
DICOM SIVR: A web architecture and platform for
seamless DICOM image and volume rendering

Jozić, Krešimir; Frid, Nikolina; Jović, Alan; Mihajlović, Željka

Source / Izvornik: SoftwareX, 2022, 18

Journal article, Published version
Rad u časopisu, Objavljena verzija rada (izdavačev PDF)

https://doi.org/10.1016/j.softx.2022.101063

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:168:472475

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-05-05

Repository / Repozitorij:

FER Repository - University of Zagreb Faculty of 
Electrical Engineering and Computing repozitory

https://doi.org/10.1016/j.softx.2022.101063
https://urn.nsk.hr/urn:nbn:hr:168:472475
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.fer.unizg.hr
https://repozitorij.fer.unizg.hr
https://repozitorij.unizg.hr/islandora/object/fer:7425
https://dabar.srce.hr/islandora/object/fer:7425


SoftwareX 18 (2022) 101063

n
n
p
m
a
t
m
s

n
z

h
2

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication

DICOM SIVR: Aweb architecture and platform for seamless DICOM
image and volume rendering
Krešimir Jozić a, Nikolina Frid b,∗, Alan Jović b, Željka Mihajlović b

a Industrial Applications, Siemens Energy d.o.o., Heinzelova ul. 70a, 10000 Zagreb, Croatia
b University of Zagreb, Faculty of Electrical Engineering and Computing, Unska 3, 10000 Zagreb, Croatia

a r t i c l e i n f o

Article history:
Received 14 February 2022
Received in revised form 18 March 2022
Accepted 23 March 2022

Keywords:
DICOM
Medical imaging
Web application
Go

a b s t r a c t

Quick access to radiological images is important for timely diagnosis and effective patient treatment. In
this paper, we present a web-based client–server system for seamless image and volume rendering of
DICOM images that provides fast access to the data needed for diagnosis without placing a heavy load
on computer resources on the client side. DICOM images are rendered on the server, and the resulting
2D images are sent to physicians who can view and analyze them via web browser. Security of patient
medical data is ensured by encryption during storage and transfer. The system’s communication model
hides the latency of remote rendering to ensure a seamless experience for the user.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Code metadata

Current code version v0.3
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-22-00045
Permanent link to reproducible capsule https://sivr.info:5000
Legal code license MIT License
Code versioning system used git
Software code languages, tools and services used Go, Angular framework with Material components, CockroachDB Core edition

database
Compilation requirements, operating environments and dependencies Go, Node.js
If available, link to developer documentation/manual https://gitlab.com/kjozic/sivr/-/blob/main/README.txt
Support email for questions kjozic@gmail.com

1. Motivation and significance

The application of computer visualization in medicine in its
umerous modalities (CT, MR, PET, etc.) is essential for diag-
osis, education, practicing operative procedures, pre-operative
lanning, and telemedicine [1]. DICOM (Digital Imaging and Com-
unications in Medicine) is a standard for storage, management,
nd transmission of medical images developed in 1985, and con-
inuously republished since [2,3]. It is used to store different
odalities and provides a good foundation for building PACS
ystems (Picture Archiving and Communication System) [4,5].

∗ Corresponding author.
E-mail addresses: kresimir.jozic@siemens-energy.com (Krešimir Jozić),

ikolina.frid@fer.hr (Nikolina Frid), alan.jovic@fer.hr (Alan Jović),
eljka.mihajlovic@fer.hr (Željka Mihajlović).

The major issue in this field is that medical images are still
often stored and transferred using disposable optical media or
flash drives [6,7]. Besides the possibility of media damage and
loss of records after prolonged storage, the main drawback of this
approach is the time it takes for the image to reach the physician’s
office when it is dislocated from the scanning facilities. In addi-
tion, the large amount of discarded disposable media negatively
impacts the environment.

The solution is to enable access to medical images over the
Internet. The development of remote imaging was initiated by
the needs of small or rural hospitals [8], and gained significant
importance during the COVID crisis [9], when physicians’ contact
with patients, transmission, and handling of optical or USB me-
dia became more complicated. The key requirements for such a
system are: (1) DICOM image processing must be done on the
backend, as it requires more complex hardware and software
ttps://doi.org/10.1016/j.softx.2022.101063
352-7110/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.softx.2022.101063
http://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2022.101063&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://github.com/ElsevierSoftwareX/SOFTX-D-22-00045
https://sivr.info:5000
https://gitlab.com/kjozic/sivr/-/blob/main/README.txt
mailto:kjozic@gmail.com
mailto:kresimir.jozic@siemens-energy.com
mailto:nikolina.frid@fer.hr
mailto:alan.jovic@fer.hr
mailto:zeljka.mihajlovic@fer.hr
https://doi.org/10.1016/j.softx.2022.101063
http://creativecommons.org/licenses/by/4.0/


Krešimir Jozić, Nikolina Frid, Alan Jović et al. SoftwareX 18 (2022) 101063

t
d
i

t
i
o
l
t
s
r
l
a
g
t
a
h
p
v
r
t
W
s
b
P

S
D
i
a
i
p
s
i
s
s
s
l
w
n
S
a

t
S
f

2

w
b
a
a
C
s
o

2

e
S
M
i

han typically found in medical offices, and (2) transport of ren-
ered images must be optimized for low-to-medium throughput
nternet connections affordable for small GP’s.

Several client–server platforms for medical image visualiza-
ion have been developed over the past decade. The authors
n [10] present a custom implementation that relies on VRML
r X3D as data transfer and storage formats. Although this so-
ution is well suited for modest resources on the client side,
hese technologies have reached the end of their life. Newer
olutions are based on the DICOM standard. In [11], volume
endering is performed using GDCM VTK, and the Python NumPy
ibrary. However, using an interpreted language like Python usu-
lly results in lower performance, and the authors show only the
raphical renderings, but no timings. In [12], DICOM images are
ransferred to and rendered in a web browser, which requires
high-throughput internet connection, large RAM capacity and
ardware capability for volume rendering. The Studierfenster
latform [13] offers visualization and image analysis with ad-
anced features like AR/VR, cranial implant design, and facial
econstruction. DICOM images are converted to NRRD format on
he client side to avoid transferring patient data to the server.
hile advanced functionalities are executed on the backend,

ome image processing is still done client-side. This relies on We-
GL and requires GPU capabilities that are not always available on
Cs in physicians’ offices.
In this paper, we present a client–server web-based system for

eamless Image and Volume Rendering (SIVR) of DICOM images.
ICOM images are rendered in the backend, and the resulting 2D
mages are sent to physicians who can view and analyze them in
web browser. The key advantage of the proposed system is that

t provides fast access to the data needed for diagnosis without
lacing a heavy demand on computing resources on the client
ide, thus requiring minimal or no investment on the part of the
nstitution, i.e., making optimal use of the available hardware. The
ystem architecture and communication model are designed to
upport load distribution across multiple servers, allowing easy
caling. Image pre-processing is performed in advance to mask
atency so that users do not feel any delay in transmission. This
ork is a continuation of the work previously published in [14],
ow extended to include the ability to render the entire volume.
ecurity and overall performance have also been improved by
dding compression and encryption of stored data.
In Section 2, we describe system architecture and main func-

ionalities. In Section 3, we present several use cases, while in
ection 4, we elaborate on the overall impact of the software and
uture challenges. Section 5 concludes the paper.

. Software description

The proposed system is based on a distributed client–server
eb architecture. The frontend is a thin client connected to the
ackend that consists of four layers: web server, two intermedi-
te application servers responsible for managing administrational
nd meta-data, and the final layer responsible for rendering DI-
OM images. The details of the architecture implementation,
oftware functionalities and key benefits are described in the rest
f this section.

.1. Software architecture

The frontend acts as a user interface through which the back-
nd functionalities are accessed. It is implemented in the Type-
cript programming language using Angular framework [15] with
aterial components [16], and translated by the Angular CLI tool

nto JavaScript code that can run in a web browser.

The backend is divided into four layers. The first layer is
the web server, which provides the frontend files (HTML5, CSS,
JavaScript). The toplevel server is the second layer, responsible for
storing and managing data about physicians, patients, and various
metadata (IP addresses and server ports at the institution layer,
supported types of DICOM records) common to a group of medi-
cal institutions, e.g., the entire county. The institutional server is
the third layer, responsible for storing and managing data at the
medical institution level: radiological findings, rendering servers’
metadata (IP address, port), and metadata about DICOM images
stored on servers within the institution (location, MD5 sum).
Radiological findings contain only the link to the DICOM record,
not the record itself. The rendering node is the fourth layer of the
backend, responsible for rendering slices of DICOM records and
volume rendering. It relies on the image characteristics metadata
in the DICOM header for image processing. Other metadata from
the DICOM header (about the patient, device, imaging process,
etc.) are not analyzed since the entries are very different in each
case and multiple usage options are available [17]. Instead, we
rely on the data manually entered into the patient record stored
in the database. The CockroachDB Core edition database [18] is
used to store the data. Its main advantages are that the executable
does not need to be installed, and it provides NoSQL features
like easy replication, geo-distribution, and cluster creation [19].
Finally, DICOM records do not necessarily have to be stored on
these servers but can also be stored on SAN or NAS [20] devices
accessible from these servers.

Horizontal and vertical communication independence is pro-
posed to minimize latency in remote rendering and ensure a
seamless user experience. Vertical independence means that the
frontend can connect directly to any of the backend layers de-
pending on the functionality requested by the user, which is
completely obfuscated from the user who does not know which
layer of the backend they are interacting with. For example,
radiological findings are loaded directly from the institution layer
servers, and rendered images of DICOM records are obtained di-
rectly from the rendering. Communication between the frontend
and each layer of the backend is done using RESTful architectural
style by sending JSON messages. By avoiding an intermediate
layer, the overall latency and load on the toplevel server are
reduced. Horizontal independence means that there is no di-
rect communication between backend servers. Consequently, the
number of servers at each layer is not predetermined, and it is
possible to set up additional servers in some layers if needed
(i.e., upscale). Also, multiple toplevel servers can use the same
database, or a database cluster can be created and connected to
multiple toplevel servers. If DICOM records are stored on SAN or
NAS devices, multiple nodes can be used. Fig. 1 illustrates the
system architecture.

The entire backend is written in the Go programming language
using libraries for OpenGL, linear algebra, parsing DICOM records,
database access, etc. Everything is compiled and statically linked
into a single self-contained binary. All static resources required to
run each server and serve the frontend are also part of the final
binary. In addition to the backend executable file, the following
components of the architecture are required for the system to
function properly: the configuration file, the database engine, and
the database data files, as illustrated in Fig. 2. The configuration
file is written in YAML format and provides basic parameters
necessary to run the backend: IP address, port, path to database
data files, path to DICOM records. This file must be modified for
each new instance of the backend that is run.

System security
Due to data confidentiality requirements for healthcare appli-

cations [21], security solutions were implemented on frontend,
database, transport layer, and file system.
2



Krešimir Jozić, Nikolina Frid, Alan Jović et al. SoftwareX 18 (2022) 101063

f
s
e
t
I

W
t

Fig. 1. System architecture overview.

Fig. 2. System’s executable and data files.

User passwords are stored in the database encrypted, in MD5
ormat. The password is encrypted on the frontend before it is
ent to the backend over the network. This level of protection
nsures that if a database containing passwords is compromised,
he passwords cannot be misused to access other services on the
nternet.

The next level of protection is implemented using JWT (JSON
eb Tokens) [22]. The transmission of each message between

he frontend and the backend contains a JWT token. It is used to

protect the data from modification, not to ensure data confiden-
tiality. The protection sum is generated using a secret key which
resides on the backend and is never transmitted to the client. The
frontend automatically renews the JWT token every few minutes
while the user is logged in.

The third level of protection is securing communication
through the transport layer. Only protocols that use encryption

are supported: HTTPS, HTTP/2, and HTTP/3 [23]. The HTTP/2 and

3



Krešimir Jozić, Nikolina Frid, Alan Jović et al. SoftwareX 18 (2022) 101063

H
i

t
p
a

2

t
p
a

Fig. 3. Activity flow for loading DICOM records.

TTP/3 protocols also improve system performance by multiplex-
ng requests over a single connection.

The final layer of protection, the OpenZFS file system, is used
o store DICOM records. It is an advanced file system that sup-
orts software RAID arrays, field portability between different
rchitectures, logs, deduplication, compression, and encryption.

.2. Software functionalities

The intended users of this system are physicians and adminis-
rators. All users can view their personal information and change
asswords. Access to other functionalities depends on the user’s
uthorization level and the user’s context.
Functionalities available to physicians are:

• manage patient records,
• send DICOM images to a storage server,
• enter radiological findings,
• view DICOM images (2D slice by slice and 3D volume).

Functionalities available to system administrators are:

• manage system users (physicians),
• manage institutions,
• manage DICOM record types,
• manage rendering nodes.

Access to rendering nodes for storing DICOM records is limited
by the institution to which the physicians or administrators be-
long. This restriction was implemented to limit data transfer over
the Internet to improve system performance, as transfer speeds
4



Krešimir Jozić, Nikolina Frid, Alan Jović et al. SoftwareX 18 (2022) 101063
Fig. 4. An example of a remotely rendered slice of a DICOM image. The slider on the bottom is used to select the frame. The menu on the right is used to select
the image format.

within facilities are much higher than over the Internet. However,
access to stored images is not limited by institutions.

Image processing is performed entirely on the rendering nodes.
Many algorithms for visualizing radiological images exist [24],
but raycasting algorithms [25], a type of direct volume rendering
algorithms [26], are the most used and hence implemented in
this system. To hide the latency of rendering a DICOM record,
the record is loaded slice by slice into the RAM of the rendering
node. In RAM, they are decompressed and stored in a slice of an
OpenGL 3D texture. The status of each loaded 3D texture slice is
recorded. This way, the user receives rendered images of the first
few slices almost immediately, while the rest of the texture slices
are being processed. However, latency masking is only possible
when displaying individual slices of DICOM records. This is not
possible when displaying the volume, because the entire record
must be loaded into a 3D texture.

3. Illustrative examples

In this section we describe one of the most common use cases:
the physician retrieves a patient’s record to examine radiological
findings. The flow starts with a successful login, followed by a
search for the patient’s record. When the record is found, the
user is notified that it was successfully loaded and can immedi-
ately start reviewing the record and request slices. The DICOM
image is processed concurrently in the backend and prepared for
rendering slices on demand. The user interacts with the system
through the frontend, which connects to the appropriate backend
layers depending on the functionality performed, as described in
Section 2. We illustrate this scenario using a UML activity diagram
in Fig. 3.

The search for patient records and radiological findings can
be performed simultaneously on multiple servers at the facility
level. Also, due to network latency and user response speed, the
processing of most slices will likely be complete by the time the
user issues the first request for a slice. In this way, disk latency is
masked, giving a good impression of the system’s responsiveness.
Fig. 4 shows a slice of a DICOM image rendered remotely.

The performance in rendering slices (2D) and entire volumes
(3D) was tested using DICOM records from publicly available
repositories [27,28] on a system consisting of a web server, a
toplevel server, an institution server, and a rendering node. All
servers were deployed on a computer with Ubuntu 21.10 op-
erating system and the following hardware configuration: Intel
i7-11700 CPU (4.9 GHz), 64 GB DDR4 RAM, Intel UHD Graphics
750, and separate SSD drives for DICOM storage and the server

executables. Network connectivity between the backend servers
was simulated using Chromium (v96) web browser development
tools [29] for three configurations:

1. without simulation,
2. 2G (D: 750 kbit/s, U: 250 kbit/s, LAT: 100 ms),
3. 4G (D: 4 Mbit/s, U: 3 Mbit/s, LAT: 20 ms).

Four DICOM records were selected as test cases with proper-
ties (original and rendered in 2D and 3D), Table 1.

Performance test results for 2D and 3D rendering for all three
configurations are compared in Fig. 5. The setup without network
(‘‘w/o’’) is used to determine the time required to render the
image, and it can be observed that the rendering time mainly de-
pends on the compression algorithm (PNG vs. WebP). Rendering
3D volumes takes longer, which is to be expected because it is
computationally more demanding than rendering layers. Image
loading times from the hard drive are given in Table 2. It can
be concluded that they do not depend on the form of the file
(compressed, encrypted, etc.), but only on the file size.

For 2G network simulation, the rendered image size has an
impact on the transmission time. The WebP algorithm, which was
the slowest in rendering, produced smaller images compared to
PNG and overall achieved better time. Therefore, the rendering
time under real network conditions is masked by the latency
and bandwidth of the network. The same is observed for the 4G
network simulation.

4. Impact

The proposed system provides fast and easy access to DICOM
medical images over the web without requiring large initial in-
vestments. Deployment of the backend requires no installation
and is easily scalable. Physicians only need a web browser and
no high-throughput internet connection to access the frontend.
The system offers a high level of security and data protection:
communication over an encrypted connection, and all data on
disk is also encrypted.

Although the system is not yet in commercial use, we see
its impact in the future primarily in improving the quality of
medical care in isolated and difficult to reach areas, and in health-
care facilities with a lack of appropriate professional workers.
One possible application would be integration with the RIS sys-
tem (Radiology Information System) of the Croatian Institute of
Emergency Medicine to expand its current teleradiology capabil-
ities [30]. It may also be useful for academic purposes for students
5



Krešimir Jozić, Nikolina Frid, Alan Jović et al. SoftwareX 18 (2022) 101063

i
s
v
3
l
n
m
c
a
p
d

D

c
t

R

Table 1
Image properties.
Image DICOM 2D rendering 3D rendering

Rows Cols Slices File size [MB] PNG size WebP size PNG size WebP size

A 512 512 10 5 76.00 23.40 95.60 29.20
B 512 512 54 27 158 68.9 185 62.3
C 512 512 555 277 95.1 32.7 146 48.6
D 1996 2457 96 898 94.4 22.50 88 22.30

Fig. 5. Performance comparison of 2D and 3D rendering.

Table 2
Loading time from disk (in seconds).
Image Raw Compressed Encrypted Compressed &

Encrypted

A 0.09 0.08 0.08 0.09
B 0.43 0.44 0.45 0.43
C 3.63 3.67 3.57 3.59
D 11.27 11.45 11.07 11.26

and young scientists in the field of medical imaging, who often do
not have sufficiently powerful computers to process the DICOM
format.

5. Conclusions

We have described the main features of a web-based med-
cal imaging software with scalable architecture that enables
eamless medical image examination. Future research could in-
estigate alternatives to OpenGL like Vulkan [31] and OpenCL [32,
3] to enable multithreaded execution. Using OpenCL would al-
ow servers without graphics hardware to be used as rendering
odes or use both the CPU and specialized graphics hardware si-
ultaneously. Additionally, image processing on rendering nodes
ould be further customized by introducing dynamic brightness
djustment instead of using the window center and width values
redefined in the DICOM image. This would facilitate spotting
etails that may not be visible with the predefined settings.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

eferences

[1] Vidal FP, et al. Principles and applications of computer graphics in
medicine. Comput Graph Forum 2006;25(1):113–37. http://dx.doi.org/10.
1111/j.1467-8659.2006.00822.x.

[2] The DICOM Standard – Current Edition, https://www.dicomstandard.org/
current.

[3] Genereaux BW, Dennison DK, Ho K, et al. DICOMwebTM: Background and
application of the web standard for medical imaging. J Digit Imaging
2018;31:321–6. http://dx.doi.org/10.1007/s10278-018-0073-z.

[4] Berkowitz SJ, Wei JL, Halabi S. Migrating to the modern PACS: Challenges
and opportunities. RadioGraphics 2018;38(6):1761–72. http://dx.doi.org/
10.1148/rg.2018180161.

[5] Caffery LJ, Clunie D, Curiel-Lewandrowski C, et al. Transforming dermato-
logic imaging for the digital era: Metadata and standards. J Digit Imaging
2018;31:568–77. http://dx.doi.org/10.1007/s10278-017-0045-8.

[6] IAEA. Worldwide implementation of digital imaging in radiology. IAEA
Hum Health Ser 2015;(28). http://www-pub.iaea.org/MTCD/Publications/
PDF/Pub1647web.pdf.

[7] Ranschaert ER, van Ooijen PMA. Sharing imaging data. In: van Ooijen PMA,
editor. Basic Knowledge of Medical Imaging Informatics. Imaging Informat-
ics for Healthcare Professionals. Cham: Springer; 2021, http://dx.doi.org/10.
1007/978-3-030-71885-5_6.

[8] Lee KT, et al. An internet-based telemedicine system. IJCSNS Int J Comput
Sci Netw Secur 2007;7(1):51.

[9] Ahmad W, Ahmad U. Role of radiology in COVID-19 pandemic and post
COVID-19 potential effects on radiology practices. Indian J Radiol Imaging
2021;31(1):196–7. http://dx.doi.org/10.4103/ijri.IJRI_536_20.

[10] Blazona B, Mihajlovic Z. Visualization service based on web services. J
Comput Inf Technol CIT 2007;15(4):339–45.

[11] Moraes T, Amorim P, Silva J, Pedrini H. Web-based interactive visualization
of medical images in a distributed system. In: Proceedings of the 14th
International Joint Conference on Computer Vision, Imaging and Com-
puter Graphics Theory and Applications, Prague. Czech Republic; 2019, p.
346–53. http://dx.doi.org/10.5220/0007626103460353.

[12] Arbelaiz A, Moreno A, Kabongo L, Diez HV, Alonso AGarcía. Interactive
visualization of DICOM volumetric datasets in the web - providing VR
experiences within the web browser. In: Proceedings of the 12th Inter-
national Joint Conference on Computer Vision, Imaging and Computer
Graphics Theory and Applications, Porto, Portugal. 2017, p. 108–15. http:
//dx.doi.org/10.5220/0006154801080115.

[13] Egger J, Wild D, Weber M, et al. Studierfenster: an open science cloud-
based medical imaging analysis platform. J Digit Imaging 2022;35:340–55.
http://dx.doi.org/10.1007/s10278-021-00574-8.

[14] Jozić K, Jović A, Mihajlović Ž. Seamless remote rendering of DICOM images.
In: Bilof Randall, editor. Proceeding of 14th International Conference on
Advanced Computer Theory and Engineering (ICACTE 2021), Hangzhou,
China. IEEE-CPS. 2021, [in press].

[15] Google. Angular, https://angular.io.
[16] Google. Angular Material UI component library, https://material.angular.io/.
[17] Barufaldi B, Zuckerman SP, Medeiros RB, Maidment AD, Schiabel H.

Characterization of the imaging settings in screening mammography using
a tracking and reporting system: A multi-center and multi-vendor analysis.
Phys Med. 2020;71:137–49. http://dx.doi.org/10.1016/j.ejmp.2020.02.018.
6

http://dx.doi.org/10.1111/j.1467-8659.2006.00822.x
http://dx.doi.org/10.1111/j.1467-8659.2006.00822.x
http://dx.doi.org/10.1111/j.1467-8659.2006.00822.x
https://www.dicomstandard.org/current
https://www.dicomstandard.org/current
https://www.dicomstandard.org/current
http://dx.doi.org/10.1007/s10278-018-0073-z
http://dx.doi.org/10.1148/rg.2018180161
http://dx.doi.org/10.1148/rg.2018180161
http://dx.doi.org/10.1148/rg.2018180161
http://dx.doi.org/10.1007/s10278-017-0045-8
http://www-pub.iaea.org/MTCD/Publications/PDF/Pub1647web.pdf
http://www-pub.iaea.org/MTCD/Publications/PDF/Pub1647web.pdf
http://www-pub.iaea.org/MTCD/Publications/PDF/Pub1647web.pdf
http://dx.doi.org/10.1007/978-3-030-71885-5_6
http://dx.doi.org/10.1007/978-3-030-71885-5_6
http://dx.doi.org/10.1007/978-3-030-71885-5_6
http://refhub.elsevier.com/S2352-7110(22)00049-8/sb8
http://refhub.elsevier.com/S2352-7110(22)00049-8/sb8
http://refhub.elsevier.com/S2352-7110(22)00049-8/sb8
http://dx.doi.org/10.4103/ijri.IJRI_536_20
http://refhub.elsevier.com/S2352-7110(22)00049-8/sb10
http://refhub.elsevier.com/S2352-7110(22)00049-8/sb10
http://refhub.elsevier.com/S2352-7110(22)00049-8/sb10
http://dx.doi.org/10.5220/0007626103460353
http://dx.doi.org/10.5220/0006154801080115
http://dx.doi.org/10.5220/0006154801080115
http://dx.doi.org/10.5220/0006154801080115
http://dx.doi.org/10.1007/s10278-021-00574-8
http://refhub.elsevier.com/S2352-7110(22)00049-8/sb14
http://refhub.elsevier.com/S2352-7110(22)00049-8/sb14
http://refhub.elsevier.com/S2352-7110(22)00049-8/sb14
http://refhub.elsevier.com/S2352-7110(22)00049-8/sb14
http://refhub.elsevier.com/S2352-7110(22)00049-8/sb14
http://refhub.elsevier.com/S2352-7110(22)00049-8/sb14
http://refhub.elsevier.com/S2352-7110(22)00049-8/sb14
https://angular.io
https://material.angular.io/
http://dx.doi.org/10.1016/j.ejmp.2020.02.018


Krešimir Jozić, Nikolina Frid, Alan Jović et al. SoftwareX 18 (2022) 101063
[18] Labs Cockroach CockroachDB. https://www.cockroachlabs.com/.
[19] Freire SM, Teodoro D, Wei-Kleiner F, Sundvall E, Karlsson D, Lambrix P.

Comparing the performance of NoSQL approaches for managing archetype-
based electronic health record data. PLoS One 2016;11(3):e0150069. http:
//dx.doi.org/10.1371/journal.pone.0150069.

[20] Lee G. Storage networks. In: Cloud Networking. Elsevier; 2014, p. 139–61.
http://dx.doi.org/10.1016/B978-0-12-800728-0.00008-4.

[21] Desjardins B, Mirsky Y, Ortiz MP, et al. Dicom images have been hacked!
now what? Am J Roentgenol 2020;214(4):727–35. http://dx.doi.org/10.
2214/AJR.19.21958.

[22] Internet Engineering Task Force (IETF). JSON Web Token (JWT), https:
//datatracker.ietf.org/doc/html/rfc7519.

[23] The IETF QUIC Working Group. QUIC, https://quicwg.org/.
[24] Zhang Q, Eagleson R, Peters TM. Volume visualization: a technical overview

with a focus on medical applications. J Digit Imaging 2011;24(4):640–64.
http://dx.doi.org/10.1007/s10278-010-9321-6.

[25] Movania MM. OpenGL Development Cookbook. first ed.. Packt Publishing;
2013.

[26] Hansen C, Johnson CR. Visualization Handbook. Elesevier; 2014.
[27] NEMA repository. ftp://medical.nema.org/medical/dicom/Multiframe/CT/

nemamfct.images.tar.bz2.
[28] Clunie DA. UPMC Breast Tomography and FFDM Collection, https://www.

dclunie.com/pixelmedimagearchive/upmcdigitalmammotomocollection/
index.html.

[29] Google Developers. ChromeDevTools, https://developer.chrome.com/docs/
devtools.

[30] Croatian Institute of Emergency Medicine, Teleradiology. https://www.
hzhm.hr/en/telemedicine/teleradiology.

[31] The Khronos
®

Group Inc. Vulkan, https://www.vulkan.org/.
[32] The Khronos

®
Group Inc. OpenCL, https://www.khronos.org/opencl/.

[33] Stone JE, Gohara D, Shi G. OpenCL: A parallel programming standard
for heterogeneous computing systems. Comput Sci Eng 2010;12(3):66–72.
http://dx.doi.org/10.1109/MCSE.2010.69.
7

https://www.cockroachlabs.com/
http://dx.doi.org/10.1371/journal.pone.0150069
http://dx.doi.org/10.1371/journal.pone.0150069
http://dx.doi.org/10.1371/journal.pone.0150069
http://dx.doi.org/10.1016/B978-0-12-800728-0.00008-4
http://dx.doi.org/10.2214/AJR.19.21958
http://dx.doi.org/10.2214/AJR.19.21958
http://dx.doi.org/10.2214/AJR.19.21958
https://datatracker.ietf.org/doc/html/rfc7519
https://datatracker.ietf.org/doc/html/rfc7519
https://datatracker.ietf.org/doc/html/rfc7519
https://quicwg.org/
http://dx.doi.org/10.1007/s10278-010-9321-6
http://refhub.elsevier.com/S2352-7110(22)00049-8/sb25
http://refhub.elsevier.com/S2352-7110(22)00049-8/sb25
http://refhub.elsevier.com/S2352-7110(22)00049-8/sb25
http://refhub.elsevier.com/S2352-7110(22)00049-8/sb26
ftp://medical.nema.org/medical/dicom/Multiframe/CT/nemamfct.images.tar.bz2
ftp://medical.nema.org/medical/dicom/Multiframe/CT/nemamfct.images.tar.bz2
ftp://medical.nema.org/medical/dicom/Multiframe/CT/nemamfct.images.tar.bz2
https://www.dclunie.com/pixelmedimagearchive/upmcdigitalmammotomocollection/index.html
https://www.dclunie.com/pixelmedimagearchive/upmcdigitalmammotomocollection/index.html
https://www.dclunie.com/pixelmedimagearchive/upmcdigitalmammotomocollection/index.html
https://www.dclunie.com/pixelmedimagearchive/upmcdigitalmammotomocollection/index.html
https://www.dclunie.com/pixelmedimagearchive/upmcdigitalmammotomocollection/index.html
https://developer.chrome.com/docs/devtools
https://developer.chrome.com/docs/devtools
https://developer.chrome.com/docs/devtools
https://www.hzhm.hr/en/telemedicine/teleradiology
https://www.hzhm.hr/en/telemedicine/teleradiology
https://www.hzhm.hr/en/telemedicine/teleradiology
https://www.vulkan.org/
https://www.khronos.org/opencl/
http://dx.doi.org/10.1109/MCSE.2010.69

	DICOM SIVR: A web architecture and platform for seamless DICOM image and volume rendering
	Motivation and significance
	Software description
	Software architecture
	Software functionalities

	Illustrative examples
	Impact
	Conclusions
	Declaration of competing interest
	References


