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Abstract—Cloud gaming offers the capability of delivering
high-quality graphics games to any type of end user device,
however at the cost of high bandwidth consumption and strict
latency requirements. Meeting Quality of Experience (QoE)
requirements under limited resource availability calls for efficient
and dynamic service adaptation. In this paper, we formulate
an optimization problem for QoE-aware resource allocation for
multiple cloud gaming users sharing a bottleneck link. The
optimization problem is solved by utilizing algorithms that
employ QoE estimation models derived from subjective studies
for different types of games. We specifically investigate the impact
on the resource allocation outcome when jointly considering
both quality and QoE fairness as optimization objectives. The
QoE-aware algorithms are shown to achieve higher average and
higher minimum MOS values compared to a baseline algorithm.
Results also confirm that both a cloud gaming service provider
and resource provider should consider game type when adapting
video coding parameters and allocating resources.

Index Terms—cloud gaming QoE, QoE modelling, resource
allocation

I. INTRODUCTION

Providing different types of content “on demand” anywhere
and on any device has been a dominant market trend for net-
worked services in recent years. When it comes to games, this
paradigm is implemented through “cloud gaming”, whereby
game content is delivered from a server to a client in the form
of a video stream. The execution of the game logic, rendering
of the 3D virtual scene, and video encoding are performed at
the server, while the client is responsible for video decoding
and capturing of client input.

Network flows generated by cloud gaming require signifi-
cant network bandwidth and have very strict latency require-
ments (e.g., Nvidia’s GeForce NOW requires bandwidth up
to 50 Mbit/s and round trip time (RTT) from client to the
server lower then 60 ms1). The availability of network band-
width might vary over time, thus most cloud gaming services
implement some type of service adaptation algorithm which
adjusts the video codec parameters accordingly. Adaptation
mechanisms used by the GeForce NOW service have been
studied in detail in [1]. While such adaptation algorithms
consider a per-game-flow perspective, we consider the case
of multiple game flows which share a common network path
subject to bandwidth constraints. Jointly optimized adaptation

1https://shield.nvidia.com/support/geforce-now/system-requirements/2

across multiple flows may lead to improved resource utiliza-
tion, distribution of available bandwidth in a fair manner, and
potential increase in overall Quality of Experience (QoE) for
involved gamers [2].

With regards to QoE influence factors, a large number
of studies have focused on the impacts of latency and/or
packet loss on user perceived quality [3]–[14], while fewer
studies have addressed the impact of different video encoding
configurations on QoE [2], [8], [14]–[17]. In our previous
work, we presented the results of conducted subjective studies
that focused on measuring and modeling QoE for various types
of cloud games in light of different video encoding bitrates
and frames per second (fps) [18]. Results confirmed the need
to adopt different service adaptation strategies for different
categories of games.

The general problem of achieving QoE-driven cloud gaming
adaptation has been recently addressed in a number of studies
[2], [19]–[24]. Tian et al [21] formulate and solve a con-
strained stochastic optimization problem to minimize overall
cost for cloud gaming providers, while adjusting data center
selection, virtual machine (VM) allocation, and video bitrate
configuration for each user. Achieving cost-effective placement
of VMs running cloud gaming servers while maintaining
sufficient QoE is further addressed by Hong et al [20]. In
recent work, Basiri et al. [22] present a resource allocation
framework for cloud centers, focusing specifically on accurate
delay modeling as the main control parameter for QoE.

In addition to consideration of issues such as optimized
CPU/GPU allocation and VM placement, an important consid-
eration is optimized codec configuration subject to bandwidth
constraints. In this work, we focus on this issue and investi-
gate how optimized video configuration across multiple game
flows sharing a common network bottleneck (e.g., sharing the
outgoing link of a data center, as portrayed in Figure 1) can
maximize QoE and fairness among involved players.

The contributions of this paper are twofold. First, we derive
and compare QoE estimation models for three previously
tested games (subjective QoE scores reported in [18]). The
second contribution is an evaluation of the codec configuration
problem under bandwidth constraints, driven by the derived
QoE models. Our focus is on investigating how different
optimization objectives (in terms of quality and fairness) drive
the outcome of adapting multiple simultaneous game flows



Fig. 1: Cloud gaming service delivered for multiple users over
shared bottleneck link

sharing a bottleneck link. We compare different optimization
approaches in terms of achievable average MOS, minimum
MOS, and fairness.

We note that this problem has been previously tackled by
Hong et al [2], and we use a similar problem formulation.
With respect to [2] we advanced the state of the art by deriving
QoE models for a different set of games, where we conducted
controlled laboratory subjective studies using the Steam In-
home Streaming platform. Additionally, while in [2] the au-
thors address both quality-maximization and quality-fairness
objectives, we extend these by incorporating the notion of
QoE fairness based on the QoE Fairness Index proposed in
[25]. We further extend this investigation by considering the
impact of different weight factors assigned to the quality and
fairness objectives to show the impact on video bitrate and
MOS distributions.

This paper is organized as follows. In section 2 we present
our QoE estimation models and compare their performance.
In section 3 we present the QoE-aware resource allocation
problem for multiple simultaneous users. Further, QoE-aware
algorithms used in server-side service adaptation are described.
Section 4 reports on numerical results of running the al-
gorithms for different problem instances, while Section 5
provides concluding remarks.

II. QOE MODELS FOR CLOUD GAMING

QoE estimation models, obtained from subjective studies,
are needed to perform QoE-aware adaptation of cloud gaming
streams to various network and system availability constraints.
Obtained models may further be used to drive utility-based
network and system resource allocation decisions under lim-
ited resource availability. In our previous work [16] we have
derived quadratic QoE models for different types of games,
namely Serious Sam 3 (SS3) as a representative first person
shooter, and Hearthstone (HS) as a representative card game.
In a subsequent study using the same methodology and same
cloud gaming service, we tested a new game, Orcs Must Die!
Unchained (OMD). The QoE study consisted of 28 players
(8 novice, 9 intermediate and 11 experienced participants)
participating in two and a half hour long gaming sessions
that were conducted in a laboratory environment as shown
in Figure 2. Valve’s Steam In-Home streaming service was
used as the supporting platform for cloud gaming2 and the
tested game was played at 720p resolution. The participants
were divided in 7 gaming groups with 4 players in each group.

2Steam In-Home streaming, http://store.steampowered. com/streaming/

Each of the groups played SS3 and OMD approximately for
an hour. While playing, the participants could see each other’s
screens and freely communicate. During the experiments, we
manipulated video bitrate and video frame rate as two key
video encoding parameters heavily impacting players’ QoE. A
total of 24 different scenarios were tested by each group. The
conducted study and its findings are reported in [18]3, however
QoE modeling results have not been previously reported.
Therefore, we develop a quadratic QoE estimation model
for the newly tested game OMD, and additionally evaluate
previously derived QoE models by comparing them to newly
derived linear QoE estimation models.

Fig. 2: Experimental setup for the conducted QoE study

In accordance with the controlled parameters in our subjec-
tive studies, we model players’ QoE as a function of video
encoding parameters (frame rate and bitrate) for each of the
tested games. Different types of linear and nonlinear models
were used to describe the data, and thus obtained models were
compared based on their accuracy of fit. A quadratic model,
also used in previous research [2], [16], was once again found
to give the best results for the given data as compared to other
models. The MOS scores were modeled as a quadratic function
of video encoding parameters:

MOS(g, f, b) = αg,1f+αg,2b+αg,3f
2+αg,4b

2+αg,5fb+αg,6,

where αg,1 − αg,6 are game specific parameters estimations,
b is video game stream bitrate, and f is video frame rate.
For comparison purposes, a simpler model was also chosen to
describe MOS scores, whereby the QoE scores were modeled
as a linear function of video encoding parameters:

MOS(g, f, b) = αg,1f + αg,2b+ αg,3.

Derived QoE models and their parameter estimates are summa-
rized in Table I. As expected, quadratic models achieve much
better fit for the collected data compared to linear models for
the same game. Given these results, only quadratic models are
later used when solving the resource allocation problem in the
case of multiple simultaneous players.

Additionally, if we further examine the derived models with
regards to achieved best MOS under different bitrate values,
we notice similar video quality saturation while increasing
video bitrate, as reported also by [2]. However, the observed

3Complete results of subjective studies with all user scores are available at
www.fer.unizg.hr/qmanic/data sets.



TABLE I: Derived QoE estimation models for tested games

Linear model R2 Quadratic model R2

Serious Sam 3 −2.396 ∗ 10−3f + 0.127b+ 2.77 0.779
2.843 ∗ 10−2f + 0.404b+ 6.4 ∗ 10−5f2−
3.125 ∗ 10−2b2 + 3.427 ∗ 10−3fb+ 2.611

0.986

Orcs Must Die! Unchained 4 ∗ 10−4f + 6.595 ∗ 10−2b+ 3.397 0.403
3.477 ∗ 10−2f + 0.343b− 6.31 ∗ 10−4f2−
3.086 ∗ 10−2b2 + 3.284 ∗ 10−3fb+ 2.058

0.864

Hearthstone 3.35 ∗ 10−4f + 3.181 ∗ 10−2b+ 4.186 0.481
3.404 ∗ 10−2f + 6.057 ∗ 10−2b− 4.54 ∗ 10−4f2−
4.808 ∗ 10−3b2 + 8.63 ∗ 10−4fb+ 3.473

0.782

saturation (shown in Figure 3) is manifested in our QoE
models at much higher bitrate levels compared to the results
reported by the authors in [2]. For SS3, it occurs close to 9.8
Mbps and for OMD near 8.2 Mbps (compared to 2 Mbps
for all games reported in [2]), while for HS there is no
video quality saturation. Beyond the saturation point (i.e., at
higher bitrates) MOS values which models report are replaced
with MOS values at the saturation points so as to maintain
monotonicity. These findings are taken into account while
utilizing QoE models to drive resource allocation decisions,
as described later on.

Fig. 3: Video quality saturation for different games

III. QOE-AWARE RESOURCE ALLOCATION

To meet end-user QoE requirements, and reduce system
and network load, the cloud gaming service needs to dy-
namically adapt to varying system and network conditions. In
commercial implementations, service adaptation is commonly
performed on the server-side by changing video encoding
configuration parameters (e.g., frame rate, video bitrate, reso-
lution) of a game stream with respect to available network
bandwidth (estimated at the client) and number of active
players. As mentioned, previous studies have shown that such
adaptation strategies should also consider type of played game
as a key context parameter [18].

A. QoE-driven adaptation for multiple simultaneous players

Our main objective is to maximize overall players’ QoE
while making efficient use of available resources. As a result,
the aim is to improve QoE for active gaming session players,
considering demands and available resources, achieved by
adapting video encoding configurations to network constraints.
Derived QoE models can be used to estimate MOS for a given
combination of video encoding parameters and game type.

The notation used in our problem formulation is given
in Table II. We formulate the problem as follows. Each
player p from all active players N is assigned to a server
in a data center and starts playing game gp (gp is one of
the available games G). The data center uses an outgoing
data link for sending video game streams corresponding to
all players, and B represents available link bandwidth. In
this case, the bandwidth denotes the available resources for
video bitrates, thus ignoring bandwidth usage of higher-layer
protocols. We let fp (fmin ≤ fp ≤ fmax) be frame rate and
bitp (bitmin ≤ bitp ≤ bitmax) be the bitrate of a game stream
for each of the active players. We set the minimum frame
rate fmin to 25 fps and the maximum frame rate fmax to 60
fps, as our proposed QoE models (utilized for estimating the
QoE scores) are based on subjective studies where frame rate
was varied between these two values. Moreover, the maximum
frame rate of 60 fps is a typical frame rate that average
experienced players consider sufficient without perceiving
quality degradations. Likewise, we set the minimum bitrate
bitmin to 3 Mbps and the maximum bitrate bitmax to 10 Mbps,
with the same reasoning used as for frame rate. Additionally,
our empirical tests using the Steam-In Home Streaming service
have shown that using video bitrates less than 3 Mbps leads to
a video with high visual degradations. We note that in [2] the
authors consider constraints imposed by each client’s access
network conditions. For simplification purposes, we do not
consider this constraint for now, and assume that each client is
capable of streaming up to the bitrate allocated by our resource
allocation algorithm. We let mgp,fp,bitp be the MOS score of
playing game gp at frame rate fp and bitrate bitp. We use
the derived QoE models for estimating the MOS scores based
on the video encoding parameters. The decision variables are
frame rate fp and bitrate bitp for each player, thus solving
the problem corresponds to finding players’ video encoding
configurations that achieve the highest players’ QoE in the
system with regards to currently available effective bandwidth.

For this problem, we define and compare the following
objective functions: (i) maximize average MOS across all
players (max-avg quality objective); (ii) maximize minimal
MOS across all players (max-min quality objective); and
(iii) maximize a weighted sum of average MOS across all
players and fairness (max-avg quality-fairness objective). We
refer to the QoE fairness index as introduced in [25], [26], and
defined as follows: F = 1− 2σ

H − L
, where σ is the standard

deviation of QoE scores, L is the lower bound and H is the



TABLE II: Used notation

N number of players
B available effective bandwidth
G available games
gp selected game by player p
fmax maximum frame rate (set by administrator )
fmin minimum frame rate (set by administrator)
fp target frame rate for player p
bitmax maximum bitrate (set by administrator)
bitmin minimum bitrate (set by administrator)
bitp target bitrate for player p
mgp,fp,bitp the MOS score for game g at frame rate f

and bitrate br played by player p

upper bound of the used rating scale. The QoE fairness index
as a standalone metric does not rate the level of QoE that the
service achieves, but rather quantifies achieved QoE fairness
(as opposed to QoS fairness) of the system on a scale of [0;1].

Based on described definitions, we formulate the service
adaptation problem as a mathematical problem with the max-
avg quality objective function as follows:

max
N∑

p=1

mgp,fp,bitp (1)

s.t. 1 ≤ p ≤ N (2)
gp ∈ G,∀p (3)
bitmin ≤ bitp ≤ bitmax,∀p (4)
N∑

p=1

bitp ≤ B (5)

fmin ≤ fp ≤ fmax,∀p (6)

For the max-min quality objective, the objective function

Eq. 1 is replaced with max
N
min
p=1

mgp,fp,bitp . In the case of

the max-avg quality-fairness objective, the objective function

is max((1− θ)
N∑

p=1

mgp,fp,bitp + θF ), where parameter θ de-

notes relevance of the fairness in the system. We note that in
this case MOS scores are normalized, with 1 indicating highest
MOS and 0 indicating lowest MOS.

B. Algorithm description

For solving the optimization problems, we base our ap-
proach on the optimal algorithms proposed in [2] that proved
to be efficient in solving this problem. The basic idea is to
first set each player’s bitrate to the lowest possible value,
and iteratively allocate small chunks of bandwidth to the
player with the largest MOS gain. Thereby, for the max-avg
quality objective problem, we allocate additional bandwidth
(if available) in repeated steps to the players for which a gain
of added bitrate results with the highest increase of MOS
in the system. Similarly, for the max-min quality objective
problem, bandwidth is allocated to the player with the lowest
MOS score. For the quality-fairness objective problem, the
algorithm is the same as for its equivalent quality objective
problem, however fairness in the system is considered while

evaluating players’ MOS scores during allocation steps. Lastly,
we compare chosen algorithms with a baseline algorithm that
allocates the same amount of bandwidth to all active players,
irrespective of game type. The baseline algorithm also does
not adapt video frame rate, but rather keeps it constantly at
approx. 60 fps, as we observed from the default Steam In-
Home Streaming resource allocation algorithm. It should be
noted that all of these algorithms assume monotonicity of the
model functions, i.e., an increase of video bitrate results with
a boost in MOS score, which is met by our QoE models after
saturation correction, as described in the previous section.

IV. NUMERICAL RESULTS

A. Description of the case study

We solve the previously described service adaptation prob-
lem by defining instances of the problem with various numbers
of simultaneous players N ∈ (100, 200, 300, 400). In each
instance, we assume an equal distribution of players across
games (assuming the aforementioned three games presented
in Section II). We let the available effective bandwidth be
constant through the instances and equal to the amount of
bandwidth necessary for providing all players with minimal
video bitrate in the instance with the highest number of
players. As a result, in the case of 100 players, the service
can allocate as much bandwidth as is necessary for each of the
players, and with 400 players in the system, each player gets
a minimal possible video bitrate (i.e., 3 Mbps). All defined
problem instances are solved utilizing each of the resource
allocation algorithms, so as to compare their performance.
The minimum step for resource allocation in all implemented
algorithms is 100 Kbps, which should be more appropriate for
real-time service adaptation as compared to smaller allocation
steps. For the max-avg fairness-quality algorithm, we set
parameter θ to 0.5 to make the system relatively fair in terms of
achieved MOS for the players. With that in mind, we observe
the following metrics: MOS (average and minimum MOS),
allocated bitrate per player, and efficiency (defined as ratio
between the average MOS and consumed bandwidth in Mbps).
Obtained results are reported in the following subsections.

B. Performance evaluation

We first investigate the performance of the algorithms com-
pared to the baseline algorithm. We can observe in Figure 4a
that all implemented algorithms achieve higher average MOS
compared to the baseline algorithm, and that the difference
increases as the number of players grows. Furthermore, it can
be noticed that the algorithms that take into account players’
QoE during resource allocation obtain similar average MOS at
the same interval. However, these algorithms perform differ-
ently when observing the lowest MOS in the system, as shown
in Figure 4b. The algorithms that emphasize fairness (max-
min quality and max-avg fairness-quality algorithms), as ex-
pected result in higher minimum MOS values as compared to
other algorithms, and consequently less players experiencing
poor gaming quality. Therefore, prior to performing resource
allocation, a provider should consider different optimization



(a) average MOS scores (b) minimum MOS scores (c) efficiency (d) average allocated bitrate per player

Fig. 4: Performance of the tested algorithms

goals and select the most appropriate algorithm depending
on their business model. Additionally, while comparing the
algorithms that consider fairness in the system, it is visible that
the algorithm that incorporates QoE-fairness into a weighted
optimization objective function (with equal relevance assigned
to fairness and quality) provides similar average and minimum
MOS results as the algorithm that maximizes the minimum
MOS in the system. In the following section we further explore
the impact of varying this relevance factor.

With respect to efficiency of the algorithms (Figure 4c),
we observe an increase with a decrease of the bandwidth
that can be allocated to the players, and it changes similarly
for all implemented QoE-aware algorithms. In the case of
bitrate allocation per player, we observe that all algorithms
have on average the same amount of bitrate assigned to all
players (Figure 4d). For the case with 100 players, as a
result of previously mentioned video quality saturation while
increasing bitrate, players on average have assigned less than
max achievable bitrate, even though additional bandwidth is
available.

C. The impact of fairness relevance on the resource allocation

We investigate the impact of the parameter θ on aver-
age/minimum MOS values and bitrate, thus examining the
impact when varying the relevance of fairness as compared to
quality maximization in the system. The results have shown
that changing the value of the θ parameter has minimal impact
on average and minimum MOS scores (this being a result of
the QoE models used). However, the parameter adjustment
directly impacts the distribution of the allocated bandwidth
between players in the system.

We solve the optimization problem with 300 concurrent
players while also adjusting θ from 0 (which results in the
max-avg quality objective) to 1 (objective function maximizes
fairness with no relevance assigned to quality maximization).
Even though the impact is minimal in terms of average
and minimum MOS scores in the system, the bandwidth
distribution is significantly altered between the games, as can
be observed in Figure 5a, in accordance with the change of
MOS scores (Figure 5b). With an increase in θ, more bitrate
is allocated to the game with lower gains of MOS per bitrate
(SS3) by reducing the bitrate previously allocated to the game
with higher gains (OMD). The algorithm attempts to equalize
average MOS score of these two games to increase fairness

(a) CDF for video bitrate

(b) CDF for MOS scores

Fig. 5: CDFs for allocated video bitrates and MOS scores in
a scenario with 300 users. Different values of θ illustrate the
impact of fairness relevance.

in the system, as there is no available bandwidth to increase
MOS scores for both games. Meanwhile, the bitrate for HS
gaming sessions always stays at the lowest values (as HS has
significantly higher QoE scores at lowest level compared to
QoE scores at highest level for other two games), even in the
case when fairness is not considered. Even though the QoE-
aware algorithms have assigned minimal video bitrate for HS
sessions, the players’ QoE is not degraded. However, by doing
so, more bitrate can now be allocated to other gaming sessions,
thus illustrating the benefit in cases when server-side service
adaptation algorithms consider game QoE models (either per-
game or per-game category).



V. CONCLUSIONS

In this paper we have built upon previous studies and
presented an optimization problem for QoE-aware resource
allocation for cloud gaming. The aim is to allocate bitrate
across multiple simultaneous players in the system (potentially
playing different types of games) so that the players achieve
highest QoE under given bandwidth availability constraints.
From a service provider perspective, this amounts to con-
figuring video encoding parameters (bitrate, frame rate) of
cloud gaming sessions in a QoE-aware manner. Therefore, we
model a player’s QoE for a given game as a function of video
encoding parameters, with subjective studies confirming that
different models are needed for different game types. Obtained
models are subsequently utilized by QoE-aware algorithms for
driving resource allocation decisions.

We compare the outcome of four different algorithms, by
solving the optimization problem for different numbers of
simultaneous players. The results have shown that QoE-aware
algorithms achieve higher average MOS scores compared to
a baseline algorithm. Furthermore, we compare two different
algorithms that consider QoE-fairness, and show that they
achieve similar average and minimum MOS scores under
tested conditions, albeit exhibiting different bitrate distribu-
tions. We go beyond state-of-the-art by studying the impact
of considering QoE fairness in the optimization objective (as
opposed to QoS fairness captured by the baseline algorithm).
By varying the relevance of QoE fairness in the objective, we
see a significant impact on the actual bitrates (optimal resource
allocation) allocated across different game sessions. Hence,
we conclude that by optimizing a weighted multi-objective
function, service providers are able to tune to what extent
QoE fairness should be considered.

While reported findings are based on the utilized QoE
models, conclusions regarding the need to consider fairness
and the impact this decision has on the resource allocation can
be generalized. Ongoing work is addressing QoE modeling for
a wider scope of game types, and further utilization of these
models in system and resource allocation problems. We aim
to extend work to also jointly considering optimized resource
allocation in both the cloud gaming data center and across
relevant network links.
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