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grebu Fakultetu elektrotehnike i računarstva (FER), 2002., 2006. odnosno 2010. godine. Od

2002. godine radio je kao znanstveni novak, od 2011. godine kao docent, od 2016. go-

dine kao izvanredni profesor, a od 2021. kao redoviti profesor na Zavodu za elektroniku,
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Sveučilištu u Melbourneu. Sudjelovao je na nizu znanstvenih i stručnih projekata iz područja
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Abstract

The thesis focuses on exploring extensions to the recurrent neural network (RNN) algorithm for

natural language processing (NLP) in terms of improving its capabilities of semantic composi-

tion, investigating the possible benefits of leveraging multi-prototype word representations and

improving its overall interpretability. While RNNs have received a strong competitor in form

of the Transformer model, both approaches to processing natural language sequences possess

their own set of issues.

This research investigates methods of inducing sparsity in neural networks in order to learn

shared sense representations, a paradigm that differs from the standard sense-specific represen-

tation approaches where even synonymous words contain distinct sense representations. More

specifically, we evaluate whether it is possible to learn such a model by virtue of autoencoder

style training on unstructured natural language data. The research also tackles the problem of

semantic composition in recurrent networks, first analysing and resolving the issues recurrent

networks face when propagating information laterally and vertically. Based on these findings,

the thesis introduces a novel approach for building recursive representations of language which

is better suited to the hierarchical phrasal structure of language. The results along both research

avenues – the one of investigating shared sense representations and one investigating seman-

tic compositionality – offer valuable insights into avenues of improving recurrent models, and

demonstrate improvements with respect to interpretability of models.

Keywords: word representations, multiprototype representations, semantic composition,

interpretability, recurrent neural networks, natural language processing



Proširen sažetak

Proširenje modela povratnih neuronskih mreža za poboljšano kompozici-
jsko modeliranje tekstnih sljedova

Obrada prirodnog jezika (OPJ) je područje računarske znanosti koje omogućava strojnu obradu i

razumijevanje podataka izraženoga tekstom. Kao i cijelo područje umjetne inteligencije, obrada

prirodnog jezika je prošla značajnu transformaciju popularizacijom neuronskih pristupa, koji

su postavil impresivne rezultate u podzadacima OPJ poput klasifikacije teksta, strojnog pre-

vod̄enja i zaključivanja temeljem teksta. Svi duboki neuronski modeli dijele niz zajedničkih

komponenti, od kojih su nam dvije od posebnog interesa: (1) ulazne sastavnice, poput riječi,

se trebaju prikazati kao guste vektorske reprezentacije kako bi ih strojevi mogli razumjeti, (2)

semantičku kompozicije individualnih sastavnica u značenje teksta i (3) zbog iznimno velikog

broja parametara neuronskih modelima oni inherentno nisu transparentni te je razumijevanje

njihovog slijeda odluka otežano. Fokus ovog rada je upravo na pristupima rješavanju navedenih

problema – istraživanjem tehnika distribucijske semantike za prikaz riječi vektorima i tehnika

regularizacije za poboljšanje transparentnosti dubokih neuronskih modela.

Uz relacijsku semantiku, drugi etablirani pristup predstavljanju značenja riječi je distribuci-

jska semantika, koja promatra povezanost riječi kroz prizmu njihovog supojavljivanja u velikim

korpusima teksta. Metode temeljene na distribucijskoj semantici često se koriste za postavl-

janje inicijalnih vrijednosti gustih prikaza riječi, pri čemu očekujemo da je semantička sličnost

gustih prikaza dvaju riječi otprilike jednaka nekoj mjeri sličnosti njihovih vektora. Večina pris-

tupa temeljenih na distribucijskoj semantici pripadaju paradigmi jednoprototipnih prikaza koja

svakoj riječi prirodjeljuje jedan gusti vektorski prikaz te sadrži odred̄ene nedostatke, speci-

fično pri obradi homonimnih i polisemnih riječi. Alternativni pristupi specijalizirani za obradu

homonimnih i polisemnih riječi su pristup višeprototipnih prikaza i dijeljenih prikaza, od kojih

nam je potonji od izrazitog interesa zbog poboljšane memorijske složenosti i olakšanog razu-

mijevanja rada modela.

Ovaj rad istražuje poboljšanja pristupa semantičkoj kompoziciji gustih reprezentacija temel-

jenih na povratnih neuronskim mrežama i algoritmu pozornosti, pristupa učenju dijeljenih gustih

prikaza riječi te poboljšanju olakšanog razumijevanja rada neuronskih modela kroz tehnike reg-

ularizacije. Središnja hipoteza ovog rada jest da su problemi semantičke kompozicije i prikaza

riječi povezani – te da se ciljanim poboljšanjem tehnika koje se bave navedenim problemima

može, uz povećanu točnost, ostvariti i poboljšana transparentnost kod dubokih neuronskih mod-

ela. Ova hipoteza ispitana je kroz tri eksperimentalna doprinosa, koji ciljaju dati odgovor na tri

istraživačka pitanja (IP):

•IP1 – Koliko precizno povratne neuronske mreže prikazuju re čeničnu semantiku i koje su

im mane semantičke kompozicije?
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•IP2 – Jesu li višeprototipni ili dijeljeni prikazi rije či prikladna paradigma za neuronske

modele te poboljšavaju li takvi prikazi performanse modela na ciljnim zadacima?

•IP3 – Može li poboljšanje modela semanti čke kompozicije kod povratnih neuronskih

mreža istovremeno poboljšati kvalitetu rečeničnih prikaza i transparentnost njihove iz-

gradnje?

1. Uvod

U prvome poglavlju (“Introduction") opisani su motivacija i ciljevi doktorskog istraživanja.

Najprije se opisuju pristupi predstavljanju značenja riječi kroz guste vektorske prikaze te neu-

ronski modeli semantičkoj kompoziciji značenja individualnih riječi u značenje rečenica ili tek-

sta. Nastavno, izoliraju se nedostaci svakog od prethodno navedenih pristupa te se opisuju

dosadašnji pristupi ublaživanju tih nedostataka. Završno, postavljaju se istraživačka pitanja na

koja ovaj rad cilja dati odgovore te se predstavlja kratak sažetak sadržaja doktorskog rada..

2. Pozadina

U drugome poglavlju (“Background") opisuje se domena istraživanja kroz pregled zadataka

obrade prirodnog jezika kojih se doktorsko istraživanje dotiče. Konkretno, opisuju se pris-

tupi vektorskim prikazima riječi, posebice onih specijaliziranih za polisemiju kao i kontekstu-

alizirani pristupi vektorskim prikazima riječi. Potom, daje se pregled tehnika razumijevanja

rada neuronskih modela kroz njihove tri kategorije – (1) metoda baziranih na gradijentima, (2)

metoda baziranih na unatražnoj propagaciji te (3) metoda baziranih na surogatnim modelima.

3. Poboljšanje vjerodostojnosti objašnjenja algoritmom pozornosti

U trećemu poglavlju (“Improving Faithfulness of Attention Explanations") opisuje se provedeno

istraživanje tehnika regularizacije kojima je cilj bio poboljšanje vjerodostojnosti objašnjenja

ponašanja povratnih neuronskih modela korištenjem algoritma pozornosti. U okviru istraživanja

predložene su dvije tehnike regularizacije s ciljem ublažavanja dvaju fundamentalnih problema

pri propagaciji informacija u povratnim neuronskim mrežama – (1) horizontalnog curenja in-

formacija i (2) vertikalne blokade informacija. U standardnim pristupima objašnjavaju povrat-

nih neuronskih modela kroz algoritam pozornosti pretpostavlja se da svaki skriveni prikaz do-

biven obradom povratne neuronske mreže odgovara upravo kontekstualizaciji prikaza odgo-

varajuće ulazne riječi. Eksperimentalno je pokazano da prethodno navedena pretpostavka ne

vrijedi, te su predložene dvije tehnike regularizacije povratnih modela koje osiguravaju zadrža-

vanje informacija iz ulaznih prikaza u odgovarajućim skrivenim prikazima povratnih modela.

Jedna tehnika regularizacije je inspirirana maskiranim modeliranjem jezika (MLM), gdje se

dio ulaznih riječi slučajno maskira, te je dodatni zadatak modela rekonstruirati maskirane ri-
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ječi. Korištenjem navedenog dodatnog zadatka pri učenju modela osigurava se da modeli u

skrivenim reprezentacijama sadrže informacije potrebne za rekonstrukciju ulaznih riječi, čime

se osnažuje poklapanje izmed̄u informacija u ulaznim i skrivenim prikazima. Druga tehnika

regularizacije je primjena L2 vezanja koja uvodi eksplicitnu težinsku vezu izmed̄u ulaznih i

skrivenih reprezentacija te kažnjava njihovo odstupanje po L2 normi.

Vrednovanje modela osnaženih s predstavljenim tehnikama regularizacije provelo se na

nizu klasifikacijskih skupova podataka za engleski jezik iz različitih domena poput recenzija

filmova, medicine i kategorizacije novinskih članaka. Pri vrednovanju modela pratilo se više

kriterija: (1) modeli su trebali ostvariti zadovoljavajuću klasifikacijsku točnost na podatcima te

(2) modeli su trebali pokazati zadržavanje informacija iz ulaznih reprezentacijama u skrivenim

reprezentacijama. Obje predložene tehnike regularizacije demonstrirale su značajna poboljšanja

u zadržavanju ulaznih informacija uz minimalni gubitak klasifikacijske točnosti.

Uz kvantitativnu analizu kroz navedene kriterije provedena je i kvalitativna analiza tehnika

regularizacije kroz analizu dodijeljene važnosti pojedinačnim skrivenim reprezentacijama. Pre-

gledom niza primjera iz validacijskog skupa analiziranih skupova podataka pokazano je da

primjenjene tehnike regularizacije smanjuju bitnost koju modeli pridodijeljuju skrivenim prikaz-

ima riječi koje ne sadrže informacije bitne za analiziran klasifikacijski zadatak.

4. Učenje dijeljenih prikaza riječi

U četvrtome poglavlju (“Learning Shared Word Representations") opisuje se implementacija

samokodirajućeg rijetkog modela za učenje dijeljenih prikaza riječi. U okviru predloženog

modela prvo su predstavljene tehnike koje se koriste za ugrad̄ivanje rijetkosti u duboke neu-

ronske modele, konkretnije Gumbel-softmax, čvrsta Kumaswaramy distribucija te kvantizirani

varijacijski samokodirajući modeli. Navedene tehnike su nužne za učenje dijeljenih prikaza ri-

ječi radi problema redundancije informacija – ukoliko se ne uvede rijetki sloj, neuronski modeli

mogu konvergirati u neželjeno rješenje gdje sve ulazne informacije ostaju uspješno očuvane

u skrivenom sloju, čime se ne postiže željena generalizacija i dijeljenje prikaza istoznačnica.

Osim same tehnike uvod̄enja rijetkosti u modele, opisuje se i samokodirajući model učen sa-

monadziranim učenjem. Samonadzirano učenje je u zadnje vrijeme standardan pristup pre-

dučenju dubokih modela, populariziran radi iscrpne količine tekstnih podataka na internetu koji

se mogu iskoristiti za učenje raspodjele supojavljivanja riječi u jeziku. Nadalje, opisana je bitna

stavka samokodirajućeg modela – rekonstrukcijska mreža. Pristup rekonstrukciji tekstnih po-

dataka može se napraviti na dva načina: (1) nezavisnom rekonstrukcijom svake riječi s ulaza

i (2) zavisnom rekonstrukcijom s lijeva na desno. Dok prvi pristup riskira odred̄enu razinu

redundancije radi nezavisnosti dekodiranih riječi, te se često pojavljuju simptomi generativnih

modela teksta poput ponavljanja čestih riječi, zavisni pristup ima manu da kroz uvod̄enje do-

datnih parametara možda pretjerano pojednostavljuje zadatak rekonstrukcije – čime se ponovno
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ne postiže zadovoljavujća razina generalizacije. Konačno, opisuju se metodološke varijante

postavljanja početnih vrijednosti dijeljenih prikaza riječi te slučajnog izbacivanja dijeljenih

prikaza, oboje korisnih za koznistentno postizanje bolje razine generalizacije.

Vrednovanje samokodirajućih modela za učenje dijeljenih prikaza riječi provedeno je na

dva klasifikacijska skupa podataka i jednom skupu podataka za mjerenje sličnosti značenja

riječi u kontekstu. Rezultati pokazuju da sve razmatrane varijante samokodirajućih modela

ostvaruju razumne performanse na zadatku mjerenja sličnosti značenja riječi u kontekstu, no i

dalje zaostaju za ponajboljim modelima. Na klasifikacijskim zadacima rezultati ponajbolje var-

ijante samokodirajućeg modela za učenje dijeljenih prikaza riječi čak ostvaruju najbolji rezultat

med̄u razmatranim modelima – čime dobivamo naznake da pristup kvantiziranim varijacijskim

samokodirajućim modelom vrijedi dublje razmotriti u budućnosti.

5. Iterativni rekurzivni mehanizam pozornosti

U petome poglavlju (“The Iterative Recursive Attention Mechanism") opisuje se predloženo

proširenje mehanizma pozornosti za povratne neuronske mreže s ciljem poboljšanja razumije-

vanja načina na koji neuronski modeli donose odluke. Sam model je opisan kroz tri zasebne

faze obrade podataka u unaprijednom prolazu: (1) fazu kodiranja, (2) fazu pozornosti i (3) fazu

klasifikacije. Glavni doprinos predloženog modela nalazi se u fazi pozornosti, gdje se klasični

mehanizam pozornosti proširio na način da se prikaz dobiven u jednom koraku mehanizma po-

zornosti dodaje u skup vektorskih prikaza na koje se primjenjuje pozornost u idućem koraku

– omogućavajući hijerarhijsko učenje prikaza jezika. Dodatna korist rekurzivne pozornosti je

poboljšana interpretabilnost. U situacijama gdje se model susreće sa rečenicama koje sadrže

kontrastni sentiment, prethodno je odluka izmed̄u polarnosti rečenice morala biti donešena u

jednom koraju pozornosti, pri čemu bi se često naglasio samo dominantni polaritet. Razdvajan-

jem obrade u više uzastopnih koraka modelu se daje mogućnost kompartmentalizacije polariteta

u odvojene korake, čime svaki korak izolira jedan od kontrastnih aspekata ulazne rečenice.

Kvantitativno vrednovanje predloženog modela s rekurzivnom pozornosti provedeno je na

dva klasifikacijska skupa podataka iz domene analize sentimenta na engleskom jeziku, dok je

kvalitativno vrednovanje provedeno na slučajno odabranim primjerima iz skupova za validaciju.

Kvantitativna evaluacija je u trenutku objave modela ostvarila najbolje rezultate na skupu po-

dataka SST-2 te kompetitivne rezultate na skupu podataka IMDb. Kvalitativnom evaluacijom

pokazano je da model koristi rekurzivni algoritam na željen način – obrad̄ujući kontrastne as-

pekte polarnosti u zasebnim koracima pozornosti, te ih kombinirajući u posljednjem koraku

pred klasifikaciju.
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6. Rasprava

U šestome poglavlju (“Discussion") istraživanje provedeno unutar doktorskog rada se sagledava

iz šire perspektive, prvo analizirajući implikacije za dvije glavne varijante neuronskih modela za

obradu teksta – povratnih neuronskih mreža i mreža Transformer. Potom se analizira korisnost

transparentnosti modela u današnjem okruženju neuronskih modela, s naglaskom na kompromis

izmed̄u performansi na ciljnim zadacima i razumijevanja načina na koji modeli donose odluke.

Konačno, razmatra se motivacija za eksplicitnim modeliranjem pojedninačnih smislova riječi –

pristupa koji je postao manje bitan nedavnim napretkom u učenju kontekstualiziranih prikaza

riječi.

6. Zaključak

Posljednje, šesto poglavlje (“Conclusion") ukratko sažima predložene modele i njihove imp-

likacije za buduće pravce istraživanja. Konkretno, podrobnije se analiziraju pravci poboljšanja

protoka informacija kroz povratne neuronske mreže, problema koji je dugo vrijeme poznat kroz

simptome eksplodirajućih i nestajućih gradijenata. Idući interesantan pravac je učenje dijeljenih

prikaza riječi, čija korist nije očita u performansama modela na razmatranim klasifikacijskim

zadacima usprkos jasnoj motivaciji iz teorije linvistike. Unutar analize izoliraju se tri glavna

pravca za budući rad u okviru učenja dijeljenih prikaza riječi koji su se pokazali obećavajućim

Konačno, analizira se pravac učenja rekurzivnih reprezentacija teksta koje poboljšavaju trans-

parentnost neuronskih modela uz dodatnu korist poboljšavanja performansi na razmatranim

klasifikacijskim zadacima.

Ključne riječi: značenje riječi; povratne neuronske mreže; algoritam pozornosti; transpar-

entnost dubokih neuronskih mreža; obrada prirodnog jezika
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Chapter 1

Introduction

Natural language processing (NLP) is a subfield of computer science focusing on enabling ma-

chines to process and understand natural language data. Along with other areas of artifical

intelligence, NLP has been affected by the now not-so-recent neural revolution, which helped

propel the state of the art across tasks such as sequence classification, natural language infer-

ence, and text generation. All deep neural models have two aspects in common: (1) they require

input tokens, such as words, to be mapped to numeric representations, which can then be “un-

derstood” by machines, and (2) due to the sheer number of parameters, most of the models are

black-box and cannot be understood by human practitioners as their shallow counterparts.

The dominant paradigm used for learning word representations for neural models is distri-

butional semantics. Following the distributional hypothesis [1, 2], which states that “a word is

characterized by the company it keeps”, distributional semantics relies on semantically related

words being highly likely to occur in similar contexts. For example, we can imagine a number

of words that can complete the following sentence:

“He took a back home.”

such as “cab”, “bus”, or “tram” – all of which share in common being the means of transporta-

tion. Distributional semantics leverages this fact and, through constructing supervised learning

tasks from large amounts of unstructured text available in the era of World Wide Web, induces

semantic representations of words from instances of contexts the word appears in.

Vector space models for word meaning [3] represent each word by a dense vector represen-

tation, the idea being that semantically similar words are embedded as points that are close to

each other in the vector space. We provide a visualization of the various approaches to word rep-

resentations in Figure 1.1. While initial approaches to learning word representations leveraged

coocurrence matrix decomposition, neural predictive approaches [4] emerged as the predomi-

nant method. Nevertheless, an important question still lingered: should each word be assigned a

single word embedding (Figure 1.1a) or multiple embeddings (Figure 1.1b) – depending on the

number of its senses [5]? While this single- vs multi-prototype representation discussion has
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faded in popularity following the introduction of contextualized word representations [6, 7], it

is still a question worth pursuing an answer to. Although contextualized approaches are capable

of modeling any number of senses, we are seldom able to decode what the determined senses

are, and whether the internal representations of contextualized models correspond to senses

as intuited by humans. The discrete nature of multi-prototype representations, while posing a

technical challenge during training, offers benefits in the form of interpretability and insights

into how neural models learn language. Better understanding of what linguistic knowledge is

embedded in models can either lead to understanding where they fail, guiding practitioners to

further improvements or even, albeit less likely, lead to humans discovering new insights about

complex interactions in language. Most importantly, improvements upon the multi-prototype

variant, such as the idea of using shared word representations (Figure 1.1c), could yield ad-

vances such as automatic synonyms induction or even cross-lingual transfer of sense inventories

from languages with plentiful training data to low-resource ones.

One of the main downsides of the multi-prototype approach to word representations is that

prototypes corresponding to related senses of different words do not share information through-

out the training process. As word representations for more frequent tokens are exposed to more

contexts, it is natural that their distributional vectors would encapsulate a better estimate of the

overall distributional information for that word, thus making it easier for downstream models to

determine which of the contextual patterns is applied to the downstream task. However, if we

learn multiple representations for each word, it follows that each learned representation will be

estimated based on fewer contexts than if we used a single-prototype approach. This, along with

the requirement for disambiguating which sense occurs in a context, has been the bane of multi-

prototype approaches becoming widely adopted. However, recent advances in inducing sparsity

in neural networks [8, 9] opened a new avenue towards learning shared word representations

[10] – where a sense shared by multiple words would be tuned based on its occurence in every

context, regardless of the concrete surface form which will benefit the individual representation

of each of the words through exposing it to more contextual patterns.

Apart from learning adequate word embeddings, with wider adoption of NLP models in

high-stakes decision scenarios, a need has arisen for their opaque nature to be unveiled. Ever

since its introduction, the attention mechanism [11] seemed to provide a glimpse into the inner

workings of neural models – through assigning scalar weights to hidden representations, we

could perhaps understand which components of input are crucial for a task, and which relevant

patterns are perhaps not recognized by the network. However, this practice came under question

when experiments have shown that attention should not be trusted [12], and researchers have

started advocating for specialized saliency methods to be used instead [13].

Based on related work, it is inconclusive whether learning multi-prototype representations

of words could offer any benefits when compared to contextualized word representations. Apart

2



Introduction

(a) (b) (c)

Figure 1.1: In the single-prototype approach (a), each word is assigned a single dense word rep-
resentation. The multi-prototype approach (b) takes into account the existence of polysemous
words and aims to assign one dense representation for each sense of the word. In the shared
representation approach (c), the goal is to reuse the same sense representation for all of the
words which share that sense – reducing the issue where senses infrequent for some words are
exposed to fewer contexts.

from obtaining intepretability through explicit sense representations, we believe that learning

a sense inventory could have implications for cross-lingual transfer larning as senses are in-

dependent of language, and could be adapted to any language by simply learning the word to

sense mapping. We also find that current work on using recurrent neural networks identifies

a number of key issues in convergence, mainly with respect to hidden representations not dif-

fering from one another, for which no attempt has yet been made to resolve. This thesis aims

to fill the research gaps by investigating the language understanding and semantic composition

capabilities of recurrent neural models. We start by improving upon the interpretability of re-

current neural network based NLP models when applied to sequence classification tasks, where

we observe a considerable boost to the faithfulness of interpreting model decisions with the

attention mechanism. In parallel, we perform a study that aims to determine whether learn-

ing shared word representations, a paradigm extending upon the multi-prototype representation

approach, is feasible and whether it yields improvements on downstream tasks. Shared word

representations require a high level of sparsity when selecting senses due to the number of sense

representations being higher than the dimensionality of the sense representations, which would

otherwise allow for trivial solutions through the canonical basis. Regrettably, such a level of

sparsity has proven to be too high for such a model to be learned as part of an end-to-end au-

toencoder and as a result, the proposed models have demonstrated difficulties in improving upon

competing approaches. Finally, we take the lessons learned from these two lines of research and

present a model combining recurrent neural networks and a novel interative recursive attention

algorithm which improves upon the semantic composition capabilities of commonly used recur-

rent models, providing both competitive results as well as interpretability on sentiment analysis

benchmarks.

More concretely, this thesis addresses the following research questions:
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• (RQ1): How well do recurrent neural networks capture the intricacies of sentence-level

semantics and where do they fall short?

• (RQ2): Are multi-prototype word representations a good fit for neural models, and can

such representations be beneficial for downstream tasks?

• (RQ3): Can we devise a novel model based on recurrent neural networks that improves

both upon their representational capabilities as well as interpretability?

The aforementioned research questions constitute some of the issues that bothered me the most

throughout my journey of understanding neural models for NLP and I strongly believe the

answers (or even the followup questions) produced in scope of this thesis will help others taking

the same path.

1.1 Contributions

The research objective of this doctoral thesis is to analyze the inner workings of recurrent neu-

ral network based algorithms for processing natural language and determine possible areas of

improvement. My main goal of this thesis was to leverage the attention mechanism which is, in

my opinion, one of the most transformative recent innovations in neural networks, to both bring

better understanding of the capabilities of neural models and improve upon them by incorpo-

rating targeted inductive biases. The prospective original scientific contribution of this thesis

consists of:

1.Empirical analysis of the convergence of recurrent neural network algorithms on text

sequence modeling tasks with respect to different input word representations;

2.An algorithm for learning word representations serving as input to text processing models

based on contextualized word representations;

3.An extension of the recurrent neural network model for processing text sequences with

mechanisms for processing linguistic phenomena such as polysemy, semantic composi-

tion, and coreference.

1.2 Thesis structure

This thesis consists of seven chapters, including the previous introduction. In Chapter 2 we pro-

vide a brief tour through relevant developments in deep neural networks for natural language

processing with respect to learning word representations both of multiprototype and contex-

tualized type, as well as in model interpretability, covering both saliency- and attention-based

methods. We then describe the body of research constituting the contributions of this doctoral

thesis, starting by the main contribution of the thesis in the work on interpreting the pitfalls of

neural models for NLP in Chapter 3. We continue by covering the experiments performed on
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learning shared word representations, a specific variant of multi-prototype word representations

in Chapter 4. Combining lessons learned through analysing recurrent networks, we present an

iterative recursive attention-based algorithm for processing language that is both interpretable

and competitive with models that at that point were considered the state of the art. Taking a step

back, we take a look at the larger picture presented through the undertaken work in Chapter 6

before concluding the thesis and discussing future avenues of work in Chapter 7.

5



Chapter 2

Background

Before delving deeper into the research done within this doctoral thesis, we will first provide

an overview of the methods used in neural natural language processing (NNLP) and emphasize

the problems which the undertaken work aimed to solve.

The first topic we will cover is learning word representations in NLP. While understanding

language comes naturally to humans given time, some abstractions which we have internalized,

such as semantic and syntactic similarity and inferring meaning of unseen words from context

are not natural for machines. Paragraphs, sentences, and even words are sequences of symbols at

different granularity. In order for these sequences to be processed by a machine learning model,

they usually have to be converted to a machine readable, numeric format. Prior to defining the

transformation from a symbol to a number, one first had to determine the granularity at which

text was processed. Traditionally, the unit of choice was a word. Each text which was to be

processed by a machine learning algorithm was first tokenized – transformed to a sequence of

tokens. Tokens obtained by this process are not limited to words. Texts include punctuation and

various artefacts, and tokenization algorithms are not perfect. Thus, the sequence of tokens was

usually subjected to rigorous filtering that aimed to remove everything considered irrelevant for

the task at hand. It was also common to discard tokens with very low frequency in a corpus,

Figure 2.1: An example of a standard NLP pipeline. The textual data first has to be preprocessed
to obtain a sequence of tokens. The seuqence of tokens can then be passed through a machine
learning model to perform a specific task. In this example, we show the task of language
modeling, where based on N preceding, context words the machine learning model has to make
a prediction as to which word is the following one.

as they took up space and rarely produced value. Not only infrequent tokens were targeted
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though – the peak of the Zipf [14] curve was also considered irrelevant, as word types such

as conjunctions and prepositions, while frequent, rarely offered any discriminative value for

standard NLP tasks. These words were filtered out through curated stop word lists. Once

adequately filtered, one had to determine how many unique tokens should be considered in

the machine learning model. The considered words formed a vocabulary, and the size of the

vocabulary is a common hyperparameter in NLP models.

After the set of considered words was determined, what remained was to determine how

these symbols should be mapped to a numeric format. The leading paradigm of the pre-neural

era was one of sparse representations. Each dataset instance was represented as a sparse one-

hot vector in R|V |. Each element of the vector was zero if the corresponding word did not

occur in the instance, and non-zero otherwise. Values assigned to non-zero positions differed

between approaches. In simple Bernoulli representation, if a word occurred it was assigned a

1. Multinoulli representations considered word frequency, and the position was assigned the

frequency of the corresponding word in the instance. However, for some algorithms, indicating

relative frequency of the word in a corpus was also determined to be relevant, and approaches

such as TF-IDF and naive Bayes weighting became prevalent.

The major downsides of the sparse approach were (1) the semantic similarity between words

was not in any way encoded in the represenations and (2) word order was disregarded when

computing the sequence representation. While the latter issue was somewhat alleviated by cap-

turing local word order through n-grams, progress in accurately representing semantic similarity

advanced rapidly with the introduction of neural vector space models (VSMs) of word meaning.

2.1 Vector Space Models of Word Meaning

Progress in encapsulating similarity became pronounced with the resurgence of neural net-

works. Vector space models were first introduced in [15] for representing documents. The

authors represented each document as a vector of index term weights, with the key to improv-

ing retrieval of documents related to a search request being the quality of the index vocabulary.

The goal of the work was to find an index vocabulary that maximizes the distances between

entities (documents) in the vector space – demonstrating that indexing performance inversely

correlates with vector space density. The performance of VSMs for document representations

inspired work on VSMs of word meaning [3, 16]. Where one can represent a document though

occurences of key index terms, one can also represent a word with the most frequent first-order

context terms. Such approaches were first proposed [3, 17] to treat sense induction, and the

representations were learned through techniques such as SVD on cooccurrence data from raw

texts.

Parameters of initial VSMs of word meaning were computed through cooccurence matrix
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decomposition, by constructing a low-dimensional representation of distributional statistics. In

contrast, deep learning allowed to learn d-dimensional word vector representations wi ∈ Rd

with gradient descent [18], enabling neural models to select and encode relevant contextual

information themselves. Such, predictive approaches to learning word representations have

demonstrated an improved capacity over their matrix decomposition based counterparts, which

we believe to be caused by the aforementioned freedom in feature selection. In the following

sections, we will provide a brief overview of neural approaches to VSMs.

2.1.1 Approaches

A Neural Probabilistic Language Model

A change of the established paradigm of using count-based representations of text data started

with the introduction of a neural probabilistic language model [19]. The model was the first

to introduce a neural model which, along with the network, also optimized the parameters

of word embeddings. The model was applied to the task of language modeling, predicting

the subsequent word w(t) given N preceding, context* words {w(t−N−1), . . . ,w(t−1)}. Given

N d-dimensional word embeddings, the model applied a feed-forward neural network on the

concatenated embeddings to obtain probabilities for the next word over the entire vocabulary.

Trained with stochastic gradient descent on the cross-entropy objective, the model demonstrated

Figure 2.2: Vector space model approach to language modeling. The context size (number of
preceding words) had to be kept fixed throughout training and testing. Next word prediction is
done over the entire vocabulary. Each word wi is embedded in Rd .

significant improvements over competing n-gram language models. The territory where the neu-

ral approach excelled was modeling longer contexts – n-gram based approaches relied heavily

on overlapping sequences, where word embeddings provided notions of similarity through their

shared vector space. Interestingly, one of the ideas for future work in [19] states that assigning a

*Note that context, in general, need not refer merely to preceding words. Depending on the source, the meaning
of context can refer to either preceding or following the target word.
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single embedding to each word might not be the best course of action due to polysemous words,

hinting towards the idea of assigning multiple representations (prototypes) to each word. Subse-

quent work focused on either improving downstream performance of learned word embeddings

[20, 21], reduce the costly training time [22], or use neural models with inductive biases that

better fit natural language [23].

Improvements Through Multi-Task Learning

A further improvement in learning word representations was shown in [24], where the authors

leveraged convolutional neural networks and multi-task learning to simultaneously learn rep-

resentations which can be used for a number of tasks, such as part-of-speech (POS) tagging,

chunking, named entity recognition (NER) and semantic role labeling (SRL). Moving from the

fixed-size window representation used in prior work, the authors use Time-Delay Neural Net-

works (TDNNs) [25] to allow for multi-layer processing, first extracting local features in the

lower layers, while the upper layers were exposed to progressively wider context.

Cooccurrence is All You Need

In all of the previous work the word representations were learned as part of a (deep) network

performing a concrete NLP task. Thus, some parameters required for the task were not used

A major breaktrough at the time was the first model able to learn word embeddings at scale –

word2vec [26] offered an efficient and effective way of producing representations which encap-

sulated both syntactic and semantic similarity between words. The main difference with respect

to prior work came from treating word embeddings not as just another component of a model,

but as the sole goal of the optimization process.

Once learned, the vector representations of each word could be stored and used to initial-

ize the embedding matrix of a neural model, providing performance improvements across the

board. Apart from quantitative improvements, word2vec vectors also highlighted interesting

properties of the learned vector space – some linguistic notions such as number, gender, and se-

mantic relations such as country-capital could be applied by moving along some fixed direction

(Figure 2.3).

Other approaches to learning word embeddings soon followed [27, 28, 29], each with dif-

ferent theoretical properties and optimization techniques but comparable performances when

controlled for hyperparameter optimization [30]. The similarity in performance of these mod-

els was further explained by establishing a link between popular techniques of learning word

embeddings and matrix factorization techniques [31], where each technique introduced a spe-

cific bias to the cooccurrence matrix.
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Figure 2.3: Some linguistic relationships between words could be represented as fixed tran-
formations (e.g. translations) in the induced vector space. The example demonstrates gender
as a translation in the 2-D projection of skip-gram embeddings. Further examples of this phe-
nomenon can be found in [4].

Implications

If any doubts existed with respect to efficiency of neural word representations, the introduction

of word2vec models cemented the transition to vector space models of word meaning and neural

networks in NLP. Despite the performance gains which dense vector representations brought to

the table, some glaring issues remained. Noted in early work [19], models which assign a single

dense vector representation to each word (henceforth single prototype models) do not account

for polysemy and homonymy. Naturally, one would think this to be an issue. It would certainly

not be possible that two words could be equally well represented in a fixed size vector† when one

of them is monosemous and the other highly polysemous? Practice would have it otherwise. It

has been hypothesized and to an extent experimentally shown [10] that a single word prototype

stores all senses identified in a corpus as a mixture, although this hypothesis falls apart when

the number of senses grows [32].

2.2 Word Representations and Polysemy

Ever since [33] it was understood that discriminating senses of words dependent on context is

a issue which at some point will have to be tackled by NLP models. In the following chapter

we will present a detailed overview of conteporary models of models which address the issue

of polysemy through specialized techniques of word representation.

2.2.1 Approaches

Multiple Word Prototypes

The first proposed solution [34] to the issue of polysemy leveraged a simple idea: if each word

can have multiple senses, simply model all of them simultaneously. The approach belonged to

†The famous statement by Ray Mooney in 2014.: “You can’t cram the meaning of a whole %&!$# sentence
into a single $&!# vector!” could as easily be applied to all senses of a word.
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the class of prototype models, widely studied in psychology [35, 36, 37], where each concept is

represented with an abstract prototype, in contrast with exemplar models, where concepts are

represented by sets of observed instances. Thus, instead of a single dense representation, each

word was modeled as a mixture of von Mises–Fisher distributions. This approach (henceforth

multi-prototype) allowed the model to keep a separate embedding for each sense.

The caveat here was that that the model required the capacity to determine the sense of a

word based on context in order to choose the adequate prototype, a task difficult when annotated

data is lacking. Annotating data for word sense disambiguation (WSD) is specifically expensive

as it requires annotators determining which sense label out of a large sense inventiry is the best

fit for each word in a dataset. Considering that modern NLP models are trained on dataset

consistently composed of more than a million tokens, the cost of such an annotation becomes

evident. The solution to the unsupervised task was an unsupervised algorithm – the prototypes

for each word were determined by clustering the first-order contexts of those words in a corpus.

Intuitively, the distributional hypothesis [1, 2] should apply to polysemy as well – if you know a

word by its context, you should be able to deduce a sense in the same manner. Nevertheless, the

multi-prototype approach demonstrated admirable improvements on word similarity testbeds.

However, apart from evaluating the new approach on standard word similarity datasets, datasets

which target polysemy were non-existent and authors had to rely on qualitative evaluation,

which is known not to be the most reliable.

Following up, [38] extended the multi-prototype approach to include global contextual in-

formation, designed to alleviate ambiguity and act as sort of a prior in cases where local context

is not sufficient to determine the sense. Apart from performance improvements, the authors

also provided an important step forward in evaluating multi-prototype word representations:

the SCWS dataset. In the SCWS dataset, word similarity was evaluated based on context and

not the word tokens alone, introducing a quantitative testbed for polysemy.

Influence of Word2Vec

Both of the aforementioned multi-prototype models were initialized offline through the use

of clustering algorithms and then trained with the language modeling framework introduced

in [19]. Naturally, once the efficient and effective word2vec [26] framework was introduced,

adapting it to the multi-prototype case was straightforward. In [39], the authors first train the

skip-gram model, then exploit synset annotations present in Wikipedia to train a supervised

word sense disambiguation task and, finally, jointly learn sense vectors from the now labelled

corpora. While powerful, the approach has a major downside – it requires a resource with

annotated word senses such as WordNet [40] or OntoNotes [41]. Any model that relies on

such resources has to rely on their continuous maintenance and exhaustiveness, which is a

requirement rarely fulfilled for languages other than English.

11
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Continuing the extension of word2vec approaches, [42] introduce a multi-sense extension

of the skip-gram model (MSSG), which jointly learns sense and word representations of each

word. The model determines senses based on clustering instead of using an external resource for

scaling purposes, and demonstrates improvements on various testbeds. Most notably, however,

the model introduces a non-parametric variant of multi-prototype methods. Another major

downside of existing approaches to polysemy was the fact that the number of senses K had to

be determined apriori and set fixed for all words. Non-parametric approaches to multi-prototype

models allow for the number of senses to vary and be determined by the model – if the similarity

of a new context is not higher than a predefined threshold, a new sense is created.

In further work, [5] continued the thread of non-parametric models, leveraging the Chinese

Restaurant Process to handle the variable number of sense representations per-word.

While well motivated, non-parametric models are notoriously difficult to train and suffer

from the rich-get-richer problem, where due to the online nature of models a small number of

clusters is assigned the majority of contexts.

Turning back to cluster-based models, [43] first performed LDA on context representations

to obtain word topics and then used Gibbs sampling to assign topics, which act as sense labels, to

each token. Once words are paired with their sense representations, it is straightforward to apply

the skip-gram training procedure and learn both word and sense representations simultaneously.

Shared Sense Representations

While all prior work handled the issue of polysemy through assigning multiple prototype rep-

resentations to each word, one downside was that sense representations which refer to the same

concept were learned separately – even though airplane and plane refer to the same concept, the

contextual information will not be shared between the distinct surface forms. In inspired work,

[10] propose applying an offline sparse coding method to a pretrained word embedding matrix

to identify a set of core concepts named discourse atoms. Discourse atoms are obtained by

sparsely decomposing the embedding matrix, representing each word embedding as a sum of k

discourse atom representations, which can broadly be thought of as senses. The representations

of discourse atoms are obtained through a decomposition based approach:

E ≈ L · A (2.1)

Embedding matrix Sparse coefficients
Discourse atoms

The constraint which enables non-trivial decomposition solutions is the sparsity rate of the

coefficient matrix L. Since at most L coefficients are non-zero for each word, we ensure reuse

of discourse atoms, allowing us to identify words that share senses. If we are able to identify

12
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words which refer to the same sense, we can then distribute contextual information between

them, resulting in improved representations of each individual word. This approach has a major

downside – the decomposition process has to be done online, and once determined, the word →
atom mapping is fixed. Coupled with the fact that loss of information is inevitable, the method

has had little practical impact. Regardless, the authors presented a very interesting finding: as

each word embedding can be (linearly) decomposed to a sum of atoms, this implies that classic

word embedding algorithms such as GloVe [28] and word2vec [26] are both able to recognize

multiple senses of a word and conflate them in a single vector in a manner that can be retrieved

through decomposition based approaches. The linearity assertion (2.2) states that each word

can be decomposed as a linear sum of the disjoint discourse atoms (senses) it is composed of.

vw ≈ λ1 vs1 + λ2 vs2 + . . . (2.2)

Nonzero sparse coefficients

Discourse atoms

The assertion was put to a test with a simple experiment: train word embeddings on a

corpus. Then, replace all occurrences of two monosemous words (w1;w2) with a single, new

pseudoword (w1;2). Train the embedding algorithm on the new corpus, keeping all unchanged

embeddings fixed. The new word is clearly polysemous, with its two major senses w1 and w2.

In their experiments, the authors demonstrate that the pseudoword embedding has a high cosine

similarity with each of the original word embeddings, despite them being learned separately.

Despite the nice theoretical implications, the linearity assertion was soon afterwards shown

not to hold when the number of senses a pseudoword was composed from is large[32]. Nev-

ertheless, further work has shown that in most cases, informations about senses are well rep-

resented in a single vector embedding, as long as the sense is frequent [44]. The authors also

argue that even if rare senses are not well represented, that might not be an issue as rare senses

are often not as relevant for downstream applications Nevertheless, we believe there is merit

in representing even the rare senses of words, mainly for the fact that language is constantly

evolving [45], a sense of a word that was once rare (e.g. mouse in the pre-computer era) could

become the dominant one in a brief period of time or that senses rare in one domain could be

very important for a different domain, and disregarding a sense entirely could be detrimental

for transfer learning performance.
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2.3 Contextualized Word Representations

Following the introduction of Transformer models [46] and subsequently BERT [7], NLP practi-

tioners moved from traditional word embeddings to contextualized word representations. While

the prior paradigm was to pretrain only the word representations, which were then used to ini-

tialize the word embedding matrix of a new model, it has been shown that there is a lot of

merit in reusing an entire model trained on a variant of language modeling. The contextualized

Figure 2.4: The Transformer encoder. Each network consists of L identical layers. The input
token sequence consists of subword units [47]. LayerNorm denotes the layer normalization
operator [48], while Multi-Head Attention [46] is dot-product attention applied multiple times
in parallel over a segmented hidden representation. MLP denotes a multi-layer perceptron.

word representation paradigm contains two major conceptual deviations from previous work:

(1) instead of obtaining input token‡ representations, the goal is to obtain an entire pretrained

network by leveraging a task based on language modeling and (2) instead of representing the

meaning of a word in isolation, such networks model the meaning of each word in context,

compositionally combining information from other relevant words in the sentence. The outputs

of these pretrained Transformer networks are hidden states of all network layers, the uppermost

ones traditionally being used as inputs of classification networks trained on downstream tasks.

We refer to hidden states as contextualized as they have been exposed to information content of

all other tokens in the input sequence – thus the information in hidden states no longer pertains

to the word meaning in isolation but rather to word meaning in context of the input seqeuence.

‡When discussing Transformer architectures, tokens are in general subwords obtained through byte pair encod-
ing techniques, in contrast to standard word tokens used in RNN networks.
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Intuitively, if hidden states contain contextualized representations of the corresponding input

tokens, this seemingly solves the issue of polysemy – the outputs of the transformer network

will contain the context-determined sense of each token. However, although it is safe to assume

that Transformer models perform sense disambiguation as part of contextualization, the sense

representations are not explicitly stored anywhere and it is left to the practitioners to either

decode them or make them explicit. In this section, we will provide an overview of attempts

to decode sense information from large language models (LLMs) or make this information

explicit.

2.3.1 Approaches to Polysemy

In [49], the authors analysed whether, and how, large language models help sense prediction.

The authors leverage the WordNet [40] sense graph, which they model with a Graph Attention

Network [GAT; 50]. They then train the models to jointly perform language modeling and sense

prediction by predicting both the next token as well as its sense. Since the sense prediction

task is supervised, the authors use SemCor [51], a WordNet-sense annotated corpus to obtain

sense labels for tokens. The authors show that even when using a transformer model (albeit

pretrained only on a small corpus) and an explicit graph network to encode sense relationships,

next-token prediction on the granularity of senses remains a difficult task. When analysing the

model errors, the authors determine that sense prediction fails when the language model fails to

predict the correct next word, and hypothesize that one of the reasons for weaker performance is

the long tail of the word-sense distribution caused by a large number of infrequent word-sense

combinations.

In work that combines transformers and multi-prototype representations, [52] state that

sense embeddings and contextualization techniques need not be mutually exclusive. Extend-

ing the standard masked language modeling [MLM; 7] framework, the authors hypothesize that

each input token has a distinct set of sememes. At reconstruction time, instead of predicting the

masked token, the model outputs S×V predictions, where V is the size of the vocabulary and S

the considered number of sememes per token. The final probability of a token is then computed

as the sum of probabilities for possible senses of that token P(w|c) = ∑s∈Sw P(s|c). To ensure

that this approach produces a low entropy distribution over senses, the authors incorporate a

distinctness loss, which enforces high probability in only one of the predicted sememes. To

alleviate the rich get richer phenomenon, where the model could disregard multiple prototypes

and simply exploit a single representation, bypassing the disambiguation task, the authors in-

corporate a match loss, where a separate disambiguation network is trained to decode sense

probabilities based on the unmasked sequence. The sense probability distributions of the MLM

network and the WSD network are then constrained to be similar, thus enforcing that the lan-

guage model uses the full capacity of the multi-prototype representations.
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2.4 Interpretability in Natural Language Processing

An often mentioned critique of deep neural models is their opaque nature – while they un-

doubtedly perform better than their shallow counterparts, it is not immediately clear which

components of the input text infuence the models’ decision the most. [53] have shown that, in

the SNLI dataset [54], certain phenomena, such as negations and vagueness, are highly indica-

tive of certain classes where they should not be. This fact is a consequence of the annotation

process, where a simple way to create a contradiction was to either negate part of the premise

or make either of the text fields too specific due to vagueness. The resulting overestimation of

neural model performance poses a significant issue for practitioners – if standard benchmarks

are not a trustworthy estimate of model performance, how can practitioners trust those models

to perform well in high-risk scenarios?

The issue of trust has bothered researchers from the inception of the neural revolution. Ac-

cording to [55], the path to establishing human trust in machine learning models is through

faithfulness, which determines whether an explanation for a decision a model made accurately

represents its decision making and plausibility, which evaluates whether human experts would

agree with this explanation for the concrete instance. If a model trained on SNLI was faith-

fully interpretable, practitioners could swiftly find that explanations provided by the models are

implausible and determine the issue within the dataset.

Designing an interpretability method, however, is not as straightforward as it might seem.

One possible goal would be to obtain a saliency map [56], which attributes a scalar score to each

input component. If the score is high, the corresponding input is important, while if the score is

low, the input is not important. Saliency methods come in a number of flavors: gradient-based,

propagation-based, occlusion-based, and ones that use surrogate models.

An alternative to saliency methods is to use scalar scores, such as attention [11] as a proxy

for saliency. When interpreting models by inspecting attention scores, we do not inspect ones

assigned to network inputs but rather the hidden representations in the uppermost layer of the

network. This disharmony between what attention actually pertains to and what we want it

to pertain to has initially been overlooked by practitioners, as those scores passed the eye test

and seemingly faithfully represented the model. Thus, every attention-based model seemed to

be interpretable. This assumption was first put to test by [12], where the authors found that

the attention distribution of trained models can be manipulated without detriment to the model

performance. This worrying finding has sparked a still ongoing discussion [57, 58, 59, 60, 61,

62, 63] on whether attention can, and if so, how can it be a faithful method of interpretability,

and why should it even be used in place of saliency methods [13]. Delving deeper into this

discussion is however out of scope of this thesis, and we will merely provide an overview of the

most commonly used saliency methods. We however refer the interested reader to read [64] for
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a succint overview of various lines of argument. In the standard sequence classification RNN +

attention network (Figure 2.5), when interpreting the model decision through attention weights,

we assume that the attention weights αi assigned to hidden states hi are a faithful measure of

importance of the corresponding input token xi.

Figure 2.5: A standard single-sequence classification model. The encoder can be any contextu-
alization network, either a RNN variant or a Transformer network, although in the scope of this
thesis we consider only RNN variants. In the standard way of interpreting classifier decisions
through attention weights, the attention weight αi on the hidden state hi is interpreted as impor-
tance of the corresponding input xi.

On the other hand, when interpreting models through saliency techniques, specific methods

are designed that assign relevance directly to input representations xi. Saliency is defined as a

function of the network and data Si = g( ,D), where D = {(X (i),y(i))}N
i=1 is a dataset of size

N, where X (i) is the input sequence and y(i) the corresponding class label. The function g either

uses information from the network gradients (Section 2.4.1), defines its own importance prop-

agation rules (often based on gradients Section 2.4.2) or leverages an inherently interpretable

surrogate model that is trained to locally mimic the black-box deep network (Section 2.4.3).

Thus, saliency scores pertain to the inputs directly (Figure 2.6) and their faithfulness is (usually

[65]) not brought into question.

2.4.1 Gradient Based Interpretability Approaches

Gradient-based interpretability approaches directly leverage gradient-based information from

the trained network to compute saliency scores of input tokens. While leveraging gradient
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Figure 2.6: When computing saliency by either leveraging network gradients (Section 2.4.1) or
using specialized importance propagation rules (Section 2.4.2), the information is propagated
through the entire network. The saliency scores si are scalars which are directly related to the
input representations.

information comes naturally, a number of nonlinear transformations in neural networks such as

the logistic sigmoid and the hyperbolic tangent have near-zero derivatives on a large portion of

their domains, causing issues when combined with floating point representations.

Input × grad

One of the more straightforward ways of assigning saliency scores to inputs by using the gra-

dient of the loss function [66]. Components of the input which contribute the most against the

decision of the model will have a high partial gradient. The authors exploit this fact, and for

binary classification problems, determine the saliency of each input as the gradient when the de-

cision of the inverse prediction (ỹ = 1− f (x)). Thus, the goal of the procedure is to approximate

the loss of the network L as a linear function:

L(ỹ, f (x))≈ wT x+b (2.3)

where f (x) is the network evaluated at input x, and the weight vector w is obtained through a

single pass of backpropagation through the network as:

w =
∂L
∂x

∣∣∣
(ỹ, f (x))

(2.4)
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as the vector w will have a single value for each word of the input vocabulary, we can use its

absolute value as the saliency measure of that word si = |wi|. By inverting the prediction, the

features with a high gradient norm for the inverted prediction will be the ones that contribute

the most to the inverse prediction.

Integrated Gradients

It quickly became obvious that merely taking the gradient at a single point is not enough to

determine input saliency as we have nothing to compare the relative importance to. [67] pro-

posed incorporating a baseline x′ to alleviate this issue, an input (or sequence of inputs) with

an approximately neutral prediction value of the analyzed network. The authors determine the

saliency of each input by taking an integral of the straight-line path from the baseline to the

analysed input.

IntegratedGradsi(x) := (xi − x′i)×
∫ 1

α=0

∂F(x′+α × (x− x′))
∂xi

dα (2.5)

where F(x) is the network output for an input x. The integral is in practice estimated with a finite

number of points along the straight-line path, where the number of points is a hyperparameter

of the algorithm.

The integral measures the change in prediction confidence, which if high indicates that an

input is important for the models’ prediction. While the authors recommend the baseline to be

a vector of zero-embeddings for the case of natural language, further work has shown that there

is merit in tuning the value of the baseline to ensure neutral prediction.

2.4.2 Propagation Based Interpretability Approaches

As highlighted in [67], the downside of estimating saliency as a function of the partial derivative

in a single point is that local behavior of the model is not taken into consideration. Another

issue with gradient-based approaches is that they are sign-sensitive [68], and as such might

wrongly discard relevance of some tokens. Furthermore, when nonlinearities such as the logistic

sigmoid and hyperbolic tangent are saturated, gradient values are approximately 0. Propagation-

based approaches attempt to rewrite the rules of backpropagation, mainly to solve problems

when backpropagating importance through nonlinear functions, where the gradients behave

irregularly.

Layerwise Relevance Propagation

In [68], the authors started from the assumption that the total relevance in a network is constant

between the network layers. Then, the task becomes to determine how relevance is propagated
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between layers while adhering to the conservation law:

f (x) = · · ·= ∑
d∈l+1

R(l+1)
d = ∑

d∈l
R(l)

d = · · ·= ∑
d∈l

R(1)
d (2.6)

where Rl
d is the relevance score for each dimension d of a vector at layer l. The authors intro-

duce a set of rules (dependent on which function is being propagated through) based on Taylor

decomposition, thus approximating local behavior around a point of interest. Once the rele-

vance scores are propagated to the input layers, one can determine the saliency of each input

through its relevance. While empirically efficient, this approach has two major downsides: (1)

practitioners have to define propagation rules for newly introduced layers and (2) in NLP, Lay-

erwise Relevance Propagation (LRP) applies only to bag-of-words inputs, severely limiting the

applicability of the model.

DeepLift

In [69], the authors determine that for ReLU networks, LRP [68] is equivalent to Input × grad

[66] up to a scaling factor. Similarly to integrated gradients, the authors incorporate a baseline

(a reference state), which they highlight as crucial for determining any insightful results for

interpretability. For example, if t is the activation of some target neuron and t0 the reference

(neutral) activation of the same neuron, then ∆t = t − t0 is the difference-from-reference. The

difference-from-reference is then used to assign attribution scores to each input of the analysed

neuron:
n

∑
i=1

C∆xi∆t = ∆t (2.7)

where the total difference-from-reference ∆t is distributed appropriately with respect to each

input xi. By using reference states and incorporating difference-from-reference in the back-

propagation equations, the authors resolve the problem of backpropagating through saturated

nonlinearities.

2.4.3 Surrogate Model Based Interpretability Approaches

Previous approaches have leveraged the inner workings of the trained network to determine

saliency scores. A downside of these models is that they require access to the inner workings of

the model, which cannot always be ensured. The goal of surrogate model based approaches to

interpretability is to train a simple interpretable model which locally approximates the behavior

of a complex trained model for each instance.
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Local Interpretable Model-agnostic Explanations

In [70], the authors introduced Local Interpretable Model-agnostic Explanations (LIME), the

goal of which is to identify an interpretable model over the interpretable input representation

which is locally faithful to the original classifier. When defining the interpretable representation

for text, the authors resort to the bag-of-words representation, encoding each input with a binary

mask for each token in a considered vocabulary.

The training objective of LIME tries to balance between providing a good approximation

g ∈ G of the original model f through the fidelity loss L ( f ,g,πx) and choosing a sufficiently

simple model through enforcing a complexity penalty Ω(g). Thus, the loss of the network E

decomposes into the following two parts:

E (x) = argmin
g∈G

L ( f ,g,πx) + Ω(g) (2.8)

Fidelity loss Complexity penalty
One of the major downsides of LIME, however, is its significant computational overhead. A

new instance of the simple model has to be trained for each instance of the dataset – which

often proves to be prohibitively expensive as the dataset size grows. Furthermore, as the simple

models use bag-of-words representations for their inputs, they once again resort to disregarding

information about word order in the instances – which raises the question of whether the local

approximations can even be trusted.

Taking everything into perspective, in the scope of this thesis we are mainly interested in

answering the following questions: (1) can we improve upon the ability of recurrent neural

network models to perform semantic composition?; and (2) can we explicitly model shared

sense information in such a way that it improves the performance of models which leverage such

representations? We will largely leverage interpretability methods to answer the aforementioned

questions in the following chapters.
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Chapter 3

Improving Faithfulness of Attention
Explanations

Ever since their introduction, recurrent neural networks [RNN; 71] were prone to issues during

parameter optimization – most notably learning long-term dependencies, where networks are

shown to forget information past a certain window of tokens [72] and vanishing and explod-

ing gradients, which stem from the repeated application of the recurrent state update and cause

significant optimization issues [73]. Subsequent improvements upon the Elman RNN cell [74]

introduced gating mechanisms to limit access to the recurrent memory and an additive expres-

sion aimed to reduce the cause of the exploding gradient issue during backpropagation. Some

of these changes were shown not to be necessary [75], prompting another recurrent cell variant

with a reduced number of parameters.

Nevertheless, some issues still persisted, most notably the vanishing gradient problem.

These issues prevented very deep recurrent models, capping their depth between 4 and 8 lay-

ers in most practical scenarios, with each increment requiring careful tuning and a much larger

dataset. These lingering issues paved the way for a switch to a novel neural architecture for

processing sequences in form of the Transformer network [46]. The Transformer network of-

fered many benefits, mainly being a good fit for training large language models (LLMs) such

as BERT [7] and GPT-3 [76]. Despite the undoubtedly greater popularity and performance

benefits of Transformer-based models, they have their own weaknesses in the form of requiring

positional embeddings and using a subword vocabulary. In our line of work we will first attempt

to unveil what is causing the known issues with recurrent networks. Concretely, we will look

at one of the most basic problem in text classification – binary single sequence classification,

where a passage of text needs to be assigned one of two classes. The binary classification task

is one of the canonical tasks, as virtually any multi-class classification problem can be framed

as a binary classification task for each class, indicating whether the input instance should be

labeled with that class or not. The most frequent example of binary document classification is
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sentiment analysis, where the task is to determine whether a passage of text carries positive or

negative polarity.

3.1 Methodology

One unexpected issue of recurrent networks became apparent from the experiments of [12,

59, 77]. The experiments have shown that LSTM networks with attention, such as the one

in Figure 2.5, are surprisingly robust with respect to perturbations in the attention distribution

– their prediction seldom changes, even if the attention weights are permuted, replaced with

an uniform distribution, or otherwise adversarially modified. This behavior has a multitude of

possible causes, however a simple explanation of why values of the attention distribution are

not important would be that the hidden states themselves are very similar to one another. In-

deed, it is commonly assumed that a hidden state ht contains the contextualized counterpart

of the input embedding xt . However, this need not be the case – there is no network com-

ponent that ensures retention of information from the input in the hidden state. In [62, 78],

we pinpoint the causes of unwanted behavior in recurrent networks to the phenomena (Fig-

ure 3.1) of lateral information leakage (LIL; Figure 3.1a) and vertical information blockage

(VIB; Figure 3.1b). We further demonstrate that by incorporating token-level regularization in

RNN-based single sequence classification models the previously observed issues are alleviated,

and that both faithfulness and plausibility of interpreting models through inspecting attention

weights are improved. We next elaborate these findings in more detail.

3.1.1 Regularizing models

When regularizing neural models, one incorporates an additional loss term into the equation,

often multiplied by a regularization weight. The goal of the regularization is to bias model

optimization towards a certain group of solutions that either exhibit some desired behavior

or are less complex. Weighing the regularization component of the loss allows us to control

the relative importance of the regularization constraint being fulfilled when compared to the

performance of the model on the training task.

The lack of a word-level component in the loss function of the neural network was identified

as the main culprit for a weakened relationship between the hidden state ht and input word rep-

resentation xt [62]. This weakened relationship curtails the faithfulness of interpreting attention

weights αt as an explanation of a model’s decision making process. Luckily, this relationship

can be strengthened by applying targeted regularization techniques which, to an extent, bind the

hidden representations to the input embeddings. We will now elaborate our regularization setup

when applied to single sequence classification models with the goal of improving interpretabil-
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(a) (b)

Figure 3.1: Visual intuition of lateral information leakage and vertical information blockage. In
the case of lateral information leakage (Figure 3.1a), the contextual information from neighbor-
ing hidden states “overpowers” the information coming from the input representation. In the
case of vertical information blockage (Figure 3.1b), the input information is completely erased
by means of gating mechanisms.

ity through inspecting attention weigths and reducing LIL and VIB.

Our multilayer self-attention augmented encoder network with inputs xt is defined as fol-

lows:

h0
t = emb(xt)

h(l)
t = enc(h(l−1)

t )

αt = attn(h(L)
t )

s = ∑
t

αth
(L)
t

(3.1)

where attn is either the dot-product [46] or additive [11] attention mechanism and enc is an

encoder network, for example a RNN variant. The total number of layers of the encoder is L

and h(l) is the l-th layer hidden representation. We use the weights of the attention mechanism

applied to the last layer to interpret a model’s decisions. The sequence representation s is

obtained as an attention-weighted (αt) sum of the last-layer (L) hidden state representations for

each element ht in the sequence. This sequence representation s is then fed into a linear decoder

to perform classification.

Baseline regularizations

Before introducing the regularized approaches, we will first consider simple baseline variants

which explicitly encode input information in the encoded hidden representations. The two base-

line methods methods which, by virtue of explicitly including input representations in the last
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layer hidden states, serve as a realistic upper bounds for information retention in hidden states

are: CONCAT and RESIDUAL. The CONCAT method simply concatenates the word embeddings

to hidden representations:

hL
t = [enc(et);et ] (3.2)

where [·; ·] is the concatenation operator. The RESIDUAL method incorporates a residual con-

nection [79, 80] between the embeddings and hidden states. A residual connection adds the

input of a neural network layer to the output, so that the output becomes x+ f (x), where the

network layer output f (x) acts as the figurative residual. Conceptually, however, the motivation

for residual connections is to avoid backpropagating exclusively through nonlinear functions,

which may cause the gradients to vanish or explode.

hL
t = et + enc(et) (3.3)

We use these two methods as regularized baselines, alongside the unregularized BASE model.

L-norm regularization

Constraining the L2-norm of the difference between a word embedding and the corresponding

hidden representation (henceforth TYING) promote information retention. In addition to the L2-

norm, we also consider using the L1-norm and a mixture of the L1-norm and L2-norm, inspired

by the ridge [81], LASSO [82], and ElasticNet [83] regularizers in regression, respectively,

commonly used in regression analysis.

The training loss of a regularized classification model factorizes into two parts: the loss

on the classification task Ltask and the regularization term Lreg. In our case, the form of Lreg

depends on the type of norm used. Applying L1 or L2 regularization to single-layer networks

in this case is straightforward:

LL=1
reg =

δ

T

T

∑
i

∥∥hL
t −h0

t
∥∥p

p (3.4)

where we average the ∥L∥p
p (for p ∈ {1,2}) of the difference between the hidden states layer hL

t

and the input embedding h0
t across all the words. When computing the total loss L = Ltask +

δLreg, we use the hyperparameter δ to control the regularization scale when compared to the

downstream task loss. A visual example of a model regularized in such a way is shown in

Figure 3.2.
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Figure 3.2: A visual example of an RNN model regularized with weight tying. The hidden
states (hi) and corresponding input embeddings (xi) are tied according to a chosen L-norm.
By tying the hidden representations and input embeddings in such a way, their similarity will
increase. In turn, such regularization will improve faithfulness and plausibility of interpreting
models through inspecting attention weights as they pertain to hidden states.

Masked language modelling as a regularizer

The last considered regularization method employs the masked language modelling (MLM)

objective [7] as an auxiliary loss. In MLM, a certain proportion of words selected at random

from the input sequence are replaced with a special mask token (<MASK>). The task of the

model then boils down to accurately reconstructing the masked words based on the contextual

information from the remaining unmasked words. It has been experimentally shown [84] that

models using the MLM objective retain the correspondence between input word representations

and hidden representations to a greater degree than models that optimize the standard language

modeling objective of predicting the n-th word given the previous n−1 words.

To incorporate the MLM objective, we extend the multilayer self-attention augmented en-

coder network defined by (3.1) by masking the input word sequence, using the same encoder

network to contextualize it, and predicting the masked words with another decoder layer:

x̃t = mask(xt)

h̃0
t = emb(x̃t) (3.5)

h̃l
t = enc(h̃0

t )

The hidden states h̃t for the corresponding masked tokens are fed into a linear decoder, which

predicts the masked word. In addition to the encoder, the embedding matrix is also shared
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between the MLM and classification tasks.

The decoder used for MLM does not introduce additional parameters, as we tie the weights

of the decoder and the input embedding matrix, as proposed by [85]; and keep them frozen

during training. In weight tying, weights of the decoder are set to the transpose of the input

embedding matrix. This change effectively turns the classification task into a nearest neighbor

search over the input embeddings with dot product as the metric. Both of these choices are

motivated by the fact that the model might otherwise converge to a solution that does not require

the retention of any information from the inputs. We will henceforth refer to models augmented

with this regularization method as MLM.

The setup with the MLM objective introduces two new hyperparameters: the probability

of masking a word in a sequence, denoted pmlm, and the weight of the MLM loss, denoted

η . Similarly to the aforementioned hyperparameter δ , the hyperparameter η plays the role of

balancing the importance of optimizing the task loss and the regularization term. We keep pmlm

fixed at 0.15 throughout the experiments, as in [7], and adjust η with respect to the average

sequence length across the evaluation datasets to ensure that the MLM loss does not dominate

the optimization process. Note that because pmlm is fixed, the longer the sequence, the more

masked predictions the model is expected to make.

3.2 Datasets

For our experiments, we consider a diverse set of binary classification datasets used in previous

work that analyzes the faithfulness of attention [12, 58, 59, 77]. The first dataset is the Stanford

Sentiment Treebank (SST) [86], containing sentences tagged with sentiment labels ranging from

1 to 5, where 1 indicates the “very negative” class label and 5 indicates “very positive”. Fol-

lowing previous work, we omit the “neutral” class (3) and conflate the fine-grained positive and

negative classes into a single positive and negative class, respectively. We incorporate another

sentiment analysis dataset in the IMDB Large Movie Reviews Corpus (IMDB) [87], consisting

of a large number of detailed movie reviews labeled positive or negative. Delving into a dif-

ferent domain, we incorporate the AG News Corpus (AGNEWS), a news categorization dataset.

We follow the setup from [12] and limit ourselves to the two most frequent classes in “world”

and “business”, thus constructing a binary classification task. Another dataset belonging to the

news domain is the 20 Newsgroups (20NG) dataset, which consists of newsgroup correspon-

dences labelled with 20 categories. We again limit ourselves to two frequent, but contrasting

classes in “baseball” and “hockey”. Finally, we incorporate MIMIC ICD9 – Anemia (Anemia)

[88], a dataset from the medical domain containing patient discharge summaries from a database

of electronic health records. In this case, we analyse a classification task on the Anemia data

subset, classifying whether a summary corresponds to a patient with acute or chronic anemia.
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Dataset Vocab. size Avg. length Train size Valid. size Test size

SST 17305 17 6898 870 1818

IMDB 134463 237 17212 4304 4363

20NG 15588 180 1233 307 382

AGNEWS 47386 31 50999 8999 3799

ANEMIA 62718 1940 4653 821 1368

Table 3.1: Statistics of the five datasets used in our experiments. Vocabulary size is denoted
in the number of unique words, not all of which are considered during training. The average
length reflects the average number of words per instance. The last three columns contain the
number of instances in the train, validation, and test splits of the dataset, respectively.

Descriptive statistics of the used datasets are summarized in Table 3.1. We limit the vo-

cabulary size to 20000 for datasets where the number of unique tokens exceeds this amount.

Tokens which are not part of the vocabulary are replaced with the unknown token (<UNK>),

while purely numerical token are replaced with a special token representing a digit (<DIGIT>).

For tokenization of datasets that are not already preprocessed, we used the SpaCy* English to-

kenizer. Sample preprocessed instances from each of the considered datasets are provided in

Table 3.2,

Dataset Label Text

SST Positive
“just the labour involved in creating the layered richness of the imagery
in this chiaroscuro of madness and light is astonishing.”

IMDB Positive
“i enjoyed this film very much. many korean people will feel familiar
with this film because many of them have tutors. . . ”

AGNEWS Business
“business, new york ( reuters ) - soaring crude prices plus worries about
the economy and the outlook for earnings are expected to hang over. . . ”

20NG Hockey
“this would be dumb move of the nineties lindros is big and strong but
why give him a ball and chain on one leg and an anchor on the other. . . ”

ANEMIA Chronic
“admission date: <DIGIT> discharge date: <DIGIT> date of birth:
<DIGIT> sex: f service: medicine allergies: penicillins/percocet/. . . ”

Table 3.2: Sample instances from each considered dataset. The instance data contains prepro-
cessed text, except for trimming the punctuation whitespace on the left side.

3.3 Evaluation

Through regularizing the RNN + attention models, our goal is to reduce the effects of LIL

and VIB. In order to observe a reduction in either of these, we need to measure the extent in

which LIL and VIB are present in our models. To measure LIL, we use the change in F1 score

*https://spacy.io
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of a trained model when the attention distribution is permuted or substituted with an uniform

distribution [12]. We aim for the drop in F1 score (Eq. 3.6) to be as high as possible, indicating

that the learned model is fragile with respect to uniform (un) and permutation (pm) perturbations

of the trained attention distribution.

∆F1 = F1train −F1un/pm (3.6)

Since the change in F1 score only measures the cases where the decision of the model changes,

we proposed [78] measuring the change in Brier score [89]. The Brier score is defined as

BS =
1
N

N

∑
t=1

(ŷt − yt)
2 (3.7)

where ŷt is the predicted probability of the model for the “positive” class and yt is the actual

outcome for instance t in a dataset of size N. What we then aim for is to maximize the increase

in Brier score, indicating that the predicted probabilities of the correct class for the perturbed

model have decreased as a consequence of the perturbation.

∆BS = BStrain −BSun/pm (3.8)

When measuring VIB, the goal is to measure how much (if any) information in the hidden

states is retained from the corresponding input representations. The natural way to do this would

be to measure the mutual information (MI) between the hidden states and input representations.

However, measuring mutual information is notoriously intractable to compute in continuous

form, except for rare cases where the data distributions are known [90]. Instead of exactly

measuring MI, we instead discretized our continuous vector representations and computed MI in

the tractable discrete case, inspired by [84, 91]. The discretization is performed in two steps: (1)

we first cluster the input embeddings and the hidden representations (each of them separately)

for a subset of input tokens into a large number of clusters. We then used the cluster labels in

place of the continuous vectors. More precisely, we sampled 1000 words from the vocabulary

and collected (up to) 1M representations of the corresponding word instances from sentences,

at both the input and hidden level. For smaller datasets, where there are no 1000 words that

together occur 1M times, we collected as many representations as there are instances in the

dataset. We then clustered the obtained representations into k = 1000 clusters with minibatch

k-means [92]. We obtained the vocabulary sample in two ways: as the top 1k most frequent

words (MF), as in [84], and as a random sample (RS) from the scaled unigram distribution. Our

choices of vocabulary sampling are motivated by the fact that the most frequent words will be

seen by the model the most, and we can expect them to have well-tuned representations. Since

not all words relevant for model predictions will be the most frequent words, we also evaluated

29



Improving Faithfulness of Attention Explanations

MI on a more realistic, random sample. The sample is drawn from the unigram distribution

raised to the power of 3
4 . This transformation was found [4] to be effective in correcting the bias

toward high-frequency words arising from the Zipfian distribution.

(a)

(b)

Figure 3.3: A visual intuition of estimating mutual information with discretization through k-
means clustering. If the hidden hn,v and input xn,v representations for the n-th instance and word
v are assigned to the same cluster (a), we consider them sufficiently similar, and such pairs
increase the estimated MI. If they are assigned different cluster labels (b), we consider them
insufficiently similar and they decrease the estimated MI.

3.4 Experimental Details

As throughout our experiments we have considered a wide array of different model hyper-

paremeters, we will now indicate the ranges for the ones searched over as well as the ones

we fixed based on manual tuning. When selecting the RNN hidden state size, we differ from

[12, 58] and use h = 150 instead of h = 128 due to the tying regularization requiring the input

embeddings and hidden states being of same dimensionality. Remaining hyperparameter values

and intervals can be seen in Table 3.3.

3.5 Results

In this section, we will show how regularizing models reduces lateral information leakage and

vertical information blockage. Overall, we find that incorporating regularization techniques

helps faithfulness as they on average reduce the F1 score of perturbed models by 0.14, while

the Brier score increases by 0.07 on average across all datasets and model types.
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General hyperparameters

Embedding dim 300

RNN hidden dim 150

Learning rate 1e−3

Grad. clipping 5

Num Epochs 5

Freeze embeddings True

Batch size 32

Weight decay 1e−5

RNN layers {1,2,3}

RNN cell {RNN,GRU,LSTM}

Regularization hyperparameters

Masking prob. 0.15

Masking weight η {0.1,0.3,1,3,5}

Tying norm {L1,L2,Elastic}

Tying weight δ {0,0.1,0.3,1,3,10,20,30}

Table 3.3: Considered hyperparameters of models throughout experiments. The large search
space for the tying and masking weight is due to the influence of average instance length on the
regularization strength, where we observe that for datasets with longer instances on average, a
smaller regularization weight is required.

3.5.1 Measuring Lateral Information Leakage

In Figures 3.4 to 3.8 we present the results of measuring lateral information leakage in the an-

alyzed models. From the perspective of reducing lateral information leakage, we want the drop

in the model’s performance (which corresponds to the shaded area below the line in case of F1

score or above the line in case of the Brier score) to be as large as possible while not diminish-

ing the classification performance of the model severely. We observe that lateral information

leakage differs across models and regularization types. Namely, if the area below the graph is

small, as is the case for LSTM and GRU BASE and CONCAT models (Figures 3.4 to 3.8), this

indicates that perturbations of the attention weights do not affect the classifier decision, and

consequently, that the explanation obtained by inspecting attention weights is not faithful. This

finding is in line with the work of [73], highlighting that recurrent networks have worse conver-

gence properties than their descendants. The weaker convergence of vanilla RNN cells causes

them to overfit at a slower rate; therefore, we observe reduced lateral information leakage when
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(a) (b)

Figure 3.4: Performance across different model depths (a) and model types (b) on the SST
dataset. Each line represents the F1 (top) or Brier (bottom) score of the trained recurrent model,
while the shaded area represents the drop in the corresponding score score when the trained
attention distribution is substituted with the uniform distribution.

compared to LSTM and GRU cells. We also notice that MLM regularization has a somewhat

weaker effect on promoting faithfulness than other regularization techniques.

The SST and AGNEWS datasets (Figures 3.4 and 3.6) exhibit the smallest F1 and Brier

score changes, regardless of the value of the regularization term. However, we believe this is not

a symptom of the regularization methods performing worse on those datasets. It is important

to note that both of those datasets have the shortest average length of instances – thus, any

perturbation of attention weights will have a less adverse effect on the contribution of key tokens

to the output representation. In the case of replacing the attention distribution with the uniform

distribution, the intuition is as follows: for a sequence of length T , the uniform attention weight

on each token will be 1
T . Thus, as the (average) sequence length increases, each individual

token will be less important in the output representation. Therefore, unless the number of tokens

indicative of the classification grows proportionally with the length of the sequence, the output

representation will have less information required for classification. For datasets with a short

average length, the uniform weights on each individual token will be higher, thus preserving

important information required for classification – making models trained on those datasets

exhibit reduced fragility to perturbation of attention weights.

3.5.2 Measuring Vertical Information Blockage

We next investigate to what extent the information flows vertically (and to what extent is it

blocked) in the considered models. We report the mutual information scores on the considered

datasets in Figures 3.9 to 3.13. For the sake of space, in graphs where the MI scores are reported

across different model depths, we average the scores across different models. Similarly, in

graphs where the MI scores are reported across different models, we average the scores across
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(a) (b)

Figure 3.5: Performance across different model depths (a) and types (b) on the IMDB dataset.

(a) (b)

Figure 3.6: Performance across different model depths (a) and types (b) on the 20NG dataset.

(a) (b)

Figure 3.7: Performance across different model depths (a) and types (b) on the AGNEWS
dataset.
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(a) (b)

Figure 3.8: Performance across different model depths (a) and types (b) on the ANEMIA
dataset.

(a) (b)

Figure 3.9: Mutual information across different model depths (a) and types (b) on the SST
dataset.

different model depths for those models.

The height of each bar represents the mutual information, and the lines represent the vari-

ance. We can see that TYING regularization improves mutual information consistently and with

very low variance between runs. MLM, however, does not offer consistent improvements and

also exhibits high variance.

3.5.3 Visualizing the Effect of Regularization

Since the actual tangible effect of the regularization techniques is difficult to grasp from the

plots themselves, we will now present visual intuiton to its effect on the models through a

simple experiment. The standard intuition behind the attention mechanism is that the more

attention mass is assigned to a hidden state, the more important the corresponding token is.

Thus, it follows that hidden states corresponding to important tokens should benefit more to the

classification decision. We will now consider a thought experiment: what if a single token was
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(a) (b)

Figure 3.10: Mutual information across different model depths (a) and types (b) on the IMDB
dataset.

(a) (b)

Figure 3.11: Mutual information across different model depths (a) and types (b) on the 20NG
dataset.

(a) (b)

Figure 3.12: Mutual information across different model depths (a) and types (b) on the AG-
NEWS dataset.
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(a) (b)

Figure 3.13: Mutual information across different model depths (a and types (b) on the ANEMIA
dataset.

artificially assigned all of the attention mass and then passed through the classifier network? The

assumption, following the aforementioned intuition behind the attention mechanism, would be

that positive, negative or neutral polarity tokens would yield predictions reflecting their polarity.

However, in unregularized models, this is not the case. In Figure 3.14 we plot the prediction

probability of the positive class for binary sentiment classification on the SST dataset. For each

word, we artificially assign all of the attention mass to that word and then plot the prediction

probability for that artificially generated representation. We observe that, in the unregularized

model, whichever token we assign all of the attention mass to, we still obtain a high probability

classification. In contrast, when we regularize our models, the prediction probability for each

token represents its polarity more accurately, indicating that the effects of lateral information

leakage and vertical information blockage are reduced.

To expand on Figure 3.14, we now plot per-token prediction probabilities for multiple mod-

els. We sometimes omit the model classification probabilities not to clutter the plots too much.

We select diverse examples (Figures 3.15 to 3.19) from the first three batches of the SST vali-

dation split.

3.5.4 Evaluating the Plausibility of Attention Distributions

When discussing interpretability of neural models [55], we care for two goals: (1) faithfulness,

where the explanation has to be true to the model and (2) plausibility, where the explanation has

to be plausible to human experts. We have thus far demonstrated that regularization techniques

improve faithfulness, however we are still interested in their plausibility. To analyze whether

explaining models through inspecting their attention weights can be a plausible method of in-

terpretability, we analyze how the attention mass is distributed to words in models trained on

sentiment analysis tasks (SST and IMDb). We leverage the opinion lexicon [93], a curated list
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Figure 3.14: Per-token prediction probability for an example from the SST dataset for the base
model (red) and a regularized (tying) model (green). The dotted lines indicate the classification
probability of the model.

Figure 3.15: A negative example: perhaps the analysed single-layer LSTM is unable to under-
stand even the simple nuances of language. Here the instance is classified as negative across all
models only due to presence of the word “difficult”. Note that these models obtain a near 0.9
F1-score on this dataset.
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Figure 3.16: A clear-cut instance

Figure 3.17: A long example which further demonstrates lateral information leakage
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Figure 3.18: We observe that for instances where the model is not clear about the classification,
the per-word probabilities are pretty similar between regularizations. We believe that lateral
information leakage happens only when the model is confident in its prediction. Base model
prediction confidence is indicated in this example (it overlaps with the 0.5 line).

Figure 3.19: A rare example where the regularised models are more confident in the correct
prediction than the base model
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of 6800 words bearing positive or negative sentiment. Our aim is to investigate whether regular-

ization methods cause the trained attention distribution to attribute more attention mass towards

positive or negative words when compared to others.

Dataset SST IMDB

Pos. α Neg. α Neut. α Pos. α Neg. α Neut. α

Base 3.970 3.980 23.944 4.391 4.032 23.517

Concat 4.699 6.109 21.086 6.570 5.576 19.698

L1 Tying 6.036 6.231 19.627 6.688 7.502 17.675

L2 Tying 5.794 6.217 19.883 7.094 7.629 17.096

Elastic Tying 5.825 6.391 19.679 6.733 7.595 17.533

MLM 5.920 4.383 21.591 7.281 7.386 17.237

Table 3.4: Average attention mass (α) attributed to positive (Pos.), negative (Neg.), and neutral
(Neut.) words on the SST and IMDB datasets. Highest scores for Pos. and Neg. words are
boldfaced, while the second highest are underlined. Scores reported are averages over 5 runs
with different random seeds, across model types (RNN, GRU, LSTM) and depths (1-, 2-, and
3-layer models).

In Table 3.4 we show the average attention mass attributed to words annotated as either

positive or negative, or not present in either inventory for each model. The values reported

are averages over 5 runs with different random seeds. We observe that inducing regularization

significantly increases the amount of attention mass assigned to words which are part of the

opinion lexicon. We (erronously) assume that words not annotated as positive or negative are

neutral, however as the opinion lexicon is not exhaustive, this is unlikely the case. However,

we can assume that the majority of words not part of the opinion lexicon are indeed neutral,

and thus the evaluation setup is still correct on average. The aforementioned inexhaustiveness

is also the cause of a significant amount of attention mass being assigned to presumably neutral

words, which we believe contain words specific to the movie domain and not part of general

purpose sentiment lexicons.

Taking all of the presented results into consideration, we can recognize that recurrent net-

works have thus far possessed significant problems, in form of lateral information leakage and

vertical information blockate, which influenced the correspondence between input and hidden

representations. By alleviating these problems we have directly influenced semantic composi-

tion in such networks – where they previously composed a meaning representation of the entire

sequence, as evident from the fact that the prediction did not change dependent on perturbations

to the attention distribution, it now more accurately represents the meaning of a word in context.
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Chapter 4

Learning Shared Word Representations

As early as [33], it was clear that a need exists for disambiguating between different senses

of polysemous words. Approaches that extended the established paradigm of single-prototype

word embeddings [4, 28] were plentiful [10, 30, 34, 38, 39, 42], but they never yielded widespread

usage. One of the pitfalls of using multiprototype word representations is definitely the need for

the discrete step of determining which of the multiple word senses is used in a certain context.

Recently, pretrained models that produce contextualized word representations [6, 7, 76] have

brought into question the requirement for learning sense-specific representations of words, as

contextualized representations can represent a virtually unlimited number of senses.

The approach of [10] offers a possible benefit that other multiprototype did not posses. Pre-

viously, in the multiprototype word representation paradigm, each word was assigned a number

of sense representations. These representations were learned independently of each other, which

meant that even in the case that two words shared a sense, they would not learn the sense repre-

sentation jointly. The sparse coding approach [10] seemingly solved this issue. Starting with the

hypothesis that every learned word representation encapsulates sense representations for each

sense of that word – and that these senses can be teased apart – the authors demonstrated that

the sense representations can be retrieved from the learned word representation by virtue of a

sparse coding algorithm [94]. In their model, the sense representations were shared between

multiple surface forms of words. If such an idea, where recognizing a word sense would affect

the representation of each word that shares that sense, could be implemented into end-to-end

learning of word representations, the benefits of observing multiple contexts could outweigh

the drawback of disambiguating the word sense. Apart from sharing contextual information be-

tween words which share a sense, the main benefit of eplicitly modeling sense representations,

as opposed to implicitly as is the case in contextualized representations of large language mod-

els, is that since the sense inventory is independent of language, the sense embedding matrix

can potentially be learned in a high resource language and transferred to a low resource one.

However, this approach had one downside – it could not be trained as part of a neural network

41



Learning Shared Word Representations

due to the nature of a sparse coding algorithm.

Following recent advances of incorporating sparsity in neural networks by virtue of meth-

ods such as REINFORCE [95], Gumbel-Softmax [8] (also known as the Concrete distribution

[96]), Hard-Kumaraswamy [9], or differentiable L0 regularization [97], including shared word

representations into a neural model seemed like a possibility.

4.1 Methodology

Let us remind ourselves of the shared word representation paradigm. We have an embedding

matrix E ∈ RV×d , where each token from a considered vocabulary of size V is mapped to a

dense embedding. These embeddings are not contextualized, and at that point we do not know

which out of the possible senses of that word should be used. We aim to learn a sense inventory

matrix A ∈ RA×da which contains all the atomic senses of words used in language and where

the number of sense representations A ≪ V . Our end goals here are to (1) learn a useful and

exhaustive sense inventory and (2) train a model which, based on the context of a token, assigns

a sense to that token.

A natural way of framing the task of learning would be to leverage a self-supervised learn-

ing approach commonly seen in practice, such as language modeling [6] or masked language

modeling [7]. However, if our entire network is fully connected, we run into a problem when

mapping contextualized word representations hi to components from the sense inventory ma-

trix ai. If we do not limit the number of senses each word can select, our model could simply

diverge to a trivial solution where, if d ≤A, the sense representations could simply be the canon-

ical basis of Rd , thus enabling the model to reconstruct any possible input representation hi by

selecting d components of the basis. Our solution to this issue is to leverage sparsity in neural

models to limit the number sense representations which can be selected – zeroing out all but k

connections.

4.1.1 Inducing Sparsity in Neural Networks

We will now zero in on the concrete problem we are trying to solve. After our input repre-

sentations xi have been contextualized by means of an encoder network (which can be either a

Transformer or an RNN variant), we obtain a sequence of hidden representations hi. Each of

these hidden representations, by virtue of observing the entire sequence, should contain suffi-

cient information to determine which sense of a word is used in the current context. Thus, when

performing the selection operator, we should not require more than a single sense representa-

tion ak. However, if we desire to provide some leeway for the network (which often proves to

be necessary), we can relax this strict requirement and allow the network to select a subset of
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Figure 4.1: A high-level sketch of the autoencoder approach to learning shared sense repre-
sentations. In contrast to denoising approaches, where a lossy transformation is applied to the
inputs which then need to be reconstructed by the network, in our approach we leverage the fact
that when the input sequence is sparsely compressed, some loss of information has to occur.
Due to this bottleneck, both the input and output contain the input sequence and the task of the
network is to learn to generalize between training instances to accurately reconstruct encoded
sequences.

senses: hi →{ak}K , where K is a hyperparameter denoting the number of nonzero connections

from a hidden representation to the sense inventory.

So, our goal is to learn a sparse selection operator where each hidden representation hi ∈Rh

selects a subset of senses from the sense inventory A ∈ RA×da . Here we abuse notation and

use A to name both the sense inventory and the number of sense representations it contains.

This selection operator has to be sparse as usually A > d and a trivial solution would have the

first d rows of the sense inventory contain the d × d unit matrix, with the remainder rendered

irrelevant. Thus, we must restrict the number of senses selected from the inventory to K ≪ d.

First we need to define the map from hi to A. The natural approach is to leverage the atten-

tion mechanism [11], where the query is a function of the hidden representation, and the key

and value representations are computed based on individual sense representations. The atten-

tion mechanism is a great fit as (1) it naturally produces a scalar value for each query–key pair

and (2) the natural usage of a softmax nonlinearity invites a drop-in replacement in form of a

discrete variant such as the Gumbel-Softmax [8, 96], or an elementwise discrete variant in the

HardKuma distribution [9]. Alternatively, we also experiment with the Vector-Quantized Vari-

ational AutoEncoder (VQ-VAE) model [98], a variational approach to incorporating discrete

latent variables. We will now provide a succinct overview of the main approaches to inducing

sparsity in neural networks we focused on in scope of our work.

Gumbel-Softmax

The Gumbel-Softmax, or concrete distribution, is a continuous distribution over the simplex

that can enable us to approximate samples from a categorical distribution. If we consider a

(k−1)-dimensional simplex ∆k−1, categorical samples from a continuous distribution with class
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probabilities π{1,...,k} would produce one-hot vectors that correspond to vertices of the simplex.

The Gumbel-Max trick [99, 100] uses inverse transform sampling in order to allow us to

draw samples from a categorical distribution with probabilities π:

z = one_hot
(

argmax
i
[gi + logπi]

)
(4.1)

where gi are samples drawn from the Gumbel(0,1) distribution:

g =−log(−log(u)), u ∼ Uniform(0,1) (4.2)

In the attention mechanism, the energy between each query and the key is typically transformed

to a probability distribution by applying the softmax function.

softmax =
exp(hi)

∑
k
j=1 exp(h j)

(4.3)

Evidently, the outputs of the softmax function will be sparse only if the norm of a single hi

is dominant when compared to other h j≠i, and even then, the outputs will not be discrete but

infinitesimally small.

By combining the Gumbel distribution and the softmax function, we obtain the Gumbel-

Softmax distribution, where the temperature parameter τ controls the smoothness of the distri-

bution:

yi =
exp((log(πi)+gi)/τ)

∑
k
j=1 exp((log(πi)+gi)/τ)

(4.4)

The closer τ is to zero, the more the Gumbel-Softmax distribution resembles the categorical

distribution, while as it approaches +∞, samples become uniform. A visual example of how

the value of τ affects the distribution can be seen in Figure 4.2. In our case, the log-probability

log(πi) of each sense representation is the attention energy between the hidden representation

and the each sense.

The recommended way of learning models with the Gumbel-Softmax distribution [8] states

that we should start with a higher τ and anneal it to 0, as the variance of gradients is large on

small temperatures, causing difficulties in the optimization process. As in our case we have to

sample discrete values to avoid divergence into the trivial solution, we resort to the Straight-

Through [ST; 101] Gumbel Estimator.

The Hard Kumaraswamy Distribution

Using Gumbel-Softmax offers a way to constrain the network to select a single sense for a given

hidden representation, but that might not be enough in every case. In this section, we will take on

a different perspective – for each sense representation we will make a binary decision whether
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Figure 4.2: Samples from the Gumbel-Softmax distribution range from one-hot encodings (for
low temperatures τ) to resembling the uniform distribution (as τ →∞). At low temperatures, (a)
the expectation of the Gumbel-Softmax random variable resembles the one of a categorical dis-
tribution (e.g. the first and second columns). Similarly, (b) samples from the Gumbel-Softmax
distribution are identical to categorical ones as τ → 0. In our case, due to the aforementioned
completeness problem, we will only consider τ = 0 throughout our experiments. Figure taken
from [8].

that sense should be selected or not, and then constrain the number of selections to not be larger

than a predefined maximum K. Introducing such a discrete step in a network would usually

require us to resort to the REINFORCE [95] gradient estimation [102], notoriously difficult due

to high variance gradient estimates. However, by selecting a convenient probability distribution

and exploiting the stretch-and-rectify trick [103], we can obtain a continuous distribution where

the probability mass on its edges is nonzero – meaning we seemingly get the best of both worlds

in form of both differentiability and discreteness.

The authors select the Kumaraswamy distribution [104] due to its similarity to the Beta

distribution and for its simple (inverse) cumulative distribution function (cdf, Eq. 4.5), which

simplifies inverse transform sampling.

F−1
K (u;a,b) =

(
1− (1−u)1/b

)1/a

(4.5)

where u ∼ Uniform(0,1). Our next step is stretching the support of the distribution to include 0

and 1. For l < 0 and r > 1, the transformed CDF is as follows:

FT (t;a,b, l,r) = FK ((t − l)/(r− l);a,b) (4.6)

The transformed distribution T ∼ Kuma(a,b, l,r) is now defined on the open interval (l,r).

Finally, we can rectify our stretched distribution to conflate all the probability mass from an

interval to a single point. The authors pass the sample T through a hard-sigmoid function

h = min(1,max(0, t)). The resulting variable is defined over the closed interval [0,1], and while

the probability of sampling t = 0 is equal to 0, the probability of sampling h = 0 corresponds

to the entire probability mass on the interval (l,0], which can be computed in closed form. The

same holds for the interval [1,r) and the probability of sampling h = 1. A visual intuition of the
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process, and the Kumaraswamy distribution before and after stretching, can be seen in Fig. 4.3.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5
Kuma(0.5, 0.5, ­0.1, 1.1)
Kuma(0.5, 0.5)

Figure 4.3: The stretched and unstretched variants of the Kumaraswamy distribution. The
unstretched variant (dotted blue line) for a,b = 0.5 is used as a starting point. The support
is then stretched for 0.1 to the interval l = −0.1,r = 1.1 (Equation (4.7b)). After applying the
hard-sigmoid transformation, the probability mass in the shaded area is conflated to the tail ends
of the distribution (Equation (4.7c)). Figure taken from [9].

As the transformed distribution is based on the Kumaraswamy distribution, we can still

leverage the reparametrisation trick with a uniform random variable u ∼ Uniform(0,1). The

procedure of obtaining samples from the Hard Kumaraswamy distibution would then work as

follows: first, we use the use inverse transform sampling to obtain k ∼ FK (Eq. 4.7a). Then we

stretch the resulting variable to the (l,r) interval (Eq. 4.7b). Finally, we apply the hard-sigmoid

function to obtain a sample from the Hard Kumaraswamy (HardKuma) distribution (Eq. 4.7c).

k = F−1
K (u;a,b) (4.7a)

t = l +(r− l)k (4.7b)

h = min(1,max(0, t)) , (4.7c)

However, simply using this distribution as part of your neural network does not suffice to induce

sparsity as the network has to be incentivized to assign more probability mass to the 0-end of

the distribution by appropriately fitting the distribution parameters a and b.

In this part the choice of distribution comes into play again. Due to the simple and tractable

CDF of the Kumaraswamy distribution, we have a closed-form expression for the expected L0
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norm of the produced samples over the sense inventory:

Ep(z|x)[L0(z)]
ind
=

K

∑
i=1

Ep(zi|x)[I[zi ≠ 0]]

=
K

∑
i=1

(1−P(Zi = 0))

(4.8)

Thus, we can add a regularization term as part of our model, which can enforce that the expected

number of sampled zeros is close to some predefined value, or in our case, the size of the sense

inventory A from which we subtract the number of connections we wish to be nonzero K.

L= CE( f (x),y)︸ ︷︷ ︸
Classifier loss

+λ (Ep(z|x)[L0(z)]−A+K)︸ ︷︷ ︸
Sparsity penalty

(4.9)

Vector Quantized Variational AutoEncoders

Perhaps the most natural way of implementing our model draws inspiration from variational

autoencoders (VAEs) [105, 106] and vector quantization to introduce discreteness into the latent

variable [107]. VAEs, in general, consist of three probabilistic components, each modelled by

a neural network: (1) the prior distribution over the latent code p(z), (2) an encoder network

that parametrizes the posterior distribution of the latent variable given the input data q(z|x), and

(3) the decoder, with the distribution p(x|z) over the input data based on the latent code. In this

case, the latent code presents the autoencoder bottleneck, which incentivizes the model to learn

a meaningful representation. Furthermore, due to the inherent randomness in the latent code

distribution (as only the parameters of the underlying Gaussian distribution are learned, but the

code itself is drawn as a sample) the latent space is smooth – meaning that proximity in the

latent space carries over to the input space, a feature rarely enforced for deterministic models.

Introducing Discrete Latent Variables. The change introduced in VQ-VAE is in moving

away from using Gaussian distributions as the prior and posterior to using the categorical dis-

tribution. The VQ-VAE model assumes the existence of a set of latent embeddings, with the

categorical distribution acting as an index into the embedding table. The embeddings selected

through sampling from the categorical distribution are then passed to the decoder network to

reconstruct the original inputs. This setup is the conceptually closest one to our intended model.

We will now provide a description of its mathematical framework.

As we mentioned earlier, we assume the existence of a set of latent codes (in our case,

a sense inventory) A ∈ RA×d , with A being the size of the (discrete) latent space and d the

dimensionality of each code (sense representation). As illustrated in Figure 4.4, the model first

encodes the input, producing za(x). The discrete latent variable is then selected by virtue of a
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nearest-neighbor lookup:

q(z = k|x) =

1 for k = argmin j
∥∥za(x)−a j

∥∥
2

0 otherwise
(4.10)

Thus, the input to the decoder after deterministically selecting the nearest latent code is:

zq(x) = ak, where k = argmin
j

∥∥za(x)−a j
∥∥

2 (4.11)

Figure 4.4: The vector-quantized variational autoencoder for images. The input images are
first transformed by virtue of a convolutional network, then an appropriate latent embedding
is selected through the quantization operation, followed by decoding the input image form the
latent code. Figure taken from [98].

By introducing discreteness into the model this way, we still require some method of propa-

gating gradient information through the argmin operator. The approach used in [98] is to simply

use the straight-through estimator and pass the gradient over the latent code ∆zL unaltered to

the encoder network. As, due to the nearest neighbor search for selecting the latent code, the

space of the latent codes and encoder outputs should be shared, the authors hypothesized that

the gradient should also contain useful information for the encoder network.

All of the aforementioned methods of inducing sparsity have been used in contexts differ-

ent than inducing a shared sense inventory. Our task now is to adapt these methods to our

autoencoder approach.

4.1.2 Model Variants

Having covered some of the possible methods of incorporating sparsity in neural networks, we

will now in detail explain the three main models we will use throughout our experiments, each

of them based on one of the sparsity inducing methods. Each of these models can be seen as

a variant of the autoencoder from Figure 4.1 with certain components differing based on the
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sparsity method used. Each model can be summarized through the following set of equations:

ht = encoder(xt) (4.12)

where ht are the contextualized representations, while xt are the input word embeddings. The

encoder network is either an RNN or a Transformer model. Once we have contextualized the

word representations, we feel safe to assume that their senses can be accurately determined by

the model. In the next step, we perform sparse selection over the sense inventory. The choice

of the sparse operator differs in both the method of sparsity as well as the number of senses

selected k.

ãt =
1
k

k

∑
i=1

ai, where ht → ai ≠ 0 (4.13)

Once we have obtained the sequence of sense representations {at}, we perform a decoder pass

to reconstruct the original sequence:

x̂t = decoder(ãt) (4.14)

where as the decoder we either use an uncontextualized linear transformatinon – to ensure that

the input token is reconstructed from the corresponding sense representation in isolation – or

a recurrent pointer network [108] to ease the reconstruction process by restricting the decoded

tokens to the set of input indices.

Gumbel-Softmax Autoencoder

The first model leverages the Gumbel-Softmax distribution (henceforth GUMBEL) with the tem-

perature parameter τ fixed to zero. We fix the temperature parameter to zero at the cost of gradi-

ent information not flowing through the distribution due to the possibility of the model leaving

a significant number of nonzero connections active. In practice, we observe that models trained

with τ ≠ 0 converge to a perfect reconstruction rate very quickly, indicating that this behavior

indeed occurs during training. In some cases it is possible to imagine a scenario where the true

sense of a word might not be perfectly disambiguated based on context. Also, keeping in mind

that we are in no way ensuring that elements from the sense inventory A indeed will correspond

to senses (it is indeed imaginable that the model might learn to encode information in such a

way that it does not correspond to the sense of a single word, but rather distribute informa-

tion from encoded sequences over elements from A in some other way which also allows for

reconstruction of the input sequence).

To provide some leeway for the model, we also include the multi-head Gumbel-Softmax

model (henceforth MH-GUMBEL), which draws inspiration from the multi-head attention mech-

anism [46] and performs multiple 1-of-k selections over the sense inventory. We do not ensure
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that the model has to select different elements from the inventory with the idea that if a sense

is determined correctly, we actually want multiple heads to select the same element. The num-

ber of heads (corresponding to the number of items selected from the sense inventory) is a

hyperparemeter, which we refer to as the selection rate.

Hard Kumaraswamy Autoencoder

When selecting sense representations with the HardKuma distribution (henceforth KUMA), in-

stead of obtaining a categorical sample over the entire sense inventory, we obtain A samples

from the binary HardKuma distribution, one for each element of the sense inventory. To sample

from the HardKuma distribution, we need to produce its parameters, namely the shape param-

eters a and b. Following [13], we fix the stretching hyperparameters l and r to −0.1 and 1.1,

respectively.

To ensure that the model generates a sparse distribution over the sense inventory, we need to

control the expectation of the HardKuma distribution (Equation (4.8)) to produce the intended

amount of zeroed out connections, on average. Here we once again use the selection rate

hyperparameter, although this time it does not determine the number of attention heads but

rather the expected number of nonzero samples drawn from the HardKuma distribution. Using

the HardKuma distribution as the source of sparsity thus introduces two hyperparameters: (1)

the sparsity rate and (2) λkuma, the regularization strength for the expected number of nonzero

values. Note that, in contrast with GUMBEL and VQVAE variants, the KUMA model incorporates

a soft constraint on the number of selected sense representations.

Vector Quantised Variational Autoencoder

The vector quantised variational autoencoder [98] (henceforth VQVAE) is the most natural ap-

proach to our problem, as the authors themselves apply it to a similar task in the vision domain.

By applying a nearest-neighbor selection (Equation (4.11)) based on the encoder output ht , we

obtain a single sense representation ai from the sense inventory.

The authors do note that there is a regularization term important for the model – the commit-

ment cost. When selecting representations from the sense inventory, the representation selected

is the closest one, however, there is no guarantee of how close these representations are in the

learned vector space. To ensure that the sense representation ai and contextualized representa-

tion ht gravitate towards one another, the authors introduce the following regularization term:

∥enc(x)−a∥2
2 (4.15)

where in our case enc(x) is the encoder output sequence {ht}, a = {ai} the corresponding

sequence of selected sense representations and ∥·∥ the squared L2 norm. This way, through
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training, a contextualized representation and its selected sense will move closer to each other,

ensuring that similar contextualized representations select similar senses from the inventory.

Decoder Variants

We mentioned earlier that we consider two types of decoders (Equation (4.14)) when recon-

structing the original tokens based on sense representations. The simpler decoder variant is to

leverage a linear layer whose weights are tied to those of the input embeddings [85], effectively

performing a nearest-neighbor search in the embedding space and further ensuring that the input

space and sense representation space are shared.

However, some models exhibited issues during training and were not able to achieve rea-

sonable reconstruction rates when using a linear decoder. To make the reconstruction task more

manageable, we leverage the pointer-generator network [108], which incentivizes the model to

select tokens from the input sequence when decoding, a bias useful for tasks such as summariza-

tion. The pointer-generator network is a recurrent model that produces a probability distribution

over both the output vocabulary as well as the input sequence – which are then averaged to ob-

tain the final probability distribution of the model. In addition, we also incorporate teacher

forcing [109] to the recurrent model, which with probability pt f substitutes a generated token

with the correct token, thus providing the correct input to the next decoding iteration.

Initializing the Sense Inventory

When training our model, we consider two variants of initializing the sense inventory: (1) we

randomly initialize the inventory by drawing samples from the Uniform(−1/A, 1/A) distribution;

and (2) we perform k-SVD decomposition [94], following the method in [10] and initialize the

sense inventory to those values.

Sense Dropout

When running our experiments, we observed that models often fall victim to the rich get richer

phenomenon, where only a small subset of the sense representations gets tuned, while a large

proportion of senses are rarely, if ever, selected. To this end, we introduce a dropout, which

acts on the considered set of sense representations when performing sparse selection. Prior to

selection, we drop psense_drop sense representations. We find that this type of regularization

greatly helps with the early training phase of models.
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4.2 Datasets

Throughout our experiments, we leverage two types of datasets: (1) the pretraining dataset

consisting of large amounts of unstructured text and (2) evaluation datasets, which attempt to

unvel whether the trained model is successful in learning a useful sense inventory.

4.2.1 Pretraining Dataset

As we are training our model in the autoencoder paradigm, we can use any unstructured source

of text as our dataset. In this case, we resort to the English version of the Wikipedia from 2010,

provided by the Westbury Lab*. We first preprocess the dataset by sentence splitting and then

tokenizing it with the SpaCy† sentencizer and tokenizer. The tokens are then lowercased and

any tokens not containing a single alphanumeric symbol are filtered (e.g., punctuation). The

resulting dataset contains 55 million sentences containing 1 billion word tokens, of which 5

million unique ones. The first five lines of the preprocessed dataset are shown as follows:

anarchism

anarchism is a political philosophy which considers the state undesirable unnecessary

and harmful and instead promotes a stateless society or anarchy

it seeks to diminish or even abolish authority in the conduct of human relations

anarchists may widely disagree on what additional criteria are required in anarchism

the oxford companion to philosophy says there is no single defining position that all an-

archists hold and those considered anarchists at best share a certain family resemblance

When training our model, we select only the most frequent V tokens, with the tokens not part of

the vocabulary being replaced with the unknown token <UNK>. We further discard all sentences

shorter than 5 tokens and tightly pack data batches, concatenating sentences separated with the

special <SEP> token to maximum size smaller than the maximum allowed sequence length for

the model.

4.2.2 Evaluation Datasets

When evaluating our model, we want to use datasets that incorporate sense annotations as part

of the evaluation in order to gauge how well has the model captured senses shared between

words. The first dataset is the Stanford Contextual Word Similarities (SCWS) dataset, intro-

duced in [38]. Most previous datasets used to evaluate pretrained word embeddings did so

*http://www.psych.ualberta.ca/~westburylab/downloads/westburylab.wikicorp.download.

html
†https://spacy.io/

52

http://www.psych.ualberta.ca/~westburylab/downloads/westburylab.wikicorp.download.html
http://www.psych.ualberta.ca/~westburylab/downloads/westburylab.wikicorp.download.html
https://spacy.io/


Learning Shared Word Representations

without contextual information – thus disregarding the problems of homonymy and polysemy,

which might increase or decrease the similarity between words dependent on context.

The SCWS dataset consists of 2003 word pairs and their contextual information from the

sentences they occur in. The word pairs contain a total 1712 unique words selected in a way

that all categories of low and very polysemous words are included. Each pair of words has been

annotated for similarity by ratings from 1 to 10 by 10 different annotators, the scores of which

were averaged when performing evaluation. The entirety of the dataset is used as a test set with

the model simply providing a representation for the two target words to be used as a basis for

cosine similarity. Sample instances from the dataset are shown in Table 4.1.

Similarity Word 1 context Word 2 context

4.0

“. . . For example , in 1940 ,
the Imperial Japanese Army Air
Force bombed Ningbo with ceramic
bombs full of fleas . . . ”

“. . . among American women with
post-secondary education , African
American women have made sig-
nificant advances . . . ”

8.2
“. . . John , preaches to many in
Jerusalem , and performs many
miracles such as healings. . . ”

“. . . majority of the working resi-
dents did not work in Israel . Over
25 % of the working population
. . . ”

2.6
“. . . distributed almost universally
across the city every Wednesday ,
and containing news . . . ”

“. . . reality of gang violence by
posting news stories on the bulletin
board. . . ”

Table 4.1: Sample instances from the SCWS dataset. Each instance consists of an average rating
obtained by averaging scores from 10 different annotators and two source sentences. In each
source sentence the target words are annotated in bold. The goal is to determine the similarity
of the target words in context.

Apart from SCWS, we will also evaluate our model on datasets from general downstream

applications of neural models, in particular on two sentiment analysis datasets we use through-

out our work, SST and IMDb. When evaluating our model on downstream datasets, we remove

the decoder part of the autoencoder model and replace it with a new, randomly initialized de-

coder head which is then tuned for the classification task. The remaining parameters of the

model are frozen and used as-is.

4.3 Experimental Details

Although we have considered wider ranges of hyperparameters and model variants throughout

our experiments, we only carefully ablated over the ones which contributed the most. Differ-

ences between the Transformer and GRU encoders were not significant, which we believe is due

both to them being shallow in our implementation, as well as the fact that the sparse selection

operator being the bottleneck for the network performance. When initializing sense representa-
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tions, we use our k-SVD reimplementation based on the MATLAB code from [10]. Full lists of

hyperparameters and their considered values shown in Table 4.2.

4.4 Results

In this section, we will detail the experimental results of our models, first by analysing the con-

vergence on the pretraining dataset and then the performance on the contextualized evaluation

set and downstream tasks.

4.4.1 Pretraining on Wikipedia

We train each of our models for 5 epochs on the English version of the Wikipedia dataset. Due

to relatively long training time, we train each model variant once for each distinct hyperparam-

eter setup. When evaluating how well the model trains on the pretraining task, apart from the

reconstruction loss, we are also interested in the accuracy of token reconstruction and whether

more frequent or less frequent tokens are reconstructed more accurately. While the reasoning

for the latter criterion might not be obvious, the main motivating idea is that a common failure

case of the model during training is that it learns to primarily reconstruct high frequency tokens

and disregard the rest. We track the following metrics during training: (1) the average frequency

rank (AFR) of words (higher frequent tokens are assigned lower indices in the vocabulary); (2)

the average predicted frequency rank (APR) of words; and (3) the average rank of correctly

reconstructed (ACR) words. What we want to observe in a model that is training properly is the

values of these three metrics in close proximity to one another as the training progresses. If the

average predicted frequency rank is significantly higher than the average frequency rank, then

our model is assigning too much value to reconstructing rare words, and if the average predicted

frequency rank is signicantly lower than the average frequency rank, our model is reconstructing

only high frequency tokens. In Figure 4.5 we present the plots of predicted, correctly predicted

and actual word ranks throughout training. We immediately notice that the KUMA and GUMBEL

models struggle with representing lower frequency words and resort to predicting more frequent

tokens.

4.4.2 Performance on Contextualized Similarity

The results of our models as well as models from related work are shown in Table 4.3. The

models are scored with respect to the Spearman correlation coefficient with the average sim-

ilarity rating of human annotators on the SCWS dataset. The results demonstrate our models

falling short of performance of competing models for learning sense representations, which we

attribute to the instability of training models with such a large degree of sparsity.
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Figure 4.5: Predicted word rank statistics when pretraining on the Wikipedia dataset. More
frequent words have a lower vocabulary rank, while rare words have a high vocabulary rank.
Ideally, we would aim that the correct and predicted ranks overlap. The averages are computed
over 5000 batches.

.
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Nevertheless, we believe there is still room for improvement as most of the models show

slow but positive trends when training. In Figure 4.6 we plot the Spearman correlation coef-

ficient on the SCWS dataset evaluated every 5000 batches. We only plot models where the

sense representations are initialized by k-SVD as those perform significantly better. We can

see that the KUMA and GUMBEL models perform worse, while the MH-GUMBEL and VQVAE

models possess an upward trajectory while training, although also exhibiting high variance in

correlation scores.

Figure 4.6: Spearman correlation coefficient ρ × 100 on the SCWS dataset for all model vari-
ants with k-SVD sense initialization. The correlation coefficient is evaluated after every 5000
pretraining batches.

.

4.4.3 Performance on Downstream Tasks

In order to gauge whether the learned sense representations are useful in downstream tasks, we

evaluate the encoding component of our models on the SST and IMDb datasets. We leverage

the encoding component of our models by using sense representations obtained from Equa-

tion (4.13) for each model. The sequence of sense representations is then treated as input to

a LSTM + self-attention model (Figure 2.5). We train each classification model for 5 epochs
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and evaluate the best performing model with respect to accuracy on the validation split. During

training, the sense encoding component is not optimized. We compare our models to the stan-

dard variant which leverages GloVe [28] embeddings. We only report results of models where

the sense encodings are initialized with representations obtained through k-SVD due to their

consistently higher performance.

In this chapter, we have analysed the feasibility of training an autoencoder-based approach

to learning shared sense representations. We have shown that the considered approaches of in-

ducing sparsity in neural models suffer from difficulties with processing a high level of sparsity,

but also that it is possible to some extent to learn valuable representations. The main conclu-

sions we draw from the presented results are that the stability of training sparse models is very

volatile, and that the early stage of training is key for convergence. We believe this line of work

to be worth pursuing for both the implications in cross-lingual transfer of the sense represen-

tations, which could greatly benefit low-resource languages, and the natural interpretability of

having explicit sense representations as part of the trained model.
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General hyperparameters

Embedding dim 300

Freeze embeddings {True,False}

Tie embeddings {True,False}

Encoder hidden dim 150

Encoder type {GRU,Transformer}

Encoder layers 2

Learning rate e−4

Num epochs 5

Batch size 32

Sense inventory size {2000,3000}

Sense dim 300

Sense dropout 0.3

Initialize senses {True,False}

Pointer network {True,False}

Pointer network blending 0.5

Teacher forcing 1.0

Sparse selection hyperparameters

Selection type {Kuma,Gumbel,MH-Gumbel,VQVAE}

Selection sparsity 5 (Kuma), 2 (MH-Gumbel)

Commitment cost (VQVAE) {0.25,1.,2.}

Table 4.2: Considered hyperparameters of models throughout experiments. The blending factor
and teacher forcing are used only together with the autoregressive pointer network decoding.
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Method Spearman Coefficient

MSSG [42] 0.567

GloVe [28] 0.573

Skip-gram [4] 0.622

k-SVD [10] 0.652

HardKuma 0.273

Gumbel 0.281

HardKuma & init 0.329

MH-Gumbel 0.356

Gumbel & init 0.377

VQVAE 0.422

VQVAE & init 0.467

MH-2-Gumbel & init 0.470

Table 4.3: The Spearman ρ ×100 coefficient of the similarity of encoded word representations
with respect to human annonations on the SCWS dataset. Best performing model highlighted
in bold.

Model SST IMDb

GloVe [28] 80.34 86.24

Kuma 50.00 53.12

Gumbel 55.21 57.36

MH-Gumbel 77.31 80.15

VQVAE 81.35 84.5

Table 4.4: Classification accuracy on the test sets portions of the SST and IMDb datasets. Each
model is trained for 5 epochs, and the best performing model on the validation set is then
evaluated on the test set. Best results highlighted in bold.
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Chapter 5

The Iterative Recursive Attention
Mechanism

Recurrent neural networks process data sequentially, a paradigm that does not necessarily fit

the hierarchical, phrase-based syntactic structure of sentences. When understanding the final

decision of a model, it would be beneficial for any retrospective explanation model if the deci-

sion could be decomposed as a series of inferences steps, each of which can swing the decision

either way. Inspired by work of [110, 111], we proposed the iterative recursive attention model

[IRAM; 112], which recursively constructs representations of the input sequence – and in con-

trast with previous work, the intermediately constructed representations can be reused in further

iterations. Such unfolding of the inference process into a series of interpretable steps is aimed

to both treat contrastive clauses and negations as well as allow users to better determine the

shortcomings of their models.

Apart from the obvious benefits in view of model interpretability through observing the

distinct inference steps, IRAM simplifies the task of the attention mechanism by removing

the requirement of reaching a prediction in a single attention step. The simplification allows the

model to isolate the contrastive aspects of the sentiment analysis datasets we considered, seman-

tically composing both the positive and negative polarity aspects of data and finally weighing

them to produce the final representation.

5.1 Methodology

The goal of our modifications to the attention mechanism is to decompose the inference process

into a series of steps. We do this by extending the standard way of applying the self-attention

mechanism – instead of passing the result of a single self-attention step to the classifier network,

we first transform it and then concatenate it to the original sequence. By using multiple attention

steps, the model is able to construct a recursive representation and process the input sequence
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bit by bit. The upshot of this approach is that apart from simplifying the task for the model, we

also gain the ability to inspect how the model weighs different parts of the sentence and then

combines them to obtain the final decision.

Our model can be viewed as carrying out three consecutive phases: (1) the encoding phase,

where the word representations are contextualized by an encoder network, (2) the attention

phase, which leverages recursive attention to isolate and combine different subsets of the input

sequence, and (3) the classification phase, where the final representation is fed to the classifier.

A visual representation of the model is given in Figure 5.1.

Figure 5.1: The iterative recursive attention model (IRAM). Green-colored components share
their parameters with components of the same type. Highlighted in gray is one iteration of
IRAM.

5.1.1 The Encoding Phase

In the encoding phase, we leverage both GloVe word embeddings [28] and character n-gram

embeddings [113]. All character n-gram embeddings for an input word are averaged over and

the word and character representations are then concatenated in a single vector. We follow the

procedure from [114] and apply a transformation to the concatenated representations. However,

we deviate from their procedure and use a highway network [80], which we found to perform

better when compared to a ReLU feedforward network. We then take the transformed, but
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uncontextualized representations and contextualize them by means of a bidirectional LSTM

network. We conceptually split the LSTM network into two parts: the lower lctx layers are

used to contextualize the word representations, while the uppermost lquery layers are used to

produce a fixed-size representation of the now-contextualized sequence, then used as the initial

query for the recursive attention mechanism. Intuitively, the split should incite a division of

labor between the two parts of the network: contextualization network only has to memorize

the local information specific to each word (e.g., verb tense, noun gender) in order to transform

its representation, while comprehension network needs to model aspects of meaning pertaining

to the entire sequence (e.g., the overall sentiment of the sentence, locations of sentiment-bearing

phrases).

We use a single (lctx + lquery)-layered BiLSTM, however the contextualized word represen-

tations ht are obtained as the outputs of the lctx-th layer, while the cell state from the last timestep

of the last layer is used as the sequence representation x̂. This final representation is also passed

through a highway network to tune the sequence representation into an initial query.

5.1.2 The Attention Phase

In the attention phase (Figure 5.2), our inputs are the initial query (q(0)) and a sequence of

hidden states H = {hi}N
1 obtained from the encoding phase. The recursive attention mechanism

uses a gated recurrent network [75] as the controller, which updates the query representation

with respect to the output of the attention step between subsequent iterations.

In each step t of the iterative attention mechanism we attend over the hidden state sequence

H with respect to the current query q(t). For the attention mechanism, we use bilinear attention

[115].

a = so f tmax(q(t)WH) (5.1)

where W is the parameter vector of the bilinear attention mechanism, and a the attention dis-

tribution over the hidden representation. The attention weights are then used to compute the

summary in step t as a convex combination of hidden representations:

ŝ(t) =
N

∑
i

a(t)i hi (5.2)

Since we intend to use ŝ(t) as a hidden representation in the next iteration of the attention mech-

anism, we need to nonlinearly transform it so the new representation is no longer linearly de-

pendent on the remaining hidden representations. To do this, we again leverage the highway

network to transform the initial summary, s(t) = Highway(ŝ(t)). The output of the highway

network is then added to the set of hidden representations H = {hi, . . . ,hN ,s(1), . . . ,s(T )}.
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Figure 5.2: The attention component of the iterative recursive attention model. Green-colored
components share their parameters with components of the same type. Highlighted in gray is
one iteration of IRAM.

5.1.3 The Classification Phase

Lastly, in the classification phase the sequence representation s(T ) is fed into a maxout network

[116] to obtain the class-conditional probabilities.

5.1.4 Regularizing Attention

Our goal was for the model to focus on different task-related aspects of input data in each

iteration of recursive attention. However, if the model is in no way incentivized to propagate

information through summaries, we find that often it converges to a solution where it attends

on the same set of input representations in each step. To prevent this unwanted behavior from

happening, and incentivize the model to focus on different aspects of input data in every step,

we regularize it by minimizing the pairwise dot product of the attention distribution between all

attention iterations:

Lattn =
γ

2T ∑
i≠ j

[AAT ]i j (5.3)

where γ is the regularization weight hyperparameter abd A ∈ RT×(N+T−1) is a matrix containing

the attention distribution generated in each of the T steps over the initial N inputs and the T

added summaries. Note that the final summary is not part of the regularization term as it cannot

be attended over, so the final number of columns is N +T −1.

While this regularization penalty does incentivize the model to focus on different elements

of the input sequence in different recursive attention iterations, there is still a trivial way for the
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model to bypass the penalty where the model performs an attention step over the inputs only in

the first iteration, and simply places the entire attention mass on the previous summary in the

next iteration. However, we find that the trained model resorts to this behavior only in case the

input instances are straightforward and do not contain contrastive segments. We will further

illustrate this behavior in Section 5.4.2.

5.2 Datasets

We evaluate our model on two sentiment analysis datasets also used in Section 3.2, SST and

IMDb. Along with the binary version of SST, here we also include the fine-grained classification

task where classes range from 1, indicating very negative, to 5, indicating very positive. When

preprocessing the datasets, we use SpaCy* to tokenize IMDb, we lowercase all tokens and

remove tokens which do not contain a single alphanumeric character. We truncate each sentence

from the datasets to a maximum of 200 tokens.

5.3 Experimental Details

Throughout our experiments we have evaluated a wide range of hyperparameters by manual

tuning, however only the ones deemed most important were evaluated exhaustively. The full

list of the hyperparameter search space of our model can be seen in Table 5.1.

5.4 Results

In this section, we will report the experimental results of our model on the aforementioned

datasets and evaluate how much distinct components of the model contribute to its perfor-

mance. Through manual hyperparameter tuning on the validation splits of the datasets, we

have determined that T = 3 steps of the iterative recursive attention mechanism and attention

regularization weight of γ = 0.0003 are the best values of the considered hyperparameters. In

Table 5.2 we report the accuracy scores of our best models on the test portions of the SST and

IMDb datasets along with competing models at time of publication.

5.4.1 Ablation Experiments

Through adding various complex components to our model we introduced a number of con-

founders, which might cloud the relevance of the iterative attention mechanism itself. In order

to determine the effect of each of the added components on the overall score, we evaluate the

*https://spacy.io/
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(a) A simple unipolar sentence

(b) A sentence with a negation

(c) A contrastive multipolar sentence

Figure 5.3: Visualization of attention across sentence words (horizontal) and T =3 time steps
(vertical). The last T -1 columns contain the attention weights over the result of the previous
attentive query.

performance of the full model on the binary SST dataset with the remaining hyperparameters

fixed and each component removed in isolation. We also report the results of our vanilla model,

where we omit all of the removed components at the same time. Results are given in Table 5.3

5.4.2 Visualizing the Recursive Approach

To gain an intuition about the working of IRAM, we visually analyzed its attention mecha-

nism on a number of sentences from our dataset. We limit ourselves to examples from the test

set of the SST dataset as the length of examples is manageable for visualization. We isolate

three specific cases where the attention mechanism demonstrates interesting results: (1) simple

unipolar sentences, (2) sentences with negations, and (3) multipolar sentences. Figure 5.3 gives

examples for these types of sentences.

In the most straightforward example, the unipolar case (Figure 5.3a), we can recognize

an instance where the model does not require multiple iterations as the instance contains no
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contrastive elements or polarity flipping. In that case, the network simply learns to propagate

information between iterations of attention, evident from most of the attention mass in the

second and third rows (steps) being attributed to the representation from the previous iteration.

More interesting cases involve negations and multipolar sentences. In Figure 5.3b we see

how the model handles negation in a sentence. Attention is first distributed over all words ex-

cept the negator. Then, in the second iteration, the mechanism combines the previously learned

representation with the negation. We interpret this behavior as flipping the polarity of the rep-

resentation – solely recognizing a negator and additively summing its representation, as is tra-

ditionally done when applying vanilla attention, would be unreasonably difficult. Due to its

recursive nature, our model provides a more natural way of processing such sequences, by first

constructing a representation of the otherwise positive expression, and then negating it.

Finally, in Figure 5.3c we show a contrastive multipolar sentence, where in each iteration

the model focuses on subsets of tokens with different polarity before combining their represen-

tations. We believe that the iterative nature of this approach allows the model a simpler way

of weighing the contrastive elements of the input sequence when compared to simultaneously

taking everything into account.

We have demonstrated that building recursive representations of sentences not only benefits

interpretabity of models through inspecting attention weights in each recursive step, but also

improves model performance on sentiment analysis tasks. The performance improvement is

something we believe is caused by the improved semantic composition capability of the intro-

duced model, where the otherwise complex functional dependence of phrases in the sentence

structure can now be processed in multiple iterations instead of a single attentive step. We be-

lieve that similar modifications which allow the model to process complex instances in multiple

steps can only benefit both the capabilities of neural models and broaden the insights that can

be drawn about the inner workings of models by practitioners.
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Model hyperparameters

Word embedding dim 300

Char embedding dim 100

Embedding dropout 0.1

Freeze embeddings {True,False}

RNN cell LSTM

RNN hidden dim {400,500,1000}

Contextualization layers 2

Query tuning layers 1

Optimizer Adam + AmsGrad

Weight decay 3e−5

AmsGrad α 3e−4

Learning rate 1e−3

Grad. clipping 1

Batch size {32,64}

Num Epochs 5

Dropout {0.1,0.2,0.3,0.4}

Maxout network dim 200

Maxout network layers 2

Maxout network pool 4

Attention regularization γ 3e−4

Recursive steps T {1,2,3,4,5}

Table 5.1: Considered hyperparameters for IRAM throughout experiments. As the hidden state
size of the recurrent network was increased, the dropout had to be increased accordingly for
stable convergence. As long as attention regularization was set to a low enough value, minor
differences did not affect model traning nor performance.
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SST SST-5 IMDb

NSE [117] 89.7 NSE [117] 52.8 IRAM 91.2

IRAM 90.1 IRAM 53.7 TRNN [118] 93.8

BCN + CoVe [114] 90.3 BCN + CoVe [114] 53.7 oh-LSTM [119] 94.1

bmLSTM [120] 91.8 BCN + ELMo [6] 54.7 Virtual [121] 94.1

Table 5.2: Classification accuracy on the test sets portions of the considered datasets. Our model
underlined, best results highlighted in bold. Note that most of the competing models leverage
pretrained representations from large language models.

Removed component Accuracy

Full model 90.1

Vanilla model 88.7

– char n-grams 89.3

– query fine-tune 89.8

– embedding fine-tune 89.3

Table 5.3: Effect of removing introduced components on performance of the IRAM. The vanilla
model presents the lower bound as all of the ablated components are removed in it. Results
reported are averages over 3 runs.
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Chapter 6

Discussion

After this brief journey into the inner workings of the recurrent neural network algorithm for

processing natural language, we are left with some novel insights and some troubling questions.

RNNs or Transformers. We have demonstrated that RNN variants, including GRUs and

LSTMs, have underlying issues that likely cause convergence problems on larger depths in

terms of number of stacked RNN layers. Issues of lateral information leakage and vertical in-

formation blockage, while to an extent solved through word-level regularization in our work,

are still not completely eliminated. The need for tuning a regularization term in the era of deep

models and long training times is especially time-consuming, and when a model has its own

additional regularization penalties, optimizing multiple moving targets might be a computa-

tionally infeasible task to solve. To this end, we should aim for a yes or no answer to whether a

model has resolved these issues – ideally by virtue of introducing a novel model family where

the issues of lateral information leakage and vertical information blockage are eliminated alto-

gether. From this perspective, the usage of Transformer networks, which due to their residual

connections naturally do not suffer from vertical information blockage, seems as a better option.

However Transformer networks also exhibit problems of their own in the often detrimental lack

of a state [122], issues with representing long sequences due to the square complexity of the

attention mechanism [123], and the fact that they often disregard word order [124].

Usefulness of Interpretability. A point of contention common in machine learning is whether

preference should be given to interpretable models at, perhaps, the price of performance. While

for high-stakes decision scenarios this question has a definitive answer, if humans are not part

of the decision equation, why should we care about the interpretability of models? “All models

are wrong, but some models are useful”, state [125], thus the question becomes what is consid-

ered useful for a practitioner. One of the main arguments for the usefulness of interpretability

is determining the blind spots of neural models, refering to either detecting artifacts in training
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data [53] or finding [12] a major issue in a popular model family through a symptom in its ex-

plainability. Thus, we believe that focus should be placed towards making models interpretable

rather than not, even at the price of downstream performance.

Modeling Senses Explicitly. One line of work we tackled was that of learning shared sense

representations by inducing sparsity in deep networks. While the model reached reasonable

performance, it did not outperform existing methods of learning single-prototype representa-

tions on downstream tasks to warrant the increase in training time and number of parameters.

Implications of learning an explicit sense inventory are far reaching, as senses are naturally in-

dependent of the source language, thus introducing the possibility of a sense inventory learned

on a resource-rich language being transferred to a low-resource one. Apart from cross-lingual

transfer, an obvious benefit in making sense information explicit is understanding the inner

workings of models – sense representations are inherently interpretable and simple to label by

nearest neighbor search in the input embedding space [10]. Thus, we can relatively easily know

when a concept is not recognized by a network by investigating the sense encodings for a par-

ticular input sequence. However, such an algorithm requires sparsity in the sense selection step,

and the sparsity rate required has shown to be far too large to ensure stable convergence of such

algorithms. We believe this line of work to still be worth pursuing as sparsity methods and

their respective optimization techniques evolve as such models could provide benefit the field

of NLP, especially for low resource languages.
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Conclusion

Recent advancements in natural language processing (NLP) have seen the research community

move away from recurrent neural networks towards predominantly using variants of the Trans-

former model. However, it is my belief that no conclusion can be made with respect to which

of the models is the better choice long-term. The standard variant of the Transformer model

is undoubtedly better suited for pretraining in the large language model (LLM) paradigm due

to better depth scaling, but fully attentional networks must resort to suboptimal solutions of

representing positions in form of positional encoding due to inherent statelessness. The optimal

model for processing and understanding language is unlikely to yet to have been discovered,

and there is merit in analysing, and possibly improving, recurrent networks to obtain insights as

to what makes them superior to Transformer networks in aspects such as training from scratch

for classification tasks – insights that can in the future be used to improve either of the two

competing algorithms.

In the scope of this doctoral thesis, we have first delineated two problems of recurrent mod-

els in lateral information leakage and vertical information blockage. These issues had symptoms

that reached far and wide into work on interpreting neural models but had a simple cause – the

recurrent state passed laterally through the network often dominated information originating

from inputs at each timestep. By incorporating token-level regularization into the network we

have demonstrated that the network is able to keep the best of both worlds by retaining down-

stream task performance as well as enhancing faithfulness of model intepretability. We reported

consistent results across a number of single-sequence classification tasks corroborating our hy-

potheses and hopefully paving the way towards attention being used as a method of model

interpretability.

We have further attempted to incorporate recent advances in inducing sparsity in neural

networks to create a model for learning shared word representations. The model leveraged the

fact that multiple surface forms often map to the same sense in order to improve the downside

of previous multi-prototype representation algorithms, where rare senses were often starved for
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contextual information and thus learned poorly. However, the most promising algorithms in

Gumbel-Softmax, Hard Kumaraswamy, and VQVAE have been difficult to incorporate at the

required level of sparsity.

Finally, we have presented a novel iterative recursive attention algorithm that biases the

model to learn a more interpretable and simpler way of combining contrastive information in

natural language data. The model has demonstrated competetive performance on standardized

sentiment analysis datasets, indicating that further similar improvements might bridge the gap

between stateful recurrent models and purely attentional networks.

Taken together, our lines of research paint a larger picture – a one where existing models can

be significantly improved upon if the causes of known symptoms are discovered. By leveraging

interpretability methods it is not only easier for laymen to understand the decision process of

the otherwise black-box models but also for practitioners to understand which aspects of input

data are not encoded well and what the blind spots of the model are. Interpretability in recurrent

models, in both explicit encoding of sense information as well as semantic composition, is the

overarching goal of this thesis, and one we believe we have made significant progress towards.

Taking everything into consideration, we outline major avenues of future work below.

Information propagation in recurrent networks. The issues detected in Chapter 3 have

highlighted that recurrent networks converge to a dominantly lateral flow of information. We

believe this is the main cause of diminishing returns for deeper recurrent networks, and by

enforcing vertical information propagation through word-level regularization, training of deeper

recurrent models could not only be possible but also compete with deep Transformer networks.

In follow-up research, word-level regularization has shown not only to improve faithfulness

of interpretability for attention-based explainability methods, but also for saliency approaches,

highlighting that the underlying issue was indeed significant.

Learning Shared Sense Representations. In work covered in Chapter 4 we have demon-

strated that, while possible, it might not yet be feasible to learn shared sense representations

with current methods of inducing sparsity in neural networks. When only a small proportion

of representations is used, the model often suffers from the rich get richer phenomenon, where

a small set of sense representations selected (and tuned) initially then become selected even

in contexts where they are not a good fit, simply due to them being exposed to more domain

data quicker. To resolve this problem, it is possible to either (1) opt for better initialization

techniques so that more initial sense representations are a good fit and thus will not be ingored

by the model; (2) incorporate additional regularization where, at least in the initial stages of

training, the frequency of selection of each sense representation has to be uniform across the

inventory to ensure all senses are tuned; (3) perform a hierarchical selection process where the
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representations are selected in multiple levels, thus reducing the sparsity rate in each step and

keeping the sense inventory size fixed at the cost of multiple discrete choices.

Building recursive representations. The model we proposed and outlined in Chapter 5 has

shown that incorporating inductive biases, even complex ones, can have positive effects on both

model interpretability and performance. We believe there is merit in studying the way neural

model construct internal representations in order to determine which linguistic phenomena are

captured well in the semantic composition process of the neural network, which can in turn help

practitioners incorporate inductive biases which can simplify the learning process.
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