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Abstract 

Efficient implementation of electric filters is important because it reduces hardware 

complexity and decreases its power consumption. The most demanding component from both 

of these aspects is multiplier, which is used to implement coefficients of filter's transfer 

function. Consequently, efficient systems are often designed to minimize number of 

multipliers or to simplify their structures. The former approach leads to systems with sparse 

coefficients, which are also known as sparse systems. The latter is common in the design of 

spatial filters, in which high operating frequencies impose additional requirements such as the 

constraint for low dynamic range ratio of excitation coefficients. Numeric optimization is a 

common tool used in such designs. However, optimization problems appearing in these cases 

are nonconvex and therefore difficult to solve. 

In this dissertation, methods for the design of both  sparse systems and systems with 

constrained dynamic range ratio  are considered. In particular, a method for the design of 

sparse FIR filters constrained in peak-error sense is presented. The method is based on 

signomial programming which utilizes the lp norm with 0 < p < 1. It is applied in the design of 

linear phase filters and filters without phase specifications. Furthermore, a method for the 

design of sparse linear phase FIR filters based on global optimization is described. This 

method utilizes a branch and bound algorithm with efficient tree pruning. It is suitable for the 

design of filters constrained in peak- or quadratic-error sense. In the area of spatial filter 

design, two methods are developed. The first of them utilizes branch and bound algorithm to 

obtain pencil beams with constrained dynamic range ratio of excitation coefficients. The 

second extends this design by allowing the coefficients to take zero values. Such an approach 

leads to sparse design, which enables more design freedom and, consequently, improves the 

obtained radiation patterns. 

 
 
 
Keywords: branch and bound, compressed sensing, convex optimization, dynamic range 

ratio, global optimization, l0-norm, lp-norm, FIR filter, minimax, peak-error, pencil beam, 

quadratic-error, signomial programming, sparsity, spatial filter. 

 



 

 

Dizajn rijetkih sustava temeljen na optimizacijskim postupcima 

Električki filtri predstavljeni su prijenosnim funkcijama. Ove funkcije opisane su 

koeficijentima koji obuhvaćaju određen, najčešće širok, dinamički raspon. Prilikom 

realizacije prijenosnih funkcija, spomenuti koeficijenti predstavljeni su množilima. 

Implementacija množila zahtijeva znatne sklopovske resurse. Stoga se učinkoviti sustavi često 

dizajniraju tako da minimiziraju broj množila ili da pojednostavne njihovu strukturu. Prvi 

pristup vodi na sustave s rijetkim koeficijentima, poznate i pod nazivom rijetki sustavi. Drugi 

pristup koristi se u dizajnu prostornih filtara, kod kojih rad na visokim frekvencijama nameće 

dodatne zahtjeve, kao što je zahtjev za malim dinamičkim rasponom pobudnih koeficijenata.  

Jedan pravac u dizajnu učinkovitih sustava temelji se na numeričkoj optimizaciji. No, 

pripadajući optimizacijski problemi često su nekonveksni i stoga teško rješivi. Dosad su 

razvijene mnoge iterativne metode koje se učinkovito nose s ovim problemima. Međutim, one 

kao rezultat daju lokala rješenja. S druge strane, razmatrane su i metode za globalnu 

optimizaciju. Iako one rezultiraju globalnim optimumom, mnogo su kompleksnije i 

zahtijevaju dulje vrijeme izvršavanja. 

U ovoj disertaciji razmatrane su metode dobivanja rijetkih filtara te filtara s 

ograničenim dinamičkim rasponom pobudnih koeficijenata. Istraživanje je usmjereno na 

dizajn rijetkih filtara s konačnim impulsnim odzivom (FIR) te na dizajn učinkovitih 

prostornih filtara s uskim snopom zračenja. 

Izvorno, rijetki sustavi dobivaju se minimizacijom l0-norme. No zbog kombinatorne 

složenosti optimizacijskog problema koji sadrži spomenutu normu, često se uvode njene 

relaksacije. U disertaciji je razvijena metoda za dizajn rijetkih FIR filtara koja koristi 

relaksaciju l0-norme lp-normom gdje je 0 < p < 1. Za rješavanje tako dobivenog 

optimizacijskog problema predloženo je signomijalno programiranje. Metoda minimizira 

maksimalno odstupanje amplitudne karakteristike filtra od specifikacija danih u području 

propuštanja i području gušenja, a primjenjiva je na filtre s linearnom fazom te na filtre bez 

zahtjeva na faznu karakteristiku. 

U disertaciji su razmatrane i metode za globalnu optimizaciju rijetkih FIR filtara s 

linearnom fazom. Predložena je metoda koja pretražuje stablo sa svim položajima nultih 

koeficijenata filtra, a koristi grananje i ograničavanje s učinkovitim odsijecanjem određenih 

grana. Pretraživanje stabla izvedeno je kretanjem po okomitim čvorovima, kao i 

kombinacijom kretanja po okomitim i vodoravnim čvorovima. Predložena metoda pogodna je 



 

 

za dizajn filtara čija je amplitudna karakteristika ograničena u smislu maksimalnog ili 

kvadratnog odstupanja. 

U domeni prostornih filtara, predložena je metoda za dizajn antenskih nizova s uskim 

snopom zračenja i ograničenim dinamičkim rasponom pobudnih koeficijenata. Ovi nizovi su 

optimirani u smislu najvećeg gušenja bočnih latica. Metoda je temeljena na algoritmu 

grananja i ograničavanja. Konačno, ova metoda proširena je dopuštanjem određenim 

koeficijentima da poprime vrijednost nula čime se dobivaju bolji dijagrami zračenja za isti 

dinamički raspon. 

Ova doktorska disertacija je podijeljena u osam poglavlja.  

Prvo poglavlje opisuje problematiku istraživanja i daje širi kontekst područja u koje je 

ono smješteno. Na temelju toga, dana je motivacija za razvoj metoda predloženih u disertaciji. 

Naglasak je stavljen na dizajn rijetkih digitalnih filtara te učinkovitih prostornih filtara. Na 

kraju, opisana je struktura disertacije kroz pregled narednih poglavlja i kratak opis građe koje 

ta poglavlja sadrže. 

U drugom poglavlju, dan je opis sustava koji će biti opisani u disertaciji. Pritom su 

posebno razmatrani FIR filtri te prostorni filtri. Navedeni su optimizacijski problemi koji se 

koriste u klasičnom dizajnu ovih sustava. Također, razmatrane su tehnike za povećanje 

njihove učinkovitosti. Pritom je kod FIR filtara razmatrano maskiranje frekvencija, opisivanje 

koeficijenata filtara pomoću sume potencija broja dva te dobivanje rijetkih koeficijenata. U 

području dizajna prostornih filtara, kao elementi učinkovitosti prepoznati su ograničen 

dinamički raspon koeficijenata i rijetkost. Mnoge metode za dizajn rijetkih sustava inspiraciju 

su pronašle u teoriji sažetog očitavanja, gdje se rijetkost postiže korištenjem l1-norme. Stoga 

je jedan dio teksta posvećen pregledu ovog područja. Pokazano je kakvo značenje l1-norma 

ima u rekonstrukciji rijetkih signala te zašto nije izravno primjenjiva u dizajnu rijetkih filtara. 

Na kraju, dan je pregled postojećih metoda za dizajn rijetkih FIR filtara te metoda za dizajn 

učinkovitih antenskih polja s ograničenim dinamičkim rasponom pobudnih koeficijenata. 

S obzirom da metode predložene u disertaciji koriste optimizaciju, u trećem poglavlju 

dana je terminologija vezana uz ovo područje, Nadalje, opisani su postupci za konveksnu 

optimizaciju i to linearno programiranje, kvadratno programiranje, optimizacija konveksne 

funkcije nad prostorom omeđenim stošcima drugog reda te geometrijsko programiranje. Od 

metoda koje ne provode konveksnu optimizaciju opisano je signomijalno programiranje. Na 

kraju, opisana je metoda grananja i ograničavanja, koja pripada globalnoj optimizaciji. Kod 

ove metode razmatrani su razni pristupi pretraživanju stabla. 



 

 

U četvrtom poglavlju opisana je metoda za dizajn rijetkih FIR filtara koja koristi 

aproksimaciju l0-norme lp-normom gdje je 0 < p < 1. Optimizacijski problem koji opisuje 

ovakav dizajn nije konveksan. Stoga je za njegovo rješavanje potrebno odabrati neku od 

iterativnih metoda koja nije osjetljiva na početnu točku. U disertaciji je za rješavanje 

spomenutog problema predloženo signomijalno programiranje. Iako ovo programiranje ne 

osigurava globalnost dobivenog rješenja, moderni postupci za rješavanje signomijalnih 

programa u mnogim slučajevima konvergiraju ka njemu. U disertaciji je odabran postupak 

koji pretvara originalni problem u slijed geometrijskih problema koji se rješavaju u svakom 

koraku dok se ne postigne željena točnost. Opisana metoda je primijenjena na FIR filtre s 

linearnom fazom te na filtre bez zahtjeva na faznu karakteristiku. Amplitudna karakteristika 

optimirana je u smislu najmanjeg maksimalnog odstupanja u području propuštanja i području 

gušenja. Na većem broju primjera pokazano je da predložena metoda daje filtre čija je 

rijetkost bolja ili jednaka onoj koju daju druge suvremene metode. 

Većina postojećih metoda za dizajn rijetkih filtara temelje se na lokalnoj optimizaciji ili 

na heurističkim pristupima. Stoga one ne mogu garantirati globalnost predloženog rješenja. 

Poznavanje globalnog rješenja važno je s aspekta samog dizajna, ali i s aspekta procjene 

kvalitete postojećih postupaka. U petom poglavlju razmatrana je globalna optimizacija 

rijetkih FIR filtara s linearnom fazom. Položaj nultih koeficijenata u impulsom odzivu takvih 

filtara nije unaprijed poznat. Stoga je pripadajući optimizacijski problem kombinatoran. Jedan 

način za njegovo rješavanje je iscrpno pretraživanje svih kombinacija koeficijenata koji su 

jednaki nuli. Međutim, broj kombinacija koje je potrebno pretražiti raste eksponencijalno s 

redom filtra. Stoga je iscrpno pretraživanje moguće provesti samo za filtre niskog reda. Jedan 

od načina za ubrzavanje pretraživanja je korištenje algoritama s grananjem i ograničavanjem. 

Kod takvih algoritama formira se stablo koje se zatim pretražuje. Ubrzanje u odnosu na 

iscrpno pretraživanje postiže se odsijecanjem pojedinih grana, koje se provodi na temelju 

dodatnih kriterija. U ovom poglavlju, predložena je metoda koja za pretraživanje stabla koristi 

kombinaciju ispitivanja vodoravnih i okomitih čvorova. Odsijecanje se provodi na temelju 

analize izvedivosti optimizacijskog problema. Metoda koristi i predznanje o očekivanoj 

rijetkosti, pri čemu je moguće krenuti od broja koeficijenata različitih od nule poznatog filtra 

koji zadovoljava dane specifikacije. Metoda je oblikovana za dizajn FIR filtara s linearnom 

fazom kod kojih je amplitudna karakteristika ograničena u smislu najmanjeg maksimalnog ili 

najmanjeg kvadratnog odstupanja. U disertaciji je dan veći broj primjera dizajna FIR filtara 

niskog i srednjeg reda. 



 

 

Dizajn FIR filtara ima mnogo dodirnih točaka s dizajnom linearnih antenskih polja koja 

imaju jednak razmak između elemenata. Stoga su mnoge metode za dizajn FIR filtara 

inspiraciju pronašle u dizajnu antenskih polja i obrnuto. Međutim, kod korištenja ove 

sličnosti, potrebno je uvažiti specifičnosti koje diktira promatrani dizajn. U šestom poglavlju, 

metoda grananja i ograničavanja primijenjena je u dizajnu antenskih polja s uskim snopom 

zračenja i ograničenim dinamičkim rasponom pobudnih koeficijenata. Uvođenjem 

ograničenja na dinamički raspon koeficijenata problem postaje nekonveksan. U disertaciji je 

pokazano da je problem moguće napisati u konveksnom obliku ako su poznati predznaci svih 

koeficijenata. No, s obzirom da ti predznaci u nekom dizajnu nisu poznati unaprijed, cjelovita 

analiza zahtijeva iscrpno pretraživanje svih njihovih kombinacija. Ovaj problem riješen je 

pomoću metode grananja i ograničavanja koja odluku o odsijecanju grana donosi na temelju 

rješavanja konveksnog problema dobivenog relaksacijom polaznog problema. Ova metoda 

primijenjena je na dizajn antenskih polja s uskim snopom zračenja koja osiguravaju 

maksimalno gušenje bočnih latica. Metoda omogućuje dizajn nizova s pozitivnim i 

negativnim koeficijentima. Također, kao poseban slučaj, omogućava i globalnu optimizaciju 

nizova čiji su koeficijenti jednaki 1 i 1. 

U dizajnu koji ne ograničava dinamički raspon pobudnih koeficijenata, taj raspon može 

poprimiti vrlo velike vrijednosti. Posebno je to slučaj kod nizova sa strmim bokom glavne 

latice. Jasno je da velik dinamički raspon nužno znači da neki koeficijenti poprimaju male 

apsolutne vrijednosti. S druge strane, ograničavanje raspona potiskuje te elemente u područje 

većih vrijednosti, te tako pogoršava dijagram zračenja. Ovo pogoršanje može se umanjiti ako 

se koeficijentima dozvoli da poprime vrijednost nula. S obzirom da takvi koeficijenti ne 

sudjeluju u određivanju dinamičkog raspona, njihova prisutnost smanjuje broj ograničenja u 

optimizacijskom problemu i time otvara prostor za poboljšanje dijagrama zračenja. Takav 

pristup vodi na rijedak dizajn. U sedmom poglavlju opisana je metoda za dizajn rijetkih 

antenskih polja s ograničenim dinamičkim rasponom koeficijenata i maksimalnim gušenjem u 

području bočnih latica. Spomenuta metoda koristi algoritam s grananjem i ograničavanjem 

koji pretražuje stablo sačinjeno od pozitivnih, negativnih i nultih koeficijenata. Opravdanost 

kombiniranja rijetkosti i ograničavanja dinamičkog raspona koeficijenata pokazana je na 

većem broju primjera. 

Osmo poglavlje sažima značajke predloženih metoda i doprinos disertacije. 

U okviru ove disertacije ostvaren je znanstveni doprinos koji se očituje u tri dijela. Prvi 

dio sačinjava metoda za dizajn rijetkih FIR filtara temeljena na signomijalnom programiranju. 

Ovdje je optimizacijski problem aproksimiran relaksiranjem originalnog l0 problema lp 



 

 

problemom gdje je 0 < p < 1. Problem je riješen formiranjem niza konveksnih podproblema 

koji se iterativno rješavaju. Iako je metoda lokalna i iterativna, daje dobre rezultate i 

primjenjiva je na filtre niskih i srednjih redova. Dani su primjeri dizajna filtara s linearnom 

fazom i bez zahtjeva na faznu karakteristiku, čija je amplitudna karakteristika optimalna u 

minimax smislu.  

Drugi dio znanstvenog doprinosa predstavlja metoda za globalnu optimizaciju rijetkih 

FIR filtara s linearnom fazom. S obzirom da iterativne metode ne mogu garantirati globalnost 

dobivenog rješenja, razvijena je metoda koja koristi grananje i ograničavanje s učinkovitim 

odsijecanjem pojedinih grana stabla. Metoda je oblikovana za dizajn filtara optimalnih u 

smislu najmanje maksimalne ili najmanje kvadratne pogreške. Metoda je pogodna za 

optimizaciju filtara niskog i srednjeg reda u prihvatljivom vremenu. Nadalje, pogodna je za 

procjenu kvalitete postojećih postupaka jer može pokazati koliko su njihova rješenja blizu 

globalnim optimumima. 

Primjena globalne optimizacije u dizajnu prostornih filtara rezultirala je trećim dijelom 

doprinosa disertacije. Razvijena je metoda za dizajn rijetkih i ne-rijetkih antenskih polja s 

uskim snopom zračenja, ograničenim dinamičkim rasponom koeficijenata i maksimalnim 

gušenjem bočnih latica. Metoda se temelji na algoritmu grananja i ograničavanja. Nadalje, 

pokazano je da se omogućavanjem rijetkosti u navedenim sustavima postižu bolji dijagrami 

zračenja. 
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1 Introduction 

Electric filters are uniquely represented with their transfer functions. These functions 

are described with coefficients which cover a certain, usually large, dynamic range. When 

realizing transfer functions, these coefficients are represented by multipliers. The 

implementation of multipliers requires significant hardware resources. Therefore, efficient 

systems are often designed to minimize the number of multipliers or to simplify their 

structures. The former approach leads to systems with sparse coefficients, also known as 

sparse systems. The latter is used in the design of spatial filters where constraining the 

dynamic range ratio of excitation coefficients is beneficial. One stream in the design of 

efficient systems is based on numerical optimization. However, the corresponding 

optimization problems are often nonconvex and therefore difficult to solve. Many iterative, 

local methods have been developed which efficiently cope with these problems. The methods 

for global optimization have also been considered. However, these methods are more complex 

and require more time for the design. 

In the scope of this dissertation, methods for the design of both  sparse systems and 

systems with constrained dynamic range ratio  will be considered. In the field of sparse 

systems, the original problem leads to minimization of the l0-norm. However, due to 

combinatorial nature of problems addressed in such a way, relaxations have been introduced. 

Here, a method for the design of sparse FIR filters with peak-error constraints is proposed. 

The method is based on signomial programming and utilizes the relaxation of the l0-norm 

with an lp-norm where 0 < p < 1. It is applied in the design of filters with linear phase and the 

filters with no phase specifications. Global methods for the design of sparse FIR filters with 

linear phase have also been addressed. In particular, a method based on branch and bound 

algorithm which constrains the filter's magnitude response in peak-, quadratic-error, as well as 

in both senses is proposed. The method utilizes the depth-first as well as a combination of the 

depth-first and breadth-first search strategy. 

In the domain of spatial filters, a method for the design of pencil beams with 

constrained dynamic range ratio of excitation coefficients is proposed. These pencil beams are 

optimized to have minimax sidelobes. The method is based on the branch and bound 

algorithm which incorporates efficient pruning. Furthermore, it is shown that by allowing 
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some coefficients to take zero values, a better radiation patterns can be achieved for the same 

dynamic range ratio. 

The thesis is organized as follows. The second chapter provides an introductory 

overview of digital filters and antenna arrays, with focus on efficiency. The concept of 

sparsity in these areas has its origin in compressed sensing. Therefore, its basic concepts will 

also be given. In a compressed sensing, the l1-norm is utilized to obtain sparse signals. 

However, the differences between the compressed sensing and filter design are discussed and 

it is shown why the use of l1-norm is not so effective in filter design. At the end, state of the 

art methods in both sparse FIR filter design and antenna array design are presented. 

Design methods used in this research are based on optimization techniques, so the third 

chapter will provide the introduction to optimization as well as an overview of all 

optimization techniques used later in the dissertation. 

Chapters four to seven present new methods in the design of efficient systems. In 

chapter four, signomial programming is applied to sparse filter design. The design examples 

are shown on FIR filters with linear phase and FIR filters without phase specifications, both 

constrained in peak-error sense. 

The fifth chapter presents a method for global optimization of sparse FIR filters based 

on efficient branch and bound algorithm. This method is applied to linear phase FIR filters 

with peak- and quadratic-error constraints, as well as to filters with both of these constraints. 

In the sixth chapter, a global method based on branch and bound algorithm is applied in 

the design of pencil beams with minimax sidelobes and constrained coefficients' dynamic 

range ratio. 

In the seventh chapter, the concept of sparsity is introduced to improve the radiation 

patterns of pencil beams with constrained coefficients' dynamic range ratio. 
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2 Efficient Systems 

2.1 Electric Filters 

Filtering is the most widely used signal processing technique [1], [2]. It is implemented 

by the devices called filters. Filter design can be performed in the time, frequency or spatial 

domain. In a time-domain synthesis, filters are designed to ensure certain parameters of the 

processed waveforms. Frequency-domain synthesis usually focuses on the selectivity. The 

design of spatial filters is performed to shape the structure of radiated wave. 

Frequency-selective filters can be categorized as lowpass, highpass, bandpass, bandstop 

or, as a special case, allpass filters. The lowpass filter passes the signal components whose 

frequencies are lower than a specified cutoff frequency, fc, while rejecting the other 

components. Its complement is the highpass filter, which passes the components whose 

frequencies are higher than fc. The bandpass filter passes the components between cutoff 

frequencies fc1 and fc2. Its complement is the bandstop filter, which rejects these components. 

There are also special filter types, such as notch filters, which block single frequency, 

multiband filters, which pass more than one frequency band, comb filters, which reject 

periodically spaced frequency regions, etc. 

Spatial filters are used in a wide area of applications ranging from optical imaging, 

acoustics, communications, etc. The most common applications of these filters are antenna 

arrays, which direct the radiated energy into a spatial region of interest. In this sense, they 

generate a narrow beam, wide beam, multiple beams or other form of beam required by the 

application at hand. The antenna arrays appear in linear, planar, circular, cylindrical and 

spherical forms. 

In this research, methods for efficient design of frequency- and spatially-selective filters 

are investigated with focus set on the design of sparse digital filters and linear antenna arrays. 

2.1.1 Digital Filters 

Digital filter is a system that performs specific mathematical operation on a discrete-

time signal. Filter's properties are uniquely determined by its impulse response, h(n). Filter's 

response to an arbitrary signal x(n) is given by [1] 
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     
k

y n x k h n k



   (2.1) 

Considering impulse response length, there are two types of digital filters  finite 

impulse response (FIR) and infinite impulse response (IIR) filters. FIR filters are more 

common because they allow ideal linear phase. Furthermore, they are inherently stable and 

their implementation is simple. IIR filters have more complex implementation. However, they 

exhibit better performances than the FIR filters of the same orders. Unfortunately, they lack 

the phase linearity and special attention must be paid to achieve their stability. 

2.1.1.1 FIR Filters 

For a causal FIR filter of order N, the impulse response is given by 

                 
0

0 1 1
N

k

h n h n h n h N n N h k n k   


         (2.2) 

where (n) is the Kronecker delta function. Filter's transfer function is obtained as 

            1

0

0 1
N

N k

k

H z Z h n h h z h N z h k z  



        (2.3) 

where Z{} denotes the z-transform. The frequency response is obtained by evaluating H(z) 

along the unit circle, as in 

   
0

N
j j k

k

H e h k e 



   (2.4) 

where ω = 2f is angular frequency. 

FIR filters can be designed to have ideal linear phase which is achieved if the impulse 

response is symmetric or antisymmetric. Such a response also enables reducing the number of 

multipliers in the implementation by the factor of two. FIR filters designed without 

requirements set on the phase response allow arbitrary distribution of their coefficients. This 

introduces additional degrees of freedom, which can be spent on increasing the selectivity. 

FIR filters with linear phase are categorized into four different types. Type 1 and 2 FIR 

filters have symmetric, whereas Type 3 and 4 have antisymmetric impulse responses. The 
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examples of symmetric impulse responses are shown in Figure 2.1 for an even and an odd 

filter order. 

 

 

Figure 2.1 Impulse response of Type 1 (left) and Type 2 (right) FIR filter. 

 
The frequency response of Type 1 filter is obtained by introducing h(k) = h(N – k) into 

(2.4) and by rearranging, which results in 

        
/2 1

/2

0

/ 2
N

j N kj j k j N

k

H e h k e e h N e  


  



    (2.5) 

By further rearranging, the expression in (2.5) takes the form 

          
/2 1

/2 /2/2

0

/ 2
N

j N k j N kj j N

k

H e e h k e e h N  


  



 
   

 
  (2.6) 

By using trigonometric identities, the frequency response is obtained as 

       
/2 1

/2

0

2 cos / 2 / 2
N

j j N

k

H e e h k N k h N  






       
  (2.7) 

Component e-jωN/2 is filter's phase shift whereas the remaining part is the zero-phase amplitude 

response. 

Similar to Type 1, Type 2 frequency response is obtained by using h(k) = h(N  k), as in 

     
( 1)/2

/2

0

2 cos / 2
N

j j N

k

H e e h k N k  






      (2.8) 
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The examples of antisymmetric impulse responses are shown in Figure 2.2 for an even 

and an odd filter order. By using h(k) = –h(N – k) and h(N/2) = 0, the frequency response of 

Type 3 FIR filter is obtained as 

       
/2 1

/2 /2

0

2 sin / 2
N

j j N j

k

H e e e h k N k   


 



       (2.9) 

Similarly, by using h(k) = –h(N – k) the frequency response of Type 4 filter is obtained in a 

form 

       
( 1)/2

/2 /2

0

2 sin / 2
N

j j N j

k

H e e e h k N k   


 



       (2.10) 

 

 

Figure 2.2 Impulse response of Type 3 (left) and Type 4 (right) FIR filter. 

 

2.1.1.2 Optimization-Based FIR Filter Design 

When designing FIR filters, the coefficients are often obtained by using numerical 

optimization. The optimization-based design of an FIR filter with real-valued coefficients can 

be described as 

 minimize , dH   h
h  (2.11) 

where  is approximation error, h = [h0, h1, …, hN]T is filter's impulse response and Hd() is 

desired frequency response. The error in (2.11) can be expressed as the integral of p-powered 

deviation of the frequency response, as in 
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       
1

0

1
,

pp

p dW H H d

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
 

  
 
h h  (2.12) 

where W()  0 is a weighting function and H(h,) is filter's amplitude response. In this 

theses, two most common choices of p will be further investigated, p   and p = 2. For 

p  , the error in (2.11) can be formulated as 

       
0
max , dW H H  

   
 

 h h  (2.13) 

The minimization of (h) results in filter's frequency response which is optimum in a 

minimax sense. The coefficients of such a filter can be obtained by solving the problem 

     
,

minimize

subject to , dW H H




    

h

h
 (2.14) 

where  is approximation error. One popular method for minimax FIR filter design was 

proposed by Parks and McClellan [3]. 

Minimax criterion does not take into account the energy obtained in certain filter's 

bands. However, the energy criterion can be easily incorporated into an optimization-based 

design by applying p = 2 in (2.12), which results in 

        2

2

0

1
, dW H H d



    


 h h  (2.15) 

Since 2(h)  0,  

   2
2 2arg min arg min 

h h
h h  (2.16) 

Consequently, the filter's coefficients can be obtained by the optimization of squared error, 

rather than the error itself. Therefore, the coefficients can be obtained by solving the problem 
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     

,

2

0

minimize

1
subject to , dW H H d






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

   

h

h
 (2.17) 

where  is approximation error. The resulting filters are optimum in the least-squares sense. 

In many applications, the total stopband energy and maximum stopband gain are both 

important [4]. Furthermore, narrow band filters require constraining the energy in the 

stopbands while limiting the maximum gain deviation in all care bands. Therefore, it is useful 

to combine both approximation errors. The examples of such designs will be analyzed more 

thoroughly in the following chapters. 

2.1.2 Antenna Arrays 

Antenna arrays are composed of several radiation sources called antenna elements. 

Their radiation is analyzed in two different regions, the near and the far field. In the near field, 

nonradiative behavior dominates. The near field is followed by the transition zone in which 

nonradiative as well as radiative behavior is encountered. In the far field, nonradiative effects 

can be neglected. This region is considered to begin at the distance of several wavelengths 

from the antenna. In this dissertation, only antenna arrays in the far field region are 

considered. 

The antenna arrays are characterized by their gain or radiation pattern, which is 

sometimes called beampattern. Since this pattern is obtained by spatial filtering, its generation 

is also called beamforming. The simplest radiation pattern consists of one main and several 

side lobes. The basic beamforming task is to design the main lobe pointing at a specified 

direction and to keep the side lobes within the specified boundaries. In addition, some 

applications require changing the direction of the main lobe, which is performed by the beam 

steering. 

Based on the shape of the radiation patterns, antenna arrays form wide, narrow, shaped, 

pencil or focused, flat top, multiple and other beam patterns. These patterns are obtained by 

various excitations and arrangements of antenna elements, utilizing linear, planar, circular, 

cylindrical, spherical or other structures. In these structures, the elements can be positioned 

with equal or unequal interelement spacing, thus forming uniform or nonuniform arrays. 

Nonuniform arrays, as well as the uniform arrays with missing certain elements, are treated as 

sparse arrays. 
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2.1.2.1 Single Antenna Response 

Figure 2.3 shows single antenna element placed at the point [x0, 0] of the x-z coordinate 

system. If this element is excited with the signal U0cos(ω0t + φ) where U0 is the excitation’s 

magnitude, ω0 is angular frequency and φ is feed’s angle, the electric field in element's 

vicinity is given by [5] 

     0 0 0cosE t CF U t     (2.18) 

where C is a constant, F(θ) is antenna's radiation pattern and θ is azimuth direction angle in 

range – /2 ≤ θ ≤ /2. 

 

Figure 2.3 One antenna element positioned at coordinate x0 on x-axis. 

 
At the point distanced d from the origin, at an angle , electric field takes the form 

     0 02
cosd

C
E t F U t

d
         (2.19) 

By using analytical continuation of (2.19), the electric field can be expressed as a phasor 

     0 0

02

j t
d

C
E t F U e

d
       (2.20) 

where 

 0

0

sin
2

d x 
 




  (2.21) 
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and λ is the wavelength of the transmitted signal. By substituting (2.21) into (2.20) and 

rearranging, the electric field is obtained as 

   
 0

0

2 sin2

02

xd
jj t j

d

C
E t F e e U e e

d

 
  


  (2.22) 

In (2.22), the expression 

   
 02 sin

0

x
jj

dF F U e e
 

    (2.23) 

is recognized as the complex radiation pattern obtained at the observed angle. If isotropic 

antenna is used, F(θ) = 1. Assuming complex excitation 

0 0
ja U e   (2.24) 

the radiation pattern takes the form 

 
 02 sin

0

x
j

dF a e
 

   (2.25) 

 

2.1.2.2 Multiple Antenna Response 

The response of multiple antennas can be easily obtained by using superposition. 

Figure 2.4 shows an example of linear antenna array with elements placed along the x axis at 

the positions xk, k = 1, 2, …, N. If all elements have equal radiation patterns F(θ) and 

excitation coefficients ak, k = 1, 2, …, N, the array's radiation pattern is obtained as 

   
 2 sin

1

,
kxN j

a k
k

F F a e
 

 


 a  (2.26) 

where a = [a1, …, aN]T. The sum in (2.26) is called array factor [5], [6] 

 
 2 sin

1

,
kxN j

k
k

A a e
 




a  (2.27) 
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Figure 2.4 Multiple antenna elements positioned at coordinates xk, k = 1, 2,..., N 
on x-axis. 

 

2.1.2.3 Relationship Between Antenna Arrays and FIR Filters 

If an antenna array utilizes N + 1 equidistant elements placed at xk = kλ/2, 

k = 0, 1, 2, …, N, the array factor is given by 

   sin

0

 ,
N

jk
k

k

A a e  


 a  (2.28) 

An FIR filter with N + 1 coefficients has a frequency response 

 
0

N
j jk

k
k

H e h e 



   (2.29) 

Clearly, the array factor can be obtained from the frequency response of an FIR filter 

assuming 

 sin     (2.30) 

Apparently, the methods used in FIR filter design can be applied in the design of antenna 

arrays with equal interelement spacing. However, it should be noted that the frequency scale 

is warped with the factor sin(θ). Similar expressions can be obtained for interelement spacing 

of λ.  

2.1.2.4 Optimization-Based Pencil Beam Design 

Antenna arrays can be designed to direct energy into a narrow spatial angle. This type 

of radiation pattern is called focused or pencil beam. 
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Optimization-based pencil beam design aims to minimize the sidelobe error, while 

keeping the maximum power density at angle  = 0 rad. The latter is usually achieved by 

forcing A(a, 0°) = 1. For isotropic antenna elements, the optimization problem takes the form 

 

1

minimize

subject to 1
N

k
k

a






a

a

 (2.31) 

where (a) is the sidelobe error and ak, k = 1, 2, …, N are excitation coefficients. In this 

problem A(a, 0°) = 1 is ensured by the constraint, whereas the sidelobe region is shaped by an 

appropriate choice of the objective function. Similarly to the design of FIR filters, (a) can be 

expressed as the integral of p-powered radiation pattern. In this case, it takes the form 

     
1

/2

, 4 , cos
s

p
p

p s aF d




     
 

   
 

a a  (2.32) 

where 0 < s ≤ /2 is the start of the sidelobe region. In a classic design, p   or p = 2 is 

chosen, ensuring the sidelobe region is optimum in a l- or l2-sense. For p   the error in 

(2.32) can be expressed as 

   
2

, max ,
s

s aF   
  

 
a a  (2.33) 

The corresponding optimization problem is given by 

 

,

1

minimize

subject to 1

, ,
2

N

k
k

a s

a

F




   





  


a

a

 (2.34) 

where  is approximation error. For p = 2, the error takes the form 

   
2

2

2 , 4 ( , ) cos
s

s aF d




      a a  (2.35)

The corresponding optimization problem is given by 
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 
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
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









a

a

 
(2.36) 

where  is approximation error. 

2.2 Efficient Electric Filters 

As mentioned in previous section, FIR filters can easily achieve linear phase and they 

are inherently stable. These features make FIR filters very convenient and popular. However, 

their relatively high implementation complexity might be a drawback in some applications. 

Many techniques have been developed for lowering the complexity, most of which try to 

reduce the number of general purpose multipliers required for filter's implementation. Popular 

techniques include frequency response masking, using the sums of signed-powers-of-two and 

sparse filter design. 

Frequency response masking is a set of procedures used to design very sharp  

linear-phase FIR filters with arbitrary passbands [7]. These filters achieve efficient 

implementation at the cost of increased group-delay. In addition, frequency masking cannot 

be used for obtaining non-frequency-selective filters, such as digital integrators. A low 

implementation complexity can be obtained if all filter coefficients are represented as sums of 

signed power-of-two terms. This leads to hardware design with no general-purpose 

multipliers, which are here implemented by using adders and shifts. The design of sparse 

filters is focused on minimization of the number of nonzero coefficients in filter's impulse 

response, regardless of the technique used for its implementation. 

The above techniques reduce the amount of hardware required for filter's 

implementation. However, in some applications it is mandatory to meet the requirements set 

on particular components. Such is the case in the design of antenna arrays, in which the 

coefficients of spatial filters are incorporated in the feeding networks. Since these networks 

operate at high frequencies, it is difficult to implement the coefficients which have a large 

dynamic range ratio (DRR). Consequently, the design with constrained DRR is preferable. 

Additional relaxation is achieved if some coefficients are missing, which is obtained in a 

sparse design. 
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In this dissertation, efficient filters will be considered in the scope of sparse FIR filters, 

classic antenna arrays with constrained DRR as well as sparse antenna arrays with constrained 

DRR. 

The concept of sparsity has its origin in the early stages of filter design but has regained 

much popularity in the last few decades because of the intense development of compressed 

sensing. Therefore, a short introduction to compressed sensing will be given in the next 

section. Furthermore, state-of-the-art methods in the sparse FIR filter design will be 

presented. Finally, efficient spatial filters with recent methods for their design will also be 

described. 

2.3 Sparsity in Filter Design 

2.3.1 Compressed Sensing 

Compressed sensing (CS) is a technique for data acquisition which enables complete 

reconstruction of signals from incomplete sets of measurements [8], [9], [10], [11], [12], [13]. 

Good surveys on this topic can be found in [14] and [15]. 

One of the pioneer compressed sensing applications is single pixel camera [16]. This 

camera utilizes a digital micromirror device which consists of many small mirrors randomly 

positioned to stop or let the light onto the optical detector. Different combinations of opened 

and closed mirrors capture information about the object. Each mirror setting brings one 

measurement. This principle is also used for 3D scene imaging [17]. 

One of first industry-important CS applications utilizes compressed sensing techniques 

in processing of magnetic resonance images for 3D angiography, heart and brain imaging 

[18], [19], etc. The use of CS in medical imaging has reduced the acquisition time 

significantly. This is crucial because majority of errors occur when imaging is slow. 

Recently, a compressed sensing application for reconstructing a scene from a defocused 

image was introduced [20]. Classical imaging system projects the surface of a 3D object onto 

a 2D camera. These surface points are sparse with respect to all points present in 3D space. If 

an object consists of multiple light sources, it is possible to reconstruct their positions by 

using compressed sensing. 

2.3.2 Reconstruction of Sparse Signals 

The main task of the compressed sensing is to reconstruct the unknown sparse vector 

x  ࣬N from a measured vector y  ࣬M assuming M < N. The measurement is taken as 
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y Ax  (2.37) 

where A  ࣬MN is measurement matrix. If the solution of (2.37) exists, then it surely isn't 

unique. Moreover, since M < N, the number of solutions is infinite. However, unique 

reconstruction of x is possible if certain properties are met. The key requirement for 

successful reconstruction is that x is sparse in a specific domain. Furthermore, A should 

exhibit a small mutual coherence [9] or satisfy restricted isometry property [13]. 

If sparsity reconstruction is formed as an optimization problem, the sparsity requirement 

is expressed with the objective function whereas linear measurements in (2.37) represent the 

constraints. The sparsity is usually expressed with specific norm. In mathematics, the lp-norm 

is defined as  

1

1

, 1
N pp

kp
k

x p


 
  
 
x  (2.38) 

where x = [x0, x1, …, xN]T and p  ࣬. Frequently used choices of p are 1, 2, and , leading to 

l1-norm, l2-norm or Euclidian norm and l-norm or minimax norm. Strict definition of norm is 

limited to p  1, but the definition in (2.38) can be extended to 0 ≤p < 1. For such values of p, 

the norm is considered improper because the triangular inequality is violated. However, useful 

properties are obtained for lp-norm with 0 ≤p < 1.  

The sparsity of x can be directly expressed with l0-norm [14]. The reconstruction 

problem is than expressed as 

0
minimize

subject to 
x

x

y Ax
 (2.39) 

The problem in (2.39) is computationally demanding. Since the positions of nonzero elements 

in x are not known in advance, all subsets of x containing nonzero elements need to be 

examined. Such an examination can be performed by using an exhaustive search. Apparently, 

this problem cannot be solved in polynomial time. To avoid the need for the exhaustive 

search, two approaches are used. First of them solves the problem in (2.39) approximately, 

whereas the second approximates the problem in (2.39) and then exactly solves the 

approximate problem. The former approach is based on several variants of greedy algorithm. 

The most popular of them can be found in [14]. The latter approach approximates the l0-norm 
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with some proper norm, resulting in convex optimization problem. This approximation is 

described in the following sections. 

 

2.3.3 Application of L1-Norm in Compressed Sensing 

If l0-norm is replaced with general lp-norm, the problem in (2.39) becomes 

minimize

subject to

p

p


x

x

y Ax
 (2.40) 

where p  0. The solution of problem in (2.40) needs to be identical to the solution of the 

problem in (2.39). Additionally, the problem in (2.40) needs to be globally solvable which is 

possible if the problem is convex. The solutions of  

p p

p
rx  (2.41) 

lie in an lp-ball with radius r. Points in a ball for which 

p p

p
rx  (2.42) 

have the same value of the objective function. By minimizing the objective function, the 

minimum r is obtained. Therefore, the solution to the problem in (2.40) is a point which 

satisfies (2.37) and has the minimum r. Solving the problem can be visualized by inflating the 

lp-ball until it touches the hyperplane y = Ax. Figure 2.5 illustrates this example for a  

two-dimensional x and for various values of p. For 0 ≤ p ≤ 1, the touching point of a ball and 

the hyperplane result in a sparse solution, whereas for p > 1 the results are nonsparse with 

high probability. On the other hand, objective function is convex for p  1. Given that p ≤ 1 

ensures sparsity, and p  1 ensures the convexity, these two opposing requirements are met 

only for p = 1, resulting in the problem 

1
minimize

subject to 
x

x

y Ax
 (2.43) 
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Figure 2.5 Visualization of CS reconstruction by inflating lp-ball for various 
values of p. 

 
 

2.3.4 Application of L1-Norm in Filter Design 

Using the l1-norm in the compressed sensing works well (see [14] and the references 

therein). Therefore, a logical step is to apply the same principles in sparse filter design. 

Unfortunately, this is not a straightforward process as the basic prerequisites necessary for the 

unique solution are not met here. In Figure 2.6 it is shown that feasible region in a sparse filter 

design is polytope obtained by intersections of inequality constraints, rather than a hyperplane 

[21]. Consequently, it is more likely that minimization of l1-norm results in a nonsparse 

solution than it does in a CS reconstruction. On the other hand, minimization of  

lp-norm with 0 < p < 1 provides sparse solution in majority of cases [21]. 

Although sparse filter design based on the l1-norm does not result in sparse coefficients, 

it provides a certain number of coefficients with small values. This feature is used in many 

iterative methods where these small coefficients are set to zero and the optimization process is 

then restarted. Some of these methods are described in the following sections. 
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Figure 2.6 Illustration of sparse filter design based on lp-norm with 0 < p < 1 and 
p = 1. 

 

2.4 State-of-the-Art in Sparse FIR Filter Design 

Sparse filters attract researchers' attention for more than three decades, resulting in 

many design methods [21][53]. Most of these methods deal filters with peak-error 

constraints [21], [22], [23], [24], [25], [27], [28], [29], [30], [34], [36], [37], [38], [39], [40], 

[41], [43], [44], [47], [48], [49], [50], [51], [52], [53] and filters with quadratic-error 

constraints [24], [28], [31], [32], [33], [34], [37], [42], [45], [46], [50]. In further sections 

some of these methods are briefly described. However, they are grouped with respect to 

design methodology rather than used approximation techniques. 

2.4.1 Design Based on Approximate Solving of Greedy Algorithms 

As in the compressed sensing, l0
 problem in FIR filter design can also be solved 

approximately. In this approach, different greedy algorithms have been used, such as [25], 

[38]. Greedy algorithms solve the optimization problem iteratively, dividing the original 

problem to several stages. In each stage, the best local solution based on some criteria is 

found. For example, in [38] authors successively add zero samples to the impulse response. In 

each step, feasible region of every coefficient is calculated. The coefficient with middle point 

of feasible range closest to zero is forced to zero, and the remaining coefficients are 

recalculated. 

Generally, solution's globality when using methods based of greedy algorithms cannot 

be guaranteed. However, good approximate solutions can be found in a reasonable time. 
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2.4.2 Design Based on Minimization of Lp-Norm 

Approximating the objective function in (2.39) with a norm other than the zeroth norm 

brings several benefits. If a proper norm is used, the optimization problem becomes convex 

and can be solved globally even for large number of unknowns. However, the application of 

an lp-norm with p  1 in sparse filter design is not straightforward, as elaborated in Section 

2.3.4. Instead, iterative procedure is usually needed. On the other hand, an improper norm 

with 0 < p < 1 allows formulating the filter design as a single optimization problem. However, 

due to nonconvexity of the improper norm, solving of this problem is also realized by iterative 

procedure. 

Sometimes, greedy algorithm is combined with convex optimization. Such an approach 

is used in [27] where the nonzero set is found by using linear programming. The method 

referred to utilizes successive thinning and CS inspired l1-norm design. The former finds the 

set of zero coefficients by following two rules  minimum-increase and smallest coefficient 

rule. The minimum-increase rule chooses a new zero-coefficient from the nonzero set as the 

one that minimally increases the filter approximation error. On the other hand, the smallest 

coefficient rule finds the coefficient with the smallest absolute value and sets it to zero. 

Remaining coefficients are then reoptimized by using the linear programming. The latter 

utilizes l1-norm design which results in many small coefficients. The ones with the smallest 

absolute values are zeroed and remaining coefficients are recalculated. Similar technique is 

presented in [30] where iterative-shrinkage-thresholding inspired algorithm is used to 

determine the nonzero coefficient set. This algorithm divides the original problem to simpler 

subproblems and solves them by using second order cone programming. In [30], the 

algorithm is applied to sparse filter design with peak-error constraints. Similar approach is 

used in [31] but applied to filters which have minimum weighted least-squares approximation 

error. 

Relaxation of l0-norm by using the l1-norm was used in [28]. In the paper referred to, 

peak- or quadratic-error constraints in problems (2.14) and (2.17) are moved to the same 

objective function, whose minimization indicates which coefficients should be zeroed. The 

optimization problem is expressed as 

   
12,

minimize , dH H  


 
h

h h  (2.44) 
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where  > 0 is a scalar weight and ||ꞏ||2,∞ denotes the l2-norm for quadratic and l∞-norm for 

peak-error constraints, respectively. More advanced search of zero coefficients by using the 

l1-norm is given in [29] where larger weights are given to the coefficients that are more likely 

to be zero. These weights are then updated in each iteration. Similar idea with specific 

algorithm enhancements is given in [39] and [40]. Additionally, methods presented in [44] 

and [52] showed that coefficients at specific positions cannot be zero. These coefficients are 

taken out of the optimization search before solving, thus decreasing algorithm's complexity. 

All methods referred to are iterative and follow a two-step procedure. In the first step, 

positions of nonzero coefficients are found based on some criteria, and in the second step 

some of these coefficients are set to zero and the optimization is rerun to calculate the 

remaining coefficients. 

As l1-norm doesn’t ensure sparsity in the filter design (see Section 2.3.4), attention has 

been paid to lp-norm with 0 < p < 1. In [21], such a norm is utilized with local search 

algorithm that resembles a simplex program for linear programming problems. Furthermore, 

this dissertation presents a method that utilizes signomial programming to solve an 

optimization problem containing the lp-norm with 0 < p < 1. The examples will be provided in 

two filter applications  sparse linear-phase FIR filters [49] and FIR filters which have no 

phase specifications [48]. 

2.4.3 Design Based on Branch and Bound Algorithm 

The methods described in Sections 2.4.1 and 2.4.2 solve either the original problem of 

sparse FIR filter design approximately or approximate problem exactly. All of them provide 

useful results but none of them provides the global solution of the original problem. However, 

significant effort has been made in developing global methods for sparse FIR filter design. 

Promising but computationally expensive approach to global optimization of sparse FIR 

filters is the branch and bound method, which goes through all possible sets of sparse 

coefficients which form a tree [24], [33], [44]. If the pruning is done efficiently, branch and 

bound method can decrease convergence time compared to an exhaustive search approach for 

several orders of magnitude. 

In [24], a branch and bound method has been proposed for filters with peak-error 

constraints in care bands and energy constraint in the stopband. The method utilizes depth-

first algorithm and pruning based on problem's feasibility. 
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In [33], a fast branch and bound method for sparse quadratically-constrained FIR filters 

has been proposed. This method is capable of designing a 100th order filter in a few hours. In 

[44], the branch and bound algorithm has also been applied in the design of quadratically-

constrained filters. The complexity of the algorithm has been reduced by reducing the search 

space. In this context, the method referred to solves the approximate problem rather than the 

original one. 

In [26], a method for the design of sparse half-band filters with peak-error constraints 

has been presented. The design is given in the form of mixed integer programming problem. 

For a small number of variables, this problem can also be solved by utilizing branch and 

bound technique. 

2.4.4 Design Based on Heuristic Algorithms  

Combinatorial problems for sparse FIR filter design can also be solved by using 

heuristic algorithms. Such an approach sacrifices optimality in favor of speed. However, in 

some applications it gives satisfactory results. Typical example of heuristic approach is the 

method in [34], which performs the optimization by using the genetic algorithm. The method 

in [42] employs the cuckoo search algorithm in the design of asymmetric FIR filters. This 

method utilizes joint optimization of weighted least-squares approximation error and l1-norm 

of filter's coefficients. 

2.4.5 Joint Optimization of Sparsity and Filter Order 

Most of the methods for sparse FIR filter design do not minimize its order. However, 

high-order filters have high group delays, which are not desirable in some applications. To 

cope with this issue, methods that jointly optimize filter's order and sparsity have been 

developed [36], [41], [47]. 

In [36], researchers have designed a multiobjective function which simultaneously takes 

into account sparsity of the coefficients and the filter order. The optimization starts with a 

high filter order and successively decreases it until the specifications are met. The 

corresponding optimization problem is given by 

   

     
0

minimize 1

subject to , dH H

 

   

 

 
h

h h

h
 (2.45) 
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where η  [0, 1] is balancing weight for sparsity and filter order terms, δ(ω) is desired 

approximation error, and ρ(h) is defined as 

 
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 (2.46) 

It is clear that ρ(h) gives higher weights to coefficients near the tails of the impulse response. 

Consequently, the optimization tends to minimize impulse response's length. When η = 0 the 

problem in (2.45) considers only sparsity and it is equivalent to classic sparse FIR filter 

design with peak-error constraints. On the other hand, η = 1 leads to a problem whose 

optimum is the filter with minimum length. Clearly, in all other cases, the solution is a 

compromise between sparsity and filter's length. 

The problem in (2.45) is nonconvex. Therefore, its global solving is a challenging task. 

In [36], two algorithms have been proposed which form a relaxed version of the problem in 

(2.45) and then solve it by using the method of iteratively reweighted least squares. 

Unfortunately, these algorithms cannot guarantee the globality of the optimum obtained. 

Moreover, different starting filter orders result in different solutions. 

The method in [41] tackles the same problem but without relaxation of the objective 

function. Instead, it solves the problem in (2.45) by using alternating direction method of 

multipliers. These enhancements enable solving of high order problems. The resulting filters 

have many zero coefficients and low lengths.  

In [47], the same problem is solved by using the 0-1 exchange algorithm. This approach 

provides betters results than encountered in [36]. Furthermore, it is insensitive to the starting 

filter order. 

2.5 Efficient Spatial Filters 

In antenna array design, a lot of research has been dedicated to the synthesis of pencil 

beam patterns. In addition, effort is made to increase their efficiency. One approach which 

ensures efficiency, lowers coefficients' dynamic range ratio [54][63]. Another approach 

minimizes the number of nonzero antenna coefficients [23], [27], [64][70] leading to sparse 

design. Finally, some methods combine constrained dynamic range ratio and sparsity [71], 

[72]. The representatives of the techniques referred to will be discussed in further text. 
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2.5.1 Pencil Beams With Low Dynamic Range Ratio 

When implementing antenna arrays, each coefficient is represented with one feeding 

element. Unfortunately, the feeding elements can only be manufactured to cover narrow 

dynamic range, especially when operating at high frequencies. Consequently, the antenna 

coefficients should be bounded in the design of the beampattern. One early method in this 

area utilizes iterative inverse Fourier technique to obtain a desired array factor [54]. The paper 

referred to constrains the minimum values of antenna coefficients thus achieving lower DRR. 

However, the maximum coefficients' values are not explicitly bounded. Therefore, this 

method cannot guarantee the desired DRR value. 

Analytical methods for the antenna array synthesis are fast and robust. However, these 

methods ensure a low DRR indirectly [55], [56], [57]. Consequently, they cannot achieve the 

exact value of specified DRR. Instead, a low DRR is achieved with trial-and-error procedure. 

On the other hand, optimization based methods ensure low DRR either by constraining its 

value [58], [59] or by optimizing it directly [61], [62], [63]. 

In an optimization-based design, the DRR is kept below a specified value D as in 

 
 

1
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k
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k
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a
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 

 

  (2.47) 

These constraints can be easily imported into (2.31) resulting in 
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(2.48) 

where t is a slack variable. The constraints |ak| ≥ t, k = 1, 2, …, N are nonconvex, making 

solving the problem in (2.48) difficult. It can be addressed by using relaxations of the original 

problem or by applying iterative [58], evolutional [59], and other types of approximate 

algorithms. In [58], projection based iterative algorithm is used to find a desired radiation 

pattern with constrained DRR. On the other hand, in [59] genetic algorithm is used in 

designing a dual beam with phase only control and specified maximum value of the DRR. 
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In this dissertation, a global method based on the branch-and-bound algorithm is 

proposed for design of pencil beams with constrained DRR [60]. 

Several interesting works are focused on optimizing DRR directly but like in the case 

when the DRR is constrained, the corresponding problem is not convex. In [61], several 

different problems in the antenna array design have been addressed. One part of the research 

handles the DRR constraints by minimizing the difference between maximum and minimum 

antenna coefficient, assuming all coefficients are positive. The design problem is given by  
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   
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where δ(θ) is upper bound of the sidelobe error defined in finite number of frequency points. 

When coefficients are allowed to take both positive and negative values, the complexity of the 

problem rises. Moreover, the optimization problem becomes nonconvex. In [63] the design of 

complex antenna coefficients with minimum DRR has been presented. It optimizes both the 

DRR and the radiation pattern. Since this optimization problem is not convex, it is translated 

to several convex subproblems thus forming an iterative procedure. 

2.5.2 Sparse Pencil Beams 

Sparse antenna arrays contain a lower number of elements than those which are 

normally expected looking at arrays' structures or their sizes. The latter are sometimes called 

aperiodic or nonequidistant arrays. In further text, the term sparse arrays will be used. 

The research of sparse arrays has been active for many decades. One of the early works 

in this area uses method based on linear programming to design beamformers and sparse FIR 

filters [23]. They show that for a special class of filters, the sidelobe level is decreased up to 

20 dB by increasing the number of zero coefficients. Furthermore, they show that their 

method can be used for cases when some elements become faulty during operation. In [64] 

researchers use the lp-norm with 0 <p < 1 to obtain both linear and planar sparse arrays. They 

use a simplex search algorithm. 

The research of sparse arrays has regained popularity with the emergence of 

compressed sensing. Several works apply CS algorithms in the design of sparse arrays [27], 
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[65], [66], [67]. In [27], compressed sensing technique has been applied in the design of 

sparse FIR filters as well as equidistant beamformers, or more precise symmetric arrays with 

real coefficients. In [65] and [66], iterative weighted l1 algorithm for the design of pencil 

beams has been formed assuming arbitrary coefficients. In addition, in [66] the original 

problem has been expanded by introducing the near-field constraints. In [67], reweighted l1 

minimization is utilized to obtain sparse equidistant antenna arrays. Then, the obtained 

positions are refined by using clustering strategy to determine final nonequidistant positions. 

An interesting work is presented in [68]. It utilizes convex optimization to synthesize 

both linear and planar sparse arrays with interelement spacing larger than half-wavelength. 

The method referred to minimizes neither the dynamic range ratio nor sparsity. However, by 

eliminating elements with small coefficient values, DRR as well as sparsity is promoted. In 

[69], nonequidistant antenna positions are obtained by using alternating direction method of 

multipliers. It is interesting that this method takes into account mutual coupling between 

antenna elements. Nature-inspired optimization methods are also applied in the design of 

sparse antenna arrays [70]. 

2.5.3 Simultaneous Application of Dynamic Range Ratio and Sparsity 

Dynamic range ratio and sparsity both simplify the design of antenna arrays. However, 

not many papers consider combining these two approaches. This topic is addressed in the 

synthesis of two-dimensional arrays forming shaped beam [71]. The design starts with array’s 

elements placed on rectangular grid. An algorithm which iteratively chooses elements with 

zero coefficients is then applied and antenna coefficients are optimized. The method is 

efficient. However, it approximates the original optimization problem by using convex 

relaxations. Furthermore, it does not ensure an explicit control of DRR. 

Chapter 7 of this dissertation discusses optimization problems which simultaneously 

consider DRR and sparsity. In addition, this chapter presents a method for global design of 

sparse antenna arrays with constrained dynamic range ratio [72]. 
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3 Optimization Methods 

Optimization is a set of techniques for finding the best solution under the set of rules 

and among many other possible solutions. From mathematical point of view, optimization 

aims to minimize or maximize an objective function over specified domain formed by a set of 

constraints [73], [74]. If x = [x1, x2, ..., xN]T  ࣬N is a vector of optimization variables defined 

on a set , f0(x) is the objective function, fi(x), i = 1, 2, ..., I and fk(x), k = 1, 2, ..., K are the set 

of equality and inequality constraints that x must satisfy, general minimization problem can 

be described as 

 
 
 

0minimize

subject to 0, 1,2, ,

0, 1,2, ,
i

k

f

f i I

f k K



 
 

x
x

x

x





 (3.1) 

Maximization problem is obtained if f0(x) is used as the objective function. Therefore, in 

further text, only minimization problems will be analyzed. If I = 0 and K = 0, (3.1) becomes 

an unconstrained optimization problem. If the objective function f0(x) as well as the 

constraints fi(x), i = 1, 2, ..., I and fk(x), k = 1, 2, ..., K are convex, the problem in (3.1) 

becomes a convex optimization problem [75]. Convex functions satisfy 

          1 2 1 21 1 , 0,1f x x f x f x            (3.2) 

where x1 and x2 are feasible points. 

Point xmin is a local solution of the optimization problem if f0(xmin) ≤ f0(x) in some 

neighborhood of xmin. On the other hand, xmin is a global solution if f0(xmin) ≤ f0(x) for all 

x  . If the optimization problem is convex, a local solution is also the global solution. 

When solving an engineering problem, knowing the best solution is an ultimate goal. If 

the problem is solved by using optimization, convex programming is preferable. However, 

recognizing the problem at hand as a convex problem requires special skills. On the other 

hand, some problems cannot be expressed in a convex form. Still, the optimization can be 

used to obtain an acceptable solution. For such a solution, globality cannot be proved. 

However, if the solution satisfies the application's requirements, it is exploited. If such is not 

the case, an attempt can be made to solve the problem by using global optimization. 
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Global optimization seeks the global solution of an optimization problem. If the 

problem is nonlinear and nonconvex, finding the global solution is a challenging task. This 

task can be rarely performed in polynomial time, especially if the problem has combinatorial 

nature. Global optimization includes exact and heuristic techniques. The former incorporates 

search over the entire domain or feasible set. Examples of this approach are the exhaustive 

search and branch and bound. The latter include evolutionary methods, simulated annealing, 

etc. 

In the following sections the optimization techniques used in this dissertation will be 

introduced. 

3.1 Linear Programming  

Linear programming (LP) is a convex optimization in which the objective function is 

linear whereas the constraints are affine functions [75]. Such optimization problem can be 

expressed in a form  

minimize

subject to

T




x
c x

Gx f

Ax b

 (3.3) 

where c  ࣬N, G  ࣬MxN, A  ࣬P×N, f  ࣬M, b  ࣬P, N is the number of variables and M and 

P are the numbers of inequality and equality constraints, respectively. In LP problem, the 

minimization is performed over a convex polytope, which is defined as an intersection of 

subspaces formed by inequality and equality constraints. Linear programs are solved by 

Dantzig's simplex method or by interior-point methods. The simplex method searches for the 

optimum by moving systematically along the polytope's vertexes. For large scale problems, 

such a search is time consuming. The interior point methods converge to the optimum 

following the path placed inside the polytope. Such convergence is fast, what makes interior 

point methods suitable for solving large problems. 

3.2 Quadratic Programming 

Special category of convex optimization problems are quadratic programming (QP) 

problems, whose objective function is a convex quadratic function and constraint set is affine 

[75]. The QP problem is expressed as 
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1
minimize

2
subject to

T T




x
x Bx c x

Gx f

Ax b

 (3.4) 

where B  ࣬NxN is positive semidefinite matrix, c  ࣬N, G  ࣬MxN, A  ࣬P×N, f  ࣬M, and 

b  ࣬P. Linear programs can be considered as a special case of quadratic problems when 

B = 0. 

3.3 Second-Order Cone Programming 

Second-order cone programming (SOCP) is also part of convex programming. A SOCP 

problem is given by [75] [76] 

2

minimize

subject to , 1,2...,

T

T
i i i id i M   

x
f x

A x b c x
 (3.5) 

where f  ࣬N, Ai  ࣬ሺPi1)×N, bi  ࣬ሺPi1), ci  ࣬N, di  ࣬, and M is the number of constraints 

The constraints in (3.5) are called second-order cone constraints. They are equivalent to 

i i
iT

i i

C
d

   
    

   

A b
x

c
 (3.6) 

where Ci represents a second-order (Lorentz or ice-cream) cone of dimension Pi. It is clear 

from (3.5) that SOCP includes LP and QP. However, it covers a broader class of problems 

than classic linear and quadratic programming. 

3.4 Geometric and Signomial Programming  

For understanding of geometric and signomial programming, it is necessary to introduce 

the terms of monomial, posynomial and signomial. A real valued function  

  1 2
1 2

Nqq q
Nf cx x xx   (3.7) 

where x = [x1, x2, ..., xN]T, c > 0, and q1, q2, …, qN  ࣬ is called a monomial [77]. Sum of 

monomials 
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  1 2
1 2

1

k k Nk

K
q q q

k N
k

f c x x x


 x   (3.8) 

is called a posynomial. The name posynomial originates from the term positive polynomial. 

Multiplication and division of monomials results in another monomial function. 

Furthermore, addition, multiplication, and positive scaling of posynomials result in a 

posynomial function. Finally, division of posynomial with a monomial provides posynomial.  

Signomial is a function expressed with (3.8) where ck  ࣬. In this context, signomial 

can be considered as a generalization of posynomial. 

Geometric programming (GP) is a convex programming technique expressed with  

 
 
 

0minimize

subject to 1, 1,2, ,

1, 1,2, ,
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f i I
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 
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
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x

x

x




 (3.9) 

where f0(x), fi(x), i  1, 2, …, I are posynomials and fk(x), k  1, 2, …, K are monomials [77]. 

Signomial programming, or more precisely signomial geometric programming (SGP), is 

an optimization technique that solves the problem in (3.9) where the objective function as 

well as inequality and equality constraints can be signomials [75], [78]. SGP problems are 

very difficult to solve and generally cannot be solved globally. However, efficient techniques 

for solving SGP problems have been developed (see [78] and the references therein). Many of 

them transform the SGP problem into series of GP problems thus forming iterative procedure. 

One such technique will be more thoroughly analyzed in this dissertation. 

Techniques for convex optimization are intensively studied, resulting in several 

commercial and free tools. Popular tools for solving LP, QP and SOCP problems are MOSEK 

[81], SeDuMi [82], CVX [83], [84]. Special solvers have been developed for geometric 

programming, such as GPPLAB [85]. However, efficient GP solver is also included in 

MOSEK [81]. 

3.5 Branch and Bound 

Optimization problems involving discrete variables usually have combinatorial 

complexity. Minimization of the l0-norm can also be transformed into such problem class. 

Generally, combinatorial problems are difficult to solve globally because many solutions 

should be examined. The simplest method for examining all solutions is the exhaustive 
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search. However, this search cannot be performed in polynomial time, so it is suitable only for 

solving simple problems. To deal with real world problems, the entire procedure should be 

sped up. The solutions explored by an exhaustive search are often organized in a rooted tree. 

The time required for exploring the entire tree can be reduced by an appropriate pruning. Such 

an approach leads to the branch and bound (BnB) algorithm, which was first introduced in 

[79]. In BnB algorithm, analysis is made in each node to remove the solutions that cannot 

yield an optimum. Their removal also removes all solutions below the node under inspection. 

Basic branch and bound algorithm is described by the pseudocode shown in 

Algorithm 3.1 [80]. The goal is to find x which minimizes the objective function, f0(x), 

assuming x  X, where X is a set of valid solutions. The set X is called the search space and it 

is represented by a rooted tree. The exploration of X is performed by analyzing the sets of 

subproblems Sk  X, k = 0, 1, 2, ..., K, which are represented by the subtrees of the initial tree. 

At the root, S0 = X. The exploration starts with the Step 1 in which a list of unexplored 

solutions is initialized as L = {S0}, a feasible solution x0 is found, and xopt = x0 is set. Step 2 is 

performed until all subproblems from L have been explored. In this step, a subproblem Sk is 

taken from L. Then, the attempt is made to find xk  Sk for which f(xk) ≤ f(xopt). If such xk is 

found, an update xopt = xk is made. In addition, the subproblem Sk is analyzed. If Sk can be 

proven not to contain solution better than xopt, Sk can be pruned, that is, removed from L. 

Otherwise, a new set of subproblems Sr, r = 1, 2, ..., R should be generated from Sk and 

inserted into L. After all subproblems from L have been explored, xopt is returned as optimum. 

Note that index k is added here for better visualization of the procedure. However, the 

timeline k, that is, the iteration count is not necessary for exploring the tree. 
 

 1: Initialize L = {S0} 

 2: Set xopt = x0 

 3: While L ≠ ∅ 
 4:    Choose an Sk from L 

 5:    If xk  Sk can be found such that f(xk) ≤ f(xopt) 
 6:       Set xopt = xk 
 7:    End if 

 8:    If Sk cannot be pruned 

 9:       Make S1, S2, ..., SR from Sk 

10:       Insert S1, S2, ..., SR into L 

11:    End if 

12:    Remove S from L 

13: End while 

14: Return xopt as optimum 
 

Algorithm 3.1 General branch and bound algorithm described with pseudocode. 
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The order in which subproblems Sk are selected from the list L in step 4 of 

Algorithm 3.1 is called the search strategy. Common strategies include the depth-first, 

breadth-first, best-first and cyclic best-first approach [80]. 

Depth-first strategy starts at the root of the tree and explores the tree in the depth before 

returning in the direction of the root node again. After reaching the leaf, it continues the 

search from the last feasible solution higher in the tree. An example of depth-first BnB tree is 

given in Figure 3.1 where red numbers denote the exploration order. 

Breadth-first approach starts at the root and explores all nodes at the present depth prior 

to moving to the next tree level. An example of breadth-first BnB tree is given in the 

Figure 3.2. 

 

 

Figure 3.1 Example of depth-first branch and bound tree. Red numbers denote 
exploration order. 

 

 

Figure 3.2 Example of breadth-first branch and bound tree. Red numbers denote 
exploration order. 
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An example of best-first search strategy is given in Figure 3.3. In this figure, red 

numbers indicate the exploration order whereas the blue numbers show lower bounds on the 

objective function achieved in particular nodes. Best-first strategy stores in memory all results 

of objective function's lower bound. These results are chosen to determine moving along the 

tree from their lower to higher values. Apparently, the best-first strategy is memory 

consuming and might be impractical for exploration of large trees, especially if the problem 

exhibits small probability of pruning. 

 

 

Figure 3.3 Example of best-first branch and bound tree. Red numbers denote 
exploration order. Blue numbers show lower bounds on objective 
function. 

 
 

Recently, a so called cyclic-best search has been proposed, mainly for task scheduling. 

This strategy generalizes all the above strategies. It relies on the assumption that the problem 

can be solved by using parallel computing, thus being solved more efficiently. 

Choosing the right approach for specific optimization problem leads to more efficient 

pruning and lowers computation time. Therefore, an appropriate choice of the search strategy 

can significantly influence the amount of computational time and memory required by the 

BnB procedure. Generally, this choice depends on the problem at hand. 
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4 Design of Sparse FIR Filters Based on Signomial Programming 

As previously stated, finding optimum nonzero coefficients and their positions in sparse 

FIR filter design is a difficult task. Various algorithms have been proposed for its solving, 

most of which offer approximate or local solutions. Therefore, the research is still conducted 

to find a design method which provides filters whose sparsity is close to the maximum 

possible. 

In this chapter, the method for the design of sparse FIR filters based on signomial 

geometric programming will be presented. The proposed SGP method will be tailored for the 

design of FIR filters with linear phase [49] and the filters without phase specifications [48]. 

Both approaches utilize filters which are constrained in a peak-error sense. 

4.1 Arithmetic-Geometric Mean Approximation 

Many methods for solving SGP problems are based on iterative procedures. Typically, 

such procedures transform the original SGP problem into sequences of GP problems. It is 

convenient because GP problems can be solved with available solvers. The method in [78] 

presents one such approach which has a global convergence. It solves general SGP problem 

where both objective function and constraints are non-posynomial functions. In the first step, 

these functions are transformed to posynomials. Afterwards, additional transformations are 

performed to fit them into GP framework. 

In sparse FIR filter design, the transformation of the objective function to a posynomial 

is a straightforward process. In addition, FIR filter design does not contain equality 

constraints. Therefore, the method in [78] can be easily tailored to solve sparse FIR filter 

design problem. 

Inequality constraints from (3.9) in which fi(x) are signomials are transformed into the 

following form 

    1, 1, 2, ,i if f i I   x x   (4.1) 

where fi
+(x) and fi

(x) are posynomial functions that collect the terms defined in (3.8) with 

ck > 0 and ck < 0, respectively. The constraints in (4.1) can be expressed as 
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Division of posynomial function by a monomial results in posynomial function. Therefore, to 

obtain a posynomial in the left-hand side of (4.2), its denominator needs to be approximated 

with a monomial. This is performed by introducing arithmetic-geometric mean inequality [77] 

     
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where g(x) = fi
(x) + 1 for those i = 1, 2,…, I which are not a monomial, ĝ(x) is best 

monomial approximation of g(x),  

   
 

,v
v

u
v

g
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y
y

y
 (4.4) 

and y > 0. 

4.2 Design of Sparse FIR Filters With Linear Phase 

4.2.1 Design of Filters With Peak-Error Constraints 

Optimization problem presenting design of sparse linear-phase FIR filters constrained in 

a peak-error sense is given by 

     
0

minimize

subject to , ,dH H      
h

h

h
 (4.5) 

where ||ꞏ||0 denotes the l0-norm, h is filter's impulse response, H(h,) is filter's amplitude 

response, Hd() is desired amplitude response, δ(ω) is acceptable upper bound of 

approximation error, and  is the union of frequency bands of interest. The problem in (4.5) 

is nonconvex and highly nonlinear. To solve it, it is here approximated with an lp-norm, 

0 < p < 1, which is given by 
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The constraints in (4.5) are evaluated on a finite set of Q frequency points q, 

q = 1, 2, ..., Q, q  . Consequently, dq = Hd(q) and q = (q). Furthermore, by assuming 

arg min arg min
p

p p


h h
h h  (4.7) 

the problem in (4.5) can be expressed as 

minimize

subject to ( , ) , 1,2, ,

p

p

q q qH d q Q   
h

h

h 
 (4.8) 

The problem in (4.8) is suitable for the design of all types of linear phase FIR filters. 

However, due to simplicity, in the following text, detailed expressions will be provided only 

for Type I filters. Such filters are uniquely described by K = N/2+1 impulse response samples. 

Therefore, a new optimization variable is introduced as 

   1 2 1, , , , , ,
T

K K K Nz z z h h h z    (4.9) 

where z represents K right-hand side samples of the impulse response. By using z, the 

problem in (4.8) becomes 

 
1 2minimize 2 2

subject to , , 1,2,...,

p p p

K

q q q

z z z

H d q Q 

  

  

z

z


 (4.10) 

The variables zk with k = 2, 3, …, K represent the right-hand side, but also the left-hand side 

impulse response samples. Therefore, they contribute to sparsity by factor 2. Amplitude 

response can be expressed in a matrix form as in 

 , q qH  z A z  (4.11) 

where Aq is given by 



4 Design of Sparse FIR Filters Based on Signomial Programming 

 

36 
 

      1 2cos 2cos 2 2cos 1q q q qK     A   (4.12) 

Some transformations of the problem in (4.10) are necessary to write it in a form 

suitable for SGP method as presented in Section 4.1. The first step is to ensure that all 

elements in z are positive. 

4.2.1.1 Conditioning of SGP Problem 

To make objective function a posynomial, the following substitution is introduced  

 y z ρ  (4.13) 

where  = [, , ..., ]T is a vector with K equal positive constants which ensure that all 

elements in y are positive. By applying (4.13), the problem in (4.10) becomes 
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 (4.14) 

where 

 , q q qH   y A y A ρ  (4.15) 

To avoid operation of the absolute value in the objective function, a vector of slack 

variables t = [t1, t2, ..., tK]T is introduced, which transforms the problem in (4.14) into 

1 2
,
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 

t y
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y 0 t 0



 (4.16) 

The problem in (4.16) is SGP problem of standard form with 2K variables and 2(K+Q) 

inequality constraints. Constraints t > 0 and y > 0 are implicitly satisfied in signomial 

programming. 
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4.2.1.2 Solving of SGP Problem 

To solve the problem by using the procedure described in Section 4.1, the problem in 

(4.16) is expressed in a compact form 

 

1 2
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 (4.17) 

where 

 1 2 2, ,...,
T

Kx x x
 
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 

t
x

y
 (4.18) 

It should be noted that constraints are left in the form fi(x) ≤ 0 rather than fi(x) ≤ 1, which is 

required by the signomial program. However, such notation will simplify further procedure. 

The procedure from Section 4.1 applied to the problem in (4.17) can be described with 

Algorithm 4.1, where r is algorithm iteration counter. 

 
 0: Choose feasible point x(0) and solution accuracy η > 0 

 1: Set r = 0 

 2: Approximate original SGP problem with a GP problem around x(r) 

 3: Solve the GP problem to obtain x(r+1) 

 4: If ||x(r+1)x(r)|| > η 
       Set r = r+1 and go to step 2 

 5: End if 

 6: Return xmin = x
(r+1) 

 

Algorithm 4.1 Pseudocode of SGP method for sparse FIR filter design. 

The Step 2 of the algorithm contains the approximation of SGP problem in (4.17) with a 

GP problem. This transformation involves only modifications of the problem constraints, 

because the objective function in (4.17) is already a posynomial. Each constraint fi(x)  0 is 

first written in a form 

( ) ( )i if f x x  (4.19) 
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Note that a0i is also a part of fi
+(x) or fi

˗(x), depending on its sign. Now, fi
(x) is approximated 

with 
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where uki(x) is an kth term in the ith constraint, Pi ⸦ {0, 1, …, 2K} is set of indices k which 

are present in fi
(x) and 
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By using (4.20) and (4.21), inequality in (4.19) is obtained in a form 

ˆ( ) ( )i if g x x  (4.22) 

Now, the optimization problem takes the form 
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 (4.23) 

The objective function and the constraints in (4.23) are posynomials. Consequently, this 

problem is a standard GP problem. It can be easily solved with commercial solvers such as 

MOSEK [81] and GGPlab [85]. 

GP solvers handle only positive optimization variables, but lp-norm pushes some of the 

variables in t to zero. Commercial solvers can cope with this irregularity correctly. However, 

optimization can be sped up if the constraints t  , where  = [, , ..., ]T, are introduced 

into optimization problem (4.16) instead of t  0. A sufficiently small  also promotes 

sparsity. Final problem is expressed as 
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 (4.24) 
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The procedure in Algorithm 4.1 requires feasible initial point. An initial point x0 is 

made of two parts. First is t0 which measures sparsity. Second is y0 which describes the initial 

filter coefficients. The initial filter, with coefficients h0, which is optimum in minimax sense, 

can be obtained by a conventional design method, such as Parks-McClellan. An initial z, 

denoted with z0, is obtained from h0 by using (4.9). If z0 contains positive and negative 

coefficients, the value of  is obtained as 

 02 min    z  (4.25) 

Initial t0 is obtained as 

0 01.1  t z μ  (4.26) 

Finally, initial y0 is calculated by using (4.13). 

4.2.1.3 Choice of Lp-Norm 

Proposed SGP method utilizes the lp-norm with 0 < p < 1. The values closer to zero 

ensure higher sparsity but decrease the convergence rate. On the other hand, the values closer 

to one increase the convergence rate but do not enforce sparsity well. Here, the value of p is 

chosen experimentally. Figure 4.1 shows three different lowpass filters obtained for various 

values of p. All filters are obtained with the order N = 70, passband and stopband edge 

frequencies p = 0.3 and s = 0.5, and maximum passband error p = 0.001 dB. The 

maximum stopband errors s of 60 dB, 70 dB, and 80 dB are chosen. The solution 

accuracy η = 1e8 is used. It is evident from the figure that the number of nonzero 

coefficients decreases with a decrease in p. Clearly, p = 0.1 is sufficient for ensuring 

minimum number of nonzero coefficients in all cases. Similar behavior has been encountered 

in a large number of optimization runs. Therefore, in further examples the value of p = 0.1 

will be used unless otherwise noted. 
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Figure 4.1 Number of nonzero coefficients obtained for three different lowpass 
filters and various values of p. 

 
 

4.2.1.4 Refinement of Magnitude Response 

The presented method minimizes sparsity, provided the obtained filter satisfies given 

specifications. However, after the positions of nonzero elements are obtained, additional 

refinement of magnitude response can be made. Positions of zero and nonzero coefficients are 

obtained from z as S0 = {k : |zk| < 1.01, k  {1, 2, ..., K}} and S1 = {1, 2, ..., K}\S0. The 

refinement of the magnitude response is obtained by solving the problem 

1, ,

0

minimize

1
subject to , 1,2,...,

0,

kz k S

q q
q

k

d q Q

z k S









  

 

A z  (4.27) 

where  is new optimization variable describing maximum approximation error and the 

reciprocal of q is used as a weighting function. 
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4.2.2 Design Examples 

In the following examples Q = 10N and η = 1e8 are used. The value for  is set to 

1e8.  

4.2.2.1 Example 1  

In the first example, lowpass filters of order 60, 70 and 80 are designed with passband 

and stopband edge frequencies p = 0.3 and s = 0.5, maximum passband error 

δp = 0.001 dB, and maximum stopband errors s of 60 dB, 65 dB, 70 dB, 75 dB, and 

80 dB. Initial filters are designed with Matlab function firpm which implements Parks-

McClellan algorithm, resulting in filters optimum in a minimax sense. In this example, filters 

with equal weights in the passband and stopband are used. Table 4.1 shows the zero (marked 

with 0) and nonzero (marked with 1) coefficient positions of the obtained impulse responses. 

Due to the symmetry, only the right-hand sides of the impulse responses are shown. 

Furthermore, the length of the impulse response, WIR, and the total number of nonzero 

coefficients, LNZ, are given and compared with the total number of nonzero coefficients in 

filters presented in [39], which are obtained with the same specifications. As it is clear from 

the table, the proposed method achieves higher sparsities in six cases, which are marked in 

bold. In other cases, the proposed method provides sparsities which are equal to that obtained 

by the method in [39]. It is interesting to observe that lengths of the impulse responses are low 

and that by increasing of filter order they remain the same. 
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Table 4.1 Optimum zero and nonzero coefficient positions, length of impulse 
response, WIR, and number of nonzero coefficients, LNZ, of proposed 
filters and the filters in [39], obtained for various filter orders N, 
maximum passband error δp = 0.001 dB, and various stopband 
approximation errors s. 

N s, dB Optimum positions of zero and nonzero coefficients WIR LNZ LNZ [39] 

60 60 1111101111011110111101000010000 53 37 37 
70 60 111110111101111011110100001000000000 53 37 37 
80 60 11111011110111101111010000100000000000000 53 37 37 
60 65 1111101111011110111101000010000 53 37 39 
70 65 111110111101111011110100001000000000 53 37 39 
80 65 11111011110111101111010000100000000000000 53 37 39 
60 70 1111101111011110111101100010000 53 39 39 
70 70 111110111101111011110110001000000000 53 39 39 
80 70 11111011110111101111011000100000000000000 53 39 39 
60 75 1111101111011110111101100010000 53 39 41 
70 75 111110111101111011110110001000000000 53 39 41 
80 75 11111011110111101111011000100000000000000 53 39 41 
60 80 1111101111011110111101111000000 49 41 41 
70 80 111110111101111011110111100000000000 49 41 41 
80 80 11111011110111101111011110000000000000000 49 41 41 

 

Figure 4.2 shows the absolute values of impulse response samples obtained after solving 

SGP problem for the filter from Table 4.1 with N = 60 and s = 65 dB. It is clear that the l0.1-

norm forces sparsity well by pushing certain coefficients towards . Clearly, the coefficients 

which are near  can be neglected. After neglecting them and refining the magnitude 

response, the coefficients of the final filter are obtained. They are shown in Figure 4.3.  

Figure 4.4 shows the corresponding magnitude response. It is shown in comparison with 

the response of the filter designed with Matlab function firpm, which has the same number of 

nonzero coefficients as the proposed filter. Figure 4.5 shows the enlarged passband. The 

proposed sparse filter has a smaller approximation error than does its nonsparse counterpart. 

Sparse filter has the length of the impulse response of 53 samples among which only 37 are 

nonzero, whereas the nonsparse filter has 37 coefficients in total. Clearly, the improvement in 

magnitude response is paid in longer filter's impulse response length. 

Numerical values of filter's coefficients are given in Table 4.2, for convenience. 
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Figure 4.2 Absolute values of impulse response samples obtained after solving 
SGP problem for filter from Table 4.1 with N = 60 and s = 65 dB. 
Only right-hand side is shown. 

 
 

 

Figure 4.3 Impulse response samples of filter from Table 4.1 with N = 60 and 
s = 65 dB. Only right-hand side is shown. 
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Table 4.2 Coefficients of proposed sparse filter from Table 4.1 with N = 60 and 
s = 65 dB. 

 

n h(n) = h(Nn) n h(n) = h(Nn) n h(n) = h(Nn) 

30 0.40000 41 0.01270 52 0 
31 0.30090 42 0.00614 53 0 

32 0.09130 43 0.00477 54 0 

33 0.05905 44 0.00589 55 0 

34 0.06865 45 0 56 0.00004 
35 0 46 0.00327 57 0 
36 0.04043 47 0.00143 58 0 

37 0.01974 48 0.00101 59 0 

38 0.01571 49 0.00112 60 0 

39 0.02025 50 0   

40 0 51 0.00054   

 

 

 

Figure 4.4 Magnitude response of sparse lowpass filter from Table 4.1 with 
N = 60 and s = 65 dB, compared to nonsparse minimax filter 
obtained with function firpm with same number of nonzero 
coefficients. 
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Figure 4.5 Enlarged passband of filters shown in Figure 4.4. 

 

4.2.2.2 Example 2 

In this example, passband and stopband edge frequencies as well as the maximum 

stopband error are kept the same as in Example 1. However, maximum passband error is 

increased to δp = 0.5 dB. Initial filters are designed with function firpm, but here the 

weighting factors for the passband and stopband are set to 1 and p/s, respectively. 

Table 4.3 shows the optimum zero and nonzero coefficient positions of the obtained 

impulse responses. In addition, the length of the impulse response, WIR, as well as the total 

number of nonzero coefficients, LNZ, are given. The latter parameter is compared to that 

obtained by the filters in [40]. In 13 out of 15 cases, which are marked in bold, the proposed 

method results in sparser filters then does the method in [40]. In the remaining two cases, the 

proposed method provides equal sparsities. 

The obtained results show that in most cases the proposed SGP method is insensitive to 

an increase in filter order. However, some filters with higher orders result in somewhat lower 

sparsity. In these cases, better results could be achieved with different initial points or by 

adjusting input parameters. Nonetheless, the proposed method still gives much better results 

than the other method used in comparison. 
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Table 4.3 Optimum zero and nonzero coefficient positions, length of impulse 
response, WIR, and number of nonzero coefficients, LNZ, of proposed 
filters and the filters in [40] for various filter orders N, maximum 
passband error δp = 0.5 dB, and various stopband approximation errors 
s. 

N s, dB Optimum positions of zero and nonzero coefficients WIR LNZ LNZ [40] 

60 60 1111111101011010100000000000000 33 25 29 
70 60 111111110101101010000000000000000000 33 25 29 
80 60 11111111010110101000000000000000000000000 33 25 25 
60 65 1111111101101011000000000000000 31 25 29 
70 65 111111110101101100000000000000000000 31 25 29 
80 65 11111111010110101001100000000000000000000 41 29 29 
60 70 1111111101101011000000000000000 31 25 33 
70 70 111111110110101100000000000000000000 31 25 33 
80 70 11111111011010110000000000000000000000000 31 25 31 
60 75 1111111101101011010000000000000 35 27 33 
70 75 111111110110101101000000000000000000 35 27 33 
80 75 11111111011010110100000000000000000000000 35 27 33 
60 80 1111111101101011011000000000000 37 29 37 
70 80 111111110110101101010000000000000000 39 29 37 
80 80 11111111011010110101000000000000000000000 39 29 35 

 

4.2.2.3 Example 3 

This example presents the design of various lowpass filters with specifications given in 

[41]. The filters presented in the reffered paper are obtained by iterative method which jointly 

minimizes the number of nonzero coefficients and the length of the impulse response. 

Although the proposed SGP method does not minimize the length of the impulse response, 

the filters referred to are interesting because they have high filter orders, steep transition 

bands and low approximation errors. 

In this example, the value of p = 0.05 is used. The initial filters are obtained by the 

function firpm assuming equally weighted passband and stopband. The obtained results are 

shown in Table 4.4. In this table, the first five columns contain filter number and its 

specifications. The total number of nonzero coefficients obtained with the proposed method, 

LNZ, and with the method presented in [41] is shown, along with the length of the impulse 

response, WIR. Clearly, higher sparsities are obtained for one filter, worse for two and equal 

for four filters. 
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Table 4.4 Length of impulse response, WIR, and number of nonzero coefficients, 
LNZ, of proposed filters compared to results presented in [41] for various 
filter orders N, passband and stopband edge frequencies, p and s, and 
passband and stopband approximation errors, p = s. 

Filter no. N p s p = s WIR LNZ WIR [41] LNZ [41] 

1 160 0.12 0.18 0.0010 115 105 112 103 
2 184 0.12 0.18 0.0008 117 107 114 107 
3 184 0.22 0.28 0.0010 141 85 110 85 
4 200 0.22 0.28 0.0010 141 85 110 85 
5 200 0.325 0.385 0.0010 139 105 110 107 
6 200 0.325 0.385 0.0005 129 121 122 121 
7 200 0.0436 0.0872 0.00023 201 187 194 183 

 
Since the proposed SGP method does not optimize impulse response length, the 

obtained filters have longer responses then the filters presented in [41]. The filter no. 5 has 

higher sparsity then the corresponding filter in [41]. This design has been verified with initial 

filter of the order of 200, as well as of the order of 110, which is optimum length in [41]. In 

both cases, the proposed method gives 105 nonzero coefficients. The optimum coefficients 

obtained in the latter case are shown in Table 4.5.  

 

Table 4.5 Coefficients of right-hand side of proposed sparse filter with N = 110, 
p = 0.325, s = 0.385 and p = s = 0.0010. 

 

n h(n) = h(Nn) n h(n) = h(Nn) n h(n) = h(Nn) n h(n) = h(Nn) 

55 0.35504 69 0.00182 83 0.00113 97 0.00044 

56 0.28569 70 0.01541 84 0.00467 98 0.00113 

57 0.12544 71 0.01394 85 0.00476 99 0.00136 

58 0.02139 72 0.00165 86 0 100 0 

59 0.07624 73 0.01316 87 0.00413 101 0.00104 

60 0.04062 74 0.00928 88 0.00325 102 0.00086 

61 0.02049 75 0.00365 89 0.00088 103 0 

62 0.04386 76 0.01080 90 0.00339 104 0.00083 

63 0.01835 77 0.00566 91 0.00209 105 0.00041 

64 0.01919 78 0.00464 92 0.00119 106 0.00003 

65 0.02919 79 0.00862 93 0.00263 107 0.00054 

66 0.00774 80 0.00306 94 0.00112 108 0.00025 

67 0.01745 81 0.00487 95 0.00129 109 0.00029 

68 0.02030 82 0.00661 96 0.00195 110 0.00046 
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4.2.2.4 Example 4 

Here, the bandpass linear phase FIR filter of order 160 is designed. Filter specifications 

are taken from [41]. Such filter has stopband edge frequencies s1 = 0.425 and s2 = 0.575, 

passband edge frequencies p1 = 0.485 and p2 = 0.515, and maximum passband and 

stopband errors δp = s =0.01. Since passband and stopband errors are equal, firpm function 

with equal weights is used for the initial point. The value of p is set to 0.05.  

The optimum filter contains only 35 nonzero coefficients, which is also obtained in 

[41]. The impulse response is shown in Figure 4.6. It is clear that initial filter order can be 

decreased since most of zeros are positioned at the impulse response's tail. Magnitude 

response of the obtained filter is shown in Figure 4.7.  

 

 

Figure 4.6 Impulse response samples of sparse bandpass filter with N = 160, 
stopband edge frequencies, s1 = 0.425 and s2 = 0.575, passband 
edge frequencies, p1 = 0.485 and p2 = 0.515, and passband and 
stopband approximation errors, p = s = 0.01. Only right-hand side is 
shown. 
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Figure 4.7 Magnitude response of sparse bandpass filter with N = 160, stopband 
edge frequencies, s1 = 0.425 and s2 = 0.575, passband edge 
frequencies, p1 = 0.485 and p2 = 0.515, and passband and 
stopband approximation errors, p = s = 0.01. 

 
 

4.3 Design of Sparse FIR Filters Without Phase Specifications 

To achieve specified selectivity, FIR filters without phase specifications require lower 

order than do their linear-phase counterparts. However, their realization complexity is not 

necessarily lower because they require one general purpose multiplier per coefficient, whereas 

linear phase FIR filters require one multiplier per coefficient pair. However, lowering filter's 

order decreases the delay of the filtered signal, what is desirable in many applications. 

4.3.1 Design of Filters With Peak-Error Constraints 

4.3.1.1 Optimization Problem 

The design of FIR filters with magnitude response constrained in peak-error sense in 

which sparsity is promoted by the lp-norm is given with (4.8). Here, this problem is 

generalized to enable design of filters without phase specifications. The problem is given with  



4 Design of Sparse FIR Filters Based on Signomial Programming 

 

50 
 

minimize

subject to ( , ) , 1, 2, ,

p

p

q q qH d q Q   

h
h

h 
 (4.28) 

where H(h,q), q = 1, 2,…, Q, is filter's frequency response, dq is desired frequency response 

and δq is required peak-error. 

Each constraint in (4.28) can be rewritten by using two constraints, as 

 , q q qH d  h  (4.29) 

 , q q qH d  h  (4.30) 

The desired amplitude for a lowpass filter is given by 

1 for 1,2,...,

0 for 1, 2,...,
p

q
p p

q Q
d

q Q Q Q


    

 (4.31) 

where Qp is the number of frequency points in the passband. Clearly, since dq = 0 in the 

stopband, the constraint (4.30) can be omitted while specifying this region. Now, the design 

of sparse lowpass FIR filters without phase specifications can be expressed by the problem 

 
 

0 1minimize

subject to , 1 , 1,2,...,

, 1 , 1,2,...,

( , ) , 1,...,

p p p

N

q p p

q p p

q s p

h h h

H q Q

H q Q

H q Q Q

 

 

 

  

  

  

  

h

h

h

h



 (4.32) 

Filter's frequency response is given by  

     
0 0 0

, cos sin
N N N

jk
k k k

k k k

H h e h k j h k  

  

    h  (4.33) 

Its squared magnitude response can be obtained as 

     2
, , ,H H H   h h h  (4.34) 
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Substituting (4.33) into (4.34) and arranging results in 

         2

0 0 0 0

, cos cos sin sin
N N N N

k i k i
k i k i

H h h k i h h k i    
   

    h  (4.35) 

By using simple trigonometric identities, the above expression is recognized in the form 

   2

0 0

, cos
N N

k i
k i

H h h k i 
 

    h  (4.36) 

The expression (4.36) is a signomial and can be easily included in a standard SGP problem. 

To avoid square root in calculating H(h,ω), the constraints in (4.32) are also squared. 

Optimization problem in (4.32) then takes the form 

   
   
 
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2 2

2
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H q Q Q
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 

  

  

  
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h

h

h



 (4.37) 

To ensure all variables included in the SGP problem are positive, the transformation 

 y h ρ  (4.38) 

is used, where  = [, , ..., ] is vector with N + 1 equal positive elements. Using (4.38), the 

problem (4.37) takes the form 

   
   
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  
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

 (4.39) 

where |H(y, q)|
2 is calculated by using (4.36) as 
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H y y k i   
 

      y  (4.40) 

Like in the Section 4.2, here the problem in (4.39) is equivalent to  
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 (4.41) 

The problem in (4.41) contains 2(N+1) optimization variables given by 

 1 2 2 1, ,...,
T

Nx x x 

        

t
x

y
 (4.42) 

and 3(N+1) + Qp + Q inequality constraints. The value of  is obtained by using 

 02 min    h  (4.43) 

where h0 are initial point coefficients obtained with Matlab function for nonsparse general 

filter design, firlpnorm. Initial t0 is obtained as 

0 01.1  t h μ  (4.44) 

and initial y0 is calculated from (4.38) by using h0 and . The design problem in (4.41) utilizes 

filter's magnitude rather than the amplitude response samples. Therefore, filters with positive 

and negative DC gain can be obtained. To avoid the solutions with negative gain, additional 

constraints might be added. However, changing the coefficient signs after the optimization is 

more practical than adding additional constraints into the original problem. 
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4.3.1.2 Flipping Impulse Response in Time 

The optimization problem (4.41) does not consider the phase response. Therefore, the 

same amplitude response corresponds to an impulse response and its time reversal. However, 

one of these responses introduces larger delay. Which of them is obtained as the result of 

optimization is not known in advance. Therefore, after the optimization, the delay of the 

resulting as well as of the reversed response should be checked and an appropriate choice 

should be made. 

4.3.1.3 Complexity of Design 

Generally, an SGP optimization problem for the design of FIR filters without phase 

specifications is more complex than the problem for the design of linear phase filters of the 

same order. It is a consequence of larger number of free variables, as well as the more 

complex expressions for magnitude response. Therefore, the maximum order which is still 

possible to design in an acceptable time is lower for the filters without phase specifications. 

However, such filters generally require lower orders than their linear phase counterparts. 

 

4.3.2 Design Examples 

In the following examples Q = 10N, 1e 5 N    , p = 0.1 and  = 1e5 are used. 

4.3.2.1 Example 1 

In the first example, lowpass filter of initial order of 34 with passband and stopband 

edge frequencies, p = 0.6 and s = 0.7, and maximum passband and stopband errors 

p =s = 0.01, is designed. For the starting point, initial filter designed with Matlab function 

firlpnorm is used. This function returns a filter whose ripple is 0.00712, which is smaller than 

required p and s. It makes this filter a good candidate for generation of starting point for the 

optimization procedure. 

Figure 4.8 shows the impulse response of the obtained sparse filter, which contains 29 

nonzero and 6 zero coefficients. This filter is compared to nonsparse FIR filters obtained with 

Matlab functions firlpnorm and firpm which have the same number of nonzero coefficients. 

Their impulse responses are shown in Figures 4.9 and 4.10, respectively. Evidently, the 

impulse responses of nonsparse filters are shorter than the response of the proposed sparse 

filter. However, the advantage can be noticed by observing the magnitude responses. Figure 
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4.11 shows magnitude responses of both sparse and nonsparse filters. Furthermore, Figure 

4.12 shows the enlarged passband of these filters. The sparse filter exhibits 40 dB of stopband 

attenuation, as required in the design process, whereas the nonsparse filter obtained with 

firlpnorm has the attenuation of 37.5 dB. Furthermore, nonsparse filter obtained with firpm 

has the worst attenuation, which equals 30.2 dB. In the passband, the sparse filter achieves the 

ripple of 0.010, as required, whereas the nonsparse filters with nonlinear and linear phase 

achieve 0.0132 and 0.031, respectively. Table 4.6 shows numeric values of the coefficients of 

the proposed sparse filter. 

 

 

Figure 4.8 Impulse response samples of sparse lowpass filter with N = 34, 
passband and stopband edge frequencies, p = 0.6 and s = 0.7, and 
passband and stopband approximation errors, p =s = 0.01. 
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Figure 4.9 Impulse response of nonsparse lowpass filter with 29 nonzero samples, 
passband and stopband edge frequencies, p = 0.6 and s = 0.7, and 
passband and stopband approximation errors, p =s = 0.01, obtained 
with Matlab function firlpnorm. 

 

 

Figure 4.10 Impulse response of nonsparse lowpass filter with 29 nonzero 
samples, passband and stopband edge frequencies, p = 0.6 and 
s = 0.7, and passband and stopband approximation errors, 
p =s = 0.01, obtained with Matlab function firpm. 
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Figure 4.11 Magnitude response of optimum sparse FIR filter compared with 
nonsparse filters obtained by using Matlab functions firlpnorm and 
firpm. 

 
 

 

Figure 4.12 Passband magnitude of sparse FIR filter compared with nonsparse 
filters obtained by using Matlab functions firlpnorm and firpm. 
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Table 4.6 Coefficients of proposed sparse filter with N = 34, passband and 
stopband edge frequencies, p = 0.6 and s = 0.7, and passband and 
stopband approximation errors, p =s = 0.01. 

 

n h(n) n h(n) n h(n) 

0 0.14963 12 0.06180 24 0 
1 0.48947 13 0.00340 25 0.01599 

2 0.50081 14 0.05399 26 0.00768 

3 0 15 0.03301 27 0.00447 

4 0.24424 16 0.02036 28 0.01136 

5 0.05514 17 0.04117 29 0 

6 0.13643 18 0.01477 30 0.00299 

7 0.10214 19 0.02270 31 0.00585 

8 0.04572 20 0.02697 32 0 

9 0.10187 21 0 33 0.00346 

10 0.02530 22 0.01788 34 0 

11 0.06217 23 0.01707   

 
 

4.3.2.2 Example 2 

In this example, eight filters with initial order of 34 with passband edge frequencies 

p  {0.1, 0.2, ..., 0.8}, transition band of 0.1, and maximum approximation errors, 

p =s = 0.01, are designed. The filter number 6 was already included into the analysis in 

Example 1. 

Optimum positions of zero and nonzero filter coefficients together with total number of 

nonzero coefficients are given in Table 4.7. It is interesting to observe that most of the zero 

coefficients are placed at the end of the impulse response, having in mind that the filters with 

shorter impulse response of two possible solutions are chosen. Also, some filters have zero as 

the last coefficient thus indicating that initial filter order can be decreased.  

Comparison of maximum stopband magnitude of the proposed filters and nonsparse 

filters with the same number of nonzero coefficients obtained with Matlab functions firlpnorm 

and firpm is given in Figure 4.13. Clearly, the highest stopband attenuation is achieved with 

sparse design in all cases. 
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Table 4.7  Optimum positions of zero and nonzero coefficients and total number 
of nonzero coefficients, LNZ, of proposed sparse filters with N = 34, 
passband edge frequencies p  {0.1, 0.2, ..., 0.8} and transition 
band of 0.1. 

 

Filter no. p Optimum positions of zero and nonzero coefficients LNZ 

1 0.1 11111111011111111111111111011111111 33 

2 0.2 11111111111111111111110111011100110 30 

3 0.3 11111101111111111111111111111101110 32 

4 0.4 11111111001111011011111111010111101 28 

5 0.5 11111111111111111111101011111101010 30 

6 0.6 11101111111111111111101101111011010 29 

7 0.7 11111111111111101111111111110001011 30 

8 0.8 11111111111111111111111100111100001 29 

 

 

Figure 4.13 Maximum stopband magnitude of filters with N = 34, passband edge 
frequencies p  {0.1, 0.2, ..., 0.8} and transition band of 0.1, 
compared to nonsparse filters obtained with Matlab functions 
firlpnorm and firpm.  
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5 Design of Sparse FIR Filters Based on Global Optimization 

In Chapter 4, the method based on signomial programming was proposed for the design 

of sparse FIR filters constrained in peak-error sense. Although this method is efficient, it 

cannot guarantee solutions globality. However, knowing the global solution is important not 

only from application point of view but also for the evaluation of nonglobal methods. So far, 

the only technique which can provide global optimum in sparse filter design incorporates tree 

search. Unfortunately, basic exhaustive search enables only the design of low-order filters. A 

real-word design of medium-order filters is possible with the assistance of branch and bound 

algorithm. 

The application of branch and bound algorithm in sparse FIR filter design was proposed 

in [24]. The method referred to utilizes depth-first search with pruning based on the feasibility 

check. This method was improved in [21] where efficient estimation of lower bounds was 

presented. However, only the filters with quadratic constraints were considered. 

In this chapter, a method for global optimization of sparse linear-phase FIR filters is 

proposed. The method is based on branch and bound algorithm which utilizes the depth-first 

and the combination of depth-first and breadth-first search. Furthermore, it incorporates two 

types of improved pruning. Finally, it covers the design of sparse filters constrained in peak-, 

quadratic-error, as well as in both senses. Proposed global optimization method works fast for 

small to medium filter orders, while for higher filter orders methods such as SGP presented in 

the Chapter 4 are more convenient. Design examples will show comparison of both methods. 

 

5.1 Problem Formulation 

Sparse linear-phase FIR-filter design which approximates the frequency response in a 

peak-error sense is described with the problem in (4.5). This problem is repeated here for 

convenience as 

     
0

minimize

subject to , ,dH H      
h

h

h
 (5.1) 
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where ||ꞏ||0 is the l0-norm, h is filter's impulse response, H(h,) is filter's amplitude response, 

Hd() is desired amplitude response, δ(ω) is acceptable upper bound of approximation error, 

and  is the union of frequency bands of interest. 

Linear-phase FIR filters constrained in peak-error sense are the most frequently used 

digital filters. However, some applications prefer energy criterion, in which the frequency 

response is optimized in l2 sense. Sparse design of such filters is given by the optimization 

problem 

     

0

2

0

minimize

1
subject to , dW H H d



    


   

h
h

h
 (5.2) 

where W(ω) is a positive weighting function and  is maximum acceptable l2 approximation 

error. 

Filters that constrain the total energy in care bands exhibit nonequal ripples which 

increase near the cutoffs. To avoid such behavior, maximum peak approximation error is 

often incorporated. Sparse design of such filters is described by an optimization problem 

which combines the constraints from (5.1) and (5.2), as in  

     

     

0

2

0

minimize

subject to ,

1
,

d

d

H H

W H H d


   

    


 

   

h
h

h

h

 
(5.3) 

The problems in (5.1), (5.2) and (5.3) cover all types of FIR filters. However, in further 

text, only the method for the design of Type 1 FIR filters will be described. The expressions 

necessary for the design of other filter types can be obtained similarly. 

Type 1 FIR filter is uniquely described with K = N/2 + 1 coefficients. To determine 

which of these coefficients can be set to zero, a tree is built in which each leaf represents one 

possible combination of zero and nonzero coefficients. To avoid the examination of a huge 

number of tree nodes, a branch and bound method is introduced. The branch and bound 

algorithms rely on pruning, which cuts tree branches that cannot yield the optimum. In the 

proposed method, the pruning is based on so called feasibility test. In the next section, this 

test will be evaluated for filters with peak as well as quadratically constrained magnitude 
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response. Then, the branch and bound procedure will be considered with the search strategy 

and presumed sparsity points of view. 

5.2 Feasibility Test 

In an optimization problem, the region above which the search for the optimum is 

performed is defined by a set of constraints, as in 

  0, 1, 2,...,if i I x  (5.4) 

If this region is empty, the problem is called infeasible. The feasibility can be tested by 

solving the problem [75] 

 
,

minimize

subject to , 1, 2,...,
s

i

s

f s i I 
x

x
 (5.5) 

The problem (5.5) is known as the phase I optimization problem because it is usually 

used to find initial solution in many interior point methods for convex optimization [75]. 

Here, it is used only as a test of feasibility. The problem is feasible if and only if s  0. If 

s = 0, the problem is considered feasible, but not strictly feasible. 

5.2.1 Feasibility Test for FIR Filters With Peak-Error Constraints 

Since the filter has a linear phase, its coefficients are symmetrical. Therefore, a new 

variable z is introduced which collects only the right-hand side coefficients, as shown in (4.9). 

Furthermore, the constraints in (5.1) are evaluated on a finite set of Q equidistant frequency 

points q, q = 1, 2, ..., Q, q  . The optimization problem then takes the form 

 
0

minimize

subject to , , 1,2,...,q q qH d q Q   

z
z

z
 (5.6) 

where dq = Hd(q) and q = (q). 

The problem (5.6) is tested for feasibility in several nodes of the tree. By applying (5.5) 

and matrix form of amplitude response defined in (4.11) the feasibility test takes the form 
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,
minimize

subject to , 1, 2,...,

s

q q q

s

d s q Q   

z

A z
 (5.7) 

where Aq is defined in (4.12). Furthermore, in certain nodes of the tree, some coefficients can 

take zero values. To collect such coefficients, a vector n is extracted from z by taking only its 

nonzero coefficients. Then, the response H(n,ωq) can be written in a matrix form as 

 , q qH  n U n  (5.8) 

where Uq is matrix composed of the columns of Aq that correspond to nonzero coefficients in 

z. Finally, the optimization problem for feasibility testing takes the form 

,
minimize

subject to , 1, 2,...,

s

q q q

s

d s q Q   

n

U n
 (5.9) 

 

5.2.2 Feasibility Test for FIR Filters With Quadratic Constraints 

After introducing the variable z given in (4.9), the problem in (5.2) takes the form 

     

0

2

0

minimize

1
subject to , dW H H d



    


   

z
z

z
 (5.10) 

The constraint in (5.10) can be exactly expressed by filter's coefficients. If W(ω) = w and 

Hd(ω) = d, where w and d are constants, the approximation error in the interval ω  [ω1, ω2] 

can be expressed as 

 
2

1

2
,

w
E H d d





 


    z  (5.11) 

Assuming the filter is of Type I, its frequency response is given by 

 
1

1 1
1

( , ) 2 cos
K

k
k

H z z k 





  z  (5.12) 
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By introducing (5.12) into (5.11) and squaring, the integral takes the form 

   

   

   

2 2 2

1 1 1

2 2 2

1 1 1

2 2

1 1

1 1
2
1 1 1 1 1

1 1

1 1
2

1 1 1
1 1

1 1

1 1
1 1

1 2 2
cos cos

2 4 1
cos cos

2 2
cos cos

K K

k q
k q

K K

k q
k q

K K

k q
k q

E z d z z k d z z q d

z dd z z k q d d d

d z k d d z q d

  

  

  

  

 

 

    
  

    
  

   
 

 

 
 

 

 
 

 

 
 

  

  

 

   

  

  

 (5.13) 

After integrating the addends in (5.13), and rearranging the results obtained, the integral can 

be written in a form  

ˆ ˆ ˆ2T TE e  z Bz z c  (5.14) 

where one element of matrix B̂  and vector ĉ is given as 

 

   

   

     

       

       

2 1

2 1

2 1

2 1 2 1

2 1

2 1

1
, 0, 0

2
sin sin , 0, 1,2,..., 1

2
sin sin , 1,2,..., 1, 0

ˆ
1 2

sin 2 sin 2 , 1,2,..., 1

2
sin sin 1,2

,
2

sin sin

kq

k q

q q k q K
q

k k k K q
k

B
k k k q K

k

k q k q k
k q

k q k q
k q

 


 


 


   
 

 


 


  

     

     


       

    

   
 

,..., 1

1,2,..., 1

K

q K

k q














 
  
 

 (5.15) 

 

   
2 1

2 1

, 0
ˆ

sin sin2
, 1, 2,..., 1

k

d
k

c
k kd

k K
k

 


 


      

 (5.16) 

and constant ê  is calculated as 

 2
2 1

1
ê d  


   (5.17) 
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Assuming filter's bands of interest are the union of R subbands within which 

W(ω) = [w1, w2, ..., wR and Hd(ω) = [d1, d2, ..., dR , the total approximation error is given by 

2T T
tE e  z Bz z c  (5.18) 

where  

1

ˆ
R

r r
r

w


 B B  (5.19) 

1

ˆ
R

r r
r

w


 c c  (5.20) 

1

ˆ
R

r r
r

e w e


   (5.21) 

Finally, by using (5.18), (5.19), (5.20), and (5.21) the problem for feasibility test takes the 

form 

,
minimize

subject to 2
s

T T

s

e s   
z

z Bz z c
 (5.22) 

To form the feasibility test which operates with the coefficients among which some are 

assigned zero values, vector n is extracted from z, as elaborated in the previous section. 

Accordingly, new matrix V is obtained by taking the rows and columns from B which 

correspond to nonzero coefficients in z. New vector g is obtained from c by taking the 

elements corresponding to nonzero coefficients in z. The feasibility test of sparse filter is then 

obtained as 

,
minimize

subject to 2
s

T T

s

e s   
n

n Vn n g
 (5.23) 

5.2.3 Feasibility Test for FIR Filters With Peak- and Quadratic- Error Constraints 

If a filter is constrained by both  peak and quadratic constraints  the feasibility test is 

performed by solving the problem 
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,
minimize

subject to , 1, 2,...,

2

s

q q q

T T

s

d s q Q

e s





   

   

z

A z

z Bz z c

 (5.24) 

The feasibility test which operates with the coefficients among which some are assigned zero 

values then takes the form 

,
minimize

subject to , 1, 2,...,

2

s

q q q

T T

s

d s q Q

e s





   

   

n

U n

n Vn n g

 (5.25) 

which is obtained by applying the constraints from (5.9) and (5.23). 

5.3 Branch and Bound Method for Sparse Filter Design 

5.3.1 Initial Sparsity 

The design starts by finding any filter which satisfies specifications. Note that such a 

filter passes the feasibility test in (5.9), (5.23), or (5.25), depending on the approximation 

used. This filter can be designed by using a known sparse method. The number of its nonzero 

coefficients is here denoted by C. The value C is used as an initial sparsity. The optimization 

will improve this sparsity or prove its globality. If such a filter is not available, C can be 

estimated by using the Algorithm 5.1. In this algorithm, a nonsparse filter of minimum order 

is found, which satisfies the requirements. 
 

 0: Specify dq, δq, γ, N, Q 

 1: K = N/2+1 

 2: Calculate q, q=1,...,Q 

 3: For k = 1 to K 

 4:    Calculate Aq by using (4.12) if minimax constraints are present 

 5:    Calculate B, c, and e by using (5.19), (5.20), and (5.21) if  

       quadratic constraints are present 

 6:    Calculate s by using (5.7), (5.22), or (5.24)  

 7:    If s <= 0 

 8:       C=2k‐1 

 9:       Return 

10:    End if 

11: End for 

12: Error: N is too small to satisfy design requirements 
 

Algorithm 5.1 Algorithm for estimation of initial sparsity based on nonsparse 
filter design. 
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5.3.2 Choosing Search Strategy 

After the initial sparsity has been estimated, a strategy for tree search must be chosen. In 

scope of this dissertation, two search strategies have been considered  the depth-first as well 

as the combination of the depth-first and breadth-first search. 

Example of a tree with K = 4 elements is given in Figure 5.1. In each node of the tree, 

one of 2K possible combinations of zero and nonzero coefficients is explored. A vector 

P = [P1, P2, ..., PK], which describes such a combination, consists of elements 

0

1

0,

1,
k

k S
P

k S

 
 


 (5.26) 

where S0 and S1 are sets of indices corresponding to zero and nonzero coefficients in z. 

 

Figure 5.1 Example of tree with K = 4 elements. Position of last added zero is 
labeled as b. 

 

5.3.2.1 Depth-First Search 

At the beginning, all coefficients are assumed nonzero, that is, S1 is a full set with K 

indices. Then, a zero is placed at the positions b = 1, 2, 3, and 4. Note that below the node 

being processed, first b bits are fixed. Before the feasibility test in a node is performed, for 

each of the combinations obtained, simple justification is conducted. The number of nonzero 

coefficients in the fixed part of the node is calculated as 
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1
2

2
b

k
k

F P P


    (5.27) 

In an optimistic scenario, all of the remaining coefficients, zk, k = b+1, b+2, …, K, will take 

the value 0. Consequently, if F > C, the node cannot result in a higher sparsity than C and the 

corresponding branch should be pruned. 

If F ≤ C, the feasibility test is performed by using (5.9), (5.23), or (5.25). If the problem 

is feasible, the tree is further examined by going to the next level. If the problem is not 

feasible, the corresponding branch is pruned. The pseudo code of the described search 

strategy is given in Algorithm 5.2. 

 
 

 1: (C,L) = search (r,C,P,L) 

 2:    r = r + 1 

 3:  For k = r to K 

 4:     R = P, Rk = 0 

 5:     Calculate F by using (5.27) 

 6:     If F <= C 

 7:        Calculate s by solving (5.9), (5.23), or (5.25) 

 8:        If s <= 0 

 9:           Calculate C1 as the number of nonzero elements in R 

10:           If C1 = C 

11:              Insert R in the list L 

12:           Else if C1 < C 

13:              C = C1 

14:              Clear list L 

15:              Insert R in the list L 

16:           Else 

17:               // do nothing 

18:           End if 

19:           (C,L) = search (k,C,R,L) 

20:        Else 

21:            // do nothing 

22:        End if 

23:     End if 

24:  End for 

 

Algorithm 5.2 Pseudo code for depth-first search strategy. 
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5.3.2.2 Combination of Depth-First and Breadth-First Search 

In a depth-first search, examining each subtree improves current optimum. This 

optimum is then used in processing the next subtree that is rooted at the same level. However, 

if a zero coefficient cannot be placed at certain position regardless of the values of the 

remaining coefficients, this information can be utilized in node justification. Fortunately, this 

information can be acquired by examining the entire level before moving to the next level. 

This approach is named here the combination of the depth-first and the breadth-first search. 

The information about positions that cannot contain zero coefficients are described by a 

mask vector M = [M1, M2, ..., MK], where 

0, zero-valued coefficient is not allowed

1, zero-valued coefficient is allowedkM


 


 (5.28) 

The value of Mk is calculated by using the feasibility test, which is performed during breadth 

(horizontal) part of the search at each level. Note that the mask is not a global variable. 

Instead, it is updated at each level and then proceeded deeper. Clearly, the pruning at the 

deeper level can be performed immediately if the mask for the branch being processed is zero. 

The mask can also be incorporated into justification. Assuming some of the coefficients 

zk, k = b + 1, b + 2,  …, K, cannot take zero values, the expression (5.27) becomes 

1
2 1

2 2
b K

k k
k k b

F P P M
  

     (5.29) 

where kM is a complement of Mk. 

The pseudo code of the described search strategy is given in Algorithm 5.3. 

In the presented search, improvement in pruning and consequently algorithm's 

convergence is achieved by using two enhancements. First is the mask, which indicates the 

positions at which zero coefficients cannot be placed. Second is using the prior knowledge of 

the number of nonzero coefficients, C. The features of these improvements will be evaluated 

in Section 5.5. 
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 1: (C,L) = search (M,r,C,P,L) 

 2:    r = r + 1 

 3:    t = [0,0,...,0]     // with K elements 

 4:    For k = r to K 

 5:       If Mk = 0 

 6:          Continue 

 7:       End if 

 8:       R = P, Rk = 0 

 9:       Calculate F by using (5.29) 

10:       If F <= C 

11:          Calculate s by solving (5.9), (5.23), or (5.25) 

12:          If s <= 0 

13:             tk = 1 

14:             Calculate C1 as the number of nonzero elements in R  

15:             If C1 = C 

16:                Insert R in the list L 

17:             Else if C1 < C 

18:                C = C1 

19:                Clear list L 

20:                Insert R in the list L 

21:             Else 

22:                // do nothing 

23:             End if 

24:          Else 

25:             Mk = 0 

26:          End if 

27:       End if 

28:    End for 

29:    For k = r to K 

30:       If tk = 0 

31:          Continue 

32:       End if 

33:       R = P 

34:       Rk = 0 

35:       (C,L) = search (M,k,C,R,L) 

36:    End for 

 

Algorithm 5.3 Pseudo code for proposed combination of depth-first and breadth-
first search strategy. 

 

5.4 Additional Refinement of Approximation Error 

The branch and bound search provides list, L, which contains all combinations of zero 

coefficients corresponding to maximum sparsity. Although these combinations satisfy design 

parameters with equally sparse sets of coefficients, they provide different approximation 

errors. To find which of them ensures the smallest error, an additional refinement should be 
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performed. In a peak-, quadratic-error as well as a combined peak- and quadratic-error 

constrained design, the refinement is performed by using the following optimization problems 

,
minimize

1
subject to , 1,2,...,q q

q

d q Q







  

n

U n
 (5.30) 

,
minimize

subject to 2T T e




  
n

n Vn n g
 (5.31) 

,
minimize

subject to , 1, 2,...,

2

q q q

T T

d q Q

e








  

  

n

U n

n Vn n g

 (5.32) 

The optimum values of  and  are the approximation errors of the refined filters. The best 

filter from L is selected as the one with the smallest approximation error. 

 

5.5 Properties of Proposed Methods 

5.5.1 Subproblem Analysis and Execution Time Comparison 

In this section, the design methods based on the depth-first as well as the combination 

of depth-first and breadth-first search strategy are analyzed. Their performances are compared 

on the design of filters constrained in peak-error sense. In particular, filters with orders 

N = 60, 70, and 80, passband and stopband edge frequencies p = 0.3 and s = 0.5, 

passband approximation error p = 0.001 dB, and stopband approximation errors 

s = 60 dB, 65 dB, 70 dB, 75 dB, 80 dB, are designed by using both search strategies. 

The initial sparsity was obtained by using Algorithm 5.1. 

Figures 5.2 and 5.3 show the number of subproblems and the execution time required 

for the design of all filters. It is clear from figures that the combination of depth-first and 

breadth-first strategy exhibits better properties in both parameters than does the depth-first 

strategy. Consequently, the combination approach is used in further examples. 
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Figure 5.2 Number of subproblems solved in design of various filters obtained by 
depth-first (d) and combination of depth- and breadth-first (db) search 
strategy. 

 

 

Figure 5.3 Execution time for design of various filters obtained by depth-first (d) 
and combination of depth- and breadth-first (db) search strategy. 
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5.5.2 Comparison With Exhaustive Search 

Here, the comparison of the proposed method and the exhaustive search is presented in 

the scope of number of subproblems and execution time. The comparison is made for filters 

with orders N = 60, 70, and 80, passband and stopband edge frequencies p = 0.3 and 

s = 0.5, passband approximation error p = 0.001 dB, and stopband approximation errors 

s = 60 dB, 70 dB, and 80 dB. The initial sparsity used in the branch and bound method 

was obtained by applying Algorithm 5.1.  

For the proposed method, the number of subproblems, Ndb, and execution time, tdb, are 

obtained for the design performed on a personal computer with quad-core Intel i7 processor 

operating at the clock of 3.6 GHz. For the exhaustive search, the number of subproblems, Nes, 

and execution time, tes, can only be estimated. Namely, the exhaustive search requires solving 

2N problems in (5.9), (5.23) or (5.25), which lasts too long for measurement. Therefore, the 

estimation is made assuming that solving one optimization problem requires 1 ms. The results 

are shown in Table 5.1. It is evident that branch and bound enables solving of problems for 

which solving with exhaustive search would not finish in a lifetime. 

 
 

Table 5.1 Number of subproblems and execution time for design of various filters 
obtained by exhaustive search, Nes and tes, and combination of depth- 
and breadth-first, Ndb and tdb, search strategy. 

N s, dB Nes tes Ndb tdb 

 60 1.2e18 3.6e7 year 1182 21.1 s 

60 70 1.2e18 3.6e7 year 743 13.3 s 

 80 1.2e18 3.6e7 year 412 7.5 s 

 60 1.2e21 3.7e10 year 4706 1.7 min 

70 70 1.2e21 3.7e10 year 3036 1.1 min 

 80 1.2e21 3.7e10 year 2170 49.2 s 

 60 1.2e24 3.8e13 year 17295 7.7 min 

80 70 1.2e24 3.8e13 year 12421 5.4 min 

 80 1.2e24 3.8e13 year 7633 3.6 min 
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5.6 Design Examples 

All examples show the design of lowpass filters with desired amplitude response 

1, 0

0,
p

s

d
 

  
 

   
 (5.33) 

In peak-error constraints, total number of points Q = 10N is used unless otherwise 

noted. The desired response, when defined in finite number of frequency points, is obtained as  

1, 1,2,...,

0, 1, 2,...,
p

q
p p

q Q
d

q Q Q Q


    

 (5.34) 

where Qp is a number of frequency points in the passband. 

In quadratic constraints, w = 1 is used in all care bands. 

 

5.6.1 Lowpass Filters With Peak-Error Constraints 

5.6.1.1 Example 1 

In this section, filters are designed with the specifications given in Example 1 in 

Section 4 and in [39]. These specifications are here repeated for convenience. They are 

N = 60, 70 and 80, p = 0.3, s = 0.5, δp = 0.001 dB, and s = 60 dB, 65 dB, 70 dB, 

75 dB, 80 dB. For the initial number of nonzero coefficients, LNZ from [39] is used. 

Table 5.2 shows the comparison of the obtained filters with their counterparts designed 

by SGP method in Section 4 and with the filters in [39]. The branch and bound method is 

global, as opposed to other two methods. Therefore, it shows how close these nonglobal 

methods are to the global solutions. It is interesting to note that the branch and bound method 

in all filters provides the same number of nonzero coefficients as does the SGP method. 

Furthermore, the proposed method gives two more zeroes then does the method in [39] in six 

filters. The paper referred to does not provide the information on the impulse response length. 

Therefore the comparison of WIR is given only for SGP method. To compare WIR with the one 

obtained by the SGP method, the shortest impulse response among all obtained solutions is 

listed. It is interesting to observe that by increasing filter order resulting distributions of 

nonzero coefficients remain the same. 
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Table 5.2 Number of obtained sparse filters, NS, length of impulse response, WIR 
and number of nonzero coefficients, LNZ of proposed filters compared 
with corresponding filters obtained by SGP method in Section 4 and 
with filters in [39]. The improvements are marked in bold.  

N s, dB NS WIR LNZ WIR SGP LNZ SGP LNZ [39] 
60 60 5 47 37 53 37 37 
70 60 5 47 37 53 37 37 
80 60 5 47 37 53 37 37 
60 65 1 53 37 53 37 39 
70 65 1 53 37 53 37 39 
80 65 1 53 37 53 37 39 
60 70 4 47 39 53 39 39 
70 70 4 47 39 53 39 39 
80 70 4 47 39 53 39 39 
60 75 1 53 39 53 39 41 
70 75 1 53 39 53 39 41 
80 75 1 53 39 53 39 41 
60 80 1 49 41 49 41 41 
70 80 1 49 41 49 41 41 
80 80 1 49 41 49 41 41 

 
 
 

To illustrate the properties of the filters from Table 5.2, the responses of a filter 

obtained for N = 60 and s = 70 dB are shown. Note that, after branch and bound 

optimization has been performed, all filters with the same sparsity are further refined as 

described in Section 5.4. Among them, the filter with the smallest approximation error is 

selected. Figure 5.4 and Table 5.3 show its impulse response samples in graphical and 

numerical form. The corresponding magnitude response is shown in Figure 5.5, with enlarged 

passband in Figure 5.6. Clearly, the maximum approximation errors in passband and stopband 

are smaller than the required p and s. This effect can be observed in Figures 5.5 and 5.6 

where the required attenuations are shown in green. 
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Figure 5.4 Impulse response samples of sparse lowpass filter from Table 5.2 with 
N = 60 and s = 70 dB. Only right-hand side is shown. 

 
 
 

Table 5.3 Coefficients of right-hand side of sparse lowpass filter from Table 5.2 
with N = 60 and s = 70 dB 

 

n h(n) = h(Nn) n h(n) = h(Nn) n h(n) = h(Nn) 

30 0.39999 41 0.01294 52 0.00016 
31 0.30094 42 0.00629 53 0 

32 0.09136 43 0.00489 54 0.00010 

33 0.05912 44 0.00607 55 0 

34 0.06880 45 0 56 0 

35 0 46 0.00340 57 0 
36 0.04064 47 0.00153 58 0 

37 0.01988 48 0.00106 59 0 

38 0.01585 49 0.00120 60 0 

39 0.02048 50 0   

40 0 51 0.00049   
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Figure 5.5 Magnitude response of sparse lowpass filter from Table 5.2 with order 
N = 60 and required maximum stopband approximation error 
s = 70 dB. Required s is shown in green.  

 

 

Figure 5.6 Enlarged passband magnitude response of sparse lowpass filter from 
Table 5.2 with order N = 60 and required maximum passband 
approximation error p = 0.001 dB. Required p is shown in green. 
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5.6.1.2 Example 2 

The filters presented in this example are designed with the specifications given in 

Example 2 in Section 4 and in [40]. These specifications are N = 60, 70 and 80, p = 0.3, 

s = 0.5, δp = 0.5 dB, and s = 60 dB, 65 dB, 70 dB, 75 dB, 80 dB. For the initial 

number of nonzero coefficients, LNZ from [40] is used. Note that required passband 

approximation error of 0.5 dB is a rather loose requirement. Consequently, higher sparsities 

than those obtained in the previous example are expected. 

Table 5.4 shows the comparison of the obtained filters with the corresponding filters 

designed by SGP method in Section 4 and with the filters in [40]. The results show that the 

proposed branch and bound method provides much higher sparsities and shorter impulse 

responses then do the SGP method and the method in [40]. 

 
 
 

Table 5.4 Number of obtained sparse filters, NS, length of impulse response, WIR, 
and number of nonzero coefficients, LNZ, of proposed filters compared 
with corresponding filters obtained by SGP method in Section 4 and 
with filters in [40]. The improvements are marked in bold. 

 

N s, dB NS WIR LNZ WIR SGP LNZ SGP LNZ [40] 
60 60 1 23 21 33 25 29 
70 60 1 23 21 33 25 29 
80 60 1 23 21 33 25 25 
60 65 4 25 23 31 25 29 
70 65 4 25 23 31 25 29 
80 65 4 25 23 41 29 29 
60 70 14 25 25 31 25 33 
70 70 14 25 25 31 25 33 
80 70 14 25 25 31 25 31 
60 75 1 29 25 35 27 33 
70 75 1 29 25 35 27 33 
80 75 1 29 25 35 27 33 
60 80 6 29 27 37 29 37 
70 80 6 29 27 39 29 37 
80 80 6 29 27 39 29 35 
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5.6.1.3 Example 3 

This example presents a set of lowpass symmetric FIR filters, which have low 

attenuations in the stopband and steep transition bands. Such filters are considered in many 

papers, including [38] and [44]. The filters are obtained with N = 80, 90 and 100, 

p = 0.0436, s = 0.0872, δp = 0.5 dB, and s = 20 dB, 25 dB, 30 dB, 35 dB, and 

40 dB. For the initial number of nonzero coefficients, LNZ from [38] is used. 

Table 5.5 shows the comparison of the obtained filters and their counterparts in [38] and 

[44]. The proposed method results in the same number of nonzero coefficients as does the 

method in [38]. Furthermore, two more zeros are obtained in three filters when compared with 

[44]. Authors in [44] optimized sparsity and filter's length. Therefore, the impulse response 

length, WIR, of the filters obtained is also included in the comparison. The proposed method 

achieves shorter impulse responses in six filters. It is interesting to observe the number of 

sparse filters NS. As expected, smaller attenuations in the stopband give more degrees of 

freedom. Furthermore, many filters with equal minimum number of nonzero coefficients are 

found. 
 

Table 5.5 Number of obtained sparse filters, NS, number of nonzero coefficients, 
LNZ, and length of impulse response, WIR, of proposed filters compared 
with corresponding filters presented in [38] and [44].  

 

N δs, dB NS LNZ / WIR LNZ [38] LNZ / WIR [44] 

80 20 32 29/45 29 29/45 

90 20 31 29/45 29 29/45 

100 20 31 29/45 29 29/45 

80 25 14 37/49 37 37/49 

90 25 14 37/49 37 37/49 

100 25 14 37/49 37 37/49 

80 30 25 47/55 47 47/55 

90 30 25 47/55 47 47/55 

100 30 25 47/55 47 47/55 

80 35 5 55/75 55 55/77 

90 35 6 55/75 55 55/77 

100 35 6 55/75 55 55/77 

80 40 8 65/79 65 67/81 

90 40 20 65/79 65 67/81 

100 40 20 65/79 65 67/81 
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5.6.2 Lowpass Filters With Quadratic Constraints 

In this section, a set of lowpass FIR filters with quadratic energy constraint in care 

bands is designed. Filters with the same specifications were used in [45]. These specifications 

are N = 88, p = 0.0436, s = 0.0872, and Q = 5N. The initial number of nonzero 

coefficients is set to LNZ from [45]. Note that the paper referred to optimizes weighted least-

squares energy by solving the problem 

      2

0

minimize , dW H H d


     z
z  (5.35) 

where W(ω) is equal to 1 in care bands, and 0 otherwise. In this dissertation, energy is 

constrained to some specified value, as shown in (5.10). The constraint in (5.10) and the 

objective function in (5.35) differ in factor 1/. To keep the physical meaning of energy, 

weighted least square value obtained in [45] is here multiplied by factor 1/. This value is 

used as  in the proposed design. 

Table 5.6 shows the comparison of the proposed filters with the corresponding filters in 

[45]. In paper referred to, the authors list the obtained peak approximation error in the 

passband and stopband although they do not optimize it. Therefore, peak-errors p and s 

obtained with the proposed method are also provided, for comparison. As clear from the table, 

the quadratic approximation error and the number of nonzero coefficients obtained by the 

proposed method are better in all seven filters. The obtained peak errors are somewhat larger 

than those in [45]. However, lowering the peak-error is further analyzed in Section 5.6.3, 

which considers simultaneous application of peak and quadratic constraints. 

The impulse response samples of filter number 6 from Table 5.6 are shown in Figure 

5.7. Their numerical values are given in Table 5.7, for convenience. Magnitude response of 

this filter is presented in Figure 5.8. 
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Table 5.6 Number of obtained sparse filters, NS, as well as number of nonzero 
coefficients, LNZ, optimum quadratic approximation error, opt, and 
passband and stopband peak errors, p and s, of proposed filters 
compared to corresponding filters in [45]. The improvements are 
marked in bold. 

 

Filter no. NS LNZ LNZ [45] opt  [45] proposed p / s p = s [45] 

1 2 85 89 5.2972e6 5.7550e6 2.9595e2/2.5846e2 1.9680e2 

2 9 77 79 1.0233e5 1.2939e5 2.6978e2/4.0383e2 2.4121e2 

3 5 75 77 1.3251e5 1.5053e5 3.1818e2/4.4267e2 3.0025e2 

4 1 73 75 1.6069e5 1.7271e5 3.0851e2/4.8029e2 3.2719e2 

5 1 71 73 1.9938e5 2.0923e5 3.6358e2/5.2708e2 3.6368e2 

6 1 67 71 3.0152e5 3.0641e5 4.7126e2/5.9601e2 3.1554e2 

7 6 67 69 3.0152e5 3.3238e5 4.7126e2/5.9601e2 4.3849e2 

 
 
 

 

Figure 5.7 Impulse response samples of filter number 6 from Table 5.6. Only 
right-hand side is shown. 
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Table 5.7 Coefficients of the right-hand side of filter number 6 from Table 5.6. 

 

n h(n) = h(Nn) n h(n) = h(Nn) n h(n) = h(Nn) n h(n) = h(Nn) 

44 0.06620 56 0.01417 68 0.00768 80 0.00225 

45 0.06567 57 0.00901 69 0.00644 81 0.00206 

46 0.06410 58 0.00437 70 0.00508 82 0.00178 

47 0.06155 59 0 71 0.00370 83 0 

48 0.05808 60 0.00302 72 0.00237 84 0 

49 0.05381 61 0.00570 73 0 85 0 

50 0.04887 62 0.00768 74 0 86 0 

51 0.04342 63 0.00899 75 0 87 0 

52 0.03762 64 0.00968 76 0 88 0 

53 0.03163 65 0.00981 77 0.00196   

54 0.02562 66 0.00946 78 0.00223   

55 0.01975 67 0.00872 79 0.00232   

 
 

 

Figure 5.8 Magnitude response of filter number 6 from Table 5.6. 
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5.6.3 Lowpass Filters With Peak-Error and Quadratic Constraints 

This example presents lowpass FIR filters obtained with the specifications from [45], 

which have already been used in the previous section. However, the peak-error constraints are 

here incorporated together with the quadratic-error constraints. Since the paper [45] shows the 

peak-errors of the filters obtained, these values are used here as the required p and s.  

Table 5.8 shows the comparison of the proposed filters with the corresponding filters in 

[45]. Clearly, better filters in the terms of peak-error then those in the previous section are 

obtained. However, due to reduced design freedom, slightly lower sparsities are encountered. 

They are equal to those in [45] in four and improved in three filters. The quadratic error is 

additionally improved by the refinement shown in Section 5.4 and it is lower in all cases. 

As in the previous example, the impulse response samples of filter number 6 from 

Table 5.8 are shown in Figure 5.9 and Table 5.9. The magnitude response of this filter in 

comparison with the filter obtained in the previous section is shown in Figure 5.10. In 

addition, in Figure 5.11 the transition band of magnitude response is enlarged to illustrate the 

benefits of adding the peak-error constraints. 

 
 

Table 5.8 Number of obtained sparse filters, NS, as well as number of nonzero 
coefficients, LNZ, optimum quadratic approximation error, opt, and 
passband and stopband peak-errors p and s of proposed filters 
compared to corresponding filters in [45]. The improvements are 
marked in bold. 

 

Filter no. NS LNZ LNZ [45] opt  [45] proposed p / s p = s [45] 

1 1 87 89 4.9959e6 5.7550e6 1.9666e2/1.9596e2 1.9680e2 

2 1 77 79 1.2526e5 1.2939e5 2.2963e2/2.4121e2 2.4121e2 

3 14 77 77 1.1162e5 1.5053e5 2.4410e2/3.0024e2 3.0025e2 

4 6 75 75 1.4456e5 1.7271e5 2.9416e2/3.2714e2 3.2719e2 

5 6 73 73 1.7360e5 2.0923e5 2.8255e2/3.6368e2 3.6368e2 

6 13 71 71 2.4446e5 3.0641e5 3.1216e2/3.1551e2 3.1554e2 

7 1 67 69 3.2868e5 3.3238e5 4.3527e2/4.3830e2 4.3849e2 
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Figure 5.9 Impulse response samples of filter number 6 from Table 5.8. Only 
right-hand side is shown. 

 
 
 

Table 5.9 Coefficients of right-hand side of filter number 6 from Table 5.8. 

 

n h(n) = h(Nn) n h(n) = h(Nn) n h(n) = h(Nn) n h(n) = h(Nn) 

44 0.06598 56 0.01461 68 0.00849 80 0.00306 

45 0.06547 57 0.00938 69 0.00718 81 0.00287 

46 0.06394 58 0.00464 70 0.00573 82 0.00255 

47 0.06145 59 0 71 0.00421 83 0.00214 

48 0.05807 60 0.00303 72 0.00271 84 0 

49 0.05391 61 0.00587 73 0 85 0 

50 0.04908 62 0.00801 74 0 86 0 

51 0.04372 63 0.00948 75 0 87 0 

52 0.03800 64 0.01030 76 0.00189 88 0 

53 0.03207 65 0.01054 77 0.00252   

54 0.02610 66 0.01026 78 0.00291   

55 0.02023 67 0.00954 79 0.00308   
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Figure 5.10 Magnitude responses of filter number 6 from Tables 5.6 (blue) and 
5.8 (red). Vertical green line is drawn at stopband edge frequency, 
whereas horizontal green line represents the required maximum 
stopband peak-error. 

 

Figure 5.11 Enlarged transition bands of filter number 6 from Tables 5.6 (blue) 
and 5.8 (red). Vertical green line is drawn at stopband edge 
frequency, whereas horizontal green line represents the required 
maximum stopband peak-error. 
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6 Global Optimization of Spatial Filters With Constrained 

Coefficients' Dynamic Range Ratio 

6.1 Optimization-Based Design of Pencil Beams with Minimax Sidelobes 

The design of a pencil beam whose sidelobes are optimal in minimax sense is given in 

(2.34). If the second constraint the problem referred to is evaluated on a finite set of 

equidistant points θq, q = 1, 2, ..., Q, θq  [θs, /2], the optimization takes the form [76] 
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sin , 1, 2, ,q qu q Q

 


    (6.3) 

The problem in (6.1) is a convex second-order cone program with one equality and Q  

second-order-cone constraints, which can be easily solved. The solution results in a 

beampattern which can also be obtained analytically, by the Dolph-Chebyshev method. 

However, the optimization-based approach enables incorporating additional requirements, 

such as the requirement for a low dynamic range ratio of excitation coefficients. 

6.2 DRR Constrained Design 

Incorporating constraints for low DRR into a pencil beam design is illustrated in (2.48). 

If these constraints are applied in (6.1), the optimization problem becomes 
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In this problem, constraints |ak|  t, k = 1, 2, …, N are not convex. However, if all coefficient 

signs are known in advance, such constraints could be rewritten in a convex form. Assuming 

S+  {1, 2, ..., N} and S  {1, 2, ..., N} are the set of indices corresponding to positive and 

negative coefficients, the problem in (6.4) can be expressed as 
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The problem in (6.5) is convex. It contains one equality, Q second-order cone and 2N + 1 

inequality constraints. 

To solve the problem in (6.4) globally, (6.5) should be applied for all combinations of 

coefficient signs. This leads to an exhaustive search with 2N optimization runs. The 

exhaustive search can be performed in an acceptable time only for arrays with small number 

of elements. For more complex arrays, the search should be performed in an efficient manner. 

Here, one such approach based on branch and bound algorithm will be presented [60]. 

To perform a search of all combinations of coefficient signs, a tree is formed. Figure 6.1 

shows such a tree built for an antenna array with four elements. At the root, denoted by Level 

0, all coefficients are assumed positive. At Level 1, one negative coefficient is placed at each 

possible position, 1, 2, 3 and  4. At a new level, additional negative coefficient is added at the 

positions b+1, b+2, ..., 4, where b marks the position at which last negative coefficient has 
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been assigned. Such a tree has b uniquely specified left-hand signs in each node. In 

Figure 6.1, the values of b, as well as signs specified in each node are marked in red. 

 

 

Figure 6.1 Example of tree with all combinations of coefficient' signs in antenna 
array with four elements. Signs which are uniquely specified in 
particular node are marked in red. 

 
The tree is explored by using a depth-first search. Let variables opt and aopt denote the 

maximum sidelobe level and optimum antenna coefficients. At the beginning, the value of opt 

is set to . At each node, two tests are made. In the first test, the problem (6.5) is solved with 

the coefficient signs shown in Figure 6.1. If the problem is feasible, new  and a are obtained 

as a solution. If  < opt, an update is made opt =  and aopt = a. In the second test, all 

branches leaving the node are simultaneously tested by solving the following problem 

, ,

1

minimize

subject to 1

, 1,2,...,

, &

, &

, &

, &

1, 2,...,

1, 2,...,

0

t

N

k
k

q

k

k

k

k

k

k

a

q Q

a Dt k S k b

a t k S k b

a Dt k S k b

a t k S k b

a Dt k b b N

a Dt k b b N

t

















 

  
  

   
   

   
    



a

A a

 (6.6) 



6 Global Optimization of Spatial Filters With Constrained Coefficients' Dynamic Range Ratio 

 

88 
 

The problem (6.6) is a relaxed version of problem in (6.5). At each node, the signs of first b 

coefficients are known. The remaining Nb coefficients, which are in Figure 6.1 marked in 

black, can be assigned any possible sign, resulting in 2Nb combinations. In (6.6) upper- and 

lower-bound constraints are tested only for known (red) signs. On the other hand, for the 

other (black) signs, nonconvex constraints |ak|  t are omitted and only convex |ak|  Dt, 

k = b+1, b+2, ..., N are solved. This relaxation makes the problem in (6.6) a convex one and 

therefore solvable globally. It is evident that solution of (6.6) might not satisfy the DRR 

constraints. However, if  > opt is obtained, going deeper in the tree cannot give a solution 

better than the existing, therefore corresponding branch can be pruned. It should be noted that 

in such case opt is not updated because solution of relaxed problem is not a solution to an 

original problem. 

For two antenna arrays which have same values of coefficients, but whose coefficients 

are reversed in time, the resulting sidelobe level will be the same. This implies that both 

solutions can be obtained as a result. Furthermore, it implies that one node testing can be 

omitted. If sign combinations are expressed in a binary form, then the coefficients with 

negative sign are given the value of 0 and coefficients with positive sign are given the value 

of 1. B and Br are the binary values of the original and reversed combination of coefficient 

signs, respectively. If B > Br, the node testing is redundant. 

6.3 Design Examples 

In the following examples, pencil beams with isotropic elements and spacing of λ / 2 are 

considered. The number of frequency points is set to Q = 10N and the beamwidth of 12 is 

used unless otherwise noted. 

6.3.1 Example 1  

In the first example, the proposed method is compared with the exhaustive search. The 

number of elements, N, and the required DRR, D, are given in Table 6.1 together with the 

number of subproblems, Nes, and design time, tes, which are estimated for the exhaustive 

search, as well as the number of subproblems, Nbnb, and design time, tbnb, obtained by the 

proposed method. Exhaustive search requires solving of problem (6.5) 2N times. On a 

personal computer with quad-core Intel i7 processor operating at the clock of 3.6 GHz, 

solving each optimization problem takes 1 ms in average. This value is used in calculation of 

tes. 
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It is evident that the proposed method significantly decreases number of subproblems 

that require solving. Consequently, it reduces the design time. Clearly, the obtained tbnb 

indicates the possibility of interactive design when experimenting with various parameters is 

needed. 

 

Table 6.1 Comparison of number of subproblems and design time for exhaustive 
search, Nes and tes, and proposed method, Nbnb and tbnb, for arrays with 
various numbers of elements, N, and required DRR, D.  

 

N D Nes tes Nbnb tbnb 

 2 1024 1.024 s 42 0.21 s 

10 1.5 1024 1.024 s 48 0.21 s 

 1 1024 1.024 s 39 0.16 s 

 2 1.049e6 17.4 min 20 0.20 s 

20 1.5 1.049e6 17.4 min 20 0.21 s 

 1 1.049e6 17.4 min 112 1 s 

 2 1.074e9 298 hours 142 2.63 s 

30 1.5 1.074e9 298 hours 291 5.31 s 

 1 1.074e9 298 hours 1595 24.53 s 

 2 1.100e12 34.9 years 80 2.50 s 

40 1.5 1.100e12 34.9 years 155 4.89 s 

 1 1.100e12 34.9 years 2104 49.52 s 

 2 1.126e15 35702 years 244 11.65 s 

50 1.5 1.126e15 35702 years 777 37.19 s 

 1 1.126e15 35702 years 11451 393.8 s 

 

6.3.2 Example 2 

This example provides the comparison of optimum sidelobe level (SLL) in  

DRR-unconstrained and DRR-constrained design for various numbers of antenna elements. In 

DRR-unconstrained design, optimum coefficients and SLL are obtained by solving (6.1), 

resulting in Dolph-Chebyshev beam patterns with DRR values of DDC. The comparison is 

given in Figure 6.2 for pencil beams with N = 5, 10, 15, 20, 30 and 40 elements. The last 

point in each graph corresponds to DRR-unconstrained design, with DRR equal to DDC. By 

adding constraints which require D < DDC, SLL deteriorates. It is interesting to observe that 

deterioration of SLL is larger for larger antenna arrays. 
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Figure 6.2 Optimum SLL obtained with proposed method for various numbers of 
elements, N, and required DRR, D. 

 
 

6.3.3 Example 3 

In this example, the influence of constraining DRR on the sidelobe level in antenna 

arrays with various numbers of elements is further investigated. The proposed method is 

applied to arrays with beamwidth of 10, N = 10, 15, 25 and 40 and DRR constrained to 

values from 1 to DDC logarithmically distributed in 20 points. Obtained results are compared 

with the method which minimizes the differences between coefficients assuming they are 

positive [61]. The comparison is shown in Figure 6.3. It is evident that the possibility of 

coefficients to take positive and negative values, which is ensured by the proposed method, 

results in a lower SLL. 
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Figure 6.3 Comparison of SLL obtained with proposed method and method in 
[61] for antenna arrays with beamwidth of 10, various N and DRR 
constrained in range from 1 to DDC. 

 
 

6.3.4 Example 4 

Here, antenna array with 38 elements, beamwidth of 6 and DRR constrained to 1.7 is 

designed by using proposed method. The design results in an array with the sidelobe level of 

20 dB. This sidelobe level is used as a desired value in a design of array with the method 

which allows only positive coefficients [61]. The coefficients obtained in both designs are 

shown in Figures 6.4 and 6.5. Coefficients of the proposed array are given in Table 6.2, for 

convenience. The beampatterns of both arrays are shown in Figure 6.6. 

The method in [61] results in DRR of 2.079 and SLL of 19.974 dB whereas the 

proposed method provides DRR of 1.7 and the SLL of 20 dB. Clearly, the proposed method 

achieves a gain in DRR by allowing the coefficients to take negative values. 
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Figure 6.4 Coefficients of antenna array with 38 elements, beamwidth of 6°, DRR 
constrained to 1.7, and optimum SLL, obtained with proposed method.  

 

 

Figure 6.5 Coefficients of antenna array with 38 elements, beamwidth of 6°, 
specified SLL of 20 dB, and minimum DRR, obtained with method 
which allows only positive coefficients [61]. 
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Table 6.2 Coefficients of pencil beam with N = 38, beamwidth of 6° and DRR 
constrained to 1.7, obtained with proposed method. 

 

k a(k) k a(k) k a(k) k a(k) 
1 0.03543 11 0.02084 21 0.03543 31 0.02084 
2 0.03543 12 0.02881 22 0.03046 32 0.02084 
3 0.03062 13 0.03353 23 0.03096 33 0.02084 

4 0.02084 14 0.02220 24 0.03052 34 0.02084 

5 0.03042 15 0.03487 25 0.03016 35 0.02084 
6 0.02084 16 0.03451 26 0.02974 36 0.02084 
7 0.02084 17 0.02609 27 0.02810 37 0.02199 
8 0.02084 18 0.03543 28 0.02669 38 0.03543 
9 0.03056 19 0.03288 29 0.02607   
10 0.02647 20 0.02876 30 0.02084   

 

Figure 6.6 Radiation pattern of antenna array with 38 elements, beamwidth of 6° 
and SLL of 20 dB, obtained with proposed method and method in 
[61]. 

 

6.3.5 Example 5 

The proposed method allows the design of arrays with equal absolute values of 

excitation coefficients. These coefficients are obtained when DRR is constrained to the value 

of D = 1. One such example is presented in Figure 6.7, which shows the optimum coefficients 

and Figure 6.8 which illustrates the corresponding radiation pattern of an array with 38 
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elements and beamwidth of 6˚. The SLL of 17.7 dB is obtained. It should be noted that the 

set of available patterns for D = 1 is discrete. Consequently, it is not always possible to realize 

required beamwidth. Therefore, a required value of the beamwidth is in this case considered a 

targeted value, rather than exact specification. 

 

Figure 6.7 Coefficients of array obtained with proposed method for N = 38, 
beamwidth of 6˚ and D = 1. 

 

Figure 6.8 Radiation pattern of array obtained with proposed method for N = 38, 
beamwidth of 6˚ and D = 1. Green line represents the obtained SLL. 
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7 Global Optimization of Sparse Spatial Filters With Constrained 

Coefficients' Dynamic Range Ratio 

A DRR-unconstrained design can result in a high value of DRR. Such is especially the 

case for arrays with steep slope of the main beam. Inevitably, some of the coefficients in such 

arrays take low magnitudes. On the other hand, forcing DRR to a small value causes small 

coefficients to rise, thus deteriorating the radiation pattern. The deterioration can be reduced if 

certain coefficients are allowed to take zero values. These coefficients do not participate in 

DRR and consequently increase design's freedom. Clearly, such an approach leads to sparse 

design. 

7.1 DRR Constrained Design With Sparsity 

In the nonsparse design (6.4) which is in Section 6.2 solved by using branch and bound 

algorithm, only positive and negative signs of coefficients are allowed. Here, the problem is 

extended by allowing coefficients to take zero values. However, this increases the complexity 

of design problem. If S+, S, S0  {1, 2, ..., N} are sets of indices denoting positive, negative 

and zero coefficients, the optimization problem in (6.5) becomes 
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 (7.1) 

where s is a vector containing ak, k  (S+  S) and Bq is matrix composed of the columns 

k  (S+  S) taken from Aq defined in (6.2). 

Figure 7.1 shows a part of the tree with coefficient signs and zero values corresponding 

to an array with N = 4. Here, the branching covers positive, negative and zero coefficients. 
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Like in the previous section, the branch and bound method with efficient pruning is utilized to 

find the array with minimum SLL [72]. 

 

Figure 7.1 Part of tree with combinations of specified (+, , 0) and unspecified 
(X) signs and zero values in antenna array with four elements. 
Specified signs and zero values in particular node are marked in red. 

 

Compared to the tree described in section 6.2, allowing zero-valued coefficients rises 

the complexity of an algorithm from 2N to 3N. However, the proposed method allows efficient 

pruning. The method starts by setting the optimum SLL to opt = . Then, similarly to a 

nonsparse design, nodes are processed by applying two tests. In the first test, the optimization 

problem in (7.1) is solved with the assumption that all unspecified (X) coefficients' elements, 

which are in Figure 7.1 marked in black, are positive (+). If  < opt is obtained, an update 

opt =  is made. In the second test, branches leaving the node are tested by solving the 

problem 
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 (7.2) 

where b denotes the number of specified signs and zero values, as shown in Figure 7.1. The 

expression in (7.2) presents relaxed version of problem in (7.1). It should be noted that zero 
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coefficients are omitted from the constraints and objective function in both  (7.1) and (7.2). 

They are added into the response after the search has been finished, corresponding to the 

indices from the set S0. If  > opt is obtained by solving (7.2), it is certain that better SLL 

cannot be found below that node, so the corresponding node can be pruned. However, update 

must not be made, because solution of (7.2) solves relaxed and not original problem. 

7.2 Design Examples 

In the following examples, pencil beams with isotropic elements and spacing of λ / 2 are 

considered. The number of frequency points is set to Q = 10N and the beamwidth of 12 is 

used unless otherwise noted. 

7.2.1 Example 1 

This example compares the proposed method and the exhaustive search. The 

comparison is given in Table 7.1 where the number of elements, N, and required DRR, D, are 

given together with the number of subproblems, Nes, and design time, tes, which are estimated 

for the exhaustive search, as well as the number of subproblems, Nbnb, and design time, tbnb, 

obtained by the proposed method. Here, the complexity of exhaustive search method is 

increased by introducing zero as a possible coefficient value. It requires solving of problem 

(7.1) 3N times. Assuming the same personal computer is used as in a nonsparse design, it is 

estimated that solving each optimization problem requires 1 ms on average, so this value is 

used for calculating tes. 

Table 7.1 Comparison of number of subproblems and design time for exhaustive 
search, Nes and tes, and proposed method, Nbnb and tbnb, for sparse arrays 
with various numbers of elements, N, and required DRR, D.  

 

N D Nes tes Nbnb tbnb 

 2 59049 59.049 s 312 2.071 s 

10 1.5 59049 59.049 s 552 3.588 s 

 1 59049 59.049 s 612 3.458 s 

 2 3.487e9 968.6 h  76 1.077 s 

20 1.5 3.487e9 968.6 h 228 3.212 s 

 1 3.487e9 968.6 h 6368 1.239 min 

 2 2.059e14 6258.8 years 9196 3.627 min 

30 1.5 2.059e14 6258.8 years 40580 15.590 min 

 1 2.059e14 6258.8 years 198832 1.092 h 
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By comparing tables 6.1 and 7.1, it is evident that sparse design is much more 

demanding. It should be kept in mind that both methods have combinatorial complexity, but 

for pencil beam arrays with small to medium number of elements, which are frequently used 

in communication systems, both methods give global results in an acceptable time. 

7.2.2 Example 2  

In this example, the optimum SLL obtained for both nonsparse and sparse arrays for 

various required DRR, D, and various numbers of antenna elements, N, are compared. The 

comparison is given in Figure 7.2 for pencil beams with N = 10, 15, 20 and 40. It is evident 

that by allowing some of the coefficients to be zero, SLL is improved in all cases. The 

improvement is bigger in arrays with higher number of elements and arrays with smaller 

DRR. Apparently, allowing coefficients to take zero values pays off. 

 

Figure 7.2 Optimum SLL obtained for nonsparse and sparse arrays for various 
numbers of elements, N, and required DRR, D. 

7.2.3 Example 3  

In this example, two arrays are designed, both with N = 20 and D = 1.4. One array is 

designed by using nonsparse method from chapter 6.2 whereas the other is obtained by using 

sparse design. Figures 7.3 and 7.4 show the coefficients' amplitudes, whereas Figure 7.5 

shows the radiation patterns of both arrays. Both methods result in the same DRR, which is 

equal to D. However, the nonsparse method provides the SLL of 18.764 dB, whereas the 
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sparse method achieves 20.434 dB. It is evident that by allowing the coefficients to take zero 

value, new degrees of freedom are introduced. Therefore, better results both in terms of SLL 

and number of nonzero elements are obtained. 

Coefficients of the proposed sparse array are given in Table 7.2, for convenience. 

 

Figure 7.3 Coefficients of sparse pencil beam array with N = 20, beamwidth of 
12 and D = 1.4. 

 

Figure 7.4 Coefficients of nonsparse pencil beam array with N = 20, beamwidth 
of 12 and D = 1.4. 
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Figure 7.5 Radiation pattern of sparse and nonsparse pencil beam array with 
N = 20, beamwidth of 12 and D = 1.4. 

 

Table 7.2 Coefficients of sparse pencil beam with N = 20, beamwidth of 12° and 
DRR constrained to 1.4, obtained with proposed method. 

 

k a(k) k a(k) 
1 0.04501 11 0.06302 
2 0.04501 12 0.06302 
3 0.04851 13 0.05724 
4 0.04501 14 0.05566 
5 0.04501 15 0.04691 
6 0.05423 16 0.04501 
7 0.05784 17 0.05110 
8 0.06135 18 0 
9 0.06302 19 0.04501 
10 0.06302 20 0.04501 

 

7.2.4 Example 4 

Here, the comparison of sparse and nonsparse methods is extended with the case when 

DRR is constrained to 1. Two arrays with N = 20, beamwidth of 10 and D = 1 are designed, 

one with the nonsparse method and one with the proposed sparse method. Pencil beam 

coefficients and radiation pattern for both nonsparse and sparse arrays are given in Figures 

7.6, 7.7, and 7.8. The sparse array contains two zero elements. Instead, the nonsparse method 
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pushes one coefficient to negative value. Consequently, the former array exhibits the SLL of 

15.065 dB, whereas the latter achieves the SLL of 13.443 dB. 

 

 

Figure 7.6 Coefficients of sparse pencil beam array with N = 20, beamwidth of 
10 and D = 1. 

 

 

Figure 7.7 Coefficients of nonsparse pencil beam array with N = 20, beamwidth 
of 10 and D = 1. 
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Figure 7.8 Radiation pattern of sparse and nonsparse pencil beam array with 
N = 20, beamwidth of 10 and D = 1. 
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8 Conclusion 

In this dissertation, new methods for the design of efficient systems based on 

optimization techniques have been developed. The efficiency has been considered to lower 

complexity of digital and spatial filter design. Knowledge collected from the theory of 

compressed sensing has been applied to conventional filter and antenna array design. In this 

context, a contribution is achieved which consists of three parts. 

In the first part, a new method for the design of sparse FIR filters based on signomial 

programming has been developed. The requirement for sparsity is usually expressed with l0-

norm. Here, the optimization problem has been approximated by relaxing the l0-norm with an 

lp-norm where 0 < p < 1. The problem has been solved by forming the sequence of convex 

subproblems. This method, although iterative and local, provides good results. It is suitable 

for the design of low and medium order filters. The method has been successfully applied in 

the design of sparse FIR filters with linear phase and the filters with no phase specifications. 

Although iterative methods are fast and robust, they cannot guarantee the optimum's 

globality. Therefore, an improvement has been achieved in global method for sparse filter 

design based on branch and bound algorithm. The method has been applied to sparse FIR 

filters with linear phase. Efficient pruning has enabled fast calculation of optimum filters in 

both peak- and quadratic-error sense, as well as in both senses. The method gives solutions 

for small and medium filter orders in an acceptable time. Furthermore, it provides the measure 

for testing local methods, as it can show how close their solutions are to global ones. 

Finally, knowledge acquired in proposed FIR filter design has been applied in the 

design of spatial filters. A global optimization method has been developed which utilizes 

branch and bound algorithm in the design of pencil beams with minimax sidelobes and 

constrained dynamic range ratio. Furthermore, it has been shown that the obtained radiation 

pattern can be improved by introducing sparsity. 
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