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abstract

As robots are progressing towards being ubiquitous and an indispensable part of our
everyday environments efficient and safe collaboration and cohabitation become imper-
ative. Given that, such environments could benefit greatly from accurate human action
and motion prediction. In addition to being accurate, human action prediction should be
computationally efficient, in order to ensure a timely reaction, and capable of dealing with
changing environments, since unstructured interaction and collaboration with humans
usually do not assume static conditions. In this thesis, we focus on probabilistic decision-
making models for human action and motion prediction in industrial human-robot shared
environments. We first introduce a framework for human intention recognition in the
robotized warehouse environment. This framework is based on Markov Decision Process
action validation and the Hidden Markov Model intention recognition module. The ware-
house floormap is searched to find optimal paths towards potential goals using Generalized
VoronoiDiagrams andD∗ graph search algorithm.We continued by utilizing this framework
for precise human motion prediction that served as input for the human-aware planning
algorithm. The goal of human-aware planning is to reroute robots in the worker’s way thus
improving efficiency and retaining safety. We ran multiple experiments to test the proposed
algorithms: in a real-world laboratory warehouse with a worker, wearing augmented reality
glasses, a virtual reality warehouse twin as well an in-house developed warehouse simulator.
Finally, we utilized Long Short-TermMemory networks to predict the next object human is
going to pick in a collaborative environment. In order to reduce execution time, we crafted
two dimensionality reduction methods. The first one is a feature selection method that
relies on signal correlation and individual merit while the second one is a feature extraction
method based on the autoencoder model. Heavy emphasis was put on the best predictor
for human action prediction, the eye gaze, and an effort was made to estimate it using
Multilayer Perceptron architecture. We usedmotion capture data from the publicly available
dataset as well as on a smaller in-house recorded dataset.

keywords: human action prediction, humanmotion prediction, Markov decision process,
hidden Markov model, probabilistic decision-making methods, recurrent neural networks,
long short-term memory networks, feature dimensionality reduction, autoencoders, collab-
orative environments



sažetak

Predviđanje čovjekova djelovanja i gibanja u suradnim industrijskim
prostorima ljudi i robota zasnovano na vjerojatnosnim modelima
odlučivanja

Robotski sustavi su sveprisutni u modernim industrijskim okruženjima poput tvor-
nica automobila, prehrambenih postrojenja i automatiziranim skladištima. Oni uključuju
autonomne mobilne robote i robotske ruke koji svojom preciznošću, lakoćom održa-
vanja i efikasnošću omogućuju efikasniju i sigurniju proizvodnju. S razvojem suvremenih
tehnoloških rješenja takvi sustavi bivaju potentniji i sofisticiraniji. Integriranje mnoštva sen-
zora poput kamera, sustava za bilježenje pokreta i inercijalnih mjernih jedinica omogućuje
precizno upravljanje robotima te napredno percipiranje okoline. Percepcija okoline po-
drazumijeva svijest robota o svojstvima ostalih objekata u sceni: njihov položaj, brzinu,
semantičku interpretaciju. Poboljšanje stanja tehnike omogućilo je da okruženje robota,
osim objekata, uključuje i ljude te takva okruženja nazivamo suradnim industrijskim pros-
torima. Primjeri takvih okruženja automazitirana su skladišta u kojima mobilni roboti
pomažu radnicima noseći težak teret ili police s predmetima. Uvođenje ljudi u radni prostor
robota povećava zahtjeve za sigurnošću sustava. Također, za razliku od robotskog djelovanja
koje je određeno algoritmom upravljanja, ljudsko je djelovanje autonomno te unosi nesig-
urnost u sustav upravljanja automatiziranom okolinom. Zbog toga je precizno predviđanje
čovjekovog djelovanja i gibanja nužan uvjet za efikasnu i sigurnu suradnju robota i ljudi.

Predviđanje čovjekovog djelovanja i gibanja problem je koji u posljednje vrijeme pokušavaju
riješiti mnoge istraživačke zajednice. Osim suradnih prostora robota i ljudi, predviđanje čov-
jekovog djelovanja korisno je u područjima poput autonomnih vozila i naprednih nadzornih
sustava. To je vrlo izazovan problem čiju težinu podiže, osim kompleksnosti čovjekova uma,
brojnost unutarnjih i vanjskih podražaja koji mogu utjecati na proces odlučivanja čovjeka.
Na ponašanje čovjeka utječu vlastite želje i ciljevi te konfiguracija okoline koja može uključi-
vati i prisutnost drugih živih i neživih agenata. U slučaju da se u radnoj okolini čovjeka
nalaze drugi ljudi, u obzir je potrebno uzeti društvene norme i međuljudske odnose. Zbog
svega navedenog je rekonstruiranje čovjekovog procesa odlučivanja jedan je od najvećih
izazova i tema istraživanja u području suradnje robota i ljudi.

Prvi pokušaji estimiranja čovjekove namjere i gibanja temeljili su se na predviđanju čov-
jekove putanje i trajektorije u dvodimenzionalnom prostoru. Te su metode najčešće koristile
mrežastu kartu zauzetosti prostora te pokušavale pogoditi cilj čovjekova kretanja. Za to su
korišteni matematički modeli poput inverznog optimalnog upravljanja i familije Markovl-
jevih modela koji uključuju Markovljev proces odlučivanja, skriveni Markovljev model



i djelomično osmotriv Markovljev model. Zajednička karakteristika ovih pristupa pret-
postavka je da se čovjek ponaša skoro-optimalno s obzirom na svoj cilj. Skoro-optimalnost
podrazumijeva da se čovjek uglavnom ponaša optimalno prema nekakvom kriteriju koji
može biti brzina dolaska do cilja, glatkost trajektorije ili izbjegavanje potencijalne opasnosti.
Imajući to na umu, spomenute metode uspoređuju osmotreno gibanje čovjeka s optimal-
nim gibanjem naspram potencijalnih ciljeva u prostoru te zaključuju najvjerojatniji cilj i
trajektoriju s obzirom na rezultate usporedbe. Bitan je dio tih modela planiranje čovjekove
putanje prema potencijalnim ciljevima radi usporedbe hipoteza o osmotrenom ponašanju.
Najčešće korišteni algoritmi za tu svrhu su za mrežastu kartu zauzetosti A∗ i njegova di-
namična verzija D∗, a u slobodnom prostoru često se koriste brzorastuća slučajna stabla i
Gaussovi procesi. Glavni nedostatak metoda baziranih na skoro-optimalnosti je oslanjanje
na pretpostavke o ponašanju ljudi koje ne moraju vrijediti u stvarnom svijetu. Također je
potrebno estimirati čovjekovu pozornost i informiranost o stanju okoline jer su čovjekove
akcije vođene vlastitom percepcijom vlastitog okruženja, a ne stvarnim stanjem okoline.
Nepotpuna informiranost o čovjekovim unutarnjim stanjima može dovesti do propuštanja
nekih obrazaca ponašanja koje bi fleksibilniji modeli mogli obuhvatiti. U novije vrijeme
se problemu predviđanja čovjekovog djelovanja pristupa korištenjem metodama koje se
zasnivaju na učenju iz podataka. Snimanje velikih skupova podataka omogućilo je korištenje
algoritama strojnog, potpornog i dubokog učenja za predviđanje kretanja čovjeka i zaključi-
vanje o njegovim namjerama. Najčešće su korišteni temporalni modeli poput povratnih
neuronskih mreža i njihove izvedenice, mreže s dugom kratkoročnommemorijom. Ti mod-
eli su sposobni učiti obrasce izravno iz podataka bez potrebe za dodatnim pretpostavkama
o optimalnosti i računanjem putanja do ciljeva. Također, korištenjem naprednih metoda
odabira značajki poput analize korelacijie ili autoenkoderskih arhitektura moguće je izlučiti
najbitnije značajke za predviđanje čovjekova djelovanja i gibanja. Time je moguće znatno
ubrzati metodu predviđanja te smanjiti količinu potrebnih senzora u suradnom prostoru
bez većeg gubitka moći predviđanja i sigurnosti.

Cilj je ove disertacije razviti programski okvir predviđanja čovjekova djelovanja i gibanja
u suradnim prostorima ljudi robota. Prvo poglavlje opisuje problem predviđanja čovjekova
djelovanja, znanstvene doprinose disertacije i kratki sadržaj preostalih poglavlja. Drugo
poglavlje donosi teoretski pregled korištenih programskih okvira, matematičkih modela i
algoritama. Opširno se opisuju metode pronalaženja optimalnog puta i razlaganja prostora
radi smanjenja vremena pretraživanja. Daje se podroban teoretski pregled vjerojatnosnih
modela odlučivanja za predviđanje djelovanja i gibanja čovjeka te se opisuju metode odabira
značajki korištene u disertaciji. Nadalje, donosi se pregled metoda za predviđanje sekvenci
poput čovjekova kretanja baziranih na kinematičkom modelu i učenju iz podataka. Četvrto,
peto i šesto poglavlje opisuju ostvarene vlastite znanstvene doprinose, dok sedmo poglavlje
zaključuje disertaciju i daje uvid u daljnji razvoj algoritama predviđanja čovjekova djelovanja
i gibanja. U nastavku slijedi kratki opis tri znanstvena doprinosa ostvarena u ovoj disertaciji.



#1 Metoda predviđanja čovjekova djelovanja pomoću skrivenog Markovljeva modela za
integrirane skladišne sustave zasnovana na mjerenju položaja čovjeka i podacima iz
virtualne stvarnosti.

Integrirani skladišni sustavi podrazumijevaju blisku suradnju ljudi i autonomnih robota u
automatiziranim fleksibilnim skladištima. U takvim je sustavima najčešće implementiran
centralni sustav upravljanja flotom vozila (Fleet Manager System - FMS) koji je odgovoran
za planiranje njihovih trajektorija. Te se trajektorije planiraju s obzirom na unaprijed zadani
skup zadataka koji se u skladištu moraju izvršiti. Osim planiranja, FMS vodi računa o
lokacijama svih subjekata i objekata u skladištu te nadgleda izvršavaju li se svi zadaci u
skladu s planom. U slučaju nepredviđenog događaja poput pojave novih zadataka, kvarova
ili promjene namjera čovjeka, FMS mora pravovremeno reagirati i preusmjeriti robote da bi
se održala efikasnost i osigurala sigurnost ljudi u skladištu. Kako bi se to ostvarilo, potrebno
je precizno estimirati buduće djelovanje čovjeka u stvarnom vremenu i voditi računa o
njemu prilikom planiranja novih trajektorija robota.

Jedan od preduvjeta za prepoznavanje namjera i djelovanja čovjeka poznavanje je pozi-
cije čovjeka te razumijevanje njegove okoline. Konkretno, potrebno je precizno odrediti
lokacije svih zanimljivih objekata u čovjekovoj blizini te ustvrditi može li ih čovjek vidjeti i
je li svjestan njihove prisutnosti. Za to je potrebno poznavati poziciju čovjeka i njegov smjer
gledanja, odnosno orijentaciju njegove glave što se vrši algoritmima lokalizacije. Lokalizacija
ljudi i robota vrši se naprednim algoritmima koristeći razne senzore poput kamera, radio-
frekvencijske identifikacije i lasera. S obzirom na napredak u razvoju tehnologije virtualne
stvarnosti (Virtual Reality - VR) i proširene stvarnosti (Augmented Reality - AR), AR uređaji
postaju lakši i ugodniji za nošenje te vrlo funkcionalni. Njihove mogućnosti uključuju
vrlo precizno kartiranje i lokalizaciju, prikazivanje naprednih holograma u vidnom polju
korisnika i reproduciranje zvuka. Takvi se uređaji prirodno mogu integrirati u okruženje
robotiziranog skladišta jer na njima je moguće prikazivati relevantne podatke radniku
poput sljedećeg zadatka i stanja okoline. Korištenje podataka AR uređaja zato omogućuje
prepoznavanje djelovanja čovjeka te pospješuje interakciju čovjeka i robota. S obzirom na
to da treniranje osoblja za korištenje AR uređaja može biti dugotrajan proces koji bi zahtije-
vao njihovo izlaganje opasnostima u skladištu ili njegovo zaustavljanje, moderna skladišta
koriste digitalne blizance napravljene u virtualnoj stvarnosti. Takva skladišta tlocrtom i
izgledom odgovaraju pravom skladištu uz jednaku funkcionalnost nosivog uređaja.

Cilj je prvog znanstvenog doprinosa razviti metodu predviđanja čovjekova djelovanja za
integrirane skladišne sustave zasnovanunamjerenju položaja čovjeka i podacima iz virtualne
stvarnosti. Pretpostavka ovog modela jest postojanje ograničenog broja unaprijed poznatih
zanimljivih lokacija u skladištu, a te lokacije zovemo potencijalnim ciljevima čovjekova
djelovanja odnosno kretanja. Položaj čovjeka estimira se korištenjem senzora ugrađenh u
MicrosoftHoloLens naočale za proširenu stvarnost dok je položaj robota u prostoru dobiven
fuzijom signala odometrije i detekcije markera na podu skladišta. Pomoću tih se signala
agenti smještaju na unaprijed dostupnu dvodimenzionalnu kartu skladišta. Korištenjem
generaliziranih Voronoijevih dijagrama i D∗ algoritma pretraživanja grafa pronalazi se
optimalna putanja do svakog cilja. Analizom kretanja čovjeka i usporedbom s optimalnom
putanjom računa se relativno odstupanje za svaki cilj. Taj se signal obrađuje predloženim



skrivenim Markovljevim modelom. Predloženi skriveni Markovljev model sadrži po jedno
skriveno stanje za svaki cilj te dva dodatna stanja: iracionalni agent i nepoznati cilj. Dodatna
su stanja uvedena kako bi se modelu na prirodan način omogućilo izražavanje nesigurnosti
predviđanja. Pomoću Viterbijevog algoritma za računanje očekivane distribucije skrivenih
stanja dobiva se vjerojatnost svakog cilja što predstavlja izlaz modela. Predloženi je model
testiran u robotiziranom skladištu i u digitalnom blizancu skladišta pomoću VR tehnologije.
Skalabilnost modela pokazana je korištenjem većih skladišta s većim brojem robota u VR
okruženju.

#2 Metoda predviđanja čovjekova gibanja za planiranje trajektorija robota svjesno blizine
čovjeka u integriranim skladišnim sustavima.

U integriranom robotiziranom skladištu FMS vodi računa o poziciji svih agenata (robota
i ljudi) i njihovim zadacima, a istovremeno pazi na efikasnost i sigurnost. Centralna zadaća
FMS-a jest planiranje trajektorija za sve agente što je vrlo kompleksan zadatak i temelji se
na preslikavanju strukturirane karte prostora u graf resursa, gdje svaki resurs ima zadani
vremenski tijek. Vremenski tijek podrazumijeva slobodne i zauzete vremenske prozore koji
ukazuju na to je li određeni resurs slobodan ili zauzet od strane nekog agenta. Iterirajući
po agentima planira se optimalna putanja za svakog pojedinačno uz ograničenja koja
osiguravaju nesmetano rješavanje konflikata. Također, potrebno je planirati trajektorije
na način koji ne ugrožava ljudski život. Zbog toga se uvode tri razine ograničenja koje
se nazivaju sigurnosne regije definirane pomoću udaljenosti od čovjeka u skladištu. Prva
sigurnosna regija nalazi se u neposrednoj blizini čovjeka i robot se zaustavlja u slučaju da se
nađe u njoj. Drugu sigurnosnu regiju definiramo većim radijusom od prve i FMS ne šalje
robote u tu regiju prilikom planiranja. Treća sigurnosna regija predstavlja područje snižene
brzine, ali je kroz nju moguće planirati robotovu putanju. Predstavljeni planer daje prioritet
čovjekovom nesmetanom gibanju te je vrlo osjetljiv na njegovo slijeđenje unaprijed zadanje
putanje.

U slučaju da čovjek ne slijedi unaprijed zadanu putanju potrebno je takvo ponašanje
detektirati i pravovremeno reagirati. Cilj je drugog znanstvenog doprinosa razviti metodu
predviđanja čovjekova gibanja za planiranje trajektorija robota svjesno blizine čovjeka
u integriranim skladišnim sustavima. Prvi korak predloženog algoritma utvrđivanje je
devijacije od zadane putanje pomoću definiranog dozvoljenog područja devijacije. U slučaju
da se čovjek ne nalazi unutar dozvoljenog područja dulje od jedne sekunde pretpostavlja se
da više ne slijedi zadanu putanju. Tada se šalje upit modulu za predviđanje čovjekova gibanja
koji ovisno o razini pouzdanosti u svoje predviđanje dojavljuje novu trajektoriju ili poruku
da se ona ne može zaključiti s visokom razinom pouzdanosti. Predviđanje trajektorije vrši
se pomoću već predstavljenog skrivenog Markovljevog modela i pretpostavke o jednolikom
gibanju čovjeka. Kako bi se ispitao utjecaj predloženog modula za detekciju devijacija i
predviđanje trajektorije, potrebno je bilježiti aktivnost u skladištu: broj uspješnih dostava
robota i čovjeka kao i bliske susrete robota i ljudi te ukupan broj replaniranja putanja u
minuti.



#3 Metoda predviđanja čovjekova djelovanja zasnovana na kinematičkom modelu čovjeka
i vjerojatnosnom odlučivanju u suradnim prostorima ljudi i robota.

Zahvaljujući razvoju tehnologije napredni robotizirani sustavi nisu ograničeni na kohab-
itaciju s ljudima, već dolazi do povećanja suradnje robota i ljudi u industrijskim okruženjima.
Takva okruženja donose sa sobom nove izazove, ponajviše vezane za efikasnost i sigurnost
zbog stohastičnosti ljudskog ponašanja i gibanja. U robotiziranim skladištima najčešći
zadatci su prenošenje predmeta i slaganje na police. Za takve sustave moguće je postići
zavidnu razinu sigurnosti i efikasnosti preciznim predviđanjem buduće lokaciju čovjeka
u dvije dimenzije, to jest na karti skladišta. Tada nije potrebno predvidjeti gibanje cijelog
kinematičkog lanca čovjeka, odnosno položaja udova u vremenu. Međutim, u suradnim
prostorima poput varionica i operacijskih sala gdje robotski manipulator pomaže čovjeku u
izvršenju zadatka potrebno je precizno osmotriti gibanje čovjekova kinematičkog lanca i
pomoću njega zaključiti ciljeve čovjeka i njegovo buduće gibanje.

Cilj je trećeg doprinosa razviti metodu predviđanja čovjekova djelovanja zasnovanu
na kinematičkom modelu čovjeka i vjerojatnosnom odlučivanju u suradnim prostorima
ljudi i robota. Odabrana metoda za rješavanje ovog problema zasnovana je na povratnoj
mreži s dugom kratkoročnom memorijom (Long Short-Term Memory Network - LSTM)
koja je nadograđena verzija povratne neuronske mreže (Recurrent Neural Network - RNN).
Navedene se arhitekture temelje na učenju uzoraka iz podataka. S pojavom javnih skupova
podataka koji sadrže snimljene podatke o kinematičkom lancu čovjeka te smjera pogleda u
scenariju uzimanja i odlaganja predmetamoguće je naučiti parametre navedenih arhitektura.
S obzirom da su navedene metode slojevite, odnosno ovisno o stupnju složenosti mogu
sadržavati velik broj parametara, a dostupan broj podataka je ograničen, potrebno je odrediti
ulazne značajke u navedene modele. Snimljeni kinematički lanac sadrži nekoliko desetaka
položaja i orijentacija čovjekovih zglobova te se predlaže metoda odabira značajki temeljena
na korelaciji. Dodatno, predaže se alternativnametoda odabira značajki direktno iz podataka
temeljena na autoenkoderskoj arhitekturi. Snimljen je vlastiti skup podataka koji umjesto
cijelog kinematičkog lanca bilježi samo položaj ruke i orijentaciju glave te su rezultati
uspoređeni s prethodnommetodom. Konačno, s obzirom na to da je uređaj za bilježenje
smjera pogleda skup, nezgrapan i ne može se koristiti s naočalama, razvija se metoda
estimacije smjera čovjekova pogleda.

ključne riječi: predviđanje čovjekova djelovanja, predviđanje čovjekova gibanja,Markovl-
jevi procesi odlučivanja, skriveni Markovljev model, vjerojatnosni modeli odlučivanja,
povratne neuronske mreže, autoenkoder, odabir značajki, povratna mreža s dugom kratko-
trajnom memorijom, suradni prostori
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1
Introduction

T he introduction chapter presents and elaborates the motivation behind the
research conducted in the thesis. We shall start by discussing what exactly we mean

by human action and motion prediction in industrial human-robot shared environment and
how we approached solving this problem. Then, we discuss probabilistic decision-making
models and supplementary frameworks used for solving them. We shall also discuss and
break down the title of the thesis and see how it relates to the contents of the thesis research.
The main challenges in solving this problem are laid out, followed by a discussion of various
approaches taken. Afterward, the original scientific contributions of the thesis are presented
with more detailed elaborations. In the end, the outline and structure of this thesis are
sketched, with a short description and main aspects covered in each of the chapters.

1.1motivation and problem statement

TheEuropean e-commerce turnovermanaged to increase 10% to€757 billion in 2020, leading
the way in the challenging times and environments [1]. With the internationalization of
distribution chains, the key to success lies within efficient logistics, consequently increasing
the need for larger warehouses and their automation. As robots are becoming more capable
and sophisticated, we are witnessing growth in their presence and integration in both private
and professional human environments. Nowadays, such shared environments, besides
cohabitation, often include close human-robot collaboration and interaction. Examples of
such environments are warehouse automation solutions such as Swisslog’s CarryPickMobile
system and Amazon’s Kiva system [2] which use movable racks that can be lifted by a fleet of
small, autonomous robots. By bringing the product to the worker, productivity is increased
by a factor of two or more, while simultaneously improving accountability and flexibility [3].
However, current automation solutions are based on strict separation of humans and robots;
the worker is not allowed to enter the shop floor during operation due to safety reasons,
since a robot with a rack can weigh together up to a ton. When moving they are posing a
significant risk to all humans nearby. Therefore, when human intervention is needed on the
shop floor, the whole fleet of mobile robots has to be stopped and remain stopped until the
worker has again left the shop floor. With the increasing size of warehouses, such events
immensely impact operational efficiency. Therefore, a novel integrated paradigm arises
where humans and robots will work closely together and these integrated warehouse models
will fundamentally change the way we use mobile robots in modern warehouses.
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Besides safety, as the fundamental requirement in every human-robot interaction (HRI)
scenario, the proposed system has to take usability into account. It has to be ensured
that the worker is assisted and not impeded during work. One way of achieving this is
to, on the one hand, ensure that robots are avoiding the area near workers and, on the
other hand, instruct the worker to reach their goal through robot-free zones and corridors.
Given that, we assert that a future warehouse system, which will have to orchestrate and
coordinate human workers and robots, would significantly benefit if it were able to estimate
workers’ intentions correctly and control the robots accordingly, so that warehouse operation
efficiency is ensured. While robots operating in these environments are fully controllable,
human behavior, on the other hand, is not. Because of that, in order to ensure efficiency and
safety, robots in human proximity should be aware of possible changes in human intentions
and react accordingly. Having that in mind, one of the main challenges in collaborative
environments is to capture the uncertainty and nuances of human behavior, intentions,
and actions. In order to do that, the supervisory system has to be aware of the context the
human is in, measure appropriate features, and craft a method that works reliably and in
real time.

Let us continue now by decomposing the title of the thesis. The "human action predic-
tion" pertains to a wide range of possible human activities in industrial environments. It is
important to note that the focus of this thesis is not human action recognition which, while
sounding similar, is quite a different problem that aims to understand human behavior
and assign a label to each action. For example, a problem falling into the human action
recognition domain is determining whether the observed subject is sitting, running, or
jumping from video or data from a fusion of various sensors. On the other hand, human
action prediction, also called human intention recognition in the literature, limits the type of
action with respect to the environment. Namely, in the manufacturing domain, we try to
predict which object a human is going to pick next, and in the integrated warehouse domain,
we guess the next shelf or warehouse exit a human is going to visit. By limiting ourselves to
a concrete set of expected outcomes, we can concentrate on discriminating between these
and polishing the method for timely and precise prediction of the next goal of a human.
There exists a plethora of challenges in human intention estimation, because of the subtlety
and diversity of human behaviors [4]. Contrary to some physical characteristics, such as
position and velocity, human intention is not directly observable and usually needs to be
estimated from human actions. It is also imperative to put those actions in context because
even basic behaviors, such as walking, running, and jumping, are interpreted differently
in, e.g., sports events, office, and warehouse environments. Furthermore, because human
intention estimation should serve as input to decision-making processes [5], the intentions
should be estimated in real-time, and overly complicated models should be avoided. Having
that in mind, only the actions with the greatest influence on intention perception should
be considered as inputs to the human intention recognition model. For example, in the
warehouse domain, workers’ orientation and motion as well as mobile robots’ movement
have a large effect on goal intention recognition. On the contrary, observing, e.g., a worker’s
heart rate or perspiration could provide very little, if any, information on the worker’s
intentions. Therefore, such measurements should be avoided in order to reduce model
complexity and ensure real-time operation [4].
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The "humanmotion prediction" aims to generate a set of future frames of humanmotion
based on an observed sequence. Generally, it can leverage inputs from cameras, wearable
devices, or motion capture systems and use various mathematical models and frameworks
to yield the prediction. The nature of the aforementioned prediction can be a sequence of
locations on a map, skeleton poses, or probabilistic distributions. In this thesis, we observe
human action and motion prediction as coupled problems and approaches to solving them
simultaneously.

There are plenty of domains of the human enterprise including numerous outdoor and
indoor environments. Devising a general model for human action prediction is hard, if
not impossible, without aiding it with some spatial context. For example, certain actions
and movement nuances can carry different meanings based on the environment they are
manifested. An observed behavior pattern can be interpreted differently during robot-
aided operations, hunting, or shopping for groceries. Because of that, in the scope of this
thesis, we put emphasis on "human-robot shared environments". These environments are
constituted of one or more human workers paired with one or more autonomous robots,
together commonly labeled as agents in the literature. Humans and robots coexist and even
collaborate in such shared environments and the actions of humans are heavily coupled by
the behavior of the robot because controlling robots is dependent on human behavior. The
aforementioned environments are very complex and this thesis focuses on two common
modalities. The first one is integrated robotized warehouse systems where a fleet of mobile
robots can move under the racks as well as carry them while human workers perform
maintenance, inspection, and picking duties. These warehouses can be exceedingly large
and safe path planningwhile retaining efficiency is amajor challenge in such an environment.
Modern-day solutions equip workers with artificial intelligence wearable devices pointing
them in the right direction, listing tasks, and monitoring their status. Such devices can be
leveraged to send information about humanmovement and status to the supervisory system
which can utilize this information to precisely infer their actions and future movement.
The other environment the focus of this thesis is the collaborative environment in the
object-picking domain. Examples of such environments could be hospital operations with
the help of a robotic manipulator or a robot-aided welding manufacturing shop. In these
environments, the actions andmovements of human aremore delicate and the sensor system
capturing them are more sophisticated. These systems, such as motion capture systems, are
utilized to reconstruct the human kinematic model which can be used to precisely predict
actions such as picking and carrying objects in the scene.

Finally, we discuss what the "probabilistic decision-making methods" term encapsulate.
Solving a human action prediction problem is not a trivial or easy task. It is necessary to
consider spatial context, previously observed sequences, and potential goals of the observed
behavior. The models used for this must be complex, utilize available data, and work in
real-time to be useful to the supervisory system and they also need to couple intent and
action estimation with the degree of certainty of current inference. Because of this, models
and mathematical frameworks in this thesis are probabilistic - meaning they deal with the
uncertainty in a natural way modeling it with probabilistic distributions and interpreting it
accordingly. Because humans often behave nearly rationally [6] with respect to their desires
the natural approach to decode human behavior is to try to formulate a mathematical
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decision-making model mimicking the result - a predicted behavior. Having that in mind,
we focus on utilizing probabilistic decision-making methods, both experimentally devised
and tuned as well as learned from data, to predict future human actions and movement in
industrial human-robot shared environments.

1.2original scientific contributions

The original contributions of the thesis essentially revolve about crafting both data-driven
and manually-tuned probabilistic decision-making methods for human action and motion
prediction in human-robot shared environments. The contributions and a brief elaboration
follow in the sequel.

• A method for human action prediction using a hidden Markov model for integrated
warehouse systems based on human pose measurements and virtual reality data.

This contribution covers algorithms and frameworks developed for human action
prediction. Firstly, a map of the environment is extracted and a generalized Voronoi
diagram (GVD) is calculated. Nodes of the GVD are used for associating human
positions obtained from Microsoft HoloLens Augmented Reality wearable device. As
robots move in the warehouse, the optimal path towards certain interesting points
in the warehouse, called goals, changes and is recalculated using the D∗ algorithm.
Distance between associated nodes and goals is used as observation for the proposed
Hidden Markov Model. Alternatively, these distances are obtained using Markov
Decision Process in the simulated warehouse environment. The Hidden Markov
Model is solved using the Viterbi algorithm and goal probabilities are considered
predictions of future human intention and action.

• A human motion prediction method for human-aware robot trajectory planning in
integrated warehouse systems.

This contribution encompasses the application of the previous contribution in synergy
with the Human Aware Planner. The human deviation algorithm is presented and
human trajectory prediction is performed using estimated goal and constant velocity
assumption. Human deviations from the original plan are detected detailed procedure
for replanning is crafted in order to maximize warehouse throughput and minimize
potential human-robot collisions and needed replanning.

• Amethod for human action prediction based on their kinematic model and proba-
bilistic decision-making in human-robot shared industrial environments.

This contribution comprises a method for human action prediction based on their
kinematicmodel.The kinematicmodel of humans is obtained using aMotion Capture
suit and the human gaze is sampled from a dedicated wearable device. These signals
are used as input to a proposed ensemble of Recurrent Neural Networks (RNNs) and
Long Short-TermMemory Networks (LSTMs). In order to improve execution time,
features are carefully selected using correlation analysis and an autoencoder-inspired
multilayer perceptron architecture.
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1.3outline of the thesis

The thesis is organized into six chapters. Each chapter begins with a short abstract which
serves to present generally the content of the chapter, its results, and the insights it offers.
Afterward, the reader is gradually introduced to the problem and the related work in the
field. After the body of the chapter, in the end, a summary is given which restates some of
the main results of the chapter and its contributions. Hereafter, we present the outline of
the thesis with a short summary of the contents.

g chapter2 .This chapter presents the general mathematical background for the
thesis and sets up the context of the problem at hand. Space sampling methods, namely
occupancy grid and General Voronoi Diagrams are introduced together with A∗ and D∗
path planning algorithms. Furthermore, probabilistic decision methods used in the thesis
are presented with a focus on Markov models and neural network modalities such as RNN
and LSTM. Finally, the correlation of temporal signals is analyzed together with Multilayer
Perceptron-based methods used for feature selection.

g chapter3 .A novel approach to human action prediction for integrated robotized
warehouses based onMarkov decision models is introduced in this chapter. The generalized
Voronoi diagram algorithm is used for the warehouse map partitioning and searches on the
generated graph is performed with A∗ and D∗ graph search algorithms. Distances between
nodes of the graph and the human position associated with them serve as observations for
the proposed hidden Markov model which yields probabilities of goals for human actions.
The algorithm’s performance is evaluated using data from the real warehouse and its larger
digital twin designed in Virtual Reality.

g chapter4 .In this chapter, a method for human motion prediction in the integrated
robotized warehouse is given. An overview of the Fleet Management System is given and
a procedure for planning paths of human workers and autonomous ground vehicles is
presented. A novel human deviation detection algorithm is proposed with an emphasis on
industrial warehouse domain application. Previous findings on human action prediction
are expanded to yield predicted trajectories used for rerouting robots if a high probability
of collision is anticipated. Detailed testing of key metrics is performed including the av-
erage number of human deliveries, robot deliveries, replanning number, and warehouse
shutdowns.

g chapter5 .In this chapter, a method for human action prediction based on their
kinematic model is presented. The human kinematic model is obtained from a motion
capture system and multiple positions and orientations of joints are observed. Distance
towards potential goals and joint orientations towards them are considered observations for
the proposed ensemble of Long Short-Term Memory Networks which perform prediction
of the next picking actions. In order to speed up the inference, a feature selection method
based on correlation and individual merit is proposed as well as a data-driven feature
selection method based on neural networks. The proposed framework is thoroughly tested
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on a public dataset and an in-house recorded dataset with a reduced number of observed
joints is recorded and a gaze estimation method is proposed and tested.

g chapter6 .This chapter brings conclusions and a summary of the scientific contri-
butions. Some ideas for future work are given as well.



2
General Background

T his chapter presents the mathematical background and several tools utilized
in the thesis. Used sensors and a basic overview of their principles will be brought out

in order to better understand the implementation implications of the proposed algorithms.
The emphasis is set on probabilistic decision-making methods which include Markovian
models and neural networks. Mathematical details of used frameworks such as the Markov
Decision Process, and HiddenMarkov Model are presented and algorithms used for solving
them are laid out. These algorithms include the iterative Viterbi algorithm, and policy and
value iteration algorithms. Real-time human action prediction depends on the fast search
for the optimal path in the integrated warehouse domain. Because of that, we will introduce
occupancy grid maps, a representation of warehouse plans, and common algorithms used
for searching for optimal paths utilized in this thesis. These algorithms include space
partitioning Generalized Voronoi Diagram, as well as graph searching algorithms A∗ and
its dynamic version D∗. Furthermore, we will introduce neural network frameworks and
concepts, namely Multilayer Perceptron architecture, encoders, decoders, and autoencoders
as well as recurrent architectures; the Recurrent Neural Network, and its more advanced
version Long Short-TermMemory Network. We will discuss network architecture which
includes hidden dimensions, layers, learningmethods, and optimization. Special importance
will be given to a feature selection process for which we will introduce signal correlation. In
the end, we will give a brief overview of testing techniques used for obtaining statistically
significant results, with an emphasis on the cross-correlation method.

2.1introduction

Themain goal of this thesis is to precisely and timely predict human actions and motion
in human-robot shared industrial environments. These environments include multiple
types of robots such as collaborative robots, fixed-base manipulators, mobile robots, and
mobile manipulators. When it comes to sharing an environment with humans, literature
[7] distinguishes three types of human-robot interaction (HRI):

• Human-Robot Coexistence, where humans and robots share the same working space
but perform tasks with different aims. Examples of such environments are integrated
warehouses where humans perform maintenance work while robots carry pallets.

• Human-Robot Cooperation, in which humans and robots perform different tasks
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Figure 2.1: Human intention recognition as part of the SafeLog Project architecture. The fusion of
sensors on a Safety Vest, Augmented Reality glasses, and those positioned around the
warehouse is leveraged as input to the human intention and action recognition algorithm.
The algorithm reports back estimations of the human intentions to the Fleet Management
System which takes this information into account to make decisions about rerouting
robots.

but with the same objectives that should be fulfilled simultaneously in terms of time
and space. Such environments can be imagined as an advanced integrated warehouse
where a robot brings pallets to a human worker who picks needed objects, further
inspecting them.

• Human-Robot Collaboration, where a direct interaction is established between the
human operator and the robot while executing complex tasks.We can imagine a collab-
orative welding environment, where robots help the human worker with preparatory
tasks and directly assist in the process.

Each of these levels of interaction requires robots to be aware of human positions,
intentions, actions, and future motion. In order to achieve this, human-robot shared envi-
ronments are equipped with a plethora of sensors observing the positions and states of all
agents. For example, the Safe human-robot interaction in logistic applications for highly
flexible warehouses (SafeLog) project aims to bring human-robot interaction to life in a
warehouse domain. The human interaction module as part of the proposed Fleet Manage-
ment system in the context of integrated warehouse sensors can be seen in Fig.2.1where
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it serves a crucial role in managing unpredictable situations accounting for uncertainty
in human intentions and motion. As already stated, the human intention recognition and
action prediction problem are complex because it follows from estimating human desires
that are nuanced and often prone to sudden change. Because of that, it is important to feed
a model as much context and information about the surrounding world as possible. In the
warehouse domain, such information might consist of the known environment (floor map),
the position of robots, and details about interesting or dangerous spots in the warehouse.
We would naturally look at the position of a human worker on the warehouse map and
where is the worker looking as our cues for inferring desires. If we are interested in object
picking domain or some other cooperative or collaborative environment, then it is essential
to capture more details of human movement which includes an effort to reconstruct the
human kinematic model. Also, recording the direction of the subject’s eye gaze has shown
to be pivotal to human action prediction problems in recent research [8, 9, 10, 11]. Having
this in mind, we dedicate Section2.2to sensors we utilized for observing human motion,
eye-gaze direction, and environment. We will discuss their principle of operation, common
use, and implications they have for our use case.

After we introduce sensors used for the perception of the environment and human
motion, we will address methods and frameworks used for human action recognition
and motion prediction. The leitmotifs of these sections will be real-time execution and
uncertainty handling via probabilistic interpretation of inputs. Firstly, in Section2.3we will
discuss path-planning algorithms in the shared environment domain.These algorithms help
us to set a baseline for the comparison of observed human motion to the optimal one with
respect to the predefined set of goals. In order to find these paths, we will introduce optimal
and complete graph search algorithms - the A∗ and D∗ algorithms. Their pseudocode will
be laid out and optimality and completeness considerations will be given. We will discuss
choices of environment representation and introduce occupancy grid maps as our method
of choice. In order to reduce the search space and improve execution time, the Generalized
Voronoi Diagrams are used. Their definition and applications are discussed in Section2.4.
The optimality of a given path sometimes usually relates to total time, traveled distance,
or smoothness of the resulting trajectory but sometimes can not be explicitly stated. For
example, avoiding noisy, narrow or for some other reason, unsafe parts of the scene or
environment can not be trivially embedded into a graph representation of the environment.
Because of that, we introduce the Markov Decision Process model which assigns each
state (location) a reward. By solving for an optimal reward using value and policy iteration
algorithms one can find an optimal path and evaluate human behavior.

Furthermore, in Section2.5we introduce probabilistic decision-making methods used
in the scope of this thesis. Their role is to interpret observed motion obtained via utilized
sensors and put it into context with the help of path-planning methods. For this task, we
will select two approaches, the first one being the Hidden Markov model, a reinforcement
learning-based framework that extends MDP with the addition of the hidden state concept.
The hidden state naturally mimics human intention or desire that needs to be concluded
and reconstructed from observed motion and actions. We will explain the details of HMM
architecture and principles of the Viterbi algorithm, the iterative algorithm used for solving
the most probable sequence of the hidden state. The other approach we will take for the
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estimation of human actions and motion is based on the neural network paradigm. The
core principles of neural networks, especially Multilayer Perceptron will be laid out with
an emphasis on key elements such as layers, backpropagation, activation functions, and
architecture details. In order to interpret the time-series data, such as observed human
motion, it is necessary to propagate information from previous time steps into the inference
method. We introduce Recurrent Neural Networks (RNNs) and the more advanced Long
Short-Term Memory (LSTM) networks for this task, with an in-depth explanation of their
innovative recurrent connection. Since the architecture is just one part of any neural network
model, we will discuss training and testing methods as well as statistically significant result
interpretation, giving emphasis on the cross-correlation method. As the human action and
motion, prediction problem must be solved in real-time to be useful to the supervisory
system [4], and neural network approaches run time can rise considerably with the number
of input features and layers [12], recent works aim to reduce feature number while obtaining
satisfactory precision. We will introduce the mathematical background of correlation signal
analysis which is one of the methods used in literature for reducing the feature space thus
improving execution time. Finally, we will summarize the introduced sensors, models, and
algorithms in Section2.6.

2.2utilized sensors

Themain feature distinguishing a robot from a commonmachine is its capability of carrying
out a complex series of tasks and actions automatically, as per Oxford dictionary, [13].
One of the main assumptions for automatic or autonomous behavior is awareness of the
environment the robot operates. Having that in mind, the field of robotics heavily relies
on the perception of the surroundings to operate safely and efficiently [14]. Tools used for
perceiving the environment are commonly known as sensors and can be defined as devices
that detect and respond to some type of input from the physical environment. Sensors are
commonly divided into two groups in literature, depending on the target value they are
measuring:

• Proprioceptive sensors that measure the inner states of a robot. Examples of such
sensors are odometry sensors (encoder, accelerometer) computing the pose of a robot
and orientation sensors (gyroscope, compass).

• Exteroceptive sensors that measure external states of the environment. Examples of
such sensors are cameras, lasers, and various ranging sensors.

While these sensors give useful raw data about the environment, these pieces of information
have to be put in context for intelligent decision-making. For example, the most commonly
used type of camera in robotics, the RGB camera, captures images with a certain resolution
assigning each pixel its red, green, and blue value. The values of those pixels can be affected
by the noise of the sensor and motion blur [15]. Also, in order to extract and track the exact
position and orientation of humans from the camera frame, complex algorithms relying
on deep learning are commonly employed [16]. These algorithms run slow and require
a substantial dataset to be trained on. Algorithms such as simultaneous localization and
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mapping (SLAM) [17] and Kalman filter [18] and its variations [19] leverage sensor fusion
for solving problems such as mapping, localization, and object detection tracking. They
are successfully implemented in various human-robot shared environments and scenarios.
An example of such a complex environment robotized system, where information from
multiple sensors is fused to improve the reliability of worker and robot localization in the
integrated robotized warehouse, can be seen in the Figure2.2.

Safety Vest

Safety Vest Location
Safety Vest Status

Picking Tasks

Safe
Stop

Safety Vest Heartbeat

AR Glasses

Robots

Safe Stop

UWB
Readings Robot Positions

Image Stream

Cameras

FN A

SV Base 
Station

Location 
Server

Human Positions

Warehouse 
Management 

System

Tasks

Fleet Control

Ground 
Nodes

Fleet 
Management 

System

Figure 2.2: Sensors utilized in the SafeLog Project include, among others, Ultra-wideband ranging
sensors, cameras detecting ground nodes, and Augmented Reality glasses aiding the
localization.

In the scope of this thesis, we will be mainly interested in the precise positions and
orientations of human joints in the robotized environment. While we will use information
about the environment, such as the location of robots and interesting objects as well as the
structure of the scene which includes mapping of the environment, proposed algorithms
will not access this information directly. Because of that, we will continue by expanding
on the sensors directly used as part of human action and motion prediction. First of these
sensors are Microsoft HoloLens augmented reality glasses that, apart from their display
capabilities, actively map the environment and localize themselves in it. As the software
used for localization and mapping is proprietary, we will briefly present commonly used
state-of-the-art frameworks that solve this problem. The second sensor system we will
introduce is an Optitrack motion capture (MoCap) system for fast and reliable marker
detection and tracking. Furthermore, the system’s ability to reconstruct the human skeleton
and track the position of certain joints is of great importance for the goals of this thesis. We
will discuss the implications these sensors have on the performance of our algorithm and
the possible limits they might impose.
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Figure 2.3: The Microsoft HoloLens 2.0 Development Edition augmented reality glasses are used for
several experiments in the scope of this thesis.

2.2.1 Augmented and Virtual Reality

Augmented reality (AR) and virtual reality (VR) themselves have seen a big resurgence in
robotics in recent years [20]. VR refers to systems where the input from the outside world
is totally blocked and replaced by a system-generated input. The first VR system was built
in 1968 by Ivan Sutherland [21]. The device was extremely bulky and the screen resolution
was poor; however, it proved that VR was achievable. The first usable VR system came in
1992 with the CAVE system [22]. The CAVE is a special room where electromagnetic (now
infrared) trackers track 3D glasses (now usually with active polarization) and projectors
display the appropriate images on the room’s surfaces.With the hardware advancements, the
CAVE system has been replaced by cheaper and more flexible headsets such as the Oculus
Rift or theHTC Vive. This has sparked a boom in the field of robotics where VR has recently
seen the most use as a more intuitive method for teleoperation of stationary [23], mobile
[24] and humanoid robots [25]. A natural extension of such a teleoperation system is a more
immersive tool for telepresence robots [26]. It has also emerged as a method to teach virtual
robots how to perform tasks [27], where the knowledge is then successfully transferred to a
real robot. In manufacturing [28] VR has seen use as a virtual prototyping [29] and training
tool [30]. As a training tool, VR has been shown to increase the performance of trainees in
other areas as well, such as medicine [31], safety training in construction [32], and mining
[33]. Although viable as a system, especially for prototyping [34], it is not flexible enough to
be widely employed, requiring expensive sensors and a purposely designed room.
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Augmented reality, in contrast to VR, seeks to add information to the input from the
real world. The first AR systems started to appear in the 1980s, mostly for military research.
The most commonly quoted first functional AR system was the Virtual Fixtures system
[35], developed in 1992 by Louis Rosenberg for the US Air Force. Quickly its usefulness
became apparent in other fields as well, such as manufacturing, medicine, entertainment,
and robotics, where the first use cases focused on assistance in robotic teleoperation via a
stereo camera pair [36].These first AR systems in robotics added data to a camera stream and
displayed the enhanced view on computer monitors [37]. Today’s AR can be mostly divided
into projector-based, tablet or smartphone-based, head-mounted, and computer screen-
based. The projector-based AR has seen use for visualizing robot’s intentions and intuitive
programming of robots in robot work cells [38], displaying intentions of mobile robots
operating in human environments [39], as well as for debugging and rapid prototyping
of robotic systems through visualization of sensor data [40]. Tablets have seen use in AR-
assisted robot programming [41] as well. Devices like the Google Tango tablet, in addition,
with inbuilt SLAM [42] can be used for markerless AR applications. The main challenge
with tablets is that it occupies the hands, preventing any work while the AR information
is visualized. With the recent releases of the ARCore and ARKit toolkits, for Android and
iOS devices respectively, tablet and smartphone-based AR applications are becoming an
economical and straightforward interaction modality for home robots [43]. Head-mounted
systems can be further divided intoHeads-upDisplay (HUD) systems and “full-AR” systems,
with themost famousmember of the former being theGoogle Glass and of the latterMicrosoft
Hololens. As the name implies, HUD-based systems do not have any advanced localization or
computing systems and therefore are only able to display interfaces, while full AR systems
are able to perform localization using SLAM and display persistent, full 3D holograms
in space. HUD systems have found applications in logistics, where they have been used
for pick-by-vision systems to quicken and ease the picking of items in warehouses [44].
Since full AR systems, starting with the Hololens, have not been on the market for long,
research is just starting [20], with the most prominent field perhaps being AR assisted
robot programming [45]. Given the described potential, in this thesis, we will leverage
these systems for providing human intention cues and constructing realistic experimental
scenarios. For example, AR can be used to track worker motion inside the warehouse as well
as display valuable information, e.g, navigate the worker to a specific product that needs
to be picked, or assist in repairing a broken robot [46], while VR can be used to construct
elaborate virtual warehouses with realistic simulations of worker interaction.

For experiments conducted within this thesis, we used Microsoft HoloLens 2.0 Devel-
opment Edition AR glasses shown in Figure2.3. The device is equipped with a variety of
sensors including as many as four tracking cameras and a time-of-flight (ToF) range camera.
One of the main advantages of the selected device is the fact that, among other information,
the poses estimated by the built-in tracking system can be accessed by the user.Themapping
and tracking algorithms are based on Microsoft’s proprietary software and their exact algo-
rithms are not published [47], but their quality was tested and confirmed by Khoshelham et
al. and Hübner et al. in [47, 48] while we conducted similar experiment within this thesis to
attest to localization capabilities in the integrated warehouse environment. The VR engine
we selected for the development of twin environments real warehouses, as well as larger
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(a) One of twelve Flex 13 motion capture cameras used
for dataset recording.

(b) The Optihub 2 - a USB hub connected to cameras,
the other hub, and a PC collecting and broadcasting
recorded data.

Figure 2.4: The Optitrack motion capture system we used to record the dataset consists of two
Optihub 2 USB hubs connected to twelve Flex 13 motion-capture cameras that record
motion in high speed and precision.

warehouse environments, was the Unity game engine [49]. The Unity game engine bolsters
with seamless integration with the HoloLens device and ease of environment creation. Also,
the existence of the ROS# 1 package enables the connection with the Robot Operating
System [50] middleware used for the development of other components and modules in
the integrated warehouse domain.

2.2.2 Motion Capture System

A motion capture (MoCap) is the process of recording movement, more specifically the
position and orientation of interesting objects or subjects in the observed physical space [51].
While the roots of the technology come from gait analysis application [52], these systems
are now used in a wide variety of other fields including computer graphics animation [53],
robotics and military use [54]. The main principle of MoCap systems is the utilization of
multiple sensors to recognize and track interesting objects in the scene. The authors in [51]
list the most used approaches for capturing movement including:

• Optical-passive approach where reflective markers are tracked by multiple infrared
cameras [55],

• Optical-active approach with infrared LED markers tracked by multiple infrared
cameras [55],

• Tracking from video using dedicated software to detect and track the object motion
in each frame [56].

1 https://github.com/siemens/ros-sharp
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The main advantage of using tracking directly from the video is smaller hardware
dependency and potentially larger field of operation, but these methods lack the accuracy
of optical-passive and optical-active methods [57, 58]. In the scope of this thesis we have
used optical-passive OptiTrack solution shown in Figure2.4consisting of twelve Flex 13
motion capture cameras (Fig.2.4a) connected to two Optihub 2 USB hubs (Fig.2.4b). The
passive markers are 1.5mm diameter spheres defined as rigid bodies enabling fast 6 degrees
of freedom (DoF) tracking. Additionally, in order to capture a human kinematic model
imitating a human skeleton, the specialized motion capture suit can be used [10] paired
with the Motive software2. This way orientations and positions of each human joint can be
recorded in 120Hz [10] and fed to the human action and prediction models proposed in
the scope of this thesis.

2.3path planning

As stated earlier, a crucial part of many models concerning human action prediction and
motion planning, especially those based on inverse optimal control or Markovian models,
is path planning. The reason for that is these models rely on comparing observed motion
and behavior with a set of optimal or nearly-optimal behaviors with the respect to given
hypotheses. In the domains concerned in this thesis, these behaviors consist of moving,
looking to, or away from potentially interesting locations in space we call goals. If we are to
ascertain whether or not an observed sequence pertains to a goal in the set of all possible
goals, it is necessary to somehow quantify this movement. The intuition followed in the rest
of the thesis is that humans behave nearly rationally, meaning they will look at the goal they
desire and move towards it most of the time. The human movement is observed with the
introduced sensors and is given as a three-dimensional point in the workspace. Since this
workspace usually consists of obstacles, for example, warehouse racks and moving robots, it
can not be navigated freely and those obstacles need to be avoided. Because of that, it is
important to quantify how close is the observed human movement to optimal movement
toward each of the pertaining goals. For this task, we rely on path-planning algorithms.

Generally speaking, path planning algorithms aim to find a sequence of valid configura-
tions that moves the object from the source to the destination. In the human-robot shared
environments, such configurations consist of unoccupied navigable free space. Because
of that, the traversable areas of the warehouse or reachable elements of the collaborative
environment are called configuration space. In the field of robotics, configuration space can
range in complexity from a two-dimensional plane to an N-dimensional space [59] and can
be severely constrained based on the robot configuration. Additionally, possible approaches
for solving optimal paths depend on the criteria which include minimal distance, trajectory
smoothness, maximum safety, and fastest calculation [60]. With these facts in mind, it’s
not surprising that the field of path planning in robotics is one of the most important
and researched ones. Since we are using path planning mainly as a tool for comparing
the observed motion with the optimal one, our focus will shift to the family of algorithms
providing us with that information. Because of that we list and define several requirements
all proposed algorithms must meet:

2 https://www.optitrack.com/software/motive/
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• Optimality - the search algorithm is considered optimal if every solution it founds is
the best with respect to given criteria.

• Completeness - the search algorithm is considered complete if at least one solution
exists then the algorithm is guaranteed to find a solution in a finite amount of time.
While some algorithms like the rapidly-exploring random tree (RRT) [61] can find a
path in free space fast, they are only asymptotically complete meaning they might
not be able to find the path soon enough which leads us to the last requirement.

• Real-time operation - in the scope of this thesis, we will consider a method or algo-
rithm to be real-time if it executes the expected operation in time that is smaller than
the sample time of used sensors or the smallest time constant defining the expected
system dynamic. To expand on the latter, while human behavior can change abruptly
[62], it manifests much slower [63] than the usual sample time of utilized sensors.
Because of that, we will use real-time loosely but expect all algorithms to perform
with more than 10Hz frequency.

In the rest of this chapter, we will present specifics of path-planning algorithms used in
the scope of this thesis, lay out their pseudocode, and provide an in-depth analysis of their
performance and utility.

2.3.1 A∗ and D∗ graph search algorithms

The A∗, pronounced A star, search algorithm was authored by Hart and al. in [64] as a
graph traversal algorithm with the application in optimal path planning. It is an extension
of a well-known Dijkstra’s algorithm [65] with the introduced heuristics as a guide to its
search. The paradigm of the A∗ algorithm revolves around starting from the start node
and iteratively adding its children to the open list while expanding on the node in the open
list with the lowest current estimated cost to the goal node. In the robotics path planning
domain, the graph is usually constructed from the perceived or previously known floor
map. In the warehouse domain, such a map is constructed from floor plans, using a grid of
regular squares with the wanted resolution. Each square containing walls, racks, or other
untraversable elements is considered occupied while other squares are considered free. The
introduced procedure yields an occupancy map of the environment. Depending on the
capabilities of an agent moving in this environment, the configuration space is created from
the occupancy map. Because humans can move in all directions, each tile is considered
to have eight neighbors, one from each side and one in all diagonal directions. Once the
neighboring tiles on the occupancy grid are defined, we can interpret them as graph vertices
connected via graph edges, and the edge values are set to be Euclidean distance between
vertice centers in Euclidean space. The pseudocode of the A∗ algorithm for finding the
shortest path between any two nodes (vertices) in the graph is given in Algorithm1.

The main advantage of using the A∗ algorithm in the human-robot shared environment
is its fast performance and ensured completeness. Depending on the selection of the heuristic
function, the A∗ is also optimal. For omnidirectional agents, the heuristic function is usually
selected to mimic the actual cost of moving with the Euclidean distance (L2) as follows:

hx ,y =
√
(xa − xg)2 + (ya − yg)2, (2.1)
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Algorithm 1:The A∗ algorithm
Input: graph, startNode, goalNode
Output: path

1: openList ← startNode
2: closedList ← emptyList
3: path ← emptyList
4: while True do
5: currentNode ← openList. f irst
6: if currentNode is None then
7: return None
8: end if
9: if currentNode == goalNode then
10: return reconstructPath(currentNode)
11: end if
12: openList.removeFirst()
13: closedList.append(currentNode)
14: for neighbor in CurrentNode.neighbors do
15: openList.add(neighbor)
16: end for
17: openList.sortInplace()
18: end while

while the less agile agents that can move only up, down, left, and right use more appropriate
Manhattan distance (L1) as follows:

hx ,y = ∣xa − xg ∣ + ∣ya − yg ∣. (2.2)

In the above equations we have denoted agent’s position in xy coordinate system with
(xa , ya) and goal position with (xg , yg). The sorting of the openList in the Algorithm1is
done based on each node’s f value, obtained via:

fnode = gnode + hnode (2.3)

where the gnode is the current consumed distance from the start node to the current node.
Note that, in order for the A∗ algorithm to be optimal, the heuristic function has to be
optimistic meaning it has to be greater or equal to the cost of the actual transition between
two nodes.Themain drawback of the A∗ algorithm in the human-robot shared environment
is its space complexity because it needs to store all generated nodes in memory, sometimes
multiple times if they are reached from the different parent nodes. On top of that, the A∗

algorithm thrives in static environments but is very sensitive to even a slight change in the
floor plan as it leads to new edges appearing in the graph while moving robots remove them.
The A∗ algorithm is not designed to handle such occurrences and the search has to start
from scratch even if the modification to the original graph is just a minor one.

To accommodate this, Stentz proposed the D∗ algorithm in [66]. The algorithm’s name
is shortened from Dynamic A star and it was made for environments where a robot has
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to navigate to given goal coordinates in unknown parts of the environment making as-
sumptions about the unseen space. Usually, these assumptions are that this unseen space
is navigable or free and the algorithm finds the shortest path under these assumptions,
saving information about the cost of each vertex. Once the new information is available,
this additional information is leveraged to replan fast depending on the new cost to reach
each vertex. Unlike nodes in the A∗ Open List, which only save their perceived distance to
the goal, the nodes in the D∗ Open List are marked as having one of several states:

• NEW - Meaning it is newly added in the Open List

• RAISE - Indicating that its cost is now higher than the last time it was in the OpenList

• LOWER - Indicating that its cost is now lower than the last time it was in the OpenList

Unlike the A∗ algorithm, the D∗ algorithm starts backward, from the goal node and
updates states as the environment is being explored. This enables fast replanning in dy-
namic environments without sacrificing optimality or completeness. Finally, both of these
algorithms return an optimal path with well-defined distances between its nodes. Because
of that, it is possible to know the exact traversable distance between any two points in the
configuration space which makes A∗ and D∗ algorithms suitable for our application.

2.3.2 Markov Decision Process

While the A∗ and D∗ algorithms enable fast searching of a graph, they require known costs
of transition between adjacent graph nodes. As we already stated, this cost is usually set
to be the distance between the two, although it can be modified to embed transition time
information or fuel or battery consumption. The problem with this approach is inflexibility
when it comes to modeling preference. Two paths can be optimized with respect to distance
or travel time, but with significant features and differences. Consider a robot navigating in
an environment full of cliffs and wet terrain. If possible, we would like to steer the robot
away from such adversity sacrificing path optimality. Similarly, if we plan for humans in the
integrated warehouse environment, theremight exist certain areas a humanwould not prefer
walking through, e.g. the area is noisy, not well lit or the passage is narrow. Handling this
occurrence via graph search algorithms would require modification of cost towards the less
desirable nodes. Since increasing these costs would render the commonly used Manhattan
and Euclidean distance heuristics to be pessimistic, these algorithms would regress to basic
Dijkstra’s algorithm losing their speed and fast replanning ability. Furthermore, determining
which nodes should be affected by adversary effect sometimes is not a trivial task, and the
pathfinding problems would benefit greatly if only the source of adversity could be modeled
with its effect naturally taking effect during the search.

The framework and mathematical model which can fit in with the previously mentioned
requirement are a family of models called Markov decision processes (MDPs). Formally,
MDPs constitute a mathematical framework that models a system taking a sequence of
actions under uncertainty to maximize its total rewards [4]. More precisely, an MDP is
a discrete time stochastic process represented as tuple (S ,A, T ,R, γ), where S is set of
states and A is set of actions. After an action a ∈ A is taken, system moves from the
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Figure 2.5: The Markov Decision Process framework consisting of states S, actions A that lead to
probabilistic transition between them yielding rewards R.

current state s ∈ S to a new state s′ ∈ S . We define the conditional probability function
T(s, a, s′) = p(s′∣s, a) which gives the probability that the system lies in s′ after taking
the action a in state s, thus capturing system’s uncertainty. Taking an action also yields an
immediate reward R(s, a) and the goal of the system is to choose the sequence of actions that
maximizes the expected total reward E(∑∞t=0 γtR(st , aT)). To prevent an infinite-horizon
case where all positive rewards sum to infinity [67], one uses a discount factor γ ∈ (0, 1)
which reflects the system preference of immediate rewards over future ones. In the path
planning domain, it is common to set the value of the goal to a positive constant, associate
adversary area or terrain with a large negative constant, and set all other fields to a small
negative value, although the last step is not necessary if a nonzero discount factor is used.
The overview of the MDP framework can be seen in Fig.2.5.

Once the appropriate MDP states, actions, transitions, and rewards are selected it is
necessary to solve it. Solutions of MDP with finite state and action spaces may be found
through a variety of methods, most notably revolving around dynamic programming. The
two most common iterative ways of solving the MDP are the value iteration algorithm
introduced by Bellman in [68] and the policy iteration algorithm introduced by Howard in
[69]. They revolve around assuming the initial value or policy for each state and iteratively
updating it propagating newly available information.

The value iteration algorithm is given in Algorithm2where Bellman’s equation

Vi+1(s) =max
a
∑
s′ ,r′

ps,s′ ,a(rs′ + γV(s′)) (2.4)

is solved in iterations for all states until the maximum difference of previous and newly
calculated state values Vi(s) falls below threshold θ. This threshold is usually set to a small
number and depending on its value the algorithm will have a trade-off between speed and
precision towards the optimal policy π∗.

Unlike the value iteration algorithm the policy iteration algorithm puts emphasis on
finding optimal policy instead of finding the most appropriate value for each state. It
performs value iteration and then queries for change in all policies. If there is no change
found, the algorithm is concluded and the optimal policy is considered to be found. These
algorithms are useful for our problem of human motion valuation because they calculate
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Algorithm 2:The value iteration algorithm
Input: θ, iteration threshold
Output: π, a policy

1: for s in S do
2: V(s)← 0
3: end for
4: ∆ ← 0
5: while ∆ < θ0 do
6: for s in S do
7: vtmp ← V(s)
8: V(s)←max

a
∑s′ ,r′ ps,s′ ,a(rs′ + γV(s′))

9: ∆ ← max(∆, ∣vtmp −V(s)∣
10: end for
11: end while
12: for s in S do
13: π(s)← argmax

a
∑s′ ,r′ ps,s′ ,a(rs′ + γV(s′))

14: end for

state values V(s). As the human agent moves, we are able to follow observed behavior
and note consumed values of each state thus generating information as the agent moves
towards or away from pertaining goal, while elegantly embedding unwanted areas and the
probabilistic nature of the human movement.

2.4space partitioning

In the previous section, we have described A∗ and D∗ graph search algorithms that excel at
fast pathfinding and planning while maintaining completeness and optimality guarantees.
While these algorithms serve their purpose in a plethora of applications, they still can not
guarantee real-time performance in very large search spaces. As we already stated, the
search space is a graph constructed from an occupancy grid map. If the map is really large,
as modern robotized warehouses and other human-robot shared environments can be,
the only way of reducing the size of a graph is to sacrifice grid density. However, there
exists a certain limit to this procedure as reducing the density heavily impacts precision.
For example, if a grid size is one square meter, the human could move one meter in any
direction without their position being updated on the graph. This would lead to a slow
reaction of the supervisory algorithm making the resulting human action and movement
prediction useless. Because of that, it would be beneficial to enable search space reduction
without great sacrifice to precision. One way to go about this problem is to leverage space
partitioning.

Space partitioning is a geometrical term describing the process of dividing a space into
two or more disjoint subsets - partitions. In other words, space partitioning divides space
into non-overlapping regions. Depending on the task at hand, such procedures can create



2.4. Space Partitioning 21

Algorithm 3:The policy iteration algorithm
Input: θ, iteration threshold
Output: π, a policy

1: for s in S do
2: V(s)← 0
3: π(s)← randomAction
4: end for
5: while True do
6: ∆ ← 0
7: while ∆ < θ0 do
8: for s in S do
9: vtmp ← V(s)
10: V(s)←max

a
∑s′ ,r′ ps,s′ ,a(rs′ + γV(s′))

11: ∆ ← max(∆, ∣vtmp −V(s)∣
12: end for
13: end while
14: pol ic yStabl e ← True
15: for s in S do
16: πtmp ← π(s)
17: π(s)← argmax

a
∑s′ ,r′ ps,s′ ,a(rs′ + γV(s′))

18: if πtmp! = π(s) then
19: pol ic yStabl e ← False
20: end if
21: end for
22: if pol ic yStabl e then
23: return π
24: end if
25: end while

convex sets representing the space as trees [70] and can operate in multidimensional spaces
creating point clouds [71]. For our application, we want to partition the space to create a
graph of nodes human position in a two-dimensional space can be associated with. In order
to solve this task, we select the Voronoi Diagrams.

2.4.1 Generalized Voronoi Diagrams

A Voronoi diagram partitions a plane into regions based on the distance to predefined
points. The idea is that for each predefined point a corresponding region consisting of all
the points closer to that point than to any other predefined point is found. More formally,
the definition of the Voronoi region for a point pi ∈ P is given by:

V(pi) = {x⃗ ∣ ∣∣ x⃗ − x⃗i ∣∣ ≤ ∣∣ x⃗ − x⃗ j ∣∣,∀ j ∋ i ≠ j}, (2.5)
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Figure 2.6: The example of a Generalized Voronoi Diagram rendered on a map. Blue lines denote the
edges of the diagram and constitute points in free space most distant from the obstacle.

where ∣∣⋅∣∣ is usually the Euclidean distance [72].We call the set given byV = {V(p1),V(p2),
...V(pn)} the Voronoi diagram of P. The question is, how to construct a Voronoi diagram
in practice? The generalized Voronoi diagram (GVD) is a discrete form of the Voronoi
diagram defined as the set of points in free space to which the two closest obstacles have
the same distance [73]. In mobile robotics applications, the GVD can be constructed from
an occupancy grid map of the environment which is usually obtained by mapping the
environment with a mobile robot [14] or by parsing the existing floorplans. In this thesis,
we will use the latter approach, since we have warehouse plans at our disposal. The example
of generated GVD on a floor plan can be seen in Fig.2.6.

2.5probabilistic decision-making methods

In this section, we will discuss the probabilistic decision-making methods used in the scope
of this thesis. Let us first discuss what labeling a model as probabilistic actually means. One
of the main challenges in modern artificial intelligence and robotics applications is the
presence of uncertainty. This uncertainty manifests itself as the unpredictable environment,
unreliable sensors, and models that are inherently inaccurate [14]. Contrary to relying
on a single best guess of environment representation, probabilistic algorithms represent
perceived information as probability distributions over the entire realm of possible - the
probabilistic space.

Our work follows up on the BayesianTheory of Mind (BToM) framework described in
[74], where authors introduced a model for estimating hungry students’ desires to eat at
a particular food truck by observing its movement. Therein, authors argue that machines
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lack the Theory of Mind – intuitive concept humans have about other people’s mental
state, and propose to emulate it by an intention recognition model based on Partially
Observable Markov Decision Processes (POMDPs). Though impressive, the BToMmodel
does not predict the possibility of a student’s change of mind and does not ensure real-time
operation in changing environments which is crucial in an integrated warehouse problem.
Many models addressing the problem of human intention recognition successfully emulate
human social intelligence using Markov decision processes. Examples of such models can
be found in [4], where authors proposed a framework for estimating pedestrian intention to
cross the road, and in [75], where authors proposed a framework for gesture recognition and
robot-assisted coffee serving. There are also works from the gaming industry perspective,
proposing methods for improving the non-playable character’s assisting efficiency [76, 77].
A driver intention recognition problem was approached in [78] and intention estimation
based on gaze data was introduced in [9]. Both of those approaches use learning methods
for training the models which have been criticized by [79] emphasizing the drawback of
using motion pattern learning techniques for trajectory estimation or intention recognition.
Authors assert that such techniques operate offline and imply that at least one example of
every possible motion pattern is contained in the learning data set which does not hold
in practice. They propose using growing hidden Markov models (GHMM) for predicting
human motion, a problem that we consider dual to the human intention estimation in the
warehouse domain. GHMMs can be described as time-evolving HMMs with continuous
observation variables where model structure and parameters are updated every time a
new observation sequence is available. That kind of approach can be applied to the human
intention recognition problem because it enables adding new goals during the experiment
as well as an elegant framework for learning the model parameters online.

Assistive technology such as smart homes [80] and semi-autonomous wheelchairs [81]
benefit also from precise human intention recognition. In [81], authors propose a POMDP-
driven algorithm for wheelchair control taking into account the uncertainty of user’s inputs
because of, e.g., unsteady hands. The chair predicts the user’s intention and autonomously
enacts the intention with only minimal corrective input from the user. The authors also
suggest that humans usually focus on moving from one spatial location to another, i.e.,
hallway to the kitchen, without worrying about the optimality of exact steps that come
in between. In the present chapter, we build our model using similar assumptions about
human spatial understanding. In [5] Anh and Pereira offer a thorough review of the human
intention recognition area emphasizing its potential applications in decision-making theory.
In recent years, human action prediction applications ranged from robotized warehouses
[82, 83] to sedentary object-picking domain [84, 9, 85] and full-body motions [86, 87, 88].
State-of-the-art human action prediction frameworks are based on Markov models [89],
inverse optimal control [90] or conditional random fields [91], which try to learn moving
patterns with the respect to pertaining goals, usually assuming nearly-optimal human
behavior in the observed sequences. In [92] the authors propose a hybrid deep neural
network model for human action recognition using action bank features leveraging the
fusion of homogeneous convolutional neural network (CNN) classifier. Input features are
diversified and the authors propose varying the initialization of the weights of the neural
network to ensure classifier diversity. Another approach based on the Long Short-Term
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Memory networks (LSTMs) is proposed in [93] where the authors craft a two-stream
attention-based architecture for action recognition in videos. They suggest that such an
approach resolves the visual attention ignoring problem by using a correlation network layer
that can identify the information loss on each timestamp for the entire video. Furthermore,
in [94] authors leverage a bidirectional LSTM to learn the long-term dependencies, and use
the attention mechanism to boost the performance and extract the additional high-level
selective action-related patterns and cues. The convolutional LSTMS are used in [95] to
handle the long-duration sequential features with different temporal context information
and are compared to the fully connected LSTM. In [93] the authors propose an end-to-end
two-stream attention-based LSTM network for human action recognition that selectively
focuses on the effective features of the original input image. The concept of utilizing shared
weights for neural networks was brought by de Ridder et al. in [96] with a focus on the
feature extraction problem. This approach has gained traction in transfer learning [97]
and physics simulation applications [98]. Regarding collaborative environments, the state-
of-the-art models infer human actions by measuring different cues captured by wearable
(eye gaze [99, 9, 8] or even heart rate and electroencephalography [100]) or non-wearable
sensors. The use of non-wearable sensors such as motion capture systems or RGB cameras
enables the model to capture crucial cues such as gestures [101], emotion [102], skeletal
movement [103] or estimate eye gaze [11]. In works [8, 9, 10, 85, 104] authors have indicated
that the eye gaze is a powerful predictor of human action. A good overview of human
action prediction methods and their categorization by the type of problem formulation can
be seen in [105]. Several works embed the eye gaze feature into human action prediction
models using machine learning models such as support vector machine [9] or recurrent
neural networks (RNNs) [10]. In the human collaborative scenario, the authors of [9] tested
their algorithm relying on verbal instructions as additional features for their model and the
actions form a sequence, In [85] the authors calculate the similarity between the hypothetical
gaze points on the objects and the actual gaze points and use the nearest neighbor algorithm
to classify the intended object. To the best of our knowledge, there does not exist a method
that couples the human action prediction model with the directly measured eye gaze and
human joint positions in a dynamic, changing environment. For example, in [9] the authors
rely on gaze adding verbal commands in the feature space. In [85] the scenario is static and
the subject sits while picking the objects who are always visible to the subject. Furthermore,
in [105], the multiple-model estimator is leveraged for intention prediction, but the inputs
to this model are extracted from a camera using convolutional networks and prior values
that are not applicable in the dynamic collaborative domain.

This section introduces several probabilistic frameworks, namelyHiddenMarkovModel,
Multilayer Perceptron, Recurrent Neural Networks, and Long Short-Term Memory Net-
works with an emphasis on their deployment as decision-making methods. These frame-
works can be considered a mathematical attempt to reconstruct human decision-making
and capture subtle cues that make human behavior. By putting the observed behavior and
movement into a mathematical context it is possible to reverse-engineer the human way of
thinking and thus make attempt at predicting the next movement, behavior, or end goal.
Firstly, we will introduce the Hidden Markov Model, a Markov Decision Process extension
that takes advantage of hidden states. It follows intuitions that not all states can be observed
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directly, but need to be extrapolated from the observed behavior or emissions. As more
information becomes available it is possible to reconstruct what these hidden states were
and if we set up a problem in a way these hidden states match our hypotheses on human
intentions and desires, the attempt to predict the following movement can be made. Fur-
thermore, we will briefly expand on the mathematical background of Multilayer Perceptron,
also known as a fully connected feedforward artificial neural network (ANN). This will
lay the foundation to state-of-the-art recurrent frameworks, Recurrent Neural Networks,
and Long Short-TermMemory Networks architectures. We will cover all aspects of these
frameworks, from their formulation to training and testing, introducing statistical analysis
along the way. Finally, we will define the signal correlation and discuss it as a part of the
feature selection process.

2.5.1 Hidden Markov Model

TheMDP model can be too restrictive to be applicable to many problems of interest [106]
because it assumes that all states are fully observable. The hidden Markov model (HMM) is
anMDP extension including the case where the observation is a probabilistic function of the
state, i.e., the resulting model is a doubly embedded stochastic process with an underlying
process that is not observable (it is hidden), but can only be observed through another set of
stochastic processes that produce the sequence of observation. The overview of the HMM
framework can be seen in Fig.2.7.

In general, when using HMMs we are interested in solving one of the following three
problems. First, given an existing HMM and an observed sequence, we want to know the
probability that the HMM could generate such a sequence (the scoring problem). Second,
we want to know the optimal state sequence that the HMM would use to generate the
sequence of such observations (the alignment problem).Third, given a large amount of data,
we want to find the structure and parameters of the HMM that best account for the data
(the training problem). In the scope of this thesis, we focus on the optimal state sequence
problem, i.e., the alignment problem, for human movement with the aim of estimating their
desires, intentions, and actions.

HMMs are especially known for their application in temporal pattern recognition such
as speech, handwriting, gesture recognition [106] and force analysis [107]. There are several
important implications that need to be taken into consideration when designing an HMM.
It is necessary to carefully design state space and possible actions that lead to transition
between them and this step heavily depends on the problem at hand. The next step is to
select appropriate probabilities of transition between states and emission probabilities for
each observation. If there is not enough data available, these numbers can be hand-picked
or chosen by surveying experts and performing advanced analysis on obtained results.
Alternatively, these weights can be learned from data utilizing the Baum–Welch algorithm
[108], a special case of the expectation-maximization algorithm [109]. The algorithm lever-
ages the synergy of the forward procedure which assigns probabilities of observing certain
observations while being in a certain state and the backward procedure which calculates the
probability of ending of partial sequence. The final step in the Baum-Welch algorithm is the
update step where Bayes’ theorem is used for calculating the new parameters of the HMM.
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Figure 2.7: The Hidden Markov Model is an MDP framework extension where states are not directly
observable. The observations O and emission probabilities B are used to reconstruct the
most probable sequence of states S and transitions A.

These steps are repeated iteratively until the algorithm converges meaning the difference
between two consecutive steps is lower than the predefined threshold.

When it comes to solving the HMM, the most commonly used algorithm is the Viterbi
algorithm [110] - a recursive optimal solution to the problem of estimating the state sequence
of a discrete-time finite-state (hidden) Markov process. It relies on principles of dynamic
programming for obtaining the maximum a posteriori probability estimate of the most
likely sequence of hidden states. Finding the most probable hidden state sequence solves the
alignment problem of the HMM and yields the best guess of human underlying desires. The
Viterbi algorithm relies on known HMM parameters and structure, a tuple (S ,A,O,B),
where S , denotes states and A, denotes action transition probability, which was labeled
with T in the MDP framework. We use O, to label a set of possible observations, and B
is the emission matrix that gives probabilities for observing any given observation in any
given state. Finally, the Viterbi algorithm solves for the most probable sequence of states, X,
given observed sequence Y and initial guess Π. The Viterbi algorithm pseudocode is given
in Algorithm4.

2.5.2 Artificial Neural Networks

Neural networks, also called Artificial Neural Networks (ANNs), are computational model
that aims to mimic the functionality of biological neural networks commonly found in the
brains of living beings. Inspired by the architecture of the human neural network, they are
based on a collection of connected nodes called neurons. Each node in the network has
assigned weights, real numbers, that multiply incoming signals whose sum is passed to the
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Algorithm 4:The Viterbi algorithm
Input: (S ,A,O,B, Π,Y), HMM parameters
Output: X, most probable state sequence

1: K ← l ength(S)
2: T ← l ength(Y)
3: for state index i = 0, 1, ...,K do
4: T1[i , 1]← Πi ⋅ BiY0
5: T2[i , 1]← 0
6: end for
7: for observation j = 1, 2, ..., T do
8: for state index i = 0, 1, ...,K do
9: T1[i , j]←max

k
(T1[k, j − 1] ⋅ Aki ∗ BiYj)

10: T2[i , j]← argmax
k
(T1[k, j − 1] ⋅ Aki ∗ BiYj)

11: end for
12: end for
13: zT ← argmax

k
(T1[k, T])

14: XT ← SzT
15: for observation j = T , T − 1, ..., 1 do
16: z j−1 ← T2[z j, j])
17: X j−1 ← Sz j−1
18: end for
19: return X

activation function thus creating the output of a node, as in:

o = f (x ⋅w) = f (∑ xiwi) (2.6)

where o denotes neuron’s output, x is the input vector, w is a vector containing neuron
weights and f is the activation function commonly selected to be non-linear, e.g. rectified
linear unit (ReLU) [111], scaled exponential linear unit (SELU) [112], hyperbolic tangent and
binary step. The most typical way of organizing an ANN is by forming layers and literature
distinguishes between three types of layers. The first layer is called the input layer and its
function is to handle or aggregate the incoming signal.The last layer is called the output layer
and is responsible for producing the final output of the model. All the layers between the
input and output layers are called hidden layers and their structure and number are arbitrary
and decided with respect to the task at hand. This structure, without any cyclic elements, is
commonly called a feedforward neural network. The special case of a feedforward neural
network where all nodes from one layer are connected to all nodes in the next layer is called
Multilayer Perceptron (MLP).

The ANNs were introduced in the early 1940s by McCulloch and Pitts [113] who laid the
mathematical foundation of the model even though the hardware capabilities were lacking
at that time. With the improvement of processing units in the 1980s and utilizing graphical
processing units in 2010 the ANNs surged as one of the most used models for solving prob-
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lems in the broad scientific spectrum, ranging from control theory [114], protein structure
prediction [115] to object detection [116] and motion prediction [117]. The cornerstone of
the ANNmodel is a weight-tuning procedure, commonly called training of the network
or a learning process. Generally, the aim of network training is to obtain parameters of
each neuron that maximize the utility of the entire network with the respect to a given task.
Training is performed on training data using learning algorithms that try to minimize the
loss function that tries to mimic the error of the model. While it is common to split data
into fixed train and test sets to showcase the value of an ANN, the obtained results can be
biased towards the splitting point [118]. Because of that, it is common to use cross-validation,
specifically the k-fold cross-validation process which is defined as a resampling method
that uses different portions of the data to test and train a model on each of k iterations [119].
By comparing the results of the network trained on these portions, one can ascertain the
statistical validity of results and gain better insight into the network’s performance [120].

As the field of neural networks has seen rapid expansion in recent years, numerous
modalities have been invented and deployed for solving complex tasks. The most dominant
class of neural networks in the literature are Convolutional neural networks (CNNs) which
adaptively learn spatial hierarchies of features, most often in computer vision applications
[121]. The computer vision space has made use of Generative adversarial networks [122]
where two networks are trained simultaneously with opposite goals. In the unsupervised
learning domain, the autoencoder model [123] has gained traction for its ability to reduce
the dimensionality of input features, commonly known as feature selection or extraction.
The principle of the autoencoder model is to couple two elements, an encoder that is an
MLP with each layer having fewer neurons than the previous one and a decoder that serves
as the inverse of the encoder increasing number of neurons with each layer. The intuition
behind such an approach is that the layer with the lowest number of neurons, called code,
will contain only the crucial information thus weeding out noise and insignificant data.

We brought up the use of MLP models in computer vision, feature selection, and other
domains. However, the main focus of this thesis is action and motion prediction which
mandates information propagation with each time step. For this task, we select Recurrent
Neural Networks (RNN) and Long Short-Term Memory Networks (LSTM) that will be
presented in the following subsections.

2.5.3 Recurrent Neural Networks

An RNN, introduced by Rumelhart et al. [124], is a neural network that consists of a hidden
state ht which is connected to its output yt as well as previous hidden state ht−1. This
property enables it to capture a temporal dynamic behavior of the process and propagate
the information through time because its output depends both on the input at a given time
step as well as on the hidden state at the previous time step. Formally, a basic RNN can be
described by:

ht = σ(Uhht−1 +Whx t + bh)
yt = σ(Wyht + by)

(2.7)

where σ is the sigmoid, the most commonly used activation function, and x t is the network
input. The next hidden state is calculated using hidden weights Uh and input weightsWh
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Figure 2.8: A Recurrent Neural Network architecture. The output at each time step is calculated
using network weights, the current input, and previous hidden state - a memory unit.
The hidden state is then updated for the next time step.

while output weightsWy are used for calculating the output. The model also incorporates
hidden layer and output bias - bh and by. RNN networks have been successfully used in
a plethora of time-series prediction problems, including action sequence prediction [86],
machine translation [125] and outlier detection [126]. The architecture of the RNN is shown
in Figure2.8.Themain deficiency of the RNNmodel is the vanishing and exploding gradient
problems for longer sequences because the hidden state is updated with multiplication for
each observation. This phenomenon leads to either loss of learning ability or a requirement
for a large number of data making the RNN model unfeasible for some applications. Also,
since the hidden state is updated rather simply, it is hard to encode the temporal aspect of
dependencies. For example, in the translation domain it is important to know what is the
subject of the sentence, and introducing the new subject overrides the old one. As there is
no way to forget the old knowledge in the RNN architecture, it is unfit for problems that
have both long and short-term dependencies.

2.5.4 Long Short-Term Memory Networks

The LSTM networks, introduced by Hochreiter et al. [127], is a derivative of RNN networks
that supplements the RNN’s hidden state with the more advanced cell state controlled by
gates, formally:

ft = σ(U f ht−1 +Wf x t + b f )
it = σ(Uiht−1 +Wix t + bi)
ot = σ(Uoht−1 +Wox t + bo)

gt = tanh(Ught−1 +Wgx t + bg)
ct = f t ○ ct−1 + i t ○ g t

ht = ot ○ σ(ct)
yt = σ(Wyht + by)

(2.8)
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Figure 2.9: A Long Short-Term Memory Network unit. Component-wise operations are colored
purple and network layers are colored yellow. The hidden state at each time step is used
to calculate a current network output.

where tanh is the hyperbolic tangent function and the operator ○ is the Hadamard product.
The cornerstone of an LSTMmodel is the cell state ct that propagates information through
time. Every iteration of the LSTM network first forgets irrelevant information in ct using
the forget gate ft , and then adds new information with the input gate it . The ct is then
used for future iterations of the LSTM network as well as for updating current hidden state
ht using the output gate ot . One can find examples in the literature where the activation
function for the hidden state update is changed to a hyperbolic tangent [128]. Finally, the
output of any given iteration is calculated in the same manner as in the RNN model, by
multiplying the hidden state with the corresponding network weights. LSTM networks have
seen applications in similar problems as RNNs, such as pedestrian trajectory prediction
[129], and we have selected them as the backbone network in the scope of this thesis due to
their ability to capture long-term dependencies.

2.5.5 Correlation Signal Analysis

So far in this section, we have highlighted probabilistic decision-making methods used for
human action in motion prediction in the scope of this thesis. We have also put emphasis
on the importance of real-time operation these models and frameworks have to satisfy.
Both RNN and LSTM are deep methods, meaning they can employ multiple layers in their
architecture, and the number of parameters increases linearly with respect to the input
dimension [130]. The parameter number directly influences the capability of the network
where too few parameters risk inability to capture all complex cues and patterns from data,
called underfitting. On the other hand, too many parameters on a limited amount of data
can lead to the overfitting of the network [131] that manifests as a great performance on train
data but subpar performance on the test data. Having this in mind, a common approach in
the literature is to try to reduce the dimensionality of input data to reduce the number of
network parameters while retaining accuracy. This process is called feature selection if the
set of reduced features is a subset of original features, while feature extraction is the process
through a set of new features is created [132].

Earlier in this chapter, we introduced autoencoders as a data-driven MLP solution for
feature extraction. Another data-driven feature extraction method that gained traction in
the literature is principal component analysis (PCA) [133] which relies on decomposing
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feature space using N orthogonal axes called components. In the scope of this thesis, apart
from an autoencoder-inspired solution, we have employed a signal processing-based feature
selection method relying on the correlation of input signals [134]. The correlation of two
time-series signals is defined as Pearson coefficient [135] calculated with:

ρX ,Y =
cov(X ,Y)

σXσY
(2.9)

Where cov denotes covariance calculated with:

cov(X ,Y) = E[(X − µX)(Y − µY)] (2.10)

with µ being mean values, σ standard deviations of signals and E is the expected value.
The intuition behind the use of correlation for feature selection is that signals with high
correlation have high mutual information and can be represented with only one signal from
the correlating group of signals discarding redundant ones.This approach was first proposed
by Hall et al. in [134] as used in [136] where authors leveraged the Pearson coefficient to
select features for daily activities in smart homes and in [137] where authors introduced a
fast correlation-based filter solution.
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2.6summary

In this chapter, we have laid out the foundation for understanding the contributions of this
thesis. We have discussed sensors in the field of robotics with a focus on observing and
tracking human position and orientation in shared spaces. For that task, we have selected
AR, VR, and motion capture whose principles of operation were presented. Thereafter,
we shifted to the mathematical background of utilized models and frameworks. First, we
dived into path planning methods, discussing A∗ and D∗ graph search algorithms, their
properties, and their use in future work. We put emphasis on optimality, completeness, and
real-time operation and discussed theGVDmethod for free space partitioning. Furthermore,
the MDP framework was introduced and iterative methods for solving it were presented.
Afterward, several probabilistic decision-making methods were introduced, beginning with
the HMM framework and the Viterbi algorithm. We described neural networks and gave
a brief overview of crucial concepts such as layers, training, testing, and cross-validation.
Since the task at hand is human action and motion prediction, we scrutinized state-of-the-
art temporal neural network models, the RNN and LSTM. Finally, special emphasis was
put on feature selection methods, namely autoencoder architecture and correlation.



3
Human action prediction in integrated warehouse

systems

T his chapter deals with the problem of human action prediction in integrated
robotized warehouses, in the literature commonly known as human intention recog-

nition problem, and we will refer to it as such throughout the chapter. Specifically, we
will put the emphasis on ascertaining the final goal of human movement. The first step in
our solution is creating an integrated warehouse simulator with three potential goals. The
uncertainty in the human movement was modeled with a Markov decision process with
special care in state reward calculation based on graph search. This approach was modified
for a real warehouse environment in order to account for mobile robots that change the
floor plan thus influencing optimal paths towards each goal. A real-time human action
validation algorithm based on generalized Voronoi diagram space partitioning and graph
search is proposed.The data is collected using augmented reality glasses and within a virtual
reality warehouse twin. Also, a larger virtual reality warehouse is modeled to showcase the
scalability of the proposed method. The results of human action validation are processed by
a human intention estimation algorithm based on a hidden Markov model. This model is
carefully crafted to account for uncertainty and the presence of an unknown alternative
goal. Finally, at the end of the chapter, the proposed framework is thoroughly tested and
the results are interpreted.

3.1introduction

Theory ofMind (ToM) is the intuitive grasp that humans have of their own and other people’s
mental states, how they are structured, how they relate to the world, and how they cause
behavior [74]. Human beings understand that others have certain desires and that those
desires guide them to act using the means most likely to achieve them. However, explanation
by rationalization reasoning, which ToM assumes, is highly contextually dependent, and
translating such a causal behavior model to machines is not an easy task. Having that in
mind, we limit the proposed model to the problem of estimating the intention of a human
worker in a highly flexible robotized warehouse. The worker can perform tasks such as
maintaining the robots or picking the items from the racks containing goods. We assume
that there is a finite number of possible goal locations which are usually in front of the
interesting racks and that at least one goal is known before the start of the experiment.
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Furthermore, we also assume that the position and orientation of the worker are measured.
This can be achieved by, e.g., augmented reality glasses, other types of wearable sensors,
or specialty vests equipped with vision sensors as developed in the scope of the project
SafeLog [138]. Dennett [6] has proposed that social reasoning abilities rely on intentional
stance, i.e., the assumption that agents have beliefs about the world and their situation in it
and will behave rationally to achieve their desires. We argue that, in the warehouse domain,
rationally behaving with respect to the desired goal manifests as moving towards that goal’s
location, and that since our agents are workers, trained professionals, they are highly likely
to behave rationally within this context.

In order to determine the most likely goal the worker is moving to, we need to apply a
complete and globally optimal path planning algorithm and compare the worker’s motion
online with the algorithm output (details are discussed later). We assert that a worker
following approximately a globally optimal path is a reasonable assumption since the worker
is acquainted with the warehouse layout and will plan its motion in accordance with it.
Given that, we find that for the problem at hand, where action uncertainties are reduced,
frameworks such as POMDPs used in [74] are not necessary. Moreover, the planning
algorithm must be able to quickly replan the path with the appearance of moving obstacles
such as mobile robots carrying the racks. Having that inmind, in this chapter we will present
a novel human intention recognition solution based on HMM. Firstly, we will introduce
our intention recognition warehouse simulator in Section3.2where we crafted a novel
heuristics for the A∗ path planning search in order to get rewards for each state. These states
are evaluated as part of the proposed MDP framework generating worker action validation.
Alternatively, for our real and VR warehouse, in Section3.3partitioned the space using
GVD and associated worker’s position with visible nodes of the graph. Using these nodes
and the D∗ graph search, we seamlessly assess is the worker moving towards each of the
predefined goals. Both of these action validation methods are used as a front-end solution
for our back end, the HMM decision-making process introduced in Section3.4that serves
as the intention estimator. Finally, the proposed architecture is validated for simulated, real,
and VR warehouses in Section3.5. Finally, the Section3.6summarizes the chapter.

3.2intention recognition in simulated environment

This section presents a front-end solution for the human intention recognition problem.We
will describe the intention recognition simulator created for this purpose and explain details
of how human actions and movements are observed and interpreted. Finally, we will lay out
our method for human action validation thus quantifying is the human going towards any
predefined goals. Because in the integrated warehouse environment the worker’s position
and orientation need to be precisely estimated, for the rest of this Section we assume that
these quantities are readily available. Furthermore, we would like to emphasize that most
warehouse worker duties, such as sorting and placing materials or items on racks, unpack-
ing, and packing, include a lot of motion which is considered to be inherently stochastic.
Therefore, we model the worker’s perception model P(O∣S), with O and S representing
observation and state, respectively, as deterministic, and the action model P(S′∣S ,A), with
A representing action, as stochastic. A paradigm that encompasses uncertainty in an agent’s
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motion and is suitable for the problem at hand is MDPs [67].
The MDP framework is based on the idea that transiting to state S yields an immediate

reward R. Desirable states, such as warehouse items worker needs to pick up, have high
immediate reward values, while undesirable states, such as warehouse parts that are of no
immediate interest, have low immediate reward values. The rational worker will always
take actions that will lead to the highest total expected reward and that value needs to be
calculated for each state. Before approaching that problem, we define the MDP framework

Figure 3.1: Agent (green tile) in simulation environment with three potential agent’s goals (colored
tiles). Unoccupied space is labeled with yellow tiles and occupied space (i.e. warehouse
racks) is labeled with black tiles. The optimal path to each goal is shown with red dots and
red solid lines denoting the agent’s vision field. Visible tiles are colored white. Red dashed
line denotes the agent’s current orientation and colored lines indicate the direction of the
average orientation of the visible optimal path to each goal calculated using (3.2).

applicable to the warehouse domain. In order to accomplish that, we have placed the worker
(later referred to as an agent) in a simulated 2D warehouse environment shown in Figure3.1.
The environment is constructed using MATLAB® GUI development environment without
predefined physical interpretation of the map tiles and the map size is chosen arbitrarily to
be 20 × 20. There are three potential goals and the shortest path to each goal is calculated.

3.2.1 Modified A-star heuristics

There are many off-the-shelf graph search algorithms we can use to find the optimal path to
each goal, such as Dijkstra’s algorithm and A∗. However, if there exist multiple optimal paths
to the goal, there are no predefined rules which one to select and the selection depends on
the implementation details.
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Figure 3.2: Warehouse worker’s (blue circle) shortest path to the red goal is ambiguous because both
orange dashed and green dotted paths are optimal. The black arrow denotes worker’s
orientation.

Consider the example scenario with the warehouse worker in Figure3.2. It is intuitive
that the rational worker will tend to follow the green path because the orange path would
require the worker to either take the additional action of turning or unnatural walking by
not looking forward. Having this in mind, we modify the commonly used Manhattan A∗

(a) (b)

Figure 3.3: The proposed A∗ modification yields different optimal paths with the agent’s orientation
change.

heuristics ensuring that the algorithm always selects the optimal path the agent currently
sees themost.This has been done by introducing the heuristicmatrixH using theManhattan
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distance (L1) heuristics as follows:

Hx ,y =
⎧⎪⎪⎨⎪⎪⎩

∣xg − x∣ + ∣yg − y∣ − є, if the agent sees tile (x,y)
∣xg − x∣ + ∣yg − y∣, otherwise

(3.1)

where є is a small value. Subtracting a small value from the visible tiles directs the search in
their direction and does not disrupt the heuristic’s admissibility. The cost of each movement
is also modified in a the similar way by subtracting a small value є from the base movement
cost of 1, if the tile is visible. An example of the modified A∗ search algorithm results can
be seen in Figure3.3. The average orientation of the visible path to each goal is defined as
follows:

θ goal =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

atan2(
N

∑
n=1

sin(θn),
N

∑
n=1

cos(θn)), if N > 0

θa + π, otherwise
(3.2)

where N is the number of visible optimal path tiles, θa is agent’s orientation and θn are
relative orientations of each visible optimal path tile (x, y) with respect to the agent (xa, ya):

θn = atan2(y − ya , x − xa). (3.3)

3.2.2 Action validation

We propose a mathematical model for validating an agent’s actions based on the assumption
that the rational agent tends to (i)move towards the goal it desiresmost by taking the shortest
possible path, and (ii) orients in a way to minimize the difference between its orientation
and the most desirable goal’s average orientation of the visible optimal path calculated in
(3.2). The proposed model goal is to assign a large value to the actions compatible with
the mentioned assumptions, and small values to the actions deviating from them. These
values will be used to develop the agent’s intention recognition algorithm in the sequel. We
can notice that the introduced validation problem is actually a path planning optimization
problem. A perfectly rational agent will always choose the action with the greatest value
and consequently move towards the goal. We approach the agent’s action values calculation
by introducing the agent’s action validation MDP framework. We assume that the agent’s
position and orientation are fully observable and create the MDP state space S as:

Sx ,y,k =
⎡⎢⎢⎢⎢⎢⎣

x
y
θ

⎤⎥⎥⎥⎥⎥⎦
. (3.4)

The agent’s orientation space Θmust be discrete because the MDP framework assumes a
finite number of states. We have modeled Θ to include orientations divisible with π

4 and it
can be arbitrary expanded:

Θ = {0, π
4
,
π
2
,
3π
4
, π,

5π
4
,
3π
2
,
7π
4
}. (3.5)

The action space A includes actions ‘Up’, ‘Down’, ‘Left’, ‘Right’, ‘Turn Clockwise’, ‘Turn
Counterclockwise’ and ‘Stay’, labeled in order as follows:

A = (∧,∨, <, >, R, L, S). (3.6)
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It has already been stated that the agent’s actions are fully observable but stochastic. In order
to capture the stochastic nature of the agent’s movement, we define the transition matrix T
of agent’s movement:

T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − 2є 0 є є 0 0 0
0 1 − 2є є є 0 0 0
є є 1 − 2є 0 0 0 0
є є 0 1 − 2є 0 0 0
0 0 0 0 1 − є 0 є
0 0 0 0 0 1 − є є
0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.7)

where element Ti j denotes realization probability of the action A j, if the wanted action is
Ai . Moving actions have small probability 2є of resulting in lateral movement, and turning
actions have small probability є of failing. The value of the constant є is 0.1 which we
obtained experimentally. If the agent’s action cannot be completed, because of the occupied
space blocking the way, the column responding to the impossible action is added to the last
column and is set to zero vector afterward. We define three hypotheses, Hi , i = 1 . . . 3, one
for each goal state as follows: “Agent wants to go to the goal i and other potential goals are
treated as unoccupied tiles”. The immediate reward values R for each hypothesis and state
are calculated as follows:

Ri ,S′ =
⎧⎪⎪⎨⎪⎪⎩

π, if S’ is the goal state according to the Hi

−(є + ∣θ i − θa∣), otherwise
(3.8)

where є is a small number and ∣θ i − θa∣ represents the absolute difference between the
average orientation of the visible path to the goal i and the agent’s orientation. Note that we
have taken the angle periodicity into account while calculating the angle difference in (3.8).
The goal state is rewarded and other states are punished proportionally to the orientation
difference. If the agent does not see the path to the goal i, the reward is set to the lowest value,
−π which is derived from (3.3). One of the most commonly used algorithms for solving the
MPD optimal policy problem is the value iteration algorithm [4], which assigns a calculated
value to each state. The optimal policy is derived by choosing the actions with the largest
expected value gain. The value iteration algorithm iteratively solves the Bellman’s equation
[68] for each hypothesis Hi :

Vj+1(Hi , S) =max
a
{∑

S′
PS ,S′(RH i ,S′ + γVj(Hi , S′))} (3.9)

where S is the current state, S′ adjacent state, and PS ,S′ element of the row Ta in transition
matrix T which would cause transitioning from state S to S′. The algorithm stops once the
criteria:

∑
i ,k
∣∣Vj(Hi , Sk) −Vj−1(Hi , Sk)∣∣ < η (3.10)

is met, where the threshold η is set to 0.01. State values, if the goal state is the dark yellow
(southern) goal and agent’s orientation of 3π

2 , is shown in Figure3.4. The agent’s behavior
consistent with the hypothesis Hi is defined as follows.
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Figure 3.4: State values for the agent’s orientation of 3π
2 if the goal state is the southern goal labeled

with the red circle.

Definition 3.1. (Consistent behavior) If the agent is in the state S and takes the action a under
the hypothesis Hi , with the expected value gain greater or equal than the expected value gain
of the action “Stay”, its behavior is considered consistent with the hypothesis Hi . Otherwise,
its behavior is considered inconsistent with the hypothesis Hi .

Behavior consistency is an important factor in determining an agent’s rationality, which
will be further discussed in the next section. While calculating the immediate rewards and
state values hasO(n4) complexity and can be time-consuming, it can be done offline, before
the simulation start. Optimal action, Π∗(Hi , S), for each state is the action that maximizes
expected value gain and, on the other hand, the worst possible action, Π̄∗(Hi , S), is the
action that minimizes expected value gain.

3.3warehouse worker action validation

Planning using MDP solvers [67] discussed in the previous section and in [139] lacks the
ability to quickly replan, since the optimal policy for efficient intention recognition must be
computed offline for realistic warehouses. Given that, for the larger and dynamic warehouse,
we choose to use the D∗ algorithm [66] for finding the globally optimal path to the goals.
However, having in mind that the modern warehouses are growing in size we aim to reduce
the complexity of mentioned search problem. One approach to alleviating the complexity is
to reduce the precision of the warehouse occupancy grid representation, thus reducing the
D∗ algorithm search space; however, we assert that it could jeopardize the proposed human
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Figure 3.5: Generalized Voronoi Diagram (red) of Swisslog’s warehouse in Ettlingen with highlighted
graph’s nodes (yellow). Untraversable parts of the warehouse such as walls or racks are
denoted with black color. Shades of grey denote the distance of the traversable part of the
warehouse from the obstacles. The distance is used for GVD generation.

intention recognition performance and cannot be applied to an arbitrary large warehouse,
thus directly impacting the proposed algorithm’s ability to generalize.

To solve the aforementioned challenges, we propose to use generalized Voronoi dia-
grams (GVDs) for reducing the search space without losing valuable precision for intention
recognition. The motivation for using GVDs in our work is manifold. First, partitioning
the plane using GVDs allows us to limit the search space on the Voronoi graph nodes, thus
greatly reducing the search time. Second, moving along the edges of a Voronoi graph ensures
the greatest possible clearance when passing between obstacles. This property resembles
assumed human path planning in a warehouse application because human beings are gener-
ally not prone to walking in the proximity of warehouse racks (note that in our example
robots can also pass under the racks). Finally, moving obstacles, such as mobile robots, in
the flexible warehouse systems can obstruct a worker’s path necessitating replanning of the
optimal path towards that goal. The replanning can easily be achieved using graph search
algorithms by discarding the edge of the Voronoi graph the robot is currently occupying.
Using such algorithms on the whole occupancy grid would not be possible in real-time
because of the search space’s size.

On the other hand, we can imagine a scenario where new possible passages could appear.
This could happen when a mobile robot takes a rack and frees up space in the middle of
the rack block. In order to handle that event, a new GVD would have to be generated from
the occupancy grid map of the warehouse. This could impede the online application of the
proposed approach; however, in order for that to happen, since usually, one rack block has
two columns of racks, multiple racks close to each other would have to be carried away at
similar time intervals. Furthermore, we assert that workers in robotized warehouses would
generally not be allowed to use such passages for safety reasons. Having that in mind, from
the methodological perspective of the approach, we propose to use the D∗ algorithm on
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GVD nodes for worker path planning. In the sequel, we describe the proposed human
intention recognition algorithm in detail and divide it into three parts: the creation of the
warehouse GVD (offline), worker action validation, and worker intention estimation (both
online).

We have already emphasized the necessity of performing human intention recognition
online. In order to ensure online operation, we need to perform time-consuming parts
of the algorithm before the start of the experiment. First, we generate the GVD [140] of
the warehouse using its floorplan. An example of such a graph generated on Swisslog’s
warehouse using an occupancy grid with a cell size of 5mm can be seen in Figure3.5. After
generating GVD, we select all of the graph nodes for further processing. It is worth noting
that it is possible to insert additional nodes at arbitrary locations, but erasing generated
ones except dead ends is not allowed because it would impede the graph’s connectivity. Also,
at least one goal node must be added before the experiment starts, since it is not possible
to emulate ToM inference without having any hypotheses about possible goal locations.
In the scope of this work, we add only the goal nodes and discard the dead ends creating
a node-set in which we denoteN . With the obtained node-set, we run the D∗ algorithm
to find the optimal path between every two nodes and save all the relative distances in a
matrix F, where element Fi , j denotes distance in pixels between nodes i and j. This might
not be the optimal approach to finding relative distances between the nodes, but this part is
performed offline and done only once before the start of the experiment.

3.3.1 Worker action validation

During the online phase, we monitor workers’ position and orientation provided by the
Microsoft HoloLens augmented reality device as well as the positions of mobile robots
(provided by the warehouse fleet management system). Mobile robots are treated as moving
obstacles with a radius r = 1m, and the worker’s wearable device shows the positions of
nearby robots. If the robot is located on a GVD edge, we cut that edge from the graph
and update the relative distance matrix F using the D∗ algorithm. The final objective of

Algorithm 5:Human intention recognition
1: while True do
2: if Worker moved or turned significantly then
3: d ←Modulated distance to every goal
4: for Proximate positions and orientations do
5: Di ←Modulated distance to every goal
6: end for
7: Update intention estimation(d, Di)
8: end if
9: end while

the human intention algorithm is to estimate towards which goal the worker is currently
going by observing worker motion and comparing it to the optimal path to each of the
goals. With each worker’s position and orientation information update, we check if (i)
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the worker position mapped to the occupancy grid floor plan has changed or if (ii) the
worker orientation has changed more than π

8 from the last intention estimation update. If
any of these conditions are met, we perform an intention estimation update by associating
observed worker position and orientation with each of the nodes in setN using vector c as
follows:

ci =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, an unobstructed straight line exists
between the worker and the i-th node

G(di , σ 2) ⋅Φ(θ i), otherwise.

(3.11)

In (3.11) G is a Gaussian function with variance σ2 = 0.005, which we obtained experi-
mentally, and di is distance between worker position and i-th node’s location. Bell-shaped
functions such as Gaussians have been used for navigating in continuous spaces [141], which
motivated us to choose them as a proximity measure. They are smooth and monotonically
decreasing functions of distance and have a non-zero value on the entire domain, allowing
an intuitive association of the worker’s position with every visible node. We also assert that
every worker’s position will always be associated with at least one node because of GVD’s
space covering properties.The only exception to the aforementioned claim is if the worker is
trapped by mobile robots but we argue that the warehouse management system must never
allow such an event to occur for obvious safety concerns. Furthermore, we also modulate
the Gaussian with the following triangular function:

Φ(θ i) =
π − ∣θ i ∣
π2 , (3.12)

where θ i ∈ [−π, π] is the difference between worker orientation and the angle at which the
worker sees i-th node. It amplifies the association with those nodes the worker is oriented
at since we assume that the worker will look at the path it is planning to take [139]. We also
need to define the isolation matrix In×g , where n is the total number of nodes and g is the
number of goal nodes:

Ii , j =
⎧⎪⎪⎨⎪⎪⎩

1, i = n − g + j
0 otherwise.

(3.13)

We normalize the association vector c and obtain modulated approximate distance vector d
by multiplying it further with the distance matrix F and isolation matrix I:

d = cFI. (3.14)

Each element of vector d represents modulated measure of distance to the respective goal.
In order to find out if the worker is moving towards or away from the goal, we compare this
distance to alternative worker positions and orientations. We take the location l ′ at which
the worker was prior to the last intention estimation update and calculate the difference r
between that position and the current worker’s position l . Then, we generate set of m = 16
equidistant points p on a circle around l ′ with the radius r which is shown in Figure3.6.
For each point pi ∈ p and potential worker orientation θ ∈ {−π,− 3π

4 , ... , π} we repeat the
calculation of vectors c and d and append the result to potential modulated distances matrix
D. Computing the matrixD enables us to validate the worker’s motion with respect to states
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l’

l

Figure 3.6: Illustration of generating additional points pwith orientations θ. We validate the worker’s
motion by comparing the vector c of the worker’s position and orientation at location l
with vectors c of the newly generated points.

it could be in, rather than to the state it had been to. The proposed algorithm pseudocode
can be seen in Algorithm5.

We use the distance vector d and the distance matrixD to validate worker’s actions, and
we introduce the motion validation vector v, which is computed as follows:

v =
max
1≤i≤n

Di j − d

max
1≤i≤n

Di j −min
1≤i≤n

Di j
. (3.15)

If the worker is moving towards the goal, the corresponding value of v will be close to
unity, and if it is moving away from that goal, the corresponding value will gravitate to zero.
One could argue that vmay be interpreted as the estimate of worker intention because it
expresses a measure of approaching the goal. However, elements of v are very sensitive to
sensor noise and they would need to be filtered if one wanted to draw inferences about
worker intentions directly from them. Additionally, even though observing the current
value of v does indeed carry crucial information for estimating worker intention, it is not
sufficient since it lacks a history of past values of v. Consider the following simple example
depicted in Figure3.7, where a warehouse worker moved past the goal labeled by the red
square, and further advanced towards the goal labeled with the green square. As soon as the
worker turned right, the value of v related to the green, as well as red, goal started to grow,
since the distance between the worker and that goal started to drop. However, since the
worker previously failed to turn towards the red goal, its intention estimation for that goal
should have remained low. This example also demonstrates why there is a need to measure
the distance of a traversable path as the approaching measure, instead of simply having,
e.g., the Euclidean distance as elements of vector v. Before further calculations, we apply a
discrete first-order low-pass filter on v in order to reduce the noise influence.
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Figure 3.7: The warehouse worker (blue circle) has previously decided not to turn towards the goal
labeled with the red box. It is intuitive that the worker desires the green goal more than
the red goal because of its action history despite the fact it is now reducing its distance to
both goals. The intention estimation algorithm has to take action history into account
when estimating the worker’s intention.

3.4hmm based intention estimation

In the previous section, we have introduced two approaches for human action validation.
The first one is intended for static warehouse environments and is based onMDP state values
obtained via the value iteration algorithm. The second approach is based on GVD space
partitioning and planning using D∗ with the comparison of the current state with the space
of possible neighboring states. In the rest of this section, we will consider both of these inputs
as motion validation vector v and introduce the model for solving the worker’s intention
estimation problem. While worker’s actions, manifested as moving and turning, are fully
observable, they depend on the worker’s inner states (desires), which cannot be observed
and need to be estimated [4]. We propose a framework based on the hidden Markov model
for solving the worker’s intention estimation problem.They are anMDP extension including
the case where the observation (worker’s action) is a probabilistic function of the hidden
state (worker’s desires) which cannot be directly observed. It is important to note that MDP
andHMMarchitecture share a lot of concepts and nomenclature. Because of that, the shared
acronyms and names of components will pertain to the introduced HMMmodel unless
stated otherwise. We propose a model with g + 2 hidden states shown in Figure3.8and
listed in Table3.1. Hidden states Gi describe the worker’s intention of going to i-th goal,
G? indicates that the worker prefers multiple goals and the model cannot decide on the
exact desire with enough certainty. On the other hand, hidden state Gx indicates that the
worker is moving away from all the goal locations.These hidden state models the case of the
worker being irrational or a worker desiring a goal we have not yet specified. It is important
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Table 3.1: HMM framework components

Symbol Name Description

Gi Goal i Worker wants to go to Goal i
G? Unknown goal Worker’s intentions are not certain
Gx Irrational worker Worker behaves irrationally

to note that the proposed model cannot distinguish between these two cases. Introduced
hidden states enable the human intention recognition model to elegantly save the intention
estimation history as probabilities P(Gi). The first building block in this HMM architecture
is the transition matrix Tg+2×g+2:

T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − α 0 . . . α 0
0 1 − α . . . α 0
⋮ ⋱ ⋮
β β . . . 1 − gβ − γ γ
0 0 . . . δ 1 − δ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.16)

where the architecture and description of the matrix parameters can be seen in Figure3.8.
We have obtained parameters experimentally as follows: α = 0.5, β = 0.1, γ = 0.05, δ = 0.1.

We use the calculated motion validation vector v to generate the HMM’s emission
matrix B. Every time the worker moves or turns significantly, we estimate the worker’s
intention using the Viterbi algorithm [110], which is often used for solving HMM human
intention recognition models [142]. The inputs of the Viterbi algorithm are the hidden
states set S = {G1, ...Gg ,G?,Gx}, hidden state transition matrix T, initial state Π, sequence
of observations O, and the emission matrix B. The HMM framework generally assumes
a discrete set of observations, but since our observation is the validation vector v with
continuous element values, we have decided to modify the input to the Viterbi algorithm
by introducing an expandable emission matrix B. While the classic HMM emission matrix
Bn×g links hidden states with discrete observations via fixed conditional probability values,
elements of the introduced expandable emission matrix Bk×g , where k is the recorded
number of observations, are functions of the observation value. By using this modification
of the emission matrix, we additionally simplify the Viterbi algorithm because there is no
set of discrete observations it has to iterate through. Once a new validation vector v is
calculated, the emission matrix is expanded with the row B′, where the element B′i stores
the probability of observing v from hidden state Gi . We also calculate the average of the last
m vectors v and the maximum average value ϕ is selected. It is used as an indicator if the
worker is behaving irrationally, i.e., is not moving towards any predefined goal. The value of
the hyperparameter m decides how much evidence we want to collect before we allow the
algorithm to declare the worker irrational. If the worker has been moving towards at least
one goal in the last m iterations (ϕ > 0.5), we calculate B′ as:

B′ = ζ ⋅ [tanh(v) tanh(1 − ∆) 0] , (3.17)

and otherwise as:
B′ = ζ ⋅ [01×g tanh(0.1) tanh(1 − ϕ)] , (3.18)
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Figure 3.8: HMM architecture used for human intention recognition. Worker’s change of mind ten-
dency is captured by the parameter α and the parameter couple β and γ set the threshold
for estimating intention for each goal location. Increasing β leads to quicker inference of
worker’s intentions and increasing γ speeds up the decision making process. Parameter δ
captures model’s reluctance to return to estimating the other goal probabilities once it
estimated that the worker is irrational.

where ζ is a normalizing constant andwe calculate∆ as the difference between the largest and
second-largest element of v. Using such a way of calculating ∆ enables us to simply encode
that, in order for our model to decide in favor of any goal location, it has to significantly
stand out from other goals. Humans often infer the intentions of others by observing their
actions [74], which are generally not optimal with respect to their goals. Nevertheless, we
argue that the worker will globally move towards the goal it desires the most, but may locally
take suboptimal actions such as looking around or swerving laterally. In order to encode
such behavior, we use the hyperbolic tangent function in (3.17) and (3.18) to reduce the
difference between the actions that indicate movement towards the goal whilst penalizing
other actions approximately equal to the linear function would. Finally, we set the initial



3.5. Experimental Results 47

probabilities of worker’s intentions as:

Π = [0 . . . 0 1 0] , (3.19)

indicating that the initial state is G? and the model does not know which goal the worker
desires the most. The Viterbi algorithm outputs the most probable hidden state sequence
and the probabilities P(Gi) of each hidden state in each step. These probabilities are the
worker’s intention estimates.

Worker tasks are not always predefined in the beginning and can appear or cease during
workers’ stay on the shop floor. We have taken such events into consideration and made it
possible to add or remove goals during the experiment. If the goal has to be removed, e.g.,
because another worker took that job over or the task was canceled, we simply discard that
goal from our calculations and add it to the unknown goal intention estimation. If the goal
has to be added, we do this by setting its intention estimation tomax(min(P(Gi), 0.1) with
0 < i < g and by expanding the I and Tmatrices. We would like to emphasize that it is not
possible to add an arbitrary number of goals, because of the fixed values of parameters in T
matrix. The maximum number of goals this model can handle is limited because elements
of transition matrix Tmust be greater than 0. The only value of matrix T that depends on
the goal number is the probability of staying inG? state and equals to 1− gβ−γ. We calculate
the maximum number of goals by applying the positivity condition to that expression:

gmax = ⌊
1 − γ
β
⌋, (3.20)

which for our current value of parameters amounts to 9 goals. However, after detailed
testing, we have concluded that the proposed model does not perform well if there are
more than 5 goals. The main difficulty here is that if there are more potential goals, workers’
actions are not discriminatory enough and there is not enough evidence that the worker
desires one goal more than the other goals. Because of that, the model estimates G? as the
most probable state throughout the experiment. While we argue that this still is accurate
worker’s intention estimation, it is hardly useful to a supervisory system that is taking our
algorithm’s estimations as input.

3.5experimental results

This section presents the simulation and experiment results of the proposed framework.
Firstly, we will discuss the results for our proposed simulated environment and show that the
MDP human action validation approach successfully captures cues such as moving towards
the goal of looking at the goal’s direction. Then, we will exhaustively comment on multiple
experiments conducted in the real warehouses and a larger virtual reality warehouse. The
Hololens localization will be showcased and some special cases, such as goal addition during
the experiment will be discussed.

3.5.1 Simulation Results

In the previous sections, we have introduced the MDP and HMM frameworks for modeling
human action validation and intention recognition.We have obtained themodel parameters
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empirically and conducted multiple simulations evaluating the proposed human intention
recognition algorithm. The proposed algorithm is tested in a scenario, where the most
important simulation steps are shown in Figure3.9and the corresponding desire estimates

(a) Simulation step 2. (b) Simulation step 3. (c) Simulation step 6.

(d) Simulation step 7. (e) Simulation step 12. (f) Simulation step 13.

(g) Simulation step 18. (h) Simulation step 25. (i) Simulation step 31.

Figure 3.9: Representative simulation steps (best viewed in color) of human intention estimation in
simulated environment.

are shown in Figure3.10. The starting position is (x1, y1, θ1) = (5, 5, 3π2 ). The agent behaves
consistently with all the hypotheses and proceeds to the state (x6, y6, θ6) = (8, 5, 0). Because
of thementioned hypothesis consistency, the desire estimates for all of the goal states increase.
The actions from simulation step 7 to step 12 are consistent only with the hypothesis H3

which manifests as the steep rise of the P(G3) and fall of probabilities related to other goal
hypotheses. In step 13, action “Stay” is the only action consistent with the hypothesis H3

and because the agent chooses the action “Right”, the P(G3) instantly falls towards the zero,
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Figure 3.10: Hidden state (desires) probabilities. Probabilities of the goal states are colored according
to the goal tile’s color. The unknown goal state probability is colored black and irrational
agent state probability is colored red.

and P(G?) and P(G2) rise. While it might seem obvious that the agent now actually wants
to go to Goal 2, it has previously chosen actions inconsistent with that hypothesis and the
model initially gives a greater probability value to the desire G? than to G2. The next few
steps are consistent with the hypothesis H2 and the P(G2) rises until the simulation step
18, when it enters a steady state of approximately 0.85. The goal desires will never obtain
value of 1 because the element B′4 is never zero, thus allowing agent’s change of mind. In
the state (x25, y25, θ25) = (16, 7, π4 ) agent can decide to go to the Goal 1 or Goal 2. However,
it chooses to take the turn towards the dead end in the simulation step 31. The proposed
model recognizes that this behavior is inconsistent with all of the hypotheses and the P(Gx)
steeply rises to value slightly smaller than 1, declaring the agent irrational.

In this section, we demonstrate the proposed human intention estimation algorithm
performance and discuss the results. We have conducted experiments in both an industrial
setup and in a larger virtual reality rendered warehouse. Before we analyze the results, we
discuss the method for evaluating the proposed model.

To the best of our knowledge, a recognized criterion or method for evaluating human
intention estimation models does not exist. Models such as those proposed in [74] rely
on people’s judgments to evaluate results, while models which use learning methods have
well-defined start and end points of the experiments, and the ground truth information is
readily available or evident from the experiment’s endpoint. While the worker’s intention
at the end of the experiment is unambiguous, it is unclear how to empirically determine
intentions during the experiment because of the possibility of the worker’s change of mind.
Also, we obtained the parameters given in (3.16) experimentally after thorough testing, and
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Figure 3.11: The layout of the laboratory warehouse used for AR-based experiments. Mobile robots
move over ground nodes labeled with letters R (traversable path for warehouse workers)
and S (under the racks which robots can pick up and move). Nodes P and R100 are used
as picking stations and queue nodes but are treated the same as other R nodes in our
experimental setup.

they were selected in a way to produce consistent and semantically interpretable results
on different datasets. We do not claim that those parameters are in any way optimal, but
we assert that applying some of the well-known algorithms for learning HMMs, such as
expectation-maximization, is not feasible in our case, since an unbiased labeled dataset is
unavailable. Furthermore, we are deterred from using people’s judgments as ground truth
for the same reason. Since we want estimates of the proposed human intention estimation
algorithm to be useful to a supervisory system, we insisted that if the worker is moving
towards more than one goal, the intention for those goals should be higher than for any
other goals; but, it should be lower than estimation for G?. If the worker moves to a single
goal, intention for that goal should be the highest, while if the worker does not move towards
any goal for a predefined amount of time, the model should declare it as irrational. We have
chosen that time to be 1 second. Using such interpretation of intentions can be encoded in
a mobile robot fleet management system, which can then, e.g., reroute mobile robots away
from the goal worker is moving to.

3.5.2 Augmented reality experiments

The augmented reality experiments were conducted in the laboratory warehouse of Swiss-
log and consisted of twelve racks and two robots. The layout of the warehouse is shown
in Figure3.11. Although of a smaller scale than commercial warehouses, it nevertheless
enables conducting experiments in a realistic environment. As previously mentioned, for
the AR experiments the Microsoft Hololens augmented reality glasses were used. Since our
intention estimation algorithm assumes that the position and orientation of the worker are
known, we used Hololens’ proprietary algorithm to localize the person while walking inside
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(a) First-person view from the 2 Megapixel Hololens camera

(b) First-person view from HTC Vive

Figure 3.12: Comparison between the real-world experiment and the experiments in VR. Both
experiments use exactly the same setup.

the warehouse. Since no external tracker was used, we first wanted to verify the localization
accuracy of the Hololens inside a warehouse-like environment. The experiment was con-
ducted by a person first starting from a predefined ground node (R32 in Figure3.11, all the
ground nodes are manually marked and unique) and then walking from ground node to
ground node.This is similar to the way robots follow a path since they use ground nodes for
navigation. In this experiment, all AR interactions were disabled and the person navigated
the warehouse autonomously the only exception was a holographic sphere positioned at
the Hololens’ location every 100 frames. This allowed us to conduct a qualitative analysis of
the localization shown in Figure3.13. The results showed that the localization was indeed
robust with only a few centimeter deviations, at most, from the straight-line paths between
nodes. A first-person view from the Microsoft Hololens is shown in Figure3.12a.

To test the proposed algorithm, two experiments were conducted (besides the localiza-
tion experiment described previously). In both experiments the starting point was node R32
and featured two robots; one stationary and positioned at R15, while the other was mobile.
In the first experiment shown in Figure3.14, the worker has three potential goals located in
front of racks near nodes on R117, R108, and R17. The worker initially starts moving toward
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Figure 3.13: Conducted experiment showcasing the precision of the Hololens’ localization. We have
created a warehouse model in rviz - Robot Operating System’s 3D visualization tool,
which will be further used to demonstrate proposed algorithm’s results.

node R117, but the mobile robot moves forward from node R107 and turns right towards
node R101, thus blocking the worker’s initially intended path towards the R117. The worker
then turns around and follows the only remaining path towards R117 which is also the best
path for the other two goals. Once the worker reached R103 and continued to R104, the
proposed algorithm detects that it has failed to turn towards the R17 goal and lowers its
intention estimation value. The worker further continues to goal R109 but turns around
before reaching it. After turning, the only goal the worker could be going to is R17, but the
worker continues past it returning to node P. When the worker passed the goal R17, the
model recognized there are no goals it could be going to and declared the worker irrational.
The estimated intentions of the proposed algorithm can be seen in Figure3.15a. The second
experiment included a worker moving towards R117 and changing its mind to go to R17
simultaneously with a mobile robot blocking the best path towards that goal and eventually
returning to R117. The main idea of the second experiment was to showcase the algorithm’s
flexibility in scenarios where the worker changes their mind often. Given that, we only show
the second experiment in the accompanying video1.

3.5.3 Virtual Reality Setup

We built a virtual reality framework for rapid prototyping of applications for flexible robo-
tized warehouses, a tool that might also evolve into a training framework in the future.
The main motivation behind a virtual framework, i.e., a virtual reality digital twin of a
warehouse, is that commercial automated warehouses are often unavailable for experiments,
but they can be simulated, thus avoiding the warehouse downtime and financial losses,
yet enabling testing in full scale to identify potential problems and obtain realistic user
experience. Furthermore, this approach also enables us to do tests with multiple users more

1 https://youtu.be/SDD-v-pH0v4
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(a) Initial position. (b) The worker moves towards the
purple goal (R117) but the mo-
bile robot obstructs the intended
path towards it. Because the
worker has not turned around
immediately, the model warns
that the worker is behaving irra-
tionally.

(c) The worker turns and follows the
path consistent with going to all
three goals.

(d) Theworker is on a crossroad. If it
turns towards the brown goal it
is obvious that it is the goal wants
to reach.

(e) However, the worker has de-
cided not to advance towards the
brown goal and to continue to-
wards the cyan and purple goals
instead. Because of that the in-
tention estimation for the brown
goal has steeply fallen.

(f) The worker stopped near the
cyan goal and started turning
around in place.

(g) The worker has taken its AR de-
vice off and is moving towards
the brown goal.

(h) Because the worker passed
brown goal and is moving
backwards, the model estimates
its behavior to be irrational.

(i) End of the experiment.

Figure 3.14: Key moments of the industrial experiment setup in the laboratory warehouse visualized
in rviz. Goal nodes are labeled with cubes as follows: R117 purple, R17 brown and R109
cyan.

freely and achieve the best possible interaction modalities. Note that besides testing user or
worker behavior inside the warehouse, the virtual setup also serves for testing augmented
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(a) Algorithm’s output in real world AR experiment.
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(b) Algorithm’s output in VR experiment.

Figure 3.15: Comparison of the proposed algorithm’s output between the real-world experiment and
the experiment recreated in VR. Intention estimations for the three goal locations are
labeled with respect to their color in Figure3.14(brown, cyan, and purple), the unknown
goal state is labeled black and the irrational worker state is labeled red. One can see that
the results in this scenario are similar for both AR and VR technology.
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Figure 3.16: The larger warehouse layout used for VR experiments. The layout shows movable racks,
picking points and ground nodes that are connected via graph edges robots can move on.
However, in present chapter we do not leverage this information for human intention
recognition.

reality applications for warehouse workers wearing glasses such as theMicrosoft Hololens.
Concretely, the application was developed inUnity3D and is used with theHTCVive headset.
An example of a user view within the virtual reality warehouse is shown in Figure3.12b.

The warehouse layout is planned using Swisslog proprietary network planner, from
which an XML file is exported. We have developed an XML file parser which together with
an available CADmodel builds a VR warehouse from scratch.The fleet of robots is presently
controlled by parsing a series of JSON messages, which are the output of a path planner
[143].

Currently, two AR interaction scenarios have been implemented for prototyping aug-
mented reality applications: path visualization for worker navigation and rack object picking
assistance. The virtual setup emulates the Microsoft Hololens: all of the holographic objects
are only visible through a narrow field of view (FoV), which according to specifications
ranges from 300 to 350 horizontally and 17.50 to 17.820 vertically (we selected the lower
bounds). The interaction pointer uses raycasting to position itself with respect to objects.
The potentials of the proposed system are numerous. For example, such a system allows us
to test if a certain interaction modality fails or is not as informative because of the low FoV
in a realistic environment. It also allows us to inject localization errors to determine at which
point various interaction modalities become unusable. However, in the present solution,
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(a) Initial position. (b) The worker moves towards the
yellow brown goals.

(c) The worker moves past the yel-
low goal.

(d) The brown goal is added in the
second scenario.

(e) A mobile robot blocks the
worker’s path towards the brown
goal and the worker turns.

(f) The worker has been moving to-
wards the purple goal but has de-
cided to turn left.

(g) The worker is on a crossroad. If
it turns towards the brown goal
it is obvious that it is the goal it
wants to achieve.

(h) The worker has turned towards
the brown goal.

(i) End of the experiment.

Figure 3.17: Key moments of the virtual reality generated scenario using larger warehouse visualized
in rviz. Goal nodes are labeled with cubes and goal labeled with brown cube is being
added during the experiment.

the virtual framework is used primarily as a controlled simulated warehouse environment
for conducting experiments for worker intention estimation.

3.5.4 Virtual reality experiments

Due to the unavailability of a full-scale commercial warehouse for testing, we conducted
larger-scale tests in VR, using the system described in Section3.5.3. The tracking method of
the HTC Vive has an RMS error of 1.9mm, which offers very accurate tracking for a realistic
VR experience for warehouse localization and worker behavior purposes. We tracked the
position of the user, as well as of each robot. An example of a first-person view from the
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(a) Algorithm’s output with brown goal being known through the whole experiment.
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(b) Algorithm’s output with brown goal being added during the experiment.

Figure 3.18: Comparison of the proposed algorithm’s output in the larger VR warehouse between
two different scenarios. Intention estimations for three locations are labeled with respect
to their color in Figure3.17(brown, cyan, and purple), the unknown goal state is labeled
black and the irrational worker state is labeled red. One can notice that the algorithm’s
outputs are different only on the segment where the brown goal has not been introduced
in3.18b.
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(a) Initial position. (b) The worker moves towards the
yellow goal but because a mobile
robot blocks the path towards it,
the model declares the worker
irrational.

(c) Only the path towards the yel-
low goal is unobstucted but the
worker does not go directly to-
wards it.

(d) The mobile robot blocks the
worker’s advancement. Because
the worker turns and moves
while waiting for the robot to
move, the model switches esti-
mation between the yellow goal
and the unknown goal state.

(e) Mobile robot moved and the
worker is going to the purple
goal.

(f) The worker is at the purple goal’s
location which ends the experi-
ment.

Figure 3.19: Key moments of the virtual reality generated scenario using a larger warehouse with 24
mobile robots visualized in rviz. Goal nodes are labeled with colored cubes.

Hololens used in the laboratory warehouse and HTC Vive in a VR digital twin of the same
warehouse can be seen in Figure3.12.

We repeated the first AR experiment in the constructed VR environment to demonstrate
the applicability of VR for human intention estimation. The only difference between the
scenarios was that we did not reproduce the last part of the AR experiment when the worker
took off the AR device to simulate a type of irrational behavior. The results are shown
in Figure3.15b, where we can see that the biggest difference between real-world and VR
experiments is at the beginning of the experiment. Those differences are caused by the fact
that the VR experiment starts with the worker going directly towards the goal, whereas
at the beginning of the real word experiment the worker is still putting on the AR device.
Because they can be interpreted as semantically similar to AR results, we conclude that
testing intention estimation in VR can produce credible results.

We then proceeded to conduct experiments in a larger VR warehouse (layout can be
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seen in Figure3.16) with four robots running on preprogrammed paths. These paths were
generated by the path planner and read from a text file containing JSON messages. We
considered two scenarios for this experiment: one with four initially known goals and
one with three initially known goals with one goal being added during the experiment.
Visualization of the key moments can be seen in Figure3.17and the proposed algorithm
output is shown in Fig3.18. The worker initially starts moving towards yellow and brown
goals. If the brown goal is known, the model cannot decide which goal the worker desires
more and stays in the unknown goal state (Figure3.18a). However, if the brown goal has
not yet been added, the worker moves only to the yellow goal, and the probability for that
goal steeply rises (Figure3.18b). The worker then continues past the yellow goal which
causes its intention estimation to fall. Shortly after this event, the brown goal is added in the
second scenario. Once the mobile robot blocks the shortest path towards the brown goal,
the worker turns right. Because it is now also moving towards the cyan and purple goal,
the model cannot decide which goal the worker desires the most. The worker continues
moving towards the crossroad and hesitates with turning toward brown and cyan goals
which manifest as a spike of estimation for the purple goal. However, since the worker
eventually turns toward brown and cyan goals, the purple goal’s estimation steeply falls.
The worker then continues moving towards the brown goal and the model recognizes its
intention.

In the end, we have conducted another experiment on the large-scale VR test warehouse
with 24 mobile robots. The robots were placed in groups of eight on the far left, middle, and
far right vertical corridors, equally spaced vertically. Each robot then selected one of the
reachable adjacent nodes at random and continued selecting nodes in such a manner, except
that it is not allowed to return to the node visited in the previous step. If another robot
already selected the same node in the same time step, it stops and waits for it to pass. This
works well at emulating a fleet of robots moving around the warehouse without collisions.
The goal of this experiment was to show the proposed algorithm’s scalability with the respect
to the number of mobile robots. We emphasize that mobile robot trajectories were not
taking worker position into account. Given that, in some scenes, the worker is moving in
the proximity of a mobile robot carrying a warehouse rack, which would not meet safety
requirements in a realistic flexible robotized warehouse. Nevertheless, we use this scenario
solely for illustration purposes in order to demonstrate the proposed algorithm’s scalability.
The key moments of the experiment are shown in Figure3.19and the result of intention
estimation is shown in Figure3.20.
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Figure 3.20: Proposed algorithm’s output in VR scenario with 24mobile robots. Intention estimations
for goal locations are labeled with respect to their color in Figure3.19, the unknown
goal state is labeled black and the irrational worker state is labeled red.

3.6summary

In this chapter, we have proposed a real-time human intention estimation algorithm capable
of handling a dynamic environment. Our goal was to estimate the intention of a human
worker inside of a robotized warehouse whose layout can change due to robots blocking
paths. We assumed that the worker position and orientation are measured and that the
warehouse layout and robot positions are readily available. The worker has a set of potential
goal locations that can be defined before or added during the experiment. The task of the
proposed algorithm is to precisely estimate workers’ desires for each goal. Given that, we
evaluated worker actions with the respect to a modulated optimal path. This path was
generated using a hidden Markov model for the static simulated environment and for the
real and virtual reality warehouse we used the generalized Voronoi diagram coupled with
the D∗ algorithm. Then we used the resulting motion validation as observations of the
hidden Markov model framework to estimate the final probabilities of worker intentions.
We have carried out multiple experiments in a simulated, real-world industrial setup using
augmented reality glasses and in virtual reality generatedwarehouses in order to demonstrate
the scalability of the algorithm. Results corroborate that the proposed framework estimates
warehouse workers’ desires precisely and within reasonable expectations.



4
Human motion prediction for human-aware

planning

T his chapter presents a novel solution to human motion prediction for human-
aware planning in the integrated robotized warehouse. One of the major challenges

in such a system is planning paths and trajectories for all agents, humans, and robots
while retaining operational efficiency and safety. Firstly, we define what is expected human
behavior with the respect to designated tasks and propose amethod for detecting deviations -
the movement not consistent with expected human behavior. An extension of the previously
proposed task planner is introduced, with an emphasis on human-aware planning. We
describe how the safety levels influence the planning process and which constraints we
have taken into account. Afterward, the proposed human intention recognition method is
employed for motion planning if the deviation is detected. The set of most probable human
trajectories is calculated and forwarded to the human-aware planner that makes decisions
on rerouting robots in the warehouse. Finally, the proposed framework is tested with one
and three humans in the warehouse and with a varying number of robots. We have tracked
the total number of deliveries, responsiveness of the system, number of replanning, and
human-robot encounters in the warehouse.

4.1introduction

A simulated example of a typical automated flexible warehouse can be seen in Fig.4.1.
It consists of large storage racks, packed with goods that are carried by a fleet of mobile
robots to designated picking stations, where humans pick goods, pack them, and forward
them further for shipment. One of the main problems warehouse management currently
faces is that most issues inside the warehouse shopfloor, e.g., a robot malfunction or goods
falling on the floor storage racks, require human attention. Furthermore, sometimes it is
more efficient for a human worker to carry out the picking of goods if their distribution
in the warehouse is too disparate. Given that, there are many times a human intervention
in the robotized warehouse is needed, and if this is not carried out in a planner manner
it can lead to interruption of the whole warehouse operation, ultimately exacerbating the
issue we were trying to solve in the first place. However, human workers do not always
behave in a deterministic and prescribed fashion which can affect the carefully orchestrated
coordination devised by the robot fleet management system (FMS); hence, to adapt to such
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perturbations, a human intention recognition (HIR) system is needed.
The main task of the FMS, which carries out all the robot planning tasks, is to find

trajectories between a pair of nodes in the warehouse while taking into account the plans of
other robots. The problem of trajectory planning and motion coordination is a well studied
problem [144], and since then many approaches have been introduced often based on the
classical single-robot planning approaches [145, 146, 60, 147] that provide completeness or
even optimality; however, they are not practical for warehouse environments due to their
large computational complexity. To counter this issue, another category of sub-optimal
planning algorithms has been introduced [148, 149, 150, 151, 152], among which the context-
aware route planning (CARP) algorithm, in particular, provides good quality solutions
in a warehouse environment with low path computation time and is easily extendable
with warehouse specific constraints. The main drawback of the original algorithm was its
reliance on the ordering of the agents to be planned. Several heuristic approaches have been
introduced in [153] to improve the properties of the algorithm. However, in the warehouse
environment, the tasks are not known all at the same time but are given sequentially.

As stated earlier, to ensure warehouse operation efficiency, FMS needs to be comple-
mented with HIR, thus effectively enabling a human aware planner (HAP). Given that,
when a deviation has happened, HAP should be notified and assisted with the estimation of
paths the human might follow – this becomes possible if worker intentions are accurately
recognized. We define deviation as a prolonged human movement not consistent with
expected behavior with respect to the given goal. The HIR module we select is based on
the method proposed in Chapter3and is based on the BayesianTheory of Mind approach
utilizing generalized Voronoi diagrams, a D∗ graph search, and hidden Markov model
architecture.The proposed method observes human behavior and, should they deviate from
the assigned path, queries the HIR module for the human goal estimation. These estimates
are coupled with expected human velocity to provide the HAP with a set of most probable
human trajectories. This enables handling deviations locally, without the necessity to cease
the operations of all the robots during human presence inside the warehouse. The HAP
reacts by moving the robots out of the human’s way or simply stopping the robots. Even
though we assume that robots are equipped with a safety system, human-aware planning
can reduce the chance of robots driving close to humans thus lowering the number of times
the safety system is triggered. In conjunction, this leads to the more efficient operation of
the warehouse and hypothetically less stress on the human workers (note that load-carrying
robots can weigh up to 1000 kg). We have benchmarked the proposed HIR framework
with other methods and recorded an increase in a number of human deliveries by 207%, an
increase in total deliveries by 28%, and a reduction of human-robot encounters by 91%.

This chapter is organized as follows. We first introduce the system architecture in
Section4.2, laying out details of communication between FMS, HAP, and HIR modules,
highlighting the planning method for robots in the warehouse. In Section4.3we describe a
novel human deviation detection algorithm, summarize the principle of the HIR module
and give detail about trajectory calculation from intention estimates. This information is
processed by the HAP for a timely reaction which might include rerouting or stopping
robots in the warehouse. In Section4.4we exhaustively test the proposed framework
with varying numbers of robots and humans in the warehouse. We have tracked the total
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number of deliveries, responsiveness of the system, number of replanning, and human-robot
encounters in the warehouse and discussed the results. Finally, the Section4.5summarizes
the chapter.

4.2the fleet management system

In this section, we will introduce the key FMS components needed for understanding the
context of HAP operation. Firstly, we will break down the simulated warehouse environment
where humans and robots coexist and execute numerous tasks. We will continue with an
in-depth explanation of the relations between FMS, HAP, and HIR modules with a focus on
the information they exchange. Afterward, the multi-robot route planning will be presented
and we will define conflicting states and safety regions. Finally, we will introduce the details
of the planning algorithm for each of the robots in the warehouse.

4.2.1 The warehouse simulator

The simulated warehouse shown in Figure4.1is organized into connected nodes and re-
sembles faithfully the software architecture used by an FMS of a true robotized warehouse
system. Each node can either be occupied by a robot, a storage rack, or a human. Unloaded
robots can move across all free nodes, while loaded robots cannot enter a node already
containing a storage rack. As incoming orders arrive, the robot fleet management system
coordinates all the robots so that storage racks containing ordered goods are delivered
to picking stations, then returned to a free storage node (not necessarily the same as the
starting one), and the robots that are idle are sent to the charging nodes. All this needs to be
carried out in an efficient manner ensuring continuous operation of the whole warehouse.
This planning task is quite challenging since the number of robots can range from 50 to
800, and it gets an additional layer of complexity by having to account for human workers
in the area. Note that we assume that robots are equipped with a safety system ensuring
that the robots will stop if they come to a range that is too close to the human worker. The
multi-robot warehouse simulator was originally presented in [154], while for the current
solution we have extended the simulator with the ability to include human worker plan
deviation.

4.2.2 Submodules overview

The proposed system architecture is shown in Figure4.2. FMS is in charge of planning paths
for all the agents in the warehouse and that includes multiple robots and humans. The HIR
module serves as part of the FMS with the task of assisting HAP with the uncertainties that
human behavior might cause. The HIR has at its disposal information about the position of
all the agents in the warehouse, as well as the planned paths of human workers. While the
robots are controlled by FMS and always follow the paths given to them, human workers can
deviate from their paths for a number of reasons. Because of that, the supervising system
can not assume that workers will always follow the path that the FMS gives to them.The
job of the HIR module is to detect human deviations from the planned path and estimated
the predicted trajectories, based on which the HAP will produce an updated plan for all
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Figure 4.1: The developed flexible warehouse simulator. Mobile robots (pink) do a predefined set
of tasks such as carrying storage racks (green) while moving on the ground nodes (red).
Three human workers move freely between the storage racks picking goods at specified
warehouse locations or doing maintenance work.

the agents. To efficiently assist the HAP, HIR should ascertain (i) if a worker deviated from
the original path and (ii) where that particular worker is going to. Given that, the output of
the HIR module is a logical flag indicating if there is a worker deviation, followed by a set
of probable paths. The HAP then reacts with the method described in Section4.3. In the
sequel, we describe each of the proposed system’s components in detail.

4.2.3 Multi-robot route planning

In this subsection, we leverage the planning method proposed in [154] that is based on the
CARP algorithm [148].The original algorithm structures its map as a resource graph, where
each resource has a corresponding timeline. This timeline consists of free and occupied
time windows, that indicates whether the resource is available in a given time interval or
already taken by a different agent. For each agent that needs planning, the algorithm then
finds a free time window on the corresponding resource to the start node of the agent
and uses a modified A* algorithm to find the shortest path to the free time window on
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Figure 4.2: Architecture of the proposed system. HIR and HAP are implemented as separate threads
of the FMS. While the FMS is responsible for entire warehouse management, we have
highlighted only the data flow which is described in the scope of this thesis.

the corresponding goal resource through expansion to the neighboring overlapping time
windows. The advantage of the used approach is that it takes into account only a handful
of the most influencing agents. The algorithm aims to generate a trajectory for an agent
ak while assuming that trajectories for k-1 agents are already planned. This can lead to
modifying those planned trajectories to accommodate the new agent. The main idea is that
the algorithm iteratively builds a set of agents whose trajectories affect the optimal trajectory
of agent ak the most and replan this set of agents as well as agent ak in ordering that yields
a solution with the best global cost. Another type of constraint is the inclusion of the safety
regions around the robot that differ in their radius and the interaction with robots. There
are three different safety regions defined, but only two of them are considered for planning:

• Safety region 1: The robot stops its operation if it enters this radius

• Safety region 2: Planner avoids planning robot in this region

• Safety region 3: The robot must decrease its speed.

As the reader can notice, the safety regions 1 and 2 are identical for the planning algorithm,
because the planner needs to avoid planning robots into them, and therefore the algorithm
considers only regions 2 and 3.

To accommodate the constraints, the planning algorithm adds an additional timeline
to each resource on the resource graph. This timeline is referred to as conflicting, with the
main timeline referred to as physical. The physical timeline indicates when the resource
is being physically occupied by an agent, while the conflicting timeline indicates whether
any resource that the current resource conflicts with are being physically occupied. An
example of conflicting states can be found in Figure4.3a, while an example of planning with
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Figure 4.3: (a) An example of conflicting states. As long as the robot is standing on the Red node,
no other robot can stand on any of the Green nodes. (b) An example of planning with
conflicting states. Blue robot wants to go to node B, and Red robot on node E. The node
C is in conflict with nodes B, D and E. This means that when Blue robot attempts to plan
to node B, the planning fails because even though the physical timeline of node C is free,
the conflicting timeline of node C shows that it is occupied by the Red robot.

conflicting states is shown in Figure4.3b. If these timelines were merged into one, the result
would be a timeline where the free time windows are windows that the agent can move into
without violating any constraints.

The safety regions for humans are handled similarly, i.e., by keeping timelines Safety
region 2 and Safety region 3 for each resource and human present in the warehouse, corre-
sponding to time windows that the human plan occupies. Furthermore, the Safety region 2
timeline is added for each robot as well. The Safety region 2 is used by merging the physical
and conflicting timelines to obtain the final occupancy timeline of a resource during robot
planning. Safety region 3 occupancy timeline is used to check if the resource intersects
the Safety region 3 during the computation of the time it takes the robot to cross a given
resource.

4.2.4 Planning For Robots

The proposed planner differentiates between five different states where a robot can be i)
going to pick up its rack assigned by the job, ii) taking the rack to the start of the queue
before the goal picking station, iii) in the picking station queue, iv) heading back to return it
to its position or v) heading back to its charging station. In addition to these plan states, the
robot also has five internal states: Idle - The robot is in a charging station, Busy - The robot
has assigned a job, currently working on its completion, Free - No job assigned, returning to
a charging station, Interrupted - The robot has been interrupted and needs to be replanned
and Failed - The robot failed to find a plan.
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Figure 4.4: The main state diagram of the robot planning.

The detailed diagram of the standard robot operation without human interruption can
be seen in Figure4.4which can be described as follows: At the start of the program, each
robot starts as being Idle. Once a job arrives, the planner decides which robot should be
assigned this newly arrived job. If a robot is chosen for the given job, he is assigned a plan to
the desired storage unit (rack) and becomes Busy. Once the robot arrives there and picks the
rack up, it signals that its current job is complete. At this stage, the fleet manager attempts
to find the next part of the robot plan. Once the plan is found the robot is set to be in a
state that indicates it is on the way to the picking station. Once the robot gets to the picking
station node through the queue (note that the robot is not planned directly to the picking
station but to the start of the queue, where he is assigned further movement depending on
the push and pop operations), it signals that its current plan is complete, and the planner
attempts to assign a new plan for it that leads back to the original storage unit; If successful,
the robot transitions to the next state that indicates that it’s returning the rack. Once the
robot gets there and puts the rack down, it is marked as being FREE and assigned plan back
to its charging station. In his state robot can be assigned a new job immediately. However, if
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Figure 4.5: The allowed deviation area is depicted by a grey ellipse defined by the current node and
next node as focal point (green). Once the worker enters the green circle surrounding
the next node, it becomes worker’s current node and its successor in the path sequence
becomes worker’s next node. The example of human path which follows the plan is given
with blue color while the path deviating from the plan is red.

the robot arrives back at the charging station it transitions to the original IDLE state.

4.3human motion prediction

This section introduces the human motion prediction algorithm based on the HMM frame-
work introduced in the previous chapter. We start by discussing human deviations in the
warehouse domain and our method for detecting them. After the deviation is detected, the
HIRmodule calculates the probability distributions over pertaining goals and optimal paths
towards them. These paths are then used by the HAP to make decisions about rerouting or
stopping robots in the way of a human.

4.3.1 Human Deviation Detection

Each worker that enters the warehouse has a predefined path that consists of a sequence of
ground nodes shown in Figure4.1. We designate the first node of the worker path as the
current node, and the second node of the path as the next node. Every time the distance
between the worker and the next node in the path is less than r = 0.25m, that node becomes
worker’s current node and its successor in the path sequence becomes worker’s next node,
until the end of the path is reached. Human beings usually do not walk in a perfectly straight
line [155], but swing laterally while moving forward. Given that, we allow deviation from the
path defined by the allowed deviation area that is described by an ellipse having focal points
in the current node and next node, while the major axis is defined as the Euclidean norm
between the focal points increased by 2r. The allowed deviation area is shown in Figure4.5
and the worker is considered to be deviating from the path if it has been outside of the area
for at least 4 consecutive cycles.
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4.3.2 Human Path Prediction

If a worker is detected to be deviating from its predefined path, it is necessary to estimate
its future path. In this section, we propose a human path prediction method relying on the
method proposed in the previous chapter, where we proposed a human intention estimation
method based on hidden Markov model (HMM) motion validation. We will highlight it
here with a focus on the changes made for the path prediction problem.

We assume that there is a finite number of possible goal locations, which are usually in
front of the storage racks of interest. For current experiments, we selected four auxiliary
goals, each one in a different corner of the warehouse and their locations are labeled with
turquoise rectangles shown in Figure4.1. It is important to emphasize that the worker is not
required to go to the predefined goals, but they do serve as starting points for the proposed
algorithm. Also, the last node of the human path provided by the planner is also considered
a goal location.

Before the simulation starts, we calculate the distance between all the ground nodes
using the D∗ algorithm [66] and save it in a distance matrix F. In case of a robot blocking the
edge between two nodes during the experiment, we discard that edge from the graph and
recalculate the distance matrix F. Because we use road nodes, the search space is reduced
significantly and the recalculation can be made in 3.456 ms1 for 228 nodes and 348 edges
of the warehouse road graph. For comparison, if we used a grid map representation with
the precision of 10 cm, the recalculation would be done on approximately 2 × 107 nodes
and 1.5 × 108 edges which would make the recalculation time larger than one minute, thus
rendering it too long for real-time application.

Each time a worker makes a significant displacement, we update its predefined goals
intention estimate using a scaled-down version of the algorithm proposed in [82]. We
associate the position of the worker with the observable nodes by forming a so-called
association vector c. The closer the human is to the node, the larger the value of the vector c.
By multiplying c and F, and by isolating the goal nodes, we obtain a modulated distance
vector d of dimension g, where g is the number of goals. We also calculate the alternative
association vector c’ of the positions the worker might have gone to if it moved the same
distance from the last observation; we also calculate the corresponding modulated distance
vector d’. By comparing values of the vector dwith values of each d’ that we collect in matrix
D, we calculate the observation vector o via element-wise division:

o =
max
1≤i≤n

Di j − d

max
1≤i≤n

Di j −min
1≤i≤n

Di j
. (4.1)

If the worker is moving towards a goal, the corresponding value of o will be close to unity,
and if it is moving away from that goal, the corresponding value will gravitate to zero.
We record the observation history and process it with an HMMwith g + 1 states, one for
each goal and one for the last node of the human’s predefined path. We define the HMM’s
transition matrix T with α = 0.823 on the diagonal and 1−α

g otherwise. We have obtained
this parameter by learning from the recorded data with workers moving in the simulated
warehouse without robots and minimizing the average displacement error [156]. Using this

1 Configuration used for testing: Intel®Core™i7-7700HQ CPU @ 2.80GHz×8 with 15,5 GiB memory
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formulation of T we allow the worker to change their mind about going towards any of the
goals during the experiment. Finally, we set the initial probabilities of worker’s intentions to
g−1 for each goal indicating that all of the goals are equally probable. During the experiment
we use the Viterbi algorithm [110] to output probabilities of the worker going to each goal,
which we consider as intention estimations.

After recording the probabilities of each goal we query if the probability of the worker
going to the last node of the human’s path is high enough by comparing it to the largest
of the probabilities. If their difference is less than the threshold of 0.25g, we assume that
the worker still might be going to the original goal and we report it to the HAP. Otherwise,
we find all goals with the probability higher than the threshold of 0.8g−1 and using the D∗
algorithm on warehouse nodes shown in Figure4.1, we find the shortest path towards these
goals on the road nodes. These paths are then reported to the HAP.

4.3.3 Human Aware Planner

As mentioned in the previous sections, once the human deviates from his planned path, the
HIR determined paths to all predefined goals whose probabilities exceed a given threshold.
The procedure can be seen in Algorithm6. Once the planner registers paths from the

Algorithm 6: Planner reaction to human deviation
Input: S – a set of predicted paths
Input: R – a resource graph
Input: O – time occupancy of R

InterruptAllRobots()
T ← GetLongestCommonSegment(S)
s ← T .begin()
t ← T .end()
S ← Set().insert(T )
P ← PlanUsingNodes(s,t,R,O,S)
if P .empty() then
P ← Plan(s,t,R, O)
if !P .empty() then

O.update(P)
RedirectHuman(P)
SendPlanToHIR(P)

else
TellHumanToStop()

else
O.update(P)
SendPlanToHIR(P)

HIR module, it interrupts all robots and finds the longest common path segment of the
obtained paths (lines 1-2). This longest common path segment is then processed by the
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planner. Notice that if the planner took into account all of the paths, it would possibly block
a large portion of the warehouse. Once the segment that the planner will use for the human
replanning is known, the system takes the first and last node as start s and goal t locations
respectively (lines 3-4). The planner then attempts to find a plan from the start location s
to the goal location t using the nodes that were present in the planning segment T (lines
5-6). If found, the system updates the human path (lines 15-17). If no such path is found,
it means that some robot must be standing either directly on the segment of nodes or in
a conflicting position. The planner attempts to find a plan to the goal location t in such a
situation but without the use of any specific nodes (lines 7-8). If this planning succeeds, the
system tells the human that he deviated from his original path and informs him of the new
plan (lines 9-12). However, if the planning is not successful, the system tells the human to
stop immediately (lines 13-14).

We assume that the worker is equipped with a system, such as a hand-held screen
or augmented reality glasses, that can navigate the human through the warehouse. The
planning is done in a similar manner as the robot planning; however, human always takes
precedence over robots in the planning process. When the human planning starts, all the
robots are interrupted. Once all the robots have stopped, the planner attempts to find a path
to the human goal destination, while considering stopped robots as obstacles and taking
into consideration the Safety region 2 region where robots should not enter. If such a path is
found, it is returned by the system for the human to follow, and the system automatically
replans the interrupted robots, while taking the human plan into account. However, if
such a path does not exist the system attempts to move the robots out of the way by first
planning the human to the goal node, while not taking any of the robots into consideration.
The robots then attempt to plan their paths to the closest possible node to their current
goal, which is not in conflict with the human path. If the paths for all robots are found, it
means that the evasive maneuver is possible and all the paths for humans and robots are
returned. If none of these approaches succeed, the system indicates that the planning was
unsuccessful. Moreover, to take into account the variance of human velocity, the system
also plans the path for the human while taking into account the minimum and maximum
velocity. Each resource along the human path is taken for a time interval wr

i that starts at
an entry time t f astentr y, the time that would take the human to get to the goal if walking at
maximum speed, and ends at the time tslowexit , the time it would take the human to leave if
walking at minimum speed. Each time window i for all resources r in the path sequence is
then wr

i = ⟨t
f ast
entr y , tslowexit ⟩.

4.4experimental results

In this section, we will discuss the results of our experimental results. We record the obser-
vation history and process it with an HMMmodel and the Viterbi algorithm outputting
probabilities of the worker going to each goal, which we consider as intention estimations.
Using the D∗ algorithm on warehouse nodes in Figure4.1we find the shortest path towards
each goal.Then, we predict the worker’s future motion with respect to goals by interpolating
the D∗ paths using the assumption of constant velocity. Finally, after obtaining the path
towards each goal, we find the expected path by weighting each path with the intention
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Figure 4.6: Human motion prediction results. We observe past 8 worker locations and predict the
next 12 as in [157].

probability towards that goal.
Before testing the entire system, we ran multiple simulations with one human in the

warehouse without any deviations. We disabled sending of the planned path to the HIR
and observed the predicted trajectory for the next 12 simulation steps. The predicted path
is calculated as the probability-weighted average of all paths, fit on the traversable space.
The results of the proposed algorithm can be seen in Figure4.6, where we show that the
proposed model yields 1.084m average displacement error (ADE) with respect to the
prediction horizon. The results can be compared with linear interpolation which yields
1.1186m ADE but often predicts untraversable path or unreachable positions because of
autonomous robots blocking the path.

To further demonstrate the integrated system functionality, we have designed an experi-
mental setup with several delivering scenarios. All workers had a set of assignments, e.g.
picking or maintenance, that needed to be completed during the experiment. We measured
the average number of deliveries and human-robot encounters for cases when i) humans
deviate and the planner reacts without the HIR module (NHIR) and replanning is done
only when a human enters Safety region 1, ii) humans deviate and planner reacts using
simple HIR module (SHIR) and iii) humans deviate and planner reacts using proposed HIR
module (PHIR). The SHIR module outputs human path prediction on warehouse nodes
with minimal change in heading assuming constant velocity.
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Figure 4.7: Performance of the system with proposed HIR in one of the experimental setups. On top
figure one can see times at which human is given assignment (green), when it deviated
(red), as well moments in which proposed method signals deviation and sends path
prediction to the planner. On the bottom figure we show all the completed deliveries in
time with the plot of needed time for each delivery.

We have given humans assignments and simulated deviation multiple times during each
experiment with random locations which were not known to the HIR module. The HIR
module reacts promptly with alarm and path prediction which is then handled by the HAP,
which can be seen in Figure4.7. Once the path is accepted by the HAP and human starts
following it, the HIR alarm is turned off.

We have conducted two experimental scenarios, the first with a single human worker
and the second with three human workers. The results of ten experiments for each scenario
lasting 750 s with unique job sets for all agents can be seen in Table4.1. Specifically, for the
single human scenario we have achieved an increase of 28% in human deliveries and 4%
in total deliveries, while for the three humans scenario, we have achieved an increase of
18% in robot deliveries, 207% in human deliveries and 29% in total deliveries. The example
run showing time needed for each delivery for the SHIR and HIR is shown in Figure4.8
where one can see reduced average as well as maximum time of all deliveries. Results
suggest that correct prediction of human intention can improve warehouse throughput
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Figure 4.8: Test results. The time needed for each delivery is labeled with filled circle. The human
enters the warehouse at t = 250 seconds and deviates at t = 300, 320, 420, 450, 500, 625
seconds experiment time.

when integrated with a HAP, especially in cases when there are multiple humans operating
in the warehouse at the same time. Having in mind the crucial role human workers can have
in integrated warehouses, we assert that this result is the main contribution of the current
method. Furthermore, an interesting side-effect of the proposed method is the reduction in
the number of human-robot encounters. By reducing human-robot encounters, the system

NHIR SHIR PHIR
One Human

Robot Deliveries 57.9 53.2 58.1
Human Deliveries 9.4 8.8 12.0
Total Deliveries 67.3 62.0 70.1
Human-Robot Encounters / min 5.40 0.39 0.49

Three Humans
Robot Deliveries 48.5 31.7 57.4
Human Deliveries 3.0 4.4 9.2
Total Deliveries 51.5 36.1 66.6
Human-Robot Encounters / min 0.13 0.13 0.13

Table 4.1: Average experimental results for ten experiments lasting 750 seconds.

can hypothetically reduce the discomfort and stress of human workers, since each close
encounter with the robot triggers a robot safety stop (loaded warehouse robots can weigh
close to 1000 kg). For the single human scenario, the number of encounters was reduced by
91%, while for the three humans scenario this number remained unchanged. The average
replanning number during each experiment was also reduced from 10.5 for SHIR to 3.1 for
the proposed method. It would be interesting for future work to investigate the behavior of
the HIR enhanced HAP with respect to the number of human-robot encounters and the
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increasing number of workers in the warehouse.
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4.5summary

In this chapter, we have presented a human motion prediction method in service of human-
aware planning. Human aware planning is planning routes for robots in an integrated
warehouse that takes possible future human actions into account. Because of that, we
leveraged the human intention recognition module introduced in the previous chapter to
find human intention estimates. These estimates were coupled with optimal paths towards
each goal and average humanmoving speed to findmotion prediction.We gave an overview
of the Fleet Management System modules used for accomplishing this task and introduced
details of the Human Aware Planner. We focused on planning routes for robots using a
suboptimal planner but accounting for safety levels and regions. The concept of conflicting
states governing planner resource allocation was introduced. As the replanning is only done
once human deviation is detected, we proposed an algorithm for revealing such behavior.
Finally, we have tested the proposed motion prediction algorithm directly by comparing it
with an alternative method. We have also compared the performance of the entire system
with and without the proposed human-aware planner showing that the proposed solution
increases the number of deliveries, and reduces the number of replanning and human-robot
encounters.



5
Human action prediction in object picking tasks

T his chapter introduces the problem of human action prediction based on their
kinematic model with the emphasis on application in the object picking domain. Our

main objective is timely and precise prediction of the final goal of human movement. In
order to accomplish that, we have relied on probabilistic decision-making methos that
use data to tune their parameters. Namely, the models of our choice are the Recurrent
Neural Networks (RNNs) and their advanced version Long Short-Term Memory Networks
(LSTMs). These models interpret the observed input sequence and yield predictions based
on the task at hand. One of the main challenges for deploying such models is necessity of
abundant amount of data they are trained on. The recent recording of the MoGaze [10]
dataset enabled the human action prediction research community to take advantage of
the multiple segments of labeled purposeful human movement. The human movement is
captured with a motion capture system using specialized body suits that map the markers
to the kinematic model of a human skeleton. These observations are coupled with the
measurements from eye gaze capturing device giving plenty of cues for inferring human
actions and intentions. Because of that, the human action prediction method proposed
in this chapter is based on learning from present data. In this chapter, we have decided to
use RNNs and LSTMs for yielding human action predictions as they encompass state-of-
the-art time-series prediction models. These models rely on large number of parameters
to predict the final goal of human movement. Having that in mind, the proposed method
incorporates two feature dimensionality reduction methods which decrease the number of
input parameters for the network architectures. One of these methods is based on feature
selection via correlation and individual merit while the second one is a feature extraction
method inspired by the autoencoder architecture. We have tested the proposed framework
on the MoGaze dataset using area under curve, mean squared error and execution time
as quality measures. In order to demonstrate the generality of the proposed method, we
have recorded the SubMotion, a simpler dataset that consists of hand position and head
orientation recordings. The proposed method was exhaustively tesed on both datasets
using statistically significant cross-validation and we managed to consistently beat the
baselines. Furthermore, we have shown that our method runs fast enough and can use a
gaze estimationmodel for situations where it can not bemeasured or it would be impractical.
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5.1introduction

With the robots becoming more capable and sophisticated, we are witnessing a growth in
their presence and integration in private and professional human environments. Nowadays,
such environments, besides cohabitation, often include close human-robot collaboration
and interaction, yielding novel challenges concerning system efficiency and human safety.
While robots are fully controllable, human behavior, on the other hand, although nearly
optimal with respect to the task, is inherently stochastic. For example, imagine a healthcare
worker treating a patient or a manufacturing shop floor worker assembling products in
an agile production system. Their goals are well defined, but the execution and sometimes
the environment are not completely controlled. While carrying out the task, the healthcare
worker needs to adapt to the responses of the patient, while the worker on a manufacturing
shopfloor might change the order of the task execution for justified reasons. We argue that
robots in human’s proximity should be aware of such changes and react accordingly. Having
that in mind, one of the main challenges in collaborative environments is to capture the
uncertainty and nuances of human behavior. Supervisory systems try to overcome these
challenges by taking advantage of the plethora of methods that revolve around human
trajectory prediction, safety regions assertion and action/goal prediction [158, 159, 160, 161,
92].

The problems of human action prediction and intention recognition have come un-
der the spotlight of the research community in recent years. They serve as independent
modules or are integrated into the human motion prediction either explicitly [162, 163] or
implicitly [164]. The advantages of embedding human intentions implicitly in the model
lie in the fact that those models can be trained jointly with the higher-level system and are
validated straightforwardly through its performance. The higher-level system could be a
fleet management system [82] that tries to reroute the robots out of a human’s path and is
evaluated by the warehouse deliveries, the number of rerouting, and collision number or a
human trajectory prediction model [165] evaluated with the root mean square error of the
predicted trajectory. On the other hand, explicitly estimating human actions enables the
model to be crafted or trained independently of the higher-level system. In practice, this
means that training the action prediction module can be done without the robots operating
thus cutting costs. These models can also be interpreted more easily [90], allowing the
higher-level system to have semantic meaning and reasoning of performed actions.

In the last few years, multiple datasets concerning motion and action prediction have
become publicly available but, to the best of our knowledge, none of them couple these two
problems. Examples of purely motion prediction datasets are: ETH [156], KITTI [166] and
UCY [167]. We encourage the reader to examine Table 2 in [168] for a detailed listing of the
datasets and their descriptions. These datasets, alongside methods trained and evaluated on
them [169], offer enough diverse data to train and test human motion prediction models
focused on answering the question "Where is a human going to be during the next N steps?",
but they are not adequately labeled with the context which would help to answer "What is
(the goal of) the observed human motion?". On the other hand, datasets tailored for models
focused on the second question, like the CMU’s motion capture database [170], HumanEva
[171] and G3D [172] excel in action diversity, but they are focused on distinguishing be-
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tween different actions (jumping, catching, throwing), do not incorporate complicated
motion patterns, and usually are not long enough for a long or mid-term human motion
prediction problem.The MoGaze [10] dataset positions itself as an excellent blend of the
aforementioned datasets because all the recorded motions have a labeled purpose (an object
picking). Its subset has already been used by the authors for human motion prediction
problems based on RNN networks and trajectory optimization [87, 173]. Therein, they
used the Euclidean distance of the right hand to each object as an action prediction signal,
improving their original motion prediction result. They also introduced the problem of
graspability, which focuses on the exact wrist position at the moment of grasping, and
placeability, defined as a probability distribution over possible place locations on a surface
the carried object could be placed on. Mentioned models are not evaluated explicitly, but
the authors compared a higher-level human motion prediction model’s error for different
graspability and placeability models thus validating them implicitly.

In this chapter, we propose a novel human action prediction model based on shared-
weight LSTM networks. The novelty of the current method lies in the introduction of
(i) two feature dimensionality reduction methods, (ii) a novel shared-weight approach
to action prediction (iii) a new gaze estimation algorithm, and (iv) creation of a novel
dataset that validated our approach as a general method for human action recognition.
Similarly to related work, our model relies on the positions and orientations of human
joints, recorded by a motion capture system, and on eye gaze captured using a wearable
device. In order to reduce the model complexity, we perform feature selection through
correlation as well as feature extraction introducing a multilayer perceptron inspired by
the autoencoder architecture. The selected features are fed to the ensemble of LSTMs that
perform classification and infer the goal of a human. Since eye gaze might not always be
available in a real-world scenario, we introduce a neural network-based gaze estimation that
serves as an additional input to the proposed method and shows promising results. We have
tested our approach on the publicly available MoGaze [10] dataset and published the code
with a sample pretrained network. Additionally, we present SubMotion – a simpler dataset
that includes six subjects, two female and four male, in object-reaching scenarios similar to
the MoGaze. Our dataset records only the head orientation and hand position – a setup that
could be easily applied in a real-world application without adding to worker’s discomfort or
costs. We compared the accuracy of the proposed model with alternatives such as RNN
network, fully connected LSTM network, and the strongest individual signal predictors
(baselines), based on area under the curve (AUC) score of the predicted goal accuracy and
mean squared error (MSE) of the predicted goal location. Our model outperformed all
of the baselines and alternative methods in MSE distance on both datasets and had better
accuracy on the MoGaze dataset.

This chapter is organized as follows. In Section5.2we describe novel human action
prediction method based on shared-weight LSTMs and data from human kinematic chain.
This data is sampled from a motion capture system with subjects wearing specialized suits,
and using a eye gaze capturing device. We also present a feature selection method based on
correlation and a data-driven feature extraction method. Also, we briefly introduce a gaze
estimation method. In Section5.3we lay out details of a novel recorded SubMotion dataset.
The Section5.4gives overview of the results obtained by thorough testing of the proposed
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Figure 5.1: Pipeline of the proposed method. Square brackets denote the dimension of the corre-
sponding tensor.

framework. Finally, the Section5.5summarizes the chapter.

5.2the proposed human action prediction method

In this section we propose a novel human action prediction model based on shared-weight
LSTM networks and feature selection using correlation as well as feature extraction based
on the autoencoder architecture.The goal of the proposedmodel is to ascertain which object
in the environment will the human pick next. As we mentioned in the introduction, the
creation of the MoGaze dataset with 1435 picking segments including the eye gaze, enabled
us to craft a data-driven model for this problem.The segments are labeled with an ID of the
object the human is going to pick and serve as ground truth for our framework. We design
the proposed action prediction model as a general model for full-body motion that works in
real-time and successfully captures relations between input cues and picked objects. Apart
from that, we avoid learning specific relations between objects in a dataset. The main reason
is that the objects can change their locations during operation and we want our model to
handle a varying number of objects in a scene.

Another important aspect that needs to be taken into account by an action prediction
model is long-term dependencies since goal inferring cues usually appear much earlier than
the actual picking action [9]. For example, imagine a human that intends to pick a specific
object from a shelf across the room. Prior to walking to it, they would probably look at that
object to ascertain its location and path towards it. While walking, the gaze of the human
would not be solely fixed on the object, but could also wander around the scene, especially
if there are dynamic obstacles to be negotiated. Given that, a well-designed human action
prediction model should take into account the fact that the gaze becomes fixed early in
the sequence and can wonder thereafter. In other words, to successfully infer the goal, the
model should be able to remember the most important past cue values, e.g., early gaze
fixation at the object, as well as capture local tendencies, such as a human approaching the
object. To achieve that, we propose multiple LSTM networks with shared weights to serve
as the classifier for human action prediction.

However, relying on many inputs adds to the complexity and the network parameter
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number, which not only increases the run-time but can also impede the training process by
increasing the risk of overfitting. Given that, we further introduce a feature selectionmethod
based on signal correlations and individual effectiveness to act as an action prediction cue.
To objectively validate our hand-picked selection of features, we also performed feature
extraction with a multilayer perceptron (MLP) inspired by the autoencoder architecture
and compared the manual selection with a fully data-driven approach.

5.2.1 Human action prediction framework

Proposed model fulfills two basic requirements: (i) to be fast enough so that the supervisory
system can react in time and (ii) to have good generalization power. To address the latter, we
crafted our model so that it can work in a changing environment and handle the addition or
removal of objects in the scene. For example, in the MoGaze dataset, the objects are placed
on three macro locations: two shelves and a table that do not move during the experiments.
If we gave the model distances to all the goals as an input, the model could implicitly learn
relations between those macro locations that would not hold should they move during the
recording. Also, the number of objects in a scene could change and the transformation of a
fully connected LSTM network to accommodate this circumstance would not be a trivial
task.

Having that in mind, we decided to approach this problem by training a single classifi-
cation model and our framework is illustrated in Fig.5.1. For each observed sequence of
length T we gather the following input features F: joint positions that are used to calculate
Euclidean distances towards each of the N goal positions in the dataset, and gaze and
orientation unit vectors that are used to calculate the Euclidean distance between them
and the unit vector pointing towards the position of an object. All features are normalized
based on the average value in the training set. Each of N sequences is labeled with 1 if it
belongs to the object that is eventually going to be picked, otherwise, it is labeled with 0.
All the sequences in the training set are aggregated and the dataset is balanced by randomly
removing sequences that belong to the “not-a-goal” class. Finally, we train a single LSTM
network model for sequence classification with a softmax activation on this data. Note that,
during the training, the model does not have access to absolute orientations and positions
of the joints or the goals. As a consequence, it learns only if the observed feature sequence
(relative to an object) belongs to a pertaining goal or not.

During runtime, we evaluate all selected features for each of the N goals and send them
as inputs to N LSTM networks with shared weights (feature selection and extraction are
explained in Subsection5.2.2). For the MoGaze dataset, the number of goals was N = 10,
while for our novel dataset it was N = 5. We aggregate outputs of each network via softmax
[174] activation function and select the goal whose network has the highest score. This
approach enables us to easily add or remove goals if they change during operation which
was an important reason behind training only a single LSTM model. Furthermore, by
training only a single model that receives relative distances as input and classifies whether
that input sequence of features is the pertaining goal or not we remove any contextual
environment location information. For example, in the MoGaze dataset, the objects are
placed on three macro locations, two shelves, and a table, which do not move during the
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Figure 5.2: Orientations assigned to joints of the human kinematic model. Head, torso, pelvis and
shoulders orientation is selected to match forward looking direction while hand orienta-
tions are selected to match forearm direction.

experiments. If we give the model, e.g. distances to all the goals as an input, the model
could implicitly learn relations between those macro locations that would not hold for other
datasets. By utilizing the shared weight concept, we ensure the decision-making process for
each goal is the same.

5.2.2 Feature dimensionality reduction

For our application, the input features for our model are time series of human joint po-
sitions and orientations as well as the eye gaze of the subject. The proposed framework
processes these features by numerous matrix additions and multiplications. Each additional
input feature adds to the dimensionality of these matrices, thus increasing the number
of operations and execution time. Moreover, it could potentially also create the need for
increasing the number of hidden dimensions in the network architecture. This is certainly

Head Hand Shoulders Pelvis Torso Gaze Head Hand Shoulders Pelvis Torso
Head 1.00 0.93 0.97 0.98 0.97 0.92 1.00 0.91 0.98 0.97 0.96
Hand 0.93 1.00 0.91 0.92 0.93 0.82 0.91 1.00 0.90 0.92 0.92

Shoulders 0.97 0.93 1.00 0.98 0.98 0.82 0.98 0.90 1.00 0.95 0.96
Pelvis 0.98 0.92 0.98 1.00 0.99 0.84 0.97 0.92 0.95 1.00 0.99
Torso 0.97 0.93 0.98 0.99 1.00 0.84 0.96 0.92 0.96 0.99 1.00

Table 5.1: Correlations of selected input features. The Euclidean distances are in the left part of the
table, while gaze and orientations are in the right part.
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Figure 5.3: Correlations of selected input features. The Euclidean distances are in the left part of the
table, while gaze and orientations are in the right part.

an unwanted side effect, not only for previously stated reasons but also due to the limited
amount of training data. Having this in mind, we assert that it is important to craft a feature
dimensionality reduction method that will indicate which of the recorded joint orientations
and positions should be the most relevant inputs to our model. To solve this problem, we
took two different approaches.

The first is based on time series analysis - it uses signal correlations to ascertain similari-
ties between features. Our intuition is that features that correlate highly can be substituted
by only a single feature from that group. This approach was first proposed by Hall et al.
in [134] as used in [134, 136, 137]. In order to choose the most representative feature of the
group, we have ranked each feature using the area under curve (AUC) score and selected
the highest-ranking feature. The AUC for each feature is calculated for a time span of three
seconds (360 frames), as proposed in [10], using an average of accuracy curves on the train
set. The accuracy curves are obtained for each feature by checking if the joint is closer to
the actual goal than to any other object (Euclidean distance) or if the difference between
the orientation vector of a joint and a vector from which that joint sees the object smallest
for the goal (orientation distance).

At this point, it is important to clarify the method we used for extracting the joint
orientations because the authors give them relative to the humanoid configuration’s initial
pose, while we need to use them with respect to the world scene. We decided to use a
“T-pose” with a human looking towards the x axis as the initial configuration and define all
orientations of joints in that pose as [1, 0, 0]. This way we ensure that orientations of the
head, torso, and pelvis tend to align with the motion direction which we argue is an intuitive
way to define orientations of the joints given our application. An example of orientations
assigned to joints of interest is shown in Fig.5.2.

Now that we have all set up for feature selection, we calculated correlations between
all of the feature distances towards all the goals, and the comparison can be seen in Fig5.3.
Euclidean distances of all the joints correlate highly and less so with the hand because of
the reaching motion. Orientations of all joints also correlate highly, but less so with the
hand orientation. Furthermore, the gaze correlates weakly with all the other features, except
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the head indicating that the head orientation could be useful in a gaze estimation problem
(when no dedicated gaze tracking equipment is available). The correlation analysis implies
that a good subset of features would include the eye gaze, hand position, and orientation of
one of the following joints: head, shoulders, pelvis, and torso. We have then proceeded to
calculate the AUC score of the proposed input features which we henceforth call baselines
since we see each as a potential sole feature for action prediction. Theoretically, a good
data-driven model should score better than any single feature, i.e., than any baseline. Finally,
the eye gaze scored 155.0, head orientation 71.4, and hand position 83.7, and they were
selected as input features for our model. Other baselines scored significantly less than 70.
One can notice that we did not analyze joints like toes, knees, and elbows. The main reason
is that they correlated poorly with each other and scored very low on the AUCmetric which
supports our intuition that these joints are of less importance for our application.

The second approach we took is based on autoencoders. Autoencoders are multilayer
perceptrons (MLPs) with two main parts: an encoder that maps the inputs to the hidden
layer or codes the inputs, and a decoder that reconstructs the input from the hidden layer.
If the hidden layer is large enough, the autoencoder can completely recover the input signal
at the output. However, in practice, the dimension of the hidden layer is usually much
smaller thus forcing the autoencoder to approximate the input by preserving only the most
significant information contained within. Because of that, autoencoders are widely used in
feature extraction [175,176] and selection [177,178] applications.

We have followed this intuition behind autoencoders and implemented an MLP-based
feature extraction. The proposed MLP has an architecture similar to an autoencoder with
an input layer that takes all the recorded joint positions and orientations, which is then
followed by one hidden layer of a smaller dimension. Finally, the output layer consists of
three fully connected neurons, since we wanted to match the number of features used by
the correlation-based feature selection method. We tested all commonly used activation
functions such as hyperbolic tangent andReLu [111], and decided to use the sigmoid function
as it demonstrated the best performance. Unlike the vanilla autoencoder, our data-driven
feature extraction MLP is not trained to match the input data, but is directly connected
to the backbone network and trained in an end-to-end fashion. The intuition behind this
approach was to enable the training process to refine useful information using data. The
extracted input features are composed of a linear combination of all feature input candidates
and don’t perfectly match any of them. However, by comparing results with the hand-picked
features we are able to validate our merit-based approach. The parameter number of the
entire model is also reduced because the addition of the fully connected MLP is outweighed
by reducing the input dimension of the backbone network.

5.2.3 Gaze estimation

Even though the eye gaze has proven to be the most accurate baseline for human action
prediction, it might not always be available in real-time practical applications. It requires
the user to wear it on their head the whole time, which can be inconvenient and hinder the
person’s task execution, especially when performing complex tasks. However, the absence
of gaze measurements would make our inference with the proposed shared-weight LSTM
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networks unviable, since we trained the model to expect gaze in the input along with other
motion cues. To alleviate this issue, we propose to estimate the eye gaze from other, more
easily obtainable features, such as head orientation and hand position.

Head orientation and hand position can be obtained in real-time from practical wearable
sensors, e.g., IMUs mounted on a person’s helmet and watch [179, 180]. While the problem
of gaze estimation might seem intractable in the general case, due to the human eye gaze
presenting an additional degree of freedom compared to the head orientation, we assert
that the hand position in collaboration tasks might provide additional information that
correlates significantly to the eye gaze. For example, if a person is reaching for an object
with their hand, our assumption is that the person will also be looking towards the object
in question, thus connecting the gaze to the other motion cues. The proposed estimation
procedure relies on having a dataset of human motion while wearing the gaze tracking
equipment and then employing a data-driven model to capture the mapping of the subject’s
head orientation and hand position to their eye gaze. Our gaze estimation model is an MLP
that consists of three layers, where the hidden layer is of dimension 10 and the activation
function is a rectified linear unit (ReLU). The inputs of our network are hand position and
head orientation vectors, while the output of the network is the eye gaze vector. We trained
our network using stochastic gradient descent. Once the model is learned, it is utilized
during test time to infer the gaze which is then used as an input to the LSTM networks.
In practice, this would mean that we can perform a one-time recording of the worker’s
gaze during collaboration tasks, learn the gaze estimation model using that data, and then
perform action prediction during future runs in real-time without requiring the worker to
wear the uncomfortable gaze tracking equipment. Potentially, an “average model” could be
learned across multiple participants that could generalize well to other people for the same
tasks, but this question is out of the scope of current research.

5.3the novel submotion dataset

In order to demonstrate the general application of the proposed algorithm, we have recorded
our own dataset which aims to complement the muchmore comprehensiveMoGaze dataset.
Unlike theMoGaze dataset, which uses a specialized recording suit and proprietary software
to obtain the configuration of the entire human body, our dataset records the positions, and
orientations of only two joints: the head and (right) hand. Since it includes only a small
subset of human motion features, we dubbed it the SubMotion dataset. Furthermore, the
SubMotion setup could be easily embedded in a real-world application without adding to
the worker’s discomfort. While we have also recorded our data using the OptiTrack system,
position of hand and orientation of head could potentially be extracted with wearable
sensors in workers’ helmets, gloves, or watches. We recorded six times less amount of data
than theMoGaze dataset to demonstrate that the proposed algorithm can be trained without
the abundant amount of data. This section describes the dataset recording setup and the
method we used to obtain the segments we trained and tested our model on.
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5.3.1 Experimental setup

We have used the OptiTrack motion capture system with 12 Flex13 cameras covering the
entire workspace. Human participants wore a helmet and a glove with reflecting markers
that captured the head and hand locations and orientations. We have chosen a minimal
set of wearable equipment which can be easily worn by a worker in a collaborative human-
robot scenario without impeding their efficiency or causing discomfort and fatigue. The
workspace consisted of three tables on which five objects were placed with an obstacle in
the middle. Unlike in the MoGaze dataset, objects in our dataset are static and we don’t
need to track their position during the recording.

We have recorded the experiment with a total of six subjects, two female and four male,
in an object-reaching scenario. Subjects also varied in height, ranging from 155cm to 195cm.
Each subject was introduced to the elements of the scene and shown the position of each
object. This step was particularly important because the exact positioning of the helmet
on the subject’s head can vary between subjects. The MoGaze dataset takes advantage of
OptiTrack’s software for full-body tracking which yields orientation of the head as a property
of the obtained human body configuration. In our case, the helmet is defined as a rigid body
and its orientation is relative to the orientation the helmet had at the initialization time.
Since the head orientation is a crucial input feature for the proposed method, we needed to
calibrate its orientation for each subject. We instructed the subject to look at each object
at the beginning of the experiment and thus were able to extract reference orientations
of the helmet corresponding to each object. This data was used to calculate the helmet’s
transformation matrix for each subject using MATLAB’s ABSOR [181] tool for least-squares
estimation of the rotation based on the Horn’s [182] quaternion-based algorithm.

5.3.2 Dataset Recording

After the described initialization phase, we recorded two scenarios per subject. In the
first scenario, each subject began the recording segment at the same starting point where
they waited for the instruction on which object to pick. After the instruction, the subject
identified the object, moved to its proximity, picked it, and placed it back on its spot. Subjects
were instructed to pick the objects using only the hand that has been recorded. Then they
returned to the starting point and waited for the next instruction. We have generated the
order of instructions randomly ensuring that each object is picked an equal number of
times. In the second scenario, subjects were allowed to walk freely in the scene. Once they
decided which object they are going to pick next, they communicated their intention and
carried on to execute it as in the first scenario.

We have recorded a total of 30 minutes of data at 120 FPS which is 6 six times fewer
than the amount of data present in the MoGaze dataset. The data was split into segments
for each subject and the segments were labeled with the object that is eventually going to
be picked. The starting point of each segment is when the subject would reach the starting
position in the first scenario or when they would communicate the intention in the second
scenario. The final point is the moment when the object gets picked. We have analyzed the
distribution of segment lengths and the total amount of segments per subject as can be
seen in Fig.5.4. We can see that, on average, we recorded more than the three seconds per
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Figure 5.4: The SubMotion dataset analysis. We compensated lower average segment duration of
Subject 5 by recording more segments to balance the dataset.

segment for each subject, which is important because the proposed algorithm is evaluated
on the last three seconds of each segment. The SubMotion dataset can be made available on
request.



5.4. Experimental Results 88

5.4experimental results

In this section we present and discuss results of the proposed method on two datasets: the
MoGaze and SubMotion. We will discuss multiple network configurations that were tested.
In order to compare them, we have used the following three quality measures:
i) Area under Curve: Following our previous work, we continued to use the AUC score as a
scalar value representing the accuracy of a model. It is calculated as the average accuracy
for each time step in the three-second evaluation window.
ii)Mean Squared Error (MSE)While the AUC score shows in howmany frames the proposed
method guessed the right goal, it fails to encapsulate how much of the method was when it
got the goal wrong. For example, guessing the wrong goal which is 15 cm from the right goal
is not the same as guessing the goal which is 1 m away. Having that in mind, we introduce
the normalized MSE of the expected goal location for each frame as:

MSE = N
∣∣lg −∑i=N

i=1 pi li ∣∣
∑i=N

i=1 ∣∣lg − li ∣∣
(5.1)

where li is the location of i-th object, lg is the location of the goal object, N is the number
of objects and pi is the probability that the i-th object is the goal and is calculated as the
output of the corresponding network divided by the sum of all the network outputs. We use
the average distance between objects as the normalization factor.
iii) Execution time:We tracked the average execution time for each of the proposed models
to ascertain if they are sufficiently computationally efficient and could enable a potential
supervisory system to react accordingly.

We have conducted a series of preliminary tests in Subsection5.4.1to tune in hyperpa-
rameters of the proposed framework. Therein we have shown that, on average, the LSTM
outperforms the baselines and introduced some implementation details that have improved
the result. We have also presented and discussed several examples of the proposed model’s
inputs and outputs. Finally, the flexibility of the proposed framework is demonstrated
by displaying network outputs in the special case of adding and removing goals during
the experiment. Further subsections bring the cross-validation method and its results on
the MoGaze and newly recorded SubMotion dataset. The gaze estimation method is also
thoroughly tested and the results are laid out at the end of this section.

5.4.1 Preliminary testing

In this subsection we will describe the preliminary testing we conducted which resulted
in selecting some hyperparameters that are used in the rest of this chapter. The MoGaze
dataset includes a total of 180 minutes of motion capture data with 1627 pick and place
actions [10]. For one participant (participant no. 3) the eye-tracker device did not work so
we excluded this session leaving a total of 1435 picking segments. Each group of segments is
preceded by the instructions to the participant, e.g. "Set the table for 2 persons", but we do
not use this information. Each segment consists of multiple frames before the actual picking
happens and a labeled of the object that is eventually picked. Frames in which an object
is being carried are discarded. It might be beneficial to additionally discard the parts of
segments before the instruction has been given as well as those involving moving of chairs;
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Figure 5.5: Proposed models’ performances. eye gaze has proven to be strongest indicator of human
action on this dataset.

however, we decided to leave the dataset intact for easier future comparison. In order to
prepare the dataset for model training, we split the data into training and testing datasets.
The training dataset consisted of sessions with subjects 1-2 and 4-5 (a total of 853 segments),
while the testing dataset contained sessions with subjects 6-7 (a total of 582 segments). We
have trained the network using MATLAB with Adam optimization [183] training with 5
epochs and batch size of 5.

First, we trained and tested the proposed network using the whole signal history of all
recorded joints’ orientations and distances as inputs, including the gaze (we dubbed this
version simply as LSTM). With the AUC of 134.24, the LSTM model performed worse than
the gaze baseline (155.02) during majority of experiments and only succeeded to beat it in
the last few moments. On top of that, average prediction time was too slow to work with the
aimed frequency of 12 Hz. Therefore, we further tried to improve the results and execution
time by reducing the input feature set using correlation and individual merit (dubbed LSTM
Select). While it slightly improved execution time, the AUC remained unchanged for the
LSTM Select model.

In order to reduce the run time, we decided to reduce the complexity by using a buffer
to send only the last 20 frames to the network (dubbed LSTM Buff ). The LSTM Buff model
had a satisfying run-time and achieved AUC of 151.98; however, its score was still lower
than that of the gaze baseline. As tuning the network hyperparameters mentioned at the
beginning of this subsection did not result in any considerable improvements, we decided
to further analyze the inputs and the outputs of the proposed model to see where accuracy
could be increased and the results are shown in Fig.5.6. For example, in Fig.5.6a), one can
see that our model has clearly distinguished which object is the goal after step 250, while
Euclidean distance is not the lowest at any point. Also, the gaze signal corresponding with
the picked goal has a spike around frame 325. This did not have major effect on the output
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Figure 5.6: Examples of selectedmodel inputs and outputs.The feature corresponding with the object
being picked is colored green while the black lines denote features associated with other
objects.

of the proposed model. In Fig.5.6b), the proposed model predicted high probability of
the picked object very early but only succeeded to isolate it from nearby objects after step
700. Gaze and Euclidean distance alone could not make such distinction. In contrast, in
Fig.5.6c) and Fig.5.6d), proposed model behaved poorly. One possible explanation could
be that the subject looked at other objects without moving towards any of the goals, thus
not giving the model enough information to conclude the exact goal until the end of the
segment.

Given the previous analysis, we can see that the gaze baseline acts as the strongest
predictor of the object that the human is going to pick, and furthermore, it can distinguish
the actual goal among the nearby objects with pinpoint accuracy – something that our
network model struggles with. The fact that the gaze is such a strong indicator of action
is not surprising; indeed, visual fixation is necessary for object identification and comes
after the brain automatically and in parallel gathers basic features, such as colors, shape, and
motion [184]. Given that, we have enhanced our model with a few simple conditions. If the
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highest LSTM score is larger than the score threshold, we consider that object to be the goal.
Otherwise, we check if the subject is looking directly at any of the objects, by comparing the
minimum gaze distance to the objects with the gaze threshold. If the subject is looking at the
object, we output that goal, otherwise we select the highest LSTM score. This enhancement
led to 159.01 AUC, slightly improving over the gaze baseline by 2.6%. We used the score
threshold of 0.49 and gaze threshold of 0.2, which have been selected using grid search on
the training set with the AUC as the target function. At the time of writing this thesis, the
only method for human action prediction on theMoGaze dataset was published in [10].The
method is based on RNNs but the authors do not provide implementation details rendering
a direct comparison difficult. However, by qualitatively comparing the accuracy figures,
we can assert that the proposed approach seems to yield more accurate action prediction
results.

Although our LSTM models underperformed or showed only a slightly better result
than the gaze baseline, we have observed that the LSTMs are better at identifying the macro
objects from which the human is going to pick a specific object. Namely, all objects in the
Mogaze dataset are placed on three specific macro locations: the table or two shelves. By
analyzing the estimated macro location accuracy, the LSTM Buff model scored 266.31 AUC,
while the gaze baseline scored 251.31 AUC, as shown in Fig.5.7a). A possible explanation
could be that test subjects had to naturally look around while moving towards the goal,
preventing them from keeping the gaze fixed on the correct macro location. Our model,
on the contrary, managed to successfully leverage the motion cues towards the goal and
obtained a higher score in identifying the macro locations.

Since gaze is the most powerful predictor of human action, it begs the question of what
kind of performance could be achieved if such a cue was not available? Such a question
could be further motivated since presently gaze tracking is done using a cumbersome
apparatus that can impede subject’s efficiency and comfort in real-life applications. Thus it
would be interesting to test what performances could be achieved if the gaze information
is not available. We tested the behavior of the proposed LSTM Buff giving only hand and
head positions and orientations as input. Because of the reduced number of features, we
have increased the number of hidden units to 40 for this model. Our model successfully
combined those signals and scored AUC of 118.60 which is considerably higher than the
baselines (83.63 and 71.39), as can be seen in Fig.5.7b). One of the main advantages of the
proposed framework is its ability to quickly adapt to dynamic and unknown environments.
For example, in the collaborative environment, a new interesting item can appear during the
operation. Also, some items that have previously been present in the scene can disappear, i.e.
they can break, be consumed or become unnecessary. Because of that we have implemented
and tested the capability of the proposed framework to handle adding and removing objects
(goals) from the scene. Removing the potential goal is done trivially by removing the input
connection to the LSTM in Fig.5.1forcing its output to 0. Adding a goal is done in a similar
manner, by attaching a new copy of the same LSTM to the action prediction pipeline. The
hidden state ht and cell state ct of the attached LSTM are inherited from the object closest
to the new object at the time of adding. We have also tested initializing the LSTM states
with zeros and random values but the proposed method has shown the best results. We
have tested adding and removing goals on several experiment runs and the example of one
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Figure 5.7: The proposed action prediction model has better performance than any baseline if the
gaze feature is not available or when one only needs to determine the macro location of
the object being picked.
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Figure 5.8: The goal adding and removing experiment.The top figure shows the output of the network
with 10 goals that are not changed during the experiment. The bottom image starts with
9 goals and the eventually picked object is added at frame 100, removed at frame 180 and
finally added at frame 220. The network quickly adapted to the addition and removal of
the goal and finally succeeded to infer the picked object.

is shown in Fig.5.8.
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5.4.2 Cross-Validation testing

This subsection lays the foundation of the cross-validation testing conducted for obtaining
statistically significant results. Unlike the previous subsection, where we trained a model
on data belonging to one half of the subjects and performed testing on the other half, in
the current approach we decided to train a unique model for each subject. Such a decision
was motivated by observing different motion patterns and data capture quality between
subjects, which manifested mostly on the eye gaze. Also, as body proportions, gait and
behavior patterns tend to be rather individual, it seams natural to assume that the action
prediction models will work better if they are individually trained. our evaluation was
performed by k-fold cross-validation in order to demonstrate the statistical significance
of our results. In practice, we randomly partitioned the data for each subject in MoGaze
dataset into five equally sized subsamples, while the SubMotion dataset was partitioned
into three subsamples. Each model was tested on one subsample and training was done
on the union of the rest. Such a decision was motivated by observing different motion
patterns and data capture quality between subjects, which manifested mostly on the eye
gaze. Also, as body proportions, gait and behavior patterns tend to be rather individual,
it seems natural to assume that the action prediction models will work better if they are
individually trained. our evaluation was performed by k-fold cross-validation in order to
demonstrate the statistical significance of our results. In practice, we randomly partitioned
the data for each subject in the MoGaze dataset into five equally sized subsamples, while
the SubMotion dataset was partitioned into three subsamples. Each model was tested on
one subsample and training was done on the union of the rest.

We compared the results of the selected baselines, namely the gaze, head orientation,
and hand distance, with the following neural network models:

• LSTMn: denotesmultiple LSTM classifiers with sharedweights and hidden dimension
n. The input for these classifiers are features selected by their individual effectiveness
and correlation as in [185]. The best result was achieved for LSTM128.

• MLPn: denotes multiple LSTM classifiers with shared weights and hidden dimension
n. The input for these classifiers is all features that first pass through an MLP feature
extraction with the hidden dimension of 1−8.The best result was achieved forMLP128
with a hidden dimension of 2.

• RNNn: denotes multiple RNN classifiers with shared weights and hidden dimension
n. The input for these classifiers are features selected by their individual effectiveness
and correlation as in [185]. The best result was achieved for RNN128.

• FULLn: denotes an LSTM that takes the selected features for all objects as input and
uses a softmax layer to perform classification of the estimated goal. The best result
was achieved for FULL32.

• ALLn: denotes an LSTM that takes all available features as input and uses a softmax
layer to perform classification of the estimated goal. The best result that was in
accordance with the run time constraints was achieved for ALL4.
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As one can see, we tested multiple proposed configurations including the multiple RNN
and LSTM networks with shared weights as backbones, with and without MLP for feature
extraction. The option of using one LSTM with information about the entire scene as an
input was explored and we tested for different dimensions of the hidden layer to obtain the
best possible result. It is important to note that fully connected action prediction models
such as the FULL32 do not have the capability to reduce or expand input dimension. We
evaluated baselines by interpreting the inverse of the distance towards each goal as the
score at any given time point and treating these scores in the same manner as the network
outputs to obtain the prediction. All of the models were trained and tested on the Intel Core
i7-7700HQ CPU.The main reason why we decided to use a CPU rather than a graphical
processing unit was to show that the proposed model is indeed lightweight and can be easily
incorporated into any supervisory system without additional hardware dependencies. The
models were implemented in Pytorch and we have made the backbone network publicly
available1. We trained the model for 100 epochs and used the batch size of 64 for MoGaze
and 16 for SubMotion, leveraging Adam [183] optimizer with the learning rate of 0.01.
The forementioned parameters were obtained experimentally via exhaustive testing. The
following subsections bring the results of testing the proposed framework on MoGaze and
SubMotion datasets.

5.4.3 MoGaze results

In this subsection we lay out the results of cross-validation on the MoGaze dataset. The
results of the 5-fold cross-validation can be seen in the Fig.5.9and Table5.2. The eye gaze
has proven to be the best performing baseline with almost double the AUC score compared
to the head orientation and hand distance baselines. This result is in accordance with our
previous findings which indicated that the gaze baseline acts as the strongest predictor for
the object that the human is going to pick, and furthermore, it can distinguish the actual
goal among the nearby objects with pinpoint accuracy [185]. The eye gaze also had the
smallest MSE but with a smaller margin indicating that subject often fixated their gaze at
the goal but was also often browsing around the environment.

AUC MSE Execution Time [ms]
Gaze 168.0 206.3 -
Hand 87.1 339.0 -
Head 96.0 237.8 -

LSTM128 169.9 175.9 1.7
MLP128 166.6 178.2 2.5
RNN128 149.5 218.2 0.9
FULL32 124.4 248.5 2.1
ALL4 102.9 304.6 4.1

Table 5.2: MoGaze dataset results.

Our proposedmodel based on the shared-weight LSTMnetworks outperformed in AUC
all the baselines and succeeded to beat the gaze by 1.1%. Following the argument presented

1 https://github.com/petkovich/ensemble-lstm

https://github.com/petkovich/ensemble-lstm
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(a) Mean squared error of expected goal location before picking the object.
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(b) Average accuracy before picking the object.

Figure 5.9: Average values of the MoGaze cross-validation. Additionally, standard deviation of the
best performing model (LSTM128) is highlighted.

in [185], we claim that it is hard, if not impossible, to beat the eye gaze significantly in this
quality measure. On the other hand, our model had smaller MSE than the gaze baseline
by 14.7%. This means that our method, on average, missed the actual goal location by 0.49
times the average distance between all objects while the eye gaze missed it by 0.57. If we
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imagine a supervisory system that has to reroute a robot to help the human with executing a
task at the goal location, a smaller estimated goal location error could lead to better efficiency
of the system. The shared-weight LSTM networks outperformed the shared-weight RNN
networks demonstrating LSTM superiority in this time series classification problem. It also
achieved a much better result in the full LSTM network, which was expected having in
mind that the positions of the objects change during the recording. The use of MLP did not
have a positive effect on the result in this case, implying that our feature selection method
helped not only to reduce the complexity and execution time of the model, but also to
improve the result. Execution times suggest that the proposed framework works at 400 Hz
on the CPU which implies it can be seamlessly integrated into the decision-making loop
with modern-day sensors. For example, MoCap systems used for recording of both datasets
were running at 120 Hz.

5.4.4 SubMotion results

We continued with experimental validation of the proposed framework on our SubMotion
dataset described in Section5.3. In this case, we compared the network results to the
baselines: head orientation and hand distance with models defined as in the previous
section using the same abbreviation conventions. Since we have fewer data per subject at
our disposal, we decided to reduce the degree of the cross-validation to three. For the same
reasons, model complexity has been scaled back and generally, the best performing models
had two to four times smaller hidden dimensions than the best corresponding MoGaze
model. Also, for this application, the MLP feature extraction had a hidden dimension of 1.
The results of the 3-fold cross-validation can be seen in Fig.5.10and Table5.3.

One can notice that the best performing baseline on this dataset is the orientation of the
subject’s head, similarly to the performance of the gaze on the MoGaze dataset. However,
it has proven to be a much stronger cue for action prediction than the same feature in
the MoGaze dataset. The exact cause of such a phenomenon is unclear but there are a
few possible explanations we would like to mention. Firstly, we calibrate the position of
the helmet on each subject individually as described in Subsection5.3.2, while the joint
orientations on the MoGaze dataset follow from the predefined human body configuration
and are prone to change depending on the exact fit of the marker suit on each subject.
Secondly, it is possible that subjects are aware that eye gaze and position of particular joints
are measured which can lead to the manifestation of the Hawthorne effect [186] introducing
a bias into both datasets. Having that in mind, we proceed carefully with the interpretation

AUC MSE Execution Time [ms]
Hand 129.9 296.2 -
Head 253.1 173.5 -

LSTM32 240.9 158.2 1.1
MLP32 240.2 153.9 1.2
RNN32 229.0 191.8 0.7
FULL16 191.8 197.7 1.9

Table 5.3: SubMotion dataset results.
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of obtained results.
As the only additional feature for our model, apart from the head orientation, is the

Euclidean distance of the right hand from all objects, no method was able to beat the head
orientation baseline on the SubMotion dataset. Similar to the MoGaze dataset results, the
LSTMmodel outperformed the RNNmodel and the shared-weight LSTM networks have
performed better than the full LSTMnetwork. On the other hand, theMSE analysis has once
again shown the advantages of the proposed model which outperformed the head baseline
by 8.8%. The MLP embedding produced an even better result, outperforming the baseline
by 11.3%.This is a promising result showing that, although the proposedmodel is not correct
most of the time (lower AUC), it produces smaller errors distance-wise (lower MSE). The
full LSTM network performed poorly even though the objects did not move between the
segments in this dataset, which additionally justifies the use of the shared-weight method.
Compared to the more complicated models used on the MoGaze dataset, execution times
were reduced and small enough to ensure real-time operation.

The main motivation for recording the SubMotion dataset was to complement the
MoGaze dataset and show that similar results can be achieved using a much smaller and
lightweight setup. Furthermore, we wanted to explore the effect of transfer learning ap-
proaches by training a single human action prediction model on the MoGaze dataset and
testing it on the SubMotion dataset. Unfortunately, we were unable to achieve any sensible
result with such an approach which probably follows from the previous argument about
differences between the head orientations on these datasets. We tried to leverage gaze in the
MoGaze dataset as a comparable signal to the head orientation in the SubMotion dataset but
the dynamics of these signals differ a great deal which rendered such an approach invalid.

5.4.5 Gaze Estimation results

In this subsectionwe report the performance of the proposed shared-weight LSTMnetworks
when coupled with the eye gaze estimation procedure proposed in Subsection5.2.3. Evaluat-
ing our action prediction LSTM networks model with the estimated gaze, which we dubbed
EG-LSTM, required us to partition theMoGaze dataset into three sets.The first set was used
for gaze estimation training, meaning that we fed the head orientation and hand position
signals as inputs to an MLP proposed in Subsection5.2.3and used the recorded gaze as a
supervisory signal during learning. Then we utilized the learned model to estimate the gaze
signal on the second and third set from the head orientation and hand position. The second
set with the estimated gaze was then used as a training set for the shared-weight LSTM
networks, while the third set was used for evaluating the shared-weight LSTM networks
with the estimated gaze. This way of partitioning the datasets is transferable to real-world
applications. If there exists a pre-recorded dataset that contains gaze measurements, it can
be used to train the proposed MLP. Then we can infer the gaze estimates during a person’s
activity in real-time when the gaze measurement is unavailable and use that data to train
and infer with the shared-weight LSTM networks. We compared the average accuracy of
EG-LSTM before picking the object with the shared-weight LSTM networks trained with
head orientation and hand position as well as the hand, head, and estimated gaze baselines.
The results of our analysis are depicted in Fig.5.11. In our evaluation, the EG-LSTM achieved
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(a) Mean squared error of the expected goal location before picking the object.
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(b) Average accuracy before picking the object.

Figure 5.10: Average values of the SubMotion cross-validation. Additionally, standard deviation of
the best performing model (MLP32) is highlighted.

the AUC score of 138.26, outperforming the LSTM trained with head orientation and hand
position by 16%.This implies that the estimated gaze signal contained additional informa-
tion that was utilized in learning the EG-LSTMmodel to achieve better average accuracy. Its
performance matched the ground-truth gaze baseline, having the AUC score within 0.5%,
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Figure 5.11: Average accuracy before picking the object.The EG-LSTM outperforms the LSTMmodel
without estimated gaze as an input feature.

although the accuracy curves were qualitatively different. Gaze baseline is more accurate at
an earlier stage of about 1 s before picking the object, while EG-LSTM was more accurate in
the last half of a second before picking. This behavior is consistent with results from earlier
sections, where the LSTM relied on the hand position motion cue in close proximity to the
goal. Our findings demonstrate that the shared-weight LSTM networks have the potential
to work well in specific situations even when human eye gaze measurements are unavailable,
which is practical for many real-world applications.
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5.5summary

In this chapter, we have presented a novel human action prediction framework based on
shared-weight LSTMs and feature dimensionality reduction. The input for the proposed
method was eye gaze coupled with orientations and positions of joints obtained by recording
the kinematic model of a human. Firstly, we have introduced the LSTMs as a potent tool
for solving time-series prediction problems, a class of problems to which human action
prediction belongs. We continued by laying out the proposed network architecture, giv-
ing emphasis on a novel shared-weight approach that enables seamless goal adding and
removing while keeping the model complexity lightweight and suitable for a real-time appli-
cation. Another component that helped reduce the execution time is the proposed feature
dimensionality reductionmethods.The first feature dimensionality reductionmethod we in-
troduced was feature selection based on correlation and individual merit. We have grouped
features that correlate highly and have chosen the best one from each group as an input to
our model.The second method we utilized is a data-driven feature extraction method based
on autoencoder architecture. The proposed framework was tested on the MoGaze dataset
and our in-house recorded SubMotion dataset. In the SubMotion dataset, we recorded
only two joints, the position of the hand and the orientation of the head with the goal of
indicating the model’s general application. Our testing consisted of showcase examples as
well as thorough statistically significant cross-validation where we have successfully beaten
baselines on all quality measures. Finally, we have noticed that the eye gaze is the most
powerful cue for human motion prediction. Because of that we have implemented and
tested the eye gaze estimation method based on MLPs that has shown promising results.



6
Conclusion and Outlook

R ecognizing human intentions and subsequently predicting their actions and
movement is a task humans execute seamlessly every day. By observing the state of the

world, and the actions of others and comparing it to our own decision-making process, we
are able to fairly quickly and precisely conclude the motivations and desires of other people.
The aim of this thesis is to endow robots, or their supervisory system, with a similar decision-
making tool that canmimic the human level of performance, or at least come fairly close to it.
As robots become more present in our everyday life, taking into account safety implications
brought by human-robot interaction is paramount. In the scope of this thesis, we have
decided to focus on industrial collaborative human-robot shared environments. These
environments, apart from previously mentioned safety concerns, add to the complexity of
human-robot interaction by introducing the efficiency of the entire system as the additional
objective of the collaboration.

The thesis started with an overview of complex human-robot environments introducing
a distinction between coexistence, collaboration, and cooperation between robots and
humans. We continued by laying out the main principles of automated integrated robotized
warehouses. These warehouses rely on a fleet of (semi)autonomous robots that carry the
racks through the warehouse bringing them to human workers for sorting or inspection.
Should a malfunction occur or some other type of maintenance needs to be done, the
human worker has to enter the warehouse. As the automated warehouses can be equipped
with high-precision measurement equipment, the position of humans can be tracked in
real-time. We introduced two sensors utilized in the scope of this thesis. The first one is the
motion capture system that can yield positions and orientations of rigid bodies with high
precision and in real-time. It is possible to use specialized suits to reconstruct amodel human
kinematic chain thus mapping rigid bodies to human joints. The second sensor we used
is wearable augmented reality glasses that map the environment and give precise location
and orientation of the human head. With the constant improvement in this technology, as
well as virtual reality, multiple advances in human-robot interaction are made possible. We
continued by giving an overview of state-of-the-art human action and motion prediction
methods and introduced several mathematical models and frameworks. We discussed path
planning and space partitioning, the important tools that enable prediction methods to
compare the observed human actions to the optimal behavior with the respect to a goal set.
An exhaustive introduction to the probabilistic decision-making models such as the Hidden
Markov Model, Recurrent Neural Networks, and Long Short-Term Memory Networks was
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given and their strengths and weaknesses have been presented. We gave a comprehensive
overview of their use in recent literature related to solving the human action and motion
prediction problem.

Thefirst industrial collaborative human-robot shared environmentwe have put emphasis
on is the automated integrated robotized warehouse domain. Unlike robots, human workers
in the warehouse are not fully controllable their behavior is stochastic in nature and certain
deviations from predefined plans can happen. The warehouse supervisory system, the Fleet
Management System, must be able to handle such occurrences and react timely. Having
that in mind, we crafted a novel human action prediction method. This method relies on
fast planning using the D∗ algorithm and space partitioning with GVDs. By comparing the
observed human behavior with the optimal one obtained by graph search, or alternatively
MDP, the model estimates human desires. This kind of reasoning perfectly aligns with the
HMM paradigm and we have selected this model for our backbone. The proposed method
has been exhaustively tested. Firstly, we created a warehouse simulator demonstrating the
effectiveness of the method. We continued by gathering data from an AR device in the
real robotized warehouse. As such process is time-consuming and the testing warehouse
is rather small, we finalized our tests on much larger VR warehouses with the increased
number of robots thus demonstrating the scalability of the proposed method.

The next challenge tackled in the scope of this thesis was human motion prediction.
Potential human deviations from the predefined plan can seriously impede warehouse
operation. Because of that, we introduced a human-aware planner - a robot route planner
expanded with the information on future human motion estimates. For this task, we took
advantage of the previously presented human action prediction method.The estimated goal
probabilities served as weights for obtaining human trajectory prediction, coupled with the
constant velocity assumption. We have also crafted a human deviation detection method
that triggers replanning. This approach was tested by calculating the average displacement
error of the predicted trajectory. Furthermore, we measured the performance of the entire
system and have proven the benefit of the proposed method by observing an increased
number of deliveries and a reduced number of unnecessary human-robot encounters.

The third problem we were concerned with was human action prediction based on
their kinematic model in collaborative environments. The human kinematic model is
reconstructed by observing a human wearing a specialized body suit with infrared markers
attached to it. This data is coupled with the recorded eye gaze direction within the MoGaze
dataset and presents the input feature set for the proposed method. As the total number of
recorded joint positions and orientations is substantial, we started by reducing the feature
dimensionality. The first feature dimensionality reduction method we introduced was
feature selection based on correlation and individual merit. We have grouped features that
correlate highly and have chosen the best one from each group as an input to our model.The
secondmethod we utilized is a data-driven feature extractionmethod based on autoencoder
architecture.These features serve as inputs for the proposed action predictionmethod based
on shared-weight LSTMs. The proposed method has successfully beaten the baselines on
the MoGaze dataset and on a smaller in-house recorded SubMotion dataset. Furthermore,
we have compared its execution with alternative architectures of the network, for example,
the RNN and fully connected LSTM. Finally, we have noticed that the eye gaze is the most
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powerful cue for human motion prediction. Because of that we have implemented and
tested the eye gaze estimation method based on MLPs that has shown promising results.

Naturally, some of the presented methods in the thesis can still be further improved or
extended.The human intention prediction in robotized warehouse method heavily relies on
the synthetic data and, in some aspects, on manually tuning the parameters of the HMM.
This approach could be modified to incorporate fully data-driven learning and parameter
tuning. In order to achieve that, access to a fully operational warehouse is necessary. If
enough data is collected, more sophisticated state-of-the-art learning-driven frameworks
could be employed for precise action andmotion prediction. Regarding the action prediction
based on the human kinematic model, the proposed method aims to create personalized
predictors of human picking actions. This method is crafted with an industrial collaborative
environment in mind and a straightforward future work would consist of integrating the
current state of the proposed method in such an environment. For example, the proposed
human action prediction method can be utilized to timely indicate the potential goal of
human movement. This information could be used by a robotic manipulator to do a certain
preparatory task with the object human intends to pick, passing it to the human. Such a
procedure, coupled with the human kinematic model trajectory prediction method, could
potentially lead to increased efficiency of the process at hand.
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