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tvene konferencije SoftCOM, te kao recenzent na većem broju med̄unarodnih konferencija.

ii



Acknowledgments

Prof. Mikuc, a great person and advisor, provided an incredible amount of patience and as-

sistance. He has been the driving force behind my efforts, and I owe him a debt of gratitude

because without him, I would have lost this battle several times over the past few years.

Thank you, Marko Zec, for completing your own dissertation and taking the time to help

me lay the groundwork for my work and inspire me to finish it now or never. Thank you, Valter
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Abstract

The increasing number of volumetric Distributed Denial-of-Service (DDoS) attacks, as well

as their intensity and scale, have led many security experts to research and work on solutions

to protect against these types of attacks. Although solutions to combat such attacks already

exist, they are typically based on expensive and inflexible network equipment or on the (half-

true) assumption that software filters running on commodity hardware are incapable of handling

high-speed traffic and delivering sufficient throughput. The idea of combining the best of both

worlds (hardware speed and software versatility) is found in a number of solutions, but cannot

prevail against massive DDoS attacks with millions of attackers, as such solutions often rely on

rulesets with a large number of IP prefixes used with a rule-by-rule packet filtering paradigm.

This thesis presents and evaluates a hybrid hardware / software packet filter prototype as a

method for mitigating volumetric DDoS attacks using a NetFPGA SUME prototyping board

and a high-performance, high-speed, reduced feature-set software packet filter. It demonstrates

a novel approach to offload the filtering rules (or parts of them) to the hardware by taking advan-

tage of a modern Longest Prefix Matching (LPM) algorithm to utilize allowlists and blocklists

for protection against millions of IP prefixes. The results of this work show that this type of

filtering can be performed in high-speed network environments using a single CPU core. The

system architecture is designed to allow scaling to much higher throughput.

The results of this thesis show improvements over software-only filtering of up to nearly

30%, depending on the combination of rulesets used, the offloading methods, and the type of

traffic filtered. The components of the hybrid filter can be implemented on commodity hard-

ware and provide an alternative to expensive or less effective filters. Developing a system that

combines fast DDoS detection (with low response times) and this type of filtering could provide

high-speed protection against volumetric DDoS attacks. Internet Service Providers (ISPs) and

datacenters could take advantage of such filtering methods without being harmed by DDoS at-

tacks or having to compromise the privacy of their data by outsourcing filtering to third parties.

Due to the low cost of the commodity, off-the-shelf hardware that these filters use, they can also

be deployed by small or medium-sized businesses.

Keywords: hybrid filters, DDoS mitigation, FPGA, hardware / software packet processors,

filter performance

iv



HIBRIDNA SKLOPOVSKO/PROGRAMSKA PODATKOVNA

STAZA ZA BRZO FILTRIRANJE PAKETA REKONFIGU-

RABILNA U PRIBLIŽNO STVARNOM VREMENU — pro-

šireni sažetak

Porast broja volumetrijskih distribuiranih napada uskraćivanjem resursa (DDoS napada), kao i

njihovog intenziteta i razmjera, već dugo potiču stručnjake iz područja sigurnosti na istraživanje

i rad na rješenjima za zaštitu od njih. Iako postoji niz rješenja za borbu protiv takvih napada,

oni su obično temeljeni na skupoj i nefleksibilnoj sklopovskoj mrežnoj opremi ili pretpostavci

da programski filtri koji rade na računalima opće namjene nisu sposobni obraditi promet pri

velikim brzinama i tako osigurati dovoljno veliku propusnost. Ideja o kombiniranju najboljeg

iz oba svijeta (sklopovska brzina i svestranost programskog rješenja pristupa) takod̄er se nalazi

u brojnim rješenjima, ali u obliku u kojem se ne mogu boriti protiv masivnih DDoS napada s

milijunima napadača jer se često oslanjaju na skupove pravila s velikim brojem IP prefiksa i

paradigmom filtriranja paketa pravilo po pravilo.

U ovoj disertaciji predstavlja se i ispituje implementacija prototipa hibridnog sklopovsko /

programskog filtra paketa za ublažavanje volumetrijskih DDoS napada pomoću razvojne plo-

čice za prototipiziranje mrežnih funkcija NetFPGA SUME i jednostavnog programskog filtra.

Predlaže se novi pristup za rasterećivanje pravila (ili dijelova pravila) za filtriranje na sklopov-

lju koristeći moderni LPM algoritam i popise dopuštenih i nedopuštenih IP prefiksa za zaštitu

i od više milijuna napadača. Disertacija prikazuje rezultate filtriranja izmjerene u 10G mreži.

Mjerenja su izvedena na jednoj jezgri procesora, ali s mogućnošću skaliranja na više jezgri za

mnogo veću propusnost filtra.

Hibridni podatkovni put predstavljen u ovoj disertaciji prikazuje poboljšanja u odnosu na

podatkovni put bez sklopovskog rasterećivanja. Ovakav sustav može filtrirati pakete s visokom

propusnošću, osobito kada se koristi LPM za spremanje i pretraživanje IP adresa. Rezultati

prikazuju poboljšanja u rasponu do oko 30%, ovisno o kombinaciji skupova pravila, metoda

rasterećivanja i vrsti prometa koji dolazi do filtra. Komponente hibridnog filtra mogu se im-

plementirati na računalima opće namjene i pružaju alternativu skupim sklopovskim ili manje

učinkovitim programskim filtrima. Pružatelji pristupa Internetu (ISP), mala i srednja poduzeća

te podatkovni centri mogli bi iskoristiti navedene metode filtriranja bez rizika štete od DDoS

napada ili ugrožavanja privatnosti svojih podataka prenošenjem odgovornosti filtriranja na treće

strane.

Poglavlje 1 — Uvod i motivacija
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Prvo poglavlje uvodi u problematiku istraživanja, te opisuje motivaciju i ciljeve istraživanja.

Obrada paketa u mrežama s visokom propusnošću uglavnom je posao specijaliziranih mrežnih

ured̄aja temeljenih na sklopovlju koje bez poteškoća, ali uz svoje nedostatke, mogu dovoljno

brzo klasificirati i filtrirati pakete. Da bi se taj posao na mreži brzine 100 Gbit/s mogao obavljati

programski, potrebno je koristiti filtriranje koje podržava propusnost od više od 148 milijuna

paketa u sekundi (engl. millions of packets per second — Mpps). Na računalu opće namjene s

primjerice brzinom takta procesora od 4 Ghz, to bi značilo da svaki paket treba obraditi u manje

od 27 ciklusa takta.

Ovisno o tipu ured̄aja, klasificiranje paketa se obavlja po nekom kriteriju, npr. pretraga po

odredišnoj MAC adresi ili VLAN oznaci okvira kod preklopnika, ili po izvorišnoj / odredišnoj

IP adresi paketa kod usmjeritelja i vatrozida. Obavljanje takvih provjera vrlo je teško izvesti u

manje od potrebnih 27 ciklusa takta, budući da se u to vrijeme mora moći obaviti više operacija

ili dohvaćanja iz memorije. Navedeni primjer s 27 ciklusa odnosi se na promet s najmanjim

veličinama okvira, kad je ured̄aju “najteže” raditi budući da tad dolaze s najkraćim vremenom

med̄udolazaka, ali sva oprema u mrežnoj infrastrukturi mora moći uvijek obraditi sve veličine

paketa pri svim brzinama. U suprotnom, ako dod̄e do kvara na jednom ured̄aju, tada raspoloži-

vost cijele infrastrukture više nije zajamčena.

Tu činjenicu iskorištavaju maliciozni korisnici na Internetu te napadima uskraćivanja usluge

(engl. Denial of Service — DoS) i raspodijeljenim napadima uskraćivanja usluge (engl. Dis-

tributed DoS — DDoS) pokušavaju onesposobiti korisnicima pristup nekim uslugama. DDoS

napadi sve su češći, a nastaju tako da zaražena računala pod nadzorom napadača (“bot” raču-

nala) šalju promet na žrtvu i tako zauzimaju resurse regularnim korisnicima, a budući da takvih

računala može biti i više milijuna, od takvog napada se vrlo teško obraniti. Ovo istraživanje se

bavi samo IPv4 prometom jer IPv6 promet još nije toliko zastupljen u Internetu, niti se u bliskoj

budućnosti očekuje da će IPv4 potpuno nestati, pa je tako i DDoS napada s IPv4 adresama puno

više.

Na kraju poglavlja prikazana je struktura rada i opis pojedinih poglavlja.

Poglavlje 2 — Zaštita od DDoS napada

Drugo poglavlje opisuje trenutno stanje zaštite od DDoS napada, a koriste se tri tipa pristupa

zaštiti: delegiranje trećim stranama, zaštita ured̄ajima u infrastrukturi čuvane mreže (on-site),

te kombinacijom ta dva pristupa. Delegiranje trećim stranama radi se tako da se sav promet

preusmjerava servisima za zaštitu od DDoS napada koji zatim po potrebi “čiste” od opasnog i

sumnjivog takvog prometa te prosljed̄uju mreži kojoj je promet i namijenjen. Ovakvo preusmje-

ravanje prometa donosi potencijalne probleme ako je promet osjetljiv na čak i mala kašnjenja ili

sadrži osjetljive i privatne informacije za koje nije prikladno da im mogu pristupiti treće strane
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(kao npr. u financijskom sektoru).

Zaštita na licu mjesta (engl. on-site) radi se ured̄ajima koji mogu filtrirati promet pomoću

specijaliziranog sklopovlja (hardware), programski (software) ili hibridno (kombinacija sklo-

povlja i programskog načina). Sklopovsko filtriranje obavlja se ured̄ajima specifično izrad̄enima

za takvu zaštitu, s visokom propusnošću, ali i visokim cijenama godišnjih licenci za korištenje

pripadajuće programske podrške. Osim cijene, negativne strane ovakvih ured̄aja uključuju ne-

dostatak fleksibilnosti, kao i kompleksnost pri modificiranju ili ažuriranju, zbog čega već nakon

nekoliko godina prestaju podržavati zahtjeve trenutnih brzina mreže pa ih je potrebno mijenjati

novijim i skupljim modelima. Korištenje TCAM tehnologije u ovakvim ured̄ajima dodatno do-

vodi do toga da su oni veliki potrošači električne energije što je još jedna njihova negativna

strana. Ostale tehnologije koje se koriste pri ovom filtriranju su ASIC i FPGA, pri čemu ASIC

ima slične nedostatke kao i TCAM, a FPGA se odvaja od njih po tome što ima mogućnost

reprogramiranja.

Posljednjih godina se pojavljuju programski okviri (engl. framework) za brzu obradu pa-

keta na računalima opće namjena koji uz dovoljno napredno sklopovlje u njima mogu postizati

rezultate procesiranja paketa slične sklopovskim filtrima. To su Netmap, DPDK i XDP/eBPF,

svaki sa svojim prednostima i nedostatcima, od kojih je svima zajednička fleksibilnost i kontrola

nad filtrima stvorenima pomoću njih, budući da su jednostavniji i programabilni, za razliku od

većine sklopovskih sustava.

Hibridna zaštita spaja sklopovsku s programskom zaštitom i najčešće koristi neku vrstu

sklopovlja da bi djelomično (ili potpuno) preuzeo filtriranje na sebe i tako “olakšao” posao

filtriranja programskoj podršci za koju se očekuje da je slabijih performasi.

Zaštiti od DDoS napada pristupa se na način sličan standardnom vatrozidu — stvaraju se

liste pravila s različitim poljima koja se provjeravaju (kao npr. izvorišna ili odredišna IP adresa,

protokol ili vrata transportnog sloja) i svaki paket prolazi kroz te liste te se zaglavlje svakog

paketa uspored̄uje sa zadanim poljima. U nekim slučajevima ovakve liste pravila pokušavaju

se reducirati tako da budu minimizirane (tj. jednostavnije), ili se pomoću alata za klasifikaciju

paketa (engl. PCE — packet classification engine) pokušava doći do metode kojom se mogu

u što manje koraka dohvatiti iz memorije. Takvi alati i dalje za pretpostavku imaju da je za-

štita od DDoS napada moguća samo uz pomoć velikog broja odvojenih pravila, a za velike

volumetrijske DDoS napade potrebni su deseci tisuća ili čak milijuni takvih zapisa.

Osim navedenih “aktivnih” obrana od DDoS napada, postoji i blackhole usmjeravanje, gdje

se žrtvina odredišna IP adresa može prijaviti mrežnom pružitelju usluga te on sav promet koji

ide na tu IP adresu preusmjerava u “crnu rupu”, tj. odbacuje. Time se štiti ostatak mreže jer se

odbacivanjem velike količine štetnog prometa štedi na propusnosti, ali i efektivno ispunjava cilj

samih napadača jer je žrtva od tog trenutka nedostupna ostatku korisnika.

U ovom poglavlju još se opisuje podloga za ovaj rad iz prethodnog istraživanja — način na
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koji se poboljšava postojeće filtriranje u službi obrane od volumetrijskih DDoS napada zamje-

nom velikih popisa pravila s manjim popisom pravila, ali korištenjem dodatnih tablica u kojima

se spremaju IP adrese ili podmreže (npr. propusne ili blokirajuće), a koje se iz takvih tablica

puno brže dohvaćaju najduljim prefiksnim podudaranjem (engl. LPM — longest prefix matc-

hing). Predlaže se i hibridno filtriranje uz pomoć sklopovlja i programske podrške koncipirano

na ovakvom LPM pretraživanju, pri čemu se odmiče od paradigme da je za obranu od DDoS

napada potrebno održavati monolitne liste kompleksnih pravila.

Poglavlje 3 — Model hibridnog sustava

U trećem poglavlju opisan je model podatkovnog puta opisanog hibridnog filtra i objašnjeni su

razlozi za odabirom pojedinih komponenata: NetFPGA SUME za sklopovski dio i program-

ski filtar razvijan u prethodnim istraživanjima i projektima kao programski dio. Opisane su

prepreke pri implementaciji ovako opisanog modela te je prikazan i novi model koji zaobilazi

nedostatke prvotnoga. Opisano je na koji se način pojedine komponente modela izmjenjuju

tako da je moguće zaobići opisane prepreke. Glavni razlog za promjenom modela je nemo-

gućnost odabranog sklopovlja da na ovakav način radi kao mrežno sučelje pri dovoljno velikim

brzinama i pokušaj autora da implementira verziju koja će biti dovoljno funkcionalna, gdje se

na kraju pokazalo da na postojećem sklopovlju to nije moguće bez značajnijih i kompleksnih

promjena.

Paketi koji se trebaju filtrirati prolaze prvo kroz sklopovlje koje ih parsira, filtrira i stvara

meta-podatke ako ih je potrebno proslijediti programskom filtru. Programski filtar dobiva iste

pakete nadograd̄ene s meta-podacima, i ovisno o tome kako je programiran, parsira paket i

meta-podatke, te izvršava potrebnu akciju.

Nadalje, opisana su pravila koja se koriste u korištenom filtru i kategorizirana su na način

koji omogućava pregled kako se filtriranje (ili dio filtriranja) za pojedinu kategoriju može odra-

diti na sklopovlju ili u programskom filtru. Pravila su izgrad̄ena od jedne akcije i jednog ili

više uzorka (odvojivi osnovni dijelovi). Akcija može biti terminirajuća (ako se nakon pravila

prekida daljnji pregled paketa: npr. ACCEPT ili DENY) ili neterminirajuća (ako se nastavlja

provjera pravila). Osim toga, akcija može biti brojuća (ako treba javiti programskom dijelu da

je pravilo pogod̄eno) ili nebrojuća (ako za pravilo nije potrebno povećavati brojač). Uzorci su

podijeljeni u tri vrste: oni koji mogu biti potpuno ili djelomično odrad̄eni u sklopovlju, te oni

koji ne mogu biti odrad̄eni u sklopovlju.

Zbog ovih podjela, jedno pravilo može biti podijeljeno po tome kako ga je moguće odraditi

u sklopovlju: potpuno, djelomično ili nemoguće, s time da je potpuno rasterećivanje moguće na

pet načina (od čega su dva načina jednaka sa stajališta sklopovlja), a djelomično na tri načina.

Tako se dolazi do ukupno osam kategorija pravila s ukupno pet različitih tipova informacija koje
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je potrebno komunicirati izmed̄u sklopovlja i programskog dijela: za uzorke koji se djelomično

odrad̄uju u sklopovlju, za uzorke koji se u potpunosti odrad̄uju u sklopovlju, za sva pravila koja

su brojeća, za pravila koja su terminirajuća te dodatna informacija o tome je li bilo koje pravilo

u sklopovlju pogod̄eno ili nije.

Poglavlje 4 — Implementacija filtra paketa

U četvrtom poglavlju prikazan je primjer ovakvog filtra koji bi dobro iskoristio LPM pretragu

IP adresa i podmreža protiv DDoS napada čak i s više milijuna različitih napadača, korištenjem

više različitih tablica (popisa IP adresa i podmreža koje su sigurne za automatsko propuštanje,

ili maliciozne za automatsko blokiranje). Rad filtra je prikazan u više različitih verzija, ovisno

o statusu sigurnosti mreže. Kad mreža nije u pod DDoS napadom, filtar propušta pakete s

adresama iz tablice administratorskih IP adresa, blokira ranije prikupljene zlonamjerne adrese,

te prati neke od predefiniranih sumnjivih adresa na samom početku (npr. iz područja sumnjivih

odnosa). Nakon toga propušta ranije prikupljene sigurne adrese i potencijalno adrese s nešto

manjom garancijom sigurnosti (npr. iz zemalja u kojoj se nalazi mreža) i na kraju propušta

i prati količinu prometa svih ostalih. Ako se uz filtar koristi i dodatni alat za prepoznavanje

DDoS napada s mogućnošću izoliranja napadačkih IP adresa, njemu bi se mogli prosljed̄ivati

uzorci potrebnog prometa da on donese odluku o koracima koji slijede ako se dogodi DDoS

napad. Budući da je za prikupljanje malicioznih adresa sa nekom dozom sigurnosti potrebno

odred̄eno vrijeme, u tom slučaju bi filtar mogao prijeći u način rada gdje filtrira i dalje sve

kao i prije, ali sav nekategorizirani promet blokira i tako osigurava očuvanje propusnosti unutar

štićene mreže. Moguće je i prijeći u restriktivniji način rada gdje se propušta isključivo promet s

visokom garancijom sigurnosti (s adresama prikupljenima ranije). Kad sustav detekcije odredi

maliciozne adrese, prosljed̄uje ih filtru koji ih dodaje u tablicu za blokiranje te se njegov rad

može vratiti u normalno stanje (prije otkrivanja DDoS napada), s pretpostavkom da je većina

malicioznog prometa blokirana na početku filtriranja.

Opisane su sklopovska i programska implementacija hibridnog sustava i model distributora

posla koji odred̄uje kako filtriranje razdijeliti na sklopovski i programski dio, te “dogovoriti”

komunikaciju izmed̄u ta dva dijela. Razlog odabira FPGA za tehnologiju sklopovskog dijela je

njena fleksibilnost zbog mogućnosti višestrukog rekonfiguriranja ali i iskorištavanje paralelizma

koji FPGA donosi. NetFPGA SUME je razvojna pločica za prototipiziranje mrežnih funkcija

za brze mreže koja se od 2015. godine koristi za velik broj istraživanja u raznim projektima te

pruža mogućnosti za prototipiziranje ovakvog filtra pri 10G brzinama.

U sklopovskoj implementaciji prikazan je podatkovni put prototipa hibridnog filtra u NetF-

PGA SUME razvojnoj pločici, koristeći protokol AXI4-Stream za komunikaciju izmed̄u poje-

dinih modula u “cjevovodu” sustava. “Cjevovod” je izgrad̄en od serijski ili paralelno spojenih
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modula i sastoji se od dva dijela: jednim dijelom putuju paketi koji dolaze s dolaznog mrežnog

sučelja, tj. oni koji se provjeravaju (filtriraju) pa proslijed̄uju na izlazno sučelje ako je potrebno,

te tzv. kontrolni paketi kojima se regulira interna logika unutar sklopovlja (npr. postavljanje

vrijednosti memorije ili uključivanje i isključivanje pojedinih parsera). Iz “pravih” paketa se iz-

dvajaju svi potrebni podatci koji su potrebni za filtriranje (npr. izvorišna i odredišna IP adresa) i

pomoću njih se izgrad̄uju meta-podatci koji se pripajaju na kraj paketa i šalju na izlazno sučelje.

Postoje dva tipa memorijskih modula koji se koriste u implementaciji: Block Random

Access Memory (BRAM) i Quad Data Rate Static Random Access Memory (QDR SRAM).

BRAM je memorija integrirana na FPGA pločicu, ograničenog je kapaciteta i veoma niske la-

tencije (potrebna su do dva ciklusa takta za čitanje iz nje) a QDR je vanjski modul memorije

većeg kapaciteta ali i nešto veće latencije (do oko 20 ciklusa takta za čitanje iz nje). Oba tipa

memorije prikladni su za rad s velikim brzinama, pa se zato i koriste za filtriranje paketa: kon-

kretno, u njih se spremaju podaci potrebni za izvod̄enje LPM algoritma koje sklopovlje šalje

programskom filtru u meta-podatcima.

U predloženom sustavu koristi se programski filtar RFPF (engl. Restricted Feature-set Pac-

ket Filter), razvijen u prethodnom istraživanju. RFPF je filtar IPv4 prometa visokih perfor-

mansi, s kojim se pokazalo da može filtrirati DDoS promet pri 10G brzinama korištenjem samo

jedne jezgre CPU-a. Radi tako da se pomoću netmap programskog okvira veže za dva mrežna

sučelja te iz zadanog popisa pravila generira kod u programskom jeziku C. Taj kod se pretvara

u dinamički izvodiv program koji se “ubacuje” izmed̄u mrežnih sučelja i tako filtrira promet

u jednom i drugom smjeru. U ovom radu je prilagod̄en je hibridnom načinu rada tako da pri

stvaranju C koda uzima u obzir način na koji se filtriranje odrad̄uje na sklopovlju te u program-

skom filtriranju koristi informacije iz meta-podataka. Programski filtar odvaja meta-podatke

koji stižu sa sklopovlja od paketa s kojima dolaze i koristi ih u daljnjoj obradi.

Budući da su paketi koji dolaze do programskog filtra u implementaciji ovakvog filtra neo-

visno pripremljeni, tj. njihovi meta-podaci su stvoreni prije dolaska na njegovo ulazno sučelje,

programskom filtru nije bitno što ih je stvorilo i kako su nastali. Za potrebe testiranja i valida-

cije sustava odlučeno je pripremiti se za mjerenja tako da nema potrebe dizajnirati više različitih

sklopovskih implementacija, već je programski “simulirano” prethodno filtriranje i sklopovsko

stvaranje meta-podataka. To se radilo na odvojenom računalu, gdje su se paketi generirali i pri-

tom automatski stvarali meta-podaci, dodavali na pakete i slali prema programskom filtru. Za

generiranje paketa korišten je alat pkt-gen dodatno modificiran da po potrebi stvara i paketima

dodaje meta-podatke.

Poglavlje 5 — Mjerenja i rezultati

U ovom poglavlju prikazana je usporedba rezultata filtriranja bez rasterećivanja na sklopovlju
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i s različitim rasterećivanjima na sklopovlju. Mjerili su se prosječna ukupna propusnost i pro-

sječni broj potrošenih CPU ciklusa po paketu, a izvedena su dva tipa mjerenja: simulirana i

hibridna. I jedan i drugi tip koriste generator prometa gdje se stvara promet s potpuno nasu-

mičnim izvorišnim IP adresama te promet sličan DDoS napadu, s velikim brojem nasumičnih

izvorišnih IP adresa ali koji pogad̄aju pravila iz liste pravila koja se u tom trenutku mjeri — da

se pokaže kako filtar radi pod pritiskom. Za simulirani tip izmjereno je više različitih popisa

pravila s različitim meta-podacima za rasterećivanje na sklopovlju gdje se za neke kombinacije

dobilo i unaprijed̄enje rada filtra i za 30%. Dodatno, potvrd̄ena je i pretpostavka da je filtriranje

uz LPM algoritam višestruko bolje od filtriranja bez njega.

Mjerenja su podijeljena po listama pravila, od kojih se za svaku listu testiraju meta-podatci

povezani s tipom pravila u toj listi. Mjerenja za svaku pojedinu listu pravila izvršeno je višes-

truko da se dobije prosjek rezultata za sve tipove rasterećivanja: bez ikakvog rasterećivanja na

sklopovlju (samo programski filtar bez meta-podataka), a zatim s promijenjenim parametrima

za rasterećivanje na sklopovlju (npr. različiti broj pravila koja se na jednak način odrad̄uju u

sklopovlju).

Da bi se potvrdila simulirana mjerenja, neka od mjerenja izvela su se i prikazala na pravom

hibridnom sustavu, koristeći FPGA sklopovlje za stvaranje meta-podataka. Rezultati tih mjere-

nja potvrdili su rezultate istovjetnih simuliranih.

Poglavlje 6 — Zaključak

Kao zaključak, navedeni su znanstveni doprinosi ove disertacije: model podatkovne staze br-

zog klasifikatora mrežnog prometa temeljen na hibridnoj sklopovsko / programskoj kombina-

ciji FPGA s programskom podrškom na računalima opće namjene, model FPGA podatkovne

staze rekonfigurabilne u približno stvarnom vremenu za potporu klasifikaciji mrežnih paketa

u hibridnom sklopovsko / programskom filtru mrežnih paketa za vrijeme izvod̄enja, heuristička

metoda raspodjele posla na sklopovsku i programsku komponentu za optimiranje propusnosti

u podatkovnoj stazi hibridnog sklopovsko / programskog filtra mrežnih paketa, te metodologija

empirijske evaluacije raspodjele poslova na sklopovsku i programsku komponentu u hibridnoj

podatkovnoj stazi za filtriranje u mrežama visoke propusnosti.

Dodatno, valja naglasiti i skalabilnost ovakvog sustava, jer pri spretnom korištenju LPM

algoritma za pretragu IP adresa, filtriranje ne ovisi o broju pravila, već o metodi rasterećivanja

filtriranja na sklopovlju. Uz prikladno sklopovlje može se očekivati da će poboljšanje takvog

sustava biti održano i pri većim brzinama. U med̄uvremenu je izašla nova NetFPGA PLUS

razvojna pločica s brzinama prijenosa 100 Gbit/s, pa bi za buduće istraživanje bilo poželjno na

njoj isprobati ovakvu vrstu hibridnog pristupa filtriranja i potvrditi njegovu skalabilnost.

Osim toga, u daljnjem istraživanju fokus će se prebaciti na isprobavanje nekih od ostalih
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postojećih LPM algoritama da se utvrde njihove prednosti i nedostatci pri njihovom rastereći-

vanju na sklopovlju ali će se testovi pokušati odviti i unutar prave mreže koristeći pravi promet.
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Chapter 1

Introduction

1.1 Background and motivation

With the growth of the Internet and its rapidly increasing network speeds, there is a simultaneous

increase in the need for high-performance and high-throughput network devices. In order to

function properly and to provide the required services, these devices must be able to process

the network traffic at high speeds, reaching tens or even hundreds of millions of packets per

second. The lack of low-cost, flexible, and readily available high-throughput network devices

that can meet these requirements is emerging as a problem, especially when it comes to packet

classification and filtering.

The number of Internet users (both human and non-human) is rapidly increasing, and so

is the need for fast networks and fast, configurable and easily-accessible network processing

equipment. Thanks to continuous technological advances in recent years, high-speed networks

became available to a large number of Internet users, and inexpensive and consumer-friendly

networking equipment are available to everyone.

Any volume of data passing through an Internet Service Provider (ISP) or a datacenter

at any given time must be available to their users, without interrupting their connections or

dropping packets. This means that all network equipment must meet the same standard so that

old or inadequate devices can be easily replaced or upgraded to avoid constant and expensive

changes to the network infrastructure, while having the scalability of the equipment in mind.

These network devices may be routers, firewalls, load-balancers, and other function-specific

appliances used for various high-speed environments (e.g., ISPs, datacenters, etc.). Each type

of traffic processing requires at least the header of each packet to be be examined individually.

In order to keep up with the bandwidth of the network, all devices must be able to process all

packets (or their headers) with adequate speed. Thus, a router in the ISP infrastructure should

be able to handle any traffic that its link can support, for any frame size (from minimum to

maximum).
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Since the size of the packet headers is usually constant (and small), the total size of the

packet depends mainly on the size of the payload. Packet processing generally involves check-

ing the headers, so the total number of packets that can be processed depends solely on the

total number of headers. This means that a fully utilized link will have the largest number of

headers that should be analyzed and processed if all packets have a minimum size. Processing

this many packets is supported by specialized high-end hardware, but for normal, commodity

hardware such as PCs or servers, this limit is even more difficult to achieve — there must be

enough time for the CPU to process each packet. For Ethernet, the minimum frame size (S)

including preamble, start frame delimiter, and interpacket gap is 84 bytes and the maximum

frame size (excluding jumbo frames) is 1542 bytes. If only minimum size packets traverse a

link with a bandwidth of 100 Gbit/s (B), the total throughput (T ) of this link can be calculated

using Equation 1.1.

T = B
S = 100·109b/s

84·8b/pkt = 148.81 Mpkt/s (1.1)

Using the CPU with f = 4 GHz clock frequency, this means that each packet (i.e., its header)

must be processed in less than 27 cycles, as shown in Equation 1.2.

f
T = 4·109 c/s

148.81·106 pkt/s = 26.87 c/pkt (1.2)

Comparing this with the throughput for maximum size packets, the maximum throughput is

calculated in Equation 1.3 and the number of cycles per packet is calculated in Equation 1.4.

T = B
S = 100·109 b/s

1542·8 b/pkt = 8.11 Mpkt/s (1.3)

f
T = 4·109 c/s

8.11·106 pkt/s = 493.22 c/pkt (1.4)

This shows that the load on CPU is 18 times higher when minimum size packets are pro-

cessed, compared to when maximum size packets are processed.

Different network elements perform different tasks. Each device defines what exactly to do

with a packet once it reaches it. Network switches check the VLAN tags and / or destination

MAC addresses of incoming packets and forward them to different destinations depending on

their ARP tables or some other programming. Routers check the destination IP addresses and

compare them to their internal routing tables so that they know to which interface and next-hop

the incoming packets should be forwarded. Firewalls usually check different types of header

fields of a packet to classify it and perform an action (drop, forward, etc.). Classifying packets

in less than 30 cycles can be a difficult task, as multiple computations and memory fetches may

be required. It is unrealistic to expect regular traffic to consist only of packets of minimal size,
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but nevertheless, each network element must be able to handle this volume of data. If even

one element of the network infrastructure fails, the availability of the entire infrastructure is no

longer guaranteed.

The need for high-speed packet processing is augmented by another factor: malicious traffic

from various attacks on regular users and the network infrastructure, which can be found in

every corner of the Internet and must be filtered out, making packet classification even more

challenging. The author’s earlier work in [1] explores the use of various attacks on hosts and

networks and shows how easy it is to cause disruption to regular Internet users. It also shows that

the approach to security assessment and research of these attacks can be done with commodity

hardware and emulation software. This initiated research on how to use similar tools to protect

against such attacks.

The malicious users use various methods to cause damage or disruption and steal data / money

from their victims. One of the attacks that allows the attacker to cripple a network is the DoS

(Denial-of-Service) attack. This attack requires either an exploitable vulnerability in a proto-

col / application used by the victim’s service or a large volume of traffic to throttle the victim’s

link, leaving no bandwidth for regular users and denying them the service. Since widely used

services require a link with sufficient bandwidth to support a large number of users, a relatively

small number of attackers attacking the service must also have the same (or larger) bandwidth

to keep the link busy. This is rarely the case, and this is where DDoS (Distributed Denial-

of-Service) comes in: attackers “enroll” a large number of compromised hosts (PCs or IoT

devices), called bots, to do the work for them (with or without their knowledge). Each bot can

generate a relatively small volume of data and send it to the victim, but the combination of data

from thousands (and even millions) of bots can easily flood the entire link and make the service

inaccessible to regular users.

According to Google [2] and Cisco [3], the number of DDoS attacks is increasing expo-

nentially and will reach about 15 million per year in 2023. There are different types of DDoS

attacks, as described in this [4] taxonomy, but the main categories are: (i) volume-based attacks,

(ii) protocol-based attacks, and (iii) application-layer attacks. The (ii) and (iii) differ from (i)

in that the impact of these attacks can be mitigated by patching or repairing the vulnerable

protocol or application. Howerver, it is impossible to combat against sheer volume of traffic

without distinguishing the ‘good’ packets from the ‘bad’ ones and somehow filtering out the

bad ones before they reach the service. As mentioned earlier, this is particularly problematic

when dealing with very high network speeds (10 Gbit/s and above).

Although it was planned that the IPv4 address space would soon be replaced by IPv6 due

to recent exhaustion of IPv4 addresses, there is currently no indication that this will happen

anytime soon. Although data from Google [5] suggests that more than 30% of users access its

servers via IPv6, other sources, such as the Amsterdam Internet Exchange Service [6], show a
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much lower percentage of total IPv6 traffic, around 5%. A more realistic picture is provided by

Akamai [7], where IPv6 traffic accounts for about 20% of all Internet traffic. Statistically, with

a lower percentage of total IPv6 traffic, there are also fewer IPv6 DDoS attacks. So, since IPv4

is here to stay for a while, this thesis focuses exclusively on IPv4 traffic and combating IPv4

DDoS attacks, but the methods described can be used (with modifications) for IPv6 as well.

1.2 Thesis overview

The thesis is organized as follows:

Chapter II extends the already explained background and motivation of the thesis with a

specific problem in high-speed networks: problems of mitigating the volumetric DDoS attacks.

It describes the current state-of-the-art research and solutions to these problems. The overview

of their positive and negative sides is given. The chapter further discusses the possible improve-

ments to existing solutions by using a hybrid hardware / software system that utilizes Longest

Prefix Matching (LPM) to speed up IP address lookups and packet filtering.

Chapter III describes the proposed model of the hybrid hardware / software system for fil-

tering traffic, both the theoretical one and the one actually used in the implementation, as well

as the differences and the reasons why some decisions were made the way they were. It also

categorizes the rules used in firewalls to better prepare the separation of hardware and software

workload.

Chapter IV describes the implementation of the hybrid system; divided into hardware, soft-

ware and the distributor parts. The hardware implementation is described in detail, as it was

designed and developed (almost) from scratch, and the software part shows the adjustments

that had to be made to the existing software filter. The distributor part shows an empirically

designed model for selecting the optimal offload for the hybrid system. It also discusses how to

evaluate such a system and explains how it can be simulated without actually implementing all

the features into the hardware.

Chapter V shows simulations with different types of rulesets, offload types and traffic, and

evaluates each result. The differences between the results of the hybrid filtering and those of

the baseline filtering are shown, and the choice of rulesets and offload types used are discussed.

In addition to the simulation results, the results of one type of offload that was implemented in

hardware are also shown.

Chapter VI concludes the thesis with the contributions of this thesis and gives an overview

of possible improvements for this implementation for future work.
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Introduction

1.3 Summary of contributions

Main contributions of this thesis include:

•A model of a high-throughput network packet filtering datapath based on a hybrid hard-

ware / software implementation combining FPGA and software running on commodity

hardware. The model is described in Chapter 3.

•A model of a configurable FPGA datapath for offloading and assistance in a hybrid hard-

ware / software network packet filter. The model is described in Chapter 4.

•A heuristic method for balancing the distribution of components for optimum throughput

in the hybrid hardware / software packet filtering datapath. The method is described in

Chapter 4.

•Empirical evaluation of the proposed distribution method for separating hardware / software

components in a hybrid packet filtering datapath for high-throughput traffic environments.

The evaluation is shown in Chapter 5.

5



Chapter 2

DDoS protection

Currently, the most common methods of protecting the service from large-scale volumetric

DDoS attacks are either delegating the traffic to third-party companies (DDoS Protection Ser-

vices) that clean and return the traffic using a technique called “scrubbing”, or using hardware-

based filtering in packet switches and specialized appliances at the edge of the network. There

is also the option to combine these two solutions: specialized DDoS defense appliances on-site

for smaller attacks and the option to divert traffic to scrubbing centers if the attack grows larger

and the on-premise appliances cannot handle it, as seen in this [8] comparison.

There are certain industries (e.g., financial sector) that must adhere to rules and regulations

related to information privacy and data secrecy. Therefore, any option that requires traffic to

be diverted to a third-party runs the risk of mishandling confidential information, and hence

security and privacy risks. The only way to avoid this is to use on-premise appliances.

These appliances are network elements that use dedicated hardware and / or introduce pro-

prietary software solutions. This makes them difficult (or impossible) to upgrade or modify,

dependent on their manufacturers / vendors, and most importantly, expensive to purchase or

even maintain, often requiring annual licenses for products that implement outdated solutions

(or purchasing a newer model of the same type of appliance to meet ever changing infrastructure

needs).

Another negative aspect of hardware-specific appliances is their high energy consumption.

Due to their high throughput, Ternary Content-Addressable Memories (TCAMs) are the key

technology for storing rules on filtering-capable devices (e.g., switches), but they suffer from

limited space and high power consumption [9, 10], problematic configuration and maintenance,

and the complexity of the algorithms used to translate Access-Control List (ACL) rules to the

hardware [10].

In an attempt to match the classification speeds of hardware TCAM solutions, the work

of [11] demonstrates the possibility of implementing high-speed generic decision trie lookups

using only Field Programmable Gate Array (FPGA) technology, similar to [12], which uses
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FPGA for high-speed Longest Prefix Matching (LPM), or pseudo TCAM [13], which emulates

the behavior of TCAM in FPGA. Performing LPM lookups exclusively in hardware is limited

by the lack of available memory, so implementing multiple large LPM tables would be of ques-

tionable feasibility, but offloading even one table to hardware opens the door to some alternative

approaches. One of these has been explored in this thesis.

For older, slower networks, the traditional software packet processing tools and frameworks

available in general-purpose Operating Systems (OS) were sufficient to withstand the (then)

large amount of traffic with fine-tuning and with a relatively low penalty on the host com-

puter’s resource pool, as shown by the example of mitigating volumetric DDoS attacks with

iptables[14] in [15]. Software packet processing and even network datapath emulation on com-

modity hardware has been possible for slower networks, as the author’s own work [16] from

2014 suggests, but as network cards become commodity hardware at 10, 25, 40, and 100 Gbit/s,

general-purpose firewalls and the datapath of the typical OS network stack cannot keep up with

today’s packet processing speed requirements. Even IPset [17], an iptables extension that can

filter large rulesets by storing the rules as hash tables or bitmaps, cannot withstand the high

throughput.

In recent years, several packet processing software frameworks have emerged, promising

high-performance, flexibility, and reliability: such as Netmap [18], DPDK [19], or eBPF / XDP [20,

21] (used in CloudFlare [22] and Facebook [23]). They have become popular and mature

enough that they can fight shoulder to shoulder with hardware-based devices in packet pro-

cessing and filtering. There are a number of research works (e.g., [24, 25, 26]) that use these

frameworks for packet classification, analysis, and processing, but their solutions still suffer

from insufficient speed compared to specialized hardware devices.

Software Defined Networking (SDN), which is becoming increasingly popular, can also

be counted in this category, mostly using OpenFlow [27] as a backbone for communication

between the control and data planes. It focuses on a more generalized view of network ma-

nipulation and packet classification, which means that it suffers from some architectural limita-

tions [28] in combating large volumetric DDoS attacks. Some methods and approaches to miti-

gate DDoS attacks using SDN (such as [29]), as well as Content Delivery Networks (CDN [30])

have been documented in this [31] survey.

An alternative to hardware and software solutions is something that takes the best of both

worlds and combines both methods as a hybrid hardware / software solution. This combination

can provide an inexpensive, flexible solution that is easily updated and maintained, yet fast

enough to handle a large number of packets by leveraging the speed of hardware devices and the

flexibility of software solutions. Another advantage is ease of use and the ability to modify and

upgrade the solution without being as expensive as hardware appliances on the market. There

are three common ways to combine hardware and software: by using FPGA technology [32,
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33, 34, 35], Graphic Processing Units (GPU) [36, 37, 38, 39, 40], or software-assisted Network

Interface Controllers (smartNICs) [41, 42].

This survey [43] of fast packet processing solutions lists and explains the most popular so-

lutions, and gives some negative aspects of the hardware components. FPGA development is

slow and complex due to low-level programming in Hardware Description Language (HDL).

Therefore, it is not suitable for fast-response solutions when used in such a way that most

of the logic resides on the FPGA itself (e.g., MPFC [44], where filtering rules must be re-

synthesised and transferred to the board each time they are changed, a method also used by

HyPaFilter+ [35]). All GPU-assisted hybrid solutions suffer from high latency, as they need to

enforce packet batching to utilize the GPU parallelism, while some of them introduce packet re-

ordering that may be unacceptable in certain network environments. Moreover, these solutions

are not compatible with all GPUs due to their non-standard APIs and libraries, and GPUs are not

as energy efficient as FPGAs. SmartNICs [45] can be FPGA-based, ASIC-based, or System-

On-Chip-based (SoC-based). They are designed to offload processing tasks from the CPU. The

price / performance / flexibility ratio highly favors SoC cards as they are easy to program, but

their capabilities are limited compared to FPGA-based ones.

To evaluate the DDoS filtering solutions, the type of traffic to test them must be taken into

consideration. Each solution needs to be exposed to the type and volume of traffic equivalent

to that of a real DDoS attack. It is possible to simulate the attack by flooding the filter with

synthetic traffic with randomly generated IP addresses or by using existing traces of DDoS

attacks. CloudFlare [22] and Facebook [23] use genuine DDoS traffic to test their solutions

because they have access to a large quantity of real-world data and various DDoS attacks. Most

researchers do not have access to such data, so solutions such as [26, 34, 35, 41, 46] use synthetic

traffic to simulate DDoS attacks in their tests. By using a large pool of randomly generated IP

addresses, traffic generated in this way can approximate DDoS attacks. With no more than tens

of thousands of IP addresses used in some of the aforementioned works, such synthetic traffic

cannot compare to some of today’s volumetric DDoS attacks. For example, the attack on Dyn in

2016 had tens of millions of different IP addresses according to their report [47] (Dyn’s original

report is no longer available, but there are still various analyzes of it on the Internet [48, 49, 50]).

Any DDoS filtering system must be able to withstand such attacks.

The most effective approach to ensure that each incoming packet is processed is to fil-

ter packets sequentially (one-by-one) by matching them against defined source / destination

IP addresses and ports, and other specific patterns in incoming packets. However, filtering

volumetric DDoS attacks can be accomplished much better and easier by placing specific

source / destination IPv4 addresses in an allowlist or a blocklist. For appliances in larger net-

works, maintaining relatively large databases with allowlisted or blocklisted IP addresses or IP

ranges and searching those databases would yield better results than writing a large number of
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individual rules for each IP address and processing those rules on a per rule basis. For this type

of search, LPM would have to be utilized, which hardly any of the above mentioned solutions

even take into consideration.

Besides the “active” protection measures against DDoS attacks, there is also the possibility

to protect the attacked network infrastructure by blackhole routing / filtering (blackholing). This

involves contacting the upstream providers with the target IP addresses so that they can stop

routing all incoming traffic and save bandwidth. The result is that the victim is unreachable to

all users — both the attackers and everyone else, which essentially means that the DDoS attack

was successful. This method is used as a last (and often only) resort when there are no other

ways to protect the network other than shutting down the target and protecting the rest of the

infrastructure.

It is important to distinguish between DDoS protection (mitigation) and DDoS detection

(recognition). Although DDoS mitigation systems may include DDoS detection, this is not

always the case. The focus of this thesis is on filtering packets and mitigating DDoS attacks that

have already been detected, assuming that some other system(s) perform the task of automatic

or non-automatic DDoS detection.

2.1 FPGA

There is a plethora of projects in various research areas that utilize FPGA as the core of their

system, so it was considered the biggest candidate for the hardware part of the system in this

thesis. For example, one of the early trials was performed by Microsoft [51], where FPGA

hardware was demonstrated as a viable and efficient accelerator for web search.

There are also various efforts to use FPGA parallelism as a method for hardware or hybrid

network defense, such as a theoretical firewall shown in [52], but lacking additional function-

alities for a real hybrid system (it demonstrates only packet header parsing) or [53], another

simple but reconfigurable FPGA firewall that does not achieve 10G speeds. Other examples in-

clude Network-based Intrusion Detection Systems (NIDS) such as [54], an older reconfigurable

hybrid system where the pre-filtering hardware offloads parts of Snort[55] rules to improve its

work, a purely hardware, FPGA-based reconfigurable NIDS [56], or a high-level language (PP)

for describing packet parsing algorithms for FPGA-based packet parsers [57]. The key-value

store LaKe [58] uses a similar hybrid model for its FPGA-accelerated hybrid Memcached [59]

architecture. Although it does not address DDoS attacks or their mitigation, it demonstrates

a similar model of a hybrid hardware / software system for exchanging information between

FPGA and CPU as the one proposed in this thesis.
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2.2 Packet classification

Packet classification is mostly used in the network by Packet Classification Engines (PCE) to

classify packets according to some rules in the ruleset and to assign them a flow identifier

(flowID). Different packets can then be assigned the same flowID based on some criteria (stan-

dard 5-tuple or more fields) and the same flowID can be matched later to make some decisions

for any kind of network application, including traffic filtering.

According to this taxonomy [60], packet classification can be divided into four different

techniques: exhaustive search, decision tree, decomposition, and tuple space. All four tech-

niques start from the same basic assumption: There are a large number of rules with different

fields that need to be classified according to certain criteria. Each technique, with the excep-

tion of exhaustive search, focuses on the development of methods and algorithms that optimize

filtering by minimizing the size and complexity of the ruleset used.

For example, there are decision tree algorithms [61, 62, 63] that treat rulesets as multidi-

mensional spaces that can be “cut” depending on the overlap of these spaces, thus removing

branches from their decision tree. These algorithms are often complex to design and develop

and may even take hours to preprocess, depending on the size of the ruleset (although there

are modern “cutter” algorithms that can do this in seconds for the same rulesets, such as Cut-

Split [63]), and even then their performance depends on the implementation and often fails to

achieve speeds of TCAM hardware.

To test their methods, PCEs most often use the ClassBench [64] rule generator, a de-facto

standard for creating synthetic but realistic rulesets based on predefined statistical data.

2.3 Improving packet filtering

With the prevailing increase in the number of Internet users and the number of Autonomous

Systems (AS), the total number of prefixes in the global IPv4 Border Gateway Protocol (BGP)

routing table is also increasing, as shown in Figure 2.1. For this reason, the search for fast,

flexible, and cost-effective solutions for routing traffic has led to advances in IP lookup in soft-

ware and the development of new LPM algorithms ([65, 66, 67]), as opposed to using dedicated

hardware.

The work on software routing from [69] provided the impetus to further pursue LPM as a

possible method for high-speed packet filtering. It promised great potential, as shown in the

work of the author of this thesis [70], but still left room for improvement. The original idea

to improve such software packet filtering was to create a hybrid hardware / software system

in which packets are processed and filtered either partially by offloading some parts to the

reconfigurable hardware of the Network Interface Card (NIC) or completely in the NIC. In the
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(a) Total Autonomous Systems

(b) Total BGP table size

Figure 2.1: The increase of the Autonomous Systems and the growth of the IPv4 BGP routing table as
of 09/2021. Source: BGP Routing Table Analysis Reports [68].

case of partial offloading, the packet must be processed by both the hardware and the software.

This means that the hardware performs some necessary processing of the packet and forwards

it to the software along with some additional metadata to help the software to speed up its own

processing. Complete offloading, where filtering is done entirely in hardware, saves software

resources and speeds up the filtering process compared to filtering only in software.
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This thesis focuses on reducing the total number of rules in the ruleset by using LPM while

maximizing the total number of IP prefixes covered by the filter and minimizing the reconfigu-

ration time when the firewall ruleset configuration needs changing.

In the algorithms used in previous work, memory fetches proved to be the bottleneck in

this type of software filtering. To improve filtering throughput and reduce the load on CPU,

parts of the LPM algorithm could be computed in hardware, which would then forward the

required data to software. In addition to offloading the LPM algorithm, other types of filtering

rules could also have been offloaded through the careful elaboration and crafting of metadata

communicated between the hardware and the software. The thesis also shows research done in

this area.

The aforementioned PCEs are mostly intended to be used by hardware (ASIC, FPGA,

TCAM) due to their optimizations for parallelization. The assumption of filtering traffic with

myriad of rules and multiple matching fields, while good for working with flows, makes little

to no difference against a large volumetric DDoS attack, since IP addresses are mostly random

(source addresses are sometimes spoofed) and flows are virtually non-existent. Regardless,

PCEs should not be completely dismissed as they can be useful in future research by integrating

some of the existing schemes (such as StrideBV [71] and WeeBV [72]) as they have presented

an FPGA-based PCE capable for high-speed filtering systems with fast reconfigurability, suit-

able for DDoS attacks response.
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Chapter 3

Hybrid system model

The hardware part of the hybrid system is built using the NetFPGA SUME board. NetFPGA

boards are used for prototyping, research and development of high-speed networking systems.

Since the early 2000s, NetFPGA boards have evolved from 1G (NetFPGA 1G [73, 74], NetF-

PGA CML [75]) and 10G Ethernet interfaces (NetFPGA 10G, NetFPGA SUME [76]) to the

latest model brandishing 100G dual-port interfaces (NetFPGA PLUS). During this time, their

core elements were also improved by using better and faster FPGAs. At the time of starting

this thesis, the latest model was NetFPGA SUME, which is used in a variety of projects and re-

search ([77, 78, 79, 80], etc.), even now, more than six years after its introduction. It uses Xilinx

Virtex-7 690T FPGA, and has four 10GbE enhanced small form-factor pluggable transceivers

(SFP+), three x36 72Mbits Quad Data Rate (QDR) II SRAM memory modules, two 4GB DDR3

SODIMM memory modules and other peripherals.

NetFPGA SUME can be used either as a separate hardware network device with the com-

plete datapath designed in the FPGA, or as a NIC connected to a host. The idea for this hybrid

prototype is based on the assumption that NetFPGA is configured as a NIC. Such configuration

would make this hardware / software hybrid a standalone network middleware element installed

at the edge of the network to be protected, using separate datapaths for incoming and outgoing

traffic. The model for such a packet filtering prototype is shown in Figure 3.1. Since NetF-

PGA SUME has four network interfaces, this means that it is possible to create two separate

datapaths using two pairs of interfaces ([nf0]–[nf1] and [nf2]–[nf3]) or to bundle both datapaths

into one with double bandwidth ([nf0+nf1]–[nf2+nf3]). The packets arrive at one of the ingress

interfaces of the NetFPGA and are then forwarded to the internal FPGA logic for offload, which

parses the packet headers and, if necessary, creates and appends the metadata to the packet. If

no additional filtering is required (i.e., everything has been decided in hardware), the packet is

either discarded (dropped) or forwarded to one of the egress interfaces. Otherwise, it is sent

over the PCIe bus to the software part of the filter, along with the metadata. The software then

parses the packet and drops it or removes the metadata and forwards it back to the hardware,
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which sends it to the appropriate egress interface. Viewed from the other connected network

devices, the packet enters the filter and leaves it unchanged.

Figure 3.1: Architecture of the proposed DDoS filtering system using NetFPGA SUME NIC to com-
bine hardware and software filtering. Different arrows represent different data being transmitted: regular
arrows are packet datapaths, dashed arrows are packet and metadata datapaths, dotted arrows are com-
munication between different modules of the system.

The software part of the system can be implemented using any kind of software filter (fire-

wall) that can access the packet structure and modify it if necessary. If metadata is attached,

the filter must truncate it before forwarding it to the egress interface. For this thesis, a modified

version of an existing stateless filter described in previous research [70] was used. This filter

was chosen because the author is familiar with it, its overall performance is better compared

to similar tools, and its existing features are compatible with the assumptions of this thesis.

Even as a software-only firewall, it provided high throughput with low resource utilization, but

hardware offloading could provide additional improvements to further reduce packet processing

time.

The distributor is an intermediary for communication between the user and the system as a

whole, specifically the hardware controller and the software filter. It is a model used to deter-

mine how the packet is parsed in hardware, what metadata is created, and what filtering rules

are appropriate for hardware offloading. The distributor must take into consideration multiple

parameters before making any decisions: types of rules in the ruleset and its total size, hardware

capabilities (e.g., types of packet parsers implemented, amount of memory), software capabil-
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ities (e.g., types of implemented LPM algorithms, limitations on the number of rules), current

network status (e.g., currently under a DDoS attack), and type and volume of traffic arriving at

the filter.

As already mentioned, to implement this design, NetFPGA SUME should be used as a NIC

connected directly to the host via the PCIe bus. By using the available design (Reference NIC

project from the NetFPGA SUME repository[81], based on the RIFFA[82] generic FPGA DMA

engine), the NIC could not achieve the desired throughput for high-speed packet filtering. Since

the driver included in the project did not support the netmap [18] framework, it was decided to

create a new, improved driver for the FreeBSD Operating System (OS) that would hopefully

achieve better throughput.

During the development of the new driver, some obstacles were encountered that could not

have been avoided. In order to take advantage of the netmap framework support in FreeBSD

OS, the driver had to be developed using the iflib [83] framework. The NetFPGA SUME DMA

engine, which controls the communication between hardware and software, uses only one con-

nection to the host OS for all four physical SUME interfaces. This violates the operation of the

iflib framework, which requires one connection for each physical interface. For this reason, the

iflib method of developing the driver was abandoned in the early stages of development. This

meant that the driver had to be developed without the iflib framework and had to rely on code

from the existing Linux driver.

Further research and work on the driver revealed that the DMA engine used in the NetFPGA

SUME Reference NIC project was not implemented in such a way that it could fully utilize the

PCIe bus for data transfer between the NetFPGA SUME card and the OS. In addition, the

existing Linux driver had bugs that further slowed down their communication, and a hardware

design bug was found that caused the NIC to stop working at some point when transmitting

traffic. Due to this bug, the NetFPGA SUME board had to be reset to start working again.

Aside from the bugs fixed, the newly developed driver has been found to work slightly bet-

ter than the existing one, with the more balanced receiving and transmitting of TCP traffic, the

watchdog for the existing hardware transmit bug, working link status on the host, and hardware

traffic counters. However, due to the aforementioned limitations in the hardware implementa-

tion of the DMA engine, it was still not fast enough to work with 10G networks, so it is not

suitable for this type of filtering. The alternative was to use a different DMA engine.

There were two new DMA engines and their accompaniying drivers developed by the NetF-

PGA community: NAUDIT DMA [84] with the UAM driver and the Corundum [85] DMA

engine / driver combination. Neither of them could achieve line-rate for NetFPGA-to-host com-

munication for minimal sized network packets. Usage of the NAUDIT DMA engine and cor-

responding driver lacked the speed to transfer small packets over PCIe. According to the ref-

erenced paper, the 10 Gbit/s throughput would only be possible for device-to-host transfers of
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at least 2 kilobytes of data (host-to-device transfers require even larger payloads). This would

be inefficient unless the packets were larger or transferred in batches, but further research has

shown that the accompanying driver could only process about 700 Kpps for 64-byte packets

and did not support netmap framework. The Corundum NIC suffered from the same problems.

For this reason, and because of the complexity of developing a new DMA engine, it was

decided to change the system model so that the PCIe bus between the SUME card and the

software was not used for packet transfer, but only for minimal communication between the

distributor and the controller on the FPGA.

It was decided that in the new model, metadata should be forwarded from the FPGA to

the software filter via Ethernet. Even though this type of communication affects the overall

throughput of the entire system, it achieves sufficiently high speeds so that the system can be

used in 10G networks. The new model is shown in Figure 3.2.

Figure 3.2: Architecture of the implemented DDoS filtering system using NetFPGA SUME to combine
hardware with software filtering without using the SUME NIC design to communicate with the software
filter. Different arrows represent different data being transmitted: regular arrows are packet datapaths,
dashed arrows are packet and metadata datapaths, dotted arrows are communication between different
modules of the system.

This model is similar to the previous one, but uses an additional NIC that receives packets

along with the metadata and forwards them to the software filter. Before the packet reaches the

software, the NetFPGA performs the same task as in the previous model, except that it is not

able to automatically forward the packets to the egress interface, so this type of offloading is

disabled. To simplify the implementation, only one NetFPGA SUME interface pair is enabled
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([nf0]–[nf1]) for this model, since another one would require an additional NIC on the software

side. However, the model can be extended with another pair to increase the overall throughput

of the entire prototype.

3.1 Rule categorization

Before the system starts processing packets with the given ruleset (list of rules), the rules must

be categorized according to where they will match the packets: in hardware, software, or both.

This is done internally by the distributor component of the system after the rules are parsed, so

the user does not have to be concerned about the rule categorization process. Each category is

determined by how it can be offloaded to hardware in this implementation: fully, partially, or

not at all.

The prototype software filter used in this paper is based on the stateless filter described

in [70]. It uses a similar rule definition syntax as other standard firewalls. The filter’s ruleset

consists of rules that are applied to each packet in turn (sequentially). When a rule is found that

matches the packet, the corresponding action is performed.

Each rule has an action associated with one or more patterns (implicitly linked by a logical

operator AND), in the format:

action pattern {pattern . . . }

To determine whether individual rules can be completely offloaded to hardware, partially

offloaded to hardware or not offloaded at all, they are categorized by combining action attributes

with patterns attributes. The action and patterns attributes of the rule are defined as follows:

• action attributes

– termination — does the rule terminate, i.e. should the filter stop processing the rules

after the currently matched one,

– counting — does the rule use software counters, i.e. should the counter for that rule

be incremented if the packet is matched.

• patterns (rule body) attribute

– offload — can the combination of the rule patterns be processed in hardware and

how (fully or partially).

3.1.1 Termination attribute

Rule actions can be: ACCEPT, NC_ACCEPT, DENY, NC_DENY, or COUNT. ACCEPT and

DENY rules forward or drop packets, respectively, but at the same time they signal the software

to increment the counter for the associated rule. NC_ACCEPT and NC_DENY perform the

same actions but have no associated counters. COUNT rules are used only to signal the software
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to increment the appropriate counter. The termination attribute can have one of three possible

values:

•Accept termination ( A) — actions that forward packets (NC_ACCEPT and ACCEPT),

•Deny termination ( D) — actions that drop packets (NC_DENY and DENY),

•No termination ( N) — actions that only count packets (COUNT).

Rule termination can affect its ability to be offloaded — e.g., if the packet containing an

NC_ACCEPT rule matched on the hardware, it must be forwarded to software with the infor-

mation that no further classification is required. The software should forward this packet to its

egress interface without further processing. In this thesis, packets are assumed to pass through

the hardware and software “serially”, i.e., first the hardware, then the software. If the structure

of the hybrid model changes, this assumption may change for NC_ACCEPT rules as well —

the hardware could forward the packet without notifying the software. Whether or not the soft-

ware is notified also depends on the position of the terminating rule within the ruleset. If there

are non-offloaded terminating rules before the offloaded rule, the hardware cannot perform an

action because of the possibility of non-offloaded rules matching before the offloaded one.

3.1.2 Counting attribute

Counting attribute can have one of two possible values:

•Count ( c) — counters are incremented for these rules (actions ACCEPT, DENY and

COUNT),

•do Not count ( n) — there are no counters associated with these rules (actions NC_ACCEPT,

NC_DENY).

Counting can provide packet classification statistics and, together with an external analysis

tool, form a complete DDoS protection system with automatic detection of suspicious traffic

behavior. Some rules may have associated counters that would be sent to external software for

further analysis. As with terminating rules, the implementation of counting rules also depends

on the model of the hybrid system. In this thesis, all packets first pass through the hardware

while the software manages the counters. For this reason, when matching the rules that need to

be counted, the hardware must notify the software and those rules cannot be fully offloaded.

Since the implementation of a hybrid filter could be used in conjunction with a sepa-

rate DDoS detection system, rules with non-counting, terminating actions (NC_ALLOW and

NC_DENY) do not make much sense. Offloading these rules to hardware and filtering them

without any communication with the software would cause the system to lose potentially useful

information about incoming traffic. These types of actions are not implemented in the prototype

of this thesis, but are nevertheless included in this categorization for the sake of completeness.
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3.1.3 Offload attribute

A pattern is a minimal expression in the rule that can be true or false, e.g. “destination port

is equal to 80”. Depending on the implementation, each pattern can belong to one of three

possible groups:

•Offloadable ( pO) — can be done completely in hardware. For example, comparing a

packet protocol field with a value saved in internal hardware memory,

•Partially offloadable ( pP) — can be partially done in hardware. For example, an LPM al-

gorithm that can be divided into multiple stages can have the first stage done in hardware,

•Non-offloadable ( pN) — cannot be done in hardware.

By combining multiple patterns, the rule body changes and so does the ability to offload

rule processing from software to hardware. Depending on the type of patterns in the rule body,

the offload attribute can take one of five possible values:

•fully Offloadable ( O) — every pattern in the rule is offloadable (pO). It is possible to

offload all the patterns in the rule body to hardware,

•Partially offloadable, type 0 ( P0) — there are offloadable patterns (pO), mixed with one

or more non-offloadable patterns (pN). All offloadable pO patterns can be offloaded to

hardware,

•Partially offloadable, type 1 ( P1) — there are partially offloadable patterns (pP) mixed

with zero or more non-offloadable patterns (pN). Only parts of pP patterns can be of-

floaded to hardware,

•Partially offloadable, type 2 ( P2) — there are partially offloadable patterns (pP) mixed

with zero or more non-offloadable patterns (pN) and one or more offloadable patterns

(pO). Parts of pP patterns and all offloadable pO patterns can be offloaded to hardware,

•Non-offloadable ( N) — every pattern in the rule is non-offloadable. It is not possible to

offload anything to hardware.

Table 3.1 shows offload attributes defined by the combinations of the rule patterns.

Table 3.1: Rule pattern combination types. Types of patterns that repeat once or more are marked with
()+. Types of patterns that occur zero or more times are marked with ()∗.

O (pO)
+

P0 (pN)
+(pO)

+

P1 (pP)
+(pN)

∗

P2 (pP)
+(pN)

∗(pO)
+

N (pN)
+
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3.1.4 Offloading rules

Combining the values of the termination, counting, and offload attributes categorizes the rules

according to whether and how they can be offloaded to hardware. There are a total of 30

possible combinations of all rule attributes (three possible termination options, two counting

options, and five offload options). In the prototype used for this thesis, there are currently no

Non-terminating rules that do Not count. Therefore, they are not shown, but the remaining 25

combinations can be seen in Table 3.2.

Table 3.2: Offload types for rule categories.

Hardware ODn

Hybrid OAc, OAn, ODc, ONc

P0Ac, P0An, P0Dc, P0Dn, P0Nc

P1Ac, P1An, P1Dc, P1Dn, P1Nc

P2Ac, P2An, P2Dc, P2Dn, P2Nc

Software NAc, NAn, NDc, NDn, NNc

It is obvious that most of the rule categories are those that can be partially offloaded to

hardware. The only category that can be fully offloaded is ODn — rules that consist entirely

of offloadable patterns (pO), with the Deny termination and do Not count attributes. There

are cases where even these rules need to communicate with the software: when there are other

rules before them in the ruleset that need to be checked by the software. There are five Non-

offloadable rule types — any type of rule that consists entirely of Non-offloadable patterns.

The example of a pseudo ruleset with its categorized rules is shown in Figure 3.3.

As mentioned earlier, rules that are partially offloaded to hardware must pass information

about the success of the classification operation to the software. To do this, the hardware must

attach certain metadata to each forwarded packet so that the software can analyse it and act

accordingly.

3.1.5 Metadata

Depending on the category of each rule, different information must be conveyed to the software.

Rules that are processed entirely in hardware or in software do not require metadata, since no

communication between hardware and software is required in these cases (with the exception

when the order and the outcome of such rules affect the final outcome).

Since metadata fields vary in size, they need to be categorized and separated according to

the rule type so that they can be later categorized based on priority. The transfer of metadata

could be limited by bandwidth, so it is important to use the available data in an intelligent way.
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NC_DENY︸ ︷︷ ︸
Dn

pO︷ ︸︸ ︷
(destination port == 22) AND

pO︷ ︸︸ ︷
(protocol == TCP)︸ ︷︷ ︸

O︸ ︷︷ ︸
ODn

ACCEPT︸ ︷︷ ︸
Ac

pO︷ ︸︸ ︷
(destination port == 80) OR

pO︷ ︸︸ ︷
(destination port == 443)︸ ︷︷ ︸

O︸ ︷︷ ︸
OAc

COUNT︸ ︷︷ ︸
Nc

pP︷ ︸︸ ︷
(source IP in table GOOD) AND

pO︷ ︸︸ ︷
(destination port == 80)︸ ︷︷ ︸

P2︸ ︷︷ ︸
P2Nc

Figure 3.3: Three types of rules, annotated with their categories. The first rule specifies that every TCP
packet with destination port 22 should be dropped without counting. The second specifies that every
packet with destination port 80 or 443 should be forwarded and counted. The third rule specifies that
packets with the source IP address from the GOOD table and with destination port 80 should be counted.

If the fully Offloadable rule whose termination attribute is Accept or Deny (O[A|D]∗) is

matched, it is not necessary to check the subsequent rules in the ruleset. The software then needs

to know that the rule is matched and perform the required action. In this case, the software only

needs to know the ordinal number (ID) of the first terminating rule that matched in hardware.

If the rule has the Count attribute (O[A|D]c), the software increments its counter if the rule

matches, so no other metadata is required. As mentioned earlier, in the case of rules with the

do Not count attribute, ODn rules at the beginning of the ruleset are the exception; they do not

need to send any metadata to the software.

In the case of P0 rules, which are a combination of non-offloadable (pN) and fully-offloadable

(pO) patterns, the hardware cannot know the final result of the classification, only the results of

the individual pO patterns in the rule. This means that nothing but the result of each pattern of

that type needs to be sent to the software: one bit for each pO pattern (match or no-match).

P1 rules are a combination of partially offloadable (pP) and zero or more non-offloadable

(pN) patterns. The hardware independently computes some data useful for pP patterns and

forwards this data to the software. The size of this data is variable and depends on the pattern

used.

P2 rules can be seen as a combination of P0 and P1 rules, so the metadata needed for them is

the same as the metadata for P0 and P1 rules combined.

It is possible to further compress Table 3.2 by having the character ∗ stand for one of the

attributes it replaces, as seen in Table 3.3. This compression is possible because some categories

share the same metadata fields. The third column shows the information that must be sent to
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the software along with the packet when a rule (or a pattern) is offloaded to hardware.

Table 3.3: Offload types for rule categories and metadata types — compressed view.

Hardware ODn no metadata

Hybrid ONc bits used for Count attributes

OAc, ODc, OAn ID of the matched rule

P0 ∗∗ a bit for each match / no-match pO pattern

P1 ∗∗ parts of results / data for every pP pattern

P2 ∗∗ combined P0 and P1 metadata

Software N ∗∗ no metadata

3.1.6 Metadata field sizes

Types and sizes of metadata fields defined in Table 3.3 can be divided and described as follows:

•Partial offload — the size of metadata depends on the type of the offloaded element.

•Partial pO patterns — one bit for each pO pattern in a P0 or P2 rule.

•Rules with the Count attribute — one bit for each rule that is counted.

•Matched rule information — if the offloaded rule is matched, the software only requires

its ID, i.e. the rule number. The size of this field depends on the total number of of-

floaded rules using this metadata, so it can represent any rule number in the ruleset —

log2(total_number_of_offloaded_rules)+1 bits.

•None matched — only one bit is needed, marking true or false.

Each field is rounded up to 1 byte (8 bits) to simplify the software part of the implementation.

Partial offload

When a pattern is Partially offloaded, it cannot be marked as matched or non-matched in hard-

ware. Rather, the software filter uses the data sent by the hardware to determine whether or not

the packet matches the Partially offloaded pattern. For example, if a software filter compares

the UDP source port to a specific value, the filter must first parse the Ethernet, IP, and UDP

headers of the packet and extract the required value. Instead, the hardware can “prepare” the

UDP source port in the metadata so that the software can always extract it from the same loca-

tion without parsing the packet headers. The hardware can also do partial offload if the software

filter needs to perform LPM lookups based on IP addresses: first stages of the LPM algorithm

can be performed on hardware so that the computed intermediate data can be forwarded to

software. The software can then complete the LPM lookup using the received data.
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Depending on the type of offloaded data and the implementation of the software filter, this

data can vary in size and may contain different useful information.

Partial pO patterns

For each partial pattern pO, the hardware must determine whether the filter matches it and what

is the result of this filtering: it can be 0 (no match) or 1 (match). Each incoming packet must

be matched against each of these patterns, which are stored in the hardware’s internal memory.

This means that the amount of memory required for this metadata correlates with the number

of pO patterns in the ruleset. For example, if the ruleset contains X pO patterns, where each

of them checks whether the destination port is equal to a certain value, X bits must be stored

in hardware for each of the possible destination ports of the incoming packets (X ·216 in total).

The larger X becomes, the more data must be stored in hardware and the more metadata must

be sent to software.

Rules with the Count attribute

If there are fully Offloadable rules in the ruleset that need to be counted in the software, the

information that the rule is or is not matched must be forwarded to the software. Assuming

that the logic for matching these rules is implemented in hardware (e.g., as in the previous

paragraph), no additional logic is required to extend this metadata. However, there is the same

storage cost in hardware and overhead when transfering to software that grows with the number

of such rules in the ruleset.

Matched rule information

When a rule from the “middle” of the ruleset is fully Offloaded to hardware, it is possible for

the packet to also match any rule before it. Hardware has no information about the rules that

are not offloaded, or about whether the packet matched any of those rules and what action is

required. Therefore, it must not perform any actions on the packets that match rules from the

“middle”. The hardware must forward the information about which offloaded rule is matched

as an exact rule number (ID). The software then has the final say on the fate of the packet.

None matched

The last column specifies an optional metadata field that can be used for rules with the fully

Offloadable attribute. The fully Offloadable rules can use this field to allow the software to

skip checking rules in certain circumstances. If they are the first rules in a ruleset, they can be

skipped altogether without having to check them individually. In the implementation for this
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prototype, this bit can be included in any of the previous metadata so that a zero value means

that nothing is matched. Therefore, this type of metadata is not separately evaluated.

3.2 Offload summary

Rulesets in firewalls are usually combinations of multiple rules, often belonging to different

categories. It is necessary for the hardware to transmit multiple metadata fields at once to offload

the work as intended. The size of the metadata information to be transmitted depends on the

number of rules and their type. In some cases, due to limited bandwidth between hardware and

software, not all metadata can be included in a single metadata transfer, so tradeoffs must be

made. Although the conditions that must be met for offloading rules (or parts of them) have

been described, the use of metadata mainly depends on the capabilities and capacities of the

hardware and software. The final decision on offloading is made by the distributor based on its

input parameters regarding both this categorization and hardware / software resources.

Table 3.4 shows the complete and detailed view of each rule category and its metadata,

as explained previously. The ODn rules can be offloaded to hardware without sending any

metadata to software only if they are at the beginning of the ruleset. Otherwise, the result of their

check must be sent to the software by using the same metadata as the OAn rules. However, due

to the previously explained architecture of the implementation from this thesis, the categories

from the first two rows (ODn and OAn) are not used in the performance evaluation in the next

chapters.

Table 3.4: Metadata fields for different rule categories.

Partial Partial Counting Match rule None

offload pO patterns rules number matched

ODn

OAn x x

ONc x x

O[A|D]c x x

P0 ∗∗ x

P1 ∗∗ x

P2 ∗∗ x x

N ∗∗
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Chapter 4

Packet filtering implementation

To protect the network against unwanted, malicious traffic, it is necessary to monitor incom-

ing and outgoing traffic in some way. It can be done either with automated tools or manually.

Volumetric DDoS attacks can be noticed by an increased volume of traffic in the network in-

frastructure, especially when all traffic is directed at a small number of targets. To successfully

protect against the most powerful DDoS attacks, i.e., those with the highest traffic volumes and

the largest number of different source IP addresses, it is necessary to protect against tens of

thousands or even millions of potential attackers that are using both real and spoofed source IP

addresses.

To defend against such DDoS attacks, standard firewalls used by OS’s are not sufficient.

The paper [70] shows an alternative: using allowlists and blocklists that can classify much

larger volumes of traffic by using the LPM algorithm to check IP addresses and / or network

prefixes as they enter the network. Cleverly and quickly adding offending and other suspicious

IP addresses to the list that blocks them will prevent such traffic from entering the network. It

is also possible to have a pre-prepared list of secure and vetted IP addresses and / or network

subnets that are forwarded to the network based on certain criteria (e.g., geolocation of IP source

address — geoIP). This reduces the total number of rules (as these lists are stored and managed

separately) and allows for easier firewall configuration and management.

There are various (academic and production) automated solutions [86, 87, 88, 89] for detect-

ing such DDoS attacks, and complementing these solutions with the filtering system (firewall)

described previously could lead to an effective defense against DDoS attacks with very low re-

sponse times. In such cases, the communication between the detection system and the response

system should be such that, depending on the current state of the network (e.g. stationary state

or under DDoS attack), a list of lists and IP addresses is sent and updated live as the situation

changes.
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4.1 Action Scenario

The protection system described at the beginning of the chapter can be maintained for the exam-

ple network shown in Figure 4.1 using the ruleset shown in Listing 4.1. At the time of the attack,

an unexpectedly high volume of traffic arrives from the external network from a large number

of different IP addresses, and the DDoS attack detection system reports an incident. The list of

IP addresses that are considered suspicious and the ones detected as malicious is collected in a

database. Depending on the number of these IP addresses and the security specifications, this

may take some time. In the meantime, the DDoS attack may succeed and harm the victim.

Figure 4.1: An example of a realistic network topology protected by a described DDoS mitigation
system. The lighter connections represent communication within the system. The Test Access Point
(TAP) device is used to copy the samples of incoming traffic to the DDoS detection node. However, the
implementation of the software filter may have the option to do the same and communicate directly with
a DDoS detection system without using the TAP device at all.

To avoid unnecessary downtime, immediately after the suspicious DDoS traffic is detected

and depending on its threat level, some sort of allowlist can be used to forward only secure

IP addresses while the external tool is collecting all suspicious IP addresses. Allowlist can be

created by collecting the IP addresses earlier, during the normal operation of the network, or

by using IP addresses and networks that are less likely to be dangerous (e.g., those from the

address range of the country where the system is deployed) — examples shown in Listing 4.2

and Listing 4.3. In this way, the link to the victim remains open to (supposedly) secure users

until a sufficient number of attacker IP addresses have been collected to reduce the impact of

the attack on that link by filtering them and allowing traffic from all other addresses. When
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Listing 4.1: Ruleset example that can be used with normal network traffic.

#Constant rules:

ALLOW hosts/nets src specific ports ADMIN # secure admin access

BLOCK hosts/nets not dst PUBLIC # non -public destinations

BLOCK hosts/nets src BAD # bad IPs/nets known from smart analysis

MONITOR hosts/nets src SUSP # suspicious IPs/nets , countries or AS

=====================================================================

Additional rules depending on DDoS level of alert:

=====================================================================

#DDoS cautious (default)

ALLOW hosts/nets src GOOD # secure IPs/nets from smart analysis

ALLOW hosts/nets src GEOIP # secure IPs/nets from GeoIP analysis

MONITOR and ALLOW everyone else

the system decides that the filtering removed a satisfactory amount of malicious network traffic,

the filtering is switched back to a more relaxed mode, as shown in Listing 4.1. In this case, all

traffic is forwarded, except for traffic defined in the blocklist (with updated “bad” IP addresses

or subnets).

Listing 4.2: Ruleset example with lax allowlists.

#Constant rules:

ALLOW hosts/nets src specific ports ADMIN # secure admin access

BLOCK hosts/nets not dst PUBLIC # non -public destinations

BLOCK hosts/nets src BAD # bad IPs/nets known from smart analysis

MONITOR hosts/nets src SUSP # suspicious IPs/nets , countries or AS

=====================================================================

Additional rules depending on DDoS level of alert:

=====================================================================

#DDoS low alert lockdown

ALLOW hosts/nets src GOOD # secure IPs/nets from smart analysis

ALLOW hosts/nets src GEOIP # secure IPs/nets from GeoIP analysis

MONITOR and BLOCK everyone else

The described DDoS protection can be achieved using rulesets with only 7 rules and con-

taining 6 LPM tables. All rulesets include the rules that would forward some secure source

hosts / networks that always have access to all necessary parts of the internal network, possi-

bly further specified by destination ports (ADMIN table — e.g. partner companies, third party

administrators or employees with fixed IP addresses working from home). In addition, access

to all other parts of the network that are not publicly accessible is blocked (PUBLIC table

— e.g. IP addresses of WEB, DNS or email servers). Next, all already known bad IP ad-

dresses are blocked (BAD table — e.g. from publicly available collectors suspicious / malicious

IP addresses). Finally, traffic considered suspicious is monitored (SUSP table — e.g. countries

known for espionage or DDoS attacks and otherwise have no reason to access services on the

internal network).

27



Packet filtering implementation

Listing 4.3: Ruleset example with only a single (more strict) allowlist.

#Constant rules:

ALLOW hosts/nets src specific ports ADMIN # secure admin access

BLOCK hosts/nets not dst PUBLIC # non -public destinations

BLOCK hosts/nets src BAD # bad IPs/nets known from smart analysis

MONITOR hosts/nets src SUSP # suspicious IPs/nets , countries or AS

=====================================================================

Additional rules depending on DDoS level of alert:

=====================================================================

#DDoS high alert lockdown

ALLOW hosts/nets src GOOD # secure IPs/nets from smart analysis

MONITOR and BLOCK everyone else

=====================================================================

The rest of the ruleset depends on the situation and may change depending on whether the

network is under a DDoS attack and how severe it is. The default, shown in Listing 4.1, monitors

regular traffic with an external tool and captures secure hosts / networks that accumulate in a

secure table that is always forwarded (GOOD table — e.g., regular or unsuspicious users).

Source addresses can be classified according to their geo-location (GEOIP table — country for

which the service is intended, neighboring countries or “friendly” countries) and be included in

a special table with a lower security rating. All other traffic is forwarded, but also checked by

an external automatic DDoS attack detection system.

The DDoS low alert lockdown shown in Listing 4.2 is a similar state to the default state,

but instead of allowing all unknown traffic, it blocks everything except potentially secure tables

(GOOD and GEOIP). Since all other traffic is monitored, this helps isolate the bad IP addresses

and add them to the BAD table.

If necessary, the DDoS high alert lockdown (see Listing 4.3) additionally rejects the GEOIP

table if it is proven to be unsafe, but otherwise it works the same as the low alert lockdown.

4.2 Components

This hybrid approach consists of two main parts that the packet goes through (hardware —

FPGA, and software — LPM filter) and an additional job distributor that determines how the

packet is processed in hardware and software based on the criteria set by the user. The main task

of the distributor is to decide which metadata should be sent to the hardware with the packet

itself. Since the transmission of metadata in this implementation is limited by the Ethernet link

between hardware and software, it is important to reduce this amount of data in order to reduce

the overhead of transmission over the link. Even in the initial model that uses the PCIe bus for

hardware / software communication, the amount of metadata would again be an overhead that

would affect the speed of this communication, especially at higher network packet speeds.
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4.2.1 Real-time reconfiguration

A DDoS attack on a target starts with full force to deprive the victim of its resources, because

one of the goals of the attack is to surprise the target and not give it time to react and defend

itself. For this reason, a low attack reaction time is an important property of the defense system

and one of the reasons why solutions that require too much time for each ruleset change are not

a good choice.

For this reason, the use of an FPGA for the hardware part of such a system seems counterin-

tuitive, since its development cycle is complex and lengthy, and certainly not synonymous with

“low response time.” Development begins with the design of the system using a Hardware De-

scription Language (HDL) such as Verilog or VHDL. Since these languages are very complex,

not everyone has the skills and knowledge to update the design, even if minimal changes are

required. There are a number of tools specifically developed for hardware design without the

need to know these languages. They use High-Level Synthesis (HLS) and they allow the user to

create hardware designs at a higher level of abstraction (e.g., using the standard C programming

language) without having any knowledge of the low-level interworkings of the hardware. How-

ever, these tools are often not comparable to a human-created hardware design, especially when

it comes to performance-sensitive implementations. In most cases, nuances of the hardware de-

scription language can be lost when translating from software, resulting in lower performance

compared to implementations that come from regular hardware design. To create good hard-

ware implementations with HLS, anyone using it must have a good understanding of hardware

design and not treat the code like software, which defeats the main purpose of HLS.

After the hardware is described, the next steps of FPGA development must be considered:

design synthesis, design verification, design implementation, and FPGA programming. These

are often performed by tools that automatically “translate” the design into low-level hardware

elements, verify everything (e.g., memory requirements, correct timings) and match the design

with real, physical elements. This process can take up to 60 minutes or more, depending on the

complexity of the hardware design and the computer on which it is performed, and is therefore

not a suitable candidate for a DDoS defense system.

The prototype in this thesis is designed so that only certain memory blocks in the NetFPGA

SUME need to be rewritten to change the filtering methods and metadata creation. Therefore,

it is not necessary to re-implement the entire design to change the filtering configuration. Do-

ing all the necessary memory writes take only a few seconds and is done while the system is

running, not disrupting the packet filtering.
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4.2.2 FPGA pipeline

Network packets enter and leave the hardware interfaces one by one. Between its ingress and

egress interfaces, the packets pass through the FPGA pipeline. The pipeline consists of several

modules connected in series, each of which performs a specific set of operations. The FPGA

pipeline of this implementation is shown in Figure 4.2.

Figure 4.2: NetFPGA SUME hybrid prototype pipeline. The data transferred between modules is repre-
sented by different arrows: bold black arrows show the packet datapath using the AXI4-Stream protocol,
bold gray arrows show the datapath for control packets using the AXI4-Stream protocol, dotted arrows
show the paths for reading and writing memory and normal arrows show different data transfers between
modules.

The network interface module (NF_10GE_INTERFACE0) converts the bits received from

the optical signal transciever into 256-bit (32-byte) chunks (words) and passes them to the next

modules with each clock cycle. In the FPGA infrastructure, this is implemented using the

AXI4-Stream protocol with a data width of 256 bits. This protocol controls the data transfer

using signals between Master and Slave modules, as shown in Figure 4.3.

On the Master side, this implementation uses the following signals:

•TDATA (output) — primary payload between the Master and the Slave, this is a 256-bit

(32-byte) word of “real” network packet data.
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Figure 4.3: Connecting two AXI Stream Master modules (DMA_ENGINE and
NF_10GE_INTERFACE0) with one Slave module (INPUT_ARBITER). The logic inside IN-
PUT_ARBITER module determines from which Master module the data is read. All other wires are
disconnected for clarity.

•TKEEP (output) — essentially an enable mask for TDATA. It is a 32-bit signal where

each bit represents whether a corresponding TDATA byte contains useful data in transfer

or not.

•TUSER (output) — optional user data transfered with every packet. It can be used to

transfer additional data between different AXI modules inside the FPGA. This data is

ignored by the physical interfaces.

•TVALID (output) — 1-bit signal which indicates that the transfer of the current cycle is

valid (but only if TREADY is set at the same time).
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•TLAST (output) — 1-bit signal which indicates that the transfer of the current cycle is

the last one for a packet.

•TREADY (input) — 1-bit signal which indicates readiness of the Slave side to receive

data.

Besides these signals, there are others, such as TID (stream IDentificator) or TDEST (for AXI4-

Stream protocol routing information). Figure 4.4 shows an example of a two-word AXI Stream

packet with each of its signals. Each word is enabled by a rising clock (CLK) edge. The 32-

byte signal TDATA transmits two words (W1 and W2). The 4-byte signal TKEEP indicates two

bitmaps (the first marks the entire word W0 as active, the second marks only 12 bytes of the

word W1 as active). The 16-byte signal TUSER indicates two possible internal metadata words

(U0 and U1). The 1-bit signal TVALID marks only two cycles as valid data. The 1-bit signal

TLAST marks only the last word as the end of the packet. The 1-bit signal TREADY tells the

Master module that the Slave module is ready to receive data — active only (as an example) for

the first three rising edges of CLK.

Figure 4.4: One AXI Stream packet.

In addition to the “real” network packets coming from the physical interface, packets of

the same format of 32-byte data words can also come from the virtual interface on the host

computer, transmitted over the PCIe bus via DMA module (DMA_ENGINE).

The next module (INPUT_ARBITER) collects the packets coming from both interfaces and

forwards them further through the pipeline on a round-robin basis.

The QDR memory module used in this design requires a higher operating clock frequency

than the rest of the design. If two modules need to communicate across clock domains at

different frequencies, a third module is required to enable communication between them. This

means that each module that communicates with the QDR module must be accompanied by a
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“translator” module. To simplify the hardware implementation at the current prototyping stage,

the entire main part of the design is transported to the clock domain of the QDR module, using

only one asynchronous FIFO module (A2Q_FIFO) as such translator. This approach could lead

to potential timing issues when additional logic is added to the design. For this reason, and to

reduce the overall power consumption of the NetFPGA, it is necessary to optimize the design

to use an appropriate (low) clock frequency for modules that do not need to operate as fast.

After A2Q_FIFO, the pipeline is divided into two separate parts. The first part is used for

packets that need to be classified and forwarded to the software. The second part is used for

packets that come from the software and are used to control and manage the data flow and

metadata, and to store data in the internal FPGA memory. At the output of the A2Q_FIFO

module, the packet is written to one of the two standard FIFOs, depending on the type of the

packet (PRE_PARSE_FIFO for real and PRE_CTRL_FIFO for control packets).

After the real network packet is read from its FIFO, the packet parsing module (PARSE_PKT)

extracts all possibly useful information (e.g., Ethertype, source / destination IP address, trans-

port layer protocol, source / destination port) and stores it in individual internal FIFOs. This

information is later needed to build metadata. From the parsing module, the packet is for-

warded to the next FIFO (POST_PARSE_FIFO) where it waits for the associated metadata to

be built.

While the information is being parsed by the PARSE_PKT module, the metadata gener-

ator module (META_BUILDER) retrieves the required data from the available FIFOs. The

META_BUILDER module creates all the metadata which will be used by the software com-

ponent: e.g. Ethertype, source / destination ports or transport layer protocol. It is possible to

enable different META_BUILDER fields depending on what metadata the hardware needs to

include with the packet. In the current implementation, these fields are simply copied into the

metadata without any processing. However, additional logic can be created to use this data to

further offload filtering, as described in Chapter 3.1.

The source IP address is used slightly differently, in accordance with the LPM algorithm

used in further software processing. The explanation of the part of the LPM algorithm that is

important for this implementation can be found in Section 4.2.3 or in [65] in more detail. To

partially offload this algorithm to hardware, the values used by the algorithm are stored in the

BRAM and QDR memory used in the memory module (MEMORY). The first 16 bits of the

IP address are addressed by 16-bit data from BRAM, which is combined with the next 4 bits

of the IP address to obtain a 20-bit address for the next step — addressing in QDR memory.

Multiple read requests are made from QDR memory (depending on how many tables are used),

and the data for each table is loaded from memory. Since 72 bits can be stored to each address,

32-bit values can be stored for two different tables of the LPM algorithm, limiting the number

of read requests to 2. Reading from QDR memory takes the most time (about 20 clock cycles),
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so when all the data is read, the metadata is created and stored in the next FIFO in the pipeline

(META_FIFO).

When both FIFOs (POST_PARSE_FIFO and META_FIFO) contain the necessary data, the

metadata attachment module (ATTACH_META) sends the next data words until the last word

of each packet is reached (when TLAST is active). If the sum of the useful bytes of the last

word of the packet (from TKEEP) and the number of bytes of metadata is less than 32, the

metadata is simply appended to the last word and forwarded. If the sum is greater than 32, the

part of the metadata is sent with the current word and the last packet bit (TLAST) is set to 0.

The remainder of the metadata is sent in the next cycle, with TVALID and TLAST set to 1,

appending another word to the packet.

Before the data stream reaches the output interface, it is converted back to the low frequency

clock domain by the Q2A_FIFO module. The module forwards the data to the output network

interface module (NF_10GE_INTERFACE1) and the transceiver, from where it is forwarded to

the software filter NIC via the optical link.

The pipeline path for control packets (the right side in Figure 4.2) includes PRE_CTRL_FIFO,

PARSE_CTRL and MEMORY modules. The data from PRE_CTRL_FIFO is read by the mod-

ule for parsing control packets (PARSE_CTRL). It determines the command contained in the

packet and executes it. The control packets are used for:

•setting the metadata length,

•enabling / disabling individual parsing modules,

•writing to QDR memory (one QDR module with 2 20 72-bit memory locations, giving the

total of 9 MiB of memory) or

•writing to BRAM memory (two separate BRAM tables with 2 16 16-bit memory locations,

giving the total of 256 KiB of memory).

As mentioned earlier, each packet (including control packets) is sent through the pipeline

in 32-byte words in one clock cycle. In this implementation, a command and its parameters

can fit into a 32-byte word, allowing multiple commands to be sent in one packet. Sending

a smaller number of large control packets speeds up data transfer from the host computer to

the FPGA. When a large number of control packets needs to be sent, such as when filling all

memory locations, this speedup is quite noticable, as the packets are transmitted over the PCIe

and the bottlenecked NetFPGA SUME DMA engine. The maximum packet size (the MTU of

the NetFPGA SUME virtual interface is 1500 bytes) can hold 46 32-byte words of data, which

means that 220/46 ≈ 23,000 packets are needed to fill all 220 QDR memory locations, and

216/46 ≈ 1,400 packets are needed to fill all 2× 216 BRAM memory locations (the data for

both BRAM tables are stored in the same cycle). It is possible to send the data from the host

computer and fill all the memory locations in a very short time, even if a slow SUME driver

with a low transfer rate is used. This is done without affecting the performance of the filter. The
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formats of the control packets are shown in Figure 4.5.

Figure 4.5: Formats of the control packets. It is possible to have multiple BRAM tables — in this image,
the format for three of them is shown on the last example (DATA0, DATA1 and DATA2).

Setting the metadata length (OP = 00) copies the mask from the incoming packet to the

global register available to other modules that use it. Setting the parser properties (OP = 01)

sets the bits that enable / disable individual models for packet parsing. Writing to QDR memory

(OP = 02) is a bit more complicated, as a connection must be made to the QDR memory module,

and the address to which the data is to be written must be sent in addition to the data itself. Other

parts of the logic for writing to QDR memory are built into the implementation itself and there

is no need to send anything else in the control packet (it is possible to add another QDR memory

module to the implementation and allow parallel read / write to two QDR memory modules). To

store data on BRAM memory (OP = 03), it is also necessary to specify the address where the

data should be stored. It is possible to use multiple BRAM tables to store data in parallel, during

the same clock cycle. The E0, E1, etc. fields must be set to a non-zero value for the data to be

actually written, depending on which of the tables the user wants to write data to.

The utilization of NetFPGA SUME resources is shown in Figure 4.6. The key elements

for the design of this prototype are LUT (LookUp Tables), LUTRAM (distributed Random

Access Memory made out of LUTs) and BRAM (dedicated Block RAM), memory types on

the FPGA that are used in the implementation of the design. LUT and LUTRAM are mainly

used for logic. Since only about 8% is used, it is obvious that there is enough space to extend

the existing design. As described earlier, BRAM is used for data storage. With 38%, there is

also room to extend the implementation with other elements, such as IP address matching for a

limited number of rules.

The FPGA design of the implementation described in this thesis can be used with any com-
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Figure 4.6: Resource utilization of the implemented design on the NetFPGA SUME, data exported from
Vivado 2020.2 tool.

patible FPGA board equipped with the components required to operate as a network device.

Apart from the external memory module (QDR module in this implementation), the design

itself is generic and does not use any special hardware components.

4.2.3 Software filter

The basis for the software part of the system implementation is the Reduced Feature-Set Packet

Filter (RFPF), described in [70], used for filtering IPv4 traffic. Although it was primarily devel-

oped for FreeBSD OS, it was later ported and adapted for Linux OS. After tuning and tweak-

ing, the Linux version performed slightly better, perhaps due to the author’s familiarity with the

Linux OS. The filter uses the netmap framework to insert a user-defined datapath between two

physical network interfaces on a general-purpose computer.

Each packet from both interfaces is checked and forwarded or dropped according to the

ruleset specified. The RFPF tool is a powerful and reliable high-speed stateless firewall written

in the C programming language. It parses a ruleset written in plain text format and generates

new C code from it, which is compiled into a dynamically linked object and “inserted” into the

datapath at runtime. The use of netmap and additional compiler code optimizations enabless

high-speed packet processing that can forward traffic at 10G speeds with as little as one CPU

core.

Parsing, generating, and inserting the ruleset into the “live” datapath can be relatively fast

(this depends on the size of the ruleset and the number of prefixes in the tables used, as well as

the CPU frequency and load) — the largest ruleset used in this thesis was ready in less than 20

seconds. Even this meets the criterion for a low response time in case of a DDoS attack, but it

is also possible to hot-swap the enabled datapath ruleset with a pre-loaded one for even faster

response times (2–3 seconds). Until the new ruleset is fully loaded, the filter will continue to
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work with the “old” (current) ruleset and will not drop any packets.

When filtering with allowlist / blocklists, the LPM algorithm is used to extract data from

each list to determine whether or not the IP address being checked is in a particular list. Any

LPM agorithm can be used for this task, but the implementation of the software filter used in

this thesis uses the DXR algorithm from [65, 69], more specifically the D16X4R version. The

DXR algorithm works by compressing and storing a list in compact structures with a small

memory footprint. The original algorithm consists of 3 stages (D16, X4, and R), all executed in

software. The modified version used in this implementation separates the first two stages (D16

and X4 — indexing and retrieving from memory using a total of 20 bits) and executes them in

hardware. The hardware then forwards the result of these two stages (the 32-bit index and a

range) to the software. In the last stage, a binary search is performed over the received range (R

— range lookup) until the algorithm reaches its end and returns the final result. The final result

is the “next-hop” for a given LPM table (i.e. a label from this table), or a null value indicating a

non-match.

The LPM algorithm used in this thesis is not the only one that can achieve high performance

LPM lookups, but it was chosen to create a proof-of-concept prototype due to the author’s

familiarity with it and it showed promising results for IP routing when researched for this thesis.

Other modern algorithms include PopTrie [66], SAIL [67], but there are also older algorithms,

such as DIR–24–8 [90], that can be used in a similar way. DXR has been shown to be superior

to other algorithms in software filtering, but some of the algorithms listed could work just as

well (or even better) in the proposed hybrid model.

The original idea was to prepend the metadata at the beginning of the packet so that it would

always be in the same place. However, to simplify the implementation, it was decided to append

it to the end of the packet. When using the netmap framework, the program is given the pointer

to the beginning of the packet and its total length, so with the known length of the metadata, the

pointer to the position of the metadata can be easily calculated.

Special attention was required in adapting the existing software filter to the hybrid mode

of operation. The new software implementation had to consider which parts of the packet

were included in the metadata and how the metadata could be automatically integrated into the

generated C code after parsing the ruleset. An example of a simple generated code-snippet can

be seen in Listing 4.4, where it is possible to save CPU cycles on one ntohl operation and even

before that when calculating the position of the IP header.

4.2.4 Distributor

As already mentioned, before the distributor can divide the work, some assumptions must be

taken into account:
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Listing 4.4: Part of the code generated by RFPF, showing the difference between offloaded and non-
offloaded code.

#if OFFLOAD & OFF_IP

// if IP addresses are parsed from the metadata

uint32_t ip_src = meta ->src;

#else

// if IP addresses are not parsed from the metadata

uint32_t ip_src = ntohl(ip ->ip_src.s_addr);

#endif

•traffic type — what type of traffic is expected to go through the filter and what type of

traffic should be dropped,

•traffic volume — for lower volume traffic, the filter can do most of the work in software

without utilizing the hardware, saving power when the FPGA is offline,

•security conditions — different rulesets should be “activated” depending on the state of

the network: is it under DDoS attack or not,

•rule categories — some rules can be implemented in hardware and in software, while

other rules can only be implemented in software,

•rule number — hardware memory may not be large enough for all rules, so some rules

should be done in hardware, but others in software,

•network topology — some parts of the network can be more important, so those rules

should have priority.

Other factors that may also affect offloading are hardware / software limitations and user-

given specifications:

•software: filtering implementation, CPU frequency, CPU cache, cache size, etc.,

•hardware: filtering implementation, FPGA clock speed, memory size, memory type, etc.,

•certain rules can be forced to be (non-)offloaded, etc.

In addition to these constraints and assumptions, there is also the possibility of “minimizing”

or “simplifying” the ruleset before it is offloaded (e.g., by implementing an appropriate PCE

from Section 2.2), so that the filter can reduce resource consumption at both hardware and

software.

Since any change to the hybrid model may also require changes to the distributor model,

the distributor in the current version of prototype is not implemented as a tool, but is defined

as a heuristic method for selecting the best ruleset / metadata combination depending on pre-

specified assumptions, parameters and factors.

For example, in this thesis, it is assumed that the ruleset is created to protect the network

from volumetric DDoS attacks with a large number of random source IP addresses. To get the

most out of the LPM algorithm, the large lists of IP prefixes (such as allowlists and blocklists)
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are used to generate LPM tables that are maintained separately from the rulesets. As a result,

the number of rules in the ruleset is much smaller than in standard firewalls. These rules are

mostly category P1 ∗∗ or N ∗∗. Under this assumption, the hardware part of the implementation

is mainly created to leverage the structures of the LPM algorithms, although it is possible to

repurpose it for other types of metadata. Section 4.2.2 explains in detail how the hardware

implementation works. The distributor model for this implementation is described in Figure 4.7

and is derived from the performance evaluation in Chapter 5.

Figure 4.7: The distributor model for the hybrid filtering system.

4.3 Simulations

Packets received by the software filter component already have metadata attached to them (gen-

erated by the hardware component). To test the software component, it was easier to send the

packets directly to it without using the hardware, as if the packets came from the hardware with

metadata already added. To do this, the packets and metadata were generated using the software

packet generator without having to constantly change the FPGA design, code in complex HDL,

and wait for bitstream synthesis. Simulating the hardware in this way bypassed the complex

and time-consuming design and implementation and eliminated the middleman during testing.
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This avoided potential bugs and tedious troubleshooting when the packets sent by the generator

would not match those that arrived at the destination. At the same time, the evaluation of the

offloaded filtering proved to be more flexible and easier to perform.

The simulated packets are generated using the pkt-gen tool included in the netmap frame-

work, which is otherwise used to generate network packets from the network interface at high

transmission speeds. It had to be modified to create the metadata fast enough when generating

random packets and to include it completely in the packet when needed. Since the pkt-gen was

working on a different computer, it was possible to use multiple cores to achieve sufficiently

high transmission speeds without affecting the throughput of the filter.
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Chapter 5

Benchmarks and performance evaluation

Due to the limitations of this implementation mentioned above (additional transmission of meta-

data along with the packets themselves, i.e., using part of the bandwidth between hardware and

software exclusively for metadata), it is not possible to fully utilize the bandwidth of incoming

traffic at 10G speeds. Therefore, comparisons between offloaded and non-offloaded filtering

are performed at lower speeds to avoid reaching the upper limit of the network interface. The

maximum packet processing speed at which tests can be made depends on the size of the meta-

data. For example, with minimum packet sizes and a metadata size of 18 bytes, a processing

speed of about 12.3 Mpps can be achieved. All tests are set so that the bandwidth never reaches

the maximum value. To allow better control and consistency of tests, only one CPU core with

reduced frequency is used1.

In this way, the efficiency of the two filtering methods can be compared based on the number

of packets processed per second and the number of CPU cycles required to process one packet.

In order to avoid possible deviations in the average results due to idle CPU and to take full

advantage of it, CPU was always 100% busy during the tests. It is important to note that

NetFPGA SUME can forward minimum size packets (with metadata size of 0 bytes) from one

interface to another at a 10G line rate (14.88 Mpps) using the pipeline from the described

implementation. This shows that the operation of pipelined elements does not affect the overall

throughput, but is only limited by the size of the metadata due to constraints of NetFPGA SUME

in this implementation (as explained in Section 3). To take full advantage of it, NetFPGA

SUME would need to be used as a NIC, along with a DMA engine and a driver capable of

higher throughput.

To compare the impact of different offload types on processing and filtering, tests use

throughput (given in Mpps) and the average number of cycles the CPU takes to process one

1Software filter computer has an Intel Core i7 10700K CPU (@3.7 GHz), 16GB of DDR4@3200 MHz RAM,
Asus Z490-P motherboard and uses a dual-port Intel X520 10G NIC. Tests are performed at a CPU frequency of
2.2 GHz. The generator / sink machine has an AMD Ryzen5 3600XT CPU (@3.8 GHz), 16GB of DDR4 3200MHz
RAM, Asus Prime X570-PRO motherboard and uses the same type of Intel X520 10G NIC.
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packet.

Each rule of the software filter used in this thesis has a built-in counter for all matched

packets. The filter uses a global counter for all incoming traffic and measures a 3-second and

a 60-second averages for total throughput. The 3-second average is used to verify that the

throughput has a stable value with no fluctuations during the tests. The test results are based

on the more accurate 60-second average. This throughput value is verified in the traffic sink,

which also calculates the throughput of incoming packets in 1-second intervals. The CPU cycle

counter is also implemented in the software filter, using the assembler instruction rdtsc [91],

which acquires the processor’s timestamp counter before and after processing each batch of

packets. Using these values, it is possible to calculate the average number of cycles required for

one packet in each 3-second and 60-second interval.

5.1 Methodology

As explained in Section 4.3, the simulation of the hardware was done with metadata inserted

by an external software tool. This was the first step in testing the results for offloading different

types of metadata, rulesets and traffic types without actual hardware. This allowed much greater

flexibility in experimenting with different metadata types, sizes, and structures.

A software filter without hardware offloading is used as the baseline test for each ruleset.

The packet generator sends “normal” traffic consisting exclusively of packets without metadata.

The software filter receives the traffic, performs the necessary processing, and forwards or drops

the traffic without modifying the packet. For the same ruleset, multiple tests were performed

for offloaded filtering: changing the metadata and the type of traffic, and comparing the results

with the corresponding baseline result.

All simulations were run on the same testbed (shown in Figure 5.1), and the sessions for

each ruleset were measured separately.

It has been observed that repeating one type of test for the same session does not give con-

sistent results in terms of performance. Applications that use the netmap framework (software

filter and pkt-gen) “hook” to interfaces at startup and “unhook” to them at shutdown. This

makes netmap prone to minor inconsistencies that show up when comparing different results

from the same test. The results for the same type of offload were noticeably different each time

the test was repeated, so these inconsistencies had to be addressed. To avoid them in individual

tests, the netmap applications always remained online during each test. Although this proved

effective in avoiding result fluctuations, further research is needed to understand and fix the

issue.

To keep netmap applications online, two major changes were implemented. The first was to

modify the software filter to allow multiple different offload configurations to be stored without
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Figure 5.1: The testbed for simulated hardware tests, bypassing the NetFPGA SUME.

having to change and rebuild the generated C code. The second was to modify pkt-gen to

dynamically change both the metadata sent and the type of traffic generated without having to

restart it each time. These changes allowed each test to be consistent throughout the session,

but each time the session was restarted, the results were slightly different again. For this reason,

multiple tests were run for each session to calculate average values for throughput and number

of cycles.

Because of to the way the software filter and packet generator were implemented, the tests

were initially performed by:

•turning on the sink (it can be left running for all sessions),

•measuring the results for non-offloaded filtering:

– loading the current session ruleset with the software filter,

– turning on the packet generator,

– waiting for the throughput to stabilize,

– recording the throughput and cycle count,

– stopping the generator,

•measuring the results for offloaded filtering — repeated multiple times for several differ-

ent types of offloads, depending on the session:

– changing the offload type for the software filter,

– rebuilding the dynamically loaded filter configuration,

– turning on the packet generator with the changed metadata,

– waiting for the throughput to stabilize,
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– recording the throughput and cycle count,

– stopping the generator,

•stopping the filter.

The same tests were performed twice: for random traffic and for specific traffic.

After the modifications of the netmap applications, the new testing method was slightly

different:

•turning on the sink (it can be left running for all sessions),

•loading the current session ruleset with the software filter (no offload),

•saving the configuration,

•changing the offload type for the software filter — repeated multiple times for different

types of offloads, depending on the session:

– setting the offload type for the software filter,

– loading the current session ruleset with the software filter,

– rebuilding the dynamically loaded filter configuration,

– saving the configuration,

•turning on the packet generator,

•measuring the results for every type of offload (including no offload):

– loading the next saved filter configuration,

– changing the metadata for the traffic generator,

– waiting for the throughput to stabilize,

– recording the throughput and cycle count,

– switching the generator traffic,

– waiting for the throughput to stabilize,

– recording the throughput and cycle count,

•stopping the filter,

•stopping the generator.

All the parameters (metadata types, rulesets and traffic types) used in tests are explained

below.

5.1.1 Metadata types

Packet filtering is tested using the metadata types described in Section 3.1.5, combining multiple

metadata for some tests:

• metadata1 — data used in partially offloaded processing. Combinations of protocol,

IP / port source / destination, and 1/2/4 LPM tables offload were tested,

• metadata2 — a bit for every pO pattern from partially offloaded rules P0 ∗ ∗ or P2 ∗ ∗.

Metadata sizes of 8/16/32/64/128 bits were tested,
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• metadata3 — a bit for every rule with the Count attribute. Metadata sizes of 8/16/32/64/128

bits were tested,

• metadata4 — matched rule information. Metadata size for these tests always stayed

the same (8 bits). Different number of terminating rules (8/16/32/64/128) that can be

offloaded to hardware was tested.

5.1.2 Ruleset types

The rulesets used in tests are divided into two groups, depending on the type of rules used in

them. One group uses only COUNT rules, forcing the software filter to process each of them

before forwarding the packet to the egress interface. This ensures that the same number of

processing operations are performed for each packet, making the speed of filtering comparable

for all tests for the same group. The second group uses terminating ACCEPT rules in addition

to COUNT rules. If the packet matches the terminating rule, it no longer needs to be processed,

so subsequent rules are not checked. For this reason, the throughput for these tests is slightly

higher than the throughput for tests from the first group of rulesets. The results of tests from the

first group should not be compared with the results of tests from the second group.

It has been observed that for rulesets with a small number of rules (i.e., with fewer prefixes

in total), even the baseline filtering can reach the maximum throughput without the CPU load

reaching 100%. For this reason, no comparison was performed for such rulesets.

All of the following rulesets belong to the first group, i.e., every rule in the ruleset must be

processed:

• rs-ip — 1000 rules of the same format. Each rule checks a random source / destination

IP address — uses metadata1.

• rs-headers — 1000 rules of the same format. Each rule checks a random source / destination

IP address, a protocol and a source / destination port — uses metadata1,

• rs-partoff — 1000 rules of the same format. Each rule checks a random source / destination

IP address, a protocol and a source / destination port range — uses metadata2,

• rs-fulloff — 1000 rules of the same format. Each rule checks a port range — uses

metadata3,

• rs-lpm — 9 rules of the same format. Each rule checks whether a source IP is stored in

one of the 9 LPM tables — uses metadata1,

• rs-mix — 1009 rules of mixed formats. Rules from rs-lpm randomly inserted rules into

rs-headers ruleset — uses metadata1,

• rs-lpmpart — 9 rules of mixed formats. All rules are the same as the ones from the

rs-lpm ruleset, but 8 of them additionally check if the destination port is within a certain

port range — uses metadata1 and metadata2,

• rs-lpmfull — 137 rules of mixed formats. Rules from rs-lpm randomly inserted into
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128 of the fully offloadable COUNT rules that check if the destination port is within a

certain port range. — uses metadata1 and metadata3.

All the following rulesets belong to the second group, i.e., they contain terminating rules:

• rs-skipa — 1000 rules, each rule checks a random destination port range, 128 of the

rules are ACCEPT — uses metadata4

• rs-skipa_alt — 1000 rules, same as rs-skipa, but the ACCEPT rules are at the be-

ginning of the ruleset — uses metadata4

• rs-lpmskipa — 137 rules, same as rs-lpmfull, but non-LPM rules are ACCEPT in-

stead of COUNT — uses metadata1, metadata4

• rs-lpmskipa_alt — 137 rules, same as rs-lpmskipa, but the ACCEPT rules are at the

beginning of the ruleset — uses metadata1, metadata4

5.1.3 Traffic types

Since it is very difficult to obtain real DDoS traces because ISPs and larger companies that have

been victims of attacks are reluctant to release them (mainly for privacy reasons), this thesis

uses synthetic traffic as the source of DDoS traffic. Different types of inbound traffic affect

the performance of the filter differently. For example, traffic with repetitive characteristics puts

much less load on CPU than random traffic because in those cases CPU is more likely to utilize

its cache and instruction prediction. Matching multiple different rules also requires more CPU

cycles.

Two different types of traffic are used for tests:

• random — completely random traffic, random source / destination IP addresses and ports,

• specific — DDoS traffic with specific source / destination IP addresses and ports (in

order to match most of the rules in the ruleset) mixed with 10% random traffic.

Completely random traffic is not very realistic, either in a DDoS attack or as everyday traffic,

but it serves as a benchmark for CPU testing with unexpected inputs and non-cacheable results.

Random traffic mixed with mostly malicious traffic with IP addresses from blocklists and with

regular traffic from allowlists is a much more realistic case of a DDoS attack. This shows how

well the filter can work in situations where most of the traffic matches the rules of the ruleset.

The random traffic was generated from the entire set of IP addresses (232 source IP addresses

in total). The DDoS (specific) traffic covers a narrower range of IP addresses, depending on

the ruleset of the particular test.

Figure 5.2 shows the average throughput and average number of cycles for all rulesets in

the first group for both types of traffic. Figure 5.3 shows the average throughput and average

number of cycles for all rulesets in the second group for both types of traffic.
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(a) Random traffic throughput (b) Random traffic cycle count

(c) Specific traffic throughput (d) Specific traffic cycle count

Figure 5.2: Average filtering throughput and average cycle count of non-offloaded rulesets (rulesets with
only COUNT rules).

In Figures 5.2 and 5.3, there is a significant difference in the throughput of one type of

rulesets (without LPM) compared to the other type (with LPM). This difference highlights the

advantage of using LPM when filtering traffic in high-speed networks. The results of these

two types of rulesets are not comparable because they differ in the total number of prefixes

used when filtering. To make the comparisons with the software filter implementation from

this thesis truly “fair,” the non-LPM rulesets would have to be extremely complex and large

(degrading throughput even more), or the LPM rulesets would have to be extremely simple

(with even higher throughput). A similar method to LPM, but inferior in performance (due to

the large memory footprint), is used by the IPset utility, which stores and lookups prefixes to a

set using hash functions.

47



Benchmarks and performance evaluation

(a) Random traffic throughput (b) Random traffic cycle count

(c) Specific traffic throughput (d) Specific traffic cycle count

Figure 5.3: Average filtering throughput and average cycle count of non-offloaded rulesets (rulesets with
COUNT and ACCEPT rules).

5.2 Software filter with pre-generated metadata

The rulesets and their test results are shown in this section. All results from the evaluation show

the comparisons of different offloaded filtering results (throughput and CPU cycle count) with

non-offloaded (baseline) results.

Ruleset rs-ip

To combat volumetric DDoS attacks, a large number of IP addresses must be filtered. Listing 5.1

shows part of a simple firewall, filtering only 1000 different IP addresses. The ruleset consists

only of simple rules to check the source / destination IP address of the packet. The tests are

performed under the assumption that each pattern is Partially offloadable (pP), which puts the

rules in the P1 category. The IP addresses were inserted as metadata1 in the metadata to be

used by the software filter, as explained in Section 3.1.5.

The results in Figure 5.4 show an average increase in throughput and a decrease in the

number of CPU cycles of about 3.9% for specific traffic. The improvement for random

traffic is slightly smaller at about 2%.
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Listing 5.1: Excerpt from the ruleset rs-ip. All IP addresses are randomly generated.

...

count src 110.10.179.196

count src 141.134.184.89

count src 182.34.201.184

count dst 156.54.137.236

count dst 207.244.118.207

count src 106.75.133.10

count dst 191.6.91.22

count dst 83.209.148.98

...

(a) Random traffic throughput (b) Random traffic cycle count

(c) Specific traffic throughput (d) Specific traffic cycle count

Figure 5.4: Average filtering throughput and average cycle count of non-offloaded and offloaded ruleset
rs-ip.

49



Benchmarks and performance evaluation

Ruleset rs-headers

To further test the influence of the different metadata1 information on filtering, a ruleset with

multiple test parameters was created. In addition to the source / destination IP addresses from

the rs-ip ruleset, each rule also contains the source / destination ports and protocol. Each rule

is still categorized as P1, and each check can be defined as a separate Partially offloadable

pattern (pP). Part of the ruleset can be seen in Listing 5.2.

Listing 5.2: Excerpt from the ruleset rs-headers. All IP addresses, ports and protocols (TCP or UDP)
are randomly generated.

...

count src 110.10.179.196 tcp dst port 9196

count src 141.134.184.89 udp dst port 18489

count src 182.34.201.184 udp dst port 1184

count dst 156.54.137.236 tcp src port 37236

count dst 207.244.118.207 udp src port 18207

count src 106.75.133.10 tcp dst port 13310

count dst 191.6.91.22 udp src port 9122

count dst 83.209.148.98 udp src port 14898

...

The test results for the rs-headers ruleset are shown in Figure 5.5. This type of offloading

yields even less benefit than in the rs-ip ruleset, with a maximum average reduction in the

number of cycles of 2.9% for specific traffic in the case when every field is offloaded (All

case). The offload of the protocol field (Protocol case) shows a small increase in the number of

cycles (lower throughput) for both traffic types. Although it does not seem logical that there is

a performance drop, it should be considered that the addition of metadata leads to an increase

in the total packet size. In addition, the internal allocation of the required metadata to program

memory could have a negative impact on the operation of the software filter.

Since both the rs-ip and rs-headers rulesets are offloaded using metadata1, the infor-

mation from the packet being checked is not extracted from the packet during filtering, but is

stored in the metadata at a predetermined location. An example of the implementation of such

an offload method for the system used in this thesis is previously shown in Listing 4.4.
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(a) Random traffic throughput (b) Random traffic cycle count

(c) Specific traffic throughput (d) Specific traffic cycle count

Figure 5.5: Average filtering throughput and average cycle count of non-offloaded and offloaded ruleset
rs-headers.

Ruleset rs-partoff

Similar to rs-headers, in this ruleset, a portion of which is shown in Listing 5.3, all 1000

rules check the source / destination IP addresses, but these checks are considered pN patterns.

Additionally, each rule checks a pO pattern of a randomly generated UDP port range. Therefore,

the category of these rules is P0. Technically, the UDP check should also be considered a

separate pattern, but for simplicity this check has been merged with the port range check and

can be considered a single pattern.

Offloading P0 rules uses the metadata2 metadata type. This metadata contains a bitmap

with a non-match or match value (0 or 1) for an offloaded pO pattern in a rule. In the software

filter, this is implemented by checking the bitmap for each rule instead of checking the port

range that would otherwise be checked at this point, as shown in Listing 5.4. As mentioned

earlier, this C code is automatically generated as each ruleset is parsed and compiled into an

executable program. Part of the efficiency of this software filter is achieved by using “hard-

coded” values (such as IP address 0x6e0ab3c4 or protocol 17), since the compiler can optimize
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Listing 5.3: Excerpt from the ruleset rs-partoff. All IP addresses and port ranges are randomly
generated.

...

count src 110.10.179.196 udp dst port 19-919

count src 141.134.184.89 udp dst port 8489 -18489

count src 182.34.201.184 udp dst port 1184 -1184

count dst 156.54.137.236 udp dst port 7236 -37236

count dst 207.244.118.207 udp dst port 8207 -18207

count src 106.75.133.10 udp dst port 3310 -13310

count dst 191.6.91.22 udp dst port 12-912

count dst 83.209.148.98 udp dst port 4898 -14898

...

these constant values during compilation.

Listing 5.4: Software implementation of the metadata2 offload.

/* Non -offloaded rule check */

if (( ip_src == 0x6e0ab3c4) && // if src IP is 110.10.179.196 AND

(ip_p == 17 && // protocol is UDP AND

((t = dport) >= 19 && t <= 919)) // dport is between 19, 919

COUNT (1); // count rule as matched

/* Offloaded rule check */

if (( ip_src == 0x6e0ab3c4) && // if src IP is 110.10.179.196 AND

(meta ->rulebits & 0x80) // metadata most significant bit is 1

COUNT (1); // count rule as matched

The results are shown in Figure 5.6. For specific traffic the results show increases in

the number of CPU cycles (up to 1.6% more) for smaller numbers of offloaded patterns (<64),

while the 5.5% speedup is visible when 128 port ranges are offloaded. For random traffic, the

results are similar, with a 2% speedup for 64, increasing to 8.9% for 128 offloaded patterns.
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(a) Random traffic throughput (b) Random traffic cycle count

(c) Specific traffic throughput (d) Specific traffic cycle count

Figure 5.6: Average filtering throughput and average cycle count of non-offloaded and offloaded ruleset
rs-partoff.

Ruleset rs-fulloff

The rs-fulloff ruleset is similar to the rs-partoff ruleset, but its 1000 (counting) rules only

check port ranges, while IP addresses are not checked at all, as it can be seen in Listing 5.5.

Since these port ranges are offloaded to hardware, they are considered pO patterns. As the rules

contain only pO patterns, they fall into the ONc category.

Listing 5.5: Excerpt from the ruleset rs-fulloff. All port ranges are randomly generated.

...

count udp dst port 19-919

count udp dst port 8489 -18489

count udp dst port 1184 -1184

count udp dst port 7236 -37236

count udp dst port 8207 -18207

count udp dst port 3310 -13310

count udp dst port 12-912

count udp dst port 4898 -14898

...
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Therefore, metadata3 is used to offload the rules. The implementation for metadata3 uses

the same bitmap technique as for metadata2, but there are no additional checks for the same

rule. An example of the implementation can be seen in Listing 5.6.

Listing 5.6: Software implementation of the metadata3 offload.

/* Non -offloaded rule check */

if (ip_p == 17 && // if protocol is UDP AND

((t = dport) >= 19 && t <= 919)) // dport is between 19, 919

COUNT (1); // count rule as matched

/* Offloaded rule check */

if (meta ->rulebits & 0x80) // if metadata most significant bit is 1

COUNT (1); // count rule as matched

The results for this offload type can be seen in Figure 5.7. The results for random traf-

fic show the performance degradation regardless of the number of offloaded rules (up to 6.5%

increase in cycles) except for 64 offloaded rules (2% decrease in cycles). The results for spe-

cific traffic show degradation for 8 and 16 offloaded rules (up to 7.1% increase in cycles) and

improvements for the rest (up to 4.4% for 64 rules).

Protection against DDoS attacks is the priority of this filter. So, although there is perfor-

mance degradation for random traffic, offloaded filtering of specific traffic shows improve-

ment over non-offloaded filtering. The filter can be configured to adapt to different types of

traffic by enabling / disabling hardware offload as needed.

Since there are no IP address checks in this ruleset, the specific traffic has been modified

to use 90% of the ports from any port range in the ruleset and 10% of the random ports. This

specification of traffic also applies to other rulesets with port-only checks, while rulesets with

IP address checks and port checks use the combination of both values when generating traffic.

Ruleset rs-skipa

The rs-skipa ruleset is similar to the rs-fulloff ruleset, but belongs to the second group

of rulesets because it uses terminating rules. Of its 1000 rules, some are not checked in the

software, but are marked as offloaded. The software only checks if they match the rule number

read from the metadata. Part of the ruleset is shown in Listing 5.7. All port ranges of the 128

offloada rules are sequential (from 0-63 to 8128-8191) so that traffic matches each rule with

equal probability. All other port ranges in the count rules are randomly generated, as in the rs-

fulloff ruleset. Rules marked with offloada consist only of one Fully offloadable pattern

(pO) and terminate with the Accept action, which increments the counter, putting these rules in

the OAc category.
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(a) Random traffic throughput (b) Random traffic cycle count

(c) Specific traffic throughput (d) Specific traffic cycle count

Figure 5.7: Average filtering throughput and average cycle count of non-offloaded and offloaded ruleset
rs-fulloff.

Listing 5.7: Excerpt from the ruleset rs-skipa.

...

count udp dst port 7203 -37203

offloada udp dst port 1664 -1727

count udp dst port 245 -10245

count udp dst port 12-412

count udp dst port 19-419

offloada udp dst port 1728 -1791

...

The OAc category uses the metadata4 type of offload. An example of the software imple-

mentation is given in Listing 5.8. When this type of offload is enabled, the rules marked with the

offloada keyword are not checked, as they normally would be when the C code is generated.

Instead, the program checks the rule number from the metadata. For each offloada rule that is

not offloaded to hardware, the usual software check is performed.
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Listing 5.8: Software implementation of metadata4 offload.

#if OFFLOAD & META4 // metadata4 is active

if (meta ->skip == 11) // if metadata is offloaded rule #11

#else // metadata4 is not active

if (ip_p == 17 && // if protocol is UDP AND

((t = th_dport) >= 12 && t <= 912)) port is between 12, 912

#endif

ACCEPT (18); // count and accept rule as matched

As explained in previous chapters, metadata4 is created for cases where the packet must be

dropped / forwarded if a rule is matched and all subsequent rules are not checked at all. This test

is different from the previous ones because such packets are forwarded. This can increase the

overall throughput as all other rules after the matching one do not need to be checked, saving

CPU cycles.

This type of metadata could be implemented in the same way as metadata3, but this would

mean that each metadata entry would have to have two bits (for a total of three combinations —

no match, match Accept and match Deny). This is because multiple rules can be matched at the

same time, but only one action is performed in each case.

The results in Figure 5.8 show that the number of offloaded rules affects performance. For

specific traffic, when the number of rules is smaller (8, 16, and 32 offloaded rules out of

a total of 1000) the performance decreases (the number of cycles increases by about 2–4%).

For 64 offloaded rules, there is no significant change in performance, but for more rules (128),

performance increases (the number of cycles decreases by about 2.4%). For random traffic,

this type of offloading also leads to worse performance, with only 128 offloaded rules having

a somewhat positive impact on performance (the number of cycles decreases by 0.7%). The

results show that the ratio of offloaded to total rules must be as large as possible to achieve a

positive performance change. However, due to hardware limitations, there is a limit to this ratio,

which is discussed in the hardware section of this chapter.

Alternatively, metadata4 offload can be implemented differently if such rules are used only

at the beginning, before all other rules in the ruleset, i.e., only if there are no software or hybrid

rules before them (as shown in Listing 5.9).

In this way, the software does not need to check each offloaded rule individually, but only

needs to perform one check before proceeding with the rest of the rules: if the rule matches in

hardware, the offload metadata is non-zero and the software should simply perform the appro-

priate action for that rule, as shown in Listing 5.10. If the offloaded rules are non-terminating

rules, there should also be multiple metadata fields and this code should iterate through them

all.

The results for this ruleset are shown in Figure 5.9. For specific traffic, this type of
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(a) Random traffic throughput (b) Random traffic cycle count

(c) Specific traffic throughput (d) Specific traffic cycle count

Figure 5.8: Average filtering throughput and average cycle count of non-offloaded and offloaded ruleset
rs-skipa.

Listing 5.9: Excerpt from the alternative ruleset rs-skipa_alt. All port ranges are the same as in the
original ruleset, only their order is changed.

offloada udp dst port 0-63

offloada udp dst port 64-127

offloada udp dst port 128 -191

offloada udp dst port 192 -255

offloada udp dst port 256 -319

...

count udp dst port 19-919

count udp dst port 8489 -18489

count udp dst port 1184 -1184

count udp dst port 7236 -37236

count udp dst port 4898 -14898

...

performance improvement from offloading is more pronounced than for the original ruleset.

The performance increase is visible for as few as 16 rules and increases to 28.9% for 128

offloaded rules. This is because the generated filter has fewer “if” conditions, which makes
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Listing 5.10: Alternative software implementation of metadata4 offload.

if (meta ->skip) // if the matched rule is non -zero

ACCEPT(meta ->skip); // increment its counter and terminate

CPU’s job easier and optimizes it by generating fewer possible branches when compiling the C

code (essentially, the ruleset behaves as if it has fewer rules in the ruleset). Also, most of the

traffic is concentrated on the offloaded rules, so this has a greater impact than in the random

traffic scenario (only 0.8% decrease in cycle count with 128 offloaded rules).

(a) Random traffic throughput (b) Random traffic cycle count

(c) Specific traffic throughput (d) Specific traffic cycle count

Figure 5.9: Average filtering throughput and average cycle count of non-offloaded and offloaded ruleset
rs-skipa_alt (first rules offloaded).

Ruleset rs-lpm

The rs-lpm ruleset differs from previous rulesets in that it uses prebuilt tables (lists) populated

with various IP addresses and subnets. The ruleset consists of 9 rules using a total of 9 tables,

and is shown in full in Listing 5.11. Each rule consists of one Partially offloadable pattern (pP),

which makes these rules category P1.

58



Benchmarks and performance evaluation

Listing 5.11: Ruleset rs-lpm.

include gl2_city.cfg # 3 ,075,452 prefixes

include blocklist_3.cfg # 1 ,113,394 prefixes

include gl2_asn.cfg # 430 ,976 prefixes

include gl2_country.cfg # 338 ,012 prefixes

include allowlist_3.cfg # 264 ,364 prefixes

include allowlist_2.cfg # 201 ,478 prefixes

include blocklist_1.cfg # 177 ,936 prefixes

include allowlist_1.cfg # 82 ,157 prefixes

include blocklist_2.cfg # 11 ,213 prefixes

count src table allowlist_1 any # rule #1

count src table allowlist_2 any # rule #2

count src table allowlist_3 any # rule #3

count src table block_3 any # rule #4

count src table gl2_country HR,US,JP ,CN,SR # rule #5

count src table gl2_city 1880252 # rule #6

count src table block_2 any # rule #7

count src table block_1 any # rule #8

count src table gl2_asn 1221 # rule #9

Ranges of IP addresses allocated to specified cities, countries, and AS’s are listed in tables

gl2_city, gl2_country, and gl2_asn. Each entry in the table is labeled with a code belong-

ing to a certain city, country, or AS and can be used to create rules such as #5, #6, or #9. The

blocklists contain IP addresses taken from various publicly available collectors of malicious

and dangerous IP addresses. The allowlists were created by monitoring the network traffic of

the Faculty of Electrical Engineering and Computing, Department of Telecommunications for

one month. The traffic payload was ignored, only the source / destination IP addresses were

recorded. For the purposes of this thesis, only public IP addresses are listed and considered

secure. Local IP addresses were removed as traffic was observed behind a NAT. Blocklists and

allowlists are intentionally divided into 3 tables of different sizes to further complicate the work

of the filter.

With such tables and LPM it is possible to filter a much larger number of network prefixes.

In this case, all 9 tables contain a total of 5.6 million prefixes.

Like the rs-ip and rs-headers rulesets, this ruleset uses the same type of offload, which

only “helps” the software filter by attaching useful data to the packet (metadata1). However,

because the rs-lpm ruleset uses LPM lookups, this software implementation is different, as

shown in Listing 5.12.

By using if preprocessor directives while compiling the C code, the implementation of this

type of offload selects functionality based on whether metadata1 is enabled. If non-offloaded

filtering is used, the function performs the “regular” LPM lookup, as explained in Section 4.2.3.

Otherwise, part of the function is skipped and the precomputed direct_entry structure is

forwarded from the metadata. The rest of the code (i.e., the range_lookup function) is called in
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Listing 5.12: Software implementation of metadata1 offload for LPM tables.

#if OFFLOAD == META1

static int

tbl_lookup(uint32_t dst , struct direct_entry de, void *rp)

{

#else

static int

tbl_lookup(uint32_t dst , uint32_t dxr_d , void *dp, void *rp)

{

int di;

uint16_t *dt = dp;

struct direct_entry *xt = (void *) &dt[1 << dxr_d];

struct direct_entry de;

di = (dt[dst >> (32 - dxr_d)] << (20 - dxr_d)) + ((dst >> 12) &

(0 xffffffff >> (32 - (20 - dxr_d))));

de = xt[di];

#end

if (predict_true(de.fragments == 1014))

return (de.base);

return (range_lookup(dst , de, rp));

}

both cases.

The goal of this test was to measure the performance by offloading different LPM tables,

as well as the performance of a different number of LPM tables. The results in Figure 5.10

and Figure 5.11 show a comparison of filtering with different combinations of offloaded LPM

tables for random and specific traffic. To observe the effect of offloading additional metadata

of the same type (metadata1) when filtering with the same ruleset, another batch of tests was

performed. In addition to offloading LPM tables, the metadata also included the source IP

address of the packet.

Offloading blocklist_3 (b3) and gl2_country (co) tables has the largest impact because

these tables cover the largest number of packet prefixes. When the impact of the offloaded

tables is smaller, the performance drops about 2% below the baseline performance (e.g., for

allowlist_3 — a3). This minor drop proves that offloading does not significantly affect

filtering performance when processing non-critical traffic. The highest performance gains are

seen when using four-table metadata (approximately 10.5% fewer cycles are used for both types

of traffic) and with source IP address (the number of cycles decreases by 11.6% for specific

and 11.1% for random traffic).

The performance of the filter with additional source IP addresses in the metadata is higher

in one case with two LPM tables (b3co) and in the case with four LPM tables. In all other

cases, the additional metadata increased the performance of the filter by about 2% less than the

filtering when offloading only LPM tables.
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(a) Random traffic throughput

(b) Random traffic cycle count

Figure 5.10: Average filtering throughput and average cycle count of non-offloaded and offloaded ruleset
rs-lpm for random traffic.
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(a) Specific traffic throughput

(b) Specific traffic cycle count

Figure 5.11: Average filtering throughput and average cycle count of non-offloaded and offloaded ruleset
rs-lpm for specific traffic.
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Ruleset rs-lpmpart

The rs-lpmpart ruleset, shown in Listing 5.13 is similar to the rs-lpm ruleset, but 8 (out of 9)

rules also have a port range check included in the rule. This places these rules in the P2 category

and serves as a way to test the combination of metadata1 and metadata2. The tests were done

only for tables that showed performance improvement in the rs-lpm tests.

Listing 5.13: Excerpt from the ruleset rs-lpmpart. Port range checks are taken from the rs-partoff
ruleset.

include gl2_city.cfg # 3 ,075,452 prefixes

include blocklist_3.cfg # 1 ,113,394 prefixes

include gl2_asn.cfg # 430 ,976 prefixes

include gl2_country.cfg # 338 ,012 prefixes

include allowlist_3.cfg # 264 ,364 prefixes

include allowlist_2.cfg # 201 ,478 prefixes

include blocklist_1.cfg # 177 ,936 prefixes

include allowlist_1.cfg # 82 ,157 prefixes

include blocklist_2.cfg # 11 ,213 prefixes

count src table allowlist_1 any udp dst port 9658 -19658

count src table allowlist_2 any udp dst port 663 -1663

count src table allowlist_3 any udp dst port 10-310

count src table block_3 LV3 udp dst port 376 -10376

count src table gl2_country HR,US,JP ,CN,SR udp dst port 1202 -31202

count src table gl2_city 1880252 udp dst port 201 -6201

count src table block_2 any udp dst port 6213 -16213

count src table block_1 any udp dst port 6202 -46202

count src table gl2_asn 1221

The results for this ruleset, shown in Figure 5.12 and Figure 5.13, are similar for both ran-

dom and specific traffic. It shows that using multiple tables for offloading gives better results.

For random traffic, using one LPM table (gl2_city — ci) resulted in a 2.4% performance

improvement. Using two LPM tables (combination of gl2_city and blocklist_3 — cib3)

increased performance by 5%. Using four LPM tables increased performance by 11.1%. Using

one LPM table (blocklist_3 — b3) increased performance by 5.2% for specific traffic.

Using two LPM tables (combination of gl2_city and blocklist_3 — cib3) increased per-

formance by 7.5%. The use of four LPM tables increased the performance by 9.9%.

Using additional port range offloading further improves performance when using four LPM

tables for both traffic types (a difference in the number of cycles of 1.5–2%). When offloading

one table, the results are worse when using port range offloading (a difference in the number of

cycles of 1–2%), and when offloading two tables, the results are similar for both cases. Using

four tables is the best case and increases performance for both traffic types (12.4% fewer cycles

without additional port range offloading for random traffic and 11.2% for specific traffic).
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(a) Random traffic throughput

(b) Random traffic cycle count

Figure 5.12: Average filtering throughput and average cycle count of non-offloaded and offloaded ruleset
rs-lpmpart for random traffic.
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(a) Specific traffic throughput

(b) Specific traffic cycle count

Figure 5.13: Average filtering throughput and average cycle count of non-offloaded and offloaded ruleset
rs-lpmpart for specific traffic.
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Ruleset rs-lpmfull

The rs-lpmfull ruleset is used to test a combination of metadata1 and metadata3 offloading

because it is a combination of rules from the P1 and ONc categories. It consists out of 128 fully

offloadable counting rules (port ranges), with all 9 rules from rs-lpm randomly inserted into the

ruleset, as shown in Listing 5.14. The tests were done only for tables that showed performance

improvement in the rs-lpm tests.

Listing 5.14: Excerpt from the ruleset rs-lpmfull. Port range checks are taken from the rs-partoff
ruleset.

...

count udp dst port 5568 -5631

count udp dst port 5632 -5695

count udp dst port 5696 -5759

count src table gl2_country HR,US,JP ,CN,SR

count udp dst port 5760 -5823

count udp dst port 5824 -5887

count udp dst port 5888 -5951

...

The results for this ruleset, shown in Figure 5.14 and Figure 5.15, are similar for both

random and specific traffic. Using more tables for offloading gives better results in each test,

but using additional port range offloading results in performance degradation (a difference in

cycles of 1–6%) in each case compared to offloading by using only LPM tables. Using four

tables is the best case as it increases performance for both traffic types (13.3% fewer cycles

without additional port range offloading for random traffic and 12.3% for specific traffic).
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(a) Random traffic throughput

(b) Random traffic cycle count

Figure 5.14: Average filtering throughput and average cycle count of non-offloaded and offloaded ruleset
rs-lpmfull for random traffic.
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(a) Specific traffic throughput

(b) Specific traffic cycle count

Figure 5.15: Average filtering throughput and average cycle count of non-offloaded and offloaded ruleset
rs-lpmfull for specific traffic.
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Ruleset rs-lpmskipa

This ruleset is a combination of the 128 offloada rules used previously and all 9 rules from

the rs-lpm ruleset inserted randomly into it, as shown in Listing 5.15. Of the 128 rules used,

only 16 were offloaded — to represent a more realistic case due to hardware limitations. This

ruleset shows the results of filtering by combining metadata1 and metadata4, since it consists

of rules from categories P1 and OAc.

Listing 5.15: Excerpt from the ruleset rs-lpmskipa.

...

offloada udp dst port 768 -831

offloada udp dst port 832 -895

offloada udp dst port 896 -959

offloada udp dst port 960 -1023

count src table allowlist_1 any

offloada udp dst port 1024 -1087

offloada udp dst port 1088 -1151

offloada udp dst port 1152 -1215

offloada udp dst port 1216 -1279

...

The overall throughput of this ruleset is slightly higher compared to rs-lpm for specific

traffic, since these additional terminating 128 port range checks cause the filter to skip most of

the LPM checks in the ruleset. For this reason, the overall performance improvement depends

on the combination of both offloads, with the impact of the metadata4 offload being slightly

stronger. The results in Figure 5.16 and Figure 5.17 show lower performance when only one

table is offloaded, with the number of cycles increasing by up to 5%.
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(a) Random traffic throughput

(b) Random traffic cycle count

Figure 5.16: Average filtering throughput and average cycle count of non-offloaded and offloaded ruleset
rs-lpmskipa for random traffic.
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(a) Specific traffic throughput

(b) Specific traffic cycle count

Figure 5.17: Average filtering throughput and average cycle count of non-offloaded and offloaded ruleset
rs-lpmskipa for specific traffic.
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On the other hand, the throughput of the random traffic is lower compared to the rs-lpm

ruleset because the total number of rules is increased. The same Figure 5.16 and Figure 5.17

show the performance increase for two tables (the cycle count decreases by 7% without and by

11.5% with additional offloaded rules) and for four tables (the cycle count decreases by 15%

without and by 20% with additional offloaded rules).

As with the rs-skipa ruleset, the results would be different if all rules offloaded in hard-

ware were placed at the beginning of the ruleset and the alternative software implementation

was used, as shown in Figure 5.18 and Figure 5.19.

The performance increase for the specific traffic is lower with four offloaded tables than

the one with additional 16 offloadable rules (the cycle count decreases by 2% without and

6.7% with additional metadata). Similarly for random traffic (cycle count decreases by 11%

without, 12.2% with additional metadata). It is important to note that the total throughput for

both specific and random traffic in this scenario is much higher than in the rs-lpmskipa

ruleset. Comparing the performance gains for these two cases would not be fair, especially for

specific traffic, where the first 128 rules have much more weight than the LPM rules, just as

in the rs-skipa example.
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(a) Random traffic throughput

(b) Random traffic cycle count

Figure 5.18: Average filtering throughput and average cycle count of non-offloaded and offloaded ruleset
rs-lpmskipa for random traffic.
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(a) Specific traffic throughput

(b) Specific traffic cycle count

Figure 5.19: Average filtering throughput and average cycle count of non-offloaded and offloaded ruleset
rs-lpmskipa for specific traffic.
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Ruleset rs-mix

To show the effects of a large number of rules even on the ruleset with the highest throughput,

the rs-mix ruleset was created, as partially shown in Listing 5.16. It is a combination of rules

from the rs-lpm ruleset, randomly inserted into the rs-ip ruleset so that all rules belong to the

P1 category. The total measured throughput was about 0.6 Mpps for specific and 0.8 Mpps

for random traffic, comparable to the results of the rs-ip ruleset and significantly lower than

the results of the rs-lpm ruleset.

Listing 5.16: Ruleset rs-mix excerpt. All IP addresses are randomly generated.

...

count src 182.34.201.184

count dst 156.54.137.236

count src table gl2_country HR,US,JP ,CN,SR

count dst 207.244.118.207

count src 106.75.133.10

...

Although the results in Figure 5.20 and Figure 5.21 show that metadata improves throughput

in each case for random (up to 8.3% fewer cycles) and specific traffic (up to 3.7% fewer cy-

cles), this improvement is still not large enough to compensate for the overall low throughput of

this ruleset. Furthermore, IP address offload improves throughput for some table combinations,

but worsens it for others.
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(a) Random traffic throughput

(b) Random traffic cycle count

Figure 5.20: Average filtering throughput and average cycle count of non-offloaded and offloaded ruleset
rs-mix for random traffic.
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(a) Specific traffic throughput

(b) Specific traffic cycle count

Figure 5.21: Average filtering throughput and average cycle count of non-offloaded and offloaded ruleset
rs-mix for specific traffic.
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Ruleset rs-lpmr

This ruleset, shown in Listing 5.17, was used similarly to rs-lpm to test the scenario described

in Section 4.1. The rs-lpmr ruleset includes terminating rules (ACCEPT and DENY) in addi-

tion to counting rules, so it is not comparable to other rulesets, but it shows results for the more

realistic case of DDoS protection (inspired by the rulesets from Section 4.1), which none of the

other tests do. Listing 5.17 also shows how variables can be defined and used. Variables are

another feature of the software filter that can help organize rulesets and have better control over

them.

Listing 5.17: Ruleset rs-lpmr.

include gl2_city.cfg # 3 ,075,452 prefixes

include blocklist_3.cfg # 1 ,113,394 prefixes

include gl2_asn.cfg # 430 ,976 prefixes

include gl2_country.cfg # 338 ,012 prefixes

include allowlist_3.cfg # 264 ,331 prefixes

include public.cfg # 4 prefixes

define SUSP_CO CN,US ,HK,GB

define SUSP_CI 1609776 ,1735158 ,9865869 ,6930379

define SUSP_ASN 133948 ,45528 ,4837 ,139007

define BALKAN_ALLOW HR,BA ,SI,RS,ME

accept src table allowlist_3 ADMIN # rule #1

deny not dst table public any # rule #2

deny src table blocklist_3 BLOCK # rule #3

count src table gl2_country $SUSP_CO # rule #4

count src table gl2_city $SUSP_CI # rule #5

count src table gl2_asn $SUSP_ASN # rule #6

count src table blocklist_3 SUSP # rule #7

accept src table allowlist_3 any # rule #8

accept src table gl2_country $BALKAN_ALLOW # rule #9

The results of this rulesset shown in Figure 5.22 and Figure 5.23 are different from the

previous ones, especially with random traffic. It shows that the performance with offloading

for this type of traffic does not change significantly in most cases and even deteriorates when

IP addresses are included in the metadata. The most significant change is observed when four

LPM tables are used for offloading (16.2% reduction in the number of cycles without IP address

offloading and 17.8% with it). Another improvement was measured when only one LPM table

(gl2_city — ci) was offloaded without using IP addresses in the metadata (4.8% reduction in

the number of cycles). Due to the random distribution of the source IP addresses, the gl2_city

table (the largest of tables used) has the highest probability of matching. In this case the size

of the metadata does not significantly affect the software filter so offloading improves filtering

performance.
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(a) Random traffic throughput

(b) Random traffic cycle count

Figure 5.22: Average filtering throughput and average cycle count of non-offloaded and offloaded ruleset
rs-lpmr for random traffic.
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(a) Specific traffic throughput

(b) Specific traffic cycle count

Figure 5.23: Average filtering throughput and average cycle count of non-offloaded and offloaded ruleset
rs-lpmr for specific traffic.
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This assumption can be based on the results for specific traffic: since most traffic is

generated from the blocklists and allowlists, the best improvement is for offloading the blocklist

table (blocklist_3 — b3) alone (6.9% reduction in cycles) and its combination with other

tables (gl2_country — b3co with 7.4% and allowlist_3 — b3a3 with 15.8% reduction in

cycles). Again, the greatest improvement is seen when using four tables (23.6% reduction in

cycles without additional IP address offload and 23.4% with additional IP address offload).

5.2.1 Evaluation of the results

The results of the tests with the simulated hardware show that the inclusion of metadata can

speed up the operation of the software filter for different types of traffic and for carefully se-

lected types of metadata. The speedup is possible even though the overall packet size increases

with the addition of metadata.

In most cases, moving rules (or parts of rules) from software to hardware results in a notice-

able decrease in CPU load in software and an increase in overall throughput, and the more rules

are offloaded to hardware, the better. However, the amount of metadata transferred between

hardware and software can also affect filter performance, so the metadata type and its size must

be considered before offloading rules. The constraints of the implementation used in this thesis

do not allow a large number of rules to be offloaded, so it is not realistic to expect that large

rulesets will be mostly filtered by hardware.

The baseline results of the rulesets with a “large” number of rules, shown in Figures 5.2

and 5.3, demonstrate the disadvantage of such rulesets in software filtering. As a reminder, 1000

IP addresses in a filter is often not enough when dealing with large volumetric DDoS attacks.

Most of the CPU time is spent going through the rules and comparing them to the content

of the packet, which is very time-consuming for software. The effectiveness of this approach

decreases the larger the ruleset is. The throughput itself is very low, about 0.6–1.4 Mpps for each

type of traffic. Offloading the metadata to the hardware provides some improvement, but not

enough to noticeably increase throughput. However, this type of filtering needed to be tested to

demonstrate its inefficiency and to measure the improvement when using hardware offloading.

Hybrid DDoS mitigation systems by other authors performed similar tests, assuming that

the rulesets consist of a large number of rules belonging to O ∗ ∗ categories. In those cases,

the rules are fully Offloaded to the hardware and the overall improvement is proportional to the

number of rules offloaded to the hardware. Their conclusion fits to the results of this thesis: the

more rules are offloaded to the hardware, the less work the software has to do and the higher

the throughput. The hardware constraints limit this type of offloading to a number of rules that

is not sufficient against volumetric DDoS attacks.

Although some improvements are more significant when offloading rulesets with a larger

number of rules, it does not make sense to use these rulesets just because the performance
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improvement is higher. The highest baseline throughput (with the largest number of IP prefixes

in a ruleset) is achieved when filtering with LPM lookups. It is obvious that this type of software

filtering is suitable against volumetric DDoS attacks, and in most tests it was further improved

with hybrid offloading. Even though some of the improvements do not seem to be very large,

any improvement is important at such high speeds. Also, these types of rulesets make the

firewall easier to manage.

Figure 5.24 and Figure 5.25 show the comparison of all tests as a maximum relative im-

provement over non-offloaded filtering for random and specific traffic. The figures include

both types of rulesets: without terminating rules (light) and with terminating rules (dark).

(a) Random traffic throughput

(b) Random traffic cycle count

Figure 5.24: Improvements in average filtering throughput and average cycle count of non-offloaded
and offloaded rulesets for random traffic.

As expected, tests using rulesets with terminating rules show the greatest improvements. For

random traffic (Figure 5.24), this is the rs-lpmskipa ruleset with 20.2% fewer cycles (18.4%

82



Benchmarks and performance evaluation

(a) Specific traffic throughput

(b) Specific traffic cycle count

Figure 5.25: Improvements in average filtering throughput and average cycle count of non-offloaded
and offloaded rulesets for specific traffic.

increased throughput). For specific traffic (Figure 5.25), it is the rs-skipa_alt ruleset with

28.9% fewer cycles (24.1% increased throughput).

The second highest random traffic test uses the rs-lpmr ruleset, the “realistic” version

of the rs-lpm ruleset that uses terminating rules. It achieved a 17.8% reduction in CPU

cycles (18% increase in throughput). Other cases with the highest improvements for random

traffic are those combining LPM with other metadata. They show a 12.2%–13.3% reduction in

cycles (10.6%–12.1% increase in throughput). The rs-lpm ruleset (offloading four LPM tables

with additional offloading of source IP addresses) achieved an 11.1% CPU cycle reduction (9%

increase in throughput).

The rankings for specific traffic are similar to those for random traffic, with the second

highest improvement achieved in tests using the rs-lpmr ruleset, with a 23.6% reduction in
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CPU cycles (26.3% increase in throughput). As with random traffic, the other highest improve-

ments are those combining LPM with other metadata, with a 13.8–11.2% reduction in cycles

(11.2–13% increase in throughput). The rs-lpm ruleset shows an 11.6% reduction in cycles

(11.4% increase in throughput).

Improvements for each individual test can scale depending on the capabilities of the hard-

ware, i.e., performance can be further increased as more metadata is offloaded to the hardware.

However, compared to other metadata types, offloading metadata1 requires the fewest and least

complex hardware updates to achieve a significant improvement in DDoS protection. For exam-

ple, to increase the total number of available LPM tables for offloading to hardware, additional

memory modules must be installed in the hardware. The use of the additional memory would

not significantly change the internal FPGA logic and would not affect the overall performance of

the system. For other metadata, more complex changes are required because parallelism cannot

be used as effectively as in the case of metadata1. This would lead to delays and performance

degradation, especially if a large number of rules are offloaded to hardware.

Improving the performance of the filter that uses hardware offloading means finding a bal-

ance between the size of the metadata and its usefulness. Responding to changes in the type

and volume of traffic is also one of the most important matters to consider when offloading and

even beforehand when creating the ruleset. Therefore, in cases where offloading has a negative

impact on throughput, it can be bypassed and replaced with a better configuration.

It is worth repeating that all tests (including those performed with real hardware offloading)

were performed on a system with a single CPU core at reduced frequency. Moreover, they were

performed on a system corresponding to the model shown in Figure 3.2. The results of a hybrid

system without the limitations of this model would certainly be even better.

5.3 Hybrid filter with metadata generated by hardware

The results shown in Section 5.2 are all based on tests using metadata pre-generated by the

packet generator. To test the hardware part of the hybrid system, i.e., how the system works

when the NetFPGA generates the metadata and attaches it to the packets, another set of tests

was performed.

The test environment (testbed) for the hybrid tests, as shown in Figure 5.26, is similar to

the one used when the hardware part was simulated by the software metadata generator. The

traffic generator is connected to the NetFPGA SUME ingress interface, and the SUME egress

interface is connected to the software filter ingress interface.

In all simulated tests, the packet generator typically sent packets in batches of about 256 and

using four CPU threads (four NIC queues) to achieve sufficiently high speeds for certain tests

(e.g., generating fully randomized packets and appending multiple metadata fields simultane-
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Figure 5.26: The testbed for testing the hybrid hardware / software system.

ously). Since the NetFPGA SUME version used in this thesis is not capable of processing traffic

sent with these parameters, only one queue had to be used for these tests and the batch sizes

were lowered. The tests with the same parameters had to be also performed for the simulated

offload.

With these limitations, the tests for this hybrid system were performed in the same manner

as the simulated tests, except that the packet generator did not have to create metadata and at-

tach it to the packets. For this reason, it was expected that the results of all tests performed on

the hybrid system would match the results of the simulated hardware. In all the tests that were

performed with hybrid system, the average results of the hybrid system matched the average

results of the simulation almost perfectly. From these results, it can be inferred that it is pos-

sible to achieve the same level of improvement over non-offloaded filtering with other types of

metadata if specific offload capabilities were implemented on the hardware.

Figure 5.27 shows the results of one such test compared to the results of a test performed

with pre-generated metadata. The test parameters for the rs-lpm ruleset were modified to ac-

count for the above limitations. As before, two tests were performed (baseline test and hardware

offload test): multiple repetitions to obtain average values for throughput and CPU cycles. To

distinguish them from the previous tests, the rulesets were named rs-lpm8 and rs-lpmhw.

Filtering in hardware can be further improved by embedding metadata4 offloading in the

FPGA, by using a simple checker for a limited number of rules. For example, 16 port ranges

for one of the previous rulesets can be stored in hardware memory, checked individually, and

the results added to the metadata. This can be easily done by comparing the packet to a rule in
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(a) Random traffic throughput (b) Random traffic cycle count

(c) Specific traffic throughput (d) Specific traffic cycle count

Figure 5.27: Average filtering throughput and average cycle count of non-offloaded and hardware of-
floaded ruleset rs-lpm.

each cycle and determining the value to include in the metadata. This is not suitable for large

rulesets with a high number of rules that need to be checked, as this causes a much larger delay

in the pipeline.

Additional hardware (in this case an FPGA) introduces some delay — and it can be even

higher (for another clock cycle) if the last packet word and metadata exceed the 32-byte word

limit of the AXI Stream, so another data word must be added. Latency is measured without

high-precision methods and tools by simply sending and receiving the timestamped packet on

the same computer and noting the difference between the send and receive times. It is important

to note that both the source and destination are measured on the same computer and use the

netmap framework to send and receive packets to bypass the overhead caused by the operating

system. Also, the same CPU core is used so there is no additional time delay between sending

and receiving. The delay caused by using the software filter is also shown (without any filtering,

just by forwarding traffic from one interface to another). The results are shown in Figure 5.28

— the average value for forwarding through the NetFPGA (FPGA) is only 2µs higher than
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direct communication from interface to interface (IFC-IFC). The software filter increases the

delay by about 400µs (SW filter).

Figure 5.28: 10-value moving average of measured latencies for 3 different datapaths.
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Chapter 6

Conclusion

Today’s Internet is not only getting bigger, but also advancing technologically to the point where

link speeds of 10 Gbit/s are becoming the norm for consumers, while 25, 40, 100 Gbit/s and

higher are the de facto standard for ISPs and datacenters. With these speeds, devices need

sufficient capacity to process the traffic that passes through them.

DDoS attacks are among the most common attacks on the Internet, and without proper

defense mechanisms, volumetric DDoS attacks are very difficult and sometimes impossible to

combat. This thesis demonstrates a novel approach to hybrid hardware / software filtering used

against volumetric DDoS attacks. A model of a datapath for high-throughput network packet

filtering is presented. It uses LPM for fast software filtering of IPv4 traffic and complements it

with offloading parts of the algorithm to FPGA in order to achieve even higher performance.

The model of a filter was implemented by designing a configurable hardware datapath using

FPGA technology and combining it with the existing software filter operating on commodity,

off-the-shelf hardware. The hardware component of the model was implemented using NetF-

PGA SUME prototyping board. After processing each packet, FPGA generates and attaches

specific metadata to it and forwards it to the software. The hardware datapath is generic and

can be implemented on any FPGA with the necessary external components. The software filter

from the previous research has been modified with additional functionality to receive metadata

from the hardware and use it to filter packets with improved performance. Also, the NetF-

PGA SUME NIC driver for FreeBSD OS has been developed to improve the performance of

hardware / software communication.

All possible types of rules used by the filter were categorized by their ability to be offloaded

to hardware. Analysis of each category yielded appropriate metadata that the hardware could

generate and forward to the software. This categorization served as the basis for a distributor

model. The distributor is a part of the system that balances the distribution of rules to either

hardware or software to achieve optimal overall throughput.

In order to evaluate different stages of filter development, an empirical method for testing
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this type of hybrid hardware / software system is developed. The method allows avoiding com-

plex hardware design by simulating the hardware behavior without using real FPGA hardware.

To do this, the existing packet generator was modified to automatically generate and attach

metadata and send it to the software filter along with the packets. In this way, no FPGA modi-

fications had to be made and all tests could be performed on a test environment consisting only

of two off-the-shelf PCs.

One of the main contributions of this thesis is the custom reconfigurable datapath pipeline

designed in NetFPGA SUME. A series of tests was performed on the hybrid system using the

developed datapath, which confirmed the results obtained by the described simulations.

Various scenarios were empirically tested to investigate the best types of offloads and com-

binations of metadata to optimize DDoS protection. The tests consisted of scenarios with dif-

ferent rulesets (for different metadata types) while changing two parameters (traffic type and

metadata size). This demonstrated the impact of rules belonging to different categories on the

performance of the filter.

The implemented model shows performance improvements in tests with random traffic and

traffic created specifically to simulate a DDoS attack. It is demonstrated that offloading different

types of rules to hardware yields different performance gains, up to 30% fewer CPU cycles for

certain offloads and types of rules. The benefits of using rules that leverage LPM in packet

filtering are higher throughput and simpler, easier-to-manage rulesets. For this reason, these

rulesets are best suited for DDoS protection, and they can be further increased with hardware

offloading.

The implementation described in this thesis works primarily as a high-performance packet

classifier / filter. As an additional feature, it provides counters for matching rules that can be

used for statistical purposes and as input to existing (or new) external DDoS detection tools.

These tools would complement the presented filter implementation and form an effective DDoS

defense system that could filter out most of the malicious traffic arriving on a network. This

would provide adequate protection against volumetric DDoS attacks before packets arrive to

individual hosts, where they could be filtered more precisely, with slower, but stateful firewalls.

The hardware component from this thesis was implemented using the existing prototyping

FPGA board which has constraints that affect the system performance. For this reason, only one

of the possible models of a hybrid hardware / software filtering system is evaluated. The next

research step would be to implement the proposed model using a hardware component without

such limitations. NetFPGA PLUS, a recently released NetFPGA board capable of 100 Gbit/s

networking, would serve as the hardware component for a potentially enhanced datapath. The

proposed system has the potential for healthy scalability and a 100 Gbit/s datapath could provide

a great testing environment. Since the hybrid system would use different hardware, scalability

could lead to changes in implementation. The software filter is designed to be scalable, and
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previous research has shown that it works well in high-throughput networks. But at even higher

speeds, the software could run into problems, so the overall system would benefit even more

from the additional hardware offloading.

Since there are basically infinite combinations of rulesets, metadata offloading, different

types of traffic, and ways for hardware and software to work together to filter traffic, more

experiments can be conducted to evaluate them. In addition, there are various LPM algorithms,

each with its own advantages and disadvantages and with different metadata for offloading.

Experiments with other LPM algorithms could provide different performance improvements

for certain types of DDoS traffic and potentially provide better insight into combating DDoS

attacks.

Prototype evaluations used synthetic traffic specifically designed to resemble volumetric

DDoS attacks. Although such traffic could theoretically represent a real DDoS attack, DDoS

traffic from existing real network traces would paint a different picture when interpreting the

results. These results would be more accurate and the resulting distributor model might be

different from the one presented in this thesis. Testing the prototype by inserting it into an

existing network would be an even better evaluation of the prototype as real traffic would be

used, providing a basis for future work and a strong argument for continuing the research.
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