-

referenced collocation to the high-resolution textured photogrammetry model of the

site, but also the general features for the UCH’s surrounding area.

Kikinthos shipwreck - West Pagasetic gulf

Kikinthos islet is a small breakwater located east of the Bay of Amaliapolis. In ancient

times, Kikinthos was used as a quarantine for the seamen who had returned from their

voyages to Amaliapolis. The shipwreck was discovered under the auspices of the Hel-

lenic Institute of Marine Archaeology and the guidance of the maritime archeologist

Elias Spondylis during an underwater survey undertaken in 2005 at the northwestern

end of Kikinthos Islet. The remains of a primarily pithoi Byzantine shipwreck cargo

(large shipping containers) are found about 3− 11𝑚 from the shore. Large pithoi frag-

ments, which can be traced to at least three separate styles, occupy an area of about

8 × 6𝑚. There are also fragments of two types of amphorae, dated from the 12th-13th
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(a) (b)

(c)

Figure 7.26: (a) Bathymetry of the area of the site based on MBES data collected by ASV Pla-
DyBath. Small box in the middle is the collocated 3D photogrammetric model of the Peristera
shipwreck site. (b) Orthophoto projection of the photogrammetric 3D model of the site based
on high resolution photos taken by divers. Courtesy of Fabio Bruno. (c) Merge of the acoustic
and optical 3D models [107,148]. Courtesy of Fabio Bruno.
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(a)

(b)

(c)

Figure 7.27: (a) Results of bathymetry of the area surrounding the Kikinthos site based on
MBES data collected by ASV PlaDyBath. (b) and (c) 3D reconstruction of the Kikinthos island in
front of the pilot site locations, facing towards Amaliapolis and the outer islet side, respectively.
Based on images taken by UAV DJI Phantom 4.

centuries AD, in the pithoi. The styles of pithoi are traced to the 8th – 9th centuries

AD, but it seems they coexist with the later amphorae as storage vessels were typically

used for lengthy periods of time.

Bathymetry of the shipwreck and the whole inner side of the Kikinthos islet facing

towards Amaliapolis is shown in Fig.7.27a. DJI Phantom 4 UAV was used to gather

photos of the site’s surroundings. On these pilot sites it was flown slowly in manual

mode at an altitude of approx. 10− 15𝑚 to ensure high percentage of photos overlap-

ping. The camera was oriented directly towards the shore, to get more details of the

shore. Photogrammetric 3D reconstruction of the whole Kikinthos island is shown in

two parts: side facing towards Amaliapolis (see Fig.7.27c, and the other side facing

out (see Fig.7.27c.

148



Case studies

(a) (b)

Figure 7.28: (a) Results of bathymetry of the area surrounding the Glaros site based on MBES
data collected by ASV PlaDyBath. (b) 3D reconstruction of the Glaros cape in front of the pilot
site locations.Based on images taken by UAV DJI Phantom 4.

Akra - Glaros shipwreck

This archaeological underwater site is located in an area opposite of Nies, a coastal

village in Magnesia Prefecture and near Amaliapolis City. According to the Hellenic

Institute of Marine Archaeology, which investigates the area from 2000 to the present

under the direction of the marine archeologist Elias Spondylis, at least four shipwrecks

were recognized: the Hellenistic one (3rd – 2nd century BC), the Early Roman one (1st

– 2nd century AD) and two of the Middle and Late Byzantines (12th – 13th century AD)

where late Roman pottery is also present. The reports related to the above shipwrecks

are so scattered and confused that the classification of the different shipwrecks is an

activity that is very challenging and not yet complete.

Bathymetry of the shipwreck and wide area around the underwater archaeological

site is shown in Fig.7.28a. Photogrammetric 3D reconstruction of the whole Glaros

cape shore is shown in Fig.7.28b.

Telegrafos shipwreck

Telegrafos Bay is situated in Magnesia Prefecture and near the town of Amaliapolis.

The shipwreck was first discovered in 2000 by the Hellenic Institute of Marine Archae-

ology team that explored the region of the south-western coast of the Pagasetic Gulf,

and was then thoroughly excavated from 2003 to 2008, also by HIMA, under the su-

pervision of the marine archaeologist Elias Spondylis. Unfortunately, previous to the

excavation the site was robbed. Nonetheless, the discovery brought the majority of the

cargo to light, and a detailed analysis contributed to the identification of three major

forms of Late Roman (4th century AD) amphorae for the major cargo which could be

traced to northern Peloponnesian (Corinth) and Eastern Aegean (Samos) roots. Facts

show a ship sailing down the Late Roman sea routes-the recently formed Byzantine
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(a) (b)

Figure 7.29: (a) Results of bathymetry of the area surrounding the Telegrafos site. (b) 3D recon-
struction of the Glaros cape in front of the pilot site locations.

Empire through the Aegean Sea and down its edges.

Bathymetry of the shipwreck and wide area around the underwater archaeological

site is shown in Fig.7.29a. Photogrammetric 3D reconstruction of the whole Tele-

graphos cape shore is shown in Fig.7.29b.

Discussion

The precision of the navigation data at all four Wester Pagaseticos UCH sites was on

the order of 10𝑐𝑚 because corrections from local base stations were not available to

us. Since the beam of the MBES is around 1° this means that its minimum trace on

the seafloor is 0.01ℎ at the depth ℎ. At Peristera, Glaros and Telegrafos UCH sites the

measured depth was on a range 0 − 60𝑚. The Peristera shipwreck is located in the

area where the depth is 20𝑚. For these shallow parts of the surveyed area a 20× 20𝑐𝑚
interpolation grid size in QPS Qimera was used. For deeper parts of the survey area

grid cell was set to 30𝑐𝑚 since they were needed only for general seafloor morphology

when merging opto-acoustical model of the shipwreck in virtual reality. The same

applied to Glaros and Telegrafos UCH sites since they are the remaining artifacts after

shipwrecks lays no deeper than 20𝑚. At Kikinthos UCH site the measured depth was

on a range 0 − 30𝑚. Here interpolation grid cell size of 20 × 20𝑐𝑚 was used for the

whole surveyed area.

7.5.6 Szent Istvan shipwreck

S.M.S. Szent Istvan, the only ship belonging to the Hungarian monarchy, met her end

on June 10th 1918 shortly before dawn. It was sunk by Italian torpedo boats. On the

101st anniversary of this event the shipwreck was recorded for the first time by our

multibeam sonar-mounted autonomous surface vehicle. The shipwreck has already

suffered irreversible degradation of her steel and iron hull. Thus, the main objective
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(a) (b)

Figure 7.30: (a) Blueprint of the cross section, side and top view of the SMS Szent Istvan, [152].
(b) Location of the UCH site SMS Szent Istvan shipwreck.

of the bathymetric surveys was to assess the current state of the shipwreck and to set

up a foundation which future monitoring operations could be built upon and com-

pared with. SMS Szent István was an Austro-Hungarian battleship of the Tegetthoff

class, constructed in Rijeka and Pula and completed in 1914. It was the only Austro-

Hungarian ship to serve the Hungarian part of the monarchy, [152]. Its blueprints are

given in Fig.7.30afor reference in the remainder of this subsection.

The Szent Istvan wreck (the deepest point at 68 meters) has been visited so far

by many local and foreign divers. It lies inverted with the deck facing the bottom,

with the cannons still facing left. Drawings of the shipwreck by Danijel Frka are given

in Fig.7.31. In Fig.7.31adetails of the southern side of the ship’s aft are shown,

namely propellers, motor shafts, cannons, keel, as well as numerous fishing nets laying

on the shipwreck and around it. A depression can be seen just above the cannons

that was the consequence of ship’s hull imploding the air trapped inside during the

sinking. Moreover, from the shadow below the southern side of shipwreck’s aft it can

be deduced that the shipwreck is leaning a bit to its northern side, thus creating an

opening under the ship’s hull on its southern side, [152]. Details of the northern side

of the torn bow, which broke during the sinking, are drawn in Fig.7.31b.

Methodology

As shown in Fig.7.32a, the shipwreck lays upside down on the floor, leaning on its su-

perstructure and resulting with the south side of the hull been lifted from the seabed.

The size of the gap on the stern part of the ship is shown in Fig.7.32b. Degradation

of the steel hull underwater would eventually result in closing that gap until the hull

completely collapses under its own weight. To measure the gap along the ship side, the

profiling sonar carried by autonomous surface vehicle was used utilizing the method-
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(a) (b)

Figure 7.31: Drawing of the (a) aft (b) bow of the SMS Szent Istvan shipwreck. Image courtesy
of Danijel Frka, [152].

(a) (b)

Figure 7.32: (a) Methodology for measuring the Gap using ASV and the profiling multibeam
technology. Red line represents the sonified area. The image is conceptual, it does not respect
the real proportions e.g. depth vs. hull size, nor sonar beam width and tilt angles. (b) Image
representing the size of the gap between the ship hull and the seabed relative to diver. Image
courtesy of Marino Brzac.

ology shown in Fig.7.32a. It was necessary to design a mission for the ASV PlaDyBath,

which runs 50m from the south and north sides of the ship and parallel to the ship, as

shown in Fig.7.33by yelow lines. The viewing angle of multibeam sonar was set to

60°, but the rays tilted to the left by 15°, as shown conceptually in Fig.7.32a.

Bathymetry survey results

In total, an area of 200x75m around the site was recorded by multibeam sonar, using

standard lawnmower missions along, across, and from the sides of the wreck, as shown

in Fig.7.33by white lines. In missions planned along and across the wreck to capture

as much detail as possible, the sonar viewing angle was also set to 60°, but without

ray tilting, and with adaptive ping frequency to ultimately obtain the highest quality

shipwreck model from the sonar data. The navigational precision of the autonomous

vehicle, and therefore the precision of geolocation of the 3D model reconstructed from
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Figure 7.33: Overlay of ASV PlaDyBath’s survey paths w.r.t. the top view of the bathymetric
model of the shipwreck. (yellow) survey missions around the ship with tilted sonar beams to
record the side of the ship (white) standard lawnmower missions along and across the wreck
to capture the general morphology of the shipwreck.

sonar data, is of the order of 10 cm, which is more than sufficient for archaeological

applications.

The missions planned in advance for the surface vehicle were in the form of tran-

sects spaced 25m apart, thus providing sonar data with much redundancy and more

detail in an important part of the shipwreck area. QPS Qimera software was used

to reconstruct the bathymetric model from sonar and navigation data. A 0.5m res-

olution was used for the bathymetric model. The wreck length measured from the

reconstructed 3D model created from the multibeam sonar data was 145m, the wreck

width was 28m, and the bearing direction from the stern to the bow (bearing angle)

was 79.4°. Size of the 3D model matches the real size of the ship very accurately. Pre-

cise coordinates of the stern and bow centers in the WGS84 system were also obtained.

Fig.7.34ashows the reconstructed bathymetry model of S.M.S. Szent Istvan ship-

wreck seen from its northern side. It is interesting to note how the sides of the ship-

wreck are very steep, almost vertical. This could be the consequence of a high number

of outliers in the point cloud in these areas due to the fishing nets hanging all over the

shipwreck. The ship’s propellers, motor shafts and the depression on its aft side are

clearly visible in the model, as shown in Fig.7.34b, which shows the aft of the ship

from its southern side with a great similarity to the drawings of the shipwreck in Fig.

7.31a. Also, the torn bow part of the ship is shown in Fig.7.34c, which is also identical

to the drawings of Danijel Frka given in Fig.7.31b.

Another interesting finding and confirmation of the reports we received from the

Szent Istvan wreck divers is the opening below the south side of the ship. To record this

with the multibeam sonar, its beams had to be tilted in order to catch the morphology

of the opening.
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(a)

(b) (c)

Figure 7.34: (a) Bathymetry model of S.M.S. Szent Istvan seen from its northern side. (b)
Bathymetry model details of the aft seen from its southern side: the depression in ship’s hull,
propellers, and motor shafts are clearly visible. (c) Bathymetry model details of the torn bow
seen from its southern side. Based on MBES data collected by ASV PlaDyBath.

This opening could not be faithfully reconstructed in 3D using Qimera since it only

interpolates a 2.5D manifold. Instead, characteristic transverse profiles of the south

side of the stern of the ship clearly show an opening 4m high, extending 100m along

the south side of the ship and entering an average of 3-4m towards inside the ship,

shown in Fig.7.35a. Further analysis of the ping point cloud shown in Fig.7.35acon-

sisted of detecting and clustering points belonging to the seafloor and the shipwreck

by thresholding depth values. The plot showing these two clustered point clouds is

given in Fig.7.35b. The opening between these two structures is clearly visible as in

some previous figures. However, this way the size of the opening can be assessed nu-

merically, and the degradation level of the shipwreck’s metal hull can be numerically

represented through time with further monitoring missions.

Side-scan sonar survey results

The shipwreck and the surrounding area were also recorded by side-scan sonar in-

stalled on the LAUV Lupis, again using lawnmower missions along and across the

shipwreck. The missions were planned first in relation to the buoy located on the stern

of the wreck, and after processing the bathymetric data, the missions were designed in

relation to the exact coordinates of the bow and stern. Since the weather conditions on

the surface of the sea do not affect the operation of the underwater vehicle, it was used
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(a) (b)

Figure 7.35: Acoustic returns of the multibeam sonar: (a) 3D line plot of the pings as a spatial
representation of the opening below the southern side of the shipwreck. (b) Clustered and
separated point clouds of the seabed and the shipwreck with the opening clearly visible in
between. View is from the southern side of the shipwreck, so aft is on the left.

for filming the second day of the expedition on June 11, 2019. when the wind began to

rise and create significantly larger waves than on the first day of the expedition.

After the first couple of missions, it was noticed that the navigation accuracy of the

AUV Lupis, despite the presence of a DVL sensor (which is usually used to compen-

sate for deviations from the given trajectory due to sea currents), accumulated an error

over time. Since the Szent Istvan wreck contains a huge amount of metal, it caused

the compass in the vehicle to deflect, thus negatively affecting the accuracy of the lo-

calization. To address this problem, subsequent missions are planned to compensate

for vehicle trajectory drift due to external interference (course errors), and based on

experience from previous missions.

A composite image of side-scans port and starboard side is given in Fig.7.36a. The

upper left side of the image shows the torn aft; many fishing nets hanging from the

ship’s side can be seen on the upper right side of the image; the structure of plates

along the ships hull can be seen from the left part of the image; keel is visible in the

right middle part; propellers and rudders can be clearly seen from the bottom right

side of the image. The georeferenced mosaic of side-scan sonar imagery exported to

Google Earth is shown in Fig.7.36b. It is marked with points of interest (POIs) P1-P8.

These POIs were detected in all the side-scan sonar missions but from different angles.

Some of them were known to the underwater archaeologists with experience at this

site, but some of them were sent in a report for further analysis with positions relative

to the ship and the estimated size of the detected objects.
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(a) (b)

Figure 7.36: (a) Composite of side-scan sonar images of the shipwreck SMS Szent Istvan taken
from the mission during which LAUV Lupis crossed directly above the wreck. (b) Geolocated
mosaic of side-scan sonar data from one of the Lupis AUV missions exported in .kmz format
and imported into Google Earth with marked points of interest.

AUV’s visual inspection results

In addition to side-scan sonar, the missions that used AUV Lupis to record the wreck

of SMS Szent Istvan and surroundings used an integrated CCTV 1.4MP camera for

visual inspection of the wreck in missions where the vehicle is planned to move a

few meters above the wreck. The mission of the AUV Lupis was planned to move

at a constant depth and along the ship’s line from the stern to the bow, which we

determined precisely from the bathymetric 3D model. Below are a couple of examples

of interesting things captured by AUV’s camera. Since the AUV had an altitude of

less than 10𝑚 when crossing over the wreck, its LED flash burned the middle of each

frame quite a bit. Red and yellow hues were suppressed as expected, and the images

are bluish, which was expected because of the depth at which the shipwreck lays.

An example of an image of the shipwrecks hull taken by AUV Lupis camera is

shown in Fig.7.37. The original image is shown in Fig.7.37a. Fig.7.37bshows the

original burnt image filtered by the Contrast-Limited Adaptive Histogram Equaliza-

tion (CLAHE) [151] in LAB color space. Fig.7.37cshows the result of applying the

Adaptive Histogram Equalization (AHE) algorithm [153] to YCrCb color space of the

original image. Lastly, Fig.7.37dshows the result of applying the Adaptive Histogram

Equalization (AHE) algorithm [153] to YUV color space of the original image. It is

noticeable that CLAHE, as an adaptive algorithm for cropping and equalizing the his-

togram of the brightness of the image, gives the best results with the fewest artifacts

either by brightness or color change.
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(a) (b)

(c) (d)

Figure 7.37: An example of brightness equalizing algorithms applied to visual data recorded
by AUV Lupis. (a) Original image. (b) Image filtered by CLAHE algorithm in LAB color space.
(c) Image filtered by HEQ algorithm in YCrCb color space. (d) mage filtered by HEQ algorithm
in YUV color space.

Also, video frames captured by the AUV Lupis camera were used to generate 3D

models and orthophoto projections (see Fig.7.38) in Agisoft Metashape software with

High settings on Photo Alignment, Point Cloud, and Mesh. Area covered by this or-

thophoto is 4 × 80𝑚. Although the 3D model is not georeferenced (though with ad-

ditional processing of AUV Lupis logs, each frame can be paired with the estimated

AUV Lupis position), nor does it represent the full picture of the bottom of the sunken

ship Szent Istvan, it provides insight into how fast and easy autonomous underwater

robots can be used. In a short period of time they record the area that divers would

record for hours or days due to the limited duration of the dive at the depth of almost

70𝑚 at which the shipwreck lays.

7.5.7 Conclusion

A great potential for use of the autonomous marine vehicles in remote sensing surveys

is presented in this section. Here three marine vehicles’ and one unmanned aerial vehi-

cle’s use in nine underwater archaeology related autonomous remote sensing survey
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(a)

(b)

Figure 7.38: (a) Orthofoto mosaic of the top of the wreck obtained from the AUV Lupis camera
images. Area covered: 4× 80𝑚. (b) A detail from the orthophoto showing level of detail of the
orthophoto and biofouling on the Szent Istvan shipwreck hull.

missions is described through the surveying methodologies which yielded the pre-

sented results. The efficiency of using autonomous vehicles for such applications, data

quality, quantity in unit time, as well as precision of georeferencing the data, especially

on larger areas as in the authors’ case studies, has been thus shown to far surpass the

divers’ performance.

The precision of bathymetry georeferencing ranged from 1𝑐𝑚 when the local base

station corrections were available to 10𝑐𝑚 when only Applanix INS with Trimble GPS

antennae were used. The resolution of bathymetric models ranges from 20𝑐𝑚 for shal-

low areas where most of the UCH sites were located to 50𝑐𝑚 for deeper parts. Position

estimation of the AUV and SSS imagery was around 1𝑚 after smoothing the position

estimation in the post-processing phase staring from the end to the beginning of the

dive. The AUV has been shown to be at least 4 − 5 times more efficient for visual

inspection of the wrecks at depths over 50𝑚 compared to technical divers. Photogram-

metric 3D models generated from photos taken by AUV, ROV and UAV show that even

20 minute autonomous survey missions can yield high-resolution models for various

applications.

It is important to note that this was the first time that any of the chosen sites were

documented by sonar technologies or autonomous marine vehicles. The main objec-

tive of the these surveys was to document and assess the current state of the sites and
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to establish a foundation which future monitoring operations could be built upon and

compared with. Also, going beyond mere documentation and physical preservation,

examples of using these results for digital preservation of the sites in augmented and

virtual reality are also presented.

7.6 Side-scan imagery processing

7.6.1 Real dataset results

In order to validate the results mentioned in Section4.4, numerous real side-scan sonar

datasets were acquired from field trials with the UUV in mostly underwater archeo-

logical sites near Cavtat, Croatia, Baiae Bay, Italy, Peristera island, Kikinthos island,

Glaros and Tilegraphos Capes in Greece, as well as around Pelješac Penninsula and

Biograd na moru in Croatia. The same five methods were then applied to the nor-

malized side-scan sonar images from the real-world dataset. Parameters of all these

methods and steps in the interesting object detection pipeline described in Section4.3

are given in Table7.3with their values tuned to the real side-scan sonar data. Parame-

ter 𝑓𝑒𝑎𝑡𝑢𝑟𝑒_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 denotes what information from the image does a target detection

method use, so value 𝐼 represents image intensity/brightness, 𝑅 represents contrast,

and 𝑂 represents orientation .

The resulting interesting objects’ detection results are given in Figs.7.39and7.40.

The ground truth of what is interesting in the given sonar images was obtained from

human operators circling the objects standing out from the usual clutter and noise in

the side-scan sonar images. It can be noted that the anomaly detection method gives

the most intuitive results in interesting objects’ detection in the real side-scan sonar

data as well, i.e. of all five methods it matches the human perception of “salient” and

“outstanding” objects in the noisy side-scan sonar data the best.

7.6.2 Running on target hardware

After prototyping and performance testing phase, the anomaly detection method was

implemented using OpenCV library and integrated into Robot Operating System (ROS)

environment in order to benchmark its processing time on the target hardware onboard

AUV Lupis, namely UDOO DUO. UDOO has a dual-core Advanced Reduced Instruc-

tion Set Computing Machine (ARM) 1𝐺𝐻𝑧 CPU, 1𝐺𝐵 of RAM, and a Vivante GPUs

for 2D, 3D and vector graphics. Specifications of UDOO DUO are given in Table7.4:

Additional changes were made to the OpenCV implemented anomaly detection al-

gorithm, namely converting the 𝑁𝑑 convolution described in Section4.3into 𝑁 2𝐷
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(a)

(b)

Figure 7.39: Examples of interesting objects detection in a real side-scan sonar image by various
image segmentation methods. Colorbar represents the saliency metric normalized by its mean
value to visualize which areas are the most interesting. Since anomaly and contrast methods
practically detect edges in multiple scales, the anomaly/saliency values in the upper subfigures
is covered with detection bounding boxes.
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Table 7.3: Table of interesting object detection methods’ parameters for real side-scan sonar
images dataset.

Anomaly Contrast-based Itti-Koch GBVS Simpsal

Detection Saliency Saliency Saliency Saliency

mavg_M 10 10 10 10 10

gauss_kernel_w 10 10 10 10 10

gauss_sigma 1.6667 1.6667 1.6667 1.6667 1.6667

saliency_th 5 5 3 3 5

e_method sobel sobel sobel sobel sobel

median_w 3 3 3 3 3

area_th 50x50cm 50x50cm 50x50cm 50x50cm 50x50cm

brigh_th 50.00% 50.00% 50.00% 50.00% 50.00%

scales [1, 3, 5 ] [1, 3, 5 ]

blur_fraction 0.002 0.002 0.002

feature channels IR R IO IOR IO

convolutions for computing local pixel histogram difference through the whole filter

bank, since they are linearly separable and OpenCV did not offer a straightforward

𝑁𝑑 convolution method. Also, Contrast-limited adaptive histogram equalization al-

gorithm (CLAHE) algorithm, [151], was used to further normalize the brightness of

the sonar images, thus improving the contrast towards slant range ends. Parameters

of all these methods and steps in the interesting object detection pipeline described in

Section4.3are given in Table7.5with their values tuned to the real side-scan sonar

data.

Processing time for anomalous/salient object detection algorithm on UDOO is on

average 50 − 60 times slower than the processing time for anomaly detection on the

computer. Still, UDOO manages to process 2-3MP side-scan sonar images in around

5𝑠 which is fast enough for mission replanning purposes, see Fig.7.40a. It is also in-

teresting to analyze processing time in a relative sense scaled by the number of 𝑀𝑃𝑠

that the sonar image has. This is shown in Fig.7.40band can be used as a mission pa-

rameter. Number of across-track pixels in a side-scan sonar image for one straight line

depends on sonar’s across-track resolution and slant range, while it’s along-track res-

olution depends on the surge speed of the vehicle, pining frequency of the sonar, and

of course the length of the vehicle’s path in one direction. Knowing the expected size

of the sonar image per one path of the survey mission and the time needed to process
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Table 7.4: UDOO DUO specifications.

dimensions 11 cm x 8.5 cm

CPU 2 x ARM® Cortex™-A9 core @ 1GHz with ARMv7A instruction set

GPU Vivante GC 2000 for 3D + Vivante GC 355 for 2D (vector graphics)

RAM DDR3 1GB

GPIO 76, fully available with Arduino compatible R3 1.0 pinout

Ports

HDMI and Low-voltage differential signaling (LVDS) + Touch

2 Micro Universal Serial Bus (USB) (1 OTG)

2 USB 2.0 type A

1 USB 2.0 internal pin header (requires adapter cable)

Analog Audio and Mic jacks

Camera Serial Interface (CSI) Camera Connection

boot device Micro SD card

Power Supply 6-15V direct current (DC), and External Battery connector

Ethernet Gigabit Ethernet RJ45 (10/100/1000 MBit)

WiFI WiFi Module

External memory Serial ATA (SATA) connector with power header
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Table 7.5: Table of parameters for anomaly detection method implemented in OpenCv for real
side-scan sonar images.

Anomaly

Detection

clahe_clip_limit 4

clahe_grid_size 32

gauss_kernel_w 10

gauss_sigma 1.6667

saliency_th 2.5

e_method sobel

median_w 3

area_th 50x50cm

brigh_th 50.00%

scales [1, 3, 5 ]

1𝑀𝑃 , mission operator can decide to cut the sonar image of the whole line in smaller

subregions in order to maintain the online sonar image processing and consequential

mission (re)planning in case something interesting appears in the sonar data.

CPU usage on UDOO when anomaly-detector node enters the 𝑔𝑒𝑡𝐴𝑛𝑜𝑚𝑎𝑙𝑦𝑀𝑎𝑝

method (see Section4.3, Algorithm3) is at most 90 − 100% but only on one core of

UDOO’s CPU, leaving the other core unblocked for other operations. Memory usage

is primarily affected by the depth 𝑛𝑠𝑐𝑎𝑙𝑒𝑠 of the filter bank, defined Section4.3. In the

tests, the average size of an image was 10𝑀𝐵. Anomaly detector node used on aver-

age (𝑛𝑠𝑐𝑎𝑙𝑒𝑠 + 1) × 10𝑀𝐵. Since UDOO has 1𝐺𝐵 of RAM and 1𝐺𝐵 of swap memory,

and effective filter depth for anomaly detection was empirically proven never to be

𝑛𝑠𝑐𝑎𝑙𝑒𝑠 < 4, this is than enough RAM for such applications.

7.6.3 Conclusion

The anomaly detection method from [95] had the best precision and recall perfor-

mance on simulated sonar images dataset. Its performance was then validated on a

real 500 side-scan sonar images dataset, and it also had satisfactory recall-precision

performance. After prototyping and performance testing phase, the method was im-

plemented using OpenCV library and integrated into Robot Operating System (ROS)

environment in order to benchmark its processing time on the target hardware on-
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(a) (b)

Figure 7.40: (a) Absolute processing time plot UDOO vs. laptop. (b) Unit processing time per
megapixel UDOO vs. laptop.

board AUV Lupis. It turned out to be fast enough to process 1MP in 1.5− 2𝑠 which is

fast enough for large volumes of sonar data being recorded. Parts of this section were

previously published by the author in [78].

7.7 Conclusion

This chapter presented experimental case studies of various subsystems, i.e. model

predictive line following controller, extended Kalman-based underwater localization

module, and hardware-in-the-loop side-scan sonar imagery processing module. It also

described results of extensive trials with autonomous marine vehicles used in limno-

logical and underwater archaeological applications. Autonomous operator experience

gathered during these trials had a significant impact on the design of the proposed cov-

erage path planning algorithms including many limitations of using side-scan sonar as

a mapping sensor. It also resulted in a significant side-scan sonar imagery dataset later

on used for performance validation of side-scan sonar processing algorithms.
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Conclusion

The goal of this thesis was to develop an online side-scan sonar data-driven cover-

age path planning (CPP) algorithm for monitoring and surveying large-scale (over

1𝑘𝑚2) seafloor regions by an AUV, which would be much more convenient and less

costly to deploy than a towfish. Furthermore, it is also important to scan parts of the

coverage area in more detail and from more than one side if interesting objects are

detected in sonar imagery. Interesting objects are assumed to be sparse in otherwise

uniform sandy/muddy/stone seafloor. To accomplish that, four novel coverage path

planning algorithms were developed. The proposed algorithms provide a coverage

solution based on local information gain computed from the side-scan sonar data dur-

ing the mission execution, which is then exploited for replanning. Theoretical analysis

of the coverage planning algorithms is presented in a form of upper and lower per-

formance improvement bounds w.r.t. the nonadaptive lawnmower coverage pattern.

Extensive simulation tests in a grid-like coverage map were performed to get algo-

rithms’ performance statistics for a wide range of mission parameters. A few of the

best performing coverage algorithms were then integrated into a 3D simulator to fur-

ther validate the performance of the stated algorithms. Moreover, several modules of

the NGC system and coverage policies were tested in experimental environment on a

range of autonomous marine vehicles. The thesis stated several hypotheses and three

major contributions in Section1.3. These contributions are restated and reviewed in

the context of the presented work.

The first contribution stated:

• An online sonar data-based coverage path planning algorithm for large-scale seabed ex-

ploration missions using autonomous marine vehicles.

In Chapter3four online sonar-data based coverage path planning algorithms are

proposed. Section3.5presents a coverage algorithm based on propagation of sonar

data information gain in a cost map. Three heuristic decision making-based coverage
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algorithms rooted in lawnmower coverage pattern with online local replanning based

on available sonar data are presented in Sections3.6,3.7, and3.8. Algorithms pre-

sented in Section3.7and Section3.8are extensions of the heuristic coverage algorithm

presented in Section3.6. Theoretical upper and lower performance bounds of these

algorithms are analyzed in Sections3.5.6,3.6.2,3.7.2, and3.8.2w.r.t. the nonadaptive

lawnmower coverage pattern. The analysis is based on a finite set of possible cases

that can happen when the vehicle is moving forward/backward along the coverage

area and detects something interesting in its left/right/both swath(s).

The second contribution stated:

• Simulation framework for implementing, testing, and evaluating performance of sonar

data-based coverage planning algorithms.

All four proposed coverage planning algorithms were extensively tested in simula-

tion. First, a simulation setup with a grid-based coverage map and varying mission pa-

rameters affecting the performance of these algorithms was made. It varied on a wide

range the total area to cover, the ratio between the coverage area length and side-scan

sonar swath, as well as the percentage of that area containing any interesting objects

of random size and position. Setup and results of these simulations are presented in

Sections3.5.8,3.6.4,3.7.3, and3.8.3. The results show a significant decrease of coverage

path/mission duration w.r.t. the nonadaptable lawnmower pattern, especially in the

intended range of mission parameters.

The best performing coverage algorithms were then integrated into the existing 3D

ROS/Gazebo-based UUV simulator, as described in Chapter5. This was done to gain

further insights into the interactions between coverage planning, feasible path interpo-

lation, control, as well as sonar image processing modules in a more realistic, physics-

based simulation environment. Results of these simulations, presented in Section5.4,

validated the grid-based coverage map simulations.

Moreover, noisy side-scan sonar imagery was simulated to choose between several

anomaly detection methods, as presented in Chapter4. Most of these methods were

previously used on natural images so for some of them certain adjustments needed to

be done to apply them to sonar imagery.

Apart from validations in simulation, Chapter7brings five experimental case stud-

ies using various autonomous marine vehicles described in Chapter6. These case stud-

ies are related to performance validation of subsystems such as model predictive line

following guidance system (Section7.2), underwater vehicle localization system based

on sensor fusion (Section7.3), sonar-based coverage policies in challenging nonuni-

formly shaped area such as lakes (Section7.4), numerous underwater archaeological

sites (Section7.5), as well as hardware-in-the-loop performance analysis of sonar im-
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agery anomaly detection methods (Section7.6).

The third contribution stated:

• Metrics for evaluating performance of sonar data-based coverage planning algorithms

used in large-scale underwater survey missions.

Behavior and performance of the proposed coverage algorithms was first analyzed

on a unit coverage area to generalize algorithm behavior. Best- and worst-case per-

formance w.r.t. the nonadaptive lawnmower coverage pattern are identified for all

four presented algorithms, as presented in Sections3.5.6,3.6.2,3.7.2, and3.8.2. As

mentioned above, extensive simulations were performed with a wide range of cover-

age mission parameters to validate the theoretical performance bounds of these algo-

rithms. These analyses are given in Sections3.5.8,3.6.4,3.7.3, and3.8.3. Section3.9

aggregates all these metrics, i.e. coverage path/mission duration decrease, chance of

each adaptive coverage planning algorithm to have better performance as a function

of mission parameters, limit percentage of coverage area containing interesting ob-

jects for which even adaptive behavior yields on average longer coverage paths, as

well as total (re)planning time. Overall, all results show that adaptivity to available

sonar data during a coverage mission and coverage replanning causes shorter cover-

age path/mission time in the assumed mission parameter space in which coverage

area is longer than sonar swath, and not many interesting objects are expected at the

seafloor.
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line coverage path planning for side-scan sonar survey missions”, in 2018 26th
Mediterranean Conference on Control and Automation (MED), June 2018, pages
1-9.
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narstva Sveučilišta u Zagrebu na Zavodu za automatiku i računalno inženjerstvo pod
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IEEE i OES, te je sudjelovao u osnivanju studentskog odjela IEEE Oceanic Engineer-
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Njegovi istraživački interesi uključuju modelski prediktivno upravljanje, planiranje
putanje i pokrivenosti (ne samo) podvodnim morskim vozilima, batimetrijske modele
morskog dna, fotogrametrijske 3D modele objekata na kopnu i podmorju, tehnike es-
timacije, kao i obradu signala i slike . Zajedno s kolegama iz LABUST-a koautor je 5
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