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Abstract

This thesis focuses on the planning and coordination of cooperative missions for hetero-
geneous MRS. This complex problem consists of mission decomposition selection (the
question what do we do?), task allocation (the question who does what?), and task schedul-
ing (the question how do we arrange tasks in time?), which are often summarized under the
common term mission (task) planning. Mission planning can be viewed as an optimization
problem that attempts to find the most appropriate way to execute a mission, given certain
criteria. Overlaid on this process is a set of coordination mechanisms that ensure timely
and coordinated planning and execution of tasks between multiple individual robots.

This thesis proposes a distributed, multi-stage optimization method for planning
complex missions for heterogeneous multi-robot teams. This class of problems includes
tasks that can be executed in different ways and are associated with cross-schedule
dependencies that constrain the schedules of the different robots in the system. In nature,
these are NP-hard problems, and obtaining exact solutions is computationally intractable.
The approach proposed in this thesis involves a multi-objective heuristic search of the
mission model, represented as a hierarchical tree that defines the mission goal. This process
identifies multiple favorable ways to accomplish the mission (task decomposition selection),
which feed directly into the next phase of the method – task allocation and scheduling.

For task allocation and scheduling, a distributed algorithm is proposed for missions
where the tasks of different robots are tightly coupled with temporal and precedence
constraints. The approach is based on representing the problem as a variant of the Vehicle
Routing Problem (VRP). The solution is found using a distributed metaheuristic algorithm
based on evolutionary computation (CBM-pop). Such an approach allows for fast and
near-optimal allocation and can therefore be used for online rescheduling in case of task
changes. Simulation results show that the approach has better computational speed and
scalability without loss of optimality compared to state-of-the-art distributed methods.

Finally, this work defines a decentralized coordination framework for heterogeneous
multi-robot systems (GEM). The framework includes coordination mechanisms that ensure
coordinated mission planning and execution. It also implements a complete software
infrastructure that interacts with the specified hierarchical task model. It is domain-
independent and supports different missions for heterogeneous multi-robot systems, as
long as they conform to the mission specification model.

The proposed solutions are thoroughly tested in a realistic simulation environment
as well as in real experiments using heterogeneous multi-robot systems. The proposed
algorithms are directly compared with similar methods in the literature and the results
show that our method can handle more complex missions with good scaling properties.



We provide suboptimal solutions in fast computation times, which makes the proposed
solutions particularly suitable for real-world robotics applications.

The following original scientific contributions are achieved in this thesis:
• A framework for decentralized task allocation, scheduling, and coordination of

heterogeneous robotic teams based on hierarchical task representation.
• A method for distributed task allocation and scheduling for heterogeneous robotic

team missions with cross-schedule task dependencies.
• A method for distributed mission decomposition selection for heterogeneous robotic

team missions with complex task dependencies.

Keywords: Multi-Robot Planning, Multi-Robot Coordination, Task Allocation, Task
Scheduling, Distributed Optimization, Multi-Robot Systems
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Sažetak

Decentralizirano planiranje misija za heterogene robotske timove temeljeno
na hijerarhijskom prikazu zadataka.

Znanstveno područje kooperativnih višerobotskih sustava (engl. multi-robot system,
MRS) posljednjih godina uvelike zaokuplja pozornost istraživača. Razlog tome je što
višerobotski sustavi mogu obavljati određene poslove učinkovitije od jednog robota, a
neke zadatke nije ni moguće ostvariti korištenjem samo jednog robota. Nadalje, višer-
obotski sustavi imaju prednosti kao što su povećanje tolerancije na moguće greške robota,
mogućnost fleksibilnijeg izvođenja zadataka te raspodijeljeno istraživanje i djelovanje.
Dodatno, uvođenje heterogenosti, gdje svaki robot ima različite sposobnosti, dovodi do
drugih zanimljivih implikacija na sustav upravljanja i omogućuje zanimljivo zajedničko
ponašanje timova robota. Ipak, glavni je izazov osigurati robustan i inteligentan sustav
upravljanja kako bi agenti mogli međusobno komunicirati i koordinirati se u izvršavanju
zajedničkih misija. Stoga su razvoj sposobne upravljačke arhitekture, komunikacijske
infrastrukture i sustava planiranja današnji glavni problemi istraživanja ovog područja.

Ilustracija problema planiranja i koordinacije misije višerobotskih sustava.

Fokus ovog rada je planiranje i koordinacija kooperativnih misija za heterogene
višerobotske sustave. Ovaj složeni problem sastoji se od odabira dekompozicije misije
(engl. task decomposition selection; odgovara na pitanje koji zadaci se trebaju obaviti?),
dodjele zadataka (engl. task allocation; odgovara na pitanje tko radi što?) te vremenskog
raspoređivanja zadataka (engl. task scheduling; odgovara na pitanje kako vremenski



rasporediti zadatke?), koji se često sažimaju pod zajedničkim pojmom planiranje misije
(zadatka) (engl. mission (task) planning). Planiranje misije može se promatrati kao
problem optimizacije s ciljem pronalaska najprikladnijeg načina izvršenja misije prema
zadanim kriterijima. Skup koordinacijskih mehanizama nadgleda ovaj proces te osigurava
pravovremeno i koordinirano planiranje i izvršavanje zadataka više pojedinačnih robota.
Ilustracija zadanog problema prikazana je na slici iznad.

U ovom radu misije predstavljene kao velike hijerarhije zadataka podvrgnute su
optimizacijskom postupku u dva koraka. U prvom koraku provodi se brzo i učinkovito
heurističko pretraživanje grafa misije koje pronalazi nekoliko obećavajućih alternativnih
načina za izvršenje misije (procedura odabira dekompozicije zadataka). Zatim se postupak
raspodjele i raspoređivanja zadataka primjenjuje na nekoliko najbolje rangiranih alternativa.
Na temelju zadanih kriterija, najbolje cjelokupno rješenje je izlaz kao konačni raspored koji
najbolje zadovoljava cilj misije. Tijekom raspodjele i raspoređivanja zadataka, problem se
prikazuje kao varijanta problema raspoređivanja vozila (engl. Vehicle Routing Problem,
VRP). Pritom je definiran generički model problema planiranja zadataka koji se može
primijeniti na probleme iz različitih domena sustava s više robota.

Opisani postupak optimizacije ugrađen je u koordinacijski okvir za planiranje misije s
više robota. Okvir uključuje mehanizme koordinacije koji osiguravaju koordinirano plani-
ranje i izvršavanje misija. Također implementira kompletnu softversku infrastrukturu koja
se povezuje s hijerarhijskim modelom zadataka. Ovaj pristup pojednostavljuje primjenu
planera na različite domene, budući da se unutar ove dobro provjerene infrastrukture za
koordinaciju i planiranje trebaju implementirati samo specifične misije.

Disertacija je podijeljena u sljedeća poglavlja:
• Introduction;
• Background and Related Work;
• Decentralized Coordination of Heterogeneous Robotic Teams;
• Definition and Modeling of Task Planning Problems;
• Mission Planning Solution Approach;
• Results and Discussion;
• Conclusion.
U uvodu je dan pregled područja planiranja misija u heterogenim robotskim sustavima

i opis problema koji će se razmatrati u doktorskom radu. U glavnim crtama opisana je
struktura rada te je dan sažetak znanstvenih doprinosa.

U drugom poglavlju dana je temeljita analiza postojećih rješenja za planiranje
misija i koordinaciju u heterogenim višerobotskim sustavima. Također je definiran problem
planiranja misija te njegova klasifikacija. U području planiranja misija postoji nekoliko
klasa problema, ovisno o svojstvima robota i zadataka. Najčešća podjela definirana je s

v



obzirom na četiri parametra. Prvo, definirani su sustavi s robotima sposobnima obavljati
jedan zadatak u nekom trenutku (engl. single-task robots, ST) od onih koji mogu obavljati
više zadataka istovremeno (engl. multi-task robots, MT). Zadaci se na sličan način dijele
na one za čije je izvođenje potreban jedan robot (engl. single-robot tasks, SR), te na
zadatke u čijem izvršavanju sudjeluje više robota (engl. multi-robot tasks, MR). Treća
podjela razmatra horizont planiranja i probleme dijeli na one u kojima se zadaci dodjeljuju
u trenutku pristizanja u sustav (engl. instantaneous assignment, IA) te na probleme u
kojima se u planiranju misije razmatraju trenutno dostupni, ali i budući zadaci (engl. time-
extended assignment, TA). Za probleme klase TA za svakog robota izrađuje se raspored
izvršavanja zadataka. Naposljetku, posljednji kriterij tiče se složenosti zadataka te se
problemi dijele na četiri kategorije: bez međuovisnosti (engl. no dependencies, ND), s
međuovisnostima unutar rasporeda pojedinog robota (engl. in-schedule dependencies, ID),
s međuovisnostima između rasporeda različitih robota (engl. cross-schedule dependencies,
XD), te na zadatke s kompleksnim međuovisnostima (engl. complex dependencies, CD).
Kategorija CD uključuje zadatke s međuovisnostima između rasporeda različitih robota za
zadatke s više mogućih načina izvođenja (s više različitih dekompozicija). U ovoj kategoriji
problema kvaliteta kojom neki agent može izvesti zadatak ovisi o rasporedima drugih
agenata u sustavu, i to je određeno odabranim načinom izvođenja pojedinih zadataka.

Od postojećih rješenja problema planiranja misija, ovo poglavlje analizira sustave
temeljene na modelima, gdje su sustavi kao cjelina ili pojedini roboti opisani modelom
koji upravlja njihovim ponašanjem. Ovi se modeli obično kreiraju prije izvođenja misije
(engl. offline) i usmjeravaju radnje robota na temelju informacija koje primaju tijekom
izvođenja misije kako bi se optimizirala ukupna korisnost misije. Drugo, promatra se
eksplicitniji tip upravljanja višerobotskih sustava koji je temeljen na planiranju misije.
Ovdje su eksplicitno modelirane misije podvrgnute proceduri optimizacije koja odlučuje o
najboljem tijeku akcije za cijeli sustav ili određene robote. Planiranje se može izvršavati
prije ili tijekom izvršavanja misije (offline ili online) i, ovisno o specifičnom pristupu, može
biti manje ili više reaktivno na različite poremećaje ili neizvjesnosti u izvršavanju misije.

U trećem poglavlju opisan je model za hijerarhijsko predstavljanje zadataka, s de-
taljnim opisom elemenata modela i prikazom dekompozicije, odnosa i evaluacije zadataka.
Glavna premisa hijerarhijskog predstavljanja zadataka je dekompozicija zadataka, gdje
se veliki i potencijalno složeni zadaci postupno razlažu na jednostavnije, sve do razine
elementarnih, izvedivih zadataka (akcija). Ovaj prikaz pruža bolji pregled misije i odnosa
između zadataka te uvelike pojednostavljuje specifikaciju misije. Štoviše, bogata ekspre-
sivnost formulacije misije omogućuje definiranje složenih odnosa zadataka i dekompozicija,
a time i primjenjivost u različitim područjima. Ovaj rad vodi se općim značajkama TÆMS
(engl. Task Analysis, Environment Modeling and Simulation) modela prikaza zadataka, s
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prilagodbama specifičnima koordinacijskom okviru razvijenom u ovoj disertaciji.
Također je opisan razvijeni okvir za decentralizirano planiranje zadataka, raspoređivanje

zadataka i koordinaciju heterogenih robotičkih timova. Razvoj okvira inspiriran je GPGP
(engl. Generalized Partial Global Planning) okvirom, koje se često koristi u sinergiji sa
strukturom zadatka TÆMS. GPGP služi kao putokaz za distribuiranu koordiniranu kontrolu
sustava s više agenata dajući opće smjernice za formulaciju koordinacijskih mehanizama
i strukture modula. Na temelju identificiranih glavnih slabosti GPGP pristupa, u ovom
radu je predloženo rješenje koje bolje odgovara potrebama i mogućnostima modernih
robotskih sustava. Iako teoretski vrlo zanimljivi, neki od mehanizama GPGP-a uvode
nepotrebna odstupanja od optimalnog rješenja rasporeda zadataka, uz pretpostavku
smanjenja dostupnosti informacija svim robotima u sustavu. Ideja zadržavanja samo
lokalnih pogleda na misije robota, a zatim dijeljenja potrebnih informacija može se lako
ublažiti dopuštanjem svim robotima da zadrže globalnu strukturu misije. Mogućnosti
pohrane podataka i komunikacije eksponencijalno su se razvile u modernim računalnim
sustavima otkako je stvoren GPGP, tako da je drugačiji pristup lako moguć. Povrh
toga, planer definiran u sklopu GPGP okvira, koji planira rasporede lokalno za pojedine
robote te ih potom usklađuje s drugim robotima u sustavu, može se zamijeniti modernim
distribuiranim rješenjima za raspoređivanje zadataka koja istovremeno rješavaju dodjelu i
raspoređivanje zadataka.

Stoga je razvijen okvir GEM (engl. GEneric Multirobot mission coordination and
planning based on hierarchical task representation). Okvir je implementiran u ROS-
u (engl. Robot Operating System) i može se lako primijeniti na različite višerobotske
timove. Osnovna ideja odvajanja domenski specifičnih i generičkih modula održava se
u GEM arhitekturi. Za specifične aplikacije potrebno je implementirati module Task
Assessor (procjenitelj zadataka) i Task Executor (izvršitelj zadataka). Okvir pruža upute
i osnove za specifične implementacije u klasama predlošcima (engl. template class) koje
osiguravaju besprijekornu integraciju s ostatkom okvira. Korisnici trebaju pružiti svoje
specifične implementacije funkcija kako bi podržali željenu novu funkcionalnost za različite
misije. Moduli Mission Planner (planer misije) i Mission Coordinator (koordinator misije)
implementirani su i zajednički za različite primjene. Korisnik može zamijeniti zadani planer
prilagođenom implementacijom ukoliko želi uvesti nove načine planiranja. Oba modula
su dizajnirana s prilično jednostavnim sučeljem za ostatak sustava. Koordinator misije
komunicira s drugim robotima u sustavu i koordinira cijeli proces planiranja i izvršenja.
Ovaj modul je jednostavniji od GPGP koordinatora jer GEM rješenje ne definira toliko
složene koordinacijske mehanizme.

Četvrto poglavlje sadrži objašnjenje načina matematičkog modeliranja problema
planiranja zadataka za XD klasu problema, koji zahvaljujući odabranom pristupu ima
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svojstva generičkog modela zasnovanog na VRP (engl. Vehicle Routing Problem) paradigmi.
U ovom poglavlju prikazuje se osnovni problem usmjeravanja vozila i daje njegov odnos
prema problemu planiranja zadatka. Poveznica između dva modela (planiranje misija i
problem usmjeravanja vozila) razmatrana je na visokoj razini apstrakcije, iako u nekim
primjenama koje uključuju scenarije prijevoza odnos može biti očitiji. U modeliranju
planiranja zadataka kao varijante VRP-a koristi se pojam kupca (engl. customer) za
jednostavne zadatke (akcije). Ova definicija uključuje samo izvedive elemente iz strukture
zadatka robota, a svi se ostali zadaci moraju razložiti do razine akcije na kojoj je optimiziran
problem usmjeravanja vozila. U paradigmi planiranja zadataka pojam vozila (engl. vehicle)
izravno odgovara robotima. Uobičajeno za VRP paradigmu je da vozila krenu iz skladišta
(engl. depot), poslužuju dodijeljene kupce duž rute i vrate se u skladište. U modelu
planiranja misije kao VRP, pojam skladišta izjednačava se s početnim stanjem robota.
Za razliku od vozila u tipičnom VRP problemu, kod planiranja misija robot se ne treba
vratiti u inicijalno stanje nakon izvršenja misije. Ova varijanta VRP problema naziva se
otvoreni VRP (engl. open VRP). U modelu su definirani različiti parametri koji utječu
na planiranje misije. Za svaki zadatak u sustavu definirano je trajanje (engl. duration),
energetski zahtjev (trošak, engl. cost) te kvaliteta, ovisno o robotu koji ga izvodi. Dodatno,
definirane su tranzicijske relacije, koje određuju vrijeme i trošak prelaska s jednog na drugi
zadatak. Ovaj model dodatno definira ograničenja na izvođenje zadataka: sinkronizacijsko
ograničenje (engl. synchronization constraint), koje omogućava istovremeno izvođenje
dvije akcije, te ograničenje prioriteta (engl. precedence constraint), koje osigurava da
se pojedine akcije izvedu prije nekih drugih akcija. Rješavanjem ovako definirane misije
dobiva se raspored (engl. schedule) koji određuje redoslijed izvođenja akcija za svakog
robota te vremenske trenutke početka i kraja njihovog izvršavanja.

U petom poglavlju dana su rješenja za planiranje misija s međusobnim ovisnostima
zadataka, kao i složenim ovisnostima zadataka. Problemi klase XD (s međuovisnostima
između zadataka različitih robota) modelirani su kao VRP problem definiran u prethod-
nom poglavlju te podvrgnuti distribuiranoj metaheurističkoj optimizaciji za pronalazak
suboptimalnih rasporeda. Rješenje je inspirirano metaheuristikom zasnovanom na koaliciji
(engl. Coalition-Based Metaheuristic), CBM, gdje više agenata organiziranih u koaliciju
istovremeno istražuju prostor rješenja, surađuju i samoprilagođavaju se kako bi zajednički
riješili zadani problem. Novost uvedena u ovaj algoritam je korištenje osnovnih principa
distribuirane umjetne inteligencije (engl.Distributed Artificial Intelligence, DAI), učenja
potkrijepljenjem (engl. reinforcement learning) te mimetičkog učenja (engl. mimetic
learning; mimetism), koji ne samo da omogućuju agentima da uče iz svojih iskustava i
sukladno tome prilagode svoje buduće ponašanje, već i da dijele znanje s drugim agentima
u koaliciji. Osim naučenih ponašanja, agenti dijele i najbolja pronađena rješenja, tako da
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se na kraju svake iteracije algoritma dobiva najbolje globalno rješenje problema.
U potrazi za optimalnim rješenjem, svaki agent koristi nekoliko operatora koji se

primjenjuju na trenutno rješenje. Operatori mogu biti intenzifikatori (engl. intensifi-
cator) ili diverzifikatori (engl. diversificator). Operatori intenzifikacije odnose se na
procese poboljšanja kao što je lokalno pretraživanje, a operatori diverzifikatora odgovaraju
postupcima generiranja, mutacije ili križanja, slično kao u genetskim algoritmima (engl.
generation, mutation, crossover). Izbor operatora za primjenu nije potpuno stohastičan
kao u genetskim algoritmima. Umjesto toga, određen je procesom odlučivanja koji koristi
percipirano stanje i prošlo iskustvo za odabir najprikladnijeg operatora te koordinira
postupke intenzifikacije i diverzifikacije. Odabir operatora temelji se na heurističkim prav-
ilima. Ponašanje agenta u pretraživanju prilagođava se tijekom procesa optimizacije kroz
individualno učenje potkrijepljenjem te mimetičko učenje. Ovi mehanizmi modificiraju
pravila procesa odlučivanja na temelju rezultata iskustva prethodnih istraživanja. Iako svi
agenti u koaliciji koriste isti skup operatera, mehanizmi učenja mogu u konačnici ispoljiti
različite strategije.

Problem odabira dekompozicije zadatka klase CD (engl. task decomposition selection)
uključuje pronalaženje podskupa akcija i zadataka koje treba izvesti, s najvećim izgledima
za ostvarenje rasporeda blizu optimalnih. U ovom koraku postupka, heuristički algoritam
pretraživanja stabla koristi se za brzo generiranje alternativnih podskupova zadataka
koji zadovoljavaju cilj misije. Složenost postupka pretraživanja grafa ovisi o strukturi
stabla misije te odnosima između čvorova. Dodavanje više ograničenja pojednostavljuje
proceduru jer uklanja neke od opcija za izvršavanje zadataka. Međutim, kombinatorna
eksplozija može dovesti do faktorijelne složenosti postupka generiranja alternativnih načina
izvođenja zadatka za misije bez ikakvih odnosa čvorova.

Proces generiranja alternativa zadatka počinje u akcijskim čvorovima stabla misije
i rekurzivno se izgrađuje, na kraju završavajući u korijenu stabla. Kako bi ukrotio
potencijalnu kombinatornu eksploziju, postupak koristi metodu fokusiranja traženja rješenja
uklanjanjem najgorih djelomičnih rezultata u svakom koraku procesa kako bi se problem
učinio rješivim. Tijekom ovog postupka roboti koriste procijenjene vrijednosti za kvalitetu,
trajanje i cijenu radnji, koje se određuju kao prosjek tih vrijednosti za sve robote koji
mogu izvršiti radnju.

U šestom poglavlju prikazano je nekoliko studija s implementacijom predloženog
rješenja na različite heterogene višerobotske sustave, uključujući ispitivanja robotskog
sustava letjelica i autonomnih vozila u zadatku autonomne dostave paketa, decentraliziranu
kontrolu simbiotskog tima letjelice i mobilnih vozila te koordinaciju autonomnog zračno-
zemaljskog tima za zadatke automatizirane gradnje.

Zaključak provedenog istraživanja dan je u posljednjem sedmom poglavlju. Pokazano
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je da oba rješenja (za XD i CD klasu problema) uključuju korištenje heuristika i aproksi-
macija za brzo dobivanje suboptimalnih rješenja za ove vrlo teške kombinatorne probleme.
Oba ponuđena pristupa pronalaze rješenja jednako dobro ili bolje od najmodernijih pristupa
iz literature, uz značajno ubrzanje optimizacijskog postupka.

Disertacijom je ostvaren sljedeći izvorni znanstveni doprinos:
1. Radni okvir za decentraliziranu dodjelu i vremensko raspoređivanje zadataka, te

koordinaciju heterogenih robotskih timova temeljen na hijerarhijskom prikazu za-
dataka.

2. Metoda za distribuiranu dodjelu i vremensko raspoređivanje zadataka heterogenih
robotskih timova za misije s međuovisnostima zadataka različitih rasporeda.

3. Metoda za distribuiran odabir dekompozicije misije heterogenih robotskih timova za
misije sa složenim međuovisnostima zadatka.

Ključne riječi: planiranje misija višerobotskih sustava, koordinacija višerobotskih sustava,
dodjela zadataka, raspoređivanje zadataka, distribuirana optimizacija, višerobotski sustavi

x



Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1. Problem Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2. Thesis Contributions and Overview . . . . . . . . . . . . . . . . . . . . . . 3

2. Background and Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1. Coordinated Control of Multi-Robot Systems . . . . . . . . . . . . . . . . 7

2.1.1. Model-based systems . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2. Mission planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2. Mission Planning Problems Taxonomy . . . . . . . . . . . . . . . . . . . . 10
2.3. Mission Planning Approaches State of the Art . . . . . . . . . . . . . . . . 14

2.3.1. Problems with cross-schedule dependencies . . . . . . . . . . . . . . 14
2.3.2. Problems with complex dependencies . . . . . . . . . . . . . . . . . 16

3. Decentralized Coordination of Heterogeneous Robotic Teams . . . . . . 18
3.1. Hierarchical Task Representation . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.1. Elements of the hierarchical task model . . . . . . . . . . . . . . . . 19
3.1.2. Task decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.3. Task relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.4. Task evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2. Development of Coordination Framework for MRS . . . . . . . . . . . . . . 23
3.2.1. GPGP framework infrastructure . . . . . . . . . . . . . . . . . . . . 24
3.2.2. GPGP scheduling and coordination procedure . . . . . . . . . . . . 25
3.2.3. GEM coordination framework . . . . . . . . . . . . . . . . . . . . . 29

4. Definition and Modeling of Task Planning Problems . . . . . . . . . . . 33
4.1. Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2. Preliminaries - Vehicle Routing Problem . . . . . . . . . . . . . . . . . . . 38

4.2.1. The Vehicle Routing Problem . . . . . . . . . . . . . . . . . . . . . 39
4.2.2. The VRP with Time Windows . . . . . . . . . . . . . . . . . . . . . 41
4.2.3. The VRPTW with Synchronization and Precedence Constraints . . 42



4.2.4. The VRP with multiple depots . . . . . . . . . . . . . . . . . . . . 44
4.2.5. The Heterogeneous Fleet VRP . . . . . . . . . . . . . . . . . . . . . 46

4.3. Modeling of Task Planning Problems as VRP . . . . . . . . . . . . . . . . 47
4.3.1. Mathematical model formulation . . . . . . . . . . . . . . . . . . . 49

5. Mission Planning Solution Approach . . . . . . . . . . . . . . . . . . . . . 57
5.1. Problems with Cross-Schedule Dependencies . . . . . . . . . . . . . . . . . 57

5.1.1. MDVRP solution approaches . . . . . . . . . . . . . . . . . . . . . 57
5.1.2. The Coalition-Based Metaheuristic . . . . . . . . . . . . . . . . . . 59
5.1.3. Distributed metaheuristic for HFVRP-PS . . . . . . . . . . . . . . . 60

5.2. Problems with Complex Dependencies . . . . . . . . . . . . . . . . . . . . 67
5.2.1. Heuristic task decomposition selection procedure . . . . . . . . . . . 68

6. Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.1. Aerial-ground Robotic System for Autonomous Delivery Tasks . . . . . . . 71

6.1.1. Mission specification . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.1.2. Testbed description . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.1.3. Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.1.4. Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.2. Decentralized Control of a UAV-UGV Motion-Symbiotic Team . . . . . . . 77
6.2.1. Mission specification . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.2.2. Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.2.3. Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.2.4. Robustness to variable environment . . . . . . . . . . . . . . . . . . 85

6.3. Cooperative Aerial-Ground Multi-Robot System for Automated Construc-
tion Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.3.1. Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.3.2. Mission specification . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.3.3. Resolving simple redundancy . . . . . . . . . . . . . . . . . . . . . 88
6.3.4. Resolving complex redundancy . . . . . . . . . . . . . . . . . . . . 90
6.3.5. Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.3.6. Testbed description . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.3.7. Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.4. Distributed Mission Planning for Problems with Cross-Schedule Dependencies 99
6.4.1. Performance of the population-based CBM . . . . . . . . . . . . . . 100
6.4.2. Performance on benchmark examples of MDVRP . . . . . . . . . . 101
6.4.3. Comparative analysis on tasks with cross-schedule precedence con-

straints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104



6.4.4. Application to the use-case in agricultural environment . . . . . . . 107
6.5. Distributed Mission Planning of Complex Tasks . . . . . . . . . . . . . . . 111

6.5.1. Simulation setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.5.2. Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Biography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Životopis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139



CHAPTER 1

Introduction

Cooperative Multi-Robot Systems (MRS) have received much attention in recent decades
[1, 2]. The great interest in these systems stems from the considerable difficulty in
establishing intelligent, coherent control of joint missions and the many advantages that
they offer. Compared to a single robot, MRS can leverage the strengths of the participating
robots to establish a more robust system that is more resilient to various issues, such as
robot or sensor failures. Furthermore, the introduction of heterogeneity, where each robot
has different capabilities, leads to other interesting implications for the control system and
allows for intriguing collaborative behavior between robots [3]. The main challenge is to
provide a robust and intelligent control system so that the agents can communicate and
coordinate with each other to accomplish a mission given to them. Therefore, developing
capable control architecture, communication, and planning system are the main problems
discussed and solved among researchers [2].

This thesis focuses on the planning and coordination of cooperative missions
for heterogeneous MRS. This complex problem consists of mission decomposition selection
(the question what do we do?), task allocation (the question who does what?), and task
scheduling (the question how do we arrange the tasks in time?), which are often summarized
under the common term mission (task) planning [4]. Mission planning can be viewed
as an optimization problem that attempts to find the most appropriate way to execute
a mission according to given criteria. Overlooking this process is a set of coordination
mechanisms that ensure timely and coordinated planning and execution of tasks between
multiple individual robots. An illustration of the given problem is shown in Figure 1.1.

In this work, missions represented as large task hierarchies are subjected to a two-stage
hierarchical optimization procedure. In the first step, we perform a fast and efficient
heuristic search of the mission tree that finds several promising alternative ways to
execute the mission (task decomposition selection procedure). Then, a task allocation and
scheduling procedure is applied to several best-ranked alternatives to generate schedules
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Figure 1.1: Illustration of mission planning and coordination problems of MRS.

for the given problem. Based on the given criteria, the best overall solution is output as
the final schedule that best satisfies the mission objective.

During task allocation and scheduling, the problem is presented as a variant of Vehicle
Routing Problem (VRP). In doing so, we define a generic model of task planning problems
that can be applied to problems from different domains of multi-robot and multi-agent
systems. The proposed solution acts as a domain-agnostic planner of problems that adhere
to the specified model.

The described optimization procedure is embedded in a coordination framework for
multi-robot mission planning. The framework includes coordination mechanisms that
ensure coordinated planning and execution of missions. It also implements a complete
software infrastructure that interfaces with the Task Analysis, Environment Modeling and
Simulation (TÆMS) hierarchical task model. This approach simplifies the application of
the planner to different domains, as only the specific missions need to be implemented
within this well-tested coordination and planning infrastructure, as shown in the results
section.

1.1 Problem Features

Some of the main features of mission planning and coordination problems considered in
this thesis are given as follows:
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− Task decomposability. Missions considered for multi-robot system planning consist
of simple tasks (actions) that can be combined in various ways to form composite
tasks. Therefore, each composite task can be decomposed to obtain a set of simple,
executable tasks that a robot can perform.

− Heterogeneity of robots and tasks. We assume a multi-robot team in which each
robot may have its own capabilities, which can differ from those of other robots in
the system. Similarly, tasks may require different abilities in their execution, so that
only a subset of robots can participate in them.

− Inter-task ordering constraints. A particular task may need to be performed before
or at the same time as another task, resulting in precedence and synchronization
constraints. These relationships can constrain the tasks of a single robot (intra-
schedule) or multiple robots (inter-schedule or cross-schedule). Ordering constraints
directly affect the schedules of specific robots and the allocation of tasks among
robots.

− Capacity constraints. We assume that each task requires a certain amount of a
resource to be executed, e.g., a battery, load capacity, or any other unit. Similarly,
the robots have specified the maximum and minimum values for each resource at
which the operations are still possible. If the resource is depleted (or above the
allowed limits), tasks that require it cannot be executed.

− Temporal constraints. A task may have a time window within which it must be
performed, and robots should adhere to it. This constraint can be hard or soft,
depending on how strict it is. Soft constraints have a penalty for exceeding the time
window, while hard constraints do not allow schedules with broken time window
requirements.

1.2 Thesis Contributions and Overview

The objective of the proposed research is the synthesis of a complete planning system for
distributed mission decomposition selection, task allocation, scheduling, and coordination
of heterogeneous robotic teams based on hierarchical task representation for complex
multi-robot missions.

Therefore, scientific contributions of this thesis are summarized as follows:
• First. A framework for decentralized task allocation, scheduling, and coordination

of heterogeneous robotic teams based on hierarchical task representation.
• Second. A method for distributed task allocation and scheduling for heterogeneous

robotic team missions with cross-schedule task dependencies.
• Third. A method for distributed mission decomposition selection for heterogeneous
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robotic team missions with complex task dependencies.
The first contribution entails a comprehensive coordination framework for heterogeneous

multi-robot teams. The mission-agnostic framework serves as a basis for mission planning
systems that adhere to the given mission specification structure. An advantage of such
a framework is that it enables faster and more reliable implementation by providing an
architecturally stable foundation on which specific planners can build.

As a second contribution, we propose a novel model that unifies task planning models
with a well-studied VRP. We define a mathematical model formulation for mission planning
problems with cross-schedule dependencies. The cross-schedule dependencies we consider
are precedence constraints and transitional dependencies (including the cost and time
limitations of switching between any two actions). Besides generalizing the problem,
another advantage of the proposed modeling is that it exposes task planning problems to
a wide range of optimization techniques already available for VRP, thus advancing the
state of the art in task planning. We propose a fast distributed metaheuristic approach to
solve the described problem.

Finally, we address the problems with even higher complexity. By combining different
methods and modeling defined in the previous contribution, we solve problems of task
decomposition selection, task allocation, and scheduling. The current literature generally
does not consider problems of such complexity. Our approach provides a fast suboptimal
solution to this NP-hard [5] combinatorial problem and is suitable for real-world robotics
applications.

Thesis Organization

The thesis is organized as follows. In the next chapter, we describe the problems of mission
planning and coordination for MRS and review the current state of research. Next, in
Chapter 3 we define the underlying hierarchical mission model and the development of
the coordination framework for MRS (Contribution 1). Then, in Chapter 4, we present
the mathematical modeling of the mission planning problems as a generic model based
on the VRP paradigm. Next, Chapter 5 outlines the solution approach to the planning
problem defined in the previous chapter (Contribution 2), and the solution to the CD class
of problems (Contribution 3). In Chapter 6, we present the main results of the conducted
research and discuss the findings. Finally, in Chapter 7, conclusions and insights are given
for future work and further development of the proposed work.
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CHAPTER 2

Background and Related Work

Research in cooperative MRS is of interest to various research groups, as it holds many
interesting and useful potentialities for cooperative mission execution. A multi-robot
system can be homogeneous or heterogeneous [2]. In homogeneous robot teams, the
capabilities of the individual robots are identical (the physical structures do not have to
be the same) [6, 7]. In heterogeneous robot teams, the capabilities of the individual robots
are different, allowing them to specialize in certain tasks [8, 9].

In [10], the authors proposed a taxonomy for coordinated MRS as shown in Figure
2.1. At the top level, MRS can be classified into two groups – cooperative and competitive.
A cooperative system consists of robots working together to accomplish a global task.
Competition in MRS is a fairly unexplored area, as there are not many uses for a competitive
multi-robot system. They are mostly studied from the perspective of competitive games,
such as robot soccer.

cooperative MRS

knowledge

coordination weakly
coordinated

not
coordinated

strongly
centralized

weakly
centralized distributedorganization

unawareaware

strongly
coordinated

cooperation

Figure 2.1: Classification of cooperative MRS focused on coordination.

The second category classifies systems based on the knowledge that each robot has
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about its peers. In this sense, robots can be either aware or unaware. The main advantage
of unaware MRS is its simplicity, since no coordination and communication protocols need
to be developed. However, this is also a disadvantage, as they are unaware of each other,
they are unpredictable, and it is difficult to estimate the impact of individuals’ actions on
the overall utility of the system.

Next, aware MRS can be categorized according to the degree of coordination within
the system. Coordination is defined as a cooperative act in which each robot takes
into account the actions of the other robots in such a way that the whole becomes a
coherent and high-performance team. How this property comes into play depends on
the use of the coordination protocol, i.e., a set of rules that the robots must follow in
their actions. In this sense, MRS can be divided into three main categories – strongly
coordinated, weakly coordinated and not coordinated, depending on how much it relies on a
coordination protocol. In this thesis we will focus exclusively on systems with some degree
of coordination, since this is the area we are interested in. These systems can be described
as teams that coordinate their actions to achieve a common goal.

The final refinement classifies strongly coordinated MRS based on the organization of
the control architecture. Two main classes of protocols are distinguished: centralized and
distributed. In the former, all control mechanisms are implemented on a central computing
unit, and the robots simply follow the instructions given to them. Centralized MRS can be
either strongly centralized, where the central unit is predefined and all computations are
performed on it, or weakly centralized, where more than one robot can assume the role of
the leader during the mission. In contrast, in distributed control systems, the processing is
spread across multiple nodes. Various nodes can communicate and coordinate by passing
messages. Within distributed architectures, there is a separate group – decentralized
systems, where a decision is made across various nodes. Each node decides its behavior,
and accumulated control outputs from all the nodes form the group behavior. Specific to
decentralized systems is that no single node has complete system information.

Due to the global view of the mission, a centralized approach to multi-robot control
can produce optimal or near-optimal plans [11, 12, 13]. Nevertheless, this architecture: 1)
is typically used for a small number of robots and ineffective for large teams with more
robots; 2) is not robust to dynamic environments or failures in communication and other
uncertainties; 3) produces a highly vulnerable system in case of malfunction of the central
control agent. In contrast, decentralized and distributed architectures usually exhibit
higher reliability, flexibility, adaptability, and robustness. This makes them particularly
suitable for field operations in dynamic environments where more robots are deployed
with limited resources, even if the solutions they provide are often suboptimal. However,
for agents to perform their actions in a distributed manner, appropriate coordination
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mechanisms must be developed.
Further, multi-robot coordination protocols can be static (also referred to as offline),

where robots use predefined plans or rules for execution [14], or dynamic (also known as
online), where plans are created during mission execution and respond to the state of the
environment [15]. The static method can handle complex missions, but it cannot adapt to
changes, so it is usually unsuitable for reactive real-time applications that require dynamic
planning. The dynamic method, on the other hand, can perform in real-time very well,
but has difficulties in handling more complex tasks.

2.1 Coordinated Control of Multi-Robot Systems

In the rest of the state of the art, we distinguish two types of coordinated control for MRS.
First, in this section, we analyze model-based systems, where the systems as a whole or
particular robots are described by a model that governs their behavior. These models are
typically created offline and guide the robots’ actions based on inputs they receive during
the mission runtime in order to optimize the overall utility of the mission. Second, we
observe in more detail a more explicit type of MRS control called mission planning-based
systems. Here, the explicitly modeled missions are subjected to an optimization procedure
that decides the best course of action for the entire system or particular robots. Planning
can be done online or offline and, depending on the specific approach, can be more or less
reactive to various disturbances or uncertainties in mission execution.

2.1.1 Model-based systems

In general, model-based control of MRS can be viewed as a policy that agents should
implement to accomplish their assigned task once the complex tasks have been decomposed
into subtasks [16]. Several frameworks have been proposed to model and solve decision-
making problems, including logic controllers, game theory, and swarm intelligence. All of
these approaches involve the synthesis of controllers that guide the coordinated behavior of
a multi-robot team. The main goal is to model the behavior of robots for specific missions,
with less explicit control. This in turn complicates the design of robot decision-making
model, which increases computational complexity or, if simpler models are used, decreases
the optimality of mission execution.

Logic-based controllers

Many of the current approaches rely on off-the-shelf automated reasoners based on,
for example, Linear Temporal Logic (LTL) [17, 18, 19]. In [17], the authors propose
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a simultaneous task allocation and planning for temporal logic goals in heterogeneous
multi-robot systems. The main idea is to construct an offline team model used both for
plan execution and for assigning specific subtasks to robots. This approach is particularly
suitable for cases where task execution plans cannot be computed in advance, as for
LTL-based planning of on-demand missions. The motivation for this approach comes from
the use cases of service robots, e.g., in the office environment. Typical use cases are service
tasks such as transporting documents or supplies, emptying waste bins, etc. The approach
assumes a general model of the system containing a topological map of the environment
and internal states of the robots.

A similar application can be seen in [20], where the authors task robots to provide
delivery services in known locations, avoiding obstacles and dangerous regions. The
proposed approach is the first reactive and abstraction-free LTL planning algorithm used
for mission planning and coordination of multiple robots in unknown environments. The
method adapts to the updated map of the environment as the robots explore new regions.
It is abstraction-free, as it does not rely on creating abstractions of the robot dynamics.
The algorithm is complete∗ under mild assumptions about the structure of the environment
and sensor models.

Although these solutions represent a significant contribution to the theoretical synthesis
of correct-by-design controllers, they often suffer from intense computational problems as
well as the inability to quantify planner objectives and define complex task relationships.
Recently, in [22], the authors proposed a new, highly scalable and asymptotically optimal
algorithm for synthesising controllers from LTL specifications called STyLuS*. It is
designed to solve complex temporal planning problems in large-scale multi-robot systems.
Existing planning strategies with temporal logic specifications are based on graph search
techniques applied to a product automaton constructed between robots. Here, the authors
propose a more tractable sampling-based algorithm that incrementally builds trees that
approximate the state space and transitions of the synchronous product automaton,
avoiding the use of elaborate graph search techniques. However, the logic-based controllers
are inherently limited by the expressivity of the underlying language and its ability to
define complex missions.

Game-theoretic models

Game-theoretic models include partially observable stochastic games, which, because of
partial observability of the world, are seen as sequential probabilistic games. A game
unfolds over a finite or infinite sequence of stages. At each stage, all agents simultaneously

∗If an algorithm is complete, it means that if at least one solution exists then the algorithm is guaranteed
find a solution in a finite amount of time. [21]
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select an action and receive a reward and observation. The objective, for each agent, is to
maximize the expected sum of rewards it receives during the game. Whether agents compete
or cooperate in seeking reward depends on their reward functions. Probabilistic games
sub-classes include Partially Observable Markov Decision Processes (POMDPs) [23, 24].
The advantage of this approach is its inherent suitability for uncertain environments;
however, the scalability problem makes them unsuitable for real-world applications with
multiple robots and complex tasks.

Decentralized POMDPs (Dec-POMDPs) [25, 26, 27] are particularly widespread in
MRS applications because their decentralized nature makes them particularly appropriate
for multi-robot systems. Here, each agent chooses its action at each step based solely on
locally observable information, resulting in each agent making an observation and the
team receiving a joint reward. The joint reward function makes the problem cooperative,
but the local views indicate decentralized execution.

The most common applications include formation keeping [26], environmental monitor-
ing [28], and search and rescue [29]. These problems have relatively simple task domains
and significant uncertainties in observing the state of the world and the internal conditions
of the other robots. The problem of expanding the task domain (or the number of agents
in the system) is prevalent in these models because the computational cost is too high to
handle greater complexity. In addition, most methods require the model to be computed
offline, making them incapable to find outcomes that were not considered in the original
world and mission modeling.

Recently, some valuable online solutions have been reported [27]. The method, called
DESPOT-𝛼, outperforms all state-of-the-art online planning for POMDPs with large
observation and state spaces. It uses the particle belief approximation and searches a
determinized sparse belief tree. To cope with large observation spaces, partial policies are
divided among many observations during online policy calculation. The method is further
accelerated by CPU and GPU parallelization. The approach is evaluated on a complex
simulation task where an autonomous vehicle drives between many pedestrians. However,
the problems that this approach can address are still relatively simple from a high-level
mission planning perspective.

Swarm intelligence-based systems

Inspired by social animals, swarm intelligence models many decentralized, cooperative,
and autonomous agents [30]. Such systems are primarily characterized by self-organized
and distributed behavior of locally interacting and locally aware agents. Given the number
of units, swarm-based systems are robust, flexible, and fault-tolerant [31]. Their simple
design makes them computationally inexpensive and particularly scalable. However, the
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robots in such systems tend to be homogeneous, which severely limits their applications
[32]. Furthermore, due to the simplicity of the robot design, the tasks assigned to the
robot swarms are generally of lower complexity.

Many optimization algorithms are inspired by swarm intelligence, where biological
processes are modelled in search of optima. Particle Swarm Optimization (PSO) [33]
is a stochastic optimization technique based on swarm behavior. The PSO algorithm
simulates the social behavior of animals, including insects, flocks of birds, and schools of
fish. These swarms search for food together, and each member of the group changes the
search pattern according to its own and other members’ learning experiences. Similarly,
the pigeon-inspired optimization algorithm [34] relies on the magnetic field, the sun, and
landmarks to achieve path planning. Bee colony optimization [35] is based on the behavior
of bees and relies on direct communication between agents.

2.1.2 Mission planning

As mentioned earlier, in contrast to model-based solutions for multi-robot mission coordi-
nation, there is mission planning approach. In this approach, the missions of MRS are
explicitly represented and subjected to various optimization procedures. As described ear-
lier, planning consists of mission decomposition selection, task allocation, and scheduling.

There are many approaches to solving this complex problem and especially its sub-
problems. Solutions include various models of mission representation, search algorithms,
and computing architectures. Since our approach concerns the mission planning problem,
we devote more attention to it in the following sections. In Section 2.2, we outline the
general taxonomy of mission planning problems and then present the state of the art.

2.2 Mission Planning Problems Taxonomy

Before describing the classification of mission planning problems, it is important to define
the different types of tasks in terms of their complexity. Intuitively, there are simple,
elemental tasks, i.e., actions that can be performed by a single robot, and that are the
building blocks of any mission. Other tasks can be decomposed into multiple subtasks
or actions. These are called compound tasks, provided there is a single fixed way to
decompose the task into subtasks. Different parts of a compound task may be assigned
to different agents. Finally, a complex task is one for which there are multiple ways to
decompose it.

All three types are illustrated in Figure 2.2, and are more formally defined by following
terminology [36]:
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Figure 2.2: Classification of tasks in terms of their complexity.

− Decomposition and Decomposability: A composite task 𝑡 is decomposable if it can be
represented as a set of subtasks 𝜎𝑡 for which the completion of a given combination
of subtasks in 𝜎𝑡 is the completion of 𝑡. The combination of subtasks that satisfy 𝑡

can be represented by a set of relations 𝜌, which may contain constraints between
subtasks or rules about which or how many subtasks are required. The pair (𝜎𝑡,𝜌𝑡)
is also called a decomposition of 𝑡. The term decomposition can also refer to the
process of decomposing a task.

− Multiple Decomposability: A task 𝑡 is multiply decomposable if there is more than
one possible decomposition of 𝑡.

− Elemental Task: An elemental (or atomic) task is a task that is not decomposable.
− Compound Task: A compound task 𝑡 is a composite task that can be decomposed

into a set of elemental and/or compound subtasks, subject to the condition that
there is exactly one fixed complete decomposition for 𝑡 (i.e., a compound task must
not have multiple decomposable tasks in any decomposition step).

− Complex Task: A complex task is a multiply decomposable composite task for
which there is at least one decomposition that can be performed by the given multi-
robot system. Each subtask in the decomposition of a complex task can be simple,
compound, or complex.

Problem taxonomy

Over the years, there have been several taxonomies for mission planning problems. Formerly,
the most widely used was by Gerkey and Matarić [37], in which problems are classified
along three axes. The first axis, single-task robots (ST) versus multi-task robots (MT),
distinguishes between problems where each robot can only perform one task at a time
and problems where some robots can perform multiple tasks simultaneously. The second
axis, single-robot tasks (SR) versus multi-robot tasks (MR), discerns problems where each
task must be performed by exactly one robot and problems where some tasks may require
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multiple robots. On the third axis, instantaneous assignment (IA) versus time-extended
assignment (TA), distinguishes problems that deal with instantaneous allocation of tasks
and problems that consider both current and future allocations. In the latter case, each
robot is assigned several tasks scheduled to be performed according to a certain schedule.
An illustration of the taxonomy representing the problem complexity is given in Figure
2.3.

Figure 2.3: An illustration of an early three-axis classification of mission planning problems by
Gerkey and Matarić [37]. Classes are color coded, with darker colors representing more complex
problems.

Although it describes the potential problems very well, the taxonomy lacked an
important aspect of mission planning, namely the complexity of the relationships between
tasks. Korsah et al. [38] build upon the previous problem classification and add another
axis that regards the task structure itself. Here, problems are divided into four groups:
− No Dependencies (ND) - the effective utility of a robot for a task does not depend

on other tasks or robots in the system.
− In-Schedule Dependencies (ID) - the effective utility of a robot for a task depends

on what other tasks that robot is performing. There may be additional constraints
between the tasks in its schedule.

− Cross-Schedule Dependencies (XD) - a robot’s effective utility for a task depends
not only on its own schedule, but also on the schedules of the other robots in the
system. For this class, the allowable dependencies are "simple" dependencies, where
task decomposition can be optimally specified before task assignment. Constraints
may exist between the schedules of the different robots.

− Complex Dependencies (CD) - the effective utility of a robot for a task depends
on the schedules of the other robots in the system, in a way determined by the
chosen task decomposition. This class of problems entails dependencies between the
schedules of complex tasks. Therefore, the optimal task decomposition cannot be
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decided before task allocation, but must be determined simultaneously.
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Figure 2.4: An illustration of Korsah’s taxonomy of mission planning problems [38]. The
different classes refer to the problems they involve (task decomposition selection, task allocation,
scheduling), and are color-coded according to difficulty (more difficult problems are marked
darker).

This classification can be directly related to different subproblems of mission planning
(task decomposition selection, task allocation, scheduling) that need to be solved for each
variety. In Figure 2.4 is an illustration of all possible mission problem classes according
to Korsah [38]. Different problem difficulties are marked with lighter (easier) and darker
(more difficult) shades of blue. We see that problems of class IA generally require only
task allocation, since actions are immediately assigned to the robots and no scheduling is
required. Similarly, problems of class TA always require a scheduling procedure, since the
current and subsequent tasks are known at the beginning of the mission. Furthermore,
problems of complexity CD are always accompanied by a task decomposition procedure,
since there are several different ways to accomplish the mission.

It is important to point out another taxonomy, that of Nunes et al. [39], where they
propose an extension of the taxonomy of Gerkey and Matarić taxonomy [37]. The novelty
is the addition of temporal and ordering constraints to the time-extended assignment class
(TA). The classification considers temporal constraints expressed in terms of time windows
(TA:TW), and ordering constraints expressed in terms of synchronization and precedence
constraints (TA:SP).
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2.3 Mission Planning Approaches State of the Art

In this section, we specifically address solutions to the mission planning problems defined
in the previous section. In particular, for better organization, we consider problems with
cross-schedule dependencies (XD) and problems with complex dependencies (CD). Simpler
problems are not considered in this survey because they are not direct counterparts of the
problems studied in this thesis. We also regard only time-extended assignment variants
(TA) of the problem, since simple instantaneous allocation problems are not relevant to
this survey.

2.3.1 Problems with cross-schedule dependencies

Centralized solutions to mission planning problems rely on a central controller that allocates
tasks to robots. The robots then simply execute the assigned plan. Since centralized
architectures have all the information about the problem available, authors often opt for the
exact approaches. They provide optimal solutions, but their computation time is usually
impractical for realistic robotics applications, since these problems are NP-hard. A common
approach is to model the problem as a variant of Mixed-Integer Linear Programming
(MILP) and use commercially available solvers to obtain solutions [40, 41, 42]. The most
commonly used linear problem solvers are CPLEX [43], Gurobi [44], ABACUS [45], and
lp_solve [46].

Optimal solutions can be more efficiently computed using Branch-and-Bound [47] and
its variants. Branch-and-Bound searches the state space of candidate solutions, represented
as a tree, and uses upper and lower bounds on the optimal solution to prune the branches
of the search tree whose cost is higher than the computed lower bounds. Some of the
interesting applications in mission planning include the ones proposed in [14, 48]. In
[14], the XD[ST-MR-TA] class problem is modeled as Dial-a-Ride Problem (DARP), a
variant of Vehicle Routing Problem (VRP) with pickup and delivery. To solve the problem,
the authors use a centralized bounded optimal Branch-and-Price algorithm (a variant of
Branch-and-Bound). Although optimal, the method is computationally expensive and
lacks reactivity in dynamic environments.

Since the mission planning problem is intractable for larger numbers of robots and
tasks with intricate dependencies, the focus often shifts to approximations and heuristic
solution methods. For example, in [12], a MILP solver is used in conjunction with a
heuristic task sequencer to solve task allocation and scheduling problems more efficiently.
Although the algorithm is incomplete, the authors empirically show that the algorithm
produces schedules within 10% of the optimum for real-world structured problems. The
proposed approach can solve problems with up to 100 agents and 1000 subtasks in ∼ 120𝑠.
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To further increase computational efficiency, metaheuristic approaches [49] are often
used. Metaheuristics are algorithmic templates that use various heuristic techniques to
find approximate solutions to difficult combinatorial problems. During the search process,
they allow the method to avoid getting stuck in local optima by admitting lower quality
solutions. Being stochastic, they do not provide guarantees on the solutions. However,
their computational speed and ability to search in a vast solution space often compensate
for this drawback, and the solutions they produce are often suboptimal. Some of the
common approaches in mission planning problems include application of swarm intelligence
algorithms [50, 51], evolutionary algorithms [52], Iterated Local Search (ILS) [53].

The distributed solutions for mission planning differ greatly in their approaches. Unlike
the centralized solutions, here the control is distributed among different computing nodes.
Therefore, these systems are more robust, but have the disadvantage that they are usually
suboptimal compared to centralized solutions and cause additional communication overhead
to the system.

Some of the best known distributed solutions to the multi-robot mission planning
problem are auction- and market-based approaches. They usually solve the task allocation
problem, where robots use bidding mechanisms for simple tasks that they assign to
each other. Sequential auction algorithms produce suboptimal solutions in a very short
computation time [54]. This, together with the ease of implementation, fast execution,
and easy extension to dynamic scenarios, makes auction-based approaches an attractive
solution [55, 56].

In [55], the authors propose an auction-based method for a team of robots to allocate
and execute tasks with temporal (time window) and precedence constraints. The robots
use a priority-based, iterated, sequential single-item auction algorithm to allocate tasks
among themselves. An important innovation is the decoupling of precedence from temporal
constraints and the separate treatment of the two. Using simulations and experimental
results, the authors have shown that this method results in schedules whose distances are
close to the optimum.

Although distributed, auction-based algorithms require constant communication with a
central auctioneer node to share bids and results. To alleviate this issue, solutions that use
consensus algorithms for bid resolution have been suggested. A pioneering work on this
area is the Consensus Based Bundle Algorithm (CBBA) [57]. Authors in [58] extended
the basic algorithm to incorporate temporal constraints. However, the objective function
remains rather simple, as it only accounts for a number of executed tasks.
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2.3.2 Problems with complex dependencies

All of the above approaches have not addressed the problem class CD that involves
task allocation and scheduling and task decomposition selection. The problems of this
complexity are even more difficult to solve, and often the application scenarios do not
require tasks of this type. However, there are several attempts to solve the CD class
problem, and these usually focus on a single application scenario.

In [59], the authors present a multi-robot task and motion planner for multiple de-
composable tasks with sequentially dependent subtasks. The planner is tailored to a case
where tasks can be divided into subtasks that must be completed in a predefined order.
The method is evaluated on a transportation task in a lake environment where the land
and water robots can exchange a payload at dock locations. Each task in this example
had three possible decompositions.

The work of Jones et al. [60] describes a CD[ST-MR-TA] problem with rather com-
plex precedence and simultaneity constraints. The time-critical coordination problem is
illustrated by an emergency response domain in which a group of fire trucks attempt to
fight a series of fires spread across a city. The disaster has also blocked many city streets
with impassable debris that can be removed by bulldozer robots. A coordination solution
must not only assign tasks, but also determine which routes fire trucks should take given
the assigned priority conditions within the routes and which bulldozers should be tasked
with clearing debris along those routes. The proposed solution involves a market-based
approach with combinatorial bidding and tiered auctions where agents can submit sub-bids
to negotiate other agents’ participation in their plans. The approach also involves resolving
conflicts between schedules. There is no optimality guarantee in this approach, since it is
designed for problem sizes larger than those that can be solved optimally.

In [4], the authors incorporate complex tasks into multi-robot task markets by including
task tree auctions. Instead of trading contracts for simple tasks, task trees are offered in
auctions. Complex tasks are specified as loosely coupled tasks connected by the logical
operators AND and OR, similar to our mission specification. The method was tested with
both centralized and distributed setup on a reconnaissance mission that required coverage
of multiple areas. The tree auction method outperformed all single-stage auction task
allocation algorithms.

Given the current state of the art (Table 2.1), we have identified the need to 1) propose
a generic, mission-independent solution for task allocation and mission scheduling in the
class XD; 2) build on this to propose a generic solution for problems in the class CD.
Particularly in the class CD, most current solutions are tailored to specific application
scenarios. Our goal is to define a problem modeling and solution framework in which any
problem that adheres to the given format can be successfully solved.
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Table 2.1: An overview of existing approaches to mission planning problems of classes XD and
CD with time-extended allocation.

Reference Class[37] Complexity[38] Organization Optimal Multi-
objective

Koes et al. [40] ST-MR-TA XD centralized

Ramchurn et al. [41] ST-MR-TA XD centralized

Alighanbari et al. [42] ST-SR-TA XD centralized

Korsah et al. [48] ST-SR-TA XD centralized

Korsah [14] ST-MR-TA XD centralized

Gombolay et al. [12] ST-SR-TA XD centralized

Wei et al. [50] ST-SR-TA XD centralized

Chen et al. [51] ST-SR-TA XD centralized bi-objective

Çakar et al. [52] ST-SR-TA XD centralized

Mitiche et al. [53] ST-SR-TA XD centralized

Nunes et al. [55] ST-SR-TA XD distributed

Godoy & Gini [58] ST-MR-TA XD decentralized

Motes et al. [59] ST-SR-TA CD centralized

Jones et al. [60] ST-MR-TA CD distributed

Zlot & Stentz [4] ST-SR-TA CD distributed
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CHAPTER 3

Decentralized Coordination of Heterogeneous
Robotic Teams

The most important prerequisite for intelligent behavior in distributed multi-agent systems
is the ability of agents to independently form judgments about their actions in relation to
the behavior of other agents and the overall goal of the system. To enable rational decision-
making, agents must perceive their capabilities and consider the impact of their individual
efforts on the mission outcome. In our work, we represent agents’ capabilities, and the
mission structure in a hierarchical tree form inspired by the TÆMS [61] task structure.
Based on this task representation, we have developed a generic framework for mission
coordination of heterogeneous robot teams, which consists of modules, communication
protocols, and coordination mechanisms. It enables the intelligent control of multi-agent
teams for complex missions of different domains. In this chapter, we outline the hierarchical
task representation, followed by the description of the framework modules and coordination
mechanisms.

3.1 Hierarchical Task Representation

The main premise of the hierarchical task representation is task decomposition, where large
and potentially complex tasks are incrementally decomposed into simpler ones, down to
the level of elementary, actionable tasks (actions). This representation provides a better
overview of the mission and the relationships between tasks, and greatly simplifies mission
specification. Moreover, the rich expressiveness of the mission formulation allows the
definition of intricate task relations and decompositions, and thus applicability in various
areas. In our work, we are guided by the general features of the TÆMS model, with
adaptations to suit the developed framework.

TÆMS [61] is a framework for representing large task hierarchies, allowing the definition
of simple and complex relationships between tasks and temporal constraints on their
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Figure 3.1: Hierarchical mission representation example. Task nodes are represented by circles
and action nodes by rectangles. At the root of the tree structure is the overall mission goal
(highlighted green).

execution. Models in TÆMS are abstractions of problem-solving processes decomposed
into simple and complex tasks with potentially complex relations, omitting the specifics of
task execution. The graphical representation of this task model is in the form of a tree
(Figure 3.1), with the root task representing the overall system goal. This goal is then
decomposed into several layers of subtasks, down to primitive tasks. We have taken the
original concepts of the TÆMS framework and adapted some of the ideas to develop a
more intuitive task representation that forms the basis for our cooperative missions. A
detailed description of the hierarchical task model can be found in this section.

3.1.1 Elements of the hierarchical task model

The basis of the hierarchical task structure are nodes, corresponding to the basic mission
elements, tasks organized in a tree-like structure, as shown in Figure 3.1. The mission
tree distinguishes two types of nodes, action nodes that correspond to real, actionable
robot behaviors, and task nodes that combine action nodes into a meaningful structure, as
defined by the mission objective. In the original TÆMS formulation, actions are referred to
as methods. In the illustration, the task nodes are represented by circles, while rectangles
represent actions.

Formally, we define sets of actions and tasks as 𝐴 and 𝑇 , respectively. Each 𝑎 ∈ 𝐴 can
be performed by one or more robots. If we denote the set of robots as 𝑅 = {1, . . . , 𝑛},
we can specify the set of actions robot 𝑖 can perform as 𝐴𝑖, and the set of tasks robot 𝑖

can contribute to as 𝑇𝑖. The root task corresponds to the mission objective. Notice that
redundancy is possible, hence, in general 𝐴𝑖 ∩𝐴𝑗 and 𝑇𝑖 ∩ 𝑇𝑗 might not be empty sets, for
𝑖 ̸= 𝑗, 𝑖, 𝑗 ∈ 𝑅.
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The performance of actions often involves elements that are integral parts of the
robot or the environment, and that the robot may require during execution, or that are
a product of the action being effected. The TÆMS framework defines this concept as
resources. They can be consumable or non-consumable and are specified with the value of
an arbitrary unit of measure, depending on their type. The value of consumable resources
may change as a result of action execution, as defined by special task-resource relationships.
For non-consumable resources, values are affected only during action execution and are
restored when the action is complete. In reality, resources model concepts such as the
state of the battery charge, the occupancy of the robot tool, the illumination level, and the
like. For the resource to be available, its value must be within the defined allowable limits.

Formally, a set of resources is defined as P. For each 𝑝𝑖 ∈ P, we define a state as
𝑠𝑡𝑎𝑡𝑒(𝑝𝑖). The resource availability is dictated by its limits, as

𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒(𝑝𝑖) =

⎧⎪⎨⎪⎩
1 if 𝑏𝑜𝑡𝑡𝑜𝑚_𝑙𝑖𝑚(𝑝𝑖) ≤ 𝑠𝑡𝑎𝑡𝑒(𝑝𝑖) ≤ 𝑢𝑝𝑝𝑒𝑟_𝑙𝑖𝑚(𝑝𝑖)

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

All of the above concepts define static elements of the mission structure. The elements
defined in the rest of the section combine these components and relate them to each other
in complex ways as dictated by the mission objectives.

3.1.2 Task decomposition

In order to fully define task decomposition, in addition to the tree structure of the tasks,
the relations between the subtasks must also be specified. These relations define the way
in which the subtasks perform their respective parent task. In our model definition, the
concept that specifies task decomposition is called Quality Accumulation Function (QAF).
Similar to the TÆMS model, we distinguish several QAFs corresponding to the logical
operators {AND, OR, XOR}. Quality is an abstract concept that depends on the problem
domain and implies the contribution of a task to the achievement of the overall goal.

The function AND specifies the task decomposition of a task in such a way that
all subtasks of a task must be executed for it to acquire quality (i.e. to be considered
completed). The quality of the parent task, in this case, is computed as the sum of all
subtask qualities. Specifying the function OR leads to a task decomposition where the
quality of a composite task is computed as the sum of all subtask qualities. Any solution
in which a subset of the subtasks is performed renders the parent task completed. Finally,
by the definition of the XOR function, the task structure requires the execution of exactly
one subtask. Thus, the quality of the parent task is equal to the quality of the executed
task.
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root

A B C D

qaf

qaf: AND

{A, B, C, D}

qaf: XOR

{A}, {B}, {C}, {D}

qaf: OR

{A}, {B}, {C}, {D}
{A, B}, {A, C}, {A, D}
{B, C}, {B, D}, {C, D}
{A, B, C}, {A, B, D}
{A, C, D}, {B, C, D}

{A, B, C, D}

Figure 3.2: Task decomposition functions (QAFs) of the hierarchical task model. For each
function, AND, OR, and XOR, a set of possible decompositions for the task is given.

All three functions given are illustrated by an example of a simple task decomposition
consisting of four subtasks, as shown in Figure 3.2. For the case of the AND and XOR
operators, the number of possible decompositions is small, with AND defining only one
possible option and XOR defining 𝑛 different decompositions (𝑛 is the number of subtasks).
For the case of the OR operator, the number of ways in which a task can be executed is
equal to 2𝑛 − 1. In this case, a rapid combinatorial explosion may occur, and scheduling
algorithms must take this into account and carefully mitigate its effects.

3.1.3 Task relations

Task relations enrich the task structure by further specifying effects of task execution on
other tasks and resources. In general, they can be considered as hard or soft relations.
Hard relations between tasks model strong task dependencies that must be respected in
order to accomplish the mission. Soft relations only exhibit effects on the quality of task
execution, which can be either increased or decreased by relation activation.

The most prevalent task relations that directly influence the task ordering are precedence
constraints. They specify the pairwise order of tasks or actions in the task structure.
Formally, we define the precedence constraints as 𝑝𝑟𝑒𝑐(𝑎, 𝑏), 𝑎, 𝑏 ∈ 𝑇 ∪ 𝐴 for two tasks 𝑎

and 𝑏. This relation defines that task 𝑎 needs to be executed before the start of the task 𝑏.
By nature, they are hard constraints which need to be met for the schedule to be valid for
the given task structure. In the original TÆMS representation, the precedence constraits
are modelled by enables and disables interrelationships [61].
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XORAND
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Figure 3.3: Example of a mission tree with defined precedence constraints and QAFs. Precedence
constraints are specified with red dashed arrows, and QAFs are given next to each task node.

An example of a task structure with defined precedence constraints and QAF is shown
in Figure 3.3. There we can observe two cases of precedence constraints, namely task-task
and action-action. The latter case is much simpler, since the relation only affects the two
actions directly. If an element of the precedence relation is a task, all its subtasks are
affected by this relation. In this example, all subtasks of task 𝐴 must precede all subtasks
of 𝐵 in the final solution. As mentioned before, it is also possible to define task-action
and action-task precedence.

Other relations defined by the TÆMS model are the relations facilitates and hinders,
both soft constraints. They define how the performance of one task affects another task
when executed in the specified order. For example, if certain preparatory actions can
increase the quality of a task, they can be modeled as a separate task. Then we can model
this synergistic effect between the two with the relation facilitates. If the opposite is true,
that is, if the execution of one action decreases the quality of a subsequent action, this
can be modeled by a hindering relation. These constraints are called soft because they
do not render the solution infeasible if they are broken. However, their effects directly
penalize or reward the goodness of the solution obtained. Similarly to the precedence, these
constraints are defined as 𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑎𝑡𝑒𝑠(𝑎, 𝑏), 𝑎, 𝑏 ∈ 𝑇 ∪ 𝐴, and ℎ𝑖𝑛𝑑𝑒𝑟𝑠(𝑎, 𝑏), 𝑎, 𝑏 ∈ 𝑇 ∪ 𝐴.
These relations are currently not needed and used in our model, however, they can be
easily integrated as a future work and are therefore represented in the thesis.

Another set of constraints relates to the concept of resources mentioned earlier, where
the relations consumes and produces define how the execution of certain tasks affects the
state of the respective resource. These constraints are defined as task-resource and action-
resource relations. Similarly, there are limits constraints that originate from resources
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and restrict the execution of actions that require a particular resource. These constraints
are activated as soon as the resource is not within the allowed limits. Formally, these
relationships are defined as 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑠(𝑎, 𝑝), 𝑎 ∈ 𝑇 ∪𝐴, 𝑝 ∈ P, 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑠(𝑎, 𝑝), 𝑎 ∈ 𝑇 ∪𝐴, 𝑝 ∈
P, and 𝑙𝑖𝑚𝑖𝑡𝑠(𝑝, 𝑎), 𝑝 ∈ P, 𝑎 ∈ 𝐴.

After all the building blocks of the task structure and their intricate relationships have
been defined, the next step is to specify how the tasks are quantified and evaluated.

3.1.4 Task evaluation

Each task is quantitatively described in three dimensions: quality, duration, and cost. As
stated previously, quality is an abstract concept that defines the contribution of a task to
the achievement of the overall goal. Duration represents the time required to complete a
particular task, and cost is the cost incurred to perform the task (which can be energy
expenditure, financial cost, resources consumed, etc.).

To evaluate the tasks, each 𝑎 ∈ 𝐴 is assigned a triple (𝑘𝑎(𝑖), 𝑑𝑎(𝑖), 𝑐𝑎(𝑖)), where 𝑘𝑎(𝑖) is
the action quality, 𝑑𝑎(𝑖) is the duration, and 𝑐𝑎(𝑖) is the action cost when performed by
robot 𝑖 ∈ 𝑅. The action quality is determined a-priori by the system designer. Each robot
estimates the duration and cost of a future action based on the current state of the system
and their capabilities. The outcome of each task 𝑡 ∈ 𝑇 , (𝑘𝑡, 𝑑𝑡, 𝑐𝑡), is determined using the
quality accumulation function 𝑄 : 𝑇 → R3, which describes how subtasks contribute to
the quality of a higher-level task. In general, the function 𝑄 can have any user-defined
form. In this work, we model the function 𝑄 with respect to the previously defined quality
accumulation functions (QAFs).

3.2 Development of Coordination Framework for MRS

The hierarchical mission representation described earlier is the backbone of the mission
planning and coordination framework used in this thesis. Its main premises are domain
independence and a generalized approach to multi-robot coordination. In developing the
framework, we took inspiration from Generalized Partial Global Planning (GPGP) [62],
which is often used in synergy with the TÆMS task structure. GPGP serves as a roadmap
for distributed coordinated control of multi-agent systems by providing general guidelines
for the formulation of coordination mechanisms and module structure.

In this section, we outline the coordination framework for multi-robot teams. The
development of the system starts with the initial adaptation of the GPGP framework,
which later evolves into a new distributed mission coordination framework. In this section,
we first describe the original GPGP framework (Subsection 3.2.1) and identify its main
issues. Then, in Subsection 3.2.3, we build upon the basic concepts of GPGP and address

23



Decentralized Coordination of Heterogeneous Robotic Teams

its weaknesses of decoupled task allocation and scheduling processes and overly complicated
coordination mechanisms due to local views of the mission. The new framework maintains
all the positive sides of GPGP framework, with improved robustness, speed and optimality.

3.2.1 GPGP framework infrastructure

GPGP is intended to be a highly modular decentralized coordination framework for multi-
agent missions defined in terms of TÆMS trees. The framework defines various functional
modules, as well as coordination protocols that enable cooperative mission execution.
Coming from a computer science background that considers generic intelligent systems,
agents in this framework represent entities that participate in the coordination process. In
robotic systems, agents refer to individual robots.

Figure 3.4 shows a typical structure of an agent with GPGP infrastructure. The core
of any GPGP agent is the TÆMS structure with specified mission models that represent
its capabilities to perform various tasks. The component that is tightly coupled with the
TÆMS structure is Task Assessor. This domain-specific module is aware of the capabilities
of the robot and the specifics of how it performs various actions. Its task is to evaluate all
actions 𝑎 ∈ 𝐴 of a given TÆMS structure at the beginning of each mission and compute
their (𝑘𝑎(𝑖), 𝑑𝑎(𝑖), 𝑐𝑎(𝑖)) for 𝑖 ∈ 𝑅 with respect to the current state of the system. It is a
rather simple module to implement for each TÆMS structure in the robot’s knowledge
base.

reschedule request
uses

creates

reschedule request

updates

updates
updates

uses

uses

updates

actions / sensor
data

coordination
messages

GPGP agent

Figure 3.4: Structure of an agent with GPGP infrastructure. The modules are depicted in
white rectangles, while blue rectangles represent different data structures.

Design-To-Criteria planner (DTC) [63] is a component that generates a robot’s schedule
based on the TÆMS structure and the temporal constraints dictated by commitments.
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Commitments represent a contractual concept between two robots that guarantees syn-
chronous execution of constrained tasks. Each robot plans its schedule locally, taking into
account deadlines imposed by commitments to other robots (originating from constraints
defined in Section 3.1). For large-scale systems, the DTC Planner handles a very complex
scheduling problem by using various heuristic methods and approximations to construct
a schedule that satisfies certain user-defined criteria. Although criteria can be richly
specified in terms of five multidimensional objective functions that are merged into a
common measure [63], we only optimize in the basic (𝑘, 𝑑, 𝑐) space. The tasks defined in
our missions do not contain uncertainty about the quality, duration, and cost of the tasks
supported by the TÆMS framework.

The schedule is used directly by Task Executor, a module that initiates the timely
execution of actions and ensures that each action is properly executed before advancing
the schedule. It ensures that the hard relations between tasks are maintained, even though
the execution times may differ from the estimated ones. If execution times change by a
significant amount from those originally planned, the scheduling process is restarted.

Finally, the GPGP Coordinator is a component that takes care of the schedule with
respect to other robots, as it ensures that the actions of all robots are coordinated. It uses
coordination mechanisms proposed in [64] and further refined and implemented in our
work, which are described in the next paragraphs, and stated as follows:

• updating non-local viewpoints,
• communicating results,
• handling simple redundancy,
• handling hard coordination relations,
• handling soft coordination relations.
Starting from this agent structure, we now describe the planning and coordination

process itself. Interactions between robots ensure coordinated execution of tasks. Planning
and coordination are performed in a decentralized manner in several steps, implementing
the coordination mechanisms mentioned above. In this process, the problems of task
decomposition selection, task allocation, and scheduling are performed sequentially, which
we later identified as a weakness of this framework. In developing our framework, we have
evolved the original sequential design to provide an integrated process for task allocation
and scheduling, which is explained in Subsection 3.2.3.

3.2.2 GPGP scheduling and coordination procedure

The most prominent feature of the GPGP framework is the unawareness of each robot
about the capabilities of the other robots, which manifests itself in a local view of the task
structure. The rationale for such an approach is to increase the modularity of the system,
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Figure 3.5: The diagram of the GPGP process. The different mechanisms present in each stage
are marked on the right side of the graph.

since robots have no prior knowledge about other participating robots. Therefore, a local
view of the mission is created for each robot type that can participate in the mission
execution. The nodes contained in it are actions that robots can perform and tasks that
they can contribute to. For robot 𝑖 ∈ 𝑅, the nodes contained in the mission structure
are those representing tasks 𝑇𝑖 and actions 𝐴𝑖, as previously defined in Section 3.1. The
mission coordination process ensures the mutual identification of the robots involved and
the updating of the local views with minimal information requirements.

Figure 3.5 shows the diagram of the whole GPGP coordination process, with the
different mechanisms present in each stage marked on the right side of the graph. The first
stage of the coordination procedure is the process of identifying other robots and their tasks.
In this stage, the GPGP mechanism updating non-local views is issued. Here, the robots
exchange their locally estimated task and action outcomes. Coordination relationsips can
arise from constraints on tasks (hard and soft relations) or from parent-child relations
between tasks.

The second step is generation of task alternatives, where the best task decomposition
for mission execution is selected. We define a task alternative 𝑎𝑙𝑡(𝑡), 𝑎𝑙𝑡(𝑡) ⊆ 𝐴, 𝑡 ∈ 𝑇 as
an unordered set of all actions whose execution leads to the completion of task 𝑡. The
sizes (cardinal numbers) of the task alternative sets for different tasks in the mission plan
depend on the structure of the mission tree and the relationships between the nodes. For
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highly constrained missions, the cardinal numbers are generally small (i.e., 𝑂(1)). On the
other hand, for missions without any node relationships, the combinatorial explosion can
lead to a factorial size complexity of the task alternative generation procedure.

Given the decomposition determined in the previous step, the initial schedules for
each robot are constructed. Based on these schedules, the handle simple redundancy
procedure assigns a single robot to each task, thus solving the task allocation problem.
Redundant tasks for a robot 𝑖 ∈ 𝑅 are identified as {𝑡 ∈ (𝐴𝑖∪𝑇𝑖)∩ (𝐴𝑗 ∪𝑇𝑗), 𝑗 ∈ 𝑅, 𝑗 ≠ 𝑖}.
Redundancy resolution is followed by the procedure of iterative schedule construction,
which determines the order of actions for each robot, taking into account the temporal
constraints between them. During the schedule construction, the robots consider all
the exchanged commitments and plan a schedule that respects them. If some of the
commitments are broken by the schedule update procedure, committing and scheduling
is repeated until all the constraints are satisfied. Once all the robot schedules align, the
task execution module receives the schedule and starts executing it. After the execution
of each task, the results of its performance are communicated to all robots that rely on it.

After the brief overview of the overall coordination process, a more detailed look at
the main coordination mechanisms follows.

Update of non-local views

Since the knowledge of each robot is limited to a local mission representation (based on
robot abilities and defined by system designer), it needs to collect necessary information
from other robots. To minimize the amount of exchanged information, robots share only
estimated execution outcomes given as (𝑘, 𝑑, 𝑐), thus encapsulating the details behind task
execution. It is important to identify the minimal set of tasks to be exchanged in order
to ensure the most complete possible task structure update, without sharing unnecessary
information. The coordination relationships stem from the two main sources, as follows.

Coordination relationships are detected between robots 𝑖 and 𝑗 for related actions/nodes:
(i) constrained tasks ∀𝑡𝑎 ∈ (𝑇𝑖 ∪ 𝐴𝑖),∀𝑡𝑏 ∈ (𝑇𝑗 ∪ 𝐴𝑗) s.t. ∃𝑐𝑜𝑛𝑠𝑡𝑟(𝑡𝑎, 𝑡𝑏) ∨ 𝑐𝑜𝑛𝑠𝑡𝑟(𝑡𝑏, 𝑡𝑎),

for 𝑐𝑜𝑛𝑠𝑡𝑟 ∈ {𝑝𝑟𝑒𝑐, 𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑎𝑡𝑒𝑠, ℎ𝑖𝑛𝑑𝑒𝑟𝑠}
(ii) child tasks ∀𝑡𝑎 ∈ 𝑇𝑖,∀𝑡𝑏 ∈ (𝑇𝑗 ∪𝐴𝑗) s.t. ∃𝑝𝑐(𝑡𝑎, 𝑡𝑏), where 𝑝𝑐 denotes the parent-child

relation
The example of the global and local mission views and the identified coordination

relationships (CRs) is shown in Figure 3.6. The CRs (𝑡𝑎𝑠𝑘1, 𝐴) and (𝑡𝑎𝑠𝑘1, 𝐵) are identified
based on parent-child relationships between the tasks of the two robots 𝑟𝑜𝑏𝑜𝑡1 and 𝑟𝑜𝑏𝑜𝑡2.
The relationship (𝑡𝑎𝑠𝑘1, 𝐶) is derived from the precedence condition for the execution of
the two tasks.
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Figure 3.6: An example of global and local mission views. Two participating robots have
identified coordination relationships (CR) stemming from the precedence and parent-child
relations, denoted with red dashed arrows on the graph.

Determination of the best task alternatives

At the beginning of this procedure, each robot has complete information on the outcome
estimates for tasks in its local mission representation. The process of task alternative
generation begins at the action nodes of the local TÆMS tree and builds up recursively,
finally ending at the root of the tree.

Naturally, each task has many different ways of being realized so the task alternative
generation procedure uses a method of focusing the solution search by pruning the worst
partial results in each step of the process, thus making the problem tractable. Furthermore,
since robots at this point share the same outcome estimates, the same alternative set for
common tasks is going to be obtained by each robot.

During this procedure, the robots use estimated values for quality, duration, and cost
of actions, which are determined as the average of these values for all robots that can
perform the action, as follows:

(𝑘𝑎, 𝑑𝑎, 𝑐𝑎) =
∑︁
𝑖∈𝜌𝑎

(𝑘𝑎(𝑖), 𝑑𝑎(𝑖), 𝑐𝑎(𝑖))
|𝜌𝑎|

, 𝑎 ∈ 𝐴. (3.1)

𝜌𝑎 defines the set of robots that can perform action 𝑎, 𝜌𝑎 = {𝑖, 𝑖 ∈ 𝑅, 𝑎 ∈ 𝐴𝑖}, ∀𝑎 ∈ 𝐴.
|𝜌𝑎| stands for the cardinality of the set 𝜌𝑎.

Finally, the score for each task alternative 𝑎𝑙𝑡(𝑡) is computed based on the expected
values of actions (𝑘𝑎, 𝑑𝑎, 𝑐𝑎), and given the quality accumulation function 𝑄 and the defined
tree structure. If we specify the alternative outcome values as (𝑘𝑎𝑙𝑡, 𝑑𝑎𝑙𝑡, 𝑐𝑎𝑙𝑡), our simplified
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objective function (score) for an alternative is defined as

𝑠𝑐𝑜𝑟𝑒(𝑘𝑎𝑙𝑡, 𝑑𝑎𝑙𝑡, 𝑐𝑎𝑙𝑡) = 𝛼𝑘𝑎𝑙𝑡 − 𝛽𝑑𝑎𝑙𝑡 − 𝛾𝑐𝑎𝑙𝑡, 𝛼, 𝛽, 𝛾 ∈ R, (3.2)

where 𝛼 +𝛽 +𝛾 = 1, and they represent the importance weighting of each specific criterion.
Based on these factors, the planning strategy adapts and selects the appropriate tasks to
execute. With this score function, we are able to define the importance of each problem
parameter (quality, duration, cost) in the task decomposition selection. As a result of this
process, the robots are given a set of alternative ways to achieve the mission goal (root
task).

DTC planner – iterative schedule construction

Given a root task alternative 𝑎𝑙𝑡(𝑟𝑜𝑜𝑡), the goal of a scheduling algorithm in general is
to build a schedule 𝑠𝑖 for each robot 𝑖 ∈ 𝑅, which is defined as 𝑠𝑖 = {(𝑎, 𝑎𝑠, 𝑎𝑓 ) ∀𝑎 ∈ 𝑆𝑖},
where 𝑆𝑖 is the set of actions assigned to robot 𝑖 and 𝑎𝑠(𝑎𝑓 ) are the start (finish) times of
action 𝑎. Since each robot is constrained to a local view of the mission, it constructs only
local schedule 𝑠𝑖, taking into account actions of other robots by commitments. The overall
schedule 𝑠 is a superposition of the individual robot schedules.

As inputs to the scheduling procedure, each robot knows a set of actions it can perform
and the relationships with the tasks of other robots. The problem itself is a form of a job
shop. Scheduling is done iteratively according to the Algorithm 1.

As stated in Algorithm 1, each robot first constructs an initial schedule 𝑠′
𝑖 and sends

its commitments to other interested robots. As mentioned earlier, commitments arise
from precedence constraints imposed on tasks. Formally, each commitment is defined as
𝑐𝑜𝑚𝑚(𝑡𝑎 ∈ 𝑇𝑖 ∪𝐴𝑖, 𝑒𝑛𝑑_𝑡𝑖𝑚𝑒(𝑡𝑎), 𝑡𝑏 ∈ 𝑇𝑗 ∪𝐴𝑗), 𝑖 ≠ 𝑗, 𝑖, 𝑗 ∈ 𝑅 and is stored in the robot’s
commitment base. Robot 𝑖 is thus committed to perform task 𝑡𝑎 until time 𝑒𝑛𝑑_𝑡𝑖𝑚𝑒(𝑡𝑎),
and 𝑡𝑏 denotes the constrained task of robot 𝑗. In each next iteration, the robot adjusts
its schedule according to the received commitments of other robots and its own unfulfilled
commitments. The procedure is repeated until all commitments are met.

The procedure of scheduling for individual robots can be performed, for example, with
a genetic algorithm, as it shall be described later. All other job shop type schedulers can
also be applied to this problem.

3.2.3 GEM coordination framework

Inspired by the previously described GPGP framework, we developed our framework for
multi-robot mission coordination. We identified some of the main weaknesses of the GPGP
approach and updated the framework to better fit the needs and capabilities of modern
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Algorithm 1: Iterative scheduling procedure for robot 𝑖.
input : 𝑎𝑙𝑡𝑖 – mission alternative of robot 𝑖
input : 𝑡𝑟𝑒𝑒 – mission tree
input : 𝑅 – set of peer robots
output : coordinated local schedule 𝑠𝑖

Function generate_schedule(𝑎𝑙𝑡𝑖, 𝑡𝑟𝑒𝑒, 𝑅):
/* generate initial schedule */
𝑠′

𝑖 ← make_schedule(𝑎𝑙𝑡𝑖);
forall 𝑘 ∈ 𝑅 ∪ {𝑖} do

𝐶𝑜𝑚𝑝𝑙𝑘 = tasks completed by robot 𝑘 while executing 𝑠′
𝑘;

end
/* initialize commitments */
𝐶𝑜𝑚𝑚𝑗 ← {} ∀𝑗 ∈ 𝑅;
while True do

forall 𝑗 ∈ 𝑅 do
/* update commitments and send them to peers */
forall 𝑡𝑎 ∈ 𝐶𝑜𝑚𝑝𝑙𝑖, 𝑡𝑏 ∈ 𝐶𝑜𝑚𝑝𝑙𝑗, 𝑝𝑟𝑒𝑐(𝑡𝑎, 𝑡𝑏) do

𝐶𝑜𝑚𝑚𝑗 ← 𝐶𝑜𝑚𝑚𝑗 ∪ {𝑐𝑜𝑚𝑚(𝑡𝑎, 𝑒𝑛𝑑_𝑡𝑖𝑚𝑒(𝑡𝑎), 𝑡𝑏)};
end
send 𝐶𝑜𝑚𝑚𝑗 to robot 𝑗;

end
/* check for the stopping criteria */
if | 𝐶𝑜𝑚𝑚𝑗 |= 0, ∀𝑗 ∈ 𝑅 AND no new commitments received then

𝑠𝑖 ← 𝑠′
𝑖;

break;
end
/* update schedule respecting commitments */
𝑠′

𝑖 ← make_schedule(𝑎𝑙𝑡𝑖, 𝐶𝑜𝑚𝑚);
end
return (𝑠𝑖);

robotic systems. Although theoretically very interesting, some of the GPGP mechanisms
introduce unnecessary deviations from the optimal task scheduling solution, on the premise
of reducing the availability of information to all robots in the system. The idea of keeping
only local views of robot missions and then sharing the necessary information can be
easily mitigated by letting all robots keep the global mission structure. Data storage and
communication capabilities have evolved exponentially in modern computer systems since
the GPGP was created, so a different approach is easily possible. Moreover, the DTC
scheduler, which only considers local schedules and shares commitments with other robots,
can be replaced by modern distributed task scheduling solutions that solve task allocation
and scheduling simultaneously.

Therefore, we developed the framework GEM ∗ (GEneric Multirobot mission coordina-
∗https://github.com/barbara0811/GEM_mission_control
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tion and planning based on hierarchical task representation). The framework is implemented
in Robot Operating System (ROS) [65] and can be easily applied to different multi-robot
teams once the specifics of each system are implemented, as defined in the framework docu-
mentation. We have retained some of the original concepts of GPGP, such as the modular
organization of the architecture, which allows for easier and more intuitive development
and maintenance of the system. The structure of a GEM agent is shown in Figure 3.7.

Figure 3.7: Structure of an agent with GEM infrastructure. The modules are depicted in white
rectangles, while blue rectangles represent different data structures.

GEM architecture

The basic idea of separating domain-specific and generic modules is maintained in the
GEM architecture. For specific applications it is necessary to implement Task Assessor and
Task Executor modules. The framework provides blueprints for specific implementations
in template classes that ensure seamless integration with the rest of the framework.
Users must provide their specific function implementations to support the desired new
functionality for different missions for the multi-robot system.

The mission-agnostic modules Mission Planner and Mission Coordinator are imple-
mented and constant for different application scenarios. A custom implementation of the
Mission Planner module is provided in the form of a distributed genetic algorithm with
mimetism and knowledge sharing, as described in the following chapters. However, the
user is free to replace the default planner with a custom implementation. Both modules are
designed with a fairly simple interface to the rest of the system. The Mission Coordinator
communicates with other robots in the system and coordinates the entire planning and
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execution process. This module is simpler than its GPGP counterpart, as some GPGP
mechanisms have been removed from this framework.

GEM coordination process

The GEM coordination process diagram is shown in Figure 3.8. The problems introduced
in the GPGP framework regarding local views of the mission are mitigated by making the
global mission structures available to all robots. This modification reduces the need for
many complex coordination mechanisms and facilitates the optimization procedure to find
better solutions. Each robot evaluates its missions, and in the mutual identification step, it
shares this information with other participating robots. Similar to GPGP, the alternative
ways of completing tasks are generated from the mission tree, and several best ones are
selected for scheduling. This enables the overall procedure to consider several possible
task decompositions and find better solutions to the given mission planning problem. The
important difference and advantage to the GPGP is that the task allocation and scheduling
procedures can be integrated into a single algorithm. This is a major advantage since
the assignments affect the final schedules in complex ways. The ability to optimize both
simultaneously can ultimately lead to better overall solutions.

execute schedule

create schedule
for several alternatives

create alternatives

identify other agents
and tasks

Communicate
results

INTEGRATED TASK
ALLOCATION and

SCHEDULING

TASK
DECOMPOSITION

SELECTION 

Figure 3.8: The diagram of the GEM process. Different subproblems of the mission planning
are marked on the left side of the figure.

This generic framework provides an excellent base for the development of specific
optimization procedures for multi-robot mission planning, as follows in the next chapters.
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CHAPTER 4

Definition and Modeling of Task Planning Problems

One of the contributions (Contribution 3) of this thesis is the development of a solution
for time-extended task planning of heterogeneous multi-robot systems for problems with
tightly coupled complex tasks (class CD[ST-MR-TA], as defined in the taxonomy in
Section 2.2). Planning problems of this type involve cross-schedule dependencies, including
precedence and temporal constraints. Here, the effective utility of an robot-task pairing
depends heavily on the schedules of the other robots in the system and their respective
task decompositions. The CD problems are modeled using task hierarchies described in
Section 3.1, and their solutions are given later in Section 5.2.

The tasks we model in this section fall into the simpler XD[ST-MR-TA] class of problems.
This class is a sub-variant of CD problems with determined task decompositions. The
XD[ST-MR-TA] tasks may require one or more single-task robots for their execution. We
assume that the multi-robot tasks in the problem may consist of a fixed number of single-
robot tasks connected by constraints such as precedence and synchronization. Therefore,
for the purpose of modeling, we transform the problem into the class ST-SR-TA, and
the connection between MR comes from constrains.

The novelty of our approach is based on the fact that by representing the problem
as a variant of Vehicle Routing Problem (VRP), we can define a generic model of task
planning problems that can be applied to problems from different domains of multi-robot
and multi-agent systems. Thus, the proposed solution acts as a generic planner of task
allocation and scheduling problems defined in terms of this model.

In this section, we consider three mathematical formulations. First, we formally define
the task planning problem, followed by the mathematical definition of VRP problems,
and finally, we propose a unified model that combines the two paradigms. The proposed
solution for the task planning problem is based on the unified mathematical model.

Assumptions. Our problem formulation assumes tasks expressed in an appropriate
form and suitably decomposed for representation as a fixed number of single-robot tasks
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Figure 4.1: An example of a composite task with cross-schedule dependencies for disaster
response mission using a heterogeneous robotic system.

related by precedence and synchronization constraints. We assume that for complex tasks,
task decomposition is performed a priori. Therefore, we exclude scenarios where there are
complex tasks with multiple possible decompositions (CD class) and model at most tasks
with cross-schedule dependencies (XD).

4.1 Problem Statement

We consider a problem where a team of heterogeneous robots is available to perform various
tasks. Any composite task that can be performed by a single robot or collaboratively
by multiple robots can be decomposed into multiple simpler tasks. Its subtasks can, in
turn, be composite tasks or simple single-robot tasks (actions), which can be related by
precedence and synchronization constraints. They can be further constrained in time
by introducing time windows. At the lowest level of task abstraction, each single-robot
task ultimately consists of a set of actions that can be executed in a particular way to
complete the task. An illustrative example of a representative problem is shown in Figure
4.1. In it, a team of four robots is used to solve a complex problem with cross-schedule
dependencies. Since these are single-robot tasks, all actions in the task structure must be
assigned to only one capable agent through a task assignment procedure. Multi-robot tasks
are implemented by organizing simple tasks and enforcing synchronization constraints.

Definition 1 Actions and tasks. In our model, we denote the set of actions as 𝐴 and the
set of tasks as 𝑇 . Each 𝑎 ∈ 𝐴 can be executed by one or more robots. If we denote the set
of robots as 𝑅 = {1, . . . , 𝑚}, we can specify the set of actions that robot 𝑖 can perform as
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𝐴𝑖 and the set of tasks that robot 𝑖 can contribute to as 𝑇𝑖.

Note that redundancy is possible, so in general 𝐴𝑖 ∩ 𝐴𝑗 and 𝑇𝑖 ∩ 𝑇𝑗 may not be empty
sets, for 𝑖 ≠ 𝑗, 𝑖, 𝑗 ∈ 𝑅. This notion further complicates the task of the planning procedure,
but greatly increases the overall robustness of the system. For example, in a search and
rescue scenario, we can use different capabilities of different robots to accomplish the
mission more effectively. For instance, robots with greater agility and space coverage
capabilities can perform surveillance and inspection tasks. In contrast, slower and more
robust agents can administer debris removal or transport of objects with lower urgency.
In an illustrative example in Figure 4.1, we imagined a heterogeneous team consisting of
a mobile robot with one robotic arm on board, two agile UAVs, and a humanoid robot
with two manipulator arms. The slow mobile robot is predestined for the tasks of debris
removal and object transportation, while the UAVs serve as inspection and surveillance
devices. The two-armed humanoid robot can perform delicate manipulation as well as
reconnaissance tasks.

In our model, we recognize a variety of constraints that affect the behavior of the
system in mission execution. First, we consider precedence constraints, which are essential
to represent the real needs for executing a mission in a certain order. By defining these
constraints in the mission, we can easily specify the desired execution order for specific
subsets of tasks. Figure 4.2 shows two different types of precedence constraints, the
intra-schedule and the cross-schedule variants. In the first variant, both related tasks
belong to the schedule of the same robot, while the second variant combines tasks of
different robots.

Definition 2 Precedence constraints. If the action 𝑎 ∈ 𝐴 must be completed before the
action 𝑏 ∈ 𝐴 starts, we can specify a constraint between the two as 𝑝𝑟𝑒𝑐(𝑎, 𝑏). This
constraint forces 𝑎𝑓 < 𝑏𝑠, where 𝑎𝑓 and 𝑏𝑠 indicate the times when the action 𝑎 finishes
and 𝑏 starts.

Precedence constraints can also be defined for composite tasks by relating all actions of
one task to the set of all actions of the other task. In the example of the disaster response
scenario presented earlier (Figure 4.1), such relations could be useful for tasks where safety
is a concern. An example of such a constraint is prec(close valve, safe object transport),
where the primary task is to close the valve after the disaster has occurred, and only then
enter the room with robots to transport objects to safety. The same restriction applies to
the tasks (clear debris, inspect room), since some debris lying on the way must be removed
to enter the room.

Similarly, we consider an even stricter restriction on robots’ schedules, which is synchro-
nization constraint. It requires two tasks to execute at the same time, i.e., the start times
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Figure 4.2: Illustration of the precedence constraint. There are two types of precedence
constraints: intra-schedule (regarding tasks of a single robot) and cross-schedule (regarding
multiple robots).
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Figure 4.3: Illustration of the synchronization constraint. This relation enforces the concurrent
execution of two tasks. Therefore, the start and end times of the tasks in the robots’ schedules
must be aligned.
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and end times of their execution must be the same. Since we are dealing with single-task
robots, this constraint inherently implies problems with inter-schedule (or cross-schedule)
constraints, as illustrated in Figure 4.3.

Definition 3 Synchronization constraints. Formally, we define the synchronization con-
straint for two actions 𝑎, 𝑏 ∈ 𝐴 as 𝑠𝑦𝑛𝑐(𝑎, 𝑏). This constraint is realized in two restrictions
𝑎𝑠 = 𝑏𝑠 and 𝑎𝑓 = 𝑏𝑓 , where (𝑎𝑠, 𝑏𝑠) and (𝑎𝑓 , 𝑏𝑓 ) denote the instances at which the actions
𝑎 and 𝑏 start and finish, respectively.

As mentioned earlier, we introduce this constraint mainly for modeling multi-robot
tasks. The idea is to relax a problem into an instance of single-robot tasks so that they
fit more directly into the VRP model, and then introduce constraints on the model to
achieve joint task execution. This type of modeling can facilitate, for example, disaster
response problems where a robot must oversee the execution of a high-risk operation. In
our example, we have designated a UAV to monitor the transport of a sensitive object
performed by a UGV. The UAV has an innate field of view advantage and can significantly
assist the transport operation. We can define such a constraint as sync(transport object,
monitor the operation).

The next constraint we consider in our model is involving time windows to the schedules.
This type of requirement can be specified when a particular task must be performed within
a strict time frame, as shown in Figure 4.4.

as* as af af*
a

Figure 4.4: Illustration of the time window constraint. This constraint requires that tasks
begin and end within a specified time window, as shown in the figure.

Definition 4 Time window constraints. Formally, we represent the time window for
action 𝑎 ∈ 𝐴 as 𝑡𝑤(𝑎, 𝑎𝑠*, 𝑎𝑓*), where 𝑎𝑠* and 𝑎𝑓* stand for the earliest start time and
the latest finish time of action 𝑎, respectively. This constraint ensures that 𝑎𝑠 ≥ 𝑎𝑠* and
𝑎𝑓 ≤ 𝑎𝑓*.

An example of a task where this limitation may be required is media coverage, where
a UAV must film an object moving through the scene at specific times when the object
would be in the frame.

Another naturally occurring limitation inherent in the physical system itself is the
capacity constraint, actualized in the limited battery resources of each robot. Each action
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requires a certain amount of energy to perform. This amount varies for each robot and
depends on its physical characteristics, along with the current position of the robot with
respect to the location of the task. Therefore, another constraint that must be considered
when planning task assignments is the capacity of each robot. Formally, we define the
constraint as follows.

Definition 5 Capacity constraint. For a robot 𝑖 ∈ 𝑅 with capacity 𝑄𝑖, we define the
capacity constraint as ∑︀

𝑎∈𝑆𝑖
𝑞𝑖(𝑎), where 𝑆𝑖 is the set of tasks assigned to robot 𝑖 to execute,

and 𝑞𝑖(𝑎) is the energy demand of task 𝑎 for robot 𝑖.

A solution to the described mission planning problem is a set of time-related actions
(schedule) for all robots that does not violate the specified constraints. Formally, the
schedule 𝑠𝑖 for each robot 𝑖 ∈ 𝑅 is defined as 𝑠𝑖 = {(𝑎, 𝑎𝑠, 𝑎𝑓 ) ∀𝑎 ∈ 𝑆𝑖}, where 𝑆𝑖 is the set
of actions assigned to the robot 𝑖 and 𝑎𝑠(𝑎𝑓 ) are the start (finish) times of action 𝑎.

In the evaluation procedure, each single-agent task 𝑡 ∈ 𝐴 ∪ 𝑇 is assigned a triple
(𝑘𝑡(𝑖), 𝑑𝑡(𝑖), 𝑐𝑡(𝑖)), where 𝑘𝑡(𝑖) is the task quality, 𝑑𝑡(𝑖) is the duration, and 𝑐𝑡(𝑖) is the task
cost when performed by robot 𝑖. Task quality is a subjective measure that depends on the
application and is determined a-priori by the system designer. Each robot estimates the
duration and cost of a future task based on the current state of the system.

The planning procedure aims to find a solution that satisfies all constraints and
maximizes the global reward of the system. The objective function can be chosen arbitrarily
depending on the requirements of the system. In the case of multi-objective optimization,
optimal decisions must be made in the presence of tradeoffs between two or more objectives
that may be in conflict. More details on our solution approach follow in Section 5.1.

To summarize, the problem features and constraints in the devised problem model are:
• Capability constraints (robot heterogeneity)
• Precedence constraints
• Synchronization constraints
• Time window constraints
• Capacity constraints

4.2 Preliminaries - Vehicle Routing Problem

Our formulation follows the vehicle routing problem model, with specific modifications to
fit our needs. Vehicle Routing Problem (VRP) is one of the most studied and challenging
problems of combinatorial optimization. The interest in VRP is motivated by both its
practical relevance and its considerable difficulty. VRP is concerned with obtaining the
optimal configuration of routes for a fleet of vehicles to serve a set of customers while
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minimizing the total cost. Our model relates several variants of VRP, which are named
and modeled in the continuation of this section.

4.2.1 The Vehicle Routing Problem

The basic VRP [66] regards a set of nodes 𝑁 = {1, . . . , 𝑛} representing 𝑛 customers
at different locations and a central depot (warehouse), which is usually denoted by 0.
Customers are served from one depot by a homogeneous and limited fleet of vehicles. A
vehicle serving a customer subset 𝑆 ⊆ 𝑁 starts at the depot, travels once to each customer
in 𝑆, and finally returns to the depot. Each pair of locations (𝑖, 𝑗), where 𝑖, 𝑗 ∈ 𝑁 ∪ {0},
and 𝑖 ̸= 𝑗, is associated with a travel cost 𝑐𝑖𝑗 that is symmetric, 𝑐𝑖𝑗 = 𝑐𝑗𝑖.

The most studied version of VRP problems is the Capacitated Vehicle Routing Problem
(CVRP). CVRP is the most widely used VRP variant due to its numerous practical
applications in transportation, distribution, and logistics. Essentially, CVRP is a problem
where vehicles with limited payloads need to pick up or deliver items at different locations.
The items have a quantity, such as weight or volume, and the vehicles have a maximum
capacity that they can carry. The problem is to pick up or deliver the items at the lowest
cost without exceeding the vehicle capacity.

In the CVRP, each customer is assigned a demand 𝑞𝑖, 𝑖 ∈ 𝑁 that corresponds to the
quantity (e.g., weight or volume) of goods to be delivered from the depot to the customer.
There is a set of vehicles, 𝐾 = {1, . . . , 𝑚}, with capacity 𝑄 > 0, operating at identical
cost. In the case of a heterogeneous fleet, the capacity 𝑄 is specifically defined for each
vehicle (or type of vehicle).

A route is a sequence 𝑟* = (𝑖0, 𝑖1, . . . , 𝑖𝑠, 𝑖𝑠+1) with 𝑖0 = 𝑖𝑠+1 = 0, and 𝑆 = {𝑖1, . . . , 𝑖𝑠} ⊆
𝑁 is the set of visited customers. The route 𝑟* has cost 𝑐(𝑟*) = ∑︀𝑠

𝑝=0 𝑐𝑖𝑝𝑖𝑝+1 . A route is
considered feasible if the capacity constraint 𝑞(𝑆) := ∑︀

𝑖∈𝑆 𝑞𝑖 ≤ 𝑄 holds and no customer
is visited more than once, 𝑖𝑗 ≠ 𝑖𝑘 for all 1 ≤ 𝑗 < 𝑘 ≤ 𝑠. In this case, the set 𝑆 ⊆ 𝑁 is
considered a feasible cluster.

A solution of a CVRP consists of 𝑚 = |𝐾| feasible routes†, one for each vehicle
𝑘 ∈ 𝐾. |𝐾| represents the cardinality of the set 𝐾. Therefore, the routes 𝑟*

1, 𝑟*
2, . . . , 𝑟*

𝑚

corresponding to the specific clusters 𝑆1, 𝑆2, . . . , 𝑆𝑚 represent a feasible solution of the
CVRP if all routes are feasible and the clusters form a partition of 𝑁 .

The given model can be represented by an undirected or directed graph. Let 𝑉 = {0}∪𝑁

be the set of vertices (or nodes). In the symmetric case, i.e., if the cost of moving between
𝑖 and 𝑗 does not depend on the direction, the underlying graph 𝐺 = (𝑉, 𝐸) is complete
(each pair of graph vertices is connected by an edge) and undirected with edge set

†Note that not all vehicles may be required in a solution, and a route can have cardinality 0 (be empty),
but it is still a feasible route and therefore 𝑚 = |𝐾| always.
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𝐸 = {𝑒 = (𝑖, 𝑗) = (𝑗, 𝑖) : 𝑖, 𝑗 ∈ 𝑉, 𝑖 ≠ 𝑗} and edge cost 𝑐𝑖𝑗 for (𝑖, 𝑗) ∈ 𝐸. Otherwise, if at
least one pair of vertices 𝑖, 𝑗 ∈ 𝑉 has asymmetric cost 𝑐𝑖𝑗 ≠ 𝑐𝑗𝑖, then the underlying graph
is a complete digraph. We are concerned with the former.

Definition 6 CVRP model formulation. One of the most common mathematical represen-
tations of the VRP model is the Mixed-Integer Linear Programming (MILP) formulation
[66]. The binary decision variable 𝑥𝑖𝑗𝑘 is defined to indicate whether the vehicle 𝑘, 𝑘 ∈ 𝐾

traverses an edge (𝑖, 𝑗) ∈ 𝐸 in a given solution. Therefore, the integer linear programming
model for the CVRP can be considered as written:

(CVRP) 𝑚𝑖𝑛
∑︁
𝑘∈𝐾

∑︁
(𝑖,𝑗)∈𝐸

𝑐𝑖𝑗𝑥𝑖𝑗𝑘 (4.1.1)

Subject to

∑︁
𝑘∈𝐾

∑︁
𝑖∈𝑉,�̸�=𝑗

𝑥𝑖𝑗𝑘 = 1, ∀𝑗 ∈ 𝑉 ∖ {0}, (4.1.2)

∑︁
𝑗∈𝑉 ∖{0}

𝑥0𝑗𝑘 = 1, ∀𝑘 ∈ 𝐾, (4.1.3)

∑︁
𝑖∈𝑉,�̸�=𝑗

𝑥𝑖𝑗𝑘 =
∑︁
𝑖∈𝑉

𝑥𝑗𝑖𝑘, ∀𝑗 ∈ 𝑉, 𝑘 ∈ 𝐾, (4.1.4)

∑︁
𝑖∈𝑉

∑︁
𝑗∈𝑉 ∖{0},𝑗 ̸=𝑖

𝑞𝑗𝑥𝑖𝑗𝑘 ≤ 𝑄, ∀𝑘 ∈ 𝐾, (4.1.5)

∑︁
𝑘∈𝐾

∑︁
𝑖∈𝑆

∑︁
𝑗∈𝑆,𝑗 ̸=𝑖

𝑥𝑖𝑗𝑘 ≤ |𝑆| − 1, ∀𝑆 ⊆ 𝑁, (4.1.6)

𝑥𝑖𝑗𝑘 ∈ {0, 1}, ∀𝑘 ∈ 𝐾, (𝑖, 𝑗) ∈ 𝐸. (4.1.7)

The objective function (4.1.1) minimizes the total travel cost. The constraints (4.1.2)
are the degree constraints that ensure that exactly one vehicle visits each customer. The
constraints (4.1.3) and (4.1.4) guarantee that each vehicle leaves the depot only once, and
that the number of vehicles arriving at each customer and returning to the depot is equal
to the number of vehicles departing from that node. Capacity constraints are expressed in
(4.1.5), and ensure that the sum of the demands of the customers visited on a route is less
than or equal to the capacity of the vehicle providing the service. The sub-tour elimination
constraints (4.1.6) ensure that the solution does not contain cycles disconnected from the
depot. The constraints (4.1.7) specify the domains of the variables. This model is known
as a three-index vehicle flow formulation.
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4.2.2 The VRP with Time Windows

Vehicle Routing Problem with Time Windows (VRPTW) [66, 67] is the extension of
capacitated VRP (CVRP), where service must begin at each customer within an associated
time interval called a time window. Time windows can be hard or soft. In the case of a
hard time window, if a vehicle arrives at the site earlier than specified, it must wait for
the time window to begin in order to perform service. Later arrival time than specified by
the constraint is not admitted in a valid solution. Typically, waiting before the start of
a service is a zero-cost action. In contrast, during soft time windows, a vehicle may act
outside of the specified time frame, incurring some penalty costs.

Adding to the previously defined model of CVRP, in VRPTW model, time window is
associated with nodes 𝑖 ∈ 𝑉 as [𝛼𝑖, 𝛽𝑖], where 𝛼𝑖 and 𝛽𝑖 denote node 𝑖’s earliest (latest)
service start time. Besides the travel cost (𝑐𝑖𝑗) for each edge (𝑖, 𝑗) ∈ 𝐸, this model also
includes the travel time 𝑡𝑖𝑗, with symmetry property, 𝑡𝑖𝑗 = 𝑡𝑗𝑖, (𝑖, 𝑗) ∈ 𝐸. Moreover, service
times 𝜎𝑖 are defined for all nodes 𝑖 ∈ 𝑉 . They define the duration of processing each node.
In a case of the depot, zero service time is assigned, 𝜎0 = 0. Feasible solution exists only
if 𝛼0 ≤ min𝑖∈𝑉 ∖{0}{𝛽𝑖 − 𝑡0𝑖} and 𝛽0 ≥ max𝑖∈𝑉 ∖{0} 𝑚𝑎𝑥{𝛼0 + 𝑡0𝑖, 𝛼𝑖}+ 𝜎𝑖 + 𝑡𝑖0 [66].

Definition 7 VRPTW model formulation. The MILP representation of VRPTW con-
siders two types of variables: flow variables 𝑥𝑖𝑗𝑘, (𝑖, 𝑗) ∈ 𝐸, 𝑘 ∈ 𝐾, which are equal to 1 if
the edge (𝑖, 𝑗) is used by vehicle 𝑘, and 0 otherwise; and time variables 𝜔𝑖𝑘, 𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾,
which indicate the start of service at node 𝑖 when served by vehicle 𝑘. The problem of
VRPTW is formulated as [66]:

(VRPTW) 𝑚𝑖𝑛
∑︁
𝑘∈𝐾

∑︁
(𝑖,𝑗)∈𝐸

𝑐𝑖𝑗𝑥𝑖𝑗𝑘 (4.2.1)
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Subject to

∑︁
𝑘∈𝐾

∑︁
𝑖∈𝑉,�̸�=𝑗

𝑥𝑖𝑗𝑘 = 1, ∀𝑗 ∈ 𝑉 ∖ {0}, (4.2.2)

∑︁
𝑗∈𝑉 ∖{0}

𝑥0𝑗𝑘 = 1, ∀𝑘 ∈ 𝐾, (4.2.3)

∑︁
𝑖∈𝑉,�̸�=𝑗

𝑥𝑖𝑗𝑘 =
∑︁
𝑖∈𝑉

𝑥𝑗𝑖𝑘, ∀𝑗 ∈ 𝑉, 𝑘 ∈ 𝐾, (4.2.4)

𝑥𝑖𝑗𝑘(𝜔𝑖𝑘 + 𝜎𝑖 + 𝑡𝑖𝑗 − 𝜔𝑗𝑘) ≤ 0, ∀𝑘 ∈ 𝐾, (4.2.5)

𝛼𝑖(
∑︁

𝑗∈𝑉,𝑗 ̸=𝑖

𝑥𝑖𝑗𝑘) ≤ 𝜔𝑖𝑘 ≤ 𝛽𝑖(
∑︁

𝑗∈𝑉,𝑗 ̸=𝑖

𝑥𝑖𝑗𝑘), ∀𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾, (4.2.6)

∑︁
𝑖∈𝑉

∑︁
𝑗∈𝑉 ∖{0},�̸�=𝑗

𝑞𝑗𝑥𝑖𝑗𝑘 ≤ 𝑄, ∀(𝑖, 𝑗) ∈ 𝐸, 𝑘 ∈ 𝐾, (4.2.7)

∑︁
𝑘∈𝐾

∑︁
𝑖∈𝑆

∑︁
𝑗∈𝑆,�̸�=𝑗

𝑥𝑖𝑗𝑘 ≤ |𝑆| − 1, ∀𝑆 ⊆ 𝑁, (4.2.8)

𝑥𝑖𝑗𝑘 ∈ {0, 1}, ∀𝑘 ∈ 𝐾, (𝑖, 𝑗) ∈ 𝐸. (4.2.9)

The objective function (4.2.1) minimizes the total travel cost. As in the previously defined
model of CVRP, VRPTW contains some of the common constraints – the degree constraints
(4.2.2), flow constraints (4.2.3, 4.2.4), capacity constraints (4.2.7), and the subtour
elimination constraints (4.2.8). In addition, the constraints (4.2.5) and (4.2.6) guarantee
the feasibility of the schedule in terms of time and enforce time windows, respectively.
Finally, the domains of the variables are specified by (4.2.9).

4.2.3 The VRPTW with Synchronization and Precedence Con-
straints

The next refinement of the VRP model is the introduction of synchronization and prece-
dence constraints [68]. These constraints are particularly important for any application
involving real-world systems. Often, different vehicles are required to perform a task at
the same or different locations, and the operations performed by each vehicle must occur
either at the same time or with precedence. Therefore, we define the model of Vehicle
Routing Problem with Time Windows and Precedence and Synchronization Constraints
(VRPTW-PS).

We define a set of precedence-constrained customers as Π = {(𝑖, 𝑗), 𝑖, 𝑗 ∈ 𝑁}. Nodes 𝑖

and 𝑗 are time-constrained such that service at customer 𝑖 must finish before service at
customer 𝑗 begins. In the simple case of precedence constraints defined on a single route,
the constraint can be formalized as 𝜔𝑖 + 𝜎𝑖 ≤ 𝜔𝑗, (𝑖, 𝑗) ∈ Π, where 𝜔𝑖 and 𝜔𝑗 mark the
start of service at nodes 𝑖 and 𝑗, respectively, and 𝜎𝑖 denotes the service duration for node
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𝑖. For the case where there are constraints between routes, the expression becomes more
complex since the routes of all vehicles in the system must be considered. We formulate
such a situation as

∑︁
𝑘∈𝐾

∑︁
𝑖′∈𝑉

𝑥𝑖′𝑖𝑘(𝜔𝑖𝑘 + 𝜎𝑖) ≤
∑︁
𝑘∈𝐾

∑︁
𝑗′∈𝑉

𝑥𝑗′𝑗𝑘𝜔𝑗𝑘, ∀(𝑖, 𝑗) ∈ Π, (4.3)

where 𝜔𝑖𝑘, 𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾, denotes the start of service at node 𝑖 when processed by vehicle
𝑘. Nodes 𝑖′ and 𝑗′ are possible direct predecessors of nodes 𝑖 and 𝑗, respectively, in the
routes of the same vehicle. The sum ∑︀

𝑖′∈𝑉 𝑥𝑖′𝑖𝑘 is equal to 1 for exactly one action 𝑖′ that
precedes 𝑖 in the route of vehicle 𝑘.

Further, we identify a set of synchronization-constrained nodes as Σ = {(𝑖, 𝑗), 𝑖, 𝑗 ∈ 𝑁}.
Between each pair of nodes (𝑖, 𝑗) there is a coordination constraint that requires them
to execute simultaneously. In practice, we distinguish between two different constraints,
formalized as follows. The first, 𝜔𝑖 = 𝜔𝑗, (𝑖, 𝑗) ∈ Σ, matches the start time of processing
for nodes 𝑖 and 𝑗. The second similarly matches the end times of processing of nodes
and is written as 𝜔𝑖 + 𝜎𝑖 = 𝜔𝑗 + 𝜎𝑗, (𝑖, 𝑗) ∈ Σ. The latter condition can be truncated to
𝜎𝑖 = 𝜎𝑗, (𝑖, 𝑗) ∈ Σ since the first terms in the equations are made redundant by the first
synchronization condition. As with precedence constraints, we need to extend the defined
equations to account for relations between schedules. Therefore, we define synchronization
constraints as

∑︁
𝑘∈𝐾

∑︁
𝑖′∈𝑉

𝑥𝑖′𝑖𝑘𝜔𝑖𝑘 =
∑︁
𝑘∈𝐾

∑︁
𝑗′∈𝑉

𝑥𝑗′𝑗𝑘𝜔𝑗𝑘, ∀(𝑖, 𝑗) ∈ Σ, (4.4)

𝜎𝑖 = 𝜎𝑗, ∀(𝑖, 𝑗) ∈ Σ, (4.5)

where 𝜔𝑖𝑘, 𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾, denotes the start of service at node 𝑖 when processed by vehicle
𝑘. In the defined formulation, ∑︀

𝑖′∈𝑉 𝑥𝑖′𝑖𝑘, 𝑖, 𝑖′ ∈ 𝑉 yields nonzero values for vehicle 𝑘 ∈ 𝐾

only if node 𝑖 is served in the corresponding route.

Definition 8 VRPTW-PS model formulation. The MILP representation of VRPTW-PS
considers two types of variables: flow variables 𝑥𝑖𝑗𝑘, (𝑖, 𝑗) ∈ 𝐸, 𝑘 ∈ 𝐾, which are equal to 1
if the edge (𝑖, 𝑗) is used by vehicle 𝑘, and 0 otherwise; and time variables 𝜔𝑖𝑘, 𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾,
which indicate the start of service at node 𝑖 when served by vehicle 𝑘. The problem of
VRPTW-PS is defined as:

(VRPTW-PS) 𝑚𝑖𝑛
∑︁
𝑘∈𝐾

∑︁
(𝑖,𝑗)∈𝐸

𝑐𝑖𝑗𝑥𝑖𝑗𝑘 (4.6.1)
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Subject to

∑︁
𝑘∈𝐾

∑︁
𝑖∈𝑉,�̸�=𝑗

𝑥𝑖𝑗𝑘 = 1, ∀𝑗 ∈ 𝑉 ∖ {0}, (4.6.2)

∑︁
𝑗∈𝑉 ∖{0}

𝑥0𝑗𝑘 = 1, ∀𝑘 ∈ 𝐾, (4.6.3)

∑︁
𝑖∈𝑉,�̸�=𝑗

𝑥𝑖𝑗𝑘 =
∑︁
𝑖∈𝑉

𝑥𝑗𝑖𝑘, ∀𝑗 ∈ 𝑉, 𝑘 ∈ 𝐾, (4.6.4)

𝑥𝑖𝑗𝑘(𝜔𝑖𝑘 + 𝜎𝑖 + 𝑡𝑖𝑗 − 𝜔𝑗𝑘) ≤ 0, ∀𝑘 ∈ 𝐾, (𝑖, 𝑗) ∈ 𝐸, (4.6.5)

𝛼𝑖(
∑︁

𝑗∈𝑉,𝑗 ̸=𝑖

𝑥𝑖𝑗𝑘) ≤ 𝜔𝑖𝑘 ≤ 𝛽𝑖(
∑︁

𝑗∈𝑉,𝑗 ̸=𝑖

𝑥𝑖𝑗𝑘), ∀𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾, (4.6.6)

∑︁
𝑘∈𝐾

∑︁
𝑖′∈𝑉

𝑥𝑖′𝑖𝑘(𝜔𝑖𝑘 + 𝜎𝑖) ≤
∑︁
𝑘∈𝐾

∑︁
𝑗′∈𝑉

𝑥𝑗′𝑗𝑘𝜔𝑗𝑘, ∀(𝑖, 𝑗) ∈ Π, (4.6.7)

∑︁
𝑘∈𝐾

∑︁
𝑖′∈𝑉

𝑥𝑖′𝑖𝑘𝜔𝑖𝑘 =
∑︁
𝑘∈𝐾

∑︁
𝑗′∈𝑉

𝑥𝑗′𝑗𝑘𝜔𝑗𝑘, ∀(𝑖, 𝑗) ∈ Σ, (4.6.8)

𝜎𝑖 = 𝜎𝑗, ∀(𝑖, 𝑗) ∈ Σ, (4.6.9)∑︁
𝑖∈𝑉

∑︁
𝑗∈𝑉 ∖{0},�̸�=𝑗

𝑞𝑗𝑥𝑖𝑗𝑘 ≤ 𝑄, ∀(𝑖, 𝑗) ∈ 𝐸, 𝑘 ∈ 𝐾, (4.6.10)

∑︁
𝑘∈𝐾

∑︁
𝑖∈𝑆

∑︁
𝑗∈𝑆,�̸�=𝑗

𝑥𝑖𝑗𝑘 ≤ |𝑆| − 1, ∀𝑆 ⊆ 𝑁, (4.6.11)

𝑥𝑖𝑗𝑘 ∈ {0, 1}, ∀𝑘 ∈ 𝐾, (𝑖, 𝑗) ∈ 𝐸. (4.6.12)

The objective function (4.6.1) minimizes the total travel cost. This model incorporates
many of the properties of the previously defined VRPTW model with capacity constraints –
the degree constraints (4.6.2), flow constraints (4.6.3, 4.6.4), capacity constraints (4.6.10),
subtour elimination constraints (4.6.11), schedule feasibility (4.6.5), and time window
constraints (4.6.6). The limitations defined by (4.6.7) enforce precedence constraints, while
synchronization constraints are given by (4.6.8) and (4.6.9). The domains of the variables
are specified by (4.6.12).

4.2.4 The VRP with multiple depots

Multi-Depot Vehicle Routing Problem (MDVRP) concerns a VRP variant where more
than one depot is available to provide service to customers. In principle, each vehicle
𝑘 ∈ 𝐾 can have individual start and end locations. However, in the MDVRP, groups of
vehicles are typically assigned to a (smaller) number of depots. Depots may have a limited
capacity and may host a limited or unlimited subfleet. Here we consider depots with a
limited number of homogeneous vehicles. To formulate this problem, we build on the
previously defined CVRP and introduce elements from the MDVRP formulated in [69].

We introduce two different types of vertices of the underlying graph 𝐺 = (𝑉, 𝐸), namely
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a subset of customer nodes 𝑉𝑐 = 𝑁 = {1, . . . , 𝑛} and depot nodes 𝑉𝑑 = {1, . . . , 𝑙}, where
𝑙 denotes the number of available depots. It holds 𝑉 = 𝑉𝑐 ∪ 𝑉𝑑 and 𝑉𝑐 ∩ 𝑉𝑑 = ∅. Each
depot 𝑖 ∈ 𝑉𝑑 is associated with a fleet of vehicles, 𝐾𝑖 ⊆ 𝐾. Therefore, the set of vehicles
𝐾 = {1, . . . , 𝑚} contains a union of the individual depot fleets, 𝐾 = 𝐾1 ∪ . . . ∪ 𝐾𝑙 =⋃︀

𝑖∈𝑉𝑑
𝐾𝑖. The underlying graph 𝐺 = (𝑉, 𝐸) is complete and undirected with edge set

𝐸 = {𝑒 = (𝑖, 𝑗) = (𝑗, 𝑖) : 𝑖, 𝑗 ∈ 𝑉, 𝑖 ≠ 𝑗}, 𝑖 and 𝑗 not both in 𝑉𝑑 and edge cost 𝑐𝑖𝑗 for
(𝑖, 𝑗) ∈ 𝐸.

Definition 9 MDVRP model formulation. Here we present the MILP formulation of
the capacitated VRP with multiple depots. The binary decision variable 𝑥𝑖𝑗𝑘 is defined to
indicate whether the vehicle 𝑘, 𝑘 ∈ 𝐾 traverses an edge (𝑖, 𝑗) ∈ 𝐸 in an optimal solution.
Therefore, the model is expressed as:

(MDVRP) 𝑚𝑖𝑛
∑︁
𝑘∈𝐾

∑︁
(𝑖,𝑗)∈𝐸

𝑐𝑖𝑗𝑥𝑖𝑗𝑘 (4.7.1)

Subject to

∑︁
𝑘∈𝐾

∑︁
𝑖∈𝑉,�̸�=𝑗

𝑥𝑖𝑗𝑘 = 1, ∀𝑗 ∈ 𝑉𝑐, (4.7.2)

∑︁
𝑗∈𝑉𝑐

𝑥𝑖𝑗𝑘 = 1, ∀𝑖 ∈ 𝑉𝑑, 𝑘 ∈ 𝐾𝑖 (4.7.3)

∑︁
𝑖∈𝑉,�̸�=𝑗

𝑥𝑖𝑗𝑘 =
∑︁
𝑖∈𝑉

𝑥𝑗𝑖𝑘, ∀𝑗 ∈ 𝑉, 𝑘 ∈ 𝐾, (4.7.4)

∑︁
𝑖∈𝑉

∑︁
𝑗∈𝑉𝑐,𝑗 ̸=𝑖

𝑞𝑗𝑥𝑖𝑗𝑘 ≤ 𝑄, ∀𝑘 ∈ 𝐾, (4.7.5)

∑︁
𝑘∈𝐾

∑︁
𝑖∈𝑆

∑︁
𝑗∈𝑆,𝑗 ̸=𝑖

𝑥𝑖𝑗𝑘 ≤ |𝑆| − 1, ∀𝑆 ⊆ 𝑁, (4.7.6)

𝑥𝑖𝑗𝑘 ∈ {0, 1}, ∀𝑘 ∈ 𝐾, (𝑖, 𝑗) ∈ 𝐸. (4.7.7)

The objective function (4.7.1) minimizes the total travel cost. As in the CVRP model defined
earlier, the MDVRP includes some of the usual constraints – the degree constraints (4.7.2),
flow constraints (4.7.3, 4.7.4), capacity constraints (4.7.5), and the subtour elimination
constraints (4.7.6). However, we consider more than one depot in this model, which is
especially noticeable in the constraint (4.7.3). Finally, the domains of the variables are
specified by (4.7.7).
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4.2.5 The Heterogeneous Fleet VRP

The class of Heterogeneous Fleet Vehicle Routing Problem (HFVRP) [70] considers
groups or types of vehicles that may differ in capacity, cost, speed, and the customers
they can reach. The fleet 𝐾 is partitioned into |𝑃 | subsets of homogeneous vehicles
𝐾 = 𝐾1 ∪ 𝐾2 ∪ . . . ∪ 𝐾 |𝑃 | (also called vehicle types). All vehicles 𝑘 ∈ 𝐾𝑝 of type 𝑝

(𝑝 = 1, . . . , |𝑃 |) are characterized by a capacity 𝑄𝑘 = 𝑄𝑝, variable routing costs 𝑐𝑖𝑗𝑘 = 𝑐𝑝
𝑖𝑗,

and subset 𝑁𝑘 = 𝑁𝑝 ⊆ 𝑁 of reachable customers.
It is relatively straightforward to modify the CVRP model to account for vehicle-specific

characteristics. We replace the general coefficients with individual ones, e.g., capacity 𝑄

with 𝑄𝑘. Vehicle-dependent routing costs arise by replacing 𝑐𝑖𝑗 with individual 𝑐𝑖𝑗𝑘 for all
(𝑖, 𝑗) ∈ 𝐸. To model inaccessible customers 𝑗 ∈ 𝑁 ∖𝑁𝑘, we set 𝑐𝑖𝑗𝑘 for all (𝑖, 𝑗) ∈ 𝐸 to a
sufficiently large number 𝑀 .

Definition 10 HFVRP model formulation. Here we present the MILP formulation of the
capacitated VRP with heterogeneous fleet (HFVRP). The binary decision variable 𝑥𝑖𝑗𝑘 is
defined to indicate whether the vehicle 𝑘, 𝑘 ∈ 𝐾 traverses an edge (𝑖, 𝑗) ∈ 𝐸 in an optimal
solution. Then the model is given as:

(HFVRP) 𝑚𝑖𝑛
∑︁
𝑘∈𝐾

∑︁
(𝑖,𝑗)∈𝐸

𝑐𝑖𝑗𝑘𝑥𝑖𝑗𝑘 (4.8.1)

Subject to

∑︁
𝑘∈𝐾

∑︁
𝑖∈𝑉,�̸�=𝑗

𝑥𝑖𝑗𝑘 = 1, ∀𝑗 ∈ 𝑉 ∖ {0}, (4.8.2)

∑︁
𝑗∈𝑉 ∖{0}

𝑥0𝑗𝑘 = 1, ∀𝑘 ∈ 𝐾, (4.8.3)

∑︁
𝑖∈𝑉,�̸�=𝑗

𝑥𝑖𝑗𝑘 =
∑︁
𝑖∈𝑉

𝑥𝑗𝑖𝑘, ∀𝑗 ∈ 𝑉, 𝑘 ∈ 𝐾, (4.8.4)

∑︁
𝑖∈𝑉

∑︁
𝑗∈𝑉 ∖{0},𝑗 ̸=𝑖

𝑞𝑗𝑥𝑖𝑗𝑘 ≤ 𝑄𝑘, ∀𝑘 ∈ 𝐾, (4.8.5)

∑︁
𝑘∈𝐾

∑︁
𝑖∈𝑆

∑︁
𝑗∈𝑆,𝑗 ̸=𝑖

𝑥𝑖𝑗𝑘 ≤ |𝑆| − 1, ∀𝑆 ⊆ 𝑁, (4.8.6)

𝑥𝑖𝑗𝑘 ∈ {0, 1}, ∀𝑘 ∈ 𝐾, (𝑖, 𝑗) ∈ 𝐸. (4.8.7)

The objective function (4.8.1) minimizes the total travel cost given the specificity of each
vehicle, 𝑐𝑖𝑗𝑘. The HFVRP contains the same constraints as the previously defined CVRP –
the degree constraints (4.8.2), flow constraints (4.8.3, 4.8.4), capacity constraints (4.8.5),
and the subtour elimination constraints (4.8.6). However, in this model, we consider a
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specific capacity of each vehicle, 𝑄𝑘 in (4.8.5). Finally, the domains of the variables are
specified by (4.8.7).

4.3 Modeling of Task Planning Problems as VRP

Having defined the underlying mathematical model, we relate it to the task planning
problem specified at the beginning of this section. We consider this metaphor at a high
level of abstraction, although in some applications involving transportation scenarios the
relationship may be more apparent. Here we outline all the features of the proposed model
in the context of task planning and finally present the full integrated model formulation.
The task planning model metaphor considers a heterogeneous fleet multi-depot VRP
variant with precedence and synchronization constraints and time windows, referred in
the rest of the section as HFVRP-TWPS.
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Figure 4.5: An illustration of the relationship of the HFVRP-TWPS model to the task planning
paradigm. The diagram shows the direct relation between concepts in VRP and task planning
problems, where depots represent initial robot states, vehicles stand for robots, customers refer
to actions, and vehicle routes represent final robot schedules.

In the modeling of task planning as a VRP variant, we use the term customer for the
simple single-robot tasks, actions. We designate the set 𝑁 = {1, . . . , 𝑛} = 𝐴, where 𝐴

is the set of actions. This definition includes only actionable elements from the robot’s
task structure, and all tasks must be decomposed down to the action level where vehicle
routing is optimized.

In the task planning paradigm, we directly equate the concept of a vehicle with robots,
𝐾 = {1, . . . , 𝑚} = 𝑅. Typically, the VRP paradigm requires vehicles to start at the depot,
serve assigned customers along the route, and return to the depot. In our modeling, we
equate the term depot with the initial location of the robot. Unlike the vehicles in typical
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Table 4.1: Task planning elements as a VRP variant.

Task Planning HFVRP-TWPS Unified Model Formulation

actions, 𝐴 customers, 𝑁 𝐴, set of actions

robots, 𝑅 vehicles, 𝐾 𝑅, set of robots

schedule, 𝑠 route, 𝑟* 𝑠*
𝑟 = (𝑖0(𝑟), 𝑖1, . . . , 𝑖|𝑆𝑟|), 𝑖 ∈ 𝐴, 𝑟 ∈ 𝑅

start of the action, 𝑎𝑠
𝑖 start of the service at node 𝜔𝑖𝑟, 𝑖 ∈ 𝐴, 𝑟 ∈ 𝑅

action duration, 𝑑𝑖 service duration 𝜎𝑖𝑟, 𝑖 ∈ 𝐴, 𝑟 ∈ 𝑅

end of the action, 𝑎𝑓
𝑖 end of the service at node 𝜔𝑖𝑟 + 𝜎𝑖𝑟, 𝑖 ∈ 𝐴, 𝑟 ∈ 𝑅

initial state of the robot depot 𝑖0(𝑟), 𝑟 ∈ 𝑅, initial zero-cost action

action setup cost travel cost 𝑐𝑖𝑗𝑟, 𝑖, 𝑗 ∈ {0} ∪ 𝐴, 𝑟 ∈ 𝑅

setup time travel time 𝑡𝑖𝑗𝑟, 𝑖, 𝑗 ∈ {0} ∪ 𝐴, 𝑟 ∈ 𝑅

energy requirement of the action customer demand 𝑞𝑖𝑟, 𝑖 ∈ 𝐴, 𝑟 ∈ 𝑅

robot energy capacity vehicle capacity 𝑄𝑟, 𝑟 ∈ 𝑅

VRP problems, the robot is not required to return to the starting point. Such a variant of
VRP is referred to in the literature as open VRP [71].

The proposed model distinguishes between two different cost variants. On the one hand,
the cost of transitioning between two tasks, setup cost, is directly related to the travel cost
of the HFVRP-TWPS. This cost can include any movement between locations and the
possible setup cost between two tasks and is defined as 𝑐𝑖𝑗𝑟, 𝑖, 𝑗 ∈ {0} ∪ 𝐴, 𝑖 ≠ 𝑗, 𝑟 ∈ 𝑅.
Closely related to the setup cost is the setup time, 𝑡𝑖𝑗𝑟, 𝑖, 𝑗 ∈ {0} ∪ 𝐴, 𝑖 ̸= 𝑗, 𝑟 ∈ 𝑅, which
defines the duration of the robot’s setup between two tasks. The second cost variant is the
energy requirement of the specific action 𝑖 ∈ 𝐴 is defined as 𝑞𝑖𝑟, 𝑟 ∈ 𝑅 and characterized as
the customer demand in HFVRP-TWPS.

According to the specified modeling, the robot schedules are constructed based on
the routes in the HFVRP-TWPS solution. The parallel is evident, since both constructs
represent temporally ordered sequences of jobs. In the open VRP paradigm, a route is
a sequence 𝑟* = (𝑖0, 𝑖1, . . . , 𝑖𝑠) with 𝑖0 = 0, where 0 denotes a depot node, and the rest
of the elements are customer nodes. In our modeling, we take the previously defined
concept of a schedule, and map the order of tasks in a schedule to the arranged sequence
of tasks 𝑠*

𝑟 = (𝑖0, 𝑖1, . . . , 𝑖|𝑆𝑟|), 𝑖𝑗 ∈ 𝑆𝑟, 𝑗 ∈ {1, . . . , |𝑆𝑟|}, 𝑟 ∈ 𝑅, where 𝑖0 is a zero-cost task
associated with the robot’s starting location, and 𝑆𝑟 is a set of scheduled tasks. Temporal
elements of the schedule are the task start time and the task duration, defined respectively
as: 𝜔𝑖𝑟 := 𝑎𝑠

𝑖 , 𝑖 ∈ 𝑆𝑟, 𝑟 ∈ 𝑅 and 𝜎𝑖𝑟 := 𝑑𝑖 = 𝑎𝑓
𝑖 − 𝑎𝑠

𝑖 , 𝑖 ∈ 𝑆𝑟, 𝑟 ∈ 𝑅.
A schedule for a robot 𝑟 ∈ 𝑅 is considered feasible if the capacity constraint 𝑞𝑟(𝑆𝑟) :=∑︀

𝑖∈𝑆𝑟
𝑞𝑖𝑟 ≤ 𝑄𝑟 holds, and no task is scheduled more than once, 𝑖𝑗 ̸= 𝑖𝑘 for all 1 ≤ 𝑗 < 𝑘 ≤

|𝐴|. When it is necessary to perform repetitive tasks, each occurrence of the task should
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be treated as a separate entity.
All previously defined relations are summarized in the Table 4.1 and additionally

illustrated in Figure 4.5. Following the graph representation of the VRP, we define the
task planning problem on a graph. This formulation of the problem is the underlying
framework of the proposed model, and we express all subsequent concepts on this basis.

4.3.1 Mathematical model formulation

The mathematical representation of the unified task planning model as MILP is based on
the graph structure. Let 𝑉 be the set of vertices (or nodes) consisting of two distinct sets of
nodes, the action nodes 𝑉𝑎 = 𝐴 = {1, . . . , 𝑛} and the start position nodes 𝑉𝑠 = {1, . . . , 𝑙},
where 𝑛 and 𝑙 represent the number of available tasks and robot start positions, respectively.
It holds that 𝑉 = 𝑉𝑎 ∪ 𝑉𝑠 and 𝑉𝑎 ∩ 𝑉𝑠 = ∅. The underlying graph 𝐺 = (𝑉, 𝐸) is complete
and directed with edge set 𝐸 = {𝑒 = (𝑖, 𝑗) : 𝑖, 𝑗 ∈ 𝑉, 𝑖 ̸= 𝑗, 𝑖 and 𝑗 not both in 𝑉𝑠}.

We model heterogeneity motivated by a mixed fleet variant of MDVRP, in which the
set of customers available to the vehicle corresponds in the task planning formulation to
a subset of actions 𝐴𝑟 that the robot 𝑟 ∈ 𝑅 can perform. To model unavailable tasks
𝑗 ∈ 𝐴 ∖ 𝐴𝑟, we set the setup cost 𝑐𝑖𝑗𝑟 to a sufficiently large number 𝑀 for all (𝑖, 𝑗) ∈ 𝐸

related to the unreachable task 𝑗. Further aspects of heterogeneity of multi-robot systems
are achieved by replacing the general coefficients of MDVRP with robot-specific ones, e.g.,
the capacity 𝑄 by 𝑄𝑟, the energy requirement 𝑞𝑖 by 𝑞𝑖𝑟 for all 𝑖 ∈ 𝑉𝑎, and the cost 𝑐𝑖𝑗 by
𝑐𝑖𝑗𝑟 for all (𝑖, 𝑗) ∈ 𝐸.

Modeling constraints

For the given precedence constraints 𝑝𝑟𝑒𝑐(𝑎𝑖, 𝑎𝑗), 𝑎𝑖, 𝑎𝑗 ∈ 𝐴 and assuming that tasks 𝑎𝑖(𝑎𝑗)
correspond to nodes 𝑖(𝑗) ∈ 𝑉𝑎, we represent the precedence constraint in VRP notation
by adding the pair of tasks to the set of constrained tasks Π = {(𝑖, 𝑗), 𝑖, 𝑗 ∈ 𝑉𝑎}. The
constraint on the tasks is then

𝜔𝑖 + 𝜎𝑖 ≤ 𝜔𝑗, (𝑖, 𝑗) ∈ Π, (4.9)

where 𝜔𝑖 and 𝜔𝑗 mark the beginning of the tasks 𝑖 and 𝑗 respectively, and 𝜎𝑖 denotes the
duration of task 𝑖. We also distinguish particular 𝜔𝑖𝑟 as the start time of task 𝑖 when it is
executed by robot 𝑟 ∈ 𝑅, and the corresponding task duration 𝜎𝑖𝑟. The expressions for
these cases are defined in the full model representation.

Synchronization constraints are specified analogously to precedence. For specified
𝑠𝑦𝑛𝑐(𝑎𝑖, 𝑎𝑗), 𝑎𝑖, 𝑎𝑗 ∈ 𝐴 and the underlying graph 𝐺 = (𝑉, 𝐸) with corresponding members
𝑖 and 𝑗 in the vertex subset 𝑉𝑎, we introduce the pair into the set of synchronization
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constraints Σ = {(𝑖, 𝑗), 𝑖, 𝑗 ∈ 𝑉𝑎}. The constraints on the tasks are formalized as

𝜔𝑖 = 𝜔𝑗, (𝑖, 𝑗) ∈ Σ (4.10)

𝜎𝑖 = 𝜎𝑗, (𝑖, 𝑗) ∈ Σ. (4.11)

The constraints ensure that the start times of the tasks are synchronized and that they
take the same time to execute, essentially ensuring synchronization. As in the precedence
constraint case, in the full model we observe robot-specific time variables 𝜔𝑖𝑟, the start
time of task 𝑖 when executed by robot 𝑟 ∈ 𝑅, and the duration of task 𝑖 when executed by
𝑟, 𝜎𝑖𝑟.

In task planning, we represent a time window for a task 𝑎𝑖,∈ 𝐴 as 𝑡𝑤(𝑎𝑖, 𝑎𝑠*
𝑖 , 𝑎𝑓*

𝑖 ),
where 𝑎𝑠*

𝑖 and 𝑎𝑓*
𝑖 stand for the earliest start time and latest finish time of the task 𝑎𝑖,

respectively. In the VRP paradigm, the concept is similar, usually with a time window
that only constrains the start time of the service. In our modeling, we adhere to the task
planning model defined earlier and define time windows for the entire duration of a given
task. Therefore, for 𝑎𝑖 ∈ 𝐴 corresponding to node 𝑖 ∈ 𝑉𝑎, we denote the time window as
[𝛼𝑖, 𝛽𝑖], where 𝛼𝑖 and 𝛽𝑖 represent the earliest service start time and the latest service end
time, respectively. The constraining expressions from Equation 4.2.6 are then split into
two constraints:

𝛼𝑖 ≤ 𝜔𝑖 ≤ 𝛽𝑖, (4.12.1)

𝜔𝑖 + 𝜎𝑖 ≤ 𝛽𝑖. (4.12.2)

Equation 4.12.1 ensures that the start of task execution is within the time window
boundaries, while Equation 4.12.2 enforces that the end time of execution is before the
end of the specified time frame. In the full model, we consider robot-specific time variables
𝜔𝑖𝑟, the start time of task 𝑖 when executed by robot 𝑟 ∈ 𝑅, and the duration of task 𝑖

when executed by 𝑟, 𝜎𝑖𝑟.

The optimization objectives

We introduced VRPs as pure routing cost minimization problems. However, in our
model there are several aspects that we consider in determining the optimality of the
solutions provided. As mentioned earlier, in the task planning section of this chapter, we
evaluate tasks and schedules based on three properties – quality, duration, and cost, which
correspond to the three objectives in the multi-objective optimization. Task quality is a
subjective measure related to the application and is determined a priori by the system
designer, while each robot evaluates the duration and cost of a future task with respect
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to the current state of the system. We specify the task quality as 𝑘𝑖, 𝑖 ∈ 𝑉𝑎. We have
previously defined the robot-specific task duration as 𝜎𝑖𝑟, 𝑖 ∈ 𝑉𝑎, 𝑟 ∈ 𝑅 and the energy
demand as 𝑞𝑖𝑟, 𝑖 ∈ 𝑉𝑎, 𝑟 ∈ 𝑅, which represents the task cost in this context. Then, the
total solution score in these three dimensions can be defined as

𝜅 =
∑︁
𝑟∈𝑅

∑︁
(𝑖,𝑗)∈𝐸

𝑥𝑖𝑗𝑟𝑘𝑗, (4.13.1)

𝛿 =
∑︁
𝑟∈𝑅

∑︁
(𝑖,𝑗)∈𝐸

𝑥𝑖𝑗𝑟(𝑡𝑖𝑗𝑟 + 𝜎𝑗𝑟), (4.13.2)

𝛾 =
∑︁
𝑟∈𝑅

∑︁
(𝑖,𝑗)∈𝐸

𝑥𝑖𝑗𝑟(𝑐𝑖𝑗𝑟 + 𝑞𝑗𝑟), (4.13.3)

where the binary decision variable 𝑥𝑖𝑗𝑟 is defined to indicate if the robot 𝑟, 𝑟 ∈ 𝑅 traverses
an edge (𝑖, 𝑗) ∈ 𝐸 in a given solution and 𝑡𝑖𝑗𝑟 is the setup time between tasks 𝑖 and 𝑗.

In addition, there are several constraints on the system that must hold in the feasible
solution, namely capacity, precedence, time window, and synchronization constraints. We
consider these constraints as hard constraints. However, some temporal constraints may
not always hold, but we would like to penalize the solutions that do not adhere. These
constraints are considered soft constraints and affect the optimality of the particular
solution by affecting the value of the objective function. For example, the idle or waiting
time of robots in the schedule can be considered a penalty for the solution. We generally
accumulate all violated soft constraints into a penalty function 𝜋 in the evaluation function.
This function represents another objective to be minimized for the whole optimization
method.

Unified model of task planning as VRP

After defining the translation of the task planning to the VRP model through its essential
components and limitations on the system, we present the general model unifying the two
paradigms. For convenience, all sets, variables, and constants of the model are summarized
in Tables 4.2 and 4.3.

Definition 11 Task planning problem as HFVRP-TWPS formulation. Here we present
the general model of task planning represented in VRP notation, formulated as MILP. The
binary decision variable 𝑥𝑖𝑗𝑟 is defined to indicate if the robot 𝑟, 𝑟 ∈ 𝑅 traverses an edge
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Table 4.2: Defined sets in the unified model of task planning as VRP.

Set Definition

𝑅 set of robots

𝑉 = 𝑉𝑠 ∪ 𝑉𝑎 set of vertices (nodes)

𝑉𝑠 set of robot initial states

𝑉𝑎 = 𝐴 set of single-robot actions

𝐸 = 𝑉 × 𝑉 set of edges

𝑅𝑖 set of robots starting from location 𝑖, 𝑖 ∈ 𝑉𝑠

Π set of precedence constraints

Σ set of synchronization constraints

Table 4.3: Defined variables and constants in the unified model of task planning as VRP.

Variable Definition Domain

𝑥𝑖𝑗𝑟 if robot 𝑟 traverses edge (𝑖, 𝑗) ∈ 𝐸 {0, 1}

𝜔𝑖𝑟 start time of action 𝑖 ∈ 𝑉𝑎 performed by 𝑟 ∈ 𝑅 R

Constant

𝜅𝑖 quality of action 𝑖 ∈ 𝑉𝑎

R

𝜎𝑖𝑟 duration of action 𝑖 ∈ 𝑉𝑎 when performed by robot 𝑟 ∈ 𝑅

𝑡𝑖𝑗𝑟 setup time between actions 𝑖 and 𝑗, ∀(𝑖, 𝑗) ∈ 𝐸 assigned to 𝑟 ∈ 𝑅

𝑐𝑖𝑗𝑟 setup cost between actions 𝑖 and 𝑗, ∀(𝑖, 𝑗) ∈ 𝐸 assigned to 𝑟 ∈ 𝑅

𝑞𝑖𝑟 energy demand of action 𝑖 ∈ 𝑉𝑎 for robot 𝑟 ∈ 𝑅

𝑄𝑟 energy capacity of robot 𝑟 ∈ 𝑅

𝛼𝑖 beginning of time window for action 𝑖 ∈ 𝑉𝑎

𝛽𝑖 end of time window for action 𝑖 ∈ 𝑉𝑎
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(𝑖, 𝑗) ∈ 𝐸 in a given solution. Then, the model is given as:

maximize 𝜅 =
∑︁
𝑟∈𝑅

∑︁
(𝑖,𝑗)∈𝐸

𝑥𝑖𝑗𝑟𝑘𝑗 (4.14.1)

minimize

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝛿 = ∑︀

𝑟∈𝑅

∑︀
(𝑖,𝑗)∈𝐸 𝑥𝑖𝑗𝑟(𝑡𝑖𝑗𝑟 + 𝜎𝑗𝑟)

𝛾 = ∑︀
𝑟∈𝑅

∑︀
(𝑖,𝑗)∈𝐸 𝑥𝑖𝑗𝑟(𝑐𝑖𝑗𝑟 + 𝑞𝑗𝑟)

𝜋

(4.14.2)

Subject to

∑︁
𝑟∈𝑅

∑︁
𝑖∈𝑉,�̸�=𝑗

𝑥𝑖𝑗𝑟 ≤ 1, ∀𝑗 ∈ 𝑉𝑎, (4.14.3)

∑︁
𝑗∈𝑉𝑎

𝑥𝑖𝑗𝑟 ≤ 1, ∀𝑖 ∈ 𝑉𝑠, 𝑟 ∈ 𝑅𝑖, (4.14.4)

𝑥𝑖𝑗𝑟(𝜔𝑖𝑟 + 𝜎𝑖𝑟 + 𝑡𝑖𝑗𝑟 − 𝜔𝑗𝑟) ≤ 0, ∀𝑟 ∈ 𝑅, (𝑖, 𝑗) ∈ 𝐸, (4.14.5)

𝛼𝑖(
∑︁

𝑗∈𝑉,𝑗 ̸=𝑖

𝑥𝑖𝑗𝑟) ≤ 𝜔𝑖𝑟 ≤ 𝛽𝑖(
∑︁

𝑗∈𝑉,𝑗 ̸=𝑖

𝑥𝑖𝑗𝑟), ∀𝑖 ∈ 𝑉𝑎, 𝑟 ∈ 𝑅, (4.14.6)

𝜔𝑖𝑟 + 𝜎𝑖𝑟 ≤ 𝛽𝑖(
∑︁

𝑗∈𝑉,𝑗 ̸=𝑖

𝑥𝑖𝑗𝑟), ∀𝑖 ∈ 𝑉𝑎, 𝑟 ∈ 𝑅, (4.14.7)

∑︁
𝑟∈𝑅

∑︁
𝑖′∈𝑉

𝑥𝑖′𝑖𝑟(𝜔𝑖𝑟 + 𝜎𝑖𝑟) ≤
∑︁
𝑟∈𝑅

∑︁
𝑗′∈𝑉

𝑥𝑗′𝑗𝑟𝜔𝑗𝑟, ∀(𝑖, 𝑗) ∈ Π, (4.14.8)

∑︁
𝑟∈𝑅

∑︁
𝑖′∈𝑉

𝑥𝑖′𝑖𝑟𝜔𝑖𝑟 =
∑︁
𝑟∈𝑅

∑︁
𝑗′∈𝑉

𝑥𝑗′𝑗𝑟𝜔𝑗𝑟, ∀(𝑖, 𝑗) ∈ Σ, (4.14.9)

∑︁
𝑟∈𝑅

∑︁
𝑖′∈𝑉

𝑥𝑖′𝑖𝑟𝜎𝑖𝑟 =
∑︁
𝑟∈𝑅

∑︁
𝑗′∈𝑉

𝑥𝑗′𝑗𝑟𝜎𝑗𝑟, ∀(𝑖, 𝑗) ∈ Σ, (4.14.10)

∑︁
𝑖∈𝑉

∑︁
𝑗∈𝑉 ∖{0},𝑗 ̸=𝑖

𝑞𝑗𝑟𝑥𝑖𝑗𝑟 ≤ 𝑄𝑟, ∀𝑟 ∈ 𝑅, (4.14.11)

∑︁
𝑟∈𝑅

∑︁
𝑖∈𝑆

∑︁
𝑗∈𝑆,𝑗 ̸=𝑖

𝑥𝑖𝑗𝑟 ≤ |𝑆| − 1, ∀𝑆 ⊆ 𝑉𝑎, (4.14.12)

𝑥𝑖𝑗𝑟 ∈ {0, 1}, ∀𝑟 ∈ 𝑅, (𝑖, 𝑗) ∈ 𝐸, (4.14.13)

𝜔𝑖𝑟 ∈ R, ∀𝑟 ∈ 𝑅, 𝑖 ∈ 𝑉. (4.14.14)

The objectives of the optimization problem are represented by Equations (4.14.1) and
(4.14.2). The goal is to find a solution that maximizes the total quality 𝜅 while mini-
mizing the overall duration 𝛿, cost 𝛾, and penalties caused by soft constraint violation
𝜋. Constraints (4.14.3) require each task to complete at most once. Equations (4.14.4)
state that each robot runs at most one schedule. Notice that flow constraints present in
previously defined versions of VRP are omitted here. That is because we don’t constrain
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this model to provide closed-loop solutions as we consider the open VRP formulation. Next,
constraints (4.14.5) guarantee schedule feasibility with respect to time considerations, while
terms (4.14.6) and (4.14.7) enforce time windows on task start and end times, respectively.
The limitations defined by (4.14.8) enforce precedence constraints, while synchronization
constraints are dictated by (4.14.9) and (4.14.10). Equations (4.14.11) ensures capacity
constraints of robots are met, while (4.14.12) eliminate any possible sub-tours in the
solution. Finally, variable domains are provided in (4.14.13) and (4.14.14).

Example problem

We return to a previously defined use case example of a multi-robot disaster response
mission and specify the same problem in the newly defined unified model. In Figure
4.6 is the illustration of the given problem, with the structural parts of the compound
mission omitted. In our proposed model, we only regard the action nodes, depicted as
rectangles in the graph. First, we identify two backbone sets, set of robots R ={UGV,
humanoid, UAV1, UAV2}, and the set of actions 𝐴 = {clear debris, inspect room, close
valve, transport object, monitor operation}. Assuming that the robots are all deployed
from the same location start, the set of robot initial states has only one element in it,
associated with that node. Therefore, we can define the nodes of the underlying graph as
follows:

0 – start
1 – clear debris
2 – inspect room
3 – close valve
4 – transport object
5 – monitor the operation

where the sets of nodes are defined as 𝑉𝑠 = {0} and 𝑉𝑎 = {1, 2, 3, 4, 5}. Each of the nodes
is associated with a real physical location and the values of the setup time 𝑡𝑖𝑗𝑟, setup
cost 𝑐𝑖𝑗𝑟 for each robot 𝑟 ∈ 𝑅 and each pair of nodes 𝑖, 𝑗 ∈ 𝑉𝑎, 𝑖 ̸= 𝑗 are calculated at the
beginning of the mission based on the robot properties and the node locations. At the
beginning of the mission, the duration of the action 𝜎𝑖𝑟 and the energy demand of the
action 𝑞𝑖𝑟 for each action 𝑖 ∈ 𝑉𝑎 are also estimated.

The precedence constraints specified in Figure 4.6 are defined as Π = {(1, 2 ), (3, 4 ), (3,
5 )}. Note that the precedence constraint relating tasks close valve and safe object transport
affects all actions belonging to the compound task of object transportation. Similarly, we
define the set of synchronization constraints as Σ = {(4, 5 )}.

Finally, we present the graph representation of the given problem in the VRP for-
mulation in Figure 4.7. The node for the robot initial states is given as node 0 of the
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Figure 4.6: An example of a disaster response mission for representation as a VRP-based model.
The part of the task structure to be modeled are the action nodes, represented as rectangles.

graph, and its set of robots 𝑅𝑖 = {UGV, humanoid, UAV1, UAV2}. The nodes of the
graph are spatially distributed according to their associated task locations. For this simple
problem, a solution is proposed, and the routes of the chosen schedule are plotted over
the image connecting the robots to their assigned tasks. Then, the specific schedules are
generated from the task assignments and sequence by introducing temporal elements into
the solution. An example of a schedule is shown in Figure 4.7. Dashed red arrows depict
action constraints in the schedule representation.

This very simple problem serves as an illustration of the principles of the proposed
modeling. The model can handle very complex missions for multi-robot systems given the
multi-objective optimization function. Although solving the model presented in Definition
11 can be solved with an exact solution solver, we choose to implement a fast metaheuristic
solution that provides suboptimal solutions in a more efficient way. This solution is
presented in the next chapter.

55



Definition and Modeling of Task Planning Problems

initial
robot

positions

0

inspect
room

1
2

3
close
valve

5
4

transport
object

monitor the
operation

clear
debris

schedules:

UGV

humanoid

UAV1

UAV2

clear
debris

inspect
room

close
valve

transport
object

monitor the
operation

Figure 4.7: Disaster response operation represented as a VRP for spatially distributed tasks.
Each action is given as a node (1, . . . , 5) in the graph. Node 0 represents the initial states of the
robots. The schedule for each robot is obtained by introducing temporal elements in the task
assignments.
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CHAPTER 5

Mission Planning Solution Approach

In this chapter, we describe the proposed solutions to the previously defined mission
planning problem for both tasks with cross-schedule dependencies (XD class of problems),
as well as for complex tasks (CD class of problems). Both solutions incorporate the use of
heuristics and approximations to quickly obtain suboptimal solutions to these very hard
combinatorial problems.

5.1 Problems with Cross-Schedule Dependencies

First, in this section, we provide insight into the proposed algorithm for the XD[ST-SR-TA]
class of mission planning problems. Based on the problem modeling as a variant of VRP,
defined in Section 4.3, we propose a distributed solution inspired by the Coalition-Based
Metaheuristic (CBM) paradigm.

Similar modeling was proposed in [14], where the problem of task planning refers to
the Dial-a-Ride Problem (DARP), a variant of VRP with pickup and delivery. To solve
the problem, the authors use a centralized bounded optimal branch-and-price algorithm. In
our approach, we employ multi-objective optimization with a form of distributed genetic
algorithm using mimetism and knowledge sharing. This approach, which uses distributed
evolutionary computation methods, can quickly generate near-optimal solutions, and thus,
work online while achieving good scalability properties.

5.1.1 MDVRP solution approaches

The problems considered here fit well into the paradigm of the Multi-Depot Vehicle Routing
Problem (MDVRP). We regard a MDVRP variant with heterogeneous fleet and capacity
constraints (HFVRP-TWPS, as defined in Section 4.3) to incorporate all relevant aspects of
task planning. MDVRP is a VRP variation concerned with problems of servicing customers
from several depots with a designated fleet of vehicles. It is a classic example of an NP-hard
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[5] combinatorial optimization problem. Even for relatively small problem sizes, solving
MDVRP to optimality is challenging. Given the rapid combinatorial explosion of factorial
dimension, it quickly becomes impossible to obtain optimal solutions for this type of
problems.

The authors in [72] were the first to report on optimal solutions for problem sizes
up to 50 customers using a branch-and-bound method. The method was soon improved
for asymmetric MDVRPs† by [73], who first transformed the problem into an equivalent
constraint assignment problem and then applied a branch-and-bound technique to problem
instances with up to 80 customers and three depots. More recently, [74] developed an
exact method for solving the Heterogeneous Fleet Vehicle Routing Problem (HFVRP)
that can be used to solve several variants of VRP, including MDVRP. The algorithm is
designed around the set partitioning formulation of the problem. It uses three bounding
procedures based on the relaxation of the mathematical formulation to reduce the number
of variables so that the resulting problem can be solved by an integer linear programming
solver. The authors present computational results for MDVRP instances with up to
200 customers and 2-5 depots. The authors in [75] present a new exact algorithm for
MDVRP under capacity and route length constraints. The model is defined using a
vehicle-flow and a set-partitioning formulation, which are used in different phases of the
algorithm. Their method is based on variable fixing, column-and-cut generation, and
column enumeration. In their work, optimality has been proven for the first time for some
benchmarking instances.

On the other hand, several heuristic methods have been proposed for MDVRP problems.
These approaches seek approximate solutions in polynomial time instead of computationally
expensive exact solutions. The work in [76] revealed that most researchers tend to solve the
MDVRP by heuristics or metaheuristics. In the field of global optimization, metaheuristics
are stochastic search algorithms specified as generic algorithm frameworks that use rules or
heuristics applicable to different problems to accelerate their convergence to near-optimal
solutions [77]. In general, metaheuristics emulate processes and behaviors inspired by
mechanisms found in nature, such as evolution. One of the most popular metaheuristic
algorithms is Genetic Algorithm (GA) [78], and several variants have been proposed to
solve MDVRP [79, 80, 81]. One of the main advantages of the GA approaches is their
simplicity and fast computation, which allows them to quickly explore a large solution
space and effectively generate suboptimal solutions. Other heuristic approaches include
Ant Colony Optimization (ACO) algorithm [82, 83], Tabu search [84], and various hybrid
methods that combine multiple techniques [85, 86, 87, 88, 89, 90].

The metaheuristics are closely related to multi-agent models, as both can exploit the
†The setup cost and time between two nodes depend on the direction of the route.
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social metaphor and the self-organization paradigm. Recently, the field of Distributed
Artificial Intelligence (DAI) has grown, including multi-agent systems that solve difficult
combinatorial problems. The multi-agent concepts can be easily applied to metaheuristics,
especially population-based, hybrid, and distributed metaheuristics. The advantages of
the distributed approach are the evident increase in computational power due to the
simultaneous execution of multiple tasks and the increase in the robustness or efficiency of
the search, which is fostered by cooperation and interaction between agents. Our proposed
algorithm is inspired by the Coalition-Based Metaheuristic (CBM) approach [91], which
uses previously defined principles of DAI to solve the VRP problem.

5.1.2 The Coalition-Based Metaheuristic

In CBM [91], multiple agents organized in a coalition simultaneously explore the solution
space, cooperate, and self-adapt to solve the given problem collectively. The novelty
introduced in this algorithm was the use of basic DAI principles†, reinforcement and
mimetic learning, which not only allow agents to learn from their experiences and adapt
their future behaviors accordingly, but also to share knowledge with other agents in the
coalition. In addition to the learned behaviors, the agents also share the best solutions
found, so that at the end of each iteration of the algorithm, the best global solution to the
problem is obtained.

Perception
module

Decision
module

Action
module

Learning
module

operatorstate

agent  componentsagent  components

Current
solution

Best found
solution

Coalition
info

agent  contextagent  context

Figure 5.1: CBM agent structure.

The visual representation of the CBM agents is shown in Figure 5.1. During the search
process, each agent maintains three solutions, similarly to particle swarm optimization [92]:

†autonomous learning processing agents (distributed at large scale and independent) reach conclusions
or a semi-equilibrium through interaction and communication
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a current solution, the best solution found by the agent, and the best solution found by the
entire coalition. An agent uses several operators that are applied to the current solution.
The operators can be intensifiers or diversifiers. Intensifier operators concern improvement
processes such as local search, and diversifier operators correspond to generation, mutation,
or crossover procedures.

The choice of operators to apply is not completely stochastic as in GA. Instead, it is
determined by a decision process that uses perceived state and past experience to select the
most appropriate operators and coordinate intensification and diversification procedures.
The selection of operators is based on heuristic rules. The search behavior of an agent
is adapted during the optimization process through an individual reinforcement learning
mechanism and mimetic learning. These mechanisms modify the rules of the decision
process based on the experience results of previous explorations. Although all agents in
the coalition use the same set of operators, the learning mechanisms may ultimately lead
to different strategies.

Agents cooperate in two ways. First, an agent can inform the rest of the coalition
when it finds a solution that is better than the previous best coalition solution. Second,
agents share their internal decision rules to enable mimetic behavior. This fosters search
behavior in which desirable solutions are often found.

In [91], the authors proposed the CBM solution for a case of basic VRP. In our case, we
consider a HFVRP-PS and thus need to formulate a suitable set of operators. Moreover,
we modified the basic CBM algorithm to keep more than one current solution so that a
population of solutions is preserved, similar to evolutionary methods. In the rest of the
thesis, we refer to the proposed algorithm as CBM-pop. Details on the implementation of
the algorithm follow in this section.

5.1.3 Distributed metaheuristic for HFVRP-PS

In defining the distributed metaheuristic for task planning problems represented as Het-
erogeneous Fleet Vehicle Routing Problem with Time Windows and Precedence and
Synchronization Constraints (HFVRP-PS), there are some special features that need to be
considered. Although our proposed algorithm works very similarly to the CBM algorithm,
the problems that these two methods solve are quite different. Here we define the solution
representation, the evaluation, the operators used, and the flow of the algorithm for our
particular problem.
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Solution representation

The first feature to consider in the design of the algorithm is the representation of the
solution. Since this metaheuristic is based on a set of operators commonly used in genetic
algorithms, we encode solutions in the form of chromosomes. Inspired by an evolutionary
process, each chromosome contains genetic material that defines a solution (genotype). In
the case of HFVRP-PS, this refers to the assignment of actions to different robots and
their order within a sequence of tasks in the schedule. Each chromosome is associated
with a phenotype that evaluates the genetic material and, in our case, generates schedules
for task sequences based on the temporal properties of the tasks.

A1 B3 C1

B1

A3 C2

A2 B2 C3

UAV1

UAV2

UAV3

genotype phenotype

A1
(0,10)

B3
(10,25)

C1
(30,40)

B1
(0,5)

A2
(5,15)

B2
(15,25)

C3
(25,40)

A3
(10,30)

C2
(30,35)

Figure 5.2: Solution representation – chromosome genotype and associated phenotype. The
tasks presented here are arbitrarily named generic tasks ((𝐴, 𝐵, 𝐶)× (1, 2, 3)). The idle times
introduced in the schedules are a consequence of precedence constraints 𝑝𝑟𝑒𝑐(𝐴1, 𝐴3) and
𝑝𝑟𝑒𝑐(𝐴3, 𝐶1), since task 𝐴3 cannot start before task 𝐴1 finishes, and task 𝐶1 cannot start before
the end of 𝐴3.

An example of a chromosome and its genotype and phenotype is shown in Figure 5.2.
On the left is shown the genetic material of a solution containing specified task groupings
of robots (UAV1, UAV2, UAV3) and ordering. The genotype representation is maintained
respecting intra-schedule precedence constraints. On the right is an example of a phenotype
generated from the specified genotype. The schedule is formed by introducing time elements
into the ordered tasks (task durations, task setup times). If necessary, minimal idle times
are inserted to ensure consistency with the defined precedence constraints. The phenotype
represents the so-called semi-active schedule, where no left shift is possible in the Gantt
graph. For any given sequence of robot operations, there is only one semi-active schedule
[93]. One advantage of storing solutions in this way is faster exploration of the solution
space, since all operators perform on a simpler genotype representation of the solution.
The evaluation procedure renders the phenotype and evaluates the solutions found.

61



Mission Planning Solution Approach

Solution evaluation

The next point to be considered is the evaluation of the solution. Since we are dealing
with evaluating solutions based on several different criteria, optimal decisions must be
made in the presence of trade-offs between two or more objectives that may be in conflict.
There are several possible approaches when considering multiple objectives, the simplest
and most widely used is the weighted sum or scalarization method, defined as

Minimizex∈𝑆 𝑢(x) =
𝑞∑︁

𝑖=1
𝑤𝑖𝑓𝑖(x), (5.1)

where 𝑞 represents the number of different objectives, 𝑆 is the set of possible solutions
to the problem, and 𝑓𝑖 are specific objective functions. The Equation (5.1) represents an
optimization problem with a unique objective function 𝑢(x). The weights 𝑤𝑖 are usually
set by the designer of the system, such that ∑︀𝑞

𝑖=1 𝑤𝑖 = 1 and 𝑤𝑖 ≥ 0 ∀𝑖.
As simple as it is to apply, this method does have some recognized issues. First, even

with some of the methods for determining weights discussed in the literature, satisfactory
a priori weight selection does not necessarily guarantee that the final solution obtained
will produce solutions that satisfy the original multi-objective problem. The second issue
is that it is impossible to obtain points on non-convex parts of the Pareto-optimal set in
the criterion space, as will be shown later in the text. This notion ties in with the next
approach, namely Pareto-optimality, which is defined in [94] as “A point 𝑥 in the feasible
design space 𝑆 is called Pareto-optimal if there is no other point in the set 𝑆 that reduces
at least one objective function without increasing any other”.

Definition 12 Pareto optimality [94]. A point x* ∈ 𝑆 is Pareto optimal iff @ another
point x ∈ 𝑆 such that 𝑓𝑖(x) ≤ 𝑓𝑖(x*) ∀𝑖 and 𝑓𝑖(x) < 𝑓𝑖(x*) for at least one 𝑖.

In Figure 5.3, we illustrate the comparison between the weighted sum approach and
the Pareto front. On the left-hand side, we show the case of a convex Pareto front, in
which the weighted sum gives satisfactory results. However, on the right-hand side, the
figure shows the inability of the scalarization method to approximate the multi-objective
function in the case of a non-convex Pareto front. In the graphs, 𝑍 represents the feasible
criteria space, i.e., the set of objective function values corresponding to feasible points in
the design space: 𝑍 = {𝑓(x)|x ∈ 𝑆}.

Based on these findings, we chose a Pareto ranking procedure [95] for our solution, which
assigns ranks to all solutions based on the non-dominance property (i.e., a solution with a
lower rank is clearly superior to solutions with a higher rank concerning all objectives).
Therefore, solutions are stratified into multiple ranks based on their ability to meet the
optimization objectives.
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Figure 5.3: Weighted-sum optimization compared to convex (left) and concave (right) Pareto
front.

To evaluate solutions in a population 𝑃 , we apply the double-rank strategy, which
takes into account both the density information and the distribution of the solution in
the rank. In the first step, an individual 𝑖 ∈ 𝑃 is assigned a dummy rank value 𝑅′(𝑖)
representing the number of solutions that dominate it in the current population 𝑃 :

𝑅′(𝑖) = |𝑗, 𝑗 ∈ 𝑃, 𝑖 ≺ 𝑗|,∀𝑖 ∈ 𝑃, (5.2)

where the symbol ≺ corresponds to the Pareto dominance relation, i.e., 𝑖 ≺ 𝑗 if the solution
𝑗 performs better than 𝑖 given all optimization criteria. The final rank of solution 𝑅(𝑖) is
then defined as the sum of its own dummy rank value and that of its dominators:

𝑅(𝑖) = 𝑅′(𝑖) +
∑︁

𝑗∈𝑃,𝑖≺𝑗

𝑅′(𝑗),∀𝑖 ∈ 𝑃. (5.3)

The second part of the fitness function is the density function, which determines how
similar the solution is to the other individuals in the population. Here we use a fairly
simple solution where the density of an individual is inversely proportional to the distance
to the nearest solution in the population and is calculated as follows:

𝑑𝑒𝑛𝑠(𝑖) = 1
𝑚𝑖𝑛(𝑑(𝑖, 𝑗),∀𝑗 ∈ 𝑃 ) + 2 ,∀𝑖 ∈ 𝑃, (5.4)

where 𝑑(𝑖, 𝑗) represents the Euclidean distance between two individuals in the criteria
space. Finally, the fitness of the solution is obtained as:

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑖) = 1
𝑅(𝑖) + 𝑑𝑒𝑛𝑠(𝑖) + 1 ,∀𝑖 ∈ 𝑃. (5.5)
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In this setup, the rank of the solution has a much greater weight in the fitness function,
since it is a natural number denoting a subset of solutions from the population, and
the rank is a positive number smaller than 1/2. The role of the density function is to
discriminate between solutions of the same rank and to favour the more diverse solutions,
as they are deemed more likely to explore new regions of the solution space.

Operator definition

Next, we discuss the operators that form the core of the algorithm. We distinguish between
generation, diversification (crossover and mutation operators), and intensification operators
(local search algorithms). In our application, the generation operator is not used as a
diversifier because it is applied during initial population creation. In the proposed solution,
we use a single generation operator, a greedy insertion method that randomly takes an
unassigned task and inserts it into existing routes at minimal cost, taking into account
capacity constraints.

Other operators are listed and described in Table 5.1. Diversification operators are first
introduced in [96], and we implemented them for our specific problem. In the crossover
procedure, we distinguish two cases of Best-Cost Route Crossover (BCRC), depending on
the choice of parent chromosomes. One of the parents is always the current solution of the
agent and the second parent is either the best solution found within the whole coalition or
selected from the population. Similarly, we adapted the local search algorithms developed
in [91] for a VRP problem class. The intensifiers are applied to improve a found solution.

Distributed algorithm definition

The behavior of a single CBM-pop agent is described in Algorithm 2. Before starting the
algorithm, the agents exchange their specific problem parameters – task durations 𝜎𝑖𝑟, setup
times 𝑡𝑖𝑗𝑟, setup costs 𝑐𝑖𝑗𝑟, energy demands 𝑞𝑖𝑟, and energy capacities 𝑄𝑟. Precedence and
synchronization constraints and time windows are known to all robots since the beginning.
During the runtime of the algorithm, the best solutions found and the weight matrices
are exchanged among the agents, as noted in Algorithm 2. The procedure itself consists
of Diversification-Intensification cycles (D-I cycles), where a diversification operator is
first applied to the solution to guide the search out of the local optimum. After this
perturbation, a series of local search procedures are applied to the solution to arrive at a
new (local) optimum. The process is repeated until a termination criterion is reached.

A major innovation compared to the original CBM is that an agent stores a population
of solutions, rather than just one solution. The idea is to further diversify the search and
allow broader exploration. The role of the population is twofold. First, after each 𝑛_𝑐𝑦𝑐𝑙𝑒𝑠

cycles without improvement over the best solution found, a new starting solution is
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Table 5.1: Genetic operators used in our proposed solution.

Diversifiers [96]

Crossover

Best-Cost Route Crossover (BCRC) For two parent chromosomes, select a route to be removed for
each. The removed nodes are inserted into the other parent
solution at the best insertion cost.

Mutation

intra depot reversal Two cutpoints in the chromosome associated with the robot ini-
tial state (depot) are selected and the genetic material between
these two cutpoints is reversed.

intra depot swapping This simple mutation operator selects two random routes from
the same initial state (depot) and exchanges a randomly selected
action from one route to another.

inter depot swapping Mutation of swapping nodes in the routes of different initial
states (depots). Candidates for this mutation are nodes that
are in similar proximity to more than one initial state.

single action rerouting Re-routing involves randomly selecting one action, and removing
it from the existing route. The action is then inserted at the
best feasible insertion point within the entire chromosome.

Intensifiers [91]

two swap Swapping of borderline actions from two initial states (depots)
to improve solution fitness.

one move Removal of a node from the solution and insertion at the point
that maximizes solution fitness.

randomly selected from the population. Second, solutions from the population participate
as a second parent in the crossover operator, thereby introducing novelty from the genetic
pool.

As the algorithm shows, the decisions of each agent depend on the current state of
the algorithm. The states can be defined arbitrarily for each application scenario. In our
application, we consider the following set of states Γ = {𝛾1, . . . , 𝛾5}, where each state
stands for:

• 𝛾1 – crossover operator was applied
• 𝛾2 – mutation operator was applied
• 𝛾3 – intensification operator one move was applied
• 𝛾4 – intensification operator two swap was applied
• 𝛾5 – all intensification operators were applied without changing the solution.
Given the set of states Γ and the set of operators 𝑂, the weight matrix 𝑊 is defined

on the domain Γ× 𝑂. The weight 𝑤𝑖,𝑗 ∈ 𝑊 corresponds to the probability of choosing
the operator 𝑜𝑗 ∈ 𝑂 in the state 𝛾𝑖 ∈ Γ. The effective choice of an operator follows the
principle of the roulette wheel. Thus, the probability 𝑃 (𝑜𝑗|𝛾𝑖) of applying the operator 𝑜𝑗
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Algorithm 2: Population-based CBM algorithm (CBM-pop).
input : 𝑝𝑜𝑝_𝑠𝑖𝑧𝑒 – number of solutions in population
input : 𝜂 – reinforcement learning factors
input : 𝜌 – mimetism rate
input : 𝑛_𝑐𝑦𝑐𝑙𝑒𝑠 – number of cycles before changing exploration origin
input : 𝜖 – minimal solution improvement
output : 𝑐𝑏𝑒𝑠𝑡 𝑐𝑜𝑎𝑙𝑖𝑡𝑖𝑜𝑛 – best found solution
/* initialization */
𝑃 ← generate_population(𝑝𝑜𝑝_𝑠𝑖𝑧𝑒)
evaluate_population(𝑃 )
𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← select_solution(𝑃 )
𝑊 ← init_weight_matrix()
𝐻 ← init_experience_memory()
while stopping criterion is not reached do

/* calculate current state */
𝛾 ← perceive_state(𝐻)
if no change in best solution > 𝜖 for 𝑛_𝑐𝑦𝑐𝑙𝑒𝑠 then

evaluate_population(𝑃 )
𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← select_solution(𝑃 )

end
𝑜 ← choose_operator(𝑊 , 𝛾)
𝑐𝑛𝑒𝑤 ← apply_op(𝑜, 𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑡, 𝑃 , [𝑐𝑏𝑒𝑠𝑡 𝑐𝑜𝑎𝑙𝑖𝑡𝑖𝑜𝑛])
/* update experience history */
𝑔𝑎𝑖𝑛← 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑡)− 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑐𝑛𝑒𝑤)
update_experience(𝐻, 𝛾, 𝑜, 𝑔𝑎𝑖𝑛)
/* update solutions */
if 𝑐𝑏𝑒𝑠𝑡 𝑐𝑜𝑎𝑙𝑖𝑡𝑖𝑜𝑛 improved then

broadcast_solution(𝑐𝑛𝑒𝑤)
end
/* learning mechanisms */
if end of D-I cycle then

if 𝑐𝑏𝑒𝑠𝑡 𝑐𝑜𝑎𝑙𝑖𝑡𝑖𝑜𝑛 improved in the cycle then
𝑊 ← individual_learning(𝑊 , 𝐻, 𝜂)

else if 𝑐𝑏𝑒𝑠𝑡 𝑎𝑔𝑒𝑛𝑡 improved in the cycle then
𝑊 ← individual_learning(𝑊 , 𝐻, 𝜂)
broadcast_weight_matrix(𝑊 )

end
end
if weight matrix received from a neighbor then

𝑊 ← mimetism_learning(𝑊 , 𝑊𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑, 𝜌)
end

end

in the state 𝛾𝑖 is calculated by the following formula.

𝑃 (𝑜𝑗|𝛾𝑖) = 𝑤𝑖,𝑗∑︀𝑚
𝑘=1 𝑤𝑖,𝑘

, (5.6)
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where 𝑚 denotes the number of operators.
After each operation, the agent updates its experience history 𝐻 by adding to it an

element (𝛾, 𝑜, 𝑔𝑎𝑖𝑛) that refers to the outcome of that operation. At the end of each
diversification-intensification episode, learning is applied based on the goodness of the
solution obtained. If the new solution is better than the best solution the agent has found
so far, an individual learning procedure updates the agent’s experience. Given the episode
experience history 𝐻, the agent updates its weight matrix 𝑊 according to the rule

𝑤𝑖,𝑗 = 𝑤𝑖,𝑗 + 𝜂 (5.7)

for 𝛾𝑖, 𝑜𝑗 related to the elements of experience. In the algorithm, we distinguish two cases,
(i) when the agent improves its best found solution, and (ii) when the agent improves the
best coalitional solution. For this, we define two learning factors 𝜂1 and 𝜂2, giving more
weight to the latter.

Besides individual learning, agents also participate in mimetism learning, which occurs
whenever an agent discovers the new best coalition solution. At that moment, the agent
shares its weight matrix 𝑊 with the rest of the coalition. Whenever agent 𝑎 receives a
weight matrix from another agent 𝑏, mimetism learning is applied as

𝑊𝑎 = (1− 𝜌)𝑊𝑎 + 𝜌𝑊𝑏, (5.8)

with the mimetism rate 𝜌 and 𝑊𝑎 and 𝑊𝑏 the weight matrices of agents 𝑎 and 𝑏, respectively.
The combination of individual and mimetic learning introduces adaptability into the

method by allowing agents to explore the solution space more effectively. The operator
selection decision is guided by prior knowledge and thus a faster descent into optimal
domains is more likely. The reinforcement procedure allows local behavior to be improved.
However, mimetic behavior allows to exploit the search strategies developed by the other
agents.

5.2 Problems with Complex Dependencies

Building upon the CBM-pop presented in Section 5.1, we now extend the method to
account for problems with complex dependencies (CD class). Note that these problems
surge when tasks can be multiply decomposable, so an extra step of task decomposition
selection is needed to find its solution. The proposed approach involves a multi-stage
optimization procedure. First, a heuristic task decomposition selection generates possible
task decompositions, and the several best ones are subjected to a metaheuristic allocation
and scheduling procedure that outputs the final schedule. The allocation and scheduling
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procedure is the one defined in Section 5.1.

5.2.1 Heuristic task decomposition selection procedure

The problem of task decomposition selection involves finding a subset of actions and tasks
to be performed that are most promising to provide near-optimal schedules. In this step
of the procedure, a heuristic tree search algorithm is used to quickly generate alternative
subsets of tasks that satisfy the mission objective.

Based on the hierarchical task structure defined earlier (Section 3.1), we define a task
alternative 𝑎𝑙𝑡(𝑡), 𝑎𝑙𝑡(𝑡) ⊆ 𝐴, 𝑡 ∈ 𝑇 as an unordered set of all actions whose execution
leads to the completion of task 𝑡. The sets 𝐴 and 𝑇 represent sets of simple tasks (cations)
and composite tasks (tasks), respectively. The concept of task alternatives comes from
the GPGP framework as defined in Section 3.2. The complexity of the graph search
procedure depends on the structure of the mission tree and the relationships between
the nodes. Adding more constraints to the mission simplifies the procedure by removing
several options for executing tasks. However, the combinatorial explosion can lead to a
factorial size complexity of the task alternative generation procedure for missions without
any node relationships.

The process of generating task alternatives starts at the action nodes of the mission
tree and builds up recursively, eventually ending at the root of the tree, as outlined in
Algorithm 3. To tame a potential combinatorial explosion, the procedure uses a method of
focusing the solution search by pruning the worst partial results at each step of the process
to make the problem tractable. During this procedure, the robots use estimated values for
quality (𝑘𝑎(𝑖)), duration (𝑑𝑎(𝑖)), and cost (𝑐𝑎(𝑖)) of actions, which are determined as the
average of these values for all robots that can perform the action, as follows:

(𝑘𝑎, 𝑑𝑎, 𝑐𝑎) =
∑︁
𝑖∈𝜌𝑎

(𝑘𝑎(𝑖), 𝑑𝑎(𝑖), 𝑐𝑎(𝑖))
|𝜌𝑎|

, 𝑎 ∈ 𝐴. (5.9)

𝜌𝑎 defines the set of robots that can perform action 𝑎, 𝜌𝑎 = {𝑖, 𝑖 ∈ 𝑅, 𝑎 ∈ 𝐴𝑖}, ∀𝑎 ∈ 𝐴.
|𝜌𝑎| stands for the cardinality of the set 𝜌𝑎. 𝑅 is the set of all robots.

Finally, the score for each task alternative 𝑎𝑙𝑡(𝑡) is computed based on the expected
values of actions (𝑘𝑎, 𝑑𝑎, 𝑐𝑎), and given the quality accumulation function 𝑄 and the defined
tree structure. If we specify the alternative outcome values as (𝑘𝑎𝑙𝑡, 𝑑𝑎𝑙𝑡, 𝑐𝑎𝑙𝑡), our simplified
objective function (score) for an alternative is defined as

𝑠𝑐(𝑘𝑎𝑙𝑡, 𝑑𝑎𝑙𝑡, 𝑐𝑎𝑙𝑡) = 𝛼𝑘𝑎𝑙𝑡 − 𝛽𝑑𝑎𝑙𝑡 − 𝛾𝑐𝑎𝑙𝑡, 𝛼, 𝛽, 𝛾 ∈ R, (5.10)

where 𝛼 +𝛽 +𝛾 = 1, and they represent the importance weighting of each specific criterion.
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Algorithm 3: Heuristic alternative generation procedure.
parameter : 𝜇 – max alternative number for a single task
input : 𝑡𝑟𝑒𝑒 – hierarchical task tree specifying the mission
input : 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 – evaluation criteria
output : 𝑡𝑎𝑠𝑘_𝑎𝑙𝑡 – alternative decompositions of task 𝑡𝑎𝑠𝑘
Function generate_alternatives(𝑡𝑎𝑠𝑘):

/* recursion stopping criteria */
if 𝑡𝑎𝑠𝑘 ∈ 𝐴 then

return [𝑡𝑎𝑠𝑘];
end
/* recursively generate task alternatives */
𝑎𝑙𝑡← [];
for 𝑠𝑢𝑏𝑡𝑎𝑠𝑘 ∈ 𝑡𝑟𝑒𝑒.𝑠𝑢𝑏𝑡𝑎𝑠𝑘𝑠(𝑡𝑎𝑠𝑘) do

𝑎𝑙𝑡← 𝑎𝑙𝑡 ∪ generate_alternatives(𝑠𝑢𝑏𝑡𝑎𝑠𝑘);
end
/* combine subtask alternatives based on function 𝑄 */
switch 𝑡𝑟𝑒𝑒.𝑄(𝑡𝑎𝑠𝑘) do

case 𝐴𝑁𝐷 do
𝑡𝑎𝑠𝑘_𝑎𝑙𝑡← cartesian_product(𝑎𝑙𝑡)];

end
case 𝑋𝑂𝑅 do

𝑡𝑎𝑠𝑘_𝑎𝑙𝑡← [[𝑡𝑎𝑠𝑘 ∪ 𝑎𝑙𝑡*] for 𝑎𝑙𝑡* ∈ 𝑎𝑙𝑡];
end

end
/* pruning procedure */
if |𝑡𝑎𝑠𝑘_𝑎𝑙𝑡| > 𝜇 then

𝑠𝑐← evaluate_alternative(𝑡𝑎𝑠𝑘_𝑎𝑙𝑡, 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎);
𝑡𝑜𝑝← index_of_max_n_elements(𝑠𝑐, 𝜇);
𝑡𝑎𝑠𝑘_𝑎𝑙𝑡← [𝑡𝑎𝑠𝑘_𝑎𝑙𝑡[𝑖], 𝑖 ∈ 𝑡𝑜𝑝];

end
return [𝑡𝑎𝑠𝑘_𝑎𝑙𝑡]

Based on these factors, the planning strategy adjusts and selects the appropriate tasks for
execution. Using this evaluation function, we are able to define the importance of each
problem parameter in the selection of task decomposition. As a result of this process,
the robots are given a set of alternative ways to achieve the mission goal (root task).
These alternatives are a direct input for the next phase of the optimization, allocation and
scheduling process.

The whole process defined in this chapter is shown in Figure 5.4 in the context of the
defined coordination framework (Section 3.2.3). After defining the framework, problem
modeling and solution approach, the discussion on application scenarios and performance
results of the proposed approach follows in the next chapter.
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Figure 5.4: Mission planning solution in the context of the coordination framework process.
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CHAPTER 6

Results and Discussion

In this chapter, we present the results of applying the proposed algorithms and coordination
framework to a wide range of heterogeneous multi-robot systems. The results are presented
chronologically with respect to the date of the research publication and we can observe
the evolution of the methodology throughout.

6.1 Aerial-ground Robotic System for Autonomous
Delivery Tasks

In developing the multi-robot mission coordination framework, we start from the custom
implementation of the GPGP and its associated modules defined in Section 3.2.1. In
[97], we propose a high-level task planning framework based on TÆMS decomposition to
extend the capabilities of ground and aerial robots by making them work together. As
such, the framework can be used to commission other types of robots as long as they have
well-defined capabilities structured into actions that can be integrated into the framework.
There are numerous use cases for such a framework, including but not limited to: search
and rescue operations, recovery missions, robotic warehouses, etc.

In the previous work which is not described in this thesis [98], we perform a simulation-
based verification of the proposed framework in a simple task involving a single Unmanned
Aerial Vehicle (UAV) and a single Unmanned Ground Vehicle (UGV). In this work, we go a
step further and experimentally verify an extended version of the framework in a mock-up
scenario with two Pioneer UGVs and one UAV equipped with dexterous manipulator arms.
The goal of this robotic team is to empty a stack of parcels while negotiating obstacles,
using optimization criteria such as speed and energy conservation. The proposed improved
task planning algorithm includes applications where a single UAV utilizes both UGVs at
different times and locations on the map.
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6.1.1 Mission specification

The envisioned application scenario involves an autonomous UAV with a pair of manipulator
arms - Unmanned Aerial System (UAS) and UGVs cooperatively working together to
transport a parcel between two locations in the environment. Inputs to the described task
allocation procedure, which is executed separately on each robot, are the 3D occupancy
map of the environment, the source and destination locations of the parcel, and the local
view of the TÆMS tree describing the parcel transportation scenario (mission). The global
TÆMS tree for the scenario contains 33 action nodes combined with 18 task nodes for a
total of 51 nodes. We describe only the main task groups here, as the TÆMS tree is too
large to be conveniently included in the text. We use the following term – task id (robot
types that have a task in their TÆMS structure). The problems modeled in this example
fall under the class XD[ST-SR-TA] in the mission planning problem classification.

The root task Transport Parcel Mission (UAS, UGV) consists of two subtasks, Pick up
parcel (UAS, UGV) and Transport to destination (UAS, UGV), which are associated with
the 𝐴𝑁𝐷 operator and the 𝑝𝑟𝑒𝑐 relation. The second task is further decomposed into
three subtasks associated with the 𝑋𝑂𝑅 operator: UAS carry alone (UAS), Pass to UGV1
(UAS,UGV), and Pass to UGV2 (UAS,UGV). Here, UGV1 denotes the vehicle closest
to the parcel source position, and UGV2 denotes the vehicle closest to the destination
position. The second task is further decomposed to consider the possibility of handing over
the parcel to another vehicle nearby with 𝑈𝐴𝑆. This is the case when UGV1 encounters
an obstacle while traveling to the destination. In this case, it might be possible to hand
over the parcel to another vehicle that is closer to the destination.

The TÆMS tree is suitable for systems with any number of 𝑈𝐴𝑆 and 𝑈𝐺𝑉 robots. 33
action nodes correspond to a total of 8 (2) basic 𝑈𝐴𝑆 (𝑈𝐺𝑉 ) behaviors, such as "Take
off", "Land", "Grab", "Go to position". All behaviors are a kind of motion primitive and
their cost and duration are estimated online based on the positions of the parcel and other
robots in the environment. The cost is estimated as the product of the path length (we use
sampling-based path planners) and the energy consumed per unit of path, which depends
on the type of action and the robot involved. The quality of all actions is the same and is
set to 1.

6.1.2 Testbed description

To evaluate the developed framework for autonomous task execution, we use three robots:
two mobile robots (Pioneer P3DX) and a single 3D Robotics quadrotor equipped with a
dual-arm manipulator. The main advantage of using a Pioneer robot is its autonomy time
(about 90 minutes) and the ability to carry a parcel and the quadrotor. However, as a
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mobile robot, it cannot negotiate many ground obstacles. On the other hand, the flight
time of the quadrotor is only up to 20 minutes, but it can fly over ground obstacles and
carry a parcel using its manipulators. Using the above complementary features of both
types of robots, we form a heterogeneous robotic system that can perform autonomous
delivery tasks with longer autonomy time and higher energy efficiency than a single robot
unit performing the same mission.

The Pioneer P3DX robot is equipped only with its basic sensor technology: encoders
and ultrasound sensors (sonars). Since we are using an a priori known static map, sonars
are not used. At the software level, the Pioneer computer runs Ubuntu 14.04 with ROS
Indigo. Onboard Pioneer, several ROS packages run concurrently to support mission
execution - p2os_purdue driver (communication with low-level controller), Move Base
package (navigation and position control), action server (interface between navigation
stack and high-level planner), and an instance of the developed high-level mission planner
(GPGP) described in Section 3.2.1.

The quadrotor carries two control boards - an ArduPilotMega board (APM) for attitude
control and an Odroid U3 board with installed Ubuntu and ROS for mission planning,
navigation and position control. Another instance of the high-level mission planner runs
on an Odroid, along with an action server, a navigation and control stack – Open Motion
Planning Library (OMPL) extended with a custom trajectory planner, PID position
controller, and a roscopter driver for communication with the APM board.

Another important testbed component is the OptiTrack Motion Capture System. Our
robotic units use data with their 6-DOF pose information streamed from the Optitrack
server. However, during mission planning and execution, each robot uses only its own
pose information and neglects the pose data of the other robots in a distributed manner.
At the software level, the backbone of our system is ROS, which we use as middleware to
exchange data between robots. Since all robots are connected to the same WiFi network
with limited bandwidth, we use ROS Rocon Multimaster to limit the data exchange over
the network, which in turn allows a higher frequency of Optitrack data (at least 20𝐻𝑧).

We run the experiments in the same mock-up arena, first in simulation and then in
the real environment, with only minor changes in the software packages. The results are
presented in the following sections.

6.1.3 Simulation results

The system described in this section was first thoroughly tested in the Gazebo simulation
environment using different criteria specification setups, all of which yielded different task
completion scenarios. The simulation testbed used for these tests is shown in Figure 6.1.
There are many ways the cooperative robotic system can achieve task completion at the
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root level, some of which require significant coordination between different robots. For all
test scenarios, we used the same values for the flight (driving) cost per unit length, namely
𝐸𝑈𝐴𝑉 = 10 (𝐸𝑈𝐺𝑉 = 1). In addition, we introduced a different cost rate for the action of
the copter carrying the parcel, denoted 𝐸 ′

𝑈𝐴𝑉 , which is 100. To generate different mission
solutions, we varied the relative importance of the quality, duration, and cost components
for each test example.

Figure 6.1: Scenario 2: Designed solution where a UAV and a single UGV are used to deliver a
parcel. The UAV first grabs the parcel (A1), then flies just above the UGV before dropping the
parcel on top of the UGV (A2). The UGV moves (G1) to finally deliver the parcel (G2).

In the first scenario, we give the greatest weight to the duration component of the
schedule score (𝛼, 𝛽, 𝛾) = (0, 100, 0)[%]. In other words, we aim for a faster solution,
regardless of the resulting cost. The solution to the given coordination problem is also the
most obvious one. It consists of the copter picking up the parcel and bringing it to the
target position. Due to simplicity and lack of cooperation, simulation results are omitted
for this outcome.

In the second scenario, we define a criterion that favors schedules with the lowest cost,
where the relative importance of the quality, duration, and cost components is given as
(𝛼, 𝛽, 𝛾) = (0, 0, 100)[%]. The second result, shown in Figure 6.1, is that the copter picks
up a parcel and loads it onto a Pioneer robot closest to the initial position of the parcel.
After the copter releases the load and takes off, Pioneer completes the mission by driving
to the target position.

In the third scenario, we intentionally block the passage for the ground vehicle by
placing an obstacle in the environment so that the UAS must cooperate with UGVs to
achieve the most cost-effective solution. The ratios of quality, duration, and cost are the
same as in the previous scenario. The third solution, shown in Figure 6.2, starts similarly
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Figure 6.2: Scenario 3: Designed solution where a UAV and two UGVs are used to deliver a
parcel. In this scenario, UAV first grasps the parcel (A1), then flies just above UGV1, and finally
lands on UGV1 together with the parcel (A2). Next, UGV1 carries UAV and parcel (G1) in
front of the next obstacle on the way to the transfer point, where the UAV takes off with parcel
(A3). Then, UAV flies over the obstacle (A4) towards UGV2 and deposits the parcel onboard
UGV2 (A5). Finally, UGV2 travels with the parcel (H1) and delivers it (H2).

with the copter picking up a parcel and carrying it to the Pioneer robot closest to the
initial position of the parcel. After hovering over the Pioneer robot, the copter with the
parcel lands on the mobile robot. It then travels at a standstill together with the Pioneer
robot until they arrive at the front of the next obstacle. At the same time, the second
Pioneer robot starts moving towards the obstacle to meet the first pair of robots for the
parcel transfer. When all vehicles meet at the obstacle, the copter transports the parcel
from the first to the second Pioneer, which completes the mission by driving the parcel to
its target position.

6.1.4 Experimental results

Here we show the results of the selected second scenario, performed in the real-world
experiment. Just as in the simulation, the plan is successfully laid out, and its execution is
shown in Figure 6.3. We have successfully performed several experiments without mission
failures. The motion of the quadrotor, which is crucial for the successful execution of the
mission, is shown in Figure 6.4. The video of all performed experiments is available at
[99].

In this work, we proposed and tested a decentralized task planning and coordination
framework for systems composed of multiple robots with different capabilities. The
approach assumes that the map of the area and hierarchical decomposition of the system
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Figure 6.3: Experimental scenario: Designed solution where UAV and a single UGV are
employed to deliver a parcel. UAV takes off (A1) and approaches the parcel. UAV grabs the
parcel (A2), then flies just above UGV before releasing the parcel on the top of UGV (A3). The
mobile robot finishes the mission by traveling (G1) and delivering the parcel (G2).
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Figure 6.4: Quadrotor trajectories in the real-world experiment. Time segments A1-A3
correspond to the mission parts described in Figure 6.3.
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mission are known a priori. The outputs of the sampling-based path planners are used
for cost estimation in the planning process and as input for determining feasible obstacle-
free trajectories. The approach was tested in a parcel transport scenario, first with the
high-fidelity simulation environment Gazebo and then experimentally with a 3D Robotics
quadcopter and two Pioneer 3DX mobile robots. The results show how the solutions
of the planning procedure depend on the set criteria and on the environment itself. In
subsequent work, we continue to work on a similar application scenario, with the goal
to further increase energy savings based on more accurate task estimation that includes
robot self-localization and mapping.

6.2 Decentralized Control of a UAV-UGV Motion-
Symbiotic Team

The previous research focuses on manipulation missions using a dual-arm manipulator
aboard a UAV to create an Unmanned Aerial System (UAS), formerly referred to as an
MMUAV, to cooperate with UGVs in joint missions. However, most commercially available
UAVs cannot be used for complex aerial manipulation tasks that normally require lifting
heavy objects and long execution times. To overcome these limitations, in [100], instead of
building UAVs with better capabilities, we propose the introduction of UGVs that support
and accompany the UAS in complex aerial manipulation scenarios. In such a system of
robots, the UGV provides the UAS with a safe landing site and transports it over long
distances, saving valuable UAS battery life.

We propose a novel kind of aerial-ground system that focuses on symbiotic behavior
that expands the movement capabilities of each vehicle. To this end, we have designed
and constructed a lightweight UGV (L-UGV) suitable to work closely with a UAS, and
specifically designed to be transported by the UAS. Thus, the two vehicles complement
each other to form a symbiotic aerial-ground robotic system. The robots used are pictured
in Figure 6.5.

To test the proposed system, we imagine a scenario where a team of robots is deployed
to retrieve a parcel. The parcel is placed in various cluttered environments. The robots
are instructed to negotiate an optimal solution (either in terms of energy consumption
or mission duration) that involves a series of actions that allow the system to map the
environment and retrieve the parcel.
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Figure 6.5: UAS and L-UGV used in the parcel delivery task.

6.2.1 Mission specification

The envisioned application scenario involves autonomous UASs and L-UGVs working
cooperatively to transport a parcel between two locations in the environment. The inputs
to the described planning procedure are a 3D occupancy map of the environment, the
origin and destination locations of the parcel, and a local view of the mission tree describing
the parcel transport scenario (mission).

The mission structure of the described scenario can be quite complex, depending on
the number of obstacles in the environment. At this point, only the most important groups
of tasks are outlined, since the mission tree is too extensive to be conveniently included
in the thesis. As Figure 6.6 shows, at the root of the mission tree is the task Transport
parcel, which is further decomposed into a set of subtasks Cross the obstacle, followed by
Pick up parcel and another set of tasks Cross the obstacle, and finally Deliver parcel. The
graph shown is for the general case of an environment with N obstacles on the way from
the origin point to the location of the parcel. All subtasks are precedence-constrained by
the node to their left thanks to the quality accumulation function 𝑠𝑒𝑞_𝑠𝑢𝑚_𝑎𝑙𝑙 (𝐴𝑁𝐷

operator with precedence constraints enforcing sequential execution of all subtasks) of the
task Transport parcel.

Each Cross the obstacle task is divided into several options for crossing the obstacle,
and can only be accomplished by performing one of them (the defined QAF is 𝑞_𝑚𝑎𝑥,
corresponding to the logical operator 𝑋𝑂𝑅). The decision is whether to tackle the obstacle
together or have the UAS cross it alone. If the UAS were to cross one of the obstacles
alone, all subsequent UAS continue with L-UGV tasks in the same mission would not be
allowed to be executed until the UAS returns to the same obstacle where the L-UGV is
waiting. To enable such behavior, we extended the mission representation by introducing
another relation between tasks, the excludes relation. This relation simply lists tasks that
cannot appear together in the same schedule, and such instances are discarded before
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A = Cross the obstacle

B = Pick up parcel

C = Deliver parcel

D = UAS go alone

E = UAS go with L-UGV

F = UAS continue alone

G = UAS continue with L-UGV

q_max
q_max q_max q_max

Transport parcel
UAS, L-UGV

q_seq_sum_all

D(1)
UAS

E(1)
UAS, L-UGV

A(1)
UAS, L-UGV

A(N)
UAS, L-UGV

B
UAS, L-UGV

C
UAS, L-UGV

... ...

F(N)
UAS

G(N)
UAS, L-UGV

D(N+1)
UAS

E(N+1)
UAS, L-UGV

F(2*N)
UAS

E(2*N)
UAS, L-UGV

G(2*N)
UAS, L-UGV

A(2*N)
UAS, L-UGV

A(N+1)
UAS, L-UGV

Figure 6.6: Mission decomposition of the parcel delivery task.

scheduling. For instance, the graph shown in Figure 6.6 contains the following excludes
relations: 𝑒𝑥𝑐𝑙𝑢𝑑𝑒𝑠(𝐷(1), 𝐺(𝑖)), ∀𝑖 ∈ (2, 2 *𝑁)), where 𝑁 denotes the number of obstacles.
Similarly, excludes relations are defined between other tasks that do not semantically
belong to the same execution sequence, 𝑒𝑥𝑐𝑙𝑢𝑑𝑒𝑠(𝐷(𝑖), 𝐺(𝑗)), ∀𝑗 ∈ (𝑖 + 1, 2𝑁 − 2𝑖 + 2)).

The proposed model has been proven in simulations to generate schedules with a large
energy saving. All possible solutions produced from the mission specification are shown
in Figure 6.7, where the estimated energy cost of each solution is illustrated with a bar
next to it and the exact value in 𝑀𝐽 . Figure 6.7 shows a symbolic representation of a
mock-up arena with two obstacles between the starting position (far left) and the parcel
position (far right). The path segment lengths are 10𝑚, 10𝑚, and 1.5𝑚, starting from the
left. The average velocities of the robots are set to 0.13𝑚/𝑠, and the energy expenditure is
calculated using the power consumption for each robot-action pair as given in Table 6.3.

The first figure represents a baseline solution where the UAS performs the entire
mission alone and its energy expenditure is estimated to be 0.194𝑀𝐽 . As can be seen
in Figure 6.7, the solution where the L-UGV is deployed on the first two segments in
both directions but the UAS flies over the rightmost obstacle alone outperforms any other
schedule (case (6)). Since the third segment is much shorter than the previous two, it is
not worthwhile to cross the last obstacle with the L-UGV. An interesting alternative is
the one in case (3), where the UAS uses the L-UGV to navigate the first two segments
but returns to the starting point alone, which could be beneficial if the L-UGV needs to
stay close to the target for further exploration.

The proposed system is experimentally tested on a real system consisting of a UAS and
a specially designed lightweight UGV. The experimental setup and the obtained results
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(4)

(3)(2)

(7)

(5)

(6)

(1) 0.194

0.157 0.128

0.134 0.116

0.057 0.065

Figure 6.7: Different solutions obtained in the simulation for a parcel delivery mission. The
red line represents paths UAS and UGV traverse together, while dashed blue lines denote paths
taken by UAS alone.

are presented in the following sections.

6.2.2 Experimental setup

In the experiments, we recreated an arena with narrow corridors and obstacles along the
way. As mentioned earlier, here the mapping and localization of the environment are
performed autonomously, as opposed to having a static map and the use of an external
localization system.

For mapping and localization, we use visual stereo odometry based on feature selection
and tracking (SOFT) [101]. The algorithm uses the VI-sensor, which provides images from
two cameras as well as IMU measurements. In addition, the algorithm provides a 3D map
of the environment as OctoMap, in which the path and trajectory for the UAS are planned.
However, in order to successfully guide the ground robots through the environment, the
3D map is projected onto the ground.

To achieve easier interaction with the mission planner, a set of behaviors (actions) for
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Table 6.1: List of robot behaviors in symbiotic parcel delivery mission.

Behavior Description

Takeoff The UAS goes to the desired height above its
current position

Land The UAS lands below its current position

Move to desired position

This behavior is common for both robots
(UAS and L-UGV). The robot moves to the
requested position and holds that position
until a new request is received.

Hold position
This behavior is common for all robots. The
robot holds position until a request for a dif-
ferent action is received.

Grab L-UGV
Enables visual tracking of the L-UGV, de-
scends and grabs the L-UGV upon successful
detection

Release L-UGV
Executes preplanned dual manipulator mo-
tion to release the L-UGV and set the manip-
ulator in the soft home position

Grab parcel Enables visual tracking of the parcel, descends
and grabs the parcel upon successful detection

Release parcel
Executes preplanned dual manipulator mo-
tion to release the parcel and set the manipu-
lator in soft home position

Land on the L-UGV with
the parcel

Enables visual tracking of the L-UGV while
parcel is acquired, descends to the L-UGV,
releases the parcel and further descends in
order to grab the L-UGV

the UAS was developed as described in Table 6.1. The described behaviors had to be
tailored to our experimental setup. The dimensions of both the parcel and the L-UGV
had to be considered for the pickup and delivery behaviors. Landing on the L-UGV while
a parcel is being transported is a two-stage behavior. In the first stage, the UAS descends
over the L-UGV and prepares to release the parcel. Due to ground effect and other possible
interference, the UAS must wait for the right moment to drop the parcel. When the
conditions for approaching the drop point are met, the UAS releases the parcel, rapidly
descends further and grabs the L-UGV. The action is completed with the landing.
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6.2.3 Experimental results

During the experimental verification, we performed several different missions to analyze
the efficiency of the planning method. To perform the missions, we used an L-UGV
- UAS team described in the previous sections. As a baseline mission for the energy
consumption analysis, we conducted the first parcel delivery mission using only the UAS.
At the beginning of each mission, we conduct a reconnaissance of an unknown area to
map the environment and locate areas of interest. The goal of all missions is to reach the
target identified in the reconnaissance part and perform the required actions, e.g., inspect
the area, pick up the parcel, etc.

In the first environment, we performed three missions of the parcel delivery task,
differing only in the robots used and the task decomposition. These experiments were
designed to illustrate the energy saving capabilities of our system. Next, we experimented
with different environmental configurations to demonstrate the robustness of the proposed
method in variable environments.

We calculate the consumed energy by integrating the power required for each action
over the time taken. Each action requires different amounts of energy due to different
combinations of total mass, as shown in Table 6.2.

All the tasks that the system must perform are composed of the four basic actions:
Takeoff (A1), Land (A2), Fly (A3), and Drive (A4). Based on the characteristics of the
drone (i.e., total battery capacity 𝑄𝑝,𝑢𝑎𝑣 = 8000𝑚𝐴ℎ, voltage 𝑉𝑎𝑣𝑔,𝑢𝑎𝑣 = 15.8𝑉 , and flight
time 𝑡𝑓 ≈ 10𝑚𝑖𝑛), along with the measured values of the L-UGV, we compute the power
requirements for each action-class pair given in Table 6.3.

Energy conservation capability

The first environment configuration is shown in Figure 6.8. The task of the robotic system
was to navigate through the maze, pick up the parcel at the end of the maze, and deliver
it to the start position. The optimization criterion was to minimize the total energy

Table 6.2: System classification with regard to mass.

C1 C2 C3 C4

UAS 2.7𝑘𝑔 X X X X

L-UGV 0.4𝑘𝑔 X X

parcel 0.1𝑘𝑔 X X

2.7𝑘𝑔 3.1𝑘𝑔 2.8𝑘𝑔 3.2𝑘𝑔
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consumption. The first step for all missions was the exploration process during which the
map of the environment was constructed.

Figure 6.8: Experimental result for the parcel delivery task where the L-UGV is deployed in
one direction only (Mission 2). L-UGV drives the UAS to the first obstacle, UAS takes off with
the L-UGV, crosses the obstacle and then lands. L-UGV continues with the UAS to the next
obstacle, after which the UAS takes off without the L-UGV and flies on alone to pick up and
deliver the parcel.

Mission 1: The baseline for the first three experiments is a mission with only UAS. In
this mission, we get the base energy consumption that we want to reduce in other missions
using auxiliary robots. The UAS executes a trajectory to position itself above the parcel,
which it then picks up and executes a return trajectory.

Mission 2: In this mission, we deploy the L-UGV. At the beginning of the mission, the
UAS rests on top of the L-UGV and holds on to it. The UAS releases the L-UGV before
the second obstacle and continues the mission alone, as happened in Mission 1. As shown
in Table 6.5, the energy savings from using L-UGV in one direction only is significant and

Table 6.3: Power needed to execute each action with regard to overall mass.

C1 C2 C3 C4

A1 579W 711W 616W 731W

A2 566W 696W 602W 729W

A3 570W 701W 606W 744W

A4 N/A N/A 3.3W 3.3W
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Mission 4: L-UGV travels with
UAS to obstacle, UAS takes off
with L-UGV, flies over obstacle and
lands behind it. L-UGV continues
with UAS to target position, where
it detaches from L-UGV, takes off,
and performs inspection task. Then
the UAS lands on the L-UGV and
they continue in the same manner
to return to the start position.

Mission 5: L-UGV drives UAS to
obstacle, at which point UAS de-
taches from L-UGV, takes off, and
continues autonomously to target
position. UAS performs inspection
task, flies back to L-UGV and lands
on it. L-UGV returns with the UAS
to the start position.

Mission 6: L-UGV moves UAS to
position near the parcel. UAS takes
off, positions itself over the parcel,
grabs it, and returns to L-UGV.
UAS lands on L-UGV while holding
onto the parcel, and L-UGV drives
to start position with parcel and
UAS.

Table 6.4: Experimental results for parcel delivery and inspection tasks on variable environments.
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is 36.7%.
Mission 3: To further exploit the energy saving capabilities of the system, we enabled

the use of L-UGV during the return to the start position with the parcel. To do this, we
had to provide for an action of landing on the L-UGV while carrying the parcel, which
proved to be non-trivial. The resulting schedule is similar to the previous one, but differs
in the utilization of the L-UGV in both directions, as shown in Figure 6.7, case (6). With
this schedule, we were able to improve the energy savings by an additional 44.7% of base
energy, for a total savings of 81.4%.

Table 6.5: Energy expended in different experimental setups

Energy (J) Energy saving (%)

Mission 1 542.150 baseline

Mission 2 343.118 36.7

Mission 3 101.098 81.4

6.2.4 Robustness to variable environment

To demonstrate effectiveness of our method in variable environments, we devised three
additional environment setups, as shown in Figure 6.4. Missions 4 and 5 are not focused
on parcel delivery, but rather on inspection (exploration) of the area of interest. Finally, in
Mission 6, we completed the same objective as in Mission 3. The execution of the proposed
scenario in selected environments is shown in video footage included in the playlist at
[102].

From a high-level mission planning perspective, we have developed and verified a
decentralized hierarchical planning method able to construct and coordinate, in real-time,
feasible team plans for any given map of the environment. Planning is modular and able
to cope with teams consisting of any number of UASs and UGVs. Our previous work is
augmented to allow for mission representation with arbitrary number and arrangement of
obstacles detected from the start point to the parcel.

In our following work, we focus on developing solutions to more complex problems
from the perspective of task allocation. Therefore, the goal is to replace the basic greedy
task allocation procedure (that assigns actions to robots with best outcomes, without
considering other allocations) with one that finds solutions closer to the optimum.
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6.3 Cooperative Aerial-Ground Multi-Robot System
for Automated Construction Tasks

In the following, we study a cooperative aerial-ground robot team and its application
to the task of automated construction as described in [103]. We propose a solution for
planning and coordinating the construction of a wall with a predefined structure for
a heterogeneous system consisting of UGV and up to three UAVs. The wall consists
of bricks with different weights and sizes, some of which have to be transported by
several robots simultaneously. To this end, we use a hierarchical task representation to
specify the relationships between the subtasks of the mission and employ an effective
planning and coordination mechanism inspired by GPGP. Finally, we evaluate the method’s
performance under different optimization criteria and validate the solution in the realistic
Gazebo simulation environment.

The approach presented here involves online high-level task planning (decomposition,
allocation, and scheduling) using TÆMS for task representation. The planner used in this
work is based on GPGP framework defined in Section 3.2.1, with multiple improvements
defined in this Section.

In this work, we extend the capabilities of the framework in terms of task allocation
by implementing a market-based protocol for the problem class XD[ST-MR-TA] (cross-
schedule dependencies, single-task robots, multi-robot tasks, time-extended assignment)
[38]. Consequently, we can handle complex scheduling problems in real-time without
compromising the optimality of the obtained solutions. Moreover, the protocol includes
temporal and precedence constraints, which is not the norm in the state-of-the-art literature.
We apply the method to the problem of automated construction, which perfectly highlights
the planner’s ability to deal with combinatorial optimization problems of heterogeneous
multi-robot systems in complex missions.

6.3.1 Problem description

The Mohammed Bin Zayed International Robotics Challenge (MBZIRC)† aims to foster
innovation and research at the highest level in emerging topics by providing a demanding
set of robotics challenges that require robots to operate more autonomously in dynamic,
unstructured environments while cooperating and interacting with each other. The tech-
nological challenges addressed in the MBZIRC 2020 Challenges include fast autonomous
navigation in semi-unstructured, complex, dynamic environments, with reduced visibility
(e.g., smoke) and minimal prior knowledge, robust perception and tracking of dynamic

†http://mbzirc.com
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objects in 3D, obstacle detection and avoidance, GPS denied navigation in indoor-outdoor
environments, physical interactions, complex mobile manipulations, and air-ground col-
laboration [104]. In this section, we address the problem of automated construction,
where a team of aerial and ground robots must collaborate to autonomously locate, pick,
transport, and assemble different types of brick-like objects to build predefined structures.
In particular, we are interested in the decision-making and coordination process that
optimizes the wall-building task given multi-objective criteria.

The task is given as follows. Red, green, blue, and orange bricks with a length of
0.3𝑚 to 1.8𝑚 are separated by color and assembled in randomly arranged piles before
the start of the challenge. Blue bricks may only be collected by the UAVs, while orange
bricks must be carried by two or more UAVs simultaneously due to their size and weight.
Both the UAVs and the UGV can assemble red and green bricks, but those built by the
UAVs are scored higher in the challenge. The shape of the wall structure is the only input
into the system. Teams have 30 minutes to complete the challenge, and the speed and
percentage of completion determine the score. The exact parameters of the challenge and
the properties of the bricks are further specified in [104].

This challenge was specifically designed to emphasize the need for collaboration between
different types of robots. UAVs are maneuverable, have larger operational range, and are
superior in numbers, which means they can build more in less time. However, due to their
limited battery life, it is imperative to use the UGV for low-scoring bricks and those closer
to the ground.

The focus of this work is to implement a high-level decentralized mission planning
and coordination algorithm to oversee the task of construction. All available robots
are expected to perform to their full potential and execute assigned tasks in parallel to
maximize the challenge score and complete the task within the given time.

6.3.2 Mission specification

We decompose the wall construction task using the TÆMS hierarchical task structure such
that the immediate subtasks of the root task are the transportation and assembly of the
individual bricks. The TÆMS tree is defined for three types of agents, "UGV", "UAV" and
"UAVx2", where the last label denotes an agent consisting of two UAVs that can cooperate
in transporting the large orange brick. The robot behaviors (actions) used in this mission
are 𝐺𝑃 (𝑏𝑖) - go to the pile and locate the brick 𝑏𝑖, 𝑃𝑈(𝑏𝑖) - pick up the brick from the
pile, 𝐺𝑊 (𝑏𝑖) - go to the wall, and 𝑃𝐷(𝑏𝑖) - place the brick at the specified location in
the wall, where 𝑖 denotes the brick identifier. A task node that combines all the actions
necessary to transport a single brick 𝑏𝑖 is denoted by 𝑇𝐵(𝑏𝑖).

In this model, two relations between nodes define how the quality, duration, and cost
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of child nodes affect the parent node – q_sum_all, which corresponds to logical AND,
q_seq_sum_all, which is AND with strictly sequential execution. Quality of each task
represents the number of points obtained for the successful assembly of each building block.
Duration of a task is estimated based on the length of the desired path and the average
movement speed of the robot. In addition, for the actions 𝑃𝑈(𝑏𝑖) and 𝑃𝐷(𝑏𝑖), we add
a fixed estimated duration of the grasp and release behavior. Finally, we determine the
cost (relating to energy expenditure) by multiplying the duration by the cost per time
based on the complexity of the task, the type of robot performing it, and the size of the
associated brick.

If a task cannot be completed due to kinematic constraints of the robot (e.g., the
desired placement of the brick is unreachable by the robotic arm of the UGV), the quality
of such a task is set to zero, while duration and cost are set to a large positive number to
exclude it from planning.

Relationships between other action and task nodes are modeled using interrelationship
TÆMS elements. Enables relations require one task to finish before starting another, and
are used to determine the order of bricks within the wall structure (precedence relation).
The action of picking up a brick (𝑃𝑈(𝑏𝑖)) precedes the action of going to the pile to pick
up another brick (𝐺𝑃 (𝑏𝑗)).

This introduces an offset when transporting adjacent bricks, and helps avoid situations
where multiple robots simultaneously place bricks in close proximity. The offset is intro-
duced at the beginning of the tasks because it is more efficient for the UAVs to wait on the
ground than in the air while transporting a brick. Disables relations are used to further
prioritize the order of brick placements to ensure schedule feasibility.

6.3.3 Resolving simple redundancy

One of the most important steps in the GPGP coordination process is resolving simple
redundancies between tasks (as defined in Section 3.2.1. Redundancy is a situation where
one or more robots in the set denoted by P𝑠𝑟 can perform a single task. The resolution
procedure starts by selecting one of the robots as the referee. The selected robot then
collects task scores from all the other robots, selects the best one, and communicates the
results. Robots that are not selected as the best discard the task from their plans.

The first part of the criterion function for selecting the best robot to perform a

88



Results and Discussion

redundant task 𝑗 is defined as follows:

𝑟𝑄,𝑖(𝑗) = 𝑄𝑖(𝑗)−𝑄𝑚𝑖𝑛(𝑗)
𝑄𝑚𝑎𝑥(𝑗)−𝑄𝑚𝑖𝑛(𝑗) , (6.1)

𝑟𝐷,𝑖(𝑗) = 𝐷𝑚𝑎𝑥(𝑗)−𝐷𝑖(𝑗)
𝐷𝑚𝑎𝑥(𝑗)−𝐷𝑚𝑖𝑛(𝑗) , (6.2)

𝑟𝐶,𝑖(𝑗) = 𝐶𝑚𝑎𝑥(𝑗)− 𝐶𝑖(𝑗)
𝐶𝑚𝑎𝑥(𝑗)− 𝐶𝑚𝑖𝑛(𝑗) , (6.3)

𝑅𝑖(𝑗) = 𝛼 · 𝑟𝑄,𝑖(𝑗) + 𝛽 · 𝑟𝐷,𝑖(𝑗) + 𝛾 · 𝑟𝐶,𝑖(𝑗), (6.4)

where 𝑄𝑖(𝑗) is the quality of task 𝑗 assessed by robot 𝑖 ∈ P𝑠𝑟, 𝑄𝑚𝑖𝑛(𝑗) = 𝑚𝑖𝑛𝑖∈P𝑠𝑟𝑄𝑖(𝑗) and
𝑄𝑚𝑎𝑥(𝑗) = 𝑚𝑎𝑥𝑖∈P𝑠𝑟𝑄𝑖(𝑗). Analogous definitions exist for 𝐷𝑖(𝑗), 𝐷𝑚𝑖𝑛(𝑗), and 𝐷𝑚𝑎𝑥(𝑗),
which represent duration assessment, and 𝐶𝑖(𝑗), 𝐶𝑚𝑖𝑛(𝑗), and 𝐶𝑚𝑎𝑥(𝑗) for costs. The
parameters 𝛼, 𝛽 and 𝛾 are user-defined positive real constants, 𝛼 + 𝛽 + 𝛾 = 1, which give
different importance to various criteria.

The problem occurs when redundant tasks or robots are very similar. In this case, the
task scores are almost identical, but usually, one robot has a marginally better outcome
and is chosen to perform all redundant tasks. Therefore, other robots are not used, and
the tasks cannot be executed in parallel. Instead, we use additional market-based criteria
function to allocate the redundant tasks better, as described in the following paragraph.

Based on the initial estimates of the duration and relationships between tasks, a
simple market-based task allocation function creates an assignment scheme that aims to
minimize the total mission duration. The output of the function is a list 𝑆 of pairs in the
form (𝑡𝑎𝑠𝑘, 𝑟𝑜𝑏𝑜𝑡 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑡ℎ𝑒 𝑡𝑎𝑠𝑘). Such an assignment is a preferred solution for
redundancy (𝑟2), but the task assessments of the individual robots (𝑟1) are still used to
cover the cases where one robot has a significantly better execution result. The overall
rating of the robot 𝑖 for the given task 𝑗 is:

𝑟1,𝑖(𝑗) = 𝑅𝑖(𝑗)−𝑅𝑚𝑖𝑛(𝑗)
𝑅𝑚𝑎𝑥(𝑗)−𝑅𝑚𝑖𝑛(𝑗) , (6.5)

𝑟2,𝑖(𝑗) =

⎧⎪⎨⎪⎩
1, if (𝑗, 𝑖) ∈ 𝑆,

0, otherwise,
(6.6)

𝑅𝑡𝑜𝑡𝑎𝑙,𝑖(𝑗) = 𝛿 · 𝑟1,𝑖(𝑗) + (1− 𝛿) · 𝑟2,𝑖(𝑗), (6.7)

where 𝑅𝑖(𝑗) is a rating of the task 𝑗 based on quality, duration, and cost assessment of the
robot 𝑖 ∈ P𝑠𝑟, as defined in (Eq. 6.4), 𝑅𝑚𝑖𝑛(𝑗) = 𝑚𝑖𝑛𝑖∈P𝑠𝑟𝑅𝑖(𝑗), 𝑅𝑚𝑎𝑥(𝑗) = 𝑚𝑎𝑥𝑖∈P𝑠𝑟𝑅𝑖(𝑗),
and 𝛿 is a user-defined positive constant, 𝛿 ∈ [0.5, 1), that gives different importance to
the two parts of the criteria function. Note that for 𝛿 < 0.5, rating 𝑟1 would not affect the
total rating because 𝑟1,𝑖(𝑗) ≤ 𝑟2,𝑖(𝑗), ∀𝑖 ∈ P𝑠𝑟 and ∑︀

𝑖∈P𝑠𝑟
𝑟2,𝑖(𝑗) = 1. In other words, for
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each task 𝑗, there would be only one robot for which 𝑟2,𝑖 = 1 and that robot would have
better total rating than all others, regardless of the value of 𝑟1.

6.3.4 Resolving complex redundancy

Complex redundancy is an extension of the TÆMS model to include a so-called local
Quality Accumulation Function (QAF). It represents the situation where a task has
multiple subtasks that need to be executed simultaneously, and therefore a one-to-one
mapping between subtasks and robots is required. Such a situation occurs in the case
of the task of joint transportation of orange brick. Two robots have to schedule their
part of the task at the same time and execute it jointly. Globally, both subtasks must be
executed to complete the task, while locally only one of these tasks should be scheduled
for each robot. Therefore, tasks are modeled as complexly redundant by having 𝑄𝐴𝐹 of
their parent task as q_sum (logical OR) or q_sum_all (logical AND) and 𝑄𝐴𝐹𝑙𝑜𝑐𝑎𝑙 as
q_max (logical XOR). We use the term redundancy because the effect is similar to the
simply redundant tasks, but its resolution must be handled differently. Instead of multiple
robots competing for a single task, as is the case in the resolution of simple redundancy,
𝑚 robots compete for 𝑛 tasks, 𝑚 ≥ 𝑛, so that each robot schedules only one subtask and
all subtasks are assigned.

The problem of assigning only one robot to each task in a way that optimizes overall
quality, duration, and cost is modeled as a generalized assignment problem [105]:

max
∑︁

𝑖∈P𝑐𝑟

∑︁
𝑗∈𝑇𝑐𝑟

𝑅𝑖(𝑗) · 𝑥𝑖𝑗, (6.8)

subject to
∑︁

𝑖∈P𝑐𝑟

𝑥𝑖𝑗 = 1, ∀𝑗 ∈ 𝑇𝑐𝑟, (6.9)

∑︁
𝑗∈𝑇𝑐𝑟

𝑥𝑖𝑗 = 1, ∀𝑖 ∈ P𝑐𝑟, (6.10)

where P𝑐𝑟 is a set of robots capable of scheduling a complexly redundant task, 𝑇𝑐𝑟 is
a set of subtasks of the complex redundant task, 𝑅𝑖(𝑗) is the evaluation of subtask 𝑗

based on the evaluation of robot 𝑖 defined in equation (6.4), and 𝑥𝑖𝑗 ∈ {0, 1} is a binary
decision variable for the assignment of robot 𝑖 to subtask 𝑗. The equations (6.9) and (6.10)
ensure that each subtask is assigned to only one robot and that each robot performs only
one subtask, respectively. The described optimization problem is solved with a custom
implementation of the branch-and-bound algorithm [106].
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Figure 6.9: Task structure of the example mission with two bricks.

6.3.5 Resources

Each set of action nodes is associated with its parent task with a q_seq_sum_all function,
which means that they must be executed in a strictly specified order. However, this does
not prevent a robot from scheduling and executing other tasks in the meantime.

Consider a system with only one UAV and two blue bricks to be stacked on top of each
other. TÆMS tree structure for such a mission is shown in Figure 6.9. The bottom brick
is labeled 𝐵1.1, while the top one is labeled 𝐵2.1. The expected execution schedule for the
given mission is as follows:

𝐺𝑃 (𝐵1.1), 𝑃𝑈(𝐵1.1), 𝐺𝑊 (𝐵1.1), 𝑃𝐷(𝐵1.1),

𝐺𝑃 (𝐵2.1), 𝑃𝑈(𝐵2.1), 𝐺𝑊 (𝐵2.1), 𝑃𝐷(𝐵2.1).

However, successful execution of action 𝑃𝑈(𝐵1.1) enables action 𝐺𝑃 (𝐵2.1) and final
execution schedule is in fact:

𝐺𝑃 (𝐵1.1), 𝑃𝑈(𝐵1.1), 𝐺𝑃 (𝐵2.1), 𝑃𝑈(𝐵2.1),

𝐺𝑊 (𝐵1.1), 𝐺𝑊 (𝐵2.1), 𝑃𝐷(𝐵1.1), 𝑃𝐷(𝐵2.1).

The scheduling algorithm is intentionally unaware of the robot’s specific abilities, so it
is suitable for different applications. The best-found schedule is the best solution for the
given problem because it minimizes the total mission duration, even though UAVs cannot
transport multiple bricks simultaneously. To model this constraint, virtual resources are
used in the extended model of the mission. Each robot has a resource that represents a slot
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Figure 6.10: Task structure of the example mission extended with resources. Enables relations
are omitted for clarity.

for carrying a brick. The initial state of the resource is 1, while its lower and upper bounds
are 0 and 1.1, respectively. Every time a robot performs an action of type 𝐺𝑃 (𝑏𝑖), one unit
of the resource is consumed, making it insufficient. Insufficient resources automatically
disable all other 𝐺𝑃 (𝑏𝑗), (𝑖 ≠ 𝑗) actions for that robot until their state is restored by
executing the 𝑃𝐷(𝑏𝑖) action. The improved model of the TÆMS tree structure is shown
in Figure 6.10.

6.3.6 Testbed description

We devised the environment for the second challenge of MBZIRC 2020 in Gazebo simulator
(Figure 6.11). Using the ROS interface, we can realistically simulate planning, coordination,
and execution aspects of the proposed solution for wall building mission.

We simulate physically accurate models of multicopters for UAV agents and a Gazebo
model of Husky by Clearpath Robotics with mounted Schunk Powerball LWA 4P robotic
arm for the UGV agent. Both models have standard sensors such as an inertial measurement
unit (IMU) and a generic pose sensor that provide the true position and orientation of
the robots. UAVs use a simple position PID controller for movement, while UGV uses
a navigation algorithm provided by move_base ROS package. Mid-air collisions are
prevented by commanding each UAV to a different predefined altitude.

Since this work focuses on planning and coordination, the robots do not have end
effectors on board to interact with the bricks. In the simulation, the bricks are teleported
using Gazebo’s spawn and delete services. The locations of all four brick stacks and the
wall origin are known before the mission begins. In the real world, challengers should
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Figure 6.11: Gazebo simulation environment with robots.

obtain this information by scouting the arena with UAVs at the start of the trial.

6.3.7 Simulation results

To test the system described in this section, we deploy the team consisting of two UAVs
and one UGV on a task specified as in Figure 6.12. We performed the simulated mission
using several different criteria setups, three of which we analyze here. The cost of execution
per unit time is held constant for UAVs and UGV in all scenarios.

Figure 6.12: Specified wall structure for the first mission.

In the first scenario, we define the overall mission quality as the most weighty component
of the planning criteria, while other components play a less important role, 𝛼 = 0.5, 𝛽 =
0.35, 𝛾 = 0.15. As expected, only UAVs participate in the construction process since
the bricks thus assembled yield more points. Our task allocation method alternately
assigns tasks to the two UAVs to achieve parallel execution and shorten the overall mission
duration. The timing diagram of the tasks executed by each robot is shown in Figure
6.13. Colored segments divide each task 𝑇𝐵(𝑏𝑖) into its actions, where blue corresponds
to action 𝐺𝑃 , red to 𝑃𝑈 , yellow to 𝐺𝑊 , and green to 𝑃𝐷. Dashed arrows represent
precedence relationships that affect the final schedule.

In the second scenario, the cost component of the criteria 𝛼 = 0.35, 𝛽 = 0.15, 𝛾 = 0.50
is given the greatest weight. Since the UGV has a much lower cost per unit time than the
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Figure 6.13: Execution schedule of the first mission for the criteria defined as 𝛼 = 0.5, 𝛽 =
0.35, 𝛾 = 0.15.

UAVs, tasks related to green bricks are assigned to the UGV. We defined that red bricks
provide 100% more points when assembled by UAVs, as opposed to 40% for the green
bricks. Since mission quality still matters to some extent, a better result is obtained when
UAVs assemble red bricks. The execution schedule for this scenario is shown in Figure
6.14.

Figure 6.15 shows the execution schedule of the third scenario, which is entirely focused
on minimizing the total cost of the mission. The criterion is defined as 𝛼 = 0, 𝛽 = 0, 𝛾 = 1.
In this case, tasks related to red bricks are also assigned to the UGV since their increased
score potential has no impact on the mission outcome. Blue bricks will continue to be
assembled by the UAVs as defined in the challenge description.

Finally, we add a third UAV and deploy the team of robots on a more complex mission
specified as in Figure 6.16. To reduce the mission duration but still include the UGV
in the execution, we use the same criteria as in the second scenario of the first mission,
𝛼 = 0.35, 𝛽 = 0.15, 𝛾 = 0.5.

The generated execution schedule for the final mission is shown in Figure 6.17. As in
the previous scenarios, the tasks are evenly distributed among the robots to shorten the
overall mission duration and reduce the total cost while maximizing the score. The results
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Figure 6.14: Execution schedule of the first mission for the criteria defined as 𝛼 = 0.35, 𝛽 =
0.15, 𝛾 = 0.50.

confirm that the proposed method can generate optimized high-level plans for different
robot and criteria setups and satisfies the current challenge requirements.

We ran 20 additional simulations for problems of similar dimensionality and compared
performance with solutions obtained using the Gurobi Optimizer [44]. Gurobi Optimizer
uses exact mathematical methods to solve Mixed-Integer Linear Programming (MILP)
problems and can provide an optimal solution for the given mission set. We also compare
the generated schedules with the state-of-the-art iterated auction-based approach with
a single central agent acting as an auctioneer [55]. We tested each of the 20 mission
scenarios on a set of five criteria specifications and plotted the average value and standard
deviation of the objective function with respect to the optimal solution. The results of the
experiments are shown in Table 6.6.

The results show that, on average, the proposed method is within 12% of the optimum
for most of the tested criteria specifications, except for the criteria that are entirely focused
on minimizing the mission makespan. Makespan is defined as the elapsed time between
the start and finish of a sequence of tasks in a group of robots. When resolving simple
redundancy, tasks are always assigned to faster robots (e.g., UAVs), which means that
robots with significantly worse duration estimation (e.g., UGV) do not participate in
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Figure 6.15: Execution schedule of the first mission for the criteria defined as 𝛼 = 0, 𝛽 = 0, 𝛾 =
1.

Figure 6.16: Specified wall structure for the second mission.

mission execution, thus increasing the overall duration.
The auction-based approach performs slightly better in terms of the achieved optimality

gap. However, our approach is fully decentralized and can handle the scheduling and
simultaneous execution of multi-robot tasks, e.g., transporting orange bricks. Another
major advantage of the proposed method is that it is mission agnostic and only requires a
hierarchical task structure, unlike Gurobi Optimizer, which requires an exact mathematical
formulation. Moreover, the mathematical methods used by Gurobi often do not provide a
valid solution when applied to more complex problems.

An example of two UAVs working together to assemble the large orange brick is also
examined. Due to the complexity of this task, other tasks are temporarily suspended
during its execution to avoid collisions and various interference. Therefore, precedence
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Figure 6.17: Execution schedule of the second mission.

Table 6.6: Optimality gaps of the proposed solution and auction based approach compared to
Gurobi Optimizer. Lower values are better.

Criteria
Proposed

Auction
solution

𝛼 = 0.5, 𝛽 = 0.35, 𝛾 = 0.15
𝜇 11.15 % 8.18 %

𝜎 6.26 % 6.00 %

𝛼 = 0.35, 𝛽 = 0.15, 𝛾 = 0.5
𝜇 6.43 % 8.10 %

𝜎 10.96 % 3.82 %

𝛼 = 1, 𝛽 = 0, 𝛾 = 0
𝜇 0 % 0 %

𝜎 0 % 0 %

𝛼 = 0, 𝛽 = 1, 𝛾 = 0
𝜇 42.38 % 2.18 %

𝜎 11.54 % 4.187 %

𝛼 = 0, 𝛽 = 0, 𝛾 = 1
𝜇 2.61 % 0 %

𝜎 1.62 % 0 %
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relationships are set between 𝑃𝐷 and 𝐺𝑃 actions of the individual orange and their
neighboring bricks.

Figure 6.18 shows the trajectories of the two UAVs during the execution of the described
task. The figure is plotted with respect to time, with the specific actions of the robots
(takeoff, going to position, picking, and placing the brick) clearly marked. Synchronization
of the UAVs is achieved by modeling their tasks as complex redundant and interconnected
action nodes with precedence relationships. During execution, the involved robots form a
direct communication link to exchange their state and further synchronize all steps of the
currently executed action.

Figure 6.18: Trajectories of UAVs during collaborative transportation of the orange brick.

The video of the simulations can be found at [107]. We also applied the method to the
mission of building a wall with a larger number of bricks to illustrate the scalability of
the proposed solution. The figure of the resulting schedule is too large to be conveniently
included in the thesis itself, but it is available at [108].

In this work, we further extended the capabilities of the proposed coordination frame-
work by introducing more complicated task relationships and the concept of resources.
The results show that our method can successfully generate schedules for cooperative
missions with highly mutually constrained tasks under different setups of a multi-criteria
objective. However, the task allocation and scheduling procedures are still uncoupled,
which we identify as the next point for improvement. Therefore, in our following work, we
focus on modeling these problems and propose a fast and efficient solution as described in
Sections 4.3 and 5.1.
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6.4 Distributed Mission Planning for Problems with
Cross-Schedule Dependencies

In this section, we analyze the performance of the algorithm proposed in Section 5.1 for task
planning problems defined in terms of VRP, as described in Section 4.3 (Contribution 2).
To empirically validate the proposed algorithm, we first evaluate our distributed solution
on the benchmark Multi-Depot Vehicle Routing Problem (MDVRP) dataset[109] and its
solutions available in the VRP-related literature. However, these benchmark problems do
not cover all the complexities of the considered task planning problems, such as precedence
constraints. Therefore, we generate a generic set of multi-robot task planning problems
and compare our solution on them against the following techniques:

1. Gurobi Optimizer [44]. Gurobi is a centralized solution that uses exact mathematical
methods to solve MILP problems. Gurobi provides an optimality gap for each
solution and therefore can be used as a measure of the optimality of the proposed
solution.

2. State-of-the-art distributed auction-based approach with a single central agent acting
as an auctioneer [55]. We slightly adapt the method to suit our problem class.

Gurobi can only generate solutions for the simpler problems in our dataset because its
computational complexity increases rapidly with the dimensionality of the problem (larger
number of tasks). From a very limited pool of distributed approaches in the literature, we
selected the auction-based method [55] as a direct counterpart to our method. We have
chosen the given approach because it is the most recent solution from the literature that
covers all the constraints we are interested in and that can be reproduced and implemented
based on the information provided in their paper. These two methods serve as benchmarks
against which we evaluate the performance of our proposed approach.

In this section, we discuss the performance results of the proposed algorithm on
different problem instances compared to the state of the art and optimal solutions. The
main properties we are interested in are optimality, computational speed and scalability.
First, we analyze the proposed population-based CBM (Algorithm 2) compared to the
original single-solution version of the CBM algorithm. Next, we study the performance of
the proposed CBM-pop on an established set of benchmark examples for MDVRP. We
then test the algorithm on a large scale on randomly generated task planning problems
with precedence constraints and transitional dependencies (including the cost and time
limitations of switching between any two actions). We compare the results with optimal
solutions obtained using the Gurobi solver and a state-of-the-art auction-based planner.
Finally, we demonstrate the performance of the algorithm in a realistic planning scenario
for routing mobile robots in a greenhouse setting.
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The proposed solution is implemented in ROS environment to enable vehicle-in-the-loop
development of planning algorithms. This facilitates the rapid transition from the simulated
environment to a real-world experiment. ROS also provides the underlying communication
infrastructure through its message and service protocols. All our simulations were run on
Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz x 8, 32 GB RAM running Ubuntu 18.04 LTS
operating system.

One of the important factors affecting the performance of the algorithm is the selection
and tuning of the parameters. In this paper, we define the parameters empirically, following
some common practices in evolutionary computing. First, the population size defines
the diversity of the algorithm’s solution pool. While a large diversity is good, larger
populations lead to slower convergence of the algorithm. This parameter should be set
considering the known properties of the problem to be solved. In our simulations, we
set the 𝑝𝑜𝑝_𝑠𝑖𝑧𝑒 to 50. Next, the reinforcement learning factors 𝜂 define the learning
rate applied to the weight matrix after finding the best agent (coalition) solution. We
set this parameter to [0, 5, 1], which determines a 50% larger weight increase for the case
where the best coalition solution has improved compared to the only locally best solution.
The mimetism rate 𝜌, which determines the rate of an agent’s mimetic behavior, is set
to 0.3, where an agent mimics another agent’s weight matrix by 30% and retains 70%
of its own learned behavior. Finally, the termination parameters 𝑛_𝑐𝑦𝑐𝑙𝑒𝑠 and 𝜖 are set
specifically for each of the application scenarios. A typical value for 𝑛_𝑐𝑦𝑐𝑙𝑒𝑠 would be no
less than 10000 to obtain high quality solutions, while 𝜖 represents the smallest allowable
improvement in the solution and we used the value of 0.01 to run the algorithm as long as
there is progress.

6.4.1 Performance of the population-based CBM

First, we evaluate the performance of the proposed CBM-pop compared to the single-
solution variant of CBM [91]. In Figure 6.19 is the visual representation of the current
(blue) and best solution (red) trajectories for the two variants of the CBM algorithm
on a benchmark problem for MDVRP. The two plots illustrate the contrast of the two
approaches in the early search of the solution space. The CBM-pop manages to quickly
jump through various solution configurations and explore different local optima, leading
to faster convergence towards the optimal region. In Figure 6.19b, we can observe a
rapid convergence (within the first 200 iterations of the algorithm) of the found solutions
towards the dashed green line, which is the best known solution for the given problem.
In contrast, the solution trajectories in Figure 6.19a show a noticeably slower progress
towards better solutions. This difference is the direct result of the genetic diversity of the
obtained solution pool of CBM-pop and is consistent with the intended algorithm design.
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(b) population-based CBM

Figure 6.19: Illustration of typical trajectories of the current (blue) and the best found solution
(red) for the two variants of the CBM algorithm. We analyze the convergence speed of single-
solution CBM and the proposed CBM-pop. The best known solution is shown in the graph with
a dashed green line.

6.4.2 Performance on benchmark examples of MDVRP

Given the compelling similarity between the problems of capacitated MDVRP and task
planning, we first analyze the performance of the developed algorithm using well-studied
benchmark examples of MDVRP. The benchmark problems we regard [109, 110] require
the assignment of customers to depots and the routing of individual vehicles. The problem
solution must serve all customers while minimizing the distance traveled. There is also a
maximum route capacity assigned to each vehicle.

We compare the performance of the CBM-pop algorithm with two recent operations
research papers that address the same problem on the Cordeau benchmark dataset. The
first algorithm selected is the Tabu Search heuristic (TSH) algorithm presented in [90].
The TSH algorithm was chosen for comparison as a centralized state-of-the-art heuristic
algorithm from the field of operations research. The other selected algorithm is a distributed
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Table 6.7: Performance comparison between CBM-pop and two state-of-the-art optimization
algorithms TSH [90] and CoEV [89] on Cordeau benchmark examples [109] for MDVRP. In
the table, 𝑚 and 𝑛 represent the number of vehicles and customers, respectively, for each test
example. The best solutions found for all algorithms are given, as well as the optimality gap (%)
with respect to the best known solutions (BKS) for the benchmark defined in [109]. The average
optimality gap is given for CBM-pop based on 50 runs of the algorithm. The total CPU times
are given for algorithms in the defined simulation setup. We estimate the computation time per
vehicle 𝜏(𝑠) when CBM-pop is run fully distributively on each of the vehicles in the system. The
best solutions are highlighted in bold.

test m n BKS
TSH[90] CoEV[89] CBM-pop

best gap(%) CPU(s) best gap(%) CPU(s) best gap(%) avg.
gap(%)

CPU(s) 𝜏(𝑠)

p01 16 50 576.87 576.87 0 9.4 576.87 0 1.0 576.87 0 2 18.1 4.5

p02 8 50 473.53 473.53 0 20.9 473.87 0 0.5 473.53 0 1 12.3 6.2

p03 15 75 641.19 641.19 0 141.9 641.19 0 2.5 641.19 0 1 26.1 7.0

p05 10 100 750.03 758.87 1.16 159.1 750.11 0 26.6 752.05 0.27 2 43.1 17.2

p06 18 100 876.50 881.76 0.60 194.8 876.50 0 77.3 893.59 1.91 3 44.0 9.8

p09 36 249 3900.22 3971.59 1.80 606.0 3895.70-0.12 513.30 4049.60 3.69 9 97.7 10.9

p10 32 249 3663.02 3779.10 3.07 703.7 3666.35 0 719.90 3792.10 3.40 8 117.3 14.7

p11 30 249 3554.18 3652.01 2.68 660.3 3569.68 0.43 396.20 3713.39 4.29 8 122.1 16.3

p12 10 80 1318.95 1318.95 0 13.8 1318.95 0 0.9 1318.95 0 1 24.1 9.7

p13 10 80 1318.95 1318.95 0 6.7 1318.95 0 0.0 1318.95 0 0 24.6 9.9

p15 20 160 2505.42 2552.79 1.86 255.4 2505.42 0 432.0 2565.40 2.34 4 57.6 11.5

p18 30 240 3702.85 3802.29 2.62 302.9 3771.35 1.82 429.1 3814.23 2.92 6 159.6 21.3

p21 45 360 5474.84 5617.53 2.54 1703.0 5608.26 2.38 554.9 5731.88 4.48 7 267.3 23.8

pr01 4 48 861.32 861.32 0 2.1 861.32 0 0.0 861.32 0 0 4.8 4.8

pr09 18 216 2153.10 2177.20 1.11 613.5 2150.52-0.12 1107.15 2187.84 1.59 5 75.5 16.8

cooperative coevolutionary algorithm (CoEV) [89]. This algorithm runs in a distributed
manner, where for each depot a partial solution is constructed and optimized. The TSH
algorithm was run on Intel Xeon (R) E5-2690 v4 x 14 processor (2.60 GHz, 32 GB RAM),
while the CoEV was run on a computer with two 2.50 GHz Intel Xeon (E5-2640) processors
with 12 cores per CPU and 96 GB RAM, both much more powerful computers than the
one we used in our results. Since the algorithms run on different hardware platforms, the
computation times should only be used for illustration. Nevertheless, we want to show the
suitability of the proposed algorithm as an MDVRP solution compared to the state of the
art, both in terms of optimality and scalability (runtime).

CBM-pop is a distributed algorithm that should typically run on each robot during
the mission runtime. For comparison with the TSH and CoEV algorithms, the CPU times
in Table 6.7 are the times required to compute the contribution of all robots in CBM-pop
on only one computer. Therefore, CPU times reflect the total computational effort for all
algorithms. On the other hand, 𝜏(𝑠) is the runtime per vehicle when CBM-pop is executed
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distributively in each vehicle. Thus, the runtimes of CBM-pop are given by 𝜏 , while for the
other two algorithms they are given by the CPU times. CoEV simulations are originally
run fully distributively, and the given CPU times reflect the actual performance of this
algorithm.

The full simulation results are shown in Table 6.7. The benchmark examples range
from 2 to 6 for the number of depots, with 2 to 14 vehicles per depot, and customer
numbers from 48 to 360. In Table 6.7, the performance of algorithms is directly related to
the best known solutions (BKS) for each test example in [109], and the optimality gap for
best simulation runs is also given.

We can conclude that the algorithms CBM-pop and TSH give very similar results
in terms of optimality, both well within 5% of the best solutions found for the problem.
However, since CBM-pop is distributed, the total CPU effort is shared between all involved
robots, resulting in significantly lower runtimes (given by 𝜏(𝑠)). On the other hand, CoEV
shows the best performance in terms of optimality of solutions. Although this algorithm is
distributed, it shows significantly higher runtimes for examples with more vehicles and
customers. The possible reason is that the subproblems become more complex, so the
distribution of the problem per depot shows less influence on the performance of the
algorithm. In summary, our proposed algorithm CBM-pop produces solutions that are
on par in optimality with state-of-the-art operations research approaches to this problem.
Due to the distributed nature of CBM-pop, it generates solutions in less runtime, which
makes it suitable for online applications for mission planning problems. Another major
advantage of CBM-pop is its robustness to agent breakdowns since the computations are
performed on multiple nodes.

These tests indicate that CBM-pop provides a very good solution to the given problem
and does so in a short computation time. It is important to note that these benchmarks
were developed as a very complex test for optimization algorithms and that the time taken
to compute the solutions is usually not crucial. For us, the timeliness of the solutions is
essential since we are dealing with implementation on a robotic system. With this test, we
have shown that our distributed algorithm can handle cases with higher complexity than
we expect in robotic systems in a relatively short time.

To better illustrate the test set and the results obtained, we graphically represent in
Figure 6.20 the best solutions found for three test examples from the benchmark set. The
full simulation results are available on the results webpage [111].
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Figure 6.20: Example solutions of Cordeau benchmark tests [109] for genetic algorithm,
population-based CBM, and best known solution from the literature.

6.4.3 Comparative analysis on tasks with cross-schedule prece-
dence constraints

Despite the considerable complexity of the previous tests, they do not include some
important elements of the problem that our approach solves, namely cross-schedule
dependencies. Therefore, we have developed a separate set of benchmark examples to
evaluate problems with precedence constraints. The problems are solved for a team of
2 and 8 robots. The problem instances include 4, 8, 16, 32, 64, 128, 256, 512, and 1024
tasks, and we generated 50 randomized examples for each setting. In each example, 20%
of the tasks are precedence constrained. Task durations and costs are generated using
assumed robot characteristics (speed, energy requirements). Setup times and costs are
calculated using the above mentioned robot characteristics and the Euclidean distance
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between tasks associated with random positions in 3D space. The full benchmark set and
results can be found at the benchmark website [112].
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Figure 6.21: Comparison of the performance of the proposed distributed metaheuristic algorithm
CBM-pop (green), the Gurobi optimal solver (red), and the state-of-the-art auction-based
distributed algorithm [55] (blue). The top row shows the results for 2 robots, and the performance
for 8 robots is shown in the bottom row. The plot displays a graph for the mean of each of the
observed values and the distribution highlighted by a transparent ray around the graph line.
A time limit of 20𝑚𝑖𝑛 was introduced in the simulations, and only the results obtained in this
runtime are presented.

In analyzing the results, we compare the proposed distributed metaheuristic CBM-pop
with an exact MILP-based solution provided by the Gurobi solver [44] and a state-of-the-art
distributed auction-based algorithm presented in [55]. The performance results of the
algorithm for the defined benchmark set are shown in Figure 6.21.

Two rows of the figure represent the performance of the algorithms for teams of 2 and
8 robots, respectively. In the simulations, we introduced a computation time limit of 20
minutes. The optimal solver is able to obtain solutions for up to 8 tasks, the auction-based
algorithm, for up to 128 tasks for the case of 2 robots, and 256 tasks for 8 robots, while the
proposed algorithm can handle all examples in the benchmark. For the case of 2 robots
and 256 tasks, and 8 robots and 512 tasks, the auction algorithm takes about 25 minutes
to produce solutions.

The first property to be observed is the algorithm runtime and scalability of the above
approaches. From the first column of the grid in Figure 6.21, it is clear how fast the
combinatorial explosion manifests in the auction-based algorithm. It is even clearer for the
optimal solver. The Gurobi solver succeeds on problems with up to 8 tasks for both sets of
benchmarks. The auction method is able to solve problems with at most 256 tasks in the
given time. An exponential increase in computation time can be observed. On the other

105



Results and Discussion

hand, CBM-pop copes very well with an increase in the number of robots and tasks. Also,
a larger scatter in the CPU time in CBM-pop is observed for larger task examples. This
is due to the stochastic nature of the protocol and the quality-based stopping criterion,
which terminates the computation if no improvement in the solution has been achieved for
a certain number of steps.

Table 6.8: Summary of average improvements of the proposed algorithm (CBM-pop) compared
to the state-of-the-art auction-based algorithm [55] on a basis of 50 randomized examples for
each problem setting.

task
number

average improvement (%)

makespan cost CPU time

2
ro

bo
ts

4 4.36 0 -

8 5.25 0.51 -

16 7.45 3.12 -

32 5.03 2.36 -

64 3.39 1.86 15.89

128 2.39 1.57 71.60

8
ro

bo
ts

4 4.57 0 -

8 14.39 0 -

16 15.04 2.57 -

32 11.48 2.70 -

64 7.00 1.93 12.76

128 3.43 1.27 42.35

256 1.32 1.1 73.11

In Table 6.8, we can observe the average improvement of the CPU time of the proposed
algorithm compared to the auction-based method. We provide information for more
extensive problems where the qualities of the proposed method are highlighted. For
simpler examples, the auction-based algorithm renders solutions faster (about 2-3 times).
CBM-pop computes solutions in about 1.5𝑠 for the simplest cases (5𝑠 for more complex
problems), and the auction manages to solve the problem in approximately 0.5𝑠 and 2𝑠,
respectively.

We also investigate the performance of the algorithms in terms of optimality. As
explained above, we model the optimization function in terms of Pareto optimality (as
defined in Eq. 5.5) for two criteria, namely the makespan of the schedule and the total
cost (Eq. 4.14.2). For the limited example set with computed optimal solutions, both
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the auction and our method follow the optimal solutions very closely (well within 0.5% of
the optimum). In Figure 6.21, the last two columns represent the duration and cost of
the solution found. In all examples presented here, the CBM-pop algorithm outperforms
the auction for both given criteria. For the case of 2 robots, the improvements range in
makespan from 2% to 7% and in cost up to 3.12%. For 8 robots, the improvements range
in makespan from 2-16% and in cost up to 2.6%. All results are summarized in Table 6.8.

By running these simulations, we have shown that our approach can keep up with the
current state of the art in task planning in terms of optimality, while generating solutions
in significantly less time, which is essential for all real-world applications.

6.4.4 Application to the use-case in agricultural environment

The use of robots in agriculture is not a new concept, but rather a rapidly growing
industry that focuses primarily on large machines used for specific crops and applications.
However, the main objective of the SpECULARIA project is to develop a heterogeneous
robotic system consisting of three types of agents: an Unmanned Aerial Vehicle (UAV),
an Unmanned Ground Vehicle (UGV), and a compliant manipulator with several degrees
of freedom.

The primary role of the UAV in the system is to monitor the system, where it can
issue possible maintenance actions. The UGV is equipped with a mechanism that allows it
to transport containers of growth units, which are the smallest organizational unit within
the farm and consist of a single plant or a variety of plants. The task of the compliant
manipulator is to perform delicate manipulations on plants, such as handling flowers and
fruits and pruning plants. Each robot has several specific capabilities, but when used
together, they can be used in different ways to accomplish multiple objectives.

The mission given to our robotic team is to perform daily maintenance tasks in a
robotized greenhouse. The team consists of three unmanned ground vehicles (UGVs)
equipped with a mechanism to transport plant containers to and from the workspace and
a single robotic manipulator that performs actions on plants. Each UGV can pick up and
transport one plant at a time and place them on specific tray holders in the greenhouse.
We assume that missions to the system are issued in time frames greater than the time
required to complete a single mission, i.e., the team has enough time to complete one
mission before the next one arrives.

The layout of a greenhouse in a mission we analyze in this section is shown in Figure
6.22. The greenhouse consists of two tables with plants placed along the walls of the
greenhouse. Each table is organized into five rows and two columns. The tables are
enumerated, as are the specific positions within the table. The convention for addressing
the tray holders within the table is (row, column) and the indices begin with 0. The full
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table 1 table 2
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Figure 6.22: SpECULARIA use case greenhouse layout.

address of each plant is defined by the triplet (table, row, column). Plants within the
table can only be accessed by row, starting with the positions at the aisle. Thus, plants
located by the wall of the structure can only be accessed by removing previous plants in
the same row of the table. For example, in Figure 6.22, the plant at position (1, 0) in table
1 can only be accessed after removing the plant at position (1, 1) from the table. A similar
precedence relationship applies to table 2, except that plants are accessed from left to
right.

In addition to the two tables, there is a buffer table structure in the middle of the
greenhouse. The structure of a buffer is very similar to the structure of the tables, but
the plants can be reached from either side, so there is no precedence relationship between
the plant access tasks. The buffer is used to store plants that need to be put aside before
the required plants are transported to the processing station (work station of the robot
manipulator). Plants that are finished with the maintenance task are also put back into
the buffer.

Finally, at the bottom of the greenhouse structure is a workspace table with four plant
tray holders. The idea of the four positions is to allow for batch processing of the plants,
which is especially advantageous for simpler tasks such as watering or spraying the plants.

Inputs to the planning procedure include the greenhouse layout, the groups of plants
to be tended that day, and the procedures to be performed. In the given example from
Figure 6.22, the specific groups are 𝐴 = {(1, 0, 1), (1, 2, 0), (1, 3, 0)}, marked in purple in
the figure, 𝐵 = {(1, 1, 0), (2, 1, 1)} marked in green, and 𝐶 = {(1, 4, 1), (2, 0, 1), (2, 2, 0)}
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marked in red. This means that to execute operation 𝐴, all three defined plants must be
present in the workspace table. The same is true for the other two tasks.

In problem modeling, we distinguish between two actions that the UGV can perform
on plants, namely transporting plants to the buffer and moving plants to the workspace.
Based on these two actions and the defined inputs, we generate a set of actions to be
planned for. For plants that are not scheduled for care on a given day and that interfere
with the plants to be processed, the action of moving them to the buffer is generated.
For example, we can identify the task to_buffer(1,1,1). For plants that are scheduled
for care, we define two precedence-constrained actions, moving them to the workspace
and placing them in the buffer when processing is complete. For example, we define the
tasks to_workspace(1,1,0) and to_buffer(1,1,0), with a precedence constraint in between.
Additionally, there is a precedence for the tasks of accessing two adjacent plants, in this
example the tasks to_buffer(1,1,1) and to_workspace(1,1,0).

On the side of the manipulator that tends the plants, we define three different actions.
This was necessary to ensure the desired system behavior while keeping the problem within
the scope of the defined modeling. For the maintenance task A example, the defined tasks
are A_ready, A_perform, and A_setup, all of which take precedence in the defined order.
Task A_ready signals that the workspace is empty and ready to receive the next batch
of plants. This task precedes all tasks to_workspace for the given procedure. After all
plants are placed on the workspace, the task to perform the procedure (A_perform) begins.
This relationship is also modeled by precedence constraints. Next, after the procedure
is completed, the tasks of transporting the plants from the workspace to the buffer are
activated. After all plants are removed from the workspace, the task A_setup is executed.
This task represents the tool change of a robot arm. When it is finished, new plants can
be brought into the work area and the whole process starts again.

We have run several simulations for the specified use case. As for the benchmark
problem set, we compared the performance of the proposed algorithm with the auction-
based state-of-the-art solution for task planning problems [55]. We ran 10 simulations
for each algorithm, and the results are consonant with the conclusions drawn earlier. In
Figure 6.23 we can observe CPU time, makespan, and cost distribution for the obtained
solutions. For this example, the average reduction in CPU time of the proposed algorithm
compared to the auction protocol is 13.23%. Regarding makespan and cost, a slight
average improvement of 0.59% and 0.76%, respectively, is observed.

For this relatively small problem, the qualities of the obtained solutions are very similar
for both algorithms. However, we have previously shown that our algorithm adapts better
to the problem complexity. Another important advantage is that our solution produces
results in a distributed manner. The auction algorithm, on the other hand, assumes a
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Figure 6.23: Comparison of the performance of the proposed CBM-pop (red) with the auction-
based algorithm (blue). We observe the algorithm CPU time, solution makespan, and total cost
for 10 runs of each algorithm.

central auctioneer agent that processes bids from other agents and makes task assignments.
In distributed systems, this may be regarded as a tactically vulnerable point.

The final generated schedule for the SpECULARIA use case is displayed in Appendix
for convenience. Tasks are color-coded according to the convention defined in Figure 6.22.
Tasks of moving plants that do not require maintenance into the buffer are marked in
gray. Precedence relations are indicated by arrows. Setup times are not displayed in this
illustration to preserve a more compact representation of the schedule. Based on the
generated schedule, we can conclude that the proposed method successfully handles the
problem of planning tasks for this type of operations. The animated visualization of the
execution of the obtained schedule is available at [111].

In summary, in this work we developed a robust and fast task planning method for
heterogeneous multi-robot systems. The planning method addresses problems with cross-
schedule dependencies, in particular precedence constraints. We synthesized a general
model that relates task planning (allocation and scheduling) to the well-studied VRP. This
exposes task planning problems to various optimization techniques available in vehicle
routing, which could lead to many compelling solutions for task planning in the future.

In this work, we have found a solution to the problem in a distributed manner by
applying a metaheuristic approach based on evolutionary computation with knowledge
sharing and mimetism. We have extensively tested the performance of the proposed
algorithm. First, we ran simulations on an established set of benchmark examples of
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capacitated multi-depot VRP, where the algorithm was found to perform near-optimally,
with a high computational speed. Next, we established a benchmark dataset repository
for planning for tasks of class XD[ST-SR-TA] and tested the proposed algorithm against
existing task planning methods. Simulation results show that the approach has better
computational speed and scalability without loss of optimality compared to state-of-the-art
distributed methods. We have also provided a novel application of the planning procedure
to a real-world use case of a greenhouse maintained by a multi-robot system.

Consequently, we focus our efforts on the next class of problems, complex dependencies
(CD class). Although some of the solutions shown so far address problems of this class,
they do so in a sequential manner, where task decomposition selection, task allocation,
and scheduling are performed separately. In the following section, we present the results
of a method that couples the three aspects of mission planning into a single two-step
optimization procedure, as defined in Section 5.2.

6.5 Distributed Mission Planning of Complex Tasks

The missions we model in this work fall into the class of problems CD[ST-MR-TA] [38].
These missions involve tasks that may require execution by more than one robot (MR,
multi-robot tasks), and robots may only perform one task at a time (ST, single-task
robots). The task allocation and scheduling procedure considers both current and future
assignments (TA, time-extended assignment). In terms of complexity, these tasks include
complex task dependencies (CD), where each task can be achieved in multiple ways. The
class CD also entails cross-schedule dependencies (XD), where various constraints relate
tasks from plans of different robots.

To represent multi-robot missions, we use a hierarchical task model inspired by TÆMS.
In our solution, missions represented as large task hierarchies are subjected to a two-stage
hierarchical optimization procedure. In the first step, we perform a fast and efficient
heuristic search of the mission tree that finds several promising alternative ways to
execute the mission (task decomposition selection procedure). Then, a task allocation and
scheduling procedure is applied to several best-ranked alternatives to generate schedules
for the given problem. Based on the given criteria, the best overall solution is output as
the final schedule that best satisfies the mission objective. The full procedure is described
in Section 5.2.

The method is evaluated in a simulation setup of an automated greenhouse use case,
where we demonstrate the method’s ability to adapt the planning strategy depending on
the available robots and the given optimization criteria.
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6.5.1 Simulation setup

To evaluate the performance of the proposed method, we developed a practical use case
with problems of class CD. The application is based on an automated greenhouse and the
scheduling of its daily maintenance tasks. The greenhouse structure is organized as a set
of tables, comprising several plant containers representing growth units. In this example,
each container holds a single plant that can be conveyed through the greenhouse using a
UGV with a special mechanism for transporting plants.

The UGV works in symbiosis with a stationary manipulator located at a workspace
with four empty container holders. The manipulator can perform various operations on the
plants once they are brought into the workspace. The design of a workspace with multiple
slots allows batch operations on plants, speeding up some of the procedures. Naturally,
not all tasks support batch processing to the same degree.

In addition to the stationary manipulator, we also envisioned a mobile manipulator
consisting of a larger UGV with a robotic arm on board. This robot is capable of driving
around the greenhouse and tending the plants directly. Note that each of the operations
in this case must be performed from both sides of the table to take into account the entire
plant.

Figure 6.24: Greenhouse use case plant setup. In the illustration, the different batches of plants
are marked in different colors, as indicated in the legend. The dimensions of the greenhouse (in
meters) are shown on the x and y axes.

The structure of the greenhouse we used for the simulations is shown in Figure 6.24.
The structure consists of eight tables, each with 4 plants. For the purpose of batch
processing, the plants were clustered a-priori into five groups {𝐴, 𝐵, 𝐶, 𝐷, 𝐸} as shown
in the figure. In this arrangement, there are a total of 20 plants that need to be tended
to. The numbers given in the table structures for each plant denote the number of unit
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operations that need to be performed on each side of the plant. They are used to estimate
the total procedure duration. In our example, we specify the unit operation duration as
10𝑠. Therefore, using the example of the top plant in 𝑡𝑎𝑏𝑙𝑒 0, the total processing time on
the left side is 50𝑠 and on the right side is 10𝑠.

_A[X]

A_s[X]

o_A[X] i_A[X]

A_m[X]

l_A[X] r_A[X]_A_[X]

A_prep[X] A[X] A_ready[X]

stationary manipulator
UGV
mobile manipulator

AND

XOR

AND
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Figure 6.25: Hierarchical task structure for the task of processing a single plant in the system.
𝐴 is the plant type symbol and 𝑋 stands for a unique plant identifier, which is composed as
"table.row.column" of the plant in the greenhouse structure.

The described mission is modeled as a hierarchy of tasks, as described in Section 3.1. A
task tree for a single plant operation is shown in Figure 6.25. At the root of the structure
is a task representing the desired operation, and it is divided into two subtasks denoting
two alternative ways of processing the plant. The left variant defines a stationary case
where a UGV and a static manipulator perform the task together. The UGV has to deliver
the plant to the workspace (𝑜_𝐴) and return it when the task is finished (𝑖_𝐴). For
the stationary manipulator, we defined three tasks, 𝐴_𝑝𝑟𝑒𝑝, 𝐴, and 𝐴_𝑟𝑒𝑎𝑑𝑦. These
tasks are executed sequentially, and the 𝑝𝑟𝑒𝑝 and 𝑟𝑒𝑎𝑑𝑦 tasks are used to synchronize the
operations of the batch procedure with other plants of the group. On the other hand,
there is an option where a mobile manipulator tends to the plant, and it includes tasks of
the left (𝑙_𝐴) and right (𝑟_𝐴) processing. The full mission structure includes 20 models
of this structure, one for each plant, and they are associated with operator AND.

6.5.2 Simulation results

We ran several simulations for the setups defined in Table 6.9. The first two setups
compare using a single stationary manipulator and two UGVs, versus using two mobile
manipulators (problem of class XD). For the next three setups, we used one of each of
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Table 6.9: Simulation setups for the use case.

setup problem
class

mobile
manipulator

stationary
manipulator UGV makespan-cost

importance

1 XD - 1 2 -

2 XD 2 - - -

3 CD 1 1 1 0-100

4 CD 1 1 1 50-50

5 CD 1 1 1 100-0

Figure 6.26: Robot team setups in the simulation scenarios. We compare the performance of a
mobile manipulator with that of a stationary manipulator supported by UGVs. For complex
missions, we allow the use of combinations of all three robots.

the three robot classes but varied the importance of mission makespan and cost in the
evaluation procedure. Makespan is defined as the elapsed time between the start and
finish of a sequence of tasks in a group of robots.

To estimate the cost of each task, we assume a realistic set of robots, where for a
UGV, we suggest a Pioneer 3-DX robot with an estimated drive power of 30𝑊 , while
in the case of a UGV carrying a manipulator, we propose a more robust solution of a
Clearpath Robotics Husky A200 with a drive power of 400𝑊 . An illustration of the robotic
system configurations is given in Figure 6.26. The maximum speeds for both robots are
set to 0.5𝑚/𝑠, taking into account the sensitive payload they have on board. Based on
the duration of each task obtained using a path planner on a lower level, we calculate
the energy consumed in 𝑘𝐽 by multiplying the duration and the power demand. We use
a state-of-the-art sampling-based RRT* motion planner. This is a simplified form of a
cost function and serves the purpose of testing the planning system. For a more accurate
model, the different power requirements of the robots depending on the actual battery
charge should be considered.

The results of the simulation runs for each setup are shown in Figure 6.27. There
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Figure 6.27: Makespan and cost of best found solutions for each setup.

is a clear discrepancy in the ratio of makespan to cost for the first two configurations,
where the setup with one stationary arm and two light UGVs consumes much less energy,
with the mission time span increasing 2.8 times. On the other hand, it can be seen that
the second configuration consumes 6.3 times more energy for execution, although it is
faster. To exploit the strengths of both robots, we consider the case of combining these
two approaches in the following setups. The proposed mission decomposition selection
procedure allows to choose the best way of mission execution considering a certain criterion.
Here we analyze three extreme cases: the preference of cost savings in setup 3, the equal
importance of cost and makespan in setup 4, and finally the preference of mission speed
without considering cost in setup 5.

The results for these setups demonstrate the ability of our proposed complex mission
planning system to select appropriate mission decompositions given the robots available
in the system and the specified criteria. In a case where the cost is evaluated higher, all
tasks are selected to be executed in an energy-efficient manner, which corresponds to the
left branch of the mission tree defined in Figure 6.25. For the case where fast execution
is required, right branches of the mission tree are selected for all the plants, which are
handled by a mobile manipulator. For the middle case, the procedure outputs a solution
that balances the tasks between these two options.
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Efficiency of the alternative generation algorithm

The next point we consider in the simulation analysis of the proposed method is the compu-
tational efficiency of the alternative generation algorithm (Algorithm 3). In combinatorial
optimization, this problem is considered NP-hard and no exact solution can be found for
it. Our proposed approach uses approximations and heuristics to simplify the problem
and solve it in a tractable time.

On an example of an automated greenhouse with 20 plants, we ran 30 simulations for
each variant of the algorithm, depending on the degree of approximation in generating
partial solutions to the problem. We compare the variant with pruning, which allows
at most 10 and 5 alternatives for each task, with a baseline algorithm without pruning
procedures.

Table 6.10: Average runtime of alternative generation algorithm for different pruning setups.

setup average runtime (s) generated solution no.

no pruning 23.96 1,048,576

prune 10 0.04 1000

prune 5 0.02 125
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Figure 6.28: Performance of the mission planning algorithm using three different pruning
strategies during mission decomposition selection procedure. Score of the alternatives is obtained
using (𝛼, 𝛽, 𝛾) = (0.1, 0.2, 0.7).

In the results from Table 6.10, we can observe a significant decrease in the average
runtime of the algorithm for this set of simulations. It is important to note that even
for this seemingly simple example of 20 tasks with two alternative executions, the total
combinatorial number of solutions is 220. Even in the case of the algorithm without
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pruning, heuristics and approximations can tame this very difficult problem and solve it
in a reasonable amount of time (under 25𝑠). Both of the pruning variants presented here
drastically reduce the computing time (down to 0.04𝑠 and 0.02𝑠).

However, this increase in speed needs to be observed through performance perspective
as well. In Figure 6.28, we present the makespan and cost of schedules obtained in the
second phase of the algorithm for these three setups. The results show no significant
decrease in performance when pruning is introduced. For the criteria function which favors
the cost component, the solutions found using pruning procedure are all within 13% of
the mean value of benchmark solutions.

20 30 40 50 60

problem dimension (plant number)

0

0.1

0.2

0.3

0.4

a
lg

o
ri
th

m
 r

u
n
ti
m

e
 (

s
) real values

linear approximation

Figure 6.29: Runtime of the algorithm with respect to problem dimension.

Finally, to evaluate the scalability of the proposed heuristic algorithm, we developed
larger application examples for greenhouses with 30, 40, 50, and 60 plants. We ran
alternative generation procedure (Algorithm 3) with prune 10 setting for each of the
setups. Figure 6.29 shows how the runtime of the algorithm changes for each specific setting.
From the obtained data, we can deduct a linear relation between problem dimensionality
and algorithm runtime of a very light slope of 0.0998 (depicted in red dashed line in the
figure). The nature of this function can, however, dramatically change if the mission
structure is not well thought out. In some cases of poorly designed mission trees, this
approximation can reach polynomial complexity. It is also important to note that the
number of robots does not affect the performance of the alternative generation algorithm.

The main contribution of this work is the proposal of a fast and efficient distributed
method for planning complex missions for heterogeneous MRS. The proposed multi-stage
optimization approach provides a domain-independent solution to the given problem and
can be readily applied to many areas of robotics research that involve cooperative robot
teams. The method can adapt the planning strategy and select the appropriate tasks to
execute, depending on the available robots and the given optimization criteria. In the
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current literature, there are not many approaches that attempt to generalize the planning
procedure for generic tasks of class CD for heterogeneous multi-robot teams.
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CHAPTER 7

Conclusion

The goal of the research presented in this thesis is to synthesize a complete planning system
for distributed task allocation, scheduling, and coordination of heterogeneous robotic teams
based on a hierarchical task representation for complex multi-robot missions. The problems
considered in this work fall into the category of NP-hard problems, which are intractable
for higher dimensional problem spaces. Therefore, we opt for solutions that use various
approximations and heuristics to provide suboptimal solutions with fast computation
times. Through intelligent problem modeling, the mission planning domain relates to a
more general Vehicle Routing Problem (VRP) model. This makes the system domain-
independent and can be easily used in different multi-robot applications. The main
contributions of the thesis are laid out as follows.

A framework for decentralized task allocation, scheduling, and coordination
of heterogeneous robotic teams based on hierarchical task representation.

The first contribution of this work is the creation of a generic framework for decen-
tralized task allocation, scheduling, and coordination of heterogeneous robotic teams.
Following Generalized Partial Global Planning (GPGP) paradigm, we have developed a
system of generic modules which foster mission planning and coordination of multi-robot
systems – GEneric Multirobot mission coordination and planning based on hierarchical
task representation (GEM). Each module is assigned a role (task allocator, scheduler,
coordinator), and all functions are implemented in ROS software packages. The implemen-
tation in the ROS environment promotes faster integration into different robotic systems
and the possibility to test in the realistic hardware-in-the-loop simulation environment
Gazebo. The framework includes coordination mechanisms that ensure coordinated mission
planning and execution. The software infrastructure interfaces with the Task Analysis,
Environment Modeling and Simulation (TÆMS) hierarchical task model.

The proposed solution was intensively tested in different application scenarios, both in
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simulated environments and in real-world experiments with heterogeneous teams of robots.
We have shown that the framework enables timely planning, coordination, and execution
of complex missions in various domains. Application scenarios include:
− Autonomous delivery tasks using a UAV with a pair of manipulator arms cooperating

with two UGVs [97]. The approach was tested in a parcel transport scenario in a
cluttered environment. We first simulated the system in a realistic Gazebo simulator
and then experimentally with a 3D Robotics quadcopter and two Pioneer 3DX mobile
robots. We showed that the system is capable of planning complex missions online
and adapting the result to different multi-objective optimization criteria.

− Motion symbiotic UAV-UGV team in a package delivery scenario [100]. We propose
a novel air-ground system that focuses on symbiotic behavior and extends the
motion capabilities of the robotic team. To this end, we designed and constructed a
lightweight UGV (L-UGV) that can work closely with a UAV equipped with a mobile
manipulator (UAS) specifically designed to be transported by the UAS. We have
demonstrated in simulated and experimental environments the improved efficiency
of the robotic team when the robots utilize each other’s capabilities to increase the
energy savings and range of motion of the system.

− Cooperative aerial-ground multi-robot system for automated construction tasks [103].
We propose a solution for planning and coordinating the construction of a wall with a
predefined structure for a heterogeneous system consisting of a UGV and up to three
UAVs. We tested the method in a simulation environment on various randomized
problems and compared the performance with the results obtained using an optimal
solver Gurobi and a state-of-the-art auction-based method. The results show that,
on average, the proposed method is within 12% of the optimum for most of the
tested criteria. Although the auction-based method gives better results in terms of
optimality for some examples, our method shows better scalability and robustness
since we use a decentralized approach.

− Automated greenhouse application scenario. In this scenario, we implemented the final
version of the GEM framework along with the developed allocation and scheduling
algorithm for XD problems. The method is evaluated in a simulation of an automated
greenhouse, where we demonstrate the ability of the method to adapt the planning
strategy depending on the available robots and the given optimization criteria. We
have shown that this approach is able to select the correct mission decomposition of
a rather complex and highly constrained mission for different multi-objective criteria.

A method for distributed task allocation and scheduling for heterogeneous
robotic team missions with cross-schedule task dependencies.
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The second contribution of this thesis entails distributed task allocaiton and scheduling
method for heterogeneous robotic teams [113]. Missions considered here fall in the XD[ST-
MR-TA] category of mission planning problem taxonomy [38]. The contribution consists of
firstly modeling of mission planning problems in terms of VRP paradigm. This modeling
creates a generic mathematical model of mission planning problems which is suitable
for applications in various multi-robot systems. In our solution approach, we employ
multi-objective optimization with a form of distributed genetic algorithm using mimetism
and knowledge sharing (CBM-pop). This approach, which uses distributed evolutionary
computation methods, can quickly generate near-optimal solutions, and thus, work online
while achieving good scalability properties.

In evaluating the proposed method, we generate a generic set of multi-robot task
planning problems and compare our solution with Gurobi Optimizer, an optimal MILP
solver, and a state-of-the-art distributed auction-based approach with a single central
agent acting as an auctioneer. The results show that the proposed method performs
similarly to the auction-based method in terms of optimality. For smaller problems that
can be solved by the optimal solver, the obtained solutions are well within 0.5% of the
optimum. However, the proposed metaheuristic exhibits much higher computational speed
and scalability, which makes it more suitable for online applications to real robotic systems.

A method for distributed mission decomposition selection for heterogeneous
robotic team missions with complex task dependencies.

Finally, the last contribution of this thesis tackles problems of highest complexity –
CD class of problems [38]. These problems entail missions where some of the tasks may
have several ways of being performed. The planning procedure needs to decide on the
appropriate task decomposition given the optimization criteria and robots available in
the system, and then allocate and schedule each task. Since the problem of mission
decomposition selection is tightly coupled with task allocation and scheduling problems,
we proposed a two-stage method that incorporates all of these components of mission
planning.

The method is evaluated in a simulation setup of an automated greenhouse use case.
Each of the tasks can be performed in two different ways, each requiring a different set of
robots. To demonstrate the efficiency of the proposed method, we developed a large-scale
use case with 20 complex tasks to be executed by three different robots. For the task
decomposition selection only, the number of possible options is 220. The complexity
increases further when assignments and planning permutations are added to the problem.

We have demonstrated a fast and efficient distributed method for planning complex
missions for heterogeneous MRS. In the current literature, there are not many approaches
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that attempt to generalize the planning procedure for generic tasks of class CD for
heterogeneous multi-robot teams. Therefore, this solution provides a new perspective on
problems of this complexity, where this one method could be applicable to problems from
different domains of MRS.

Future Work

As future work, we are interested in testing the proposed approach in a more dynamic
setting and introducing protocols for handling perturbations in the system, including
asynchronous and stochastic arrival of new tasks in the system. These are issues that
are common in real applications and should be considered to provide a well-rounded
control framework. Given the distributed nature of the proposed algorithms, we plan
to consider robustness with respect to delays or information loss in the communication
channel. Especially in the field operations, faulty communication networks or delays in the
information can cause major problems if not taken into account. Therefore, we want to
extend the proposed approach, which assumes ideal communication conditions, to include
more realistic communication infrastructures. All these efforts would make the proposed
solutions even more suitable for online applications in dynamic multi-robot systems.
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Appendix A. SpECULARIA use case schedule for XD problems
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