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ESTIMATION OF LATENT FACTORS FROM
HIGH-DIMENSIONAL FINANCIAL TIME SERIES

BASED ON UNSUPERVISED LEARNING

DOCTORAL THESIS

Supervisor: Associate Professor Zvonko Kostanjčar, PhD
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Abstract

Unsupervised learning methods have been increasingly used for detecting latent factors in high-

dimensional time series, with many applications, especially in financial risk modelling. Most

latent factor models assume that the factors are pervasive and affect all of the time series. How-

ever, some factors may affect only certain assets in financial markets, due to their clustering

within countries, asset classes, or sector classifications. In this thesis, high-dimensional finan-

cial time series with pervasive and cluster-specific latent factors are considered. For the assumed

latent factor model, an iterative method for clustering and latent factor estimation is proposed.

A model selection algorithm is also developed, based on the spectral properties of asset corre-

lation matrices and asset graphs. Based on the estimated latent factor structures, a covariance

matrix estimator is also proposed, decomposing the security return covariance into the perva-

sive latent factor component, cluster-specific latent factor component, and a sparse idiosyncratic

risk component. The covariance matrix estimates are used in a portfolio optimization scenario,

focusing on risk-based portfolios. Moreover, a new portfolio optimization method based on the

risk contributions of the identified latent factors and security clusters is also developed. A simu-

lation study with known data generating processes demonstrates that the proposed latent factor

estimation and clustering method outperforms other clustering methods and provides estimates

with a high degree of accuracy. Moreover, the model selection procedure is also shown to pro-

vide stable and accurate estimates for the number of clusters and latent factors. In addition,

risk-based portfolios using the estimated latent factor structures are tested on datasets of asset

returns from global financial markets using a backtesting approach. The results demonstrate

that the clustering approach and estimated latent factors yield relevant information, improve

risk modelling and reduce volatility in the out-of-sample portfolio returns.

Keywords: Latent factor models, High-dimensional data analysis, Financial risk modelling,

Portfolio optimization.



Procjena latentnih faktora iz visokodimenzionalnih financijskih

vremenskih nizova koristeći nenadzirano učenje

S napretkom financijske tehnologije i globalizacijom financijskih tržišta, broj financijskih in-

strumenata i vrijednosnica dostupnih investitorima diljem svijeta je veći nego ikad. Investi-

tori su danas izloženi tisućama vrijednosnih papira iz različitih tržišta, država i klasa imovine

oko kojih grade svoje investicijske odluke. Pri modeliranju financijskog rizika najčešće ko-

rišteni tradicionalni modeli pretpostavljaju da na cijene velikog broja financijskih imovina ut-

ječe manji broj latentnih faktora. Upravo ta pretpostavka se kroz povijest pokazala ključnom

za mnoge rezultate u vrednovanju imovine i optimizaciji portfelja koji čine okosnicu modernih

financija. Metode za identifikaciju zajedničkih faktora rizika u financijskim tržištima su tema

iscrpnih istraživanja, pogotovo u zadnjem desetljeću nakon globalne financijske krize. Jedan

od značajnih pristupa u financijskim istraživanjima su tzv. fundamentalni faktorski modela u

kojima su faktori predstavljeni sintetičkim portfeljima povezanima s fundamentalnim pokaza-

teljima vrijednosnica, kao što je knjigovodstvena vrijednost tvrtke. Dok nedavna istraživanja na

širokom skupu med̄unarodnih tržišta i dalje pronalaze snažne statističke dokaze o mogućnos-

tima ovog pristupa, postojanje i ponašanje nekih specifičnih faktora i danas uzrokuju rasprave

med̄u znanstvenicima i profesionalcima iz financijske industrije. No, u mnogim slučajevima

kad se razmatraju skupovi imovina različitih klasa, kao što su obveznice, robe, ili različiti in-

vesticijski fondovi ili nova tržišta kao što su nerazvijena tržišta i tržišta u nastajanju (npr. razna

mala tržišta slabije razvijenih država, tržišta različitih kompleksnijih proizvoda poput ETF-ova

(eng. exchange-traded fund), ili tržište kriptovaluta), procjena fundamentalnih faktorskih mod-

ela nije uvijek moguća. S druge strane, latentni faktorski modeli koriste metode multivarijatne

statistike kako bi procijenili faktorske strukture iz vremenskih nizova povrata vrijednosnica,

što omogućuje procjenu u bilo kojem skupu imovina. Upravo su latentni faktorski modeli u

nedavnoj prošlosti sve više u fokusu istraživača iz različitih područja, od ekonomije i finan-

cija do računarstva i znanosti o podatcima, te su sve češće korišteni u upravljanju imovinom i

donošenju odluka u financijskoj industriji.

U ovoj disertaciji razmatraju se latentni faktorski modeli i nenadzirane metode strojnog

učenja za procjenu latentnih faktora iz visokodimenzionalnih financijskih vremenskih nizova.

Budući da u financijskim podatcima nema oznaka o pravim vrijednostima varijabli ili klasa,

nenadzirane metode strojnog učenja se koriste kako bi se procijenio latentni prostor koji objašn-

java značajan dio osmotrene dinamike, najčešće koristeći povijesne vremenske nizove povrata

različitih financijskih vrijednosnica. Konkretno, ova disertacija se fokusira na latentni faktorski

modele sa širokim faktorima koji utječu na sve imovine i faktorima specifičnima za pojedine

grupe imovina (npr. pojedine vrste vrijednosnica ili vrijednosnice iz specifičnih država i tržišta).

Upravo takve latentne faktorske strukture se mogu koristiti kao adekvatan model za visokodi-



menzionalne skupove vrijednosnica iz različitih tržišta, država ili klasa imovine, koje će zbog

toga stvarati odred̄ene grupe unutar kojih su izložene specifičnim faktorima, ali istovremeno biti

izložene širokim zajedničkim faktorima kao što su globalni makroekonomski šokovi. Budući

da se tržišni uvjeti i strukture povezanosti med̄u imovinama mogu naglo promijeniti, relativno

kratki vremenski nizovi se koriste kako bi se procijenile faktorske structure, s pretpostavkom

da će procijenjeni model vrijediti i u budućnosti. U takvim situacijama je potrebno razviti

algoritme za procjenu latentnih faktora koji dobro rade u visokodimenzionalnim podatcima,

pogotovo kad je broj vremenskih nizova veći od njihove duljine.

Razmatrani model s latentnim širokim faktorima i faktorima specifičnima za grupe vrijed-

nosnica potrebno je procijeniti iz stvarnih podataka u kojima nisu poznate oznake grupa, kao ni

realizacije faktora. U disertaciji je predložena iterativna metoda za procjenu latentnih faktora

s nepoznatom grupnom strukturom iz visokodimenzionalnih financijskih vremenskih nizova.

Predloženi algoritam provodi grupiranje vremenskih nizova i procjenjuje latentne faktore tako

da se procijenjeni latentni faktori koriste u pridjeljivanju pojedinih vremenskih nizova onim

grupama čiji latentni faktori najbolje objašnjavaju osmotrenu dinamiku. No, budući da će one

grupe koje imaju više latentnih faktora u pravilu moći objasniti više varijabilnosti u podatcima

od grupa s manje faktora, grupe s više faktora će kroz proceduru privlačiti više pojedinih vre-

menskih nizova iako im one nužno ne bi trebale pripadati. Kako bi se izbjegla pristranost u

veličini grupa s obzirom na broj latentnih faktora, predložena metoda sadrži dvije faze. Prvo se

procjenjuju latentni faktori i grupe pojedinih vremenskih nizova koristeći konstantan broj latent-

nih faktora u svakoj grupi. Potom se procijenjene grupne pripadnosti koriste za procjenu broja

faktora u svakoj grupi, kao i za konačnu procjenu latentnih širokih faktora i faktora specifičnih

za grupe. Takod̄er je razvijena i procedura za procjenu broja latentnih širokih faktora i grupa

u podatcima, zasnovana na spektralnim svojstvima korelacijske matrice vremenskih nizova i

grafova sastavljenih koristeći sličnost vremenskih nizova. Iz sortiranih svojstvenih vrijednosti

korelacijske matrice podataka definiraju se omjeri susjednih svojstvenih vrijednosti, te se kao

kandidate za broj širokih faktora biraju oni koji odgovaraju najvišim omjerima svojstvenih vri-

jednosti. Analogno ovoj proceduru, za svaki kandidat za broj širokih faktora procjenjuje se graf

vrijednosnica iz čije se Laplaceove matrice računaju omjeri svojstvenih vrijednosti i definiraju

kandidati za broj grupa. Za svaki par kandidata za broj širokih faktora i grupa se procjen-

juju latentni faktori (broj faktor specifičnih za grupe dolazi iz same procedure za procjenu), te

se od svih kandidata konačno biraju oni brojevi širokih faktora i grupa koji daju takav model

koji minimizira odred̄en informacijski kriterij. Predloženi informacijski kriterij kažnjava grešku

modela, ali i dodatne latentne faktore i grupe u podatcima, budući da oni povećavaju konačni

broj parametara modela. Predložene metode stoga daju procjenu broja latentnih faktora i grupa

u podatcima, kao i same procjene latentnih faktorskih struktura i grupnih pripadnosti.

S obzirom na procijenjene latentne faktorske strukture, u ovom radu se takod̄er razmatra i
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procjena kovarijance podataka. Naime, kovarijanca podataka u predloženom faktorskom mod-

elu se može rastaviti na komponentu niskog ranga koju objašnjavaju latentni široki faktori,

rijetku komponentu niskog ranga koju objašnjavaju faktori specifični za grupe, te kovarijancu

vlastitih rizika pojedinih vrijednosnica. Prve dvije komponente mogu se izračunati direktno

iz procjena latentnih faktora, a kovarijanca vlastitih rizika, budući da dopušta odred̄ene rijetke

elemente izvan dijagonale (dakle pojedine vlastite komponente mogu biti korelirane), proc-

jenjuje se metodom adaptivnog praga. Konačna procjena kovarijance podataka, zasnovana na

procjenama latentnih širokih faktora i faktora specifičnih za grupe, dana je kao suma ove tri

komponente.

Jedna od važnijih primjena latentnih faktorskih modela je upravo u modeliranju rizika za

upravljanje imovinom i optimizaciju portfelja. U ovoj se disertaciji stoga kao primjena razvi-

jenih metoda razmatra optimizacija portfelja velikih skupova vrijednosnica. Povijesno jedan od

najvažnijih rezultata u financijama, moderna teorija portfelja predstavlja elegantan matematički

okvir za optimizaciju portfelja u kojem je cilj maksimizacija očekivanja povrata portfelja uz

minimalni rizik, mjeren varijancom povrata. No, pokazano je da dobiveni portfelji mogu znača-

jno lošija svojstva imati izvan uzorka procjene ako su greške u procjenama očekivanih povrata i

kovarijanci velike. S obzirom na to da je poznato kako je teško ili gotovo nemoguće predvidjeti

buduće očekivane povrate, u zadnjem desetljeću je fokus prebačen na tzv. portfelje zasnovane

na riziku, koji se oslanjaju samo na procjenu kovarijance. U toj klasi portfelja, u ovom radu se

razmatraju portfelji minimalne varijance (gdje je optimalan portfelj upravo onaj koji ima naj-

manju varijancu, odnosno rizik) i portfelji maksimalne diverzifikacije (koji maksimiziraju tzv.

diversifikacijski omjer). U obje ove optimizacijske metode se mogu uključiti različite procjene

kovarijance - od empirijskog procjenitelja do procjenitelja zasnovanih na latentnim faktorima.

Tako je takod̄er moguće ocijeniti koji procjenitelj daje pouzdanije procjene rizika i kovarijance

povrata vrijednosnica. Osim ove dvije metode optimizacije portfelja, takod̄er je predložena i

nova metoda optimizacije portfelja zasnovana na rizicima procijenjenih grupa i latentnih fak-

tora u podatcima. Predložena metoda radi u dva koraka: u prvom koraku se unutar svake grupe

formira portfelj maksimalne diverzifikacije koji uključuje samo vrijednosnice unutar pojedine

grupe; potom se formira portfelj koji sadrži sve identificirane grupne portfelje, takod̄er koris-

teći metodu maksimalne diverzifikacije. Tako se fokus optimizacije prebacuje na identificirane

grupe, te odnose vrijednosnica unutar njih i izmed̄u njih, umjesto na cijelu matricu kovarijance.

Budući da tržišni povijesni podatci nemaju oznake o tome koje grupe postoje, niti kojim

grupama su pojedine imovine propadale, razvijen je i simulacijski okvir u kojem su poznate

grupne oznake i moguće je ocijeniti kvalitetu grupiranja i procjene latentnih faktora. Rezultati

na simulacijskim podatcima ukazuju na to da, čak i u slučajevima kad su vremenski nizovi vrlo

visoko-dimenzionalni i njihove distribucije imaju jako teške repove, predložene metode vrlo

uspješno procjenjuju latentne faktore s grupnom strukturom, te su preciznije od ostalih metoda
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za procjenu latentnih faktora i grupiranje vremenskih nizova. Takod̄er, predloženi algoritam

uspješno procjenjuje grupe vremenskih nizova čak i kad postoje velike razlike u broju faktora

specifičnih za pojedine grupe. Rezultati ukazuju i na to da predložena metoda profitira od vi-

soke dimenzionalnosti podataka, što znači da se s povećanjem broja vremenskih nizova zapravo

smanjuje greška procjene zajedničkih komponenti niskog ranga u podatcima. Općenito, pred-

ložena metoda se pokazala robusnijom i preciznijom za procjenu grupa i latentnih faktora od

drugih razmatranih metoda za procjenu latentnih faktora i metoda grupiranja.

Predložene metode su takod̄er ispitane i na povijesnim tržišnim podatcima. U tu svrhu

korištena su dva skupa podataka: (i) skup od 982 NASDAQ indeksa iz različitih tržišta ci-

jelog svijeta, (ii) skup od 1480 dionica različitih tvrtki sadržanih u globalnim MSCI indeksima.

Oba skupa podataka sadrže povijesne cijene od 2005. do 2020. godine, te se u oba slučaja

razmatraju tjedni povrati (budući da se tim vrijednosnicama trguje na burzama u različitim vre-

menskim zonama, dnevni podatci ne odražavaju ispravne korelacijske strukture). Kako bi se

ispitala predložena metoda za procjenu latentnih faktora i grupa vrijednosnica iz tržišnih po-

dataka, korišten je pristup u kojem se modeli procjenjuju na vremenskim prozorima povijes-

nih podataka, te se potom koriste podatci na sljedećim vremenskim prozorima kao odred̄ena

"budućnost" na kojoj se kvaliteta procijenjenih modela ispituje. Budući da je latentne faktorske

modele moguće prikazati kao modele koji rekonstruiraju originalne podatke koristeći latentne

faktorske reprezentacije nižeg ranga od originalne dimenzionalnosti prostora uzorka, moguće

je dobiti rekonstrukciju budućih realizacija vremenskih nizova povrata (na kojima model nije

procijenjen ili treniran). Na taj način je ispitana greška rekonstrukcije modela unutar i izvan

uzorka procjene, te je uspored̄ena s dobro poznatim i najčešće korištenim procjeniteljem za la-

tentne faktore u visokodimenzionalnim vremenskim nizovima. Takod̄er je mjereno i pogoršanje

greške rekonstrukcije izvan uzorka procjene u odnosu na grešku unutar uzorka procjene modela.

Rezultati pokazuju da u oba korištena skupa podataka predloženi model ima veću grešku rekon-

strukcije unutar uzorka procjene, što je i očekivano budući da model sadrži faktore specifične

za grupe, koji unutar uzorka procjene ne mogu objašnjavati jednake količine varijabilnosti kao

i modeli koji sadrže isključivo široke faktore. No, greška rekonstrukcije izvan uzorka procjene

je manja za sve razmatrane duljine vremenskih prozora i oba skupa podataka, a samim time je i

pogoršanje rekonstrukcijske greške puno manje za predloženi model. Ti rezultati upućuju na to

da su grupe i latentne faktorske strukture procijenjene u podatcima pouzdanije i robusnije izvan

uzorka procjene od latentnih faktorskih struktura koje koriste isključivo široke faktore. Takod̄er

su ispitane i procjene matrice kovarijance koje daje predloženi model, korištenjem portfelja za-

snovanih na riziku (portfelji minimalne varijance i portfelji maksimalne diverzifikacije). Za oba

razmatrana portfelja, u oba skupa podataka, te za više razmatranih duljina vremenskih prozora,

rezultati upućuju na to da procijenjene matrice kovarijance smanjuju rizik u optimalnim port-

feljima, u odnosu na druge razmatrane procjenitelje. Osim toga, ispitana je i predložena metoda

vii



optimizacije portfelja zasnovana na doprinosu riziku pojedinih grupa vrijednosnica. Ti portfelji

u rezultatima pokazuju najbolja svojstva u smislu Sharpeovih omjera, zadržavajući pritom rel-

ativno niske razine rizika i malene obrtaje koji garantiraju niske transakcijske troškove. Ovi

rezultati potvrd̄uju i simulacijske rezultate te upućuju na to da predloženi model daje pouz-

dane procjene latentnih faktorskih struktura, te da predložena metoda za optimizaciju portfelja

rezultira portfeljima koji ostvaruju visoke povrate uz niske razine rizika, te su bolji od drugih

razmatranih metoda u smislu omjera povrata i rizika. Osim toga, pokazano je da je korištenjem

modela s latentnim širokim faktorima i faktorima specifičnima za grupe moguće ostvariti pouz-

danije i točnije procjene latentnih faktorskih struktura u visokodimenzionalnim financijskim

vremenskim nizovima. One u konačnici smanjuju rizik optimalnih portfelja i općenito mogu

poboljšati upravljanje rizicima i optimizaciju portfeljima u velikim skupovima financijskih vri-

jednosnica.

Ključne riječi: Modeli s latentnim faktorima, analiza visokodimenzionalnih podataka, mod-

eliranje financijskog rizika, optimizacija portfelja.

viii



Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2. Latent factors and clusters in financial data . . . . . . . . . . . . . . . . . . . . 2

2. Financial time series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1. Introduction and basic principles . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2. Statistical properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1. Absence of autocorrelation . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2. Volatility clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.3. Distributions and extreme values . . . . . . . . . . . . . . . . . . . . . 14

2.3. Multivariate financial time series and risk modelling . . . . . . . . . . . . . . . 16

2.3.1. Return covariance and correlation . . . . . . . . . . . . . . . . . . . . 17

2.3.2. High-dimensional estimation issues . . . . . . . . . . . . . . . . . . . 20

2.3.3. Shrinkage estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3. Latent factor estimation in financial time series . . . . . . . . . . . . . . . . . . . 26

3.1. Factor models in finance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.1. Fundamental factor models . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.2. Latent factor models . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.3. Estimation of the number of latent factors . . . . . . . . . . . . . . . . 36

3.2. Latent factor model with pervasive and cluster-specific factors . . . . . . . . . 39

3.2.1. Model definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.2. Estimation procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.3. Model selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.4. Intialization and hyperparameter selection . . . . . . . . . . . . . . . . 53

3.3. Covariance estimation with pervasive and cluster-specific latent factors . . . . . 54

3.3.1. Covariance decomposition . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3.2. Sparse idiosyncratic covariance estimation . . . . . . . . . . . . . . . 56



4. Portfolio optimization based on latent factors . . . . . . . . . . . . . . . . . . . . 57

4.1. Portfolio optimization framework . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2. Risk-based portfolio optimization . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.1. Minimum variance portfolio . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.2. Maximum diversification portfolio . . . . . . . . . . . . . . . . . . . . 61

4.2.3. Cluster-based portfolio diversification . . . . . . . . . . . . . . . . . . 63

5. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.1. Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.1.1. Simulation framework . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.1.2. Estimator properties in high dimensions . . . . . . . . . . . . . . . . . 66

5.1.3. Clustering performance . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.1.4. Model selection performance . . . . . . . . . . . . . . . . . . . . . . . 73

5.2. Market data results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2.1. Historical market data . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2.2. Reconstruction of out-of-sample returns . . . . . . . . . . . . . . . . . 75

5.2.3. Portfolio backtests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Biography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Životopis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105



Chapter 1

Introduction

1.1 Motivation

With the rise of data driven decision making in risk management, statistical and machine learn-

ing methods are becoming increasingly important as their ability to uncover meaningful infor-

mation and perform well out-of-sample is put to the test in real world scenarios. This field has

recently attracted a fair amount of interdisciplinary research, bringing together mathematical,

physical, econometric and computer science approaches [1, 2, 3]. These methods are of critical

importance in financial risk modelling, where the dynamics of asset return time series are driven

by underlying risk factors [4]. To estimate the effects that these underlying factors have on

observed asset returns, traditional modelling approaches use observable macroeconomic time

series (such as GDP growth, interest rates, or market returns) as model inputs [5], while others

focus on finding proxies for unobservable factors (known as size, value, or momentum) using

economic firm-level data [6, 7]. However, this information is not always available for every

security (i.e. derivatives or certain ETFs or indices), meaning that these standard approaches

may not be universally applicable [8]. Moreover, recent empirical results have been challenging

some of these models, giving advantage to more agnostic statistical approaches [9].

Today, with the advances in financial technology and the globalization of financial markets,

the number of investable securities and their diversity in terms of asset classes and country

of origin is larger than ever. Throughout the past decades, these developments motivated the

increased focus on statistical and unsupervised learning techniques for uncovering latent risk

factors in asset return data [10, 11]. However, even though the number of assets continues to

grow, the observable time period used to estimate these models must remain short. This is due to

the fact that financial markets are known to exhibit sudden changes in dynamics and stationarity

can not be assumed over long time periods – asset return volatilities and correlations change over

time, especially in the presence of financial bubbles and crashes [12, 13, 14]. Most commonly,

inferences are made and models are trained on historical data, with the assumption that the
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knowledge found in the data (conclusions or trained model parameters) hold in the future, as

depicted in Figure 1.1. Therefore, these unsupervised learning methods must be able to perform

well on high-dimensional datasets when the number of time series N is commensurate or even

larger than their length T [15].

Jan 2007 Jul 2007 Jan 2008 Jul 2008 Jan 2009 Jul 2009 Jan 2010 Jul 2010 Jan 2011

Figure 1.1: A setting with several financial return time series around the financial crisis of 2007-2009.
Due to the dynamic properties of the time series, stationarity can only be assumed over short time periods,
and thus relatively short time windows (transparent rectangle) may be used to make inferences about the
near future (shaded rectangle).

The out-of-sample performance of these estimates is crucial for many portfolio optimiza-

tion or risk management applications [1, 16]. Machine learning (and especially unsupervised

learning) approaches have been increasingly applied to modelling financial risk [17, 18], and,

as a natural expansion, more complex and nonlinear models have been studies, under the hy-

pothesis that they can detect certain intricate relationships in financial data [19]. However,

since these complex approaches (such as deep learning techniques) generally come with a large

number of parameters, they require large amounts of data for training and thus perform poorly

in high-dimensional settings. Instead, more restricted and parsimonious methods are required

[20]. In this search for tractable and plausible latent factor estimation methods, it is crucial to

take advantage of the structural specifics and statistical stylized facts of financial markets [21].

1.2 Latent factors and clusters in financial data

Dimensionality reduction techniques are commonly applied to obtain lower-dimensional repre-

sentations of high-dimensional data, such that these representations maintain some key prop-

erties of the original data [22, 23]. This is a crucial step in coping with the so-called curse of
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dimensionality which manifests itself through computational issues, such as sparse samples in

high dimensions [24] or the rank deficiency of sample covariance estimates and the difficulties

in estimating sample distributions [15]. Feature selection algorithms primarily focus on finding

a function z = g(x) transforming the original high-dimensional data x (which may have irrel-

evant or redundant information) to a lower-dimensional set of variables z which aggregate the

relevant information for a certain modelling task [25]. The function g is found by optimization

of certain properties, which may be assisted by the class labels or target variables, depending

on the modelling task. When the class labels or target variables are not available, unsupervised

feature selection techniques focus on finding features which best preserve the clusters in the

data [26], remove redundancy [27, 28] or optimize certain spectral properties of the underlying

data graphs [29, 30] – either in the original data space or new subspaces [31]. Generally, unsu-

pervised feature selection approaches have been found to yield relevant results in many machine

learning tasks, including sequence analysis in bioinformatics [32], text classification [33], and

other applications [34].

As opposed to feature selection, the latent factor model approach is focused primarily on

finding a function x = h( f ) which explains the high-dimensional observed data x by a lower-

dimensional set of factors f . The task of estimating factor models in high-dimensional data

may be reduced to a regression task when these factors are known and observed – such cases

may be common in biometric, psychometric or economic applications, where factor models

are used to investigate the driving factors underlying the dynamics of some phenomena or pro-

cesses * [36]. However, these factors can often be unknown and unobserved, meaning that they

must be estimated as latent variables from the data [37], requiring an unsupervised learning

approach. The primary task is still to estimate the function x = h( f ), but now the factors need

to be estimated from the data f = g(x). Evidently, autoencoder-type approaches can be used

to estimate the encoder ( f = g(x)) and decoder (x = h( f )) parts of the model, offering a large

range of architectures and the ability to model non-linear relationships [38, 39]. However, in

the presence of high-dimensional data with the number of samples being small in comparison

to the number of features/variables, nonlinear models often fail to generalize due to the large

number of parameters – this turns the attention of recent research to high-dimensional latent

factor estimation based on robust and regularized statistical methods [20, 40].

In this thesis, high-dimensional financial time series of asset returns are considered, with the

goal of modelling the asset return time series by associating the assets with a lower-dimensional

set of underlying factors. Since risk in finance is most commonly proxied by the variability of

asset returns, the goal is to explain the variability of asset return time series by their exposure to

*In financial asset pricing models, these factors can sometimes be known but are not observable – for instance,
factor asset pricing models identify factors such as size, value, or momentum, and resort to finding proxies for their
realizations using observable firm-level fundamental data and market prices [6, 7, 35]. The factor model is then
obtained through a regression on the estimated observable factors.
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latent factors. In addition to explaining risk, the estimated latent factor models are often used to

obtain better estimates of the high-dimensional covariance matrices, which are ultimately a key

component in portfolio optimization [15]. Traditionally, latent factor models in finance assume

that the factors are pervasive (they affect all assets) and thus can be found as common com-

ponents in high-dimensional asset return time series [20, 41]. On the other hand, some recent

results suggest that assets indeed tend to form clusters and communities which can be observed

in their dependence network structures (modelled either by correlation or other measures of

connectedness) [42, 43]. Assuming a strict hierarchical clustering structure, Tumminello et al.

[44] form a hierarchical latent factor model and propose an estimation method based on the

minimum spanning tree of the underlying assets. Clusters of assets are also known to emerge in

stocks of single equity markets (for instance, clusters of stocks belonging to the same sectors)

- Kakushadze et al. [45] consider clustering techniques for estimating these groups from the

asset return time series. Verma et al. [46] proposed a cluster-specific factor model for the log-

volatility with the goal of studying the heteroskedastic properties of volatility in financial assets

returns. Other clustering approaches were also shown to improve high-dimensional covariance

matrix estimates, which ultimately reduces risk in optimized portfolios [17, 18, 47, 48]. How-

ever, while the evidence on the existence of asset clusters is compelling, certain latent factors

may still be pervasive and affect all assets - for instance, global macroeconomic shocks or the

market factor [49, 50]. These may not be omitted in the search for asset clusters. To fully

exploit the structural properties and obtain better latent factor models, both the asset clustering

as well as latent pervasive and clusters-specific factors need to be estimated from the data. For

instance, in a global set of financial assets, pervasive global factors may affect all time series

(such as the global macroeconomic and market shocks), and cluster-specific factor related to

certain countries will affect only specific clusters of assets (for instance, European stocks will

be affected by their own set of factors and may not be affected by some Asian market factors,

after controlling for the common global component).

In this thesis a clustering and latent factor estimation method is proposed which simulta-

neously estimates the unknown cluster structures with the pervasive and cluster-specific latent

factors. An approximate factor model† is considered, which belongs to a class of models pro-

posed by Ando and Bai [51, 52], who consider panel data with observable pervasive and unob-

served pervasive and cluster-specific factors. The variability of asset returns is decomposed into

the variability explained by pervasive factors, cluster-specific factors and idiosyncratic compo-

nents. The pervasive factors affect all asset return time series, and these assets are divided into

clusters in which a certain number of cluster-specific latent factors (the number of which may

vary between clusters) affect the assets within that cluster. Since the clustering procedure may

†Approximate factor models, as opposed to strict factor modes, allow for correlated residuals, thus relaxing the
strict assumption of a diagonal residual covariance and allowing for off-diagonal non-zero covariance elements,
providing a more realistic assumption on the data.
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be biased towards the clusters with a larger number of cluster-specific factors (due to the fact

that more factors will always be able to explain more variability in the data), the algorithm is

divided into two main phases: the clustering phase which uses a fixed number of cluster-specific

factors for all clusters, and the latent factor estimation phase based on the estimated asset clus-

ters. A computational approach to model selection is also proposed, which detects the number

of pervasive factors, the number of clusters and the number of cluster-specific factors in each

cluster.

Since there is no "ground truth" in financial data (the number of factors, the factors them-

selves, as well as the clusters are all unknown), a simulation framework is developed based on

data generating processes (DGPs) which feature heavy-tailed distributed returns and correlated

residuals (thus replicating statistical properties of asset returns), in which the ground truth is

known - allowing to measure the performance of the estimation procedure and the model selec-

tion method. Furthermore, datasets covering global financial markets are considered, and the

proposed methods are applied to the security return time series. Based on the estimated latent

factors and clusters, a portfolio optimization method is proposed and tested using a back-testing

approach. The results demonstrate the value of the proposed approach and the ability of the

method to reduce risk in portfolio optimization scenarios.

The rest of the thesis is organized as follows. In Chapter 2 an overview of the basic princi-

ple of financial time series is given, and some of their most important statistical properties are

studied. Chapter 3 first provides an introduction to the factor modelling approach and the factor

models in finance. Latent factor models are also introduced, with some state-of-the-art methods

for the estimation of latent factor structures in high-dimensional financial time series. A new

model with pervasive and cluster-specific factors is defined, and a novel latent factor estimation

algorithm is proposed. In addition, a model selection procedure is also developed, based on the

spectra of the empirical correlation matrices and security graphs. Moreover, an algorithm for the

estimation of the model-implied covariance matrix with sparse idiosyncratic component corre-

lations is also proposed. In Chapter 4 several portfolio optimization approaches are considered

with the goal of applying the latent factor estimates to obtain improved portfolios. In addition

to the minimum variance portfolio, a novel cluster-based portfolio optimization method is pro-

posed, and some conditions for optimality in the mean-variance sense are discussed. Chapter 5

first introduces a simulation framework, which replicates the properties of the high-dimensional

financial time series under the assumption of the latent factor model with pervasive and cluster-

specific factors. The simulation results are discussed and a statistical analysis is performed,

which indicates that the proposed method yields accurate estimates which outperform other

benchmark methods, and is robust to high-dimensionality and heavy tails in the data distribu-

tions. Moreover, historical market data are used to gauge the out-of-sample explanatory power

of the latent factor estimates given by the proposed method and test the considered portfolio
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optimization methods. The results demonstrate that the proposed method yields relevant and

robust estimates of latent pervasive and cluster-specific factors, which can be applied to market

data for improved risk modelling and portfolio optimization. Finally, Chapter 6 ends with a

conclusion.
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Chapter 2

Financial time series

2.1 Introduction and basic principles

Financial securities represent assets traded on exchanges in which the price is determined by

the market participants. These securities may represent equity ownership in publicly traded

companies (stocks), government or corporate debt (bonds), or any of the other classes (index

funds, ETFs, options, futures etc.). Financial exchanges serve as matching services in which

the traders on the supply and demand side post bid (buy) and ask (sell) limit orders which

are stored in the limit order book. As soon as any of the buyers/sellers posts a market order,

accepting the best opposing ask/bid limit order, a trade is executed at the limit order price.

The price of the traded security is thus determined by this market mechanism, also known as

double auction (since the buyers and sellers compete, forming bid/ask queues in the limit order

book). This process continues during the exchange trading hours, generating millions of trades

and respective price quotes in a single trading day [53]. Therefore, the prices are an outcome

of the consensus mechanism in which investors with different strategies and valuations of the

underlying asset agree on the prices at which the security is traded. Since the prices reflect

information held by the market participants, they are in the focus of the majority of financial

and economic applications, from forecasting to risk modelling and asset allocation [54]. In

addition to the security price S(t) at time t, the variable of most interest is the δ -period rate of

change, which can expressed either as periodic (linear) return Rδ (t) or continuous (logarithmic)

return rδ (t):

Rδ (t) =
S(t)−S(t−δ )

S(t−δ )
=

S(t)
S(t−δ )

−1, (2.1)

rδ (t) = logS(t)− logS(t−δ ) = log
S(t)

S(t−δ )
. (2.2)
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Linear returns are associated with the discrete (periodic) compounding method:

S(t) = S(t−δ ) · (1+Rδ (t)), (2.3)

and the log-returns are associated with the continuous compounding method:

S(t) = S(t−δ ) · erδ (t). (2.4)

Generally, prices are nonstationary variables (with a drift depending on the mean rate of return),

and are serially dependent, since the price S(t) depends on the past price S(t − δ ), as seen

in both (2.3) and (2.4). In adition, security prices may take on values of different orders of

magnitude, ranging from pennies to thousands, since the underlying assets may be divided into

different numbers of shares (e.g. a company divided into 100 shares of 10$ is worth the same

as a company divided into 10 shares of 100$).On the other hand, as seen in Figure 2.1, returns

resemble a stationary variable (although not strict-sense stationary, as will be discussed in the

following sections), and are usually used in studying financial risk. Moreover, the time step and

the return periods δ are usually discrete (minutely, hourly, daily, weekly, or monthly prices and

returns).

Figure 2.1: Daily prices (above, displayed in log-scale) and periodic returns (below) of the S&P 500
index, which contains the 500 largest U.S. publicly traded companies. The returns resemble a noise
signal with a changing variance, as is best visible in the increased variance around the dot-com bubble
of 2000-2002, the global financial crisis of 2007-2008 and the COVID-19 pandemic crisis of 2020.

Even though the difference in values between these two types of returns is notable only
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for large magnitudes (for small price differences R(t) and r(t) are virtually the same), they

do have some properties useful for different situations. Logarithmic returns can be aggregated

over time, meaning that the total log-return over multiple periods t, ..., t+τ is simply the sum of

log-returns: r(t)+ r(t +1)+ ...+ r(t + τ). On the other hand, linear returns can be aggregated

across securities, meaning that the return of a portfolio which has weights w1, ...,wN across N

securities is the sum: w1R1(t)+ ...+wNRN(t). Across large sets of assets or large time frames,

these differences can accumulate, and it is thus important to use the proper data depending on

the application [55]. In the remainder of this thesis, linear returns will be considered, since the

approach focuses on high-dimensional data across a large number of assets N. Nevertheless,

the following section lists some of the most important statistical properties of financial returns

which hold for both types of returns.

2.2 Statistical properties

Many empirical financial studies and decades worth of evidence suggest that price dynamics and

financial returns exhibit certain statistical properties (also known as stylized facts) which uni-

versally hold across seemingly different markets [56] - ranging from international stock markets

[57] to currency pairs and precious metal prices [58], and even novel and unregulated markets

such as cryptocurrencies [59]. These phenomena include primarily:

(i) absence of autocorrelations (returns are serially uncorrelated),

(ii) volatility clustering (autocorrelation of absolute returns),

(iii) heavy tails (the tails of the distributions of financial returns decay following a power-law).

Other more specific effects have also been documented, such as the existence and the distri-

butions of drawdowns and drawups [60], leverage effect [61], the volume-volatility correlation

[62] etc. - however, these are not considered in detail in this theses (for a review of statis-

tical properties of asset returns, see Cont [21]). In recent years, these phenomena gained a

fair amount of attention as multidisciplinary research endeavors brought together methods from

physics, statistics, computer science and game theory to develop models explaining the statis-

tical properties of financial returns [63, 64, 65]. These properties are of critical importance in

building risk models which attempt to explain the variability in high-dimensional return time

series, since they must be able to work well in the presence of these stylized facts, rather than

just in sterile i.i.d. Gaussian simulation environments.
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2.2.1 Absence of autocorrelation

One of the most fundamental properties of financial returns is the absence of linear serial cor-

relations. Consider the sample autocorrelation function of return time series:

fR(τ) =
∑

T−τ

t=1 [R(t)−µR] [R(t + τ)−µR]

∑
T
t=1 [R(t)−µR]

2 , (2.5)

where R(t) is the return at time step t, µR is the sample mean of R(t), and τ is the time lag

at which the autocorrelation function is estimated. The autocorrelation fR(τ) is known to be

zero or very close to zero for all time lags τ > 0 in daily, weekly, or monthly data [21]. Figure

2.2 displays the autocorrelation functions of returns for a number of U.S. stocks, demonstrating

how this finding holds for a multitude of the considered stocks.

Figure 2.2: Autocorrelations of linear returns of 600 publicly traded U.S. companies between 2005
and 2020. The dots for each lag τ are the mean and the lines represent the minimum and maximum
autocorrelation for that lag, among all stocks.

This property also holds for the mean return µi(t) estimated on a given time window (t−T, t]

and the future subsequent mean µi(t +T ) on the next time window (t, t +T ]. In other words,

returns (and their mean values) are hard to predict using past return data, as is also demonstrated

by the result in Figure 2.3, which displays the mean returns estimated using a dataset of 600

U.S. stocks between 2005 and 2020.

However, it is important to note that for high-frequency intraday returns there are some

statistically significant autocorrelations below the τ = 5 min. mark – this is due to market mi-

crostructure (order book and the bid-ask spread) and in some cases the reaction of markets to

news and investor behavior [66]. According to some studies [65], certain negative autocorrela-

tions will occur when investors overreact to news and the price rebounds – on the other hand,

investor underreaction to news will cause the price to shift slowly over time, resulting in positive

autocorrelations. The temporary existence of these autocorrelations is confirmed by emergence
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Figure 2.3: Mean return µi(t) estimated on a T = 6 month period and future 6-month mean returns
µi(t + T ) of each stock i in a dataset of 600 U.S. stocks. The past 6-month mean returns and future
6-month mean returns are evidently not correlated, with Corr

[
σ2

i (t),σ
2
i (t +T )

]
=−0.03.

of momentum and mean-reversion in financial markets [67] – however they may shift abruptly

and is generally more persistent on an intraday level [68].

Thus, excluding high-frequency trading data and temporary phenomena, for all other prac-

tical purposes the absence of autocorrelations is a well-established fact and is often used to

support the efficient market hypothesis (EMH*) [69]. Moreover, the absence of return auto-

correlations on the long-run is intuitively easy to understand: if price changes exhibit signifi-

cant temporal correlations, they would be used to formulate simple trading strategies (so-called

statistical arbitrage [70]) with positive expected returns, which will in turn reduce these cor-

relations through trading activity in the market. Such strategies do exist – however, they are

not profitable on return autocorrelations, but are rather applied to statistical market findings

which are known to be more persistent and significant, such as cross-correlations between as-

sets [71, 72].

2.2.2 Volatility clustering

Another important statistical property of financial asset returns is volatility clustering - large

price fluctuations tend to cluster in time, thus exhibiting autocorrelations of the return ampli-

tudes [73]. This is also seen in the return time series displayed in Figure 2.1 - periods of high-

*There are mutiple interpretations and stipulations of the EMH – the so-called "weak form" EMH states that
past prices and returns do not influence future price movements.
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volatility tend to persist – as well as periods of low volatility. Considering the autocorrelation

of absolute returns:

f|R|(τ) =
∑

T−τ

t=1
[
|R|(t)−µ|R|

][
|R|(t + τ)−µ|R|

]
∑

T
t=1

[
|R|(t)−µ|R|

]2 , (2.6)

as opposed to the return autocorrelation fR(τ), the absolute return autocorrelation f|R|(τ) will

exhibit positive values over long ranges of lags τ . This is demonstrated in Figure 2.4, which

displays the absolute return autocorrelation function for a set of U.S. stocks over daily time lags.

Figure 2.4: Autocorrelations of absolute linear returns of 600 publicly traded U.S. companies between
2005 and 2020. The dots for each lag τ are the mean and the lines represent the minimum and maximum
autocorrelation for that lag, among all stocks.

The autocorrelation of absolute returns is just one of many ways to quantify and measure

this phenomenon – instead of absolute returns, one could measure the autocorrelation of squared

returns, or the correlations of variance or standard deviation estimates across subsequent time

intervals. Consider the variance σ2
i (t) of each asset i = 1, ...,N, which can be estimated at time

step t using look-back windows of length T and at subsequent time steps t + T , yielding the

estimate σ2
i (t +T ). Figure 2.5 shows these variances for time windows of length T = 1 year

(which is approximately 252 trading days) for over 600 U.S. stock return time series. This

result also confirms the positive association of past volatility with future volatility holds, thus

demonstrating the existence of so-called -ARCH (autoregressive conditional heteroskedasticity)

effects in financial time series [21]. Therefore, although there are no serial correlations, financial

returns are obviously not independent.

This property can be traced to behavioral effects of market participants – when uncertainty

is high, investors are not confident about their valuations and the spread between supply and

demand (bid and ask) is larger [73]. In addition, effects such as herding behavior cause investors

to overreact and drive prices to extremes, also increasing volatility. This phenomenon has been

in the focus of many agent-based models and game-theoretic approaches attempting to provide

12
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Figure 2.5: Variances σ2
i (t) (shown in log-scale) estimated on a T = 6 month period and future 6-month

variances σ2
i (t +T ) of return time series in a dataset of 600 U.S. stocks. The red line represents a simple

model σ2
i (t +T ) = σ2

i (t) (although not necessarily the optimal linear fit). The past 6-month variances
and future 6-month variances are evidently correlated, with Corr

[
σ2

i (t),σ
2
i (t +T )

]
= 0.48.

insight into its origin [74, 75]. Moreover, some results suggest that the volatility dependence

exhibits long-memory properties, meaning that the effects may last for weeks [61, 76].

In addition, not only do the volatilities exhibit long-range memory, but so do the covariances

and cross-correlations between assets [12]. Figure 2.6 displays the subsequent T = 1 year

estimates of crosscorrelations ρi j(t) and ρi j(t+T ) (estimated as the sample Pearson correlation

coefficient) for each pair i, j in the dataset of U.S. stock return time series.

These important statistical findings – the fact that variability and cross-correlations of fi-

nancial asset return time series are autocorrelated and dependent in time – give rise to many

covariance-based methods for risk modelling [77, 78]. Indeed, as seen in this section and the

previous one - the first moment of financial return time series (or, more simply put, their di-

rection) is hard to predict, but the second moment, especially in multivariate cases (which boil

down to the covariance matrices of asset returns) does exhibit memory and can be modelled.

Most financial risk models will therefore not attempt to predict whether stocks will rise or fall,

but rather explain their volatility and cross-correlations, which will generally hold regardless of

their directional changes [75, 79]. Regardless of their predictability, it is also a well-documented

fact the correlation structures in financial markets may change, especially in the presence of

bubbles and crashes [13, 43], and therefore historical windows used to estimate risk models

may only be of limited lengths. This property of memory in correlations structures and the
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Figure 2.6: Cross-correlations ρi j(t) estimated on a T = 6 month period and future 6-month cross-
correlations ρi j(t + T ) of pairs i, j of return time series in a dataset of 600 U.S. stocks. The red line
represents a simple model ρi j(t + T ) = ρi j(t) (although not necessarily the optimal linear fit). The
past 6-month cross-correlations and future 6-month cross-correlations are evidently correlated, with
Corr [ρi j(t),ρi j(t +T )] = 0.54.

aforementioned finite sample issues are some of the essential concepts upon which this thesis

is also built.

2.2.3 Distributions and extreme values

The properties of return distributions have been in the focus of decades of research, and are

still an important topic in modelling financial risk. Some of the first models assume Gaussian

returns, which in turn lead to some elegant mathematical properties and results, such as the

mean-variance analysis [80] or the Black-Scholes pricing model [81]. However, compelling

evidence from the past decades do not support the Gaussian return assumption – on the contrary,

asset returns are known to have excess kurtosis, even when the ARCH effects are taken into

account [21]. Table 2.1 shows the average skewness and kurtosis, as well as the median and the

5th and 95th percentiles for the daily returns of 600 U.S. stocks between 2005 and 2020. The

statistics are calculated for both linear and log-returns. The skewness of a Gaussian normal is

0 and its kurtosis is 3, meaning that these results demonstrate a drastically different distribution

in comparison. The skewness estimates of daily return time series evidently vary over different

stocks, as well as over the return calculation method - this is expected since the linear returns

are usually limited by −100% from below, as opposed to log-returns which are not limited
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(a linear return of −100% corresponds to a log-return of −∞%). In log-returns, the negative

skewness is indicative of the so-called loss/gain asymmetry, meaning that the losses (negative

returns) may be more pronounced than gains, which are more stable [21]. Regarding kurtosis,

it is very similar in both cases, clearly demonstrating how heavy the tails of these distributions

are. Fundamentally, this means that the extreme events are much more likely to happen than

a normal distribution would assume, implying that Gaussian assumptions underestimate these

tail risks [82, 83].

Table 2.1: Skewness and kurtosis statistics estimated on daily linear and log returns of 600 U.S. stocks
from 2005 to 2020.

Linear returns Log-returns

Skewness Kurtosis Skewness Kurtosis

Mean 0.26 21.14 -0.41 21.62

Median 0.18 15.87 -0.30 16.36

5th perc. -0.51 9.06 -1.49 9.08

95th perc. 1.41 45.22 0.35 45.56

These results demonstrate how heavier the tails of the empirical return distributions really

are than the Gaussian normal. In fact, Mandelbrot suggested that returns follow a class of

Levy alpha-stable distributions (of which the Gaussian normal is a special case), which exhibits

power-law tails [84]. However, the inverse cubic law [85], states that the tail of the return

distribution† follows a power-law:

P(X > x) ∝ x−α , (2.7)

where the exponent α is found to be around 3 (for the pdf this is equal to 4), which is outside

the Levy regime (0 < α ≤ 2). This finding holds for a number of different asset classes, such

as stocks [87] or financial market indices [88]. Although some results find different power-law

exponents in other assets, such as 2 < α < 2.5 for the cryptocurrency market [89], the fact

that these price fluctuations still exhibit power-law tails remains [90]. An example of this phe-

nomenon is shown in Figure 2.7, for the Bitcoin-USD pair on several cryptocurrency exchanges

[89], with the dashed lines correspond to the fitted power laws, all of them remarkably close.

This important empirical fact means that, even though the tails are much heavier than those

of the Gaussian normal distribution, they have finite variances – a crucial assumption for many

†although the methodologies vary, the "tail" of these distributions is considered to begin after 2 or 3 standard
deviations. For a comprehensive review on estimating power laws in empirical data , see [86].
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Figure 2.7: Negative (left) and Positive (right) tails of the cumulative distribution for the Bitcoin returns
on several different exchanges (Bitfinex, Bitsamp, BTC-e, Kraken, and Mt. Gox) and the time scale of
∆t = 1 min. The black dashed lines correspond to the fitted power-law distributions for the return tails of
the considered exchanges and the black full line is the cumulative distribution function of the standard
normal 𝒩 (0,1).

volatility and covariance-based risk measures. The power-laws in the financial return distri-

bution tails have been in the focus of many statistical and physical models, explaining this

phenomenon by the distribution of wealth, market impact, or herding behavior of market par-

ticipants [61, 91]. However, it is also important to note this behavior is more specific to the

higher-frequency returns and that, as the time step δ is increased, the tail power-law may be

less pronounced [87], and some other statistical properties may approach those of the Gaussian

distirbution [21]. Nevertheless, the heavy tails and extreme values of financial returns are ob-

served at all relevant time scales and remain a key component in modelling returns and financial

risk [92].

2.3 Multivariate financial time series and risk modelling

Since risk is primarily proxied by uncertainty in the change of asset prices it is most commonly

quantified using the dispersion of returns. This is primarily measured as the volatility (the stan-

dard deviation of financial returns) σ , but other common measures include Value-at-Risk (VaR),

Conditional Value-at-Risk (CVaR) and maximum drawdown [93]. The X% VaR is defined as

the X th percentile of the return distribution - in other words, the largest possible loss excluding

the worst X% cases. The X% CVaR (also known as expected shortfall) is defined as the mean

return within the X th percentile - in other words, the expected loss in the worst X% cases. The

maximum drawdown is simply the largest amount an investor could use on a given time frame,

from peak to bottom. These measures focus more on the negative side and tail properties of

the distributions, thus portraying a more accurate image of risk than volatility. However, all of
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them require larger amounts of data and better knowledge of financial distributions, since they

are estimated using only a fraction of the return realizations. For parametric and symmetric

distributions, all of these are uniquely defined by the variance. In addition, return variance and

covariance have very elegant statistical properties in terms of multivariate risk models, as will

be seen in the following section. Therefore, in most practical applications, volatility and vari-

ance are commonly used as risk measures, and risk models are primarily tasked with explaining

the variability of returns.

2.3.1 Return covariance and correlation

In risk modelling applications, especially for asset management and portfolio optimization, the

focus is on a multivariate set of financial security return time series, representing the assets in a

considered market or investable security universe. Understanding the co-movement of financial

asset prices is crucial for modelling the potential downside movements and managing the risk

of financial portfolios. For the remainder of this thesis, let XXX ∈ RT×N denote the matrix of N

time series of linear asset returns of length T . A central component in modelling the variablilty

and the dependence structure of the considered assets is the covariance matrix:

Q = (σi j)N×N , σi j = Cov(Xi,X j), (2.8)

where Xi ∈ RT is the vector of returns of asset i. The sample estimate of the covariance matrix

is most commonly obtained using the unbiased estimator

σ̂i j =
1

T −1

T

∑
t=1

(Xti− µ̂i)(Xt j− µ̂ j), (2.9)

where µ̂i is the sample mean of Xi. However, this may not necessarily be the most efficient es-

timator in the presence of stochastic volatility, ARCH effects, and considering that the financial

time series may have some specific patterns in dependence structures, which will be discussed

in the following sections and chapters of this thesis. In addition to the sample covariance matrix,

another important tool in modelling the dependence structures of multivariate asset return time

series is the correlation matrix

R = (ρi j)N×N , ρi j = Corr(Xi,X j), (2.10)

obtained from sample data using the unbiased estimator

ρ̂i j =
1

T −1

T

∑
t=1

(Xti− µ̂i)(Xt j− µ̂ j)

σ̂iσ̂ j
, (2.11)
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where σ̂i is the sample standard deviation of return time series of asset i. As opposed to the

covariance, which has the individual asset variances σii = σ2
i on the diagonal, the correlation

matrix is normalized by the asset variances, which in turn makes all the diagonal elements

equal to 1. The asset covariance and correlation matrices (which can be thought of as a special,

standardized case of the covariance) have some important universal properties. Firstly, they are

always symmetric, since σi j = σ ji and ρi j = ρ ji. Due to this, they are always positive semi-

definite, meaning that their eigenvalues are non-negative. In addition, a sample estimate of

the covariance/correlation matrix from data X ∈ RT×N will be of rank min(N,T ). This means

that the estimated N×N covariance matrices will be of full rank N when there is enough data,

i.e. when T ≥ N – and in that case the estimates will be positive definite (all eigenvalues will

be strictly positive). This is important, since many parametric modelling approaches such as

maximum likelihood require the inverse of the covariance matrix, also known as the precision

matrix – it will not universally exist if the matrices are not positive definite.

When modelling financial risk, the asset variances and cross-correlations are usually esti-

mated on windows of historical data, assuming that the estimated models will hold in the near

future, owing to the long-range memory properties. However, due to the dynamic nature of

financial markets, the historical windows on which risk models are estimated cannot be very

long. Even though volatility and cross-correlations are known to exhibit long-range dependen-

cies, they are limited and do not last indefinitely [12]. To demonstrate this in the U.S. stock

return time series, the results in Figures 2.5 and 2.6 can be extrapolated to different time lags

than just two subsequent 6-month periods. Specifically, the variances σ2
i (t) for each asset i and

cross-correlations ρi j(t) for each pair i, j are estimated on rolling windows t−T, ..., t of length

T = 1 month. By doing so, for each time step t at which the correlations are calculated, the

vectors σσσ(t) = [σ2
1 (t), ...,σ

2
N(t)] and ρρρ(t) = [ρ1,1(t), ...,ρ1,N(t),ρ2,1(t), ...,ρN,N(t)] are defined.

Then, for a given time lag τ , the average correlation f (τ) between σσσ(t) and σσσ(t + τ) (as well

as ρρρ(t) and ρρρ(t + τ)) can be calculated. Figure 2.8 displays these average correlations for the

individual asset variances across a range of time lags τ up to 60 months (5 years).

It is evident that there is some pronouced autocorrelation (memory) in the subsequent es-

timates, as well as estimates for up to 2 years (24 months). However, after this period, the

correlations fade and indicate that past variances are not as useful for modelling the future be-

yond several years. Moreover, this effect is seems to be even stronger in Figure 2.9, where the

correlations of the cross-correlation estimate fade even quicker and seem to be very low after 1

year.

These results are in line with other recent research, suggesting that financial markets may

exhibit dynamic changes to the underlying dependece and correlation structures between assets

[13, 43]. These are intrinsically related to the multivariate models of financial risk, especially

when they are estimated using historical return data. A way to model these dynamic properties
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Figure 2.8: Correlations of the individual asset return variances estimated for 600 U.S. stocks on a
rolling window of T = 1 month, for a range of time lags τ up to 60 months (5 years). The y-axis is
shown in log-scale.

Figure 2.9: Correlations of the pairwise asset cross-correlations estimated for 600 U.S. stocks on a
rolling window of T = 1 month, for a range of time lags τ up to 60 months (5 years). The y-axis is
shown in log-scale.

are the multivariate ARCH-type models [94]. These models have many different forms [95, 96],

all of which model the dynamic covariance matrices as autoregressive processes, while param-

eterizing the model and ensuring their positive semi-definiteness in different ways. However,

most of these (unless they focus on low-rank representations, which will be in the focus of

the next chapter of this thesis), come with an order of magnitude of N2 parameters [94], and

quickly become computationally infeasible when the number of time series N is large. For these

reasons, rather than modelling their dynamic properties, high dimensional covariance and cor-

relation matrices are most commonly estimated on a fixed estimation windows and are assumed

to hold in the near future. Since the estimation windows may only be of limited length and since

the number of assets in modern risk management applications is high, certain estimation issues

arise, which will be discussed in the following section.
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2.3.2 High-dimensional estimation issues

The development of financial technology, securitization, and globalization of financial markets

have sparked an unprecedented growth in the number of investable assets. This drastically in-

creases the dimensionality of many risk modelling problems, while the estimation windows re-

main of limited length, as seen in the previous section. Thus the number of time series N will in

most cases be commensurate to their length T , or even higher. The estimation problems of such

high-dimensional covariance matrices are most commonly observed by analyzing their spectra,

mainly stemming from the field of random matrix theory [15, 97]. A cornerstone of this entire

approach is the Marčenko-Pastur law [98], which provides a theoretical distribution of the spec-

tra of high-dimensional covariance estimates. Consider a random vector Xt
i.i.d.∼ 𝒩 (µµµ,IN×N).

The true covariance is an identity matrix IN×N , but its sample estimates will differ depending

on the amount of data. In fact, the spectra of the covariance estimates will follow a specific

distribution which is parameterized only by the ratio q = N/T where N is the dimensionality

of the data (number of assets) and T is the number of data points (the length of sample time

series). In the limits N→+∞ and T →+∞, when 0 < q < 1, the distribution density function

reads:

fMP(λ ) =

√
(λ+−λ )(λ −λ−)

2πqλ
, λ ∈ [λ−,λ+], (2.12)

where λ− and λ+ are the lower and upper bounds of the spectrum:

λ± = (1±√q)2. (2.13)

This means that, depending on the length of time series T , the estimated covariance matrix

spectra will be somewhat blurred as opposed to the true eigenvalues. This can be seen in Figure

2.10, where the Marčenko-Pastur distribution is displayed for different values of the dimension-

ality ratio q together with the true eigenvalues (which are all equal to 1). A striking fact, visible

in these results, is that the spectrum is already very broad for q = 0.25 - meaning that even if

T = 4N, the estimates are still not very accurate (estimated eigenvalues ranging form 0.25 to

2.25). Moreover, when the ratio q approaches 1, the estimated spectrum becomes very wide

and there is a bulk of eigenvalues very close to 0, which may result in numerical instabilities.

An important consequence of the Marčenko-Pastur law is the fact that the sample eigenval-

ues are bounded. However, as seen in the previous Figure, these bounds diverge very quickly

as q approaches 1. To illustrate this, Figure 2.11 displays the density function of the eigenvalue

distribution according to the Marčenko-Pastur law, for values of q between 0 and 1. As the ratio

q approaches 1 (i.e. as the number of time series N approaches their length T ), the covariance

estimate eigenvalues diverge and their lower limit quickly approaches 0. As stated above, for

N > T , the covariance estimates will be of rank T , and exactly N−T eigenvalues will be equal
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Figure 2.10: The theoretical Marčenko-Pastur distributions for different values of the dimensionality
ratio q = N/T , together with the true eigenvalues, which are in this case all equal to 1.
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Figure 2.11: The normalized densities of sample eigenvalues following the Marčenko-Pastur law for
different values of of the dimensionality ratio q = N/T . The area outside the [λ−,λ+] range is not
colored (white).

Similar results have also recently been obtained for the Student’s t-distributed data [99] and

for low-rank matrices with additive noise [100]. Evidently, when the ratio q is not vanishingly

small (i.e. when N i commensurate to T ), the sample covariance estimates are not trustworthy.

This issue becomes even more pronounced when considering high-dimensional financial re-

turns which are not independent variables, but have a specific correlation structure and common

components. In this case, the theoretical bounds of the Marčenko-Pastur law are often used

to discern between the eigenvalues (and their respective eigenvectors) representing meaningful

data, and those attributed to the noise [42]. However, since financial return time series have

distributions with heavy tails and extreme values, the spectra of empirical return correlation
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and covariance matrices are even more dispersed in high-dimensional situations [99]. These

issues make the usage of methods relying on sample distributions (such as maximum likelihood

estimation) impractical and may have severe consequences on any risk management applica-

tions relying on these estimates. Thus, the focus of modern estimation methods and models is

on increasing the robustness of high-dimensional covariance and correlation estimates, while

reducing the number of parameters and regularizing the estimation procedures [101].

2.3.3 Shrinkage estimation

To combat the estimation issues in high-dimensional financial covariance matrices, a number

of shrinkage (regularization) methods have been proposed. In a bias-variance tradeoff sense,

the shrinkage estimation of covariance matrices reduces the sensitivity of the estimates to the

high-dimensionality issues at the expense of introducing some oversimplifications or model

bias [102]. Some basic shrinkage methods focus directly on the covariance matrix estimate, by

altering the empirical estimate towards a shrinkage target. A linear shrinkage estimator is given

by:

Q(shrinkage) = αQ̂+(1−α)Q(target), (2.14)

where Q̂ is the sample estimate and Q(target) is the shrinkage target. The basic linear shrink-

age estimator has a diagonal matrix with individual sample variances on the diagonal as the

shrinkage target

Q(target) = diag(σ̂2
1 , ..., σ̂

2
N). (2.15)

By reducing the off-diagonal estimates towards zero, the final covariance estimate is regularized

and large off-diagonal elements are avoided.

A somewhat more advanced estimator uses the constant correlation model for the shrinkage

target, where the off-diagonal elements are calculated assuming a fixed correlation for all pairs,

calculated as the average pairwise correlation

σσσ
(target)
i j = σ̂iσ̂ jρ, ρ =

2
N(N−1)

N

∑
i=1

N

∑
j=i+1

ρi j. (2.16)

This estimator has been found to improve portfolio optimization based on high-dimensional

covariance estimates, with resulting portfolios being more diversified and exhibiting less risk

out-of-sample [103].

Another popular approach is to take advantage of the so-called market mode in financial

data – the eigenvector u1 corresponding to the largest eigenvalue λ1 of the sample covariance

matrix [99, 104]. This eigenvector represents the market factor, to which all of the securities in

a given market are exposed and is often the strongest factor in financial markets. An estimator
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for the high-dimensional covariance matrix would then shrink the sample estimates towards the

single-index model covariance [49]:

Q(target) = u1λ1uᵀ
1 +ΨΨΨ, (2.17)

where ΨΨΨ is a diagonal matrix of the residual variances, such that the diagonal of Q(target) is the

same as that of Q̂. This estimator has been found to perform very well when considering large

portfolios of assets from a given market [105]. This is an elegant and simple way to statistically

exploit the fact that all securities in a given market are known to be exposed to the market factor

(one of the fundamental findings of pricing models [106]). However, it is also a known fact that

other risk factors may explain significant amounts of variance in returns [4]. Moreover, when

considering securities belonging to different asset classes and various markets, the single factor

assumption does not hold.

In recent years, more advanced estimators have been proposed, following either model-

free or model-based approaches. Model-free methods do not assume an underlying model for

the observed time series realizations, and instead focus on the spectral properties of the high-

dimensional sample covariance matrices, mostly building on the tools from random matrix the-

ory (RMT) [15, 107]. A most notable method is the rotational invariant estimator by Bun et

al. [108]. This estimator focuses on the bulk of small eigenvalues, since they tend to be un-

derestimated by the sample estimator. This is verified by comparing the in-sample estimates

of the eigenvalues λ with their respective out-of-sample (oracle) estimates ξ , as seen in Fig-

ure 2.12. The oracle estimates are obtained as the out-of-sample variances of the respective

eigenvectors (which are estimated in-sample). The figure, displays a non-linear phenomenon in

the relationship between the in-sample eigenvalue estimates and their oracle values, suggesting

that the very smallest eigenvalues (between 0 and 0.5) may be overestimated, while the bulk of

the small eigenvalues are underestimated (they are below the dashed line). The RIE estimator

builds on tools from RMT and delivers an estimator which corrects these estimates, without

changing the eigenvector estimates or assuming an underlying model [109].

Some methods focus on unsupervised learning for detecting more complex correlation struc-

tures in the data, but do not associate them with a specific model of the observed time series

[42, 48, 110]. Among these, the eigenvalue clipping approaches, as opposed to the RIE estima-

tor, focus on the largest K eigenvalues in the data, preserving them while altering (clipping) the

rest:

Q(clip.) =
N

∑
k=1

ξ
(clip.)
k ukuᵀ

k , ξ
(clip.)
k =


λk, if k ≤ K

γ, otherwise
, (2.18)

where uk and λk are eigenvectors and eigenvalues of the sample covariance Q̂, sorted by de-
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Figure 2.12: The eigenvalues of the correlation matrices of 600 U.S. stocks estimated on a rolling look-
back window of T = 3 years and a look-ahead window of T ′ = 2 months for the oracle eigenvalues. The
pale grey and blue dots represent the oracle and RIE estimates for the entire sample, and the averages for
each eigenvalue are displayed in black squares (oracle) and blue circles (RIE).

scending eigenvalue magnitude, and γ is a constant calculated as the mean of the remaining

eigenvalues (k > K), to preserve the matrix trace. The number of eigenvalues K to keep can

be estimated using various estimators for the number of components in the data, including

the Marčenko-Pastur (MP) threshold. Although it corrects the smaller eigenvalues, this method

may yield varying results, depending on the noise present in the eigenvectors associated with the

smallest eigenvalues. Nevertheless, estimators using eigenvalue clipping as one of the shrink-

age targets have been shown to yield relevant estimates which help improve the properties of

the optimal portfolios based on these matrices [110].

Another approach focuses on the clustering property of financial securities, which have

been shown to form groups, depending on their industry classification, asset class or country

of origin [42, 45]. Begušić and Kostanjčar [48] propose a cluster-based shrinkage target which

combines a clustering procedure and the constant correlation method. Specifically, assets are

clustered into a number of clusters K (also estimated using the MP threshold from the empirical

correlation matrix). Then, the correlations within each cluster are estimated as the average

pairwise correlation of all assets within the cluster and he correlations between two clusters

as the average pairwise correlation of all assets in the two clusters. This target correlation

matrix is shown in Figure 2.13, together with the original empirical estimate. By clustering the

data, the cluster structures in the empirical matrix (Figure 2.13a) are uncovered in the block-

structured target matrix (Figure 2.13b). The final shrinkage estimator is then defined as a linear

combination of these two.
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(a) Empirical estimate of the correlation matrix.
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(b) Shrinkage target.

Figure 2.13: The empirical estimate and the shrinkage target for the 600 U.S. stock returns, using the
cluster-based shrinkage approach.

Shrinkage estimators can be used to facilitate likelihood-based methods for estimation of

other models, such as latent factor models. Alternatively, factor models may also be used to

obtain better estimates of the covariance and correlation matrices by exploiting the knowledge

of the underlying factors driving observed security returns. Thus, the estimation of latent factors

in high-dimensional data may also be seen as a model-based approach to the estimation of high-

dimensional covariance and correlation matrices. The following chapter contains a deeper look

into the latent factors in security returns and the estimation of latent factor models from sample

data.
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Chapter 3

Latent factor estimation in financial time
series

3.1 Factor models in finance

The existence of a number of risk factors which drive the observed security returns has been

a well-documented fact in finance. Different approaches to factor modelling rely either on

observable factors such as macroeconomic time series (inflation, productivity, GDP, etc.), the

market return (the returns of a broad market index), or try to find and estimate these factors

from the data (which can include fundamental firm-level characteristics or just price data). The

estimation of risk factors and modelling their impact on returns of securities has been gaining

increased attention in the financial academic community as well as in the financial industry,

especially asset management. Some of the first approaches to factor modelling come from the

area of asset pricing, focusing mostly on explaining the so-called cross-section of expected

returns. Building on the seminal work of Markowitz [80] and his modern portfolio theory,

the capital asset pricing model (CAPM) has been a cornerstone of financial risk modelling for

decades [106]*. CAPM models the expected return of a security or a portfolio of securities

by their exposure to the market rate of return: E[Ri] = R f + βi(E[Rm]−R f ), where R f is the

risk-free rate of return and Rm is the market return. The risk model associated with CAPM is

the Sharpe single-index model:

Ri−R f = α +β
(M)
i (Rm−R f )+ ei. (3.1)

The only factor modelling the returns Ri of asset i is the so-called market factor, expressed as

market return Rm. The important stipulation of this model is that a long-only portfolio of secu-

rities can diversify the idiosyncratic sources of risk (individual asset risk), but can not diversify

*Harry Markowitz, William Sharpe, and Merton Miller shared the 1990 Nobel Memorial Prize in Economics
for this contribution to financial economics.
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the systematic risk (which all of the securities in the portfolio are exposed to). Regarding ex-

pected returns and the CAPM, the model implies that the exposure to the systematic market risk

is rewarded by harvesting the market risk premium. The higher the βi, the more systematic risk

a security will assume, and the higher its rate of return should be. However, empirical evidence

shows that this may not always be the case [9], ranging from the low-volatility premium [111]

(the fact that low-volatility stocks do not exhibit lower returns as expected by the CAPM), or the

existence of multiple factors in the returns of financial securities [4]. Since the introduction of

CAPM, new factor models have been proposed, following one of three main approaches [36]:

macroeconomic, fundamental, and statistical (latent).

Macroeconomic factor models focus on estimating the impact of observable economic fac-

tors such as inflation, interest rates or other macroeconomic data on the security returns [112].

The factors are known and measurable, and are assumed to represent the main sources of risk

to which the securities are exposed. However, the macroeconomic factors may not be respon-

sible for the risk in all securities and markets, and their view may be limited – nevertheless,

the macroeconomic risk factors are often included or identified in other types of factor models

[113]. The somewhat more prominent fundamental and latent factor models are described in

more detail in the following sections.

3.1.1 Fundamental factor models

Fundamental factor models focus on some economic properties of financial assets (mostly ap-

plied to stock and bond returns) – for instance the book value, market capitalization or other

company characteristics [4, 114]. These models often include the market factor from CAPM,

while the other factors are known and defined upfront (for instance, size, value, investment,

etc.) – however, they are not directly observable. To estimate their realizations, stocks are

sorted by their firm-level characteristics (for the size factor this is the market capitalization of

the company). Long-short portfolios are formed which have a long position in the top fraction

(often around 30%) and a short position in the bottom fraction of the stocks (for instance, the

size portfolio is long the smallest 30% companies and short the largest 30%). The returns of

these theoretical portfolios are then used as proxies for the factor realizations. Since the factor

portfolios are zero-investment (the net sum of weights is 0), they are usually uncorrelated to the

market portfolio, which is a convenient statistical property for the estimation of factor loadings.

Another important property of these models is that the factors are required to exhibit statisti-

cally significant positive mean returns, which implies that they deliver a premium for the risk

they exhibit – this property is mainly important for asset pricing studies, which focus on the

expected returns of securities on the long run [35, 115]. A very well-known fundamental factor
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model is the Fama-French 3 factor model†:

Ri−R f = α +β
(M)
i (Rm−R f )+β

(S)
i SMB+β

(V )
i HML+ ei, (3.2)

which includes the idiosyncratic component ei, market factor Rm, size factor SMB and the value

factor HML (obtained as the return of the long-short portfolio of assets sorted according to

the book-to-price ratio)[116]. A similar model has also been proposed for the bond returns,

with maturity and and default risks instead of size and value [4]. Lately, more elaborate and

complex fundamental factor models have been proposed, with the addition of new factors such

as momentum, profitability, investment, or others [6, 117, 118, 119, 120]. Recent years have

also seen debates on whether the positive expected risk premia of certain factors still exist, or

even if they existed in the first place [7].

Another fundamental factor approach is the BARRA risk model [121], which uses firm-

level characteristics directly as factor loadings. For instance, the BARRA industry factor model

will have a number of factors equal to the number of underlying industry sectors in the market,

and the individual stocks will have factor loadings set to 1 only in those sectors with which

the stocks are associated, and 0 otherwise. These factor loadings are then used to estimate

factor realizations in a regression setting – somewhat inverse of what the Fama-French approach

(where the factor realizations are estimated first, and then used to estimate factor loadings).

The fundamental factor approach to modelling financial returns has also gained a lot of at-

tention in the financial industry, in the light of so-called smart beta strategies, which focus on

harvesting the factor risk premia while diversifying other sources of risk [122]. In addition,

this approach has also been applied to other markets, such as the cryptocurrency market [123].

However, the debates on the many proposed factors are still unresolved [124], with new sta-

tistical evidence suggesting that many of them are either redundant or statistically insignificant

[125]. In addition, the information required for estimating fundamental factors is not always

available for every security (i.e. commodities, derivatives or certain ETFs or indices may not

have the fundamental firm-level characteristics similar to those of stocks), meaning that these

standard approaches may not be universally applicable.

3.1.2 Latent factor models

Strict factor models

In latent factor models, the factors are both unknown and unobservable, i.e. latent. This means

that the both the factor realizations and the exposures of securities to these factors need to be

estimated from the data. Latent factor models can be thought of as an unsupervised dimension-

†For this contribution to financial economics, Eugene Fama shared the 2013 Nobel Memorial Prize in Economic
Sciences.
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ality reduction technique for uncovering a set of variables ft1, ... ftk explaining the variance in

the observed security returns xt1, ...,xtN at time step t, where the dimension K is lower than N.

The most common form of factor models is a linear factor model:

xti =
K

∑
k=1

ftkbik + eti, (3.3)

where bik is the factor loading of time series i to factor k. The residual term eti is also known

as the idiosyncratic component and represents the individual source of risk, uncorrelated with

the common factor risk. Note that this formulation does not include an explicit intercept term

(sometimes also called alpha), similar to the CAPM model, but unlike the Fama-French model.

In fact, while some latent factor models include an intercept term, others explicitly omit it, and

model the expected returns only through the expected factor returns [126, 127]. Moreover, some

latent factor models are estimated by de-meaning the data first, thus leaving no means in the

cross section of returns to be explained by the factors. The model (3.3) can also be stated in

matrix form:

XXX
T×N

= FFF
T×K

BBBᵀ

N×K
+ eee

T×N
, (3.4)

where T is the length of the observed return time series. Latent factor models belonging to the

class of strict factor models assume the following [93]:

(i) The factor covariance QQQ(F) = Cov(F) is positive-definite,

(ii) The idiosyncratic components eee = [e1,e2, ...,eN ] are zero-mean and uncorrelated, mean-

ing that the covariance matrix ΨΨΨ = Cov(eee) is a diagonal matrix with idiosyncratic risks

on the diagonal,

(iii) Cov(FFF ,eee) = 0.

The first assumption is necessary for the estimation of latent factor models – in case of (multi)colinearity

in factors (i.e. a positive semi-definite factor covariance), the estimates of the loadings matrix

would not be computationally stable. Although the orthogonality assumption on the idiosyn-

cratic components does not necessarily mean independence, if their distribution were Gaussian,

this would also imply independence. The final assumption is a consequence of the regression

of XXX against FFF – in other words, no information which could be explained by FFF could be left

over in the residuals eee. If the assumptions (i) and (ii) hold, the model-implied data covariance

matrix can be expressed in the following form:

Cov(XXX) = QQQ = BBBQQQ(F)BBBᵀ+ΨΨΨ. (3.5)

The first component BQQQ(F)BBBᵀ is an N ×N matrix of rank K (thus, a low rank component),

while the idiosyncratic covariance ΨΨΨ is diagonal (and therefore of full rank), as stated in the

assumptions. The resulting matrix QQQ is full rank and positive definite. This model is called strict
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(a) BBBQQQ(F)BBBᵀ (b) ΨΨΨ (c) BBBQQQ(F)BBBᵀ+ΨΨΨ

Figure 3.1: The low-rank common component (a) and the idiosyncratic component (b) of the data co-
variance matrix (c), for a linear factor model.

because all cross-correlations in return time series are exclusively explained by the common

factors, whereas the idiosyncratic components are uncorrelated [127]. This means that the

variance of each time series is decomposed into two components: (i) the variance explained by

common factors; (ii) idiosyncratic variance, as shown in Figure 3.1.

Moreover, whereas the common variance component BBBQQQ(F)BBBᵀ can be identified uniquely,

the factor realizations and loadings can only be estimated up to an orthogonal rotation. Specifi-

cally, for any non-singular rotation matrix HHH, the common variance component calculated from

the rotated factors FFFHHH is the same (since HHHᵀHHH = I), but the factor realizations are evidently

not. This property (also known as rotational indeterminacy) is simply stated as:

FFFBBBᵀ = F̃FFB̃BBᵀ
, F̃FF = FFFHHH, B̃BB = BBBHHH−1. (3.6)

Owing to this property, the factor covariance can often be set to: QQQ(F) = IIIK , but this may not

necessarily be the case in all applications.

To estimate strict factor models, several approaches may be applied, the most common being

principal axis, least squares, and maximum likelihood. The principal axis method focuses on

the so-called reduced correlation matrix of the data [128]. Where the correlation matrix R

has all diagonal elements equal to 1, each diagonal element of the reduced correlation matrix

R(RCM) is equal to the percentage of the variance explained by the common factors. This matrix

is initialized as:

r(RCM)
i j =

ri j, i ̸= j

1−1/r′ii, i = j,
(3.7)

where R′ = R−1 is the inverse of the correlation matrix R. This initialization in used in order to

remove the influence of the idiosyncratic components. The method then uses the eigendecom-

position of the reduced correlation matrix to obtain the low-rank factor representation:

RRR(RCM) =UUUDDDUUUᵀ, (3.8)
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where the matrix UUU contains the eigenvectors of RRR(RCM) and DDD is a diagonal matrix with the

respective eigenvalues on the diagonal. The factor loadings matrix for the K factors is estimated

as B̂BB=UUU (K)
√

DDD(K), from the K eigenvectors corresponding to the largest eigenvalues. Although

the reduced correlation matrix is not necessarily positive-semidefinite and all of its eigenvalues

are not non-negative, the largest K eigenvalues should be positive if the factor model holds.

Then the new reduced correlation matrix is calculated as RRR(RCM) = UUU (K)DDD(K)UUU (K)ᵀ and the

process is repeated until convergence. The estimated factor loadings B̂BB obtained this way can

be used to calculate the factor realizations from the data:

F̂FF = XXXB̂BB(B̂BB
ᵀ
B̂BB)−1. (3.9)

Since K < N, the K×K matrix B̂BB
ᵀ
B̂BB is of full rank and its inverse exists.

The the maximum likelihood (ML) and ordinary least squares (OLS) approaches both focus

on minimizing respective loss functions. First, without loss of generality, the factor realizations

are assumed to have an identity covariance: an assumption is made on the factor realizations,

namely: QQQ(F) =Cov(FFF) = IIIK . Owing to this, the covariance matrix of the data can be expressed

as:

QQQ = BBBBBBᵀ+ΨΨΨ. (3.10)

The ML approach is most commonly used with a Gaussian i.i.d. (no autocorrelation in the time

series) assumption:

f (Xt) =
1√

(2π)N |QQQ|
exp

[
−1

2
(Xt−µµµ)QQQ−1(Xt−µµµ)

]
. (3.11)

The ML estimates are obtained by maximizing the likelihood of the parameters in BBB and ΨΨΨ

given the observed data XXX . The reduced form of the log-likelihood loss function reads:

LL(ML)(BBB,ΨΨΨ;XXX) =−T
2

[
ln(BBBBBBᵀ+ΨΨΨ)+ tr((BBBBBBᵀ+ΨΨΨ)−1Q̂QQ)

]
, (3.12)

where Q̂QQ is the sample covariance matrix. This log-likelihood function is usually maximized

using iterative EM-type procedures [30].

On the other, hand, OLS estimates are obtained without the assumptions on the data distri-

bution, but rather by minimizing the following loss function:

L(OLS)(BBB,ΨΨΨ;XXX) = tr [(QQQ−BBBBBBᵀ−ΨΨΨ)ᵀ(QQQ−BBBBBBᵀ−ΨΨΨ)] . (3.13)

This loss function amounts to the sum of all squared differences between the elements of the

sample covariance matrix and the model-implied covariance matrix with a latent factor structure

[129].
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In certain cases, both OLS and ML are applied to the data covariance matrix, with the esti-

mated factor loadings used on the non-scaled original data XXX to calculate the factor realizations,

as in (3.9). It has been argued that the ML estimator will generally focus more on fitting larger

correlations better, whereas the OLS estimator will attempt to fit all of the off-diagonal elements

equally well [130]. This was also confirmed by the findings that the OLS estimator outperforms

ML in recovering weak common factors (those that do not explain large amounts of variability

in the data and their respective factor loadings are of a smaller magnitude) [130].

Approximate factor models

Strict factor models are a mathematically tractable and elegant way of explaining the common-

alities in the data and decomposing the variance. However, the assumptions of the strict factor

model may not hold in empirical data. Specifically, the assumption (ii) of uncorrelated residuals

is very often violated, due to certain structural properties of the data which cannot be explained

by common factors. For instance, in financial security return data, two securities may represent

two classes of shares of the same company (for instance, BRK-A and BRK-B represent the

A-class and B-class shares of the Berkshire Hathaway company). They are evidently connected

through a commonality specific to them - this connection cannot be explained by common fac-

tors since none of the other assets are exposed to this specific factor, but the assumption of

uncorrelated idiosyncratic components also does not hold. The reality is: they are both exposed

to a very specific factor which only affect these two companies and emerges as a correlation

of their residuals beyond the correlations explained by the common factors. These factors are

sometimes labeled as narrow, since they affect few securities, as opposed to broad (pervasive)

factors. A more suitable set of assumptions for modelling such realities comes in the form of

approximate factor models [131].

An approximate factor model is still assumed to be a linear factor model of the form:

XXX = FFFBBBᵀ+ eee. (3.14)

However, instead of the original strict factor model assumptions, the assumptions of the approx-

imate factor model are somewhat relaxed. The following assumptions are made:

(i) Factors and factor loadings:
• Factors have finite variance and positive definite covariance: Cov(FFF) = QQQ(F) ≻ 0.

• Each factor has a non-trivial contribution to the variance of XXX – factors are pervasive,

and BBBᵀBBB≻ 0.

(ii) Idiosyncratic components:
(a) Zero-mean idiosyncratic components: E [eti] = 0 with finite variance.

(b) Weak temporal and cross-sectional dependence allowed:
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• E
[ 1

N ∑
N
i et,ies,i

]
= γN(s, t), |γN(s,s)| ≤M,∀s and 1

T ∑
T
s ∑

T
t |γN(s, t)| ≤M

• E
[
et,iet, j

]
= τt,i, j, |τt,i, j| ≤ |τi, j|, 1

N ∑
N
i ∑

N
j |τi, j| ≤M

• E
[
et,ies, j

]
= τt,s,i, j,

1
NT ∑

N
i ∑

N
j ∑

T
t ∑

T
s |τt,s,i, j| ≤M

• E
[∣∣∣ 1√

N ∑
N
i (et,ies,i−E [et,ies,i])

∣∣∣4]≤M, ∀t,s

(iii) Weak dependence between factors and idiosyncratic components:
E
[

1
N ∑

N
i || 1√

T ∑
T
t fff tet,i||2

]
≤M

This set of assumptions allows for cross-sectional dependence and heteroskedasticity of

idiosyncratic components, which is much closer to the reality of financial time series. These

off-diagonal elements of the idiosyncratic covariance matrix ΨΨΨ can not be a consequence of

pervasive common factors, but rather sparse effects of very narrow (weak) factors. In terms

of the data covariance matrix spectrum, the common factors emerge as diverging eigenvalues

which grow with the growth of N. In approximate factor models, the eigenvalues belonging

to the idiosyncratic part of the spectrum are allowed to grow, but will be bounded since they

represent weak factors affecting only a limited number of time series, the number of which

grows much slower than N. In addition, these conditions imply that idiosyncratic risks are

diversifiable when considering a well-diversified portfolio www = [w1, ...,wN ] of a large number of

assets [127]:

lim
N→∞

wwwᵀ
ΨΨΨwww = 0, lim

N→∞
wwwᵀwww = 0. (3.15)

The well-diversified condition means that the portfolio must not be concentrated in a small

number of securities, and is stated in the expression above as the condition: wwwᵀwww = 0. Note

that these results rely on the assumption that the number of assets N is sufficiently large - it is

however fortunate that this assumption mostly holds when considering large datasets of globally

traded financial securities.

To estimate approximate factor models, a principal components estimator‡ is most com-

monly applied, which considers a squared Frobenius norm of the residuals as a loss function:

L(PC) =
1

NT

N

∑
i=1

T

∑
t=1

(Xit− F̂FF t B̂BB
ᵀ
i )

2 =
1

NT
||XXX− F̂FFB̂BB

ᵀ||2F . (3.16)

Under the assumption that the factors are orthogonal FFFᵀFFF
T = IIIK , the problem becomes equivalent

to the maximization of tr(FFFᵀ(XXXXXXᵀ)FFF) under the above condition [20]. The solution to this

problem, if the matrix BBBᵀBBB is also diagonal, is given by the spectrum of the matrix XXXᵀXXX
T . The

‡Bai and Ng [20] define two estimators: PC (principal components) and APC (asymptotic principal compo-
nents), but they are shown to be equivalent up to an orthogonal rotation and the difference is in computational
characteristics.
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Figure 3.2: An autoencoder-type view of the latent factor model where the original higher-dimensional
space of the data XXX is encoded into a lower-dimensional latent factor space F̂FF , from which the recon-
struction X̂XX can be obtained.

estimator for the factor loadings matrix and the factor realizations is:

B̂BB =UUUK
√

DDDK

F̂FF = XXXB̂BB(B̂BB
ᵀ
B̂BB)−1 = XXXUUUK

√
DDDK
−1
,

(3.17)

where UUUK are the K eigenvectors corresponding to the largest K eigenvalues of the matrix
XXXᵀXXX

T , which are also the diagonal elements of the diagonal matrix DDDK . Although there are

many other formulations for the PC estimator [20, 132, 133, 134], in this thesis this specific

formulation is chosen in order to have the factor loadings estimates depend on the in-sample

covariance structure, and only the factor realizations estimates depend on the data realizations

XXX . By doing so, an autoencoder-type view on the latent factor model can be considered. The

encoder function transforms the N-dimensional data space into a K-dimensional latent factor

space F̂FF = XXXB̂BB(B̂BB
ᵀ
B̂BB)−1. The decoder function transforms the K-dimensional factor realizations

into the original N-dimensional space: X̂XX = F̂FFB̂BB
ᵀ
. Such a setting is depicted in Figure 3.2.

The principal components estimator is known to be biased towards the time series with

large individual variances – in an extreme case when a single individual variance is orders of

magnitude larger than others, the estimates will be biased towards that time series, since it would

reduce the loss function (3.16) most effectively. However, a fortunate circumstance in the high-

dimensional case is the so-called big data blessing. Specifically, if the number of time series N

is large, the effects of individual variances in the loss function become negligible in comparison

to the sum of the other variances, and generally the cross-correlations in the data. Owing to

this, both the estimation error and this bias are reduced with the increase in the number of times

series N. To illustrate this, consider the mean squared error of the common factor component

in the data:

MSE =
1

NT
||FFFBBBᵀ− F̂FFB̂BB

ᵀ||2F . (3.18)
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Figure 3.3: The MSE of the PC estimator with respect to the true factor realizations and loadings, for
different values of the number of time series N and their length T . The x-axis is shown in logarithmic
scale.

In a simulation setting, where the factor realizations and the model factor loadings are known,

the PC estimator can be tested with respect to the dimensionality of the data. Figure 3.3 demon-

strates the results for a simulation scenario where the factor loadings matrix and the factor

realizations themselves are drawn from a standard normal distribution 𝒩 (0,1). For a given

time series length T the number of time series N is increased, and for each N = 10, ...,10000

the PC estimator is applied and the MSE is measured.

These results demonstrate the so-called "big data blessing" exploited by the PC estimator

[20]. Instead of deteriorating with increased dimensionality, the estimator effectively improves

with respect to the true common component FFFBBBᵀ as N grows, even beyond the length of the

time series T . This is a very desirable property of the PC estimator, and the reason why it is

used in so many high-dimensional latent factor estimation studies [20, 41, 132, 133, 135]. It is

also important to note that the estimator will not be most efficient in low-dimensional settings,

when the number of time series N is not large enough - the results in Figure 3.3 suggest that the

minimum number of time series to reach these properties is between N = 100 and N = 1000.

However, theoretical results suggest that this may deteriorate in cases with weak factors or

excessive differences in individual time series variances [133]. In addition, some differences

exist with respect to the time series length T – the cases with longer time series will, as expected,

reduce the MSE quicker (in terms of rising N) than the shorter time series, as indicated by the

results in Figure 3.3.
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3.1.3 Estimation of the number of latent factors

The estimation of the number of latent factors or generally common components in the data has

been an area of study which has increasingly gained attention with the rise of data science and

data-driven decision making applications [136, 137, 138]. However, the problem of estimating

the number of components is not new, and has been studied decades ago. Some of the oldest

methods rely on statistical tools which are equally useful in modern estimators used today. Gen-

erally, the methods for estimation of the number of latent factors from data can be divided into

three distinct approaches: (i) thresholding approaches based on the spectra of data correlation

matrices, (ii) information criteria based on the estimated models, and (iii) statistical heuristic

approaches based on different statistical properties of the data.

Thresholding approaches

The thresholding approaches focus on the spectral properties of the data correlation matrix,

most commonly the eigenvalues of these matrices λ1, ...,λN . The goal is to find a threshold

value λ (t) for which a decision rule can be made:

K̂ = |{i : λi > λ
(t)}|. (3.19)

This rule simply states that the estimated number of components K̂ is equal to the number of

eigenvalues of the data correlation matrix larger than the threshold value. One of the oldest such

methods is the Kaiser-Guttman rule [139], which simply sets the threshold value to: λ (t) = 1.

This makes sense in the asymptotic case when the covariance estimates are reliable and close

to the true covariance – in this case the eigenvalues of a diagonal correlation matrix will all be

equal to 1 (see Figure 2.10). If the strict factor model holds, all the correlations in the data can be

explained by the common components and thus the eigenvalues representing these components

will stand out from the spectrum and will be larger than 1, while the other eigenvalues will

be somewhat smaller than 1. However, in finite sample cases, as depicted in Figure 2.10, the

spectrum will be somewhat "blurred" – meaning that some eigenvalues will be larger than 1

even if they do not represent common components in the data.

This is why a somewhat more advanced method is based on the Marčenko-Pastur distribu-

tion [98], described in Section 2.3.2. The elegant property of this distribution is that it defines

a maximum possible empirical eigenvalue of the correlation matrix estimate, and this value can

then be used as a threshold: λ (t) = λ+ = (1+
√

N
T )

2. The Marčenko-Pastur rule is an equally

elegant method as the Kaiser-Guttman rule, but with better properties in limited sample sizes,

and has been commonly used in factor modelling and clustering applications [42, 48]. However,

it does not account for the fact that heavy-tailed data will also exhibit certain eigenvalues larger

than those expected by the Marčenko-Pastur distribution [99, 140]. This means that even when

36



Latent factor estimation in financial time series

accounting for the finite sample sizes, the Marčenko-Pastur distribution will generally expect

smaller eigenvalues than those which empirical correlation matrices of heavy-tailed data will

exhibit.

A better way to incorporate the empirical data distribution for determining the right num-

ber of common components in the data are the permutation methods (the most common being

Horn’s parallel analysis) [141, 142]. In essence, these methods use the data matrix XXX and

permute the points in each time series independently, so that the individual marginal distribu-

tions are kept unchanged, but the permuted matrix XXX ′ eliminates any correlations between the

time series. By doing so, the spectrum of the permuted data correlation can be used to obtain

eigenvalues λ
(t)
i used as thresholds for each eigenvalue λi – these can be the mean or the 95%

confidence bounds from the multiple permutations performed on the data. The number of com-

ponents is determined by the number of empirical eigenvalues λi larger than their respective

thresholds λ
(t)
i . In addition, instead of using permutations of empirical data, any sort of as-

sumed data distribution can be used to generate simulations and obtain the thresholds for the

correlation eigenvalues [143]. Although parallel analysis and permutation methods are gaining

increased attention, they may overestimate the number of latent factors in case of approximate

factor models – due to the fact that the correlations are completely eliminated when obtaining

the threshold eigenvalues, all correlations are thus explained only by the common components.

This, however, is not the case in approximate factor models and especially high-dimensional

financial time series, where certain pairwise correlations or weak dependencies may not be

explained by common components or latent factors.

Information criteria

Based on the estimated models, an information criterion can be defined as a measure of quality

of the model, which can be used to determine the right number of model parameters. Such in-

formation criteria are often used as for feature selection in many machine learning applications.

This approach has also been used for determining the number of factors in approximate factor

models [137]. Most notably, Bai and Ng [144] propose several panel information criteria:

PIC1(k) = ln
(

1
NT
||XXX− F̂FF

(k)
B̂BB
(k)ᵀ||2F

)
+ k

(
N +T

NT

)
ln
(

NT
N +T

)
,

PIC2(k) = ln
(

1
NT
||XXX− F̂FF

(k)
B̂BB
(k)ᵀ||2F

)
+ k

(
N +T

NT

)
lnC2

NT ,

PIC3(k) = ln
(

1
NT
||XXX− F̂FF

(k)
B̂BB
(k)ᵀ||2F

)
+ k

(
lnC2

NT

C2
NT

)
,

(3.20)

where F̂FF
(k)

and B̂BB
(k)

are the estimated factor realizations and loadings for k factors. The constant

C2
NT for the PC estimator is C2

NT = min{N,T}. These information criteria all have an error
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component and a penalty component, where the penalty components may differ – they are

designed to reach their minimum when the number of factors k reaches the true underlying

number of factors. These information criteria have been demonstrated that they work very well

in high dimensions – however, they require some computational efforts since they depend on

estimating the model for each candidate number of factors k. In certain cases this may become

inefficient and some more practical solutions are needed. Moreover, the information criteria

methods may produce unstable results on empirical data which do not always exhibit clear

evidence on the number of latent factors, or the factors themselves may be weak.

Statistical heuristic approaches

Most commonly used approaches to model selection and determining the correct number of

latent factors rely on the statistical properties of the multivariate data, and the spectra of the

empirical correlation matrices. For instance, the scree plot and the elbow method are used to

select a point at which additional factors or clusters do not increase the model performance

as significantly and define this as the estimated number of factor [145, 146]. A somewhat

more formalized version of this approach is the Onatski test [147], which can both estimate the

number of factors and test it against the null hypothesis that K = 0:

K̂ = maxk
λk−λk+1

λk+1−λk+2
, (3.21)

where λi is the i-th largest eigenvalue of the data correlation matrix. This test takes the advan-

tage of the fact that the first K eigenvalues in a latent factor model with K factors will explode

with increasing N, but the K+1-st eigenvalue (and all subsequent eigenvalues, which represent

the idiosyncratic part of the spectrum) will remain bounded. However, the Onatski test does re-

quire the difference of the idiosyncratic eigenvalues to converge to zero, which may not be the

case when the limit between the systematic and idiosyncratic parts of the spectrum is not clear

[148]. Nevertheless, the division of the spectrum into a systematic part (common factors) and

idiosyncratic part has sparked other approaches relying on the empirical correlation eigenvalues

[136]. A very straightforward method is the eigenvalue ratio test [149, 150]:

K̂ = maxk
λk

λk+1
, (3.22)

which simply finds the largest ratio between two successive eigenvalues as the limit between

this common (systematic) part and the eigenvalues corresponding to the idiosyncratic part of

the spectrum. Although it has been found to underestimate the number of factors in high-

frequency data [148], this estimator generally produces reliable and stable results in simulations

and empirical market data.
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3.2 Latent factor model with pervasive and cluster-specific

factors

Traditionally, latent factor models in finance assume that the factors are pervasive (they affect

all assets) and thus can be found as common components in high-dimensional security return

time series [20, 41]. On the other hand, some recent results suggest that assets indeed tend to

form clusters and communities which can be observed in their dependence network structures

(modelled either by correlation or other measures of connectedness) [42, 43]. Using a dataset

of N = 1123 weekly stock returns from 2010 to 2020, a security graph can be constructed as a

k nearest neighbors graph (in this case k = 20), as depicted in Figure 3.4. In this security graph,

the clustering of stocks is evident – the asset classes which the ETFs represent are encoded in

different colors, however, these clusters do not necessarily follow the asset classification. For

instance, the large purple cluster of stocks in the bottom is the U.S. market, the teal, green,

yellow, red and lightblue clusters around the central cluster are Japan, India, Brazil, Turkey,

and China, respectively. The European countries are in the central (multicolored) cluster. This

structure visibly affirms the existence of clusters in financial securities, either owing to their

asset classes, countries of origin, or some other underlying factors to which the assets in a

specific cluster are exposed. However, the mapping of financial securities to specific clusters,

and their relationships cannot be always assumed from asset level information (such as as asset

classes or countries), and in most cases need to be estimated from the market data.

The underlying clustering structures in financial return data have been increasingly gaining

attention in different research approaches throughout the past decade. Assuming a strict hierar-

chical clustering structure, Tumminello et al. [44] form a hierarchical latent factor model and

propose an estimation method based on the minimum spanning tree of the underlying assets.

Clusters of assets are also known to emerge in stocks of single equity markets (for instance,

clusters of stocks belonging to the same sectors) - Kakushadze et al. [45] consider clustering

techniques for estimating these groups from the security return time series. Verma et al. [46]

proposed a cluster-specific factor model for the log-volatility with the goal of studying the het-

eroskedastic properties of volatility in financial assets returns. Other clustering approaches were

also shown to improve high-dimensional covariance matrix estimates, which ultimately reduces

risk in optimized portfolios [17, 18, 47, 48]. However, while the evidence on the existence of

asset clusters is compelling, certain latent factors may still be pervasive and affect all assets.

For instance, in a global set of financial assets, pervasive global factors may affect all time se-

ries (such as the global macroeconomic and market shocks [49, 50]), and cluster-specific factor

related to certain countries will affect only specific clusters of assets (for instance, European

stocks will be affected by their own set of factors and may not be affected by some Asian mar-

ket factors, after controlling for the common global component). The majority of modelling
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Figure 3.4: A k nearest neighbors graph obtained from absolute correlations between the weekly return
time series of N = 1123 international stocks from 2010 to 2020, with k = 20. The countries of the stocks
are encoded with colors (no legend is provided since there are 50 different countries).

approaches consider only pervasive latent factors, decomposing the security return variability

into the variability explained by pervasive factors (affecting all assets) and idiosyncratic com-

ponents (individual asset risk) [5, 41].

In this dissertation, a latent factor model with pervasive and cluster-specific factors is con-

sidered. The pervasive factors affect all security return time series, and these assets are divided

into clusters in which a certain number of cluster-specific latent factors (the number of which

may vary between clusters) affect the assets within that cluster. Since the clustering procedure

may be biased towards the clusters with a larger number of cluster-specific factors (due to the

fact that more factors will always be able to explain more variability in the data), the estimation

algorithm is divided into two main phases: the clustering phase which uses a fixed number of

cluster-specific factors for all clusters, and the latent factor estimation phase based on the esti-

mated asset clusters. A computational approach to model selection is also proposed, which de-

tects the number of pervasive factors, the number of clusters and the number of cluster-specific

factors in each cluster.

3.2.1 Model definition

Let Xti denote the return of asset i at time step t. Each asset i is associated with one of K

clusters where gi ∈ {1, ...,K} denotes the cluster index for asset i. A latent factor model is

assumed in which security returns depend on the realizations of pervasive (common) factors ft p
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Figure 3.5: A grid view of a setting with time series X1, ...,X7 affected by factors F1, ...,F5, such that F1
and F2 are pervasive factors, F3 is specific to time series X1, ...,X4, while F4 and F5 are specific to time
series X5, ...,X7.

and cluster-specific factors φtq:

Xti =
P

∑
p=1

ft pbip +
Ck

∑
q=1

φtqλ
(k)
iq + eti, gi = k, (3.23)

where t = 1, ...,T is the time index, i = 1, ...,N is the asset index, p = 1, ...,P is the pervasive

factor index, and q = 1, ...,Ck is the cluster-specific factor index for cluster k = 1, ...,K. The

pervasive factors are assumed to affect all individual time series, while the cluster-specific fac-

tors only affect assets which belong to the respective cluster. Each of the K clusters is allowed

a different number of factors Ck - thus, the total number of cluster-specific factors is Q = ∑k Ck.

The residual term eti represents the idiosyncratic sources of risk, not explained by the common

factors. Such a setting is shown in Figure 3.5, where the assets X1, ...,X7 are exposed to per-

vasive factors F1 and F2 and only certain clusters of assets are exposed to the cluster specific

factors F3 (affecting cluster of assets X1, ...,X4) and F4,F5 (affecting cluster of assets X5, ...,X7).

The model (3.23) can also be written in matrix notation as:

XXX = FFFBBBᵀ+ΦΦΦΛΛΛ
ᵀ+ eee, (3.24)

where XXX ∈ RT×N contains N security return time series of length T , FFF ∈ RT×P are the real-

izations and BBB ∈ RN×P are the loadings for P pervasive factors. The realizations of Q cluster-

specific factors for all K clusters are ΦΦΦ=
[
ΦΦΦ

(1), ...,ΦΦΦ(K)
]

and the cluster-specific factor loadings

are ΛΛΛ =
[
ΛΛΛ
(1), ...,ΛΛΛ(K)

]
, where ΦΦΦ

(k) ∈ RT×Ck and ΛΛΛ
(k) ∈ RN×Ck denote the Ck columns of ΦΦΦ

and ΛΛΛ corresponding to factor realizations and loadings associated with cluster k. The term

eee ∈ RT×N contains all of the N individual idiosyncratic components.

Since the pervasive factors affect all time series, the pervasive factor loading matrix BBB is

full, whereas the cluster-specific loading matrix ΛΛΛ is non-zero only for the elements which
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correspond to assets and factors associated with the same cluster:

Λ
(k)
i = 0, gi ̸= k. (3.25)

The assumed factor model is approximate, meaning that the idiosyncratic components eee are

zero-mean but are allowed cross-sectional correlations and heteroskedasticity. Other assump-

tions on the factors and factor loadings stand as in Section 3.1.2 – with some exceptions. Firstly,

the pervasive factors and the cluster-specific factors are allowed to have some bounded corre-

lations within themselves (i.e. the covariances QQQ(F) and QQQ(Φ) are not necessarily diagonal).

However, they cannot be correlated between each other (i.e. Cov( fff i,λλλ j) = 0, ∀i = 1, ...,P, j =

1, ...,Q.). Moreover, for the purpose of covariance matrix estimation, the idiosyncratic com-

ponents may have some correlations between themselves (the idiosyncratic covariance ΨΨΨ may

contain some off-diagonal elements), but they are assumed orthogonal to the pervasive and

cluster-specific factors.

The factors are latent (unobservable), the clustering is unknown, as well as the numbers

of factors, clusters, and cluster-specific factors - all of these need to be estimated from the

data. Given the model (3.24) and the assumptions, in the following sections new methods for

factor estimation and model selection are presented. First an iterative method clusters the data

assuming a fixed number of cluster-specific factors in each cluster. Then the numbers of cluster-

specific factors inferred from the data using the estimated clusters. To estimate the number

of pervasive factors and clusters, we propose a model selection method based on the spectral

propertied of the asset correlation matrix and the security graph estimated from the return time

series.

3.2.2 Estimation procedure

Let ||A||2F = ∑i ∑ j A2
i j denote the Frobenius norm of a matrix A. Given a data matrix X, and

assuming a known number of pervasive factors P, number of clusters K and number of cluster-

specific factors in each cluster Ck, consider the following loss function:

ℒ(XXX ;FFF ,BBB,ΦΦΦ,ΛΛΛ) =
1

NT
||XXX−FFFBBBᵀ−ΦΦΦΛΛΛ

ᵀ||2F . (3.26)

The loss function is the error of unexplained variation in the data. If all factors are perva-

sive the optimal low-rank approximation is given by the principal components (PC) estimator

[5, 20, 145], based on the eigenvalue decomposition of the matrix 1
T XXXᵀXXX , as described in Sec-

tion 3.1.2 and expression 3.17. The PC estimator would still be able to estimate the factor

loadings matrix [BBB,ΦΦΦ] up to an orthogonal rotation in the case of enough data points (long time

series). However, since it would effectively estimate (P+Q)×N factor loadings instead of
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P×N +∑
K
k CkNk, the estimated model would contain much more parameters than the assumed

underlying model, thus introducing more estimation error and unnecessary complexity. A bet-

ter analytical estimation for the assumed loss function is not obtainable, since the loss function

(3.26) needs to be optimized subject to the cluster-specific factor condition (3.25), given the

clustering G = [g1, ...,gN ]. The estimates of the pervasive factors, cluster memberships, and

cluster-specific factors all depend on each other, and thus require an iterative approach [151] -

in which the PC estimator will prove useful.

Cluster assignment

If the pervasive factors FFF with loadings BBB and cluster specific factors ΦΦΦ are known, each asset

can be assigned to the cluster which minimizes its value of the loss function (3.26). To do so,

we define YYY = XXX−FFFBBBᵀ and find the candidate cluster-specific loadings for cluster k as:

Λ̃ΛΛ
(k)

= YYY ᵀ
ΦΦΦ

(k)(ΦΦΦ(k)ᵀ
ΦΦΦ

(k))−1, (3.27)

where ΦΦΦ
(k) are the cluster-specific factor realizations for cluster k, as defined previously. Using

the estimates we calculate the loss matrix ℒik = ℒ(Xi;FFF ,BBB,ΦΦΦ(k), Λ̃ΛΛ
(k)
) for each combination of

assets i = 1, ...,N and clusters k = 1, ...,K. The clusters are then directly assigned as:

ĝi = argmin
k
ℒik, (3.28)

meaning that each asset belongs to the cluster whose factors minimize the loss function (3.26)

for that asset. This step can also be interpreted as a generalization of the assignment step in

Lloyd’s algorithm for k-means clustering, with Ck cluster-specific factors instead of centroids,

and the loss function (3.26) instead of the Euclidean distance.

Estimation of cluster-specific factors

For a given clustering ggg = [g1, ...,gN ] and known pervasive factors FFF with loadings BBB, all assets

within cluster k are exposed to the cluster-specific factors ΦΦΦ
(k) – for that subset of assets, these

factors can be considered pervasive. This enables the estimation of the factors using the subset

of security return time series YYY (k) ∈ RT×Nk containing only the Nk time series in cluster k.

Following the logic in (3.17), the factor loadings Λ̂ΛΛ
(k)

for cluster k are then estimated from the

eigenvectors of the largest Ck eigenvalues of the Nk×Nk matrix 1
T YYY (k)ᵀYYY (k) =UUU (Y )DDD(Y )UUU (Y )ᵀ:

Λ̂ΛΛ
(k)

=UUU (Y )
Ck

√
DDD(Y )

Ck

Φ̂ΦΦ
(k)

= YYY (k)
Λ̂ΛΛ
(k)
(Λ̂ΛΛ

(k)ᵀ
Λ̂ΛΛ
(k)
)−1.

(3.29)
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This approach simply applies the PC estimator to the time series of securities in cluster k, and

repeats this for estimating the cluster-specific factor realizations and loadings for all clusters

k = 1, ..,K.

Estimation of pervasive factors

Given the clustering ggg and cluster-specific factors ΦΦΦ with loadings ΛΛΛ, define the residual term

from the cluster-specific factors: ZZZ = XXX −ΦΦΦΛΛΛ
ᵀ. Given the residuals, the pervasive factor load-

ings B̂BB are estimated from the eigenvectors of the largest P eigenvalues of 1
T ZZZᵀZZZ =UUU (Z)DDD(Z)UUU (Z)ᵀ:

B̂BB =UUU (Z)
P

√
DDD(Z)

P

F̂FF = ZZZB̂BB(B̂BB
ᵀ
B̂BB)−1.

(3.30)

Since the cluster-specific common components in the data are accounted for and eliminated in

the term ZZZ, it only contains the P pervasive factors which are in this way estimated by the PC

estimator.

The three steps given above are iterated over, but the entire estimation procedure also de-

pends on the model selection – the estimation of the number of pervasive factors, number of

clusters and the number of cluster-specific factors in each cluster. The following section de-

scribes the model selection approach and after that an overview of the entire procedure is given.

3.2.3 Model selection

Estimating the number of pervasive factors and clusters

To estimate the number of pervasive factors P and the number of clusters K from the data,

the principles of the eigenvalue ratio (ER) test [150] are applied, and a method for estimating

the number of clusters using a graph (network) of assets is also proposed. Since the estimates

depend on each other, P and K are estimated choosing from several candidate pairs P̃, K̃, based

on a joint criterion.

The ER approach sorts the eigenvalues of the data correlation matrix in a descending order

and defines the eigenvalue ratio:

η
(p)
i = ξi/ξi+1, (3.31)

where ξi is the i-th largest eigenvalue. In the case of the assumed model with pervasive and

cluster-specific factors, the ER test will detect the shift in the eigenvalues between the pervasive

factor part and the cluster-specific factor part (since the cluster-specific factors affect less assets,

the eigenvalues corresponding to them will be lower than those representing pervasive factors).

This is displayed in Figure 3.6, for a simulation example of the assumed model.
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Figure 3.6: The first 100 eigenvalues and eigenvalue ratios of a sample correlation matrix. The best
candidates for P in this case are 5 and 6, as seen in the eigenvalue ratios.

The larger the ER ratio η
(p)
i , the more evidence in favor of i being the correct number of

pervasive factors. In the original ER test, this means that the simple rule for the estimated

number of factors is P̂ = argmaxiη
(p)
i . However, since the ER test may not always detect the

exact shift between the pervasive and cluster-specific factors (due to certain pervasive factors

being weak, or cluster-specific factors being strong within their cluster), a more robust approach

is taken. Instead of just picking the maximum value of ER, to avoid discarding potentially better

solutions, a several candidates are considered for the the number of pervasive factors P̃1, ..., P̃n,

corresponding to the n largest ratios η̃
(p)
1 , ..., η̃

(p)
n . The selection of the exact P̂ from these

candidates depends on the clusters, as described in the following paragraph.

To detect the clusters of data, for each P̃i a security graph is formed from the time series

YYY = XXX − F̂FFB̂BB
ᵀ
, where F̂FF and B̂BB are estimated from the data using the PC estimator. Each of the

N nodes in the graph represents a security and the edges between them depend on a similarity

measure. In this case, since the securities themselves may be negatively correlated through

exposure to the same factors but with different signed loadings, a similarity measure based on

absolute correlations is considered:

wi j = |ρ(Yi,Yj)| (3.32)

The goal is to construct a security graph, which is represented by a sparse matrix (instead of

the full matrix WWW ), and thus transform the dependency structure of the data into a new space

in which the clusters may be more detectable. These techniques are in the core of spectral

clustering approaches, which rely on the spectra of similarity graphs of the original data, from
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which the clusters can be estimated [152, 153].

In order to obtain accurate and robust estimates, the security graph needs to reflect the

following properties:

(i) time series pairs which are very close (having a high wi j) should be connected,

(ii) time series in the same cluster should have a short path between them (high connectivity

clusters),

(iii) the spectral properties of the graph need to be stable, since the estimation depends on the

Laplacian spectrum.

The first property is found in the ε-neighborhood (εN) graph, constructed simply by keeping

only the edges wi j > ε which are above a certain threshold ε . The adjacency matrix for the ε-N

graph is simply calculated as:

w(εN)
i j =

wi j, wi j ≥ ε

0, wi j < ε.
(3.33)

The properties of the graph depend on the threshold ε – for a very small ε the graph will

be very dense and not much information will be extractable, for a larger ε the graph will have

multiple components of densely connected time series. An example of the εN graph is displayed

in Figure 3.7 – the emergence of 5 clusters is visible, but many nodes remain unconnected.

However, increasing ε to obtain a connected graph is not an effective strategy since the graph

would become too dense to extract meaningful information.

To reduce the dependence on the choice of ε and to achieve the second property (reduce the

path length between securities in the same cluster), the k-nearest neighbors (kNN) graph is also

considered. The graph is constructed by keeping the k edges with highest values of wi j for each

node i – essentially each node i is only connected to the k nodes in its neighborhood ωi:

w(kNN)
i j =

wi j, j ∈ ωi

0,otherwise.
(3.34)

Evidently, the neighborhoods of different nodes will occasionally overlap – it is in these cases

that clusters of securities will be visible in the kNN graph. Moreover, even if the securities

from the same clusters may not be connected in the ε-N graph, they will most likely be either

connected or have mutual connections in the kNN graph. An example of the kNN graph is

shown in Figure 3.8 – here the cluster structure is visible (and coincidentally, the graph is

connected, which may not always be the case), but the division between clusters is not very

good.

Finally, since the εN and kNN graphs may not always be connected graphs (they may con-

tain multiple connected components), their spectral properties may differ depending on the
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Figure 3.7: An example of the ε-neighborhood graph containing N = 1000 nodes for a simulation with
K = 5 clusters (encoded in different colors) and ε = 0.6.

number of connected components – unfortunately, these connected components may not al-

ways correspond to the underlying clusters in the data. In order to ensure that the security graph

is always connected, we also consider the maximum spanning tree (MST) graph, which always

consists of one connected component. To obtain the maximum spanning tree, the edges wi j are

multiplied by −1 and Kruskal’s algorithm for minimum spanning tree construction is applied.

The MST is directly associated with the single-linkage hierarchical clustering method [44], and

retains the cluster structures in the data. Therefore, in addition to ensuring that the graph is con-

nected, the MST also adds to the cluster visibility in the estimated security graph. An example

of the MST graph is shown in Figure 3.9, where the cluster structures are evidently visible, but

the division between clusters is not perfect.

The final security graph is a combination of the three approaches: the MST provides a

backbone to the network, ensuring that the graph is connected and reflecting the basic clustering

structures in the data; the kNN graph joins together communities of securities, reducing the

average path length between pairs nodes which should belong to the same clusters; the εN

graph can be thought of a strengthening addition to the communities of securities which belong

to the same cluster. The adjacency matrix for the security graph is given as the union of the
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Figure 3.8: An example of the k nearest neighbors graph containing N = 1000 nodes for a simulation
with K = 5 clusters (encoded in different colors) and k = 10.

three graphs:

WWW =WWW (εN)∪WWW (kNN)∪WWW (MST ), (3.35)

with WWW (εN), WWW (kNN), and WWW (MST ) being the adjacency matrices of the εN, kNN and MST

graphs. Each element WWW i j in the union of two security graph adjacency matrices WWW (1) and

WWW (2) is defined as: WWW i j = max{WWW (1)
i j ,WWW (2)

i j }. The security graph has favorable properties from

all three methods combined, resulting in a structure as shown in Figure 3.10. The clusters are

clearly visible, and the division between them is fairly clear – the proposed graph evidently has

the best of all three components used to build it.

Given the graph adjacency matrix WWW , the number of clusters can be estimated based on the

spectral properties of the security graph Laplacian:

LLL = DDD−WWW , (3.36)

where DDD is the diagonal node degree matrix DDD = diag(d1, ...,dN). The number of zero valued

eigenvalues in the spectrum of the Laplacian matrix is equal to the number of connected com-

ponents in the graph. Since the proposed graph WWW contains the MST, it will always have one

connected component – thus the Laplacian LLL will have exactly one eigenvalue equal to zero.
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Figure 3.9: An example of the maximum spanning tree graph containing N = 1000 nodes for a simula-
tion with K = 5 clusters (encoded in different colors).

The K−1 eigenvalues ξ
(L)
2 , ...,ξ

(L)
K will be close to zero for a graph containing K clusters (the

end case being a graph divided into K connected components which will have exactly K eigen-

values equal to zero)§. To find the number of clusters in the graph, eigenvalues ξ
(L)
i of the

Laplacian are sorted in an ascending order and, in analogy with (3.31), define the the Laplacian

eigenvalue ratio (LER):

η
(c)
i = ξ

(L)
i+1/ξ

(L)
i , (3.37)

as the ratio between two subsequent graph Laplacian eigenvalues. Similar to the ER test, the

number of clusters is estimated as the i which maximizes the LER: K̂ = argmaxiη
(L)
i . An

example of the Laplacian eigenvalue ratios for the given graph above is displayed in Figure

3.11.

Combining the two approaches, for each P̃i, a number n of K̃i which have the largest LER

are considered. Between the candidate numbers of pervasive factors and clusters the selected

§In spectral graph theory, the second smallest eigenvalue of the Laplacian (also called the Fiedler eigenvalue),
and the corresponding eigenvector (also called the algebraic connectivity) are in the focus of research on the
bisection of graphs – here instead of bisecting graphs into two components, we consider dividing graphs into a
number of clusters, and thus consider the K−1 smallest non-zero eigenvalues.
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Figure 3.10: An example of the security graph containing N = 1000 nodes, estimated from a sample
with K = 5 clusters – all of which are clearly visible in the graph structure.

values are P̂ = P̃j and K̂ = K̃ j, which have the smallest value of an information criterion:
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(3.38)

where Nk denotes the number of securities in cluster k, Nq the number of securities exposed

to cluster-specific factor q, and s2 is a consistent estimate of 1
NT ∑∑E[e2

it ] given by fitting the

model with the largest considered P̃j and K̃ j. The factor loadings and realizations are obtained

by estimating the model with the given combination of P and K. The proposed criterion is

an extension of the Bai-Ng criteria [144] which incorporates the error term (first component)

and the penalty components, which penalize the number of pervasive factors, the number of

clusters, and the number of cluster-specific factors, respectively. The term s2 provides the proper
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Figure 3.11: The first 100 eigenvalues and Laplacian eigenvalue ratios (LER) of the Laplacian matrix of
a sample security graph. The first eigenvalue and LER are omited since the first eigenvalue is zero (the
graph has one connected component). The best candidate for K in this case is 5, as seen by the LER.

scaling for the penalty components, given the error, and the penalty components grow with

increasing numbers of factors P, clusters K and the total number of cluster-specific factors Q.

Moreover, the information criterion ℐ is similar to the Ando-Bai information criteria for panel

data models with grouped structures [51, 52] – however, the model considered here does not

include observable factors and the clusters are penalized separately from the cluster-specific

factors (i.e. between two models with the same number of cluster-specific factors affecting the

same number of securities, the one with less clusters is preferred). The overview of the proposed

model selection algorithm is given in Algorithm 1.

Algorithm 1: Model selection procedure

estimate candidates P̃ and η̃(p) from XXX
foreach P̃i do

estimate P̃i factors F̂FF and loadings B̂BB from XXX
construct the security graph from YYY = XXX− F̂FFB̂BB

ᵀ

estimate candidates K̃ given η̃(c) from the graph Laplacian
foreach K̃ j do

estimate latent factor model givenP̃i and K̃ j
calculate ℐ(P̃i, K̃ j) given the data XXX

end
end
select P̂ = Pi and K̂ = K j which minimize ℐ(Pi,K j)
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Estimating the number of cluster-specific factors

During the cluster assignment step, the clusters with a larger number of cluster-specific factors

Ck will naturally attract more assets (since the time series in clusters with more cluster-specific

factors will tend to have a lower value of ℒik), and the cluster membership estimates will be

biased towards them. Even knowing the right number of cluster-specific factors in each cluster

will not guarantee that the assets will be associated with the correct clusters. The proposed

algorithm resolves this issue by having the number of clusters equal for all clusters Ck =C0,∀k
during the entire iterative clustering procedure. Given the estimated clustering ĝgg, the Nk time

series YYY (k) = XXX (k)−FFFBBB(k)ᵀ will have a pure factor structure, containing Ck factors, and Ck can

be estimated using the ER estimator. After Ck is estimated for each cluster, another phase of

the iterative procedure is run, containing only the update step for the cluster-specific factor

estimates and the pervasive factor estimates. An overview of the entire procedure, including

clustering, factor estimation and the estimation of the number of cluster-specific factors is given

in Algorithm 2.

Algorithm 2: Clustering and estimation of pervasive and cluster-specific factors

initialize F̂FF , B̂BB,Φ̂ΦΦ, Λ̂ΛΛ, ĝ
set Ck =C0 for all clusters k = 1, ...,K
while clustering convergence criteria not met do

update cluster membership:
given F̂FF , B̂BB,Φ̂ΦΦ, estimate Λ̃ΛΛ from YYY = XXX− F̂FFB̂BB

ᵀ

calculate Lik = l(Xi; F̂FF , B̂BB,Φ̂ΦΦ
(k)
, Λ̃ΛΛ

(k)
)

set ĝi← argmin
k

Lik

update cluster-specific factors:
given F̂FF , B̂BB, ĝgg, calculate YYY (k) = XXX (k)− F̂FFB̂BB

(k)ᵀ

estimate Φ̂ΦΦ
(k)
, Λ̂ΛΛ

(k)
for all clusters k = 1, ...,K

set Φ̂ΦΦ← [Φ̂ΦΦ
(1)
, ...,Φ̂ΦΦ

(K)
], Λ̂ΛΛ← [Λ̂ΛΛ

(1)
, ..., Λ̂ΛΛ

(K)
]

update pervasive factors:
given Φ̂ΦΦ, Λ̂ΛΛ, calculate Z = XXX− Φ̂ΦΦΛ̂ΛΛ

ᵀ

estimate and set F̂, B̂BB from Z
end
given F̂FF , B̂BB, ĝgg update Ck for all clusters k = 1, ...,K
while error convergence criteria not met do

update cluster-specific factors:
given F̂FF , B̂BB, ĝgg, calculate YYY (k) = XXX (k)− F̂FFB̂BB

(k)ᵀ

estimate Φ̂ΦΦ
(k)
, Λ̂ΛΛ

(k)
for all clusters k = 1, ...,K

set Φ̂ΦΦ← [Φ̂ΦΦ
(1)
, ...,Φ̂ΦΦ

(K)
], Λ̂ΛΛ← [Λ̂ΛΛ

(1)
, ..., Λ̂ΛΛ

(K)
]

update pervasive factors:
given Φ̂ΦΦ, Λ̂ΛΛ, calculate ZZZ = X− Φ̂ΦΦΛ̂ΛΛ

ᵀ

estimate and set F̂FF , B̂BB from ZZZ
end
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3.2.4 Intialization and hyperparameter selection

For the initialization, the P pervasive factors FFF and loadings BBB are estimated from the data

XXX first. Following the initial pervasive factor estimate, the security graph is constructed from

YYY = XXX−FFFBBBᵀ. Using the security graph, a spectral clustering method is used to obtain the initial

clustering. Specifically, the spectral clustering method uses the Laplacian matrix of the graph

LLL and its eigendecomposition: LLL = UUU (L)DDD(L)UUU (L)ᵀ. The K eigenvectors corresponding to the

smallest non-zero eigenvalues of LLL (thus, not counting the first one, which is zero), are then used

as a new space in which the k-means algorithm can be applied in order to obtain the K clusters.

For the given clustering ggg and pervasive factors FFF with loadings BBB, the cluster-specific factors

can be estimated using the data YYY (k), for each cluster k = 1, ...,K. In both phases (the clustering

and the cluster-specific factor estimation), the algorithm stops when there are no cluster changes

and the reduction in the loss function ℒ(i)−ℒ(i−1) is less than 10−5 ·σ2
m, where σ2

m is the median

variance of all time series XXX .

The proposed estimation method depends on a handful of hyperparameters: the fixed num-

ber of cluster-specific factors C0 in the clustering phase, number of neighbors k in the kNN

graph, and the neighborhood threshold ε in the ε-N graph. Although the algorithm is not too

sensitive to small changes in these hyperparameters, some quick guidelines are provided here

on how to select them. Firstly, the algorithm in its clustering phase will not depend too much

on the selection of C0 since the cluster-specific factors in clusters where Ck <C0 will model the

Ck latent factors and the rest will be noise, while for clusters where Ck >C0, all C0 latent factors

will be relevant. Nevertheless, a larger C0 seems to be somewhat better, since it can efficiently

incorporate the clusters with the larger number of cluster-specific factors. Therefore an effec-

tive strategy would be to simply choose C0 as the largest number of cluster-specific factors one

would expect in a single cluster. In this thesis, the value C0 = 5 is used in all of the simulations

and results. Furthermore, the number of neighbors k in the kNN graph should primarily reflect

the size of the clusters to detect in the data. These are naturally dependent on the number of

time series N - as a rule of thumb, a good choice will be somewhere between logN and
√

N. In

the simulations and results, the value used is k = ⌈(logN +
√

N)/2⌉. Finally, for the selection

of the neighborhood threshold in the ε in the ε-N graph, both the length of the time series T

and their number N are best taken into account. Since longer time series will provide smaller

estimation error and more accurate correlations between asserts ρi j, the standard error in the

estimates will be reduced and the threshold may be lower - however, the threshold still needs

to be above a certain level ρ0 above which we wish the pairs of assets to be connected in the

graph. To account for the statistical uncertainty in the estimation, the threshold can be set to the

critical value of the approximate Pearson correlation test for the null hypothesis H0 : ρi j = ρ0

53



Latent factor estimation in financial time series

with a two-sided alternative (the correlation being significantly different than zero):

ε =
1+ρ0

1−ρ0
exp

(
2z√

T −3

)
, (3.39)

where ρ0 = 0.4, T is the time window length, and z is the 1−α quantile of the standard normal

distribution 𝒩 (0,1). To account for the fact that the test is applied to all pairwise coefficients

ρi j, the Bonferroni correction is used, with α = 0.05/
(N

2

)
. These values are used in the simula-

tions and results for all different lengths of time windows.

Finally, the number n of pervasive factors and clusters to be considered in the model se-

lection algorithm is set to n = 3. In this way, a total of n2 = 9 models are fitted, which is

significantly less than a grid search method using only the information criterion as a decision

metric. Nevertheless, the fact that several combinations are considered allows the procedure not

to discard potentially better solutions (which might happen if n = 1). The model selection pro-

cedure is therefore a hybrid approach between the information criteria (which usually require

grid search algorithms) and statistical heuristic approaches (which are more computationally

efficient but may produce unreliable results).

3.3 Covariance estimation with pervasive and cluster-specific

latent factors

3.3.1 Covariance decomposition

Given the data XXX and the estimates of the latent factors, an improved estimate for the covariance

matrix QQQ can be obtained. In the proposed factor model with pervasive and cluster-specific fac-

tors, the pervasive factor covariance QQQ(F) = Cov(FFF) and the cluster-specific factor covariance

QQQ(Φ) = Cov(ΦΦΦ) are assumed to be positive-definite, thus allowing for some correlation between

factors. The idiosyncratic covariance ΨΨΨ = Cov(eee) is not necessarily diagonal, but it needs to

be sparse (the cross-correlations in the idiosyncratic components can not be a consequence of

common factors in the data) [20]. In this model, the variability in the data is decomposed into

three components:

QQQ = BBBQQQ(F)BBBᵀ+ΛΛΛQQQ(Φ)
ΛΛΛ
ᵀ+ΨΨΨ, (3.40)

namely the covariance due to the pervasive factors, the covariance due to cluster-specific factors

(which will have a block structure), and the idiosyncratic covariance – as displayed in Figure

3.12.

The pervasive factor part of the covariance B̂BBQ̂QQ
(F)

B̂BB
ᵀ

can be directly calculated from the

latent factor estimates: B̂BB and F̂FF , with Q̂QQ
(F)

= Cov(F̂FF). The same applies to the cluster-specific

factor part of the covariance Φ̂ΦΦQ̂QQ
(Λ)

Φ̂ΦΦ
ᵀ

and the estimates: Φ̂ΦΦ and Λ̂ΛΛ, with Q̂QQ
(Λ)

= Cov(Λ̂ΛΛ).
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(a) BBBQQQ(F)BBBᵀ (b) ΛΛΛQQQ(Φ)
ΛΛΛ
ᵀ

(c) ΨΨΨ (d) QQQ

Figure 3.12: The decomposition of the data covariance QQQ into the pervasive factor component, cluster-
specific factor component, and the idiosyncratic component. The pervasive factor component is a low
rank matrix of rank P, the cluster-specific factor component is a low rank and block matrix of rank Q,
with a total of K blocks, and the idiosyncratic component is diagonal matrix of idiosyncratic variances
and sparse idiosyncratic covariance elements.
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3.3.2 Sparse idiosyncratic covariance estimation

To estimate the sparse idiosyncratic component covariance matrix Ψ̂ΨΨ from the data XXX , one can

start from a full sample covariance estimate Ψ̂ΨΨ
(full)

and apply an adaptive thresholding technique

[154, 155]. A specific threshold is set for each element of the matrix Ψ̂ΨΨ
(full)

, so that the scale (the

variance of each time series) is taken into account. The simplest way to do this is to consider

the sample correlation matrix R̂RR
(full)

, and apply a fixed threshold εr to all elements:

R̂RR
(sparse)
i j =

0, if |R̂RR(full)
i j |< er

R̂RR
(full)
i j , if |R̂RR(full)

i j | ≥ εr.
(3.41)

The sparse correlation matrix R̂RR
(sparse)

thus contains only elements larger than εr or smaller than

−εr. However, this simple hard thresholding rule does not always produce positive-definite

matrices R̂RR
(sparse)

, since certain elements R̂RR
(sparse)
ik and R̂RR

(sparse)
jk may be non-zero (pass above the

threshold εr, but the element R̂RR
(sparse)
i j may be zero (fall under εr). This case may be general-

ized in the term of graphs - the sparse correlation matrix defines a graph where the edges are

only those pairwise correlations which surpass the threshold value εr. This graph is actually

a very sparse graph with a relatively large number of connected components - however each

component may not necessarily be fully connected, and as long as they are not, the resulting

correlation matrix will not necessarily be positive-definite. Thus, in order to correct this, it is

possible to over all connected components defined by matrix R̂RR
(sparse)

, and assure that all links in

those components are non-zero – thus adding additional non-zero elements R̂RR
(sparse)
i j (if R̂RR

(sparse)
ik

and R̂RR
(sparse)
jk exist). The resulting new matrix R̂RR

(sparse)
is still sparse, but will be positive-definite.

Finally, the sparse covariance matrix is reconstructed from the sparse correlation matrix:

Ψ̂ΨΨ =

√
diag(Ψ̂ΨΨ

(full)
)R̂RR

(sparse)
√

diag(Ψ̂ΨΨ
(full)

). (3.42)

By doing so, more elements which do not pass the threshold εr are included in the idiosyncratic

correlation/covariance matrix, but the estimate is assured to be positive-definite (as long as

certain securities are not identical and their correlation is not equal to 1).
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Chapter 4

Portfolio optimization based on latent
factors

4.1 Portfolio optimization framework

In this thesis, the mathematical framework of the Markowitz modern portfolio theory [80] is

considered. The main aspect of this most commonly used approach to portfolio selection is the

fact that risk is modeled as the variance of the portfolio and the portfolio mean return is con-

sidered a reward. The general portfolio selection problem (also called mean-variance analysis

[156]) can be expressed as an optimization task

min
www

wwwᵀQQQwww

s. t. wwwᵀ
µµµ ≥ r,

wwwᵀ111 = 1,

(4.1)

where µµµ are the expected returns and QQQ is the covariance matrix of N security returns, r is a

required level of return, and www ∈ RN is the vector of portfolio weights for N securities. The

problem can simply be interpreted as finding the portfolio with minimal variance for a given

expected rate of return r.

Many other similar formulations also exist (for instance, maximizing the rate of return

for a given portfolio variance or maximizing a utility function which is proportional to the

portfolio return and inversely proportional to the variance). In addition, many applications of

mean-variance analysis for portfolio optimization in real-world scenarios also include the non-
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negativity constraint:
min

www
wwwᵀQQQwww

s. t. wwwᵀ
µµµ ≥ r,

wwwᵀ111 = 1,

wi ≥ 0, ∀i = 1, ...,N.

(4.2)

This is due to the fact that, in practice, short positions (negative weights) are often more com-

plicated (and expensive) to enter and maintain. Although other characterizations of risk and

reward have been proposed and used through the past decades (for instance, downside risk

measures such as VaR, CVaR, maximum drawdown etc.), they have been found to produce less

stable results and often come with estimation issues – mean-variance analysis has proven to be

a robust and elegant approach [157].

The optimization problem (4.2) has an optimal portfolio solution for each required rate of

return r – however, for a given vector of expected security returns µµµ , the minimal and maximal

values of r for which the problem has a solution are defined by the minimum and maximum

element of µµµ (i.e. the smallest and largest of the expected security returns). All of the optimal

portfolios form the efficient frontier – a continuous line of portfolios in the risk-return coordinate

system, as displayed in Figure 4.1. The Figure demonstrates the Markowitz approach and its

main benefit – through diversification of individual security risks it is possible to obtain less

risky portfolios with equal or higher rates of returns.

Figure 4.1: The risk and return profile of individual securities and the efficient frontier of the optimal
mean-variance long-only portfolios. The x-axis is displayed in log-scale.

On this efficient frontier lie several specific portfolios. The minimum variance portfolio

is the point on the efficient frontier furthest to the left, and represents the portfolio with the

58



Portfolio optimization based on latent factors

minimal variance an investor can obtain given the considered securities. The maximum Sharpe

ratio portfolio is the portfolio which maximizes:

S =
µp− rr f

σp
, (4.3)

which is a simple ratio of the mean portfolio return µp (in excess of the risk-free rate rr f ) and

the portfolio variance σp. The Sharpe ratio is the most commonly used risk-adjusted portfolio

performance measures, useful in comparing portfolios of different rates of return and risk –

according to that measure, the maximum Sharpe ratio (MSR) portfolio is the one with the best

risk-adjusted performance. It is also known as the tangency portfolio, since it also lies on the

tangent connecting the point (0,rr f ) and the efficient frontier (therefore it also depends on the

risk-free rate rr f ).

In the most general sense, the mean-variance portfolio optimization approach requires the

knowledge of expected security returns µµµ and their covariance QQQ, or rather – their prediction

for the future portfolio holding period. As shown previously (see the results in Section 2.2.1),

the security return covariance is generally predictable and does exhibit some degree of memory

– however, the expected returns are generally hard to predict. This ultimately means that the

efficient frontier of optimal portfolios calculated using in-sample estimations of mean returns

will be prone to these estimation errors and the optimal portfolios will most definitely not be

optimal out-of-sample. Due to this, the focus of academic research and financial industry has

recently shifted to methods which do not require the prediction of future returns. Many dif-

ferent portfolio selection methods have been proposed and are in use - among the most simple

portfolios is the equal-weights portfolio, which assigns equal fractions as the weight of each

security:

www(EW )
i =

1
N
, ∀i = 1, ...,N. (4.4)

The EW portfolio is optimal in the mean-variance sense when all pairwise security correlations

are equal, the security volatilities are equal, and their expected returns are equal – a very reduc-

tive set of assumptions which rarely hold. Nevertheless, since it does not require any estimation

or optimization, it generally does not exhibit estimation error risk which more complicated

methods often come with. The EW portfolio is often the benchmark used in most portfolio

optimization scenarios and has been found to be fairly difficult to outperform [158]. However,

since some inference can be made on the security covariance, it can be used to obtain better

portfolios – this family of so-called risk-based portfolios is considered in the following section.
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4.2 Risk-based portfolio optimization

Risk-based portfolio optimization methods are generally based only on the estimated security

covariance, and have recently been gaining increased attention in the academic community and

financial industry [159, 160]. The general idea is to avoid making inferences on future returns,

and instead focus on diversifying or managing the risks associated with the considered secu-

rity universe. They have been shown to provide robust portfolios which can often outperform

other portfolio optimization methods, mostly due to the fact that they avoid the risk induced

by the expected return estimation errors. Naturally, it is then expected that these portfolios are

sensitive to the estimation of security covariance matrices [161] – but can also be improved

by better estimates of the covariance, which can be provided by the considered latent factor

models. Among the different methods proposed within this approach, two specific formulations

for portfolio optimization problems are considered in this thesis – the minimum variance and

maximum diversification portfolios.

4.2.1 Minimum variance portfolio

The simplest way to avoid expected return estimation in portfolio optimization is to simply omit

the terms containing the portfolio returns. This leads to the global minimum variance (GMV)

portfolio, which is obtained by optimizing a simpler optimization problem:

min
www

wwwᵀQQQwww

s. t. wwwᵀ111 = 1.
(4.5)

This formulation also has an analytical solution:

www(GMV) =
QQQ−1111

111ᵀQQQ−1111
. (4.6)

However, this solution requires the existence of the covariance matrix inverse QQQ−1, i.e. that

the covariance is positive definite. Since this may not always be the case, especially in high-

dimensional settings, optimization procedures are often employed to obtain better solutions.

The absence of the requirement for a given rate of return of the portfolio may be interpreted

in two ways: (i) no knowledge on the expected returns is necessary so the portfolio is somewhat

agnostic to expected returns; (ii) it can be shown the GMV portfolio is in fact equal to the MSR

portfolio when all expected returns of individual securities are equal [50]. This also holds for
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the constrained minimum variance portfolios, which are more commonly used in practice:

min
www

wwwᵀQQQwww

s. t. wwwᵀ111 = 1,

wi ≥ 0, ∀i = 1, ...,N.

(4.7)

Minimum variance portfolios have been found to perform very well out of sample [159, 162]

– mostly due to the absence of prediction errors for expected returns which substantially dete-

riorate the performance of mean-variance portfolios [163]. Another important element in the

empirical performance of these portfolios in market environments is the so-called low-volatility

anomaly, documented in some financial markets [111]. This phenomenon is essentially the

tendency of securities with low volatility to exhibit higher mean returns (on a long period of

historical data), contrary to the stipulations of the CAPM model. In such environments, the

minimum volatility portfolios will often outperform the EW portfolios and some other optimal

portfolios, not only in terms of lower risk, but also in terms of returns.

Since the estimation procedure only depends on the covariance, it is a suitable way to

demonstrate the ability of the various risk models to provide reliable estimates, and is often

used to benchmark covariance estimation methods [41, 108]. Previous studies have indeed

found that improved estimators of the correlation and covariance matrix produce more diversi-

fied portfolios with lower out-of-sample risk [164]. Thus, latent factor models can be used to

obtain covariance estimates, as described in Section 3.3 for the latent factor model with perva-

sive and cluster-specific factors.

However, the low-volatility anomaly has only been reported for some financial markets and

may not be a persistent assumption across global universes of securities. Moreover, the mini-

mum variance portfolios often allocate very high weights to lower volatility and lower return

securities (such as Treasury Bills or money market funds, if such exist in the asset universe),

which often have undesirably low returns. With such concentration in less volatile securities,

the optimal minimum variance portfolios do not necessarily provide a diversified investment in

terms of exposure to different asset classes or global securities.

4.2.2 Maximum diversification portfolio

Another perspective on what makes a portfolio portfolio optimal comes from looking into the

diversification properties of the portfolio. Consider the diversification ratio of a portfolio:

d =
∑

N
i=1 wiσi√
wwwᵀQQQwww

, (4.8)
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in other words, a ratio of the weighted average of individual security volatilities divided by the

portfolio volatility [165]. For instance, of the two portfolios with equal volatilities, the one

with a larger weighted average of weights will be more diversified. Perhaps surprisingly, equal-

weighted portfolios will often come up as very well diversified as opposed to the minimum

variance portfolios, since the latter often have concentrated weights in a few low-volatility se-

curities (thus reducing the the numerator of the ratio). The ratio is largest for portfolios with

weights leaning towards more volatile securities, but with low overall volatility – such a portfo-

lio evidently exploits the cross-correlations to reduce the volatility and thus provides maximum

diversification.

As opposed to the mean-variance analysis, here the optimal portfolio is the portfolio which

maximizes the diversification ratio - the maximum diversification portfolio (also known as the

most diversified portfolio). For the unconstrained MD portfolio, an analytical solution is avail-

able:

www(MD) =
QQQ−1

σσσ

σσσᵀQQQ−1
σσσ
, (4.9)

where σ is the vector of individual security volatilities. However, in the constrained case (i.e.

no short selling allowed), and when the covariance matrix estimate is positive semi-definite, an

optimization procedure is applied to solve the following problem:

max
www

∑
N
i=1 wiσi√
wwwᵀQQQwww

s. t. wwwᵀ111 = 1,

wi ≥ 0, ∀i = 1, ...,N.

(4.10)

The MD portfolio has been shown to be equivalent to the maximum Sharpe ratio portfolio

when the individual security Sharpe ratios are equal – meaning that their expected returns are

proportional to their volatilities [165]. Thus, the optimization problem (4.10) can be converted

to the mean-variance problem in (4.2) with the expected returns equal to the individual security

volatilities. The equal Sharpe ratio condition may be true if the markets are efficient to the extent

that investor expect higher returns for securities associated with higher volatilities and that all

other forecasts except risk are either inaccurate or already priced in [165]. The empirical results

suggest that the MD portfolio has very favorable properties and provides stable risk-adjusted

returns, avoiding the trap of over-concentrating into low-volatility assets. Even though it can be

thought of as an MSR portfolio where the expected returns are proportional to individual secu-

rity volatilities, it nevertheless depends only on the risk estimates which are more robust than

expected return predictions. The equal Sharpe ratio condition for the mean-variance optimality

of the MD portfolio may not always hold – in addition, they assume that the risk estimates

are accurate. Thus, the latent factor models can help obtain improved covariance matrices and
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better risk estimates, which will in turn improve the performance of the MD portfolios.

4.2.3 Cluster-based portfolio diversification

Rather than improving portfolios by including latent factor models in the estimation of risk and

covariance matrices in high-dimensional financial time series, another approach is to rely on

the estimated latent factor structures to devise a new portfolio optimization procedure. In a

global universe of securities which are exposed to certain pervasive an cluster-specific factors,

the latent factors and asset clusters will most commonly have a clear interpretation. The perva-

sive factors are global market shocks, and the cluster-specific factors either correspond to the

geographical classification (country or region) or the asset classes of the considered securities.

The risks can be estimated in a structured way – using the intra-cluster covariance for the risks

of assets within the same clusters, and inter-cluster covariance for the different clusters. Instead

of optimizing the diversification of the entire portfolio of N assets, here a two-step long-only

portfolio optimization method is proposed.

Firstly, within each cluster k = 1, ...,K, an intra-cluster long-only MD portfolio www(k) ∈RNk is

calculated, containing only the Nk securities in the cluster, by solving the optimization problem

in (4.10). The covariance matrix QQQ(k) ∈RNk×Nk of the securities in cluster k used for optimizing

the intra-cluster portfolio is calculated using the latent factor model estimate in (3.40), using

only the elements QQQi j for which both gggi = k and ggg j = k. The resulting portfolios are K vectors

www(k), with nonzero weights which all sum to 1.

From the K intra-cluster portfolios, an MD inter-cluster portfolio w̃ww ∈RK is formed. To this

end, the inter-cluster covariance matrix is calculated as follows:

Q̃QQ = www(clust.)ᵀQQQwww(clust.), (4.11)

where www(clust.) = [www(1), ...,www(K)] is the N×K matrix of K intra-cluster MD portfolios. The re-

sulting K×K inter-cluster covariance matrix is used to find the inter-cluster long only portfolio

w̃ww. The final two-step portfolio is calculated as:

www =
K

∑
k=1

www(k)w̃k = www(clust.)w̃ww. (4.12)

This portfolio reduces the possibility of allocating large weights to certain securities uncorre-

lated to the majority others (which the MD portfolio will generally do), by allocating all securi-

ties with respect to their cluster first, and then assigning inter-cluster weights. From a top-down

approach, the proposed portfolio optimization method generally attempts to maximize the di-

versification of the portfolio with respect to the clusters of securities (rather than individual

securities themselves). This is done by the inter-cluster portfolio w̃ww which is a MD portfolio of
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the individual intra-cluster portfolios. In order to represent the clusters of securities in a single

intra-cluster portfolio for each cluster, the MD portfolio of securities belonging to each cluster

is used, thus maximizing the diversification within and between clusters. The resulting portfolio

will outperform the MD portfolio of individual securities if the security covariance estimates

are more reliable within the clusters and between the cluster MD portfolios, than the entire se-

curity universe covariance. Moreover, the portfolio will generally be expected to outperform

in markets where the Sharpe ratios can be considered more homogeneous between the clus-

ters (represented by the intra-cluster portfolios), rather than between all individual securities.

Even if this may not strictly hold in empirical data, the resulting portfolios are very robust to

estimation errors, as will be shown in the following chapter.
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Chapter 5

Results

5.1 Simulations

5.1.1 Simulation framework

To verify the validity of the proposed approach and test the empirical properties of the estima-

tion algorithm, several data-generating processes (DGP) are defined, which correspond to the

assumed factor model structures. To obtain a model in the form of 3.24, random clusters and

factor loadings are generated. The elements of the pervasive factor loadings matrix BBB are drawn

from a uniform random distribution with mean 0 and variance 1. For the cluster-specific load-

ings matrix ΛΛΛ, the elements Λ
(k)
i are random (also uniform with mean 0 and variance 1) if asset

i belongs to cluster k, and are zero otherwise. The clusters are defined so that their sizes are all

equal Nk = N/K. Since the approximate factor model allows for some off-diagonal elements

in the covariance of residuals, random sparse covariance matrices are also generated, with a

given idiosyncratic variance σ2
e on the diagonal. Given the factor loadings and the idiosyncratic

components, the security return mean and covariance can then be calculated as

µµµ = µµµ
(F)BBBᵀ+µµµ

(Φ)
ΛΛΛ
ᵀ,

QQQ = BBBQQQ(F)BBBᵀ+ΛΛΛQQQ(Φ)
ΛΛΛ
ᵀ+ΨΨΨ,

(5.1)

where µµµF are the means of P pervasive factors, while µµµΦ are the means of Q cluster-specific

factors. In the simulations, the means are all zero, and the covariances are both diagonal ma-

trices with equal variances σ2
F and σ2

Φ
on the diagonal. The full set of simulation parameters

is given in Table 5.1. The clusters selected have a relatively diverse number of cluster-specific

factors, which will present an additional problem to the clustering algorithm in the aspect of

cluster size bias (the fact that sizes of clusters with a larger number of cluster-specific factor

may be overestimated).

To simulate security returns, means and covariances are used to simulate realizations of N-
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Table 5.1: Simulation parameters.

Parameter Symbol Value

Number of assets N 1000

Number of pervasive factors P 5

Number of clusters K 5

Number of cluster-specific factors C [1,2,3,4,5]

Pervasive factor variance σ2
F 0.1

Cluster-specific factor variance σ2
Φ

0.1

Idiosyncratic variance σ2
e 0.5

dimensional returns, drawing from the i.i.d. multivariate Gaussian distribution 𝒩 (µµµ,QQQ), with

the probability density:

f𝒩 (XXX t) =
1√

(2π)N |QQQ|
exp

[
−1

2
(XXX t−µµµ)ᵀQQQ−1(XXX t−µµµ)

]
. (5.2)

Since the Gaussian normal distribution does not replicate the heavy-tailed properties of security

returns (as discussed in Section 2.2.3), the Student’s t-distribution is also considered:

ft(XXX t) =
Γ
(

ν+N
2

)
Γ
(

ν

2

)√
νNπN |N|

[
1+

1
ν
(XXX t−µµµ)ᵀQQQ−1(XXX t−µµµ)

] ν+N
2

, (5.3)

where Γ(x) is the gamma function and ν is the degrees-of-freedom parameter. For ν < 2, the

distribution does not have a finite variance, and for ν → ∞ the distribution is equivalent to the

Gaussian normal. In this simulation scenario, the Student’s t-distributions with 6 degrees of

freedom t6(µµµ,QQQ) and 4 degrees of freedom t4(µµµ,QQQ) are considered. Although many latent

factor models in finance and the corresponding estimation methods are often tested using sim-

ulations of normally distributed data [20, 51], the Student’s t-distributions are additionally used

here, since they replicate the heavy-tailed property of financial returns, as seen in Figure 5.1.

Therefore, the three DGPs defined for this simulation study all have the same latent factor

structure (with pervasive and cluster-specific factors), and are simulated with the three consid-

ered distributions with varying levels of tail heaviness: 𝒩 , t6, and t4.

5.1.2 Estimator properties in high dimensions

First, the empirical properties of the proposed latent factor estimation method are tested. To this

end, consider the mean squared error of the latent factor component in the data, as defined in
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Figure 5.1: The normalized pdfs of the three considered theoretical distributions, together with the
empirical histogram of the weekly returns of NASDAQ global equity indices between 2005 and 2020.

(3.18), but in this case with a pervasive and cluster-specific component:

MSE =
1

NT
||FFFBBBᵀ+ΦΦΦΛΛΛ

ᵀ− F̂FFB̂BB
ᵀ− Φ̂ΦΦΛ̂ΛΛ

ᵀ||2F , (5.4)

where the true factor loadings are BBB and ΛΛΛ, and their estimates are B̂BB and Λ̂ΛΛ (the same holds

for the factor realizations FFF and ΦΦΦ and their estimates F̂FF and Φ̂ΦΦ). The error defined above

should converge towards zero as the time series length T and their dimension N grow (on the

other hand, the error of the data realizations XXX and the estimate X̂XX = F̂FFB̂BB
ᵀ− Φ̂ΦΦΛ̂ΛΛ

ᵀ
will converge

towards the average idiosyncratic variance. To compare the efficiency of the proposed estimator

with the PC estimator (which can ultimately estimate any high-dimensional approximate factor

model), both are applied to a randomly generated factor model as described in the Section 5.1.1

given a maximal number of securities Nmax. The number of securities N was then selectively

increased from N1 to Nmax so that the securities selected equally represent all clusters. The

results are displayed in Figure 5.2.

The results indicate that, similar to the PC estimator on latent factor models with only per-

vasive factors (as in Figure 3.3), the estimator all reduce the MSE with increasing N – the

"big data blessing" holds in the model with pervasive and cluster-specific latent factors as well.

However, the PC estimator is not able to reduce the error enough, even for very high N – on

the other hand, the proposed model-based estimator quickly converges to a very low error. In

addition, the presence of heavy tails in the data deteriorates the performance of the PC estima-

tor considerably, while the error of model-based estimator remains fairly low for both Gaussian

and Student’s t distributed data. This remarkable property of the model-based estimator is most

likely due to the fact that heavy tails in high-dimensional time series may extremely affect the
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Figure 5.2: The MSE of the PC and model-based latent factor estimators, for the number of assets
between 100 and 10000, and the Gaussian normal 𝒩 and the Student’ t-distribution with ν = 4 degrees
of freedom (t4). The simulated time series length is T = 250.

empirical correlation estimates – when the latent factors are estimated for the entire set of N

time series instead of the cluster Nk, both the loadings and estimated factor realizations may be

severely influenced.

5.1.3 Clustering performance

The proposed algorithm is also verified in terms of clustering accuracy. The estimator is applied

to the simulation data given the correct P and K, and the quality of clustering is measured by

comparing the estimated clustering ĝgg and ground truth clustering ggg using the Rand statistic

and Jaccard coefficient [166], both of which are commonly used techniques to measure the

agreement between different partitions of the same set and can be used even when there are no

class labels available [166]. Given the estimated clustering ĝgg and the ground truth clustering ggg,

define the following variables:

SS =
N

∑
i

N

∑
j=i+1

1[(ĝi = ĝ j)∧ (gi = g j)],

SD =
N

∑
i

N

∑
j=i+1

1[(ĝi = ĝ j)∧ (gi ̸= g j)],

DS =
N

∑
i

N

∑
j=i+1

1[(ĝi ̸= ĝ j)∧ (gi = g j)],

DD =
N

∑
i

N

∑
j=i+1

1[(ĝi ̸= ĝ j)∧ (gi ̸= g j)],

(5.5)
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where 1[c] is an indicator function with value 1 if the condition c in the brackets holds, and 0

otherwise. The variable SS simply counts the number of pairs of assets which belong to the

same cluster in both clusterings ĝgg and ggg; SD counts the number of pairs belonging to the same

cluster in ĝgg and different clusters in ggg; DS counts the number of pairs belonging to different

clusters in ĝgg and the same cluster in ggg; DD counts the number of pairs belonging to different

clusters in both clusterings ĝgg and ggg. Given these variables, the Rand statistic and the Jaccard

coefficient can be calculated:

Rand =
SS+DD

SS+SD+DS+DD
,

Jaccard =
SS

SS+SD+DS
.

(5.6)

Following the above expression, in this case the Rand statistic simply measures the proportion

of pairs which are correctly clustered together or apart, and the Jaccard coefficient measures

the intersection of the correctly clustered pairs in proportion to the union of all the pairs of

securities. Both of these can be interpreted as focusing on the sets of pairs, rather than the

original set of securities, and look into whether the pairwise clustering properties match in the

two given clusterings.

Moreover, for both of these cluster validation measures and any pair of clustering methods,

a paired statistical test procedure is defined* in order to test the hypothesis:

H0 : There is no difference between two clustering methods,

H1 : Method 2 outperforms Method 1.
(5.7)

For each randomly generated model m = 1, ...,mmax, the considered clustering methods are ap-

plied and the cluster validation measure is calculated for both results (for instance Rand1(m) and

Rand2(m)), then the p-value is calculated as the fraction of pairs for which Method 2 outper-

forms Method 1 (in this example, the fraction of samples for which Rand2(m)>Rand1(m)).This

procedure is repeated for the both cluster validation measures, pairing the proposed model-

based method with several commonly used clustering approaches (k-means algorithm, spec-

tral clustering [152], and the Ando-Bai estimation procedure [52]). The k-means method uses

1−|ρi j| as a distance measure, and the spectral clustering method employs the proposed asset

graph estimated directly from XXX . The Ando-Bai procedure iteratively estimates clusters and la-

tent factors, but using a procedure which does not account for the bias in clusters with different

numbers of cluster-specific factors.

A number of mmax = 1000 models are randomly generated, for each model the time series

realizations of length T = 1000,500,250 are simulated, and the considered clustering methods

*Since the models are randomly generated, each model realization presents different conditions for the consid-
ered clustering methods, which need to be taken into account in a paired fashion.
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and tests are applied. The average Rand and Jaccard statistics, as well as the p-values of the

paired resampling tests (comparing the proposed model-based method with each of the other

considered clustering methods) are shown in Tables 5.2 and 5.3.

Table 5.2: Rand statistics on simulation data for the proposed method and other considered clustering
techniques, using different simulation time window lengths and data distributions. The brackets below
each value contain the p-value of the paired resampling test of the considered method compared to the
proposed model-based algorithm. All of the values are obtained using simulation parameters given in
Table 5.1.

T = 1000

𝒩 t6 t4
k-means 68.03% 68.03% 67.98%

(< 0.001) (< 0.001) (< 0.001)

Spectral clust. 77.02% 74.10% 74.10%
(< 0.001) (< 0.001) (< 0.001)

Ando-Bai 89.99% 88.90% 88.34%
(< 0.001) (< 0.001) (< 0.001)

Model-based 99.03% 98.83% 98.53%

T = 500

𝒩 t6 t4
k-means 68.03% 68.01% 67.94%

(< 0.001) (< 0.001) (< 0.001)

Spectral clust. 75.94% 71.91% 71.90%
(< 0.001) (< 0.001) (< 0.001)

Ando-Bai 89.31% 88.40% 87.73%
(0.003) (0.003) (< 0.001)

Model-based 98.75% 98.39% 98.01%

T = 250

𝒩 t6 t4
k-means 68.02% 67.98% 67.90%

(< 0.001) (< 0.001) (< 0.001)

Spectral clust. 73.68% 69.75% 69.74%
(< 0.001) (< 0.001) (< 0.001)

Ando-Bai 88.09% 87.26% 86.44%
(0.001) (0.001) (< 0.001)

Model-based 98.13% 97.58% 97.15%

These results demonstrate the advantage of the proposed model-based approach, as well as

the fact that the existence of pervasive factors may severely hinder clustering accuracy when
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Table 5.3: Jaccard coefficients on simulation data for the proposed method and other considered clus-
tering techniques, using different simulation time window lengths and data distributions. The brackets
below each value contain the p-value of the paired resampling test of the considered method compared
to the proposed model-based algorithm. All of the values are obtained using simulation parameters given
in Table 5.1.

T = 1000

𝒩 t6 t4
k-means 11.09% 11.10% 11.12%

(< 0.001) (< 0.001) (< 0.001)

Spectral clust. 29.34% 23.78% 23.77%
(< 0.001) (< 0.001) (< 0.001)

Ando-Bai 61.16% 59.40%
(< 0.001) (< 0.001) (< 0.001)

Model-based 95.27% 94.35% 92.95%

T = 500

𝒩 t6 t4
k-means 11.10% 11.11% 11.15%

(< 0.001) (< 0.001) (< 0.001)

Spectral clust. 27.07% 20.00% 19.99%
(< 0.001) (< 0.001) (< 0.001)

Ando-Bai 62.36% 59.57% 57.80%
(0.003) (0.003) (< 0.001)

Model-based 93.92% 92.31% 90.59%

T = 250

𝒩 t6 t4
k-means 11.11% 11.13% 11.17%

(< 0.001) (< 0.001) (< 0.001)

Spectral clust. 22.69% 16.26% 16.26%
(< 0.001) (< 0.001) (< 0.001)

Ando-Bai 58.86% 56.43% 54.47%
(0.001) (0.001) (< 0.001)

Model-based 91.10% 88.62% 86.75%

they are not taken into account. Moreover, in the paired tests, the proposed method outper-

formed the considered methods for virtually all of the 1000 resampled model realizations (the

p-values of < 0.001 mean that in the mmax = 1000 simulated models, none were found for

which the considered benchmark methods outperformed the proposed model-based estimator).

To better visualize the paired comparison for these two methods across the simulations, the

71



Results

Rand statistic is shown for the Ando-Bai and the proposed model-based method across all 1000

simulations in Figure 5.3. This figure demonstrates that not only the proposed model-based

method outperforms the Ando-Bai estimator in the great majority of simulated cases, but also

that the variance of the Rand statistic of the model-based method is considerably lower – mean-

ing that the proposed method yields both accurate and stable results over a large number of

different randomly generated models.

Figure 5.3: The Rand statistic for all the 1000 simulations and T = 500, given for the Ando-Bai and
the proposed model-based estimation method. The two statistics for each simulation are connected with
a transparent blue line if the model-based method outperforms the Ando-Bai method, and a red line
otherwise (only 3 samples in this case). The dashed lines represent the average values of the statistics,
corresponding to the values in Table 5.2.

Another important issue in the estimation of clusters of securities in models with cluster-

specific factors is the cluster size bias. If the correct number of cluster-specific factors Ck for

each cluster are used in the clustering procedure, the clusters with a larger Ck will contain more

securities since the larger number of latent factors will necessarily explain more variability and

thus attract more securities in the cluster through the iterative procedure. The proposed estima-

tion algorithm in this thesis avoids the cluster size bias by holding an equal and fixed number

of cluster-specific factors C0 across all clusters during the clustering phase of the algorithm.

In order to look into the bias in clustering when the number of cluster-specific factors differ

between clusters, in Figure 5.4 the average number of securities in clusters with different num-

bers of cluster-specific factors are also given, estimated by two different approaches. The first

uses the real Ck as the number of cluster-specific factors in each cluster (corresponding to the

Ando-Bai method [52]), while the second uses the fixed C0 in each cluster during the clustering

phase. The bias towards the clusters with a larger Ck is evident and might be a large source of

inaccuracy in the clustering procedure, while the proposed model-based method with C0 seems

to provide accurate clustering without any evident bias in the cluster sizes. These results are
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obtained for the T = 500 window and the t4 distribution, but hold for all of the considered

combinations.

Figure 5.4: The sizes of clusters (number of assets Nk for different numbers of cluster-specific factors Ck,
given by two estimation methods. The real number of assets in each cluster is known in the simulation
and is equal to Nk = 200 for each k.

The above results all demonstrate that the proposed estimation algorithm works very well

and outperforms other benchmark methods (the PC estimator and the benchmark clustering

algorithms). The performance is shown to be robust to heavy tails in the data distributions and

indeed profits from the high-dimensionality of the time series. Moreover, the proposed method

avoids the cluster size bias which emerges when considering clusters with different numbers of

cluster-specific factors – in the proposed estimation procedure, the numbers of cluster-specific

factors are estimated after the clustering phase, given the estimated clusters and the data.

5.1.4 Model selection performance

The model selection method is also tested using the same simulation environment and the simu-

lated time series lengths. In addition to measuring the percentage of correctly estimated number

of pervasive factors, clusters and cluster-specific factors, the mean absolute deviation (MAD)

for each of these is also calculated. The results are shown in Table 5.4.

The accuracy of the proposed model selection method is remarkably high, even when pre-

sented with heavy tailed data and short time window length. Only the number of pervasive

factors seems to suffer a bit in case of the t4 distribution and T = 250 – nevertheless, the accu-

racy for this case is 90%. The results suggest that the proposed model selection method may

indeed be used with high-dimensional and heavy-tailed data to obtain reliable estimates for the

number of clusters, pervasive factors and cluster-specific factors.
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Table 5.4: Model selection accuracy on simulation data over different simulation time window lengths.

T = 1000
Acc. MAD

𝒩 t6 t4 𝒩 t6 t4
P 100% 100% 95% 0.00 0.00 0.05
K 100% 100% 100% 0.00 0.00 0.00
Ck 95.2% 100% 99.6% 0.10 0.00 0.01

T = 500
Acc. MAD

𝒩 t6 t4 𝒩 t6 t4
P 100% 100% 93% 0.00 0.00 0.08
K 99% 100% 100% 0.01 0.00 0.00
Ck 100% 99.4% 97.4% 0.00 0.01 0.03

T = 250
Acc. MAD

𝒩 t6 t4 𝒩 t6 t4
P 100% 98% 90% 0.00 0.02 0.14
K 100% 98% 98% 0.00 0.02 0.04
Ck 99.8% 99.8% 98.4% 0.01 0.01 0.02

5.2 Market data results

5.2.1 Historical market data

In addition to the simulations, two datasets containing weekly financial return time series are

also used to obtain results on historical market data. Firstly, a dataset of NASDAQ global

equity indices between 2005 and 2020 is considered [167]. The original dataset contains a

large number of redundant time series, from which only the total return NASDAQ indices are

considered, under the condition that they are available in the considered period, leaving the

dataset with N = 982 securities. Additionally, a dataset of N = 1480 international stocks is

considered, in the time period between 2005 and 2020. The data for this dataset is obtained by

downloading historical return data using Yahoo Finance for the tickers of constituents of several

MSCI broad internation market indices†, and then again selecting only those time series which

have price data for the entire considered period. Both of these datasets cover a wide range of

exchanges, countries and specific sectors, and can be used to represent and study the latent risk

†Specifically, the combination of all stocks within the MSCI World, MSCI All Country World, MSCI Emerging
Markets, and MSCI IXUS indices, since these represent the most of the international stocks in a large variety of
markets and countries.
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factors in global financial markets.

The simulation results confirm the ability of the proposed method to provide accurate esti-

mates, even in the presence of correlated residuals, heavy tails, and high-dimensional sample

data. However, in real financial market data, such as the NASDAQ global equity indices and

MSCI data, the latent factors are unknown, as well as the clustering and the number of clus-

ters and latent factors. The proposed method allows one to study and estimate these from the

data directly. Firstly, two distinct periods in the NASDAQ dataset are considered: Figure 5.5

shows the asset graph for the period 2007-2009 around the global recession, and Figure 5.6

show the graph for the subsequent period 2010-2020 which corresponds to one of the strongest

and longest bull markets in the history of financial markets. In both graphs, some common clus-

ters emerge (shown in same colors on both graphs): European markets (pink), Brazil and Latin

America (purple), North America and global developed market indices (blue), Asian emerging

markets (teal), Middle East and Africa (darker green), Asian developed markets (light green).

The 2007-2009 graph contains another cluster for India and New Zealand (yellow), and Eu-

ropean emerging markets (red) - both of which are encapsulated within other clusters in the

2010-2020 graph. In addition to serving as a sanity check for the meaning behind the estimated

clusters, these results suggest that the clusters and latent factor structures in the data may change

through time. This is why, in the rest of the analysis, rolling time window estimates of the latent

factors and clusters are considered, and out-of-sample data from subsequent future windows is

used to measure the quality of the model estimates.

5.2.2 Reconstruction of out-of-sample returns

To validate the proposed approach on the available financial market data, a backtesting frame-

work is considered. The model is estimated on return time series XXX on look-back windows of

fixed length T . Using the estimated model (mainly, the factor loadings ÂAA = [B̂BB, Λ̂ΛΛ]), a recon-

struction of any time series XXX ′ can be obtained using the N×N filtering matrix of rank P+Q:

M̂MM = ÂAA(ÂAA
ᵀ
ÂAA)−1ÂAA

ᵀ
. (5.8)

This enables a reconstruction of any out-of-sample time series XXX ′ to be obtained, using the

in-sample loadings estimates from which M̂MM is calculated:

X̂XX
′
= XXX ′M̂MM. (5.9)
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Figure 5.5: The asset graph for NASDAQ indices between 2007 and 2009.

Using the reconstructed time series X̂XX , the unexplained variance in each security is calculated

(either for the in-sample or out-of-sample data):

Vi =
∑

T
t (Xti− X̂ti)

2

∑
T
t (Xti−X i)2

, (5.10)

where Xti is the realization of time series i at time t, X̂ti is the model reconstruction given by

(5.9), and X i is the sample mean of time series i. This framework enables one to apply cross-

validation principles for estimating the out-of-sample model performance. Specifically, the

model estimates from a look-back window of length T are used to reconstruct the future out-

of-sample returns on a look-ahead window of length T ′. Using these, the average unexplained

variance V = 1
N ∑

N
i Vi can be measured for both in-sample and out-of-sample data (denoted

Vi and V ′i , respectively). Thus, ultimately the out of sample unexplained variance V ′ is the

measure to use to compare the estimated latent factor models. In the results presented below, the

proposed model-based estimation method is compared to the PC estimator, where the number

of components for the PC estimator is selected so that it explains at least the amount of variance

explained by the proposed model (both measured in-sample). However, since more factors

will always explain more variance in-sample, and often out-of-sample as well, to compliment

the out-of-sample performance measure, the deterioration between the in-sample and out-of-
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Figure 5.6: The asset graph for NASDAQ indices between 2010 and 2020.

sample unexplained variance is also calculated: d = 1/N ∑
N
i V ′i /Vi.

The results in Table 5.5 demonstrate that the proposed approach finds relevant estimates of

latent factors in the data which outperform the PC estimates in ouf-of-sample data, for both

considered datasets. Even though the PC estimator yields the lowest in-sample unexplained

variance V , the PC estimates deteriorate much more than the proposed model, as seen in the

out-of-sample unexplained variance V ′ and the average deterioration d. Moreover, all of these

results are in line with other econometric and unsupervised learning studies which find that

approximately 30-50% of variance in financial data corresponds to idiosyncratic components

[36, 50]. In addition, the model performance in terms of unexplained variance deteriorates

fairly less than the PC estimates, suggesting that the proposed estimation method finds more

persistent and relevant latent factors in high-dimensional financial time series. In other words,

the proposed model-based estimation method generalizes very well to out-of-sample data. This

result is expected since the proposed method utilizes the assumed clustering structures within

the markets to reduce the number of parameters, thus providing a type of structural regulariza-

tion of the estimates.
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Table 5.5: Unexplained variances of the model estimates compared to the PC estimator given different
lengths of the look-back windows, on both considered datasets.

T = 4 years, T ′ = 1 year
NASDAQ data MSCI data

V V ′ d V V ′ d
PC 31.03% 42.80% 39.33% 60.94% 72.80% 19.90%

Model 31.67% 40.47% 29.00% 61.90% 70.99% 15.02%
T = 3 years, T ′ = 1 year

NASDAQ data MSCI data
V V ′ d V V ′ d

PC 30.34% 42.86% 44.06% 60.41% 72.66% 20.80%
Model 31.15% 39.65% 29.48% 61.00% 70.05% 15.19%

T = 2 years, T ′ = 1 year
NASDAQ data MSCI data

V V ′ d V V ′ d
PC 33.25% 45.42% 40.06% 61.82% 73.81% 19.78%

Model 34.20% 42.84% 28.03% 63.63% 71.57% 12.88%

5.2.3 Portfolio backtests

The proposed approach is applied to the two considered datasets in order to test the properties of

risk-based portfolios formed using the model estimates. Several look-back periods of T = 4, 3,

and 2 years are used, with annual rebalancing. Since the two considered datasets contain differ-

ent profiles of risk and diversification potential, the portfolio optimization method is compared

to the EW portfolio of the securities in the considered dataset. Firstly, to look into the dynamics

of the estimated number of latent factors, the estimates P̂ and K̂ for each rebalance time are

displayed in Figure 5.7 for the NASDAQ dataset and in Figure 5.8 for the MSCI dataset.

The number of clusters for both datasets vary between 6 and 12, with the number of perva-

sive factors 0-3. However, the number of pervasive factors in the MSCI dataset is consistently

estimated to be zero – this is mostly due to a large cluster of Japanese stocks which were mostly

uncorrelated with the rest of the world stocks during the considered time period. Moreover,

the total number of cluster-specific factors Q̂ is often higher than the number of clusters for the

NASDAQ dataset, meaning that certain clusters have multiple cluster-specific factors – on the

other hand, the clusters in the MSCI dataset have one cluster-specific factor each.

Using the considered look-back window lengths the risk-based portfolios are calculated (for

the different estimates of the covariance matrices), together with the proposed cluster-based

portfolio, and compared to the EW portfolio. The annualized return and volatility are calculated
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Figure 5.7: The estimated number of pervasive factors P̂, clusters K̂, and the total number of cluster-
specific factors Q = ∑Ĉk, for the NASDAQ indices dataset.

from the mean weekly return rw and volatility σw as: rann = rw ·52 and σann = σw ·
√

52 (since

there are 52 weeks in a year). The (annualized) Sharpe ratio S is then calculated using the

annualized returns and volatilities. The risk free rates used in the Sharpe ratio calculations are

the 3-month T-Bill rates, obtained at the Federal Reserve Bank of St. Louis website [168].

The maximum drawdown of each portfolio is also calculated as the maximum percentage loss

from peak to bottom in the portfolio value throughout the entire time period. The turnover of a

portfolio is the average percentage of assets traded in order to rebalance the portfolio (to achieve

the target weights given by the portfolio optimization algorithm) – generally large turnovers

incur larger trading costs.

The portfolio performance measures for the considered portfolios are given in Table 5.6 for

the NASDAQ dataset and in Table 5.7 for the MSCI dataset.

Firstly, the results indicate that all the optimal risk-based portfolios reduce the volatility in

comparison to the EW portfolios. This means that the inferences made on the security covari-

ance matrices can indeed help manage and reduce the portfolio risk. The same is also confirmed

by the maximum drawdowns, which are evidently the largest in the EW portfolios. However,

the reduced risk also comes with a reduction in portfolio returns – nevertheless, as indicated by

the Sharpe ratios, nearly all the portfolios outperform the EW portfolio in risk-adjusted terms.

Within the minimum variance portfolio, in both datasets and all considered look-back win-

dow lengths the portfolios using the model-based estimates of the covariance matrix have the

lowest variances and smallest maximum drawdowns. These additionally affirm the findings in

Table 5.5 and suggest that the proposed model yields the most reliable estimates of the security

covariance matrices which ultimately reduce the out-of-sample risk in minimum variance port-

folios. Interestingly, the risk of MV portfolios estimated using empirical covariances seems to
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Figure 5.8: The estimated number of pervasive factors P̂, clusters K̂, and the total number of cluster-
specific factors Q = ∑Ĉk, for the MSCI stocks dataset.

somewhat increase with the shorter look-back windows. However, the proposed model-based

estimates manage to keep the risk relatively low and stable, and thus enable the usage of short

estimation windows in order to remain adaptive to the changes in market dynamics. Finally,

the turnovers of all the MV turnovers of these portfolios remain very low and any trading costs

would be negligible.

Regarding the maximum diversification portfolios and the proposed cluster-based portfolio,

the results suggest that these exhibit improved risk-adjusted returns (as opposed to MV port-

folios which do reduce risk the most, but also exhibit relatively low returns) – especially the

cluster-based portfolio. The results indicate that the proposed cluster-based portfolios outper-

form the other considered methods in most of the considered cases (the only exception being the

4-year look-back period for the MSCI dataset, where the MDP with the model-based estimate

outperforms). Generally, the cluster-based portfolio exhibits high returns with relatively low

risk (as indicated by their volatility and max. drawdown), and very low turnovers, which makes

the proposed method a very attractive risk-based portfolio optimization approach.

These results demonstrate the validity of the model and the ability of the proposed estimator

to provide reliable estimates of latent factors in high-dimensional financial returns. The model-

based covariances are shown to reduce the volatility and drawdowns of risk-based portfolios,

as opposed to the empirical covariances and the PC estimator. Moreover, the proposed cluster-

based portfolio relying on the model estimates and identified security clusters is demonstrated

to outperform other risk-based portfolios in risk-adjusted terms, which additionally affirms the

proposed approach, which can ultimately help manage and reduce the risk in large portfolios of

financial securities.
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Table 5.6: The portfolio performance for the considered long-only portfolios, for the proposed latent
factor model with pervasive and cluster-specific factors, calculated on the NASDAQ indices dataset.

T = 2 years, T ′ = 1 year

r σ S Max. DD T/o

EW 8.48% 13.84% 0.56 31.50% 3.57%

MV (emp.) 5.77% 7.58% 0.66 24.45% 6.20%

MV (PC) 6.12% 7.50% 0.72 23.63% 6.11%

MV (model) 6.15% 7.20% 0.75 23.20% 6.34%

MDP (emp.) 6.58% 9.38% 0.62 25.85% 6.57%

MDP (PC) 7.26% 9.03% 0.72 24.92% 6.07%

MDP (model) 7.29% 8.46% 0.78 22.70% 6.68%

Cluster-based 8.95% 9.24% 0.89 24.90% 8.94%

T = 3 years, T ′ = 1 year

r σ S Max. DD T/o

EW 8.48% 13.84% 0.56 31.50% 3.57%

MV (emp.) 5.85% 7.28% 0.70 24.29% 6.18%

MV (PC) 5.90% 7.21% 0.72 23.86% 5.46%

MV (model) 5.89% 6.98% 0.74 23.42% 6.67%

MDP (emp.) 7.47% 9.33% 0.72 26.61% 7.44%

MDP (PC) 7.66% 9.02% 0.77 25.61% 6.31%

MDP (model) 7.00% 8.68% 0.72 24.66% 6.56%

Cluster-based 9.58% 9.19% 0.96 25.69% 8.90%

T = 4 years, T ′ = 1 year

r σ S Max. DD T/o

EW 8.48% 13.84% 0.56 31.50% 3.57%

MV (emp.) 5.75% 7.06% 0.71 24.88% 5.66%

MV (PC) 6.04% 6.99% 0.76 24.08% 5.08%

MV (model) 6.54% 6.93% 0.84 23.71% 5.24%

MDP (emp.) 8.11% 9.29% 0.79 25.78% 6.59%

MDP (PC) 7.94% 9.13% 0.79 25.07% 6.69%

MDP (model) 7.85% 8.58% 0.83 22.62% 7.69%

Cluster-based 9.71% 8.66% 1.04 23.35% 8.62%
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Table 5.7: The portfolio performance for the considered long-only portfolios, for the proposed latent
factor model with pervasive and cluster-specific factors, calculated on the MSCI stocks dataset.

T = 2 years, T ′ = 1 year

r σ S Max. DD T/o

EW 10.99% 14.38% 0.71 30.89% 7.40%

MV (emp.) 8.01% 10.36% 0.70 23.74% 10.09%

MV (PC) 6.82% 9.37% 0.65 20.32% 8.78%

MV (model) 7.48% 8.99% 0.75 17.93% 10.12%

MDP (emp.) 12.07% 12.41% 0.91 25.84% 12.42%

MDP (PC) 7.49% 10.68% 0.63 23.52% 10.12%

MDP (model) 12.20% 10.88% 1.05 18.93% 12.69%

Cluster-based 11.92% 10.87% 1.03 21.11% 12.00%

T = 3 years, T ′ = 1 year

r σ S Max. DD T/o

EW 10.99% 14.38% 0.71 30.89% 7.40%

MV (emp.) 8.89% 9.51% 0.86 21.52% 8.22%

MV (PC) 9.14% 9.29% 0.90 19.52% 7.80%

MV (model) 8.32% 8.80% 0.86 16.82% 7.77%

MDP (emp.) 11.29% 12.47% 0.85 27.45% 11.83%

MDP (PC) 11.66% 11.38% 0.96 23.38% 11.11%

MDP (model) 12.06% 10.78% 1.05 18.26% 11.76%

Cluster-based 12.50% 10.71% 1.10 18.92% 11.58%

T = 4 years, T ′ = 1 year

r σ S Max. DD T/o

EW 10.99% 14.38% 0.71 30.89% 7.40%

MV (emp.) 8.86% 9.30% 0.87 21.64% 7.04%

MV (PC) 8.18% 9.04% 0.82 18.63% 6.86%

MV (model) 8.01% 8.79% 0.83 18.37% 8.03%

MDP (emp.) 13.50% 12.45% 1.02 22.86% 12.11%

MDP (PC) 11.02% 11.09% 0.93 22.38% 10.45%

MDP (model) 14.11% 11.78% 1.14 20.58% 11.93%

Cluster-based 13.11% 11.52% 1.07 21.39% 12.15%
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Chapter 6

Conclusion

The growing number in financial securities and the globalization of financial markets motivate

an increasing amount of attention to high-dimensional risk modelling by the financial industry

and the academic community. Due to the dynamic nature of financial markets, the estimation

windows for risk models must remain limited, but the dimensionality of the models grows with

the number of securities. Standard statistical tools often fall short due to the so-called curse of

dimensionality, while complex nonlinear models come with large numbers of parameters which

are near impossible to efficiently estimate in high-dimensional settings. Recent research efforts

thus turn their attention to regularized methods which exploit certain structural characteristics

of financial markets in order to obtain parsimonious and robust estimates.

This thesis focuses on high-dimensional financial time series with pervasive and cluster-

specific factors. An estimation method is proposed which performs time series clustering and

estimates latent pervasive and cluster-specific factors iteratively. In order to estimate the un-

known number of clusters and latent pervasive and cluster-specific factors, a model selection

method is developed based on the asset correlation matrices and security graphs. Using the

estimated latent factor structures in high-dimensional time series of asset returns, a risk-based

portfolio optimization method relying on latent factor and cluster estimates is also proposed.

The methods are tested using several data generating processes under the approximate fac-

tor model assumptions, featuring heavy tailed returns with some off-diagonal correlations of

residuals. The simulation study shows that the proposed method yields very accurate cluster-

ing results, even for the most severe high-dimensional setting and heavy-tailed distributions.

Moreover, the results demonstrate that the proposed two-phase model-based method estimates

clusters which are not biased towards those clusters with a larger number of cluster-specific fac-

tors, as is the case with other clustering methods using cluster-specific factors. In addition, the

simulation study results suggest that the proposed model selection method provides stable and

accurate estimates of the number of clusters, latent pervasive, and latent cluster-specific factors.

The methods are also applied to datasets of return time series of NASDAQ indices and world
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stocks in MSCI indices in a backtesting approach which allows the in-sample model estimates

to be used for the reconstruction of out-of-sample return data. By doing so the unexplained

variance can be cross-validated. The result of the out-of-sample unexplained variances suggest

that the proposed model-based estimation method, although explaining less variance in-sample

than the PC estimator, explains more variance out-of-sample, meaning that it generalizes better

and provides more robust estimates. In addition, the proposed portfolio optimization method

based on the estimated latent factors is also backtested on historical market returns. The re-

sults demonstrate the ability of the proposed method to reduce risk in the minimum variance

portfolios, which outperform the portfolios built on empirical and PC estimates of the covari-

ance matrix. Moreover, it is found that, whereas the empirical covariances deteriorate with the

shorter look-back windows, the model-based estimates thrive in these high-dimensional situa-

tions, allowing one to use short look-back windows and thus being more adaptive to changing

market conditions. Moreover, the considered maximum diversification portfolios affirm these

findings – the model-based covariance estimates yield the best risk-adjusted performance of the

MDP portfolios in both considered datasets and all look-back windows. Finally, the proposed

cluster-based portfolios outperform other risk-based methods, while keeping the risk low and

turnover negligible.

The results presented in this paper suggest that the clustering assumption in high-dimensional

financial time series data holds, and that the model-based estimation method indeed extracts use-

ful information about the latent factor structure. These findings affirm and refine asset pricing

theories based on multi-factor models, providing evidence on the clustering structures of latent

risk factors. This approach may help shed more light on the intricate latent factor structures in

global financial markets, as is demonstrated in our results. Ultimately, the robust estimates of

pervasive and cluster-specific factors may be used to improve risk assessment and enhance the

out-of-sample performance of portfolios built on the estimated models.
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[1] D. Johnston and P. Djurić, “The Science Behind Risk Management,” IEEE Signal Pro-

cessing Magazine, vol. 28, no. 5, pp. 26–36, sep 2011.

[2] G. A. Susto, A. Schirru, S. Pampuri, S. McLoone, and A. Beghi, “Machine learning for

predictive maintenance: A multiple classifier approach,” IEEE Transactions on Industrial

Informatics, vol. 11, no. 3, pp. 812–820, jun 2015.

[3] F. Barboza, H. Kimura, and E. Altman, “Machine learning models and bankruptcy pre-

diction,” Expert Systems with Applications, vol. 83, pp. 405–417, oct 2017.

[4] E. F. Fama and K. R. French, “Common risk factors in the returns on stocks and bonds,”

Journal of Financial Economics, vol. 33, no. 1, pp. 3–56, feb 1993.

[5] J. Bai and S. Ng, “Evaluating latent and observed factors in macroeconomics and fi-

nance,” in Journal of Econometrics, vol. 131, no. 1-2. North-Holland, mar 2006, pp.

507–537.

[6] E. F. Fama and K. R. French, “International tests of a five-factor asset pricing model,”

Journal of Financial Economics, vol. 123, no. 3, pp. 441–463, mar 2017.

[7] C. Asness, A. Frazzini, R. Israel, T. J. Moskowitz, and L. H. Pedersen, “Size matters, if

you control your junk,” Journal of Financial Economics, 2018.

[8] M. Lettau and M. Pelger, “Factors That Fit the Time Series and Cross-Section of Stock

Returns,” The Review of Financial Studies, vol. 33, no. 5, 2020.

[9] M. Agrawal, D. Mohapatra, and I. Pollak, “Empirical evidence against CAPM: Relat-

ing alphas and returns to betas,” IEEE Journal on Selected Topics in Signal Processing,

vol. 6, no. 4, pp. 298–310, 2012.

[10] X.-P. S. Zhang and F. Wang, “Signal Processing for Finance, Economics, and Marketing:

Concepts, framework, and big data applications,” IEEE Signal Processing Magazine,

vol. 34, no. 3, pp. 14–35, may 2017.

85



Bibliography

[11] M. M. Loépez de Prado, Advances in financial machine learning. Wiley, 2018.
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