
Just-in-time video transcoding system on
heterogeneous high performance computing
architectures

Piljić, Igor

Doctoral thesis / Disertacija

2019

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of
Zagreb, Faculty of Electrical Engineering and Computing / Sveučilište u Zagrebu, Fakultet
elektrotehnike i računarstva

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:168:782998

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-10-03

Repository / Repozitorij:

FER Repository - University of Zagreb Faculty of
Electrical Engineering and Computing repozitory

https://urn.nsk.hr/urn:nbn:hr:168:782998
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.fer.unizg.hr
https://repozitorij.fer.unizg.hr
https://repozitorij.unizg.hr/islandora/object/fer:6619
https://dabar.srce.hr/islandora/object/fer:6619

FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

Igor Piljić

JUST-IN-TIME VIDEO TRANSCODING SYSTEM ON
HETEROGENEOUS HIGH PERFORMANCE

COMPUTING ARCHITECTURES

DOCTORAL THESIS

Zagreb, 2019

FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

Igor Piljić

JUST-IN-TIME VIDEO TRANSCODING SYSTEM ON
HETEROGENEOUS HIGH PERFORMANCE

COMPUTING ARCHITECTURES

DOCTORAL THESIS

Supervisor:
Professor Mario Kovač, Ph.D.

Zagreb, 2019

FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA

Igor Piljić

SUSTAV ZA PRAVOVREMENO
VIDEOTRANSKODIRANJE NA RAZNORODNIM

ARHITEKTURAMA ZA RAČUNARSTVO VISOKIH
PERFORMANCI

DOKTORSKI RAD

Mentor:
Prof. dr. sc. Mario Kovač

Zagreb, 2019.

Doctoral thesis was made at the University of Zagreb,

Faculty of Electrical Engineering and Computing,

Department of Control and Computer Engineering

Supervisor:

Professor Mario Kovač, Ph.D.

Doctoral thesis contains: 131 pages

Doctoral thesis number: __________

ABOUT THE SUPERVISOR:

Prof. dr. sc. Mario Kovač is full professor at the Faculty of Electrical Engineering and

Computing (FER), University of Zagreb, Croatia. In 1990 and 1991 he received a VLSI and

Computer Architecture Scholarship at the University of South Florida, and he subsequently

received the Fulbright Award in 1993. He holds several patents including US patents in

multimedia systems and architecture domains. In 2008, Croatian President awarded him with

the the Medal of Honor "Order of Danica Hrvatska with the image of Ruđer Bošković" for

special merit in science. Professor Kovač served as Head of the Dept. of Control and Computer

Engineering and Vice Dean for Business Development at FER. He was a member of the

supervisory boards of: CARNet, Croatian Institute of Technology and BICRO - Business

Innovation Center of Croatia. He currently holds several positions: Chief Communications

Officer (CCO) at European Processor Initiative; Expert member of Governing Board as well as

Research and Innovation Advisory Group Observer Member at EuroHPC Joint Undertaking;

Director HPC Architectures and Applications Research Center at FER. He is senior member

of the IEEE Computer Society.

O MENTORU:

Prof. dr. sc. Mario Kovač je redovni profesor na Fakultetu elektrotehnike i računarstva

(FER), Sveučilište u Zagrebu. 1990. i 1991. dobio je stipendiju za VLSI i računalnu arhitekturu

na Sveučilištu u Južnoj Floridi, a potom je 1993. dobio nagradu Fulbright. Autor je nekoliko

patenata, uključujući američke patente u području multimedijskih arhitektura i sustava. 2008.

godine odlikovan je medaljom "Orden Danice Hrvatske s likom Ruđera Boškovića" za posebne

zasluge u znanosti. Profesor Kovač obnašao je dužnost predsjednika Zavoda za automatiku i

računalno inženjerstvo i prodekana za poslovanje na FER-u. Bio je član nadzornih odbora:

CARNet-a, Hrvatskog tehnološkog instituta i BICRO - poslovno-inovacijskog centra Hrvatske.

Trenutno obnaša nekoliko pozicija: glavni direktor za komunikacije (CCO) Europskog projekta

„European Processor Initiative“; Stručni član upravnog odbora, kao i savjetodavne skupine za

istraživanje i inovacije EuroHPC; Direktor centra za istraživanje arhitektura i aplikacija za

računarstvo visokih performanci na FER-u. Viši je član IEEE Computer Society.

SUMMARY

Latest analysis show that 82 percent of global IP traffic will be video traffic by 2022.

Handling this amount of data is a very challenging task for video content providers. Another

factor that highlights this problem is the continuously growing number of different devices that

are able to play video content. With such diversity of devices, with different characteristics, a

single copy of the encoded video cannot match requirements of all playback conditions. Just-

in-Time (JiT) video transcoding has one of the key roles in resolving these issues. However, it

is an extremely compute-intensive and resource-hungry process, especially when it is based on

the novel High Efficiency Video Coding standard.

This thesis presents a novel algorithm for reusing coding information from the input

video stream. The main concept behind the proposed algorithm is to estimate the computational

complexity of re-encoding each coding block based on the information retrieved from the

decoded frame and to balance the workload of the transcoder accordingly. The final goal is to

achieve an optimal trade-off between video quality of the transcoded bitstream and coding

efficiency while conforming to strict timing requirements imposed by Just-in-Time transcoding.

To achieve a more efficient solution, a hardware accelerator for inter prediction, as one of the

key compute-intensive kernels in video transcoding based on HEVC, is designed and

implemented.

An integrated system composed of implemented algorithm and custom hardware

accelerator is evaluated and compared to two baseline transcoders: Just-in-Time transcoder

without reusing data and regular transcoder without timing restrictions. Compared with JiT

transcoder, the proposed solution increases video quality by 0.945 dB and reduces bitrate on

average by 35.06%. Significant speedups of up to 4 times are achieved compared with

transcoder without timing requirements but with average losses of 0.592 in PSNR and 21.74%

in bitrate.

Keywords: video transcoding, HEVC, reusing data, hardware accelerators, heterogeneous

high-performance architectures

Sustav za pravovremeno videotranskodiranje na raznorodnim arhitekturama za

računarstvo visokih performanci

Statistike pokazuju da će 82% globalnog Internet Protokol (IP) prometa do 2022. godine

činiti video promet, što je povećanje sa 75% udjela u 2017. godini. Godišnji globalni IP promet

će doseći granicu od 4.8 ZB (ZB= 1000 Egzabajta) do 2022. godine, što znači da će približno

3.9 ZB biti promet video sadržaja. Preračunato u minute, do 2022. svake sekunde će mrežom

proći preko milijun minuta videa.

Rukovanje tolikom količinom podataka predstavlja iznimno zahtjevan zadatak za

poslužitelje video sadržaja. Još jedan faktor koji naglašava složenost ovog problema je činjenica

da broj različitih uređaja koji mogu prikazivati video sadržaj konstantno raste. Takvu

raznovrsnost uređaja, koji mogu imati različitu procesorsku snagu, sposobnost dekodiranja i

različite rezolucije, a mogu biti spojeni i na mreže s niskom ili visokom propusnosti, nemoguće

je zadovoljiti samo jednom verzijom videa. Na primjer, slanje videa visoke rezolucije (1080p)

koji ima 60 okvira u sekundi (60fps) mobilnom uređaju koji nema tako visoku rezoluciju

zaslona i koji je spojen na mrežu niske propusnosti je, ne samo nepotreban trošak resursa, nego

će vjerojatno uzrokovati i kašnjenje u prikazu videa, smanjujući time iskustvenu kvalitetu

korisnika.

Trenutni poslužitelji video usluga pokušavaju riješiti ovaj problem tako da prvo kodiraju

isti video u više različitih verzija te nakon toga korisniku pošalju onu verziju koja najbolje

odgovara njegovim zahtjevima. Ovakav pristup zahtjeva veliku količinu memorije za pohranu

svih verzija, a osim toga odabrana verzija ne mora u potpunosti odgovarati svim zahtjevima

krajnjeg korisnika. Nadalje, korištenje novih rezolucija (4K, 8K,…), kao i činjenica da je video

sadržaj raspodijeljen tako da 90% sadržaja gleda samo 10% korisnika i obrnuto (distribucija

„dugog repa“), čine ovakav koncept teško održivim. Pravovremeno videotranskodiranje ima

jednu od ključnih uloga u rješavanju ovog problema. Videotranskodiranje se odnosi na

prilagodbu video sadržaja ovisno o specifičnim okolnostima i karakteristikama uređaja, a

uključuje promjenu prostorne, vremenske ili amplitudne rezolucije, te video formata. Umjesto

spremanja više verzija jednog videa, poslužitelji mogu spremiti samo jednu verziju s najvišom

kvalitetom, a zatim na zahtjev korisnika, transkodirati video u stvarnom vremenu, ovisno o

trenutnom zahtjevu, a zatim taj transkodirani video poslati korisniku. Iako pravovremeno

videotranskodiranje povećava učinkovitost sustava osiguravajući najbolju iskustvenu kvalitetu,

to je iznimno računalno zahtjevan postupak. Još jedan od pristupa koji se danas koristi je

Skalabilno video kodiranje (eng. Scalable Video Coding – SVC). SVC sadrži kodiranu

najkvalitetniju verziju videa, a za slučaj da je potreban zapis manje kvalitete, potrebno je samo

izbaciti određene pakete unutar SVC formata prilikom slanja. Spremanje videa u SVC formatu

značajno smanjuje cijenu pohrane podataka, ali i dalje ne omogućuje najbolju iskoristivost

resursa, niti najbolju kvalitetu videa. Neka istraživanja kombiniraju postupke pravovremenog

videotranskodiranja sa spremanjem više verzija videa u hibridne platforme koje koriste

statistiku pregleda da bi odlučili koje video zapise ili dijelove videa je potrebno pravovremeno

transkodirati, a koje dijelove se isplati pohraniti u više verzija.

HEVC ili H.265 (eng. High Efficiency Video Coding) norma za video kodiranje postiže

značajan napredak u kompresiji za razliku od prethodne AVC norme. Uz istu subjektivnu

kvalitetu, HEVC ostvaruje približno 50% bolju kompresiju, ali povećava računalnu složenost i

zahtjev za resursima i do 10 puta. Prilikom razvoja HEVC norme, posebna pozornost bila je

usmjerena na mogućnosti paralelizacije algoritama te njihovo izvođenje na sklopovskim

arhitekturama. Učinkovito iskorištavanje ovih koncepata je ključno kada govorimo o

pravovremenom videotranskodiranju visokih performanci, pogotovo na raznorodnim

višejezgrenim arhitekturama.

Pravovremeno videotranskodiranje zasnovano na HEVC normi je iznimno računalno

zahtjevan postupak te je postizanje najboljeg odnosa između kvalitete videa i računalne

složenosti tema brojnih istraživanja. Pametno iskorištavanje informacija o kodiranju početnog

video zapisa ima ključnu ulogu u gotovo svim povezanim istraživanjima. Programski algoritmi

mogu postići značajan napredak u smanjenju složenosti i ubrzanju postupka, ali da bi se

zadovoljili strogi vremenski zahtjevi, moraju se istražiti i iskoristiti sklopovske jezgre za

ubrzanje i raznorodne arhitekture na računalima visokih performanci. Optimizacija i učinkovito

raspoređivanje pojedinih dijelova algoritma na različite jezgre raznorodnog sustava je nužno da

bi se postigao najbolji balans između kvalitete videa, potrošnje energije i kompresije videa, a

istovremeno zadovoljavajući zahtjeve pravovremenog izvođenja i željene kvalitete usluge.

Glavni cilj ove doktorske disertacije bilo je istražiti tehnike iskorištavanja informacija

o kodiranju ulaznog video toka kodiranog HEVC standardom da bi se ubrzao proces ponovnog

kodiranja, ali bez negativnog utjecaja na kvalitetu videa i/ili učinkovitost kodiranja. U cilju

daljnjeg poboljšanja procesa videotranskodiranja, istražene su i učinkovite izvedbe

pravovremenog videotranskodiranja na raznorodnim arhitekturama za računarstvo visokih

performanci.

U sklopu provedenog istraživanja razvijeno je programsko-sklopovsko rješenje Bolt65.

Bolt65 sastoji se od enkodera, dekodera i transkodera zasnovanog na HEVC standardu, čiji je

glavni cilj ostvariti videotranskodiranje u stvarnom vremenu. Poseban fokus pri razvoju ovog

rješenja postavljen je na učinkovitost s obzirom na performance ostvarenu optimizacijom za

programsko-sklopovske sustave. Algoritam za iskorištavanje informacija o kodiranju ulaznog

video toka, predstavljen kao jedan od doprinosa ove disertacije, ugrađen je i testiran unutar

Bolt65 rješenja.

Za validaciju i verifikaciju svih provedenih eksperimenata korišten je isti set videa, s

različitim vremenskim i prostornim rezolucijama da bi se pokrio što širi spektar mogućih

kombinacija pri videotranskodiranju. U obzir su uzete video sekvence rezolucije veće od

1280x720 piksela s maksimalnim brojem od 120 okvira u sekundi. Raznorodni sustav na kojem

su izvršena sva testiranja sastoji se od procesora opće namjene i Kintex Ultrascale FPGA

pločice koji su međusobno povezani preko visoko propusne PCIe (Gen3 x8) sabirnice. Rezultati

razvijenog transkodera uspoređeni su s dva transkodera: pravovremenog Bolt65 transkodera i

Kvazaar transkodera. Tri glavne karakteristike transkodiranja su praćene prilikom vrednovanja

svih rezultata: vrijeme izvođenja, bitovna brzina prijenosa (eng. bitrate) za analizu

učinkovitosti kodiranja te PSNR (eng. Peak signal-to-noise ratio) za mjerenje kvalitete

transkodiranog video zapisa.

Inteligentno iskorištavanje informacija o kodiranju ulaznog video zapisa ima ključnu

ulogu u poboljšavanju procesa video transkodiranja. U ovoj disertaciji identificirane su i

korištene tri vrste podataka iz ulaznog video toka:

• Veličina dekodiranih kodnih blokova (eng. Coding Unit - CU), odnosno broj

bitova koji je bio potreban da bi se pojedini kodni blok kodirao u originalnom

video zapisu

• Broj mapiranih kodnih blokova, odnosno broj kodnih blokova iz originalnog

videa koji pokriva isto područje slike kao i trenutno promatrani kodni blok u

transkodiranoj slici

• Vrsta predikcije mapiranih kodnih blokova, odnosno način predikcije (intra ili

inter) pojedinih kodnih blokova iz originalnog videa

Jedan od glavnih aspekata predstavljenog programskog algoritma je kategorizacija

kodnih blokova. Glavna zamisao ovog koncepta je razdvojiti kodne blokove u različite

kategorije ovisno o složenosti njihovog procesiranja, a zatim kodirati pojedine blokove ovisno

o kategorijama kojima pripadaju. Više procesorske moći će biti uloženo u analizu i

transkodiranje složenijih blokova kodiranja, s obzirom na to da je veća vjerojatnost da se upravo

u tom dijelu slike nalazi više detalja. Tri su skupine kategorija u kojoj se kategorizira svaki

kodni blok:

• Kategorizacija temeljena na broju bitova iz dekodiranog videa – kategorije LBC

(eng. Low Bit Complexity), MBC (eng. Medium Bit Complexity) i HBC (eng.

High Bit Complexity)

• Kategorizacija temeljena na broju mapiranih kodnih blokova – kategorije LM

(eng. Low Mapped), MM (eng. Medium Mapped) i HM (eng. High Mapped)

• Kategorizacija temeljena na vrsti predikcije mapiranih kodnih blokova –

kategorije InterM, IntraM, ComboInter, ComboIntra

Svaka od tri vrste kategorizacije kontrolirana je zasebnim koeficijentima kojima se

može regulirati broj kodnih blokova u svakoj od kategorija te koji se mogu dinamički mijenjati

tijekom procesa transkodiranja, što je iznimno bitno kod pravovremenog izvođenja. Primjerice,

ako se prilikom transkodiranja detektira da brzina izvođenja pada te da je izvođenje u stvarnom

vremenu ugroženo, koeficijenti se mogu podesiti tako da se veći broj kodnih blokova

kategorizira u manje složene kategorije (npr. LBC ili LM), čime se automatski smanjuje

složenost ukupnog transkodiranja te samim time ubrzava čitav proces.

Algoritam predstavljen u ovoj disertaciji iskorištava informacije o kodiranju ulaznog

video toka da bi kategorizirao kodne blokove ovisno o njihovoj složenosti, nakon čega donosi

odluke u fazi transkodiranja ovisno o tome kojim kategorijama pojedini kodni blok pripada. Na

samom početku, nakon dekodiranja okvira, izvlače se svi relevantni podaci o kodiranju

originalnog videa, nakon čega se kreće u novo kodiranje s novim parametrima. Transkodirani

okvir se zatim dijeli u najveće moguće kodne blokove (64x64 piksela) te se svi blokovi

kategoriziraju u svaku od tri već navedene kategorije. Idući korak je inicijalna podjela kodnih

blokova na manje blokove veličine od 32x32 do 8x8 piksela. U ovom koraku odluka o podjeli

temelji se na prve dvije kategorizacije (kategorizacija temeljena na broju bitova iz dekodiranog

videa i kategorizacija temeljena na broju mapiranih kodnih blokova). Vjerojatnost da će kodni

blok biti podijeljen na manje blokove je veća ako kodni blok pripada nekoj od složenijih

kategorija (npr. HM i/ili HBC). Nakon inicijalne podjele, svaki novonastali blok ponovo prolazi

kroz proces kategorizacije. Idući korak je odluka o načinu predikcije koja se donosi isključivo

ovisno o trećoj vrsti kategorizacije – kategorizacija temeljena na vrsti predikcije mapiranih

kodnih blokova. Ovisno o načinima predikcije mapiranih kodnih blokova te broju mapiranih

kodnih blokova koji imaju sličan način predikcije, stvara se podskup intra i inter predikcijskih

kandidata koji se evaluiraju da bi se dobila najbolja moguća predikcija za transkodiranje

trenutnog kodnog bloka. U slučaju da se detektira da se načini predikcije mapiranih kodnih

blokova uvelike razlikuju, postoji mogućnost daljnjeg dijeljenja na manje blokove da bi se

ostvarila preciznija predikcija.

Prilikom transkodiranja stanje svih parametara se konstantno prati da bi se osigurala

pravovremena izvedba. Nakon svakih nekoliko okvira provjerava se brzina izvođenja,

učinkovitost kodiranja te kvaliteta videa. U slučaju da pravovremeno izvođenje nije

zadovoljeno, svi koeficijenti se podešavaju da bi se smanjila složenost transkodiranja u

sljedećem periodu. U suprotnom slučaju, kada je pravovremeno izvođenje zadovoljeno,

razmatra se podešavanje svih koeficijenata u cilju povećanja kvalitete videa i/ili učinkovitosti

kodiranja u onim granicama koje ne predstavljaju rizik pravovremenom izvođenju. Stalno

praćenje i nadzor svih parametara te podešavanje koeficijenata u cilju postizanja što bolje

kvalitete videa bez ugrožavanja pravovremenog izvođenja čini ovaj algoritam otpornim na

promjene unutar same video sekvence i unutar sustava na kojem se izvodi videotranskodiranje.

Korištenjem predstavljenog algoritma zadovoljava se pravovremenost u svim

slučajevima, a postiže se bolja kvaliteta (PSNR) za sve promatrane scenarije transkodiranja u

odnosu na pravovremeni Bolt65 transkoder, i to za 0.788 dB u prosjeku. Učinkovitost kodiranja

uvećana je za 27.35% u prosjeku. U usporedbi s Kvaazar transkoderom koji transkodira video

bez striktnih vremenskih zahtjeva, predloženi algoritam transkodira s lošijom kvalitetom za

0.749 dB te lošijom učinkovitosti kodiranja za otprilike 30% u prosjeku. Ovi gubici uzrokovani

su ograničenjima u brzini izvođenja. Naime, Kvaazar ne zadovoljava pravovremeno

transkodiranje ni za jednu testnu video sekvencu, a prosječno ubrzanje koje se dobije

korištenjem predloženog algoritma u odnosu na Kvazaar je 2.24 puta.

Programska izvedba opisanog algoritma postiže napredak u odnosu na druge

promatrane pravovremene transkodere, međutim, da bi se postiglo videotranskodiranje sa

strogim vremenskim ograničenjima nužno je smanjiti set funkcionalnosti koji je moguć pri

transkodiranju HEVC standardom. Neki alati, kao što su npr. interpolacijski filteri koji mogu

značajno poboljšati kvalitetu videa i učinkovitost kodiranja, se ne koriste s obzirom na to da

njihova složenost uvelike utječe na ukupno vrijeme transkodiranja. Uvođenjem sklopovskih

ubrzivača za pojedine jezgre može se ubrzati čitav proces, čime bi se otvorio prostor za

uvođenje novih alata ili proširivanje postojećih, što bi poboljšalo kvalitetu transkodiranog

videa. Naime, kod pravovremenog videotranskodiranja, krajnji cilj nije izvršiti transkodiranje

što je brže moguće, već postići što bolji omjer kvalitete videa i učinkovitosti kodiranja, uz

zadovoljavanje postavljenih vremenskih ograničenja.

Analizom HEVC transkodera identificirano je nekoliko jezgri koje najviše utječu na

ukupno trajanje izvođenja. Kao najbolji kandidat za sklopovsko ubrzanje u razvijenom

algoritmu odabrana je inter predikcija, koja ne samo da utječe na ukupno vrijeme izvođenja

nego također uvelike utječe i na kvalitetu krajnjeg video zapisa te učinkovitost kodiranja.

Razvijen je specijalizirani sklopovski ubrzivač za FPGA koji postiže ubrzanja od 4 do 13 puta,

ovisno o veličini blokova i veličini područja pretrage, u odnosu na čistu programsku

implementaciju.

Integracija razvijenog programskog rješenja i specijaliziranog sklopovskog ubrzivača

izvedena je na već opisanom sustavu s jednim procesorom opće namjene i Kintex Ultrascale

FPGA pločicom na kojoj je postavljen projektirani sklopovski ubrzivač za inter predikciju.

Komunikacija između procesora opće namjene i sklopovskog ubrzivača odvija se preko DMA

(eng. Direct Memory Access) sklopa i AXI sučelja, a svi podaci o video okvirima spremaju se

u DDR memoriju. Maksimalna moguća brzina prijenosa koja se može dostići u ovom sustavu

iznosi 8 Gb/s.

S obzirom na to da se s integriranim rješenjem dobije ubrzanje videotranskodiranja,

višak vremena koji se time dobije može se iskoristiti za proširivanje područja pretrage inter

predikcije ili za prilagodbu koeficijenata na način da više kodnih blokova pripada složenijim

kategorijama koje se detaljnije obrađuju, čime se u konačnici dobiva na kvaliteti transkodiranog

videa i učinkovitosti kodiranja. Ovakvo rješenje integrirano na raznorodnoj arhitekturi visokih

performanci postiže bolju kvalitetu u odnosu na Bolt65 pravovremeni transkoder od 0.945 dB,

što je rast u odnosu na 0.788 dB koji se dobio samo programskom izvedbom. Učinkovitost

kodiranja također raste sa 27.35% na 35.06%. Analogno tome, gubici u odnosu na Kvazaar

transkoder, koji ne realizira pravovremeno transkodiranje, su manji i što se tiče kvalitete videa

i učinkovitosti kodiranja.

Ključne riječi: videotranskodiranje, HEVC, iskorištavanje informacija o kodiranju ulaznog

video toka, sklopovske jezgre za ubrzanje, raznorodne arhitekture visokih performanci

TABLE OF CONTENTS

1 Introduction .. 1

1.1 Thesis outline .. 3

2 High efficiency video coding (HEVC) standard .. 5

2.1 HEVC architecture ... 5

2.2 Block partitioning ... 6

2.3 Prediction .. 7

2.3.1 Intra prediction .. 7

2.3.2 Inter prediction .. 8

2.4 Transform and quantization .. 10

2.5 In-Lop filters ... 11

2.6 HEVC syntax and entropy coding .. 12

2.7 HEVC parallelization ... 12

3 Video transcoding .. 14

3.1 Transcoding architectures ... 15

3.1.1 Open-loop transcoder .. 15

3.1.2 Cascaded pixel-domain transcoder ... 16

3.1.3 DCT – domain transcoder ... 17

3.2 Transcoding techniques .. 17

3.2.1 Bitrate reduction ... 18

3.2.2 Temporal resolution reduction .. 18

3.2.3 Spatial resolution reduction .. 19

3.2.4 Information insertion .. 21

3.2.5 Standard transcoding ... 21

3.3 Just-in-Time video transcoding .. 21

4 Bolt65 software/hardware suite .. 23

4.1 Configuration .. 23

4.2 HEVC implementation ... 24

4.3 Bolt65 on heterogeneous architectures ... 25

4.4 Monitoring and statistics .. 26

4.5 Parallelization techniques ... 27

5 Methodology and test environment .. 28

5.1 Test video sequences .. 28

5.2 Heterogeneous processing environment ... 29

5.3 Baseline transcoders ... 30

5.3.1 Bolt Just-in-Time transcoder .. 30

5.3.2 Kvazaar ... 31

5.4 Evaluation ... 32

5.4.1 Processing time ... 32

5.4.2 Bitrate .. 33

5.4.3 PSNR .. 34

6 Reusing coding information .. 35

6.1 Size of decoded coding units .. 35

6.2 Number of mapped coding units .. 37

6.3 Mode of mapped coding units .. 42

7 Categorization .. 44

7.1 Categorization based on a size of decoded coding units 44

7.2 Categorization based on the number of mapped CUs 48

7.3 Categorization based on prediction modes ... 50

8 Algorithm for reusing coding information .. 57

8.1 Input data .. 57

8.2 Initial split ... 58

8.3 Prediction decisions .. 62

8.3.1 Prediction for IntraM category ... 63

8.3.2 Prediction for InterM category ... 65

8.3.3 Prediction for ComboIntra category ... 68

8.3.4 Prediction for ComboInter category ... 70

8.4 Determining coefficients .. 72

8.4.1 Coefficient 𝛿 ... 72

8.4.2 Coefficients 𝛽𝐿,𝛽𝐻,𝜇𝐿 and 𝜇𝐻 .. 74

8.5 Final algorithm ... 79

9 Experimental results on CPU-only architecture ... 81

9.1 Methodology ... 81

9.2 Comparison with Bolt65 JiT ... 82

9.3 Comparison with Kvazaar .. 86

9.4 Comparison with State-of-the-art algorithms ... 89

10 Hardware accelerator for inter prediction .. 91

10.1 Kernel analysis .. 91

10.2 Functionality ... 93

10.3 Architecture ... 94

10.4 Implementation and synthesis ... 97

10.5 Performance validation ... 100

11 Integration and final results .. 103

11.1 Integration platform .. 103

11.2 Performance validation ... 106

11.3 Final results ... 109

12 Conclusion .. 115

References ... 117

List of Figures ... 124

List of Tables ... 127

Biography .. 129

Životopis .. 131

1

1 INTRODUCTION

Statistics show that global video IP traffic will be 82 percent of all consumer internet

traffic by 2022, up from 75 percent in 2017. Annual global IP traffic will reach 4.8 Zettabytes

(1 ZB = 1000 Exabytes) per year by 2022, meaning that approximately 3.9 ZB of video content

will cross the network in 2022 [1]. Handling this enormous amount of data is a very challenging

task for video content providers in years to come. Another factor that highlights this problem is

the fact that the number of different devices that are able to play video content is constantly

growing, with the number of mobile-connected devices per capita predicted to reach 1.5 by

2022 [2]. With such diversity of devices, that have different decoding capabilities, computing

resources, network bandwidths, and screen resolutions, a single copy of the encoded video

cannot efficiently match the requirements of all devices and different playback conditions. For

example, serving video with 1080p resolution and 60fps to a low-resolution mobile device with

low bandwidth connection would be not only the waste of resources, but it would probably

cause playback delays and thereby lower Quality of the Experience (QoE).

Current video providers usually tackle this problem by pre-encoding input video with

different configurations and storing multiple copies of the same video on the server [3]. When

the user requests the video, the server provides the version that best satisfies the requirements

of the end user. Such an approach has very high storage costs, and pre-encoded video streams

may still not exactly match end-user requirements. Furthermore, emerging spatial resolutions

(4K, 8K, etc.), as well as the long-tail distribution of video content, where 90 percent of videos

are viewed by only 10 percent of users and vice versa, make this concept hardly sustainable.

Just-in-Time (JiT) video transcoding has one of the key roles in resolving these issues. Video

transcoding refers to the problem of adapting on-the-fly Internet video content based on user’s

device features or specific operational conditions. Adaptation involves changing video

properties, such as spatial, temporal and amplitude resolution, bitrate and video format. Instead

of storing multiple copies on the server, only one version with the highest quality can be stored

and transcoded on demand in real-time.

Although Just-in-Time transcoding increases efficiency while providing the best

possible QoE, it is extremely compute-intensive and data-intensive operation. Other approaches

that are commonly used by video content providers are Scalable Video Coding (SVC) [4] and

newer standard Scalable Extensions of the High Efficiency Video Coding Standard (SHVC)

2

[5]. SVC and SHVC provide high-quality video stream that contains multiple subset bit streams,

representing video with lower quality, that are derived by dropping packets from the larger

video to reduce bandwidth. Storing video in one of these formats reduces storage significantly

but does not provide the best quality nor best resource management [6]. Some studies combine

video transcoding and storing multiple copies in a hybrid system that use previously measured

video statistics to determine what videos (or parts of the video) will be transcoded on demand

and what videos will be stored in multiple copies ([7],[8],[9]).

High Efficiency Video Coding (HEVC/H.265) standard shows a significant advance in

compression efficiency than its predecessor AVC [10]. At the same subjective quality, HEVC

saves approximately 50% bitrate but increases computational complexity and resource

requirements ten times [11]. Other important aspects that were considered while developing

HEVC are its potential for parallel processing and support for hardware implementation.

Efficient exploration of these concepts is crucial when it comes to high-performance Just-in-

Time video transcoding based on HEVC, especially on heterogeneous many-core architectures.

Just-In-Time video transcoding based on HEVC is extremely computationally

expensive and resource-hungry process and achieving the best possible video quality with the

lowest possible computational complexity is a topic of numerous researches. Intelligent

utilization of coding information extracted from the initial encoded video stream has a key role

in almost every study related to this topic. Software algorithms can accomplish significant

improvements, but with the strict timing requirements, hardware accelerators and

heterogeneous architectures on high-performance computers have to be analysed and exploited.

Efficient mapping and optimization of key compute-intensive algorithms to different types of

cores to achieve the best trade-off between coding efficiency, video quality and power

consumption, while fulfilling real-time constraints and QoS demands is essential.

This thesis investigates novel techniques for Just-in-Time transcoding based on HEVC

standard by exploiting data retrieved from the input video stream to increase the speed of the

re-encoding operation while trying to preserve video quality and bitrate of the originally

encoded bitstream. The exploitation of heterogeneous architectures and performance efficient

integration of system architectures composed of all associated modules in order to improve the

process of the transcoding is also considered in the scope of this thesis. One of the main goals

of the presented research is to contribute to video content server architectures by designing a

heterogeneous system that is capable of Just-in-Time transcoding based on HEVC standard.

3

Previous studies on algorithms and architectures that reuse and utilize coding information from

the input video stream, usually cover only a subset of the described research area and rarely

cover all aspects: Just-in-Time requirement, execution on heterogeneous high performance

computers and transcoding based on HEVC standard.

1.1 Thesis outline

Chapter 2 starts with the introduction to a novel standard for video compression – High

Efficiency Video Coding (HEVC or H.265). All the coding tools used in HEVC and their

impact on video quality and computational complexity are briefly described.

Chapter 3 gives a brief overview of video transcoding. Several transcoding architectures

and techniques used to facilitate the process of video transcoding are also presented along with

their advantages and disadvantages. Finally, the specifics and challenges of Just-in-Time

transcoding are explained.

In Chapter 4, Bolt65 software/hardware suite consisting of the encoder, decoder and

transcoder developed as a part of research activities conducted for this thesis is presented.

Special focus is set on the configuration used to achieve Just-in-Time encoding and transcoding.

Chapter 5 describes the methodology and test environment used to evaluate all solutions

developed in the scope of this thesis. All data sets used, as well as the system on which

integrated solution is ported, are described in more details in chapter 5. Baseline transcoders

used to evaluate the final integrated system are also presented.

In Chapter 6 three types of coding information that is reused in the proposed algorithm

are defined: the size of decoded coding units, the number of mapped coding units and prediction

modes of the mapped coding units.

Concept of categorization based on the coding information presented in Chapter 6 is

described in Chapter 7, while the algorithm for Just-in-Time transcoding that processes each

coding unit depending on the results of the categorization is presented in Chapter 8.

Evaluation and validation of the proposed algorithm on CPU-only architectures are

given in Chapter 9, where the comparison with two baseline transcoders is conducted and

presented.

4

Functionality, design, synthesis, and implementation of a custom hardware accelerator

for inter prediction is described in Chapter 10. Analysis and impact of including hardware

accelerator in a previously proposed algorithm are also presented.

Performance-efficient integration of implemented software algorithm and custom

hardware-based accelerator on high performance computing architecture is given in Chapter

11. The integrated solution is compared with CPU-only implementation of the algorithm as well

as with two baseline transcoders.

Finally, Chapter 12 summarizes the achievements of this thesis and proposes some

directions for future work in this domain.

5

2 HIGH EFFICIENCY VIDEO CODING (HEVC) STANDARD

High Efficiency Video Coding (HEVC or H.265) is a video compression standard

developed by the Joint Collaborative Team on Video Coding (JCT-VC), a collaboration

between Video Coding Experts Group (VCEG) and ITU Telecommunication Standardization

Sector (ITU-T) [13]. The HEVC standard enables major advance in compression relative to its

predecessors, such as Advanced Video Coding (AVC) or MPEG-2, doubling compression rate

of encoded bitstream compared to AVC without sacrificing quality. This compression

efficiency of HEVC standard is not accomplished with a single novel compression technique

but is a result of multiple contributions in all stages of the encoding process.

2.1 HEVC architecture

Scheme of the HEVC video encoder, which also contains all the building blocks that are

incorporated in the decoder and transcoder as well, is given in Figure 2.1

Figure 2.1: HEVC encoder scheme

6

HEVC follows block-based video coding, where the input frame is first partitioned to

smaller blocks and then predicted using intra or inter prediction. The prediction errors or

residual, formed as a difference between original and predicted block, is transformed, quantized

and finally, entropy encoded into the bitstream. Decoding loop, where quantized values are de-

quantized, inverse transformed and stored to the decoded picture buffer is also present in the

encoder scheme to obtain a decoded frame for predictions of future frames. Other tools, such

as in-loop filtering can be incorporated in the encoding, but can also be skipped, depending on

the configuration of the encoder.

Final encoded bitstream must comply with the rules defined in the standard, but the

standard itself does not govern the encoding process or the algorithms that are used to form the

bitstream. More complex and compute demanding algorithms usually lead to better

compression efficiency but at the cost of increased processing time, so finding the best trade-

offs between these parameters depends on the system requirements.

All of the building blocks shown in Figure 2.1 are described in more details in the

following sections.

2.2 Block partitioning

The first step after fetching the frame from the input video sequence is to divide the

frame into smaller square-shaped blocks called Coding Tree Units (CTU) [14]. A CTU

represents a basic processing unit in HEVC and all future operations in the encoding process

are based on CTU. CTU can be split into more smaller Coding Units (CU) of variable sizes,

with a minimum CU size of 8x8 and maximum of 64x64. Each coding unit consists of precisely

three Coding Blocks (CB), one luma block and two corresponding chroma blocks. Dividing

CTU to multiple smaller CUs follows the quadtree structure as shown in Figure 2.2.

Each leaf CU can act as a root for residual quadtree (RQT). The residual quadtree is a

tree of Transform Units (TU) containing Transform Blocks (TB) that can be created to enable

the adaptation of the transform functions to the varying space-frequency characteristics of the

residual signal. Leaf CUs can also be split to up to four Prediction Units (PU) that can be used

for more precise motion estimation.

7

A

D

B0 B1

B2

C3C2

C1

B30 B31

B32 B33

C0

CTU root

A B C D

B0 B1 B2 B3 C0 C1 C2 C3

B 30 B 31 B 32 B 33

Figure 2.2: Example of partitioning CTU to smaller CUs

A flexible partitioning mechanism that enables variable blocks sizes helps to adapt the

encoding process to characteristics of the specific video sequence. More detailed parts of the

frame can be divided into smaller blocks to describe that area in more details, while the static

parts of the frame can be divided into larger blocks. Partition decisions can also have a notable

impact on the quality of the encoded bitstream, as well as on the computational complexity of

the encoder. Therefore, when considering Just-in-Time encoding or transcoding, block

partitioning has to be taken into account.

2.3 Prediction

Each coding unit can be predicted by exploiting either spatial (intra prediction) [15] or

temporal (inter prediction) [16] redundancy in video frames. Difference between the predicted

and original block forms a residual that is passed as an input in following steps of the encoder.

Depending on the defined Group of Pictures (GOP), the frame can be intra, or inter

predicted. GOP represents a collection of successive pictures within a coded video stream, and

it specifies the order in which intra and inter frames are arranged. In the intra frame, all coding

units have to be intra predicted. Otherwise, coding units can be either inter or intra predicted,

depending on the algorithm that determines prediction modes.

2.3.1 Intra prediction

Intra prediction uses neighbouring pixels from adjacent reconstructed coding blocks

within the same frame to calculate the predicted block. To predict different kinds of content,

HEVC supports prediction methods that can be classified into two categories: angular intra

8

prediction methods that accurately model structures with directional edges and Planar and DC

predictions that provide an estimation of smooth image content.

Planar and DC predictions can also be used for predicting complex textures that cannot

be adequately modeled with any of the angular prediction modes. In the case of DC prediction,

predicted block is generated with the constant value obtained as an average of the reference

pixels immediately left and to the above of the current block, while the planar mode populates

predicted block by averaging horizontal and vertical linear predictions based on reference

samples.

HEVC defines a set of 33 angular prediction modes that differ by a direction angle as

shown in Figure 2.3. Predicted block in angular modes is generated based on the reference

samples and the angle of the prediction mode.

Figure 2.3: Angular intra prediction modes, source [13]

2.3.2 Inter prediction

Predicting the current frame based on previously encoded frames is also known as inter

prediction, while the process for finding the block in a reference frame that is the most similar

to the current block is called motion estimation. The final result of motion estimation is a motion

vector that represents the movement direction of the considered block between the current and

reference frame. Concept of inter prediction and the motion vector is depicted in Figure 2.4.

9

Figure 2.4: Inter prediction concept, source [13]

Finding the best motion vector can have a significant impact on the quality of encoded

bitstream and coding efficiency of the encoder. More complex motion estimation algorithms,

such as Full Search Motion Estimation (FSME), give the most similar block from the reference

frame, forming a low-energy residual that guarantees high video quality and high compression.

However, these algorithms consume most of the encoding time [17] and can not be considered

in Just-in-Time domain. Therefore, many fast motion estimation algorithms that evaluate a

subset of possible motion vectors within the defined search area were developed to cope with

this problem, some of which are: Three Step Search (TSS) [18], Diamond Search (DS) [19],

Successive Elimination Algorithm (SEA) [20]. Adaptive Seach Windows Size (ASWS) [21]

and many others.

Since the real object displacement from one picture to another does not follow the grid

structure in a digital representation of the picture, sub-pixel movements are used to capture

continuous motions more accurately. HEVC supports quarter-pixel accuracy for luma samples

and eight-pixel accuracy for corresponding chroma samples. If the motion vector has sub-pixel

accuracy, samples at fractional positions have to be derived from the integer positions using the

process called interpolation. The luma interpolation process in HEVC uses an 8-tap filter for

half-pixel samples and 7-tap filter for quarter-pixel samples while for chroma component 4-tap

filter is used. Including the need for interpolation in the motion estimation can drastically

increase computational complexity. Therefore, in Just-in-Time encoding, algorithms for motion

estimation usually evaluate only full-pixel motions.

10

2.4 Transform and quantization

The transform is applied to the residual signal resulting from the prediction. Each CU

residual block is input to two-dimensional NxN forward transform, which is a separable

operation that can be also performed as two one-dimensional transform for each row and

column. The resulting transform coefficients are then quantized (i.e., divided with the

quantization step - Qstep) to obtain quantized transform coefficients that are used as an input

to entropy encoder. To retrieve the reconstructed frame that is stored in Decoded Picture Buffer

(DBP) for future inter predictions, each block has to be de-quantized and inverse transformed

as well. This process in the encoder and decoder is shown in Figure 2.5.

- Forward
transform

Residual QuantizationT. Coeffs

Qstep

Entropy
encoder

T.Q. Coeffs Bitstream

Entropy
decoder

Bitstream
De-

quantization
T.Q. Coeffs

Inverse
transform

T. Coeffs Residual

Qstep

+
P

re
d

ic
te

d
 b

lo
ck

Reconstructed block

Figure 2.5: Transform and quantization process in encoder and decoder

For the transformation purposes, Discrete Cosine Transform (DCT) is used for most of

the blocks in HEVC standard. In the original form, the DCT uses floating point operation which

increases computational complexity and errors between the forward and inverse transforms.

Therefore, HEVC specifies two-dimensional finite precision integer approximation of DCT

transform, referred to as core transform. The core transform specifies the kernel matrices for

each block size, designed to enable efficient implementation in both, software and hardware.

To achieve more optimal de-correlation of the residual input block, HEVC also specifies

alternate transform based on Discrete Sine Transform (DST), which is used exclusively for 4x4

luma blocks.

11

A quantization process is performed based on the quantization parameter (QP) set as an

input to the encoder. Depending on the QP, that can be in the range from 0 to 51 inclusive, for

8-bit pixel samples, Qstep is calculated.

2.5 In-Lop filters

There are two types of in-loop filters defined in HEVC standard: Deblocking filter [22]

and Sample adaptive offset (SAO) filter [23]. Both filters are applied in the encoding and

decoding loops, deblocking filter, if enabled, first and then SAO, before storing the frame in

DPB. The main goal of in-loop filters is to increase the subjective quality of reconstructed

pictures by smoothening the artifacts that can appear on the block boundaries.

When two neighboring blocks are predicted from the non-adjacent blocks in the

reference frame, an artifact may appear on the boundary of the two blocks. The deblocking

filter attenuates this appearance by averaging pixel values near the block boundaries. Example

of the deblocking filter is given in Figure 2.6, where pixels A0-A3 belong to a row in the first

block, while pixels B0-B3 belong to a row in an adjacent block. The dotted line shows the pixel

adaptation by using a deblocking filter.

B0

B1 B2

B3

A0

A1

A2

A3

A2
´

A3
´

B0
´

B1
´

Figure 2.6: Deblocking filter example

The main goal of the SAO filter is to smooth the ringing artifacts and changes in sample

intensity of some areas of the picture that can appear when transforming lager blocks.

Using in-loop filters increases the quality of the encoded video and coding efficiency,

but at the same time introduces additional operation that has to be performed. Although the

12

deblocking filter is not as complex as some other operations, it can affect strict timing

requirements set in Just-In-Time systems, which has to be taken into consideration.

2.6 HEVC syntax and entropy coding

In HEVC, high-level syntax describes the structure of the bitstream which includes the

signaling of high-level information that applies to one or more slices. HEVC bitstream consists

of a sequence of data units called a network abstraction layer (NAL) units. Some NAL units

carry parameter sets containing control information, while other carry coded segments of an

individual picture. Each picture is partitioned into one or multiple slices of which each one is

independent of others. A slice consists of one or multiple slice segments where only the first

one is independent while others depend on previous slice segments. Each coded slice segment

consists of a slice segment header with the control information followed by slice segment data

with the coded samples.

After the video input has been converted to a series of syntax elements, entropy coding

is performed. Context-Based Adaptive Binary Arithmetic Coding (CABAC) is a method of

entropy coding used in HEVC [24]. CABAC is a lossless compression scheme that uses the

statistical properties to compress data. In HEVC bitstream, only syntax elements belonging to

the slice segment data are CABAC coded, while others are coded either with zero-order

Exponential (Exp)-Golomb codes or fixed-pattern bit strings. Key elements of the basic

CABAC design are binarization, context modeling, and binary arithmetic coding [25].

2.7 HEVC parallelization

HEVC introduces two novel parallelization concepts, Tiles [26] and Wavefront parallel

processing, along with the slices, which were also available in previous AVC standard. Tiles,

performance-wise, outperform other parallelization concepts in HEVC, so for Just-in-Time

encoding, the focus is set on efficient implementation and usage of tile mechanism.

Tiles are rectangular-shaped groups of CTUs that divide the frame based on set vertical

and horizontal boundaries. Each tile can be encoded independently, without the need for the

communication between the units that process different tiles. Dividing the frame to multiple

tiles can be done in two ways: uniformly, where the boundaries are set so that each tile has

approximately the same the number of CTUs, and non-uniformly with arbitrarily defined tile

boundaries. Example of dividing one frame to nine (3x3) uniform tiles is depicted in Figure 2.7.

13

Figure 2.7: Dividing the frame to 3x3 uniform tiles

The number of tiles and tile distribution can be set for each frame individually, which

enables adaptation of tile structure during the encoding process. This fact can be used on

heterogeneous multicores systems to enhance load balancing between processing cores.

Previous research in this field includes algorithms that calculate the time needed to process each

tile in the previously encoded frame and based on that information dynamically adapt tile

boundaries [27] [28]. This concept, however, is not ideal for heterogeneous architectures, where

processing time highly depends on the processing core type. Therefore, a novel algorithm that

overcomes this issue and approximates the computational complexity of each tile is developed

as a part of the research conducted for this thesis and is presented in [29].

14

3 VIDEO TRANSCODING

Video transcoding is a process of converting video sequence from one format to another.

A video format is defined by several characteristics, such as bitrate, frame rate, spatial

resolution, and coding standard [30]. The main goal of video transcoding is to adapt the original

video to specific end-user requirements in order to provide the best quality of experience.

Transcoding also enables multimedia devices of diverse capabilities and formats to exchange

video content on heterogeneous network platforms, which is extremely important in today's

world, where the number and diversity of devices that are able to play video content continually

increases. The parameters of the transcoded video can depend on multiple factors, such as

network bandwidth, client's device capabilities (computing resources, display resolution, power

consumption) and the limits of the human visual system (HVS). Some of the conditions can

vary during the streaming process.

A transcoder is achieved as a cascade of a decoder, followed by an encoder. Input for

the transcoder is an encoded video bitstream, which is then decoded or partially decoded and

re-encoded to obtain transcoded bitstream. Example of homogeneous transcoding, where the

video is transcoded to the same standard (HEVC) is shown in Figure 3.1. Only homogeneous,

HEVC based transcodings are considered in this thesis.

Figure 3.1: HEVC transcoder scheme example

The figure above shows an example of spatial and temporal reduction by transcoding

from 1920x1280 resolution with 60 frames per second (fps) to 1280x720 resolution with 30

frames per second. By decoding compressed video stream, raw video data is retrieved and re-

encoded with new parameters to form HEVC transcoded bitstream at the output. Along with

the inputs and outputs to the transcoder, throughputs needed to satisfy Just-in-Time transcoding

are also depicted in the figure.

15

A straightforward forward transcoder that fully decodes and re-encodes video sequence

is extremely compute and data-intensive process. Therefore, different architectures and

techniques are considered to facilitate the process of transcoding [31].

3.1 Transcoding architectures

Reducing the complexity of the straightforward realization of the transcoder is driving

force behind most of the research activities related to video transcoding. The challenge is how

to intelligently utilize the coding statistics and parameters that can be easily obtained from the

input bitstream to achieve the best possible video quality and the lowest possible computational

complexity.

Generally, there are three main transcoding architectures: open-loop transcoder [32],

cascaded pixel-domain transcoder (CDPT) [33] and DCT-domain transcoder (DDT) [34].

Hybrid-domain and simplified transcoding architectures are usually derived from these three

types in order to achieve trade-offs between computational complexity and picture quality.

3.1.1 Open-loop transcoder

The open-loop transcoder is simplest and computationally most efficient architecture.

In the scheme, shown in Figure 3.2, after variable length decoding (i.e., entropy decoding in

terms of HEVC standard) the quantized coefficients are inverse quantized and then re-quantized

to satisfy the new output bit rate. Finally, the re-quantized coefficients are again variable length

coded to get output video stream.

Figure 3.2: Open-loop transcoder architecture, source [30]

The open loop architectures include selective transmission, where high-frequency

transform coefficients are discarded and re-quantization, where the transform coefficients are

re-quantized with different quantization step. The most significant advantage of this

architecture is that it is computationally efficient, but it suffers from the drift problem.

16

Drift can be explained as the blurring or smoothing of successively predicted frames.

Video picture or a frame is predicted from its reference pictures, and only prediction errors are

coded. For the decoder to work properly, reference pictures stored in decoder must be the same

as those in the encoder. Otherwise, predicted frames wouldn’t be the same as the original. Since

open-loop transcoders change the prediction errors by re-quantizing the stream, decoder and

encoder do not have same reference pictures stored in the buffer, which causes error

accumulation and may cause severe degradation to the video quality. Since intra pictures are

not predicted from reference pictures but are coded independently, drift will be terminated with

intra pictures. For the applications where two intra pictures are relatively close in GOP structure

drift could be tolerated, especially if complexity reduction is a priority. Studies in [35] and [36]

show that drifting error in open-loop architectures can be reduced.

3.1.2 Cascaded pixel-domain transcoder

Unlike open-loop transcoders, cascade pixel domain transcoder (CPDT) is drift-free

architecture. CPDT decodes the original signal, performs the appropriate intermediate

processing and then re-encodes processed signal with new constraints. This operation is very

compute-intensive, so research activities in this domain mainly focus on reducing the

complexity while achieving minimal degradation of video quality.

Figure 3.3 illustrates a scheme of CPDT architecture.

Figure 3.3: CPDT architecture, source [30]

To reduce the complexity of the full-scale transcoder, information extracted from the

input video stream, such as motion vectors, can be reused and adapted for the re-encoding.

17

Reusing data from the input video stream in order to achieve Just-in-Time transcoding is the

main focus of this thesis, so all the data that is being reused and the methods for reusing are

explained in more details in following chapters.

3.1.3 DCT – domain transcoder

Besides motion estimation, one of the most compute expensive operations in video

encoding is the DCT transform. In DCT-domain transform architecture, only syntax decoding

and inverse quantization are performed on the decoder side. The reference frame buffer in the

encoder stores DCT values after inverse quantization. These values are then used for frequency-

domain motion compensation module using a motion vector reusing algorithm. Motion

compensated residue errors are then encoded through re-quantization and variable length

coding. Although less computation is achieved by avoiding DCT/IDCT transform operation,

DDT architecture suffers from the drift problem. The simplified DCT-domain transcoder

(Figure 3.4) assumes that DCT, IDCT, and MC are linear operations, reducing complexity at

the expense of picture quality.

Figure 3.4: DCT - domain transcoder architecture, source [30]

3.2 Transcoding techniques

The initial need for transcoding was to reduce bitrate to meet the available network

capacity. With a large number of different devices with limited displays and processing power

that started to reproduce video content, transcoding for spatial and temporal resolution

adaptation increased. Transcoding for error-resilience is used to gain robustness of video

streaming, especially over mobile access networks.

18

3.2.1 Bitrate reduction

One of the main objectives of transcoding is to reduce the bitrate, but at the same time

to maintain video quality as high as possible. Since the spatial and temporal reduction obviously

reduce bitrate, the focus is on techniques that reduce bit rate but keep the same spatial and

temporal resolution. There are two techniques that can be used for this purpose: re-quantization

and selective transmission [37].

Re-quantization performs quantization with the increased quantization step at the

encoder. This approach decreases the number of non-zero coefficients, thus reducing the

number of bits needed to encode outgoing bitstream. Selective transmission explained in open-

loop transcoder architectures can also reduce bitrate by discarding some of the higher frequency

coefficients.

3.2.2 Temporal resolution reduction

Reducing the temporal resolution is achieved by dropping certain number of frames

from the original video stream. It may be used to reduce the bitrate requirements imposed by a

network while maintaining a higher quality of encoded frames or in cases when the end-system

supports only a lower frame rate.

With frame dropping, motion vectors extracted from the decoded frame cannot be

directly re-used, since they can point to a reference frame that does not exist in the transcoded

video. Therefore, motion vectors for re-encoding have to be derived from the input motion

vectors. There are several algorithms for reusing motion vector in temporal reduction, such as

Forward Dominant Vector Selection (FDVS) [38] or Telescopic Vector Composition (TVC)

[39].

Some coding standards, such as HEVC or AVC, include temporal scalability, where

parts of the stream can be removed in a way that resulting substream forms another valid

bitstream that represents original video content with the lower frame rate. In HEVC, this is

achieved by denoting each NAL unit that contains frame information with the temporal sub-

layer id. A simple example of temporal scalability with two temporal layers is depicted in Figure

3.5.

19

Figure 3.5: Temporal scalability in HEVC, source [13]

Frames have to be arranged in a GOP structure so that frames in any of the lower

temporal sub-layers do not have any dependencies on frames in higher temporal sub-layers.

This fact can also be seen in the figure above, where frames P2 and P4 depend only on frames

within the same sub-layer. Since the temporal sub-layer 0 has no dependencies from sub-layer

1, it is possible to remove higher sub-layer without any consequences or needs for motion vector

adaptation. Since the temporal resolution reduction in transcoding can be efficiently solved by

using temporal scalability in the HEVC standard, the focus of this thesis is set exclusively on

spatial resolution reduction.

3.2.3 Spatial resolution reduction

The original video is usually captured at a high spatial resolution and as such, stored on

the server. With the emergence of mobile devices that are capable of playing video content,

there is a strong need for efficient techniques for spatial resolution reduction.

When changing the resolution of the original picture, the pixels of the downsized frame

have to be generated by subsampling original pixels. Several techniques are commonly used

for image scaling: Filtering and subsampling, pixel averaging [40], bilinear or bicubic

interpolation [41] and nearest neighbor. Another problem that arises when reducing spatial

resolution is reusing motion vectors, since the original motion vectors were obtained for the

higher resolution frame. This problem is visualized in Figure 3.6 for the downsizing factor of

2, where four blocks in the original picture are mapped to one block in the downsized picture.

20

?

Figure 3.6: Vector remapping problem in spatial reduction transcoding

Several standard methods are used to calculate the transcoded motion vector [42]:

• Simple average – an average of all original motion vectors

• Weighted average – an average of original motion vectors based on the ratio of

the original block within a transcoded block

• Area-weighted average – an average of original motion vectors based on the

ratio and size of the original block within a transcoded block

• Maximum area – takes the motion vector of the original block with the largest

area within a transcoded block

• Median – a median of all original motion vectors

Other techniques for motion vector remapping are usually derived as a combination or

adaptation of one or more of the listed methods.

Similar as for temporal scalability, HEVC standard introduces Scalable High Efficiency

Video Coding (SHVC) extension that enables simultaneous encoding in multiple layers, each

with different spatial resolution [5]. With this extension, multiple versions of the same video

with different spatial resolution can be stored as a single file on a server. When end-user

requests the video, sub-bitstream with most suitable resolution will be sent to the user.

However, SHVC contains only several predefined spatial resolutions while the transcoding

offers output videos in any arbitrary resolution. Also, storing original video in this format

increases storage costs by 30 % due to layering overhead, compared with storing only the video

with the highest resolution [5].

21

3.2.4 Information insertion

Transcoding can also be used to insert additional information to the output video stream.

For copyright protection, video watermarks or company logos can be added. Since logo affects

only a part of the video picture, incoming motion vectors can be reused for parts of pictures

unaffected by the logo, while others have to be modified. Efficient architectures for logo and

watermark insertion are analyzed in [43], [44].

In practical applications, video transcoder can be placed in a network node, connected

to a high-loss network to insert error-resilience features. The transcoder first extracts video

features from the incoming bitstream and estimates client channel conditions based on feedback

channel statistics. These features are then used to determine error-resilience policy. Other error-

resilience architectures and techniques are presented in [45] and [46].

3.2.5 Standard transcoding

In many applications, video coded in one standard (e.g., AVC) has to be converted to

another standard (e.g., HEVC). This type of transcoding is referred to as heterogeneous

transcoding. Heterogeneous transcoding is often needed when the end device supports a

standard that is different than the one stored on the server. The main challenge in cross standard

transcoding is syntax translation between different formats with minimal influence on quality.

However, the focus of this theses is set on homogeneous video transcoding based on

HEVC standard.

3.3 Just-in-Time video transcoding

Most of today's video content providers use hybrid architectures that combine storing

multiple versions of the same video sequence with video transcoding on demand to balance the

costs of content storage, power consumption and transport. Most popular and frequently

accessed content is stored in multiple versions to avoid constant transcoding. However, video

content stored on a server follows a long-tail distribution, meaning that the vast majority of

viewers watch a very small portion of the stored content, which leaves a large amount of video

content eating up storage resources. Therefore, infrequently requested content is usually stored

only in the highest quality representation, while the lower quality versions are generated on the

fly at the moment of request. When generating content at the moment of the request, video

transcoding must be done in real time or faster, to serve the end-user without the lag. Video

22

transcoding restricted with this timing requirement is referred to as Just-in-Time video

transcoding. Compared with upfront transcoding, JiT transcoding is done on every request and

is computationally much more expensive, but can provide better overall system efficiency.

A lot of the research in the area of video transcoding is set on speeding up the process

of transcoding, but very few of them aim at Just-in-Time transcoding. Authors in [47] provide

a fast transcoding solution using a control stream that assumes that different predefined versions

of the same video content are available. This approach increases storage costs compared to

storing only one version of the video and does not aim to satisfy Just-in-Time requirements.

Guided Just-in-Time transcoding architecture for cloud-based video platforms is presented in

[48], where the basic idea is to execute the most complex part of the transcoding, such as motion

estimation, upfront for each representation below the highest available and to store only

information about obtained motion vectors. When the video with lower resolution is requested,

the original bitstream is transcoded based on previously calculated motion vectors. This

approach increases storage costs since it stores information for different representations of the

same video and does not enable transcoding with arbitrary transcoding ratio. Research

conducted in [49] proposes several optimized transrating techniques for HEVC. However, only

bitrate reduction without frame downscaling was considered without Just-in-Time

requirements.

The approach presented in this thesis aims at Just-in-Time video transcoding that

enables arbitrary ratio downscaling without any increase in storage cost.

23

4 BOLT65 SOFTWARE/HARDWARE SUITE

Bolt65 is performance-optimized HEVC hardware/software suite for Just-in-Time video

processing developed as a part of the research activities conducted for this thesis [50]. Bolt65

is „clean-room“ suite that consists of an encoder, decoder, and transcoder based on HEVC

standard. Special focus in the development of the Bolt65 was set on the performance-efficiency

achieved by low-level optimizations and hardware-software co-design adapted for the efficient

exploitation of heterogeneous accelerator-based architectures. Another important focus of

Bolt65 is the just-in-time processing requirement which sets constraints on processing time

making Bolt65 suitable for encoding/transcoding on demand.

A novel algorithm for reusing coding information from the input video stream presented

in this thesis is incorporated and tested within Bolt65 software/hardware suite.

This chapter provides a brief overview of all the tools and techniques used in HEVC

encoder, decoder, and transcoder developed in the scope of Bolt65 suite.

4.1 Configuration

Configuration for Bolt65 encoder, decoder and transcoder can be defined in two ways

before running the application: through configuration file which contains all necessary data or

through the console, where each parameter can be set individually. Example of the

configuration file used for transcoding BasketballDrive video sequence from the original

resolution of 1920x1080 to 1280x720 is given below.

NumberOfFrames : 500

InputFile : BasketballDrive_1920x1080_50p.hevc

OutputFile : BasketballDrive_1280x720_25p.hevc

PictureWidth : 1280

PictureHeight : 720

FrameRate : 50

QP : 32

BitNumber : 8

CtbLog2SizeY : 6

MinCbLog2SizeY : 3

DeblockingFilter : 0

SAOFilter : 0

DPBSize : 1

GOP : IPPPPPPPPPP

SearchAlgorithm : 3

SearchArea : 6

InterpolateAlgorithm : 0

BlockMatching : 0

24

#Monitor variables

StatMode : 1

ShowStatisticsPerFrame : 1

ShowStatisticsPerTile : 0

CalculatePSNR : 1

CalculateBitsPerFrame : 1

CalculateProcessingTime : 1

CSV : performance.csv

UsePolicy : 0

PolicySocketHost : localhost

PolicySocketPortNumber : 5717

Threads : 4

TilesEnabled : 1

TilesInRow : 2

TilesInColumn : 2

TileLoadBalancingAlgorithm : 0

TileLoadBalancingInterval : 0

AVX : 1

DCT_HW_ACC : 0

INTER_HW_ACC : 0

Meaning and the usage of parameters defined in the configuration file above is explained

in the following chapters.

4.2 HEVC implementation

The input to the encoder is raw video stream that is being encoded to the final HEVC

bitstream. Two types of files that represent raw video stream are supported by the Bolt65

encoder: YUV and Y4M. Both of these types contain raw pixel data, with the difference that

Y4M file also contains a header with additional information about the video, such as frame

width, height or frame rate. Input video data with 8 bits per sample and the representation with

luma brightness signal and two chroma channels that have half the luma resolution both

horizontally and vertically (color space 4:2:0) is supported.

Reading large input files frame by frame is a demanding task that can become a

bottleneck in a process bounded by strict timing requirements. Therefore, prefetching of the

frames from the input file into a specific buffer is implemented in Bolt65 to avoid waiting for

the frame data to be loaded from the source after encoding each frame. Input and output

parameters are defined in configuration file with options: InputFile, OutputFile, PictureWidth,

PictureHeight, FrameRate and BitNumber.

25

Bolt65 supports CTU sizes of NxN, where N∈{16,32,64}, resulting luma CTB size of

NxN and chroma CTB sizes of (N/2xN/2) due to 4:2:0 color subsampling. CTUs can be divided

into four smaller units CUs following a quadtree structure. CU supported by Bolt65 are NxN,

with Nmin≤N≤Nmax and N∈{8,16,32}. Nmin and Nmax can be defined in configuration

(CtbLog2SizeY and MinCbLogSizeY), if not, default values of Nmin =8 and Nmax =32 are used.

Each CU can act as a root for residual quadtree that is made of TUs with corresponding TBs.

In Bolt65, luma TB sizes are MxM, while chroma TB sizes are (M/2)x(M/2), where M≤N and

M∈{4,8,16,32}, N being the size of RQT root. Leaf CUs can also be split to up to four PUs that

can be used for more precise motion estimation. HEVC standard supports 8 partitioning modes

for splitting CU to PU: PxP, Px(P/2), (P/2)xP, (P/2)x(P/2), Px(P/4), Px(3P/4), (P/4)xP and

(3P/4)xP, all of which are also supported in Bolt65.

All 35 (33 angular, DC and Planar) intra prediction modes are supported in Bolt65. The

distortion between original and predicted block can be evaluated by several algorithms

(determined with BlockMatching flag): Sum of absolute differences (SAD), Sum of absolute

transform differences (SATD) or Mean Square Error (MSE). Different algorithms for block

matching have different effects on coding efficiency and computational complexity, which is

an important aspect that has to be considered in Just-in-Time transcoding. Motion estimation

algorithms that are supported and can be used in inter prediction are (determined with

SearchAlgorithm and SearchArea flags): Three Step Search (TSS), Diamond Search (DS) and

Full Search Motion Estimation (FSME). For Just-in-Time transcoding fast TSS algorithm that

evaluates only blocks moved by integer motion vectors to avoid interpolation is used. Only P

frames are supported in Bolt65, while bi-predictive B frames that use two reference frames for

prediction are not implemented due to increased computational complexity induced by motion

estimation on two separate reference frames. After the prediction residual is transformed and

quantized based on RQT partitioning.

In-loop filters can be disabled or enabled by setting the flags DeblockingFilter and

SAOFilter either to 0 (disabled) or 1 (enabled).

4.3 Bolt65 on heterogeneous architectures

In the scope of the Bolt65 suite, along with the CPU implementation of HEVC codec,

several kernels were offloaded to different processing nodes and integrated into one

heterogeneous system.

26

Advanced Vector Extensions (AVX, AVX2) are extensions to the x86 instruction set

architectures for processors from Intel that can support 128 and 256-bit SIMD vector

instructions [51]. Two kernels were implemented in AVX2 in Bolt65: Sum of Absolute

differences, and integer DCT. Both kernels were chosen for implementation on vector

extensions due to their highly parallelizable nature. Integer DCT transformation for HEVC is

based on matrix multiplication, where more than one element can be calculated in parallel.

Similarly, in the SAD kernel, the 256-bit vector can be utilized to conduct 32 substractions of

8-bit pixel samples in parallel. Average speedup in the encoding time when SAD and DCT are

ported to AVX2 compared to implementation without AVX ranges between 78% and 160%

depending on the quantization parameter.

A high-throughput fully pipelined FPGA-based accelerator for HEVC DCT has also

been designed and implemented. The architecture consists of two cascaded 1D DCT cores with

a constant throughput of 32 pixels per cycle in all size modes. The accelerator receives the data

through a 512-bit bus which enables fetching 32 16-bit samples in a single clock. The pipeline

for worst-case scenario consists of 75 stages which means that for processing a single 32x32

matrix, 106 cycles are necessary. The efficient integration of the custom DCT hardware

accelerator in a novel heterogeneous MANGO platform [12] is presented in [52].

Custom hardware-based accelerator for inter prediction, designed and implemented to

enhance software algorithm presented in this thesis is described in chapter 10.

4.4 Monitoring and statistics

During the execution of the application, whether it is an encoder, decoder, or transcoder,

several parameters can be monitored. Those parameters include processing time to observe

execution speed, bitrate to analyze coding efficiency and PSNR for video quality. Depending

on the user requirements, monitoring can be performed on tile, frame or video level.

In the algorithm proposed in this thesis, monitoring has one of the critical roles in

achieving Just-in-Time execution, while trying to maintain video quality and coding efficiency

of the input bitstream.

Bolt65 encoder and transcoder execution can be controlled during runtime by an

external process that can monitor the current state of the encoding/transcoding. Changing some

of the parameters, such as quantization parameter, search algorithm or GOP structure can be

used to increase or decrease coding efficiency, power consumption or performance, depending

27

on the current requirements posed by an external factor of the system. Hence, different policies

can be implemented and used while running the application, without the need for modification

of existing source code.

4.5 Parallelization techniques

Bolt65 implements support for tiles, a novel parallelization concept introduced in

HEVC. Both, uniform and non-uniform tile distribution are available by setting the options

TilesEnabled, TilesInRow, and TilesInColumn to appropriate values in the configuration file.

Ordinarily, each tile is processed on a separate core, where the number of processing cores

equals the number of tiles in a frame. However, this does not always have to be the case. When

a number of available processing cores in a system is smaller than a number of tiles, smart load

balancing is performed so that the waiting time between the processing cores is the smallest

possible. Algorithm for dynamic load balancing in an encoding where the number of

heterogeneous cores is the same as the number of tiles was developed in the scope of research

activities for this thesis and is presented in [29].

28

5 METHODOLOGY AND TEST ENVIRONMENT

This chapter describes the test environment and methodology used for the validation of

developed algorithms throughout this thesis.

5.1 Test video sequences

For all experiments conducted in this thesis, the same test set of videos, with different

resolutions and frames rates is used, as shown in Table 5.1. Original videos with resolution

lower than 1280x720 were not considered since the complexity of their transcoding is much

smaller. Besides that, today’s video content providers usually have an original video sequence

stored in one of the higher resolutions. All of the test video sequences can be downloaded from

the internet [53][54] and used for testing.

Table 5.1: Set of test video sequences

Video name Resolution Frames Frame rate
1 Shields 1280x720 504 50
2 ParkRun 1280x720 504 50
3 KristenAndSara 1280x720 600 60
4 Johnny 1280x720 600 60
5 FourPeople 1280x720 600 60
6 BasketballDrive 1920x1080 500 50
7 Calendar 1920x1080 500 50
8 Cactus 1920x1080 500 50
9 BQTerrace 1920x1080 600 60
10 RushHour 1920x1080 500 25
11 Riverbed 1920x1080 250 25
12 PedestrianArea 1920x1080 375 25
13 BlueSky 1920x1080 217 25
14 Traffic 2560x1600 150 30
15 DuckTakeOff 3840x2160 500 50
16 Bosphorus 3840x2160 600 120
17 Beauty 3840x2160 600 120

Although the proposed algorithm is designed for arbitrary transcoding ratio downscaling,

several fixed standard resolutions were chosen for testing. Resolutions were selected so that

they can represent a broader range of possible combinations, with different width and height

downsizing ratios (width ratio 𝜌𝑤 and height ratio 𝜌ℎ) that do not have to keep the same aspect

ratio. All possible combinations of transcoding along with the downsizing width and height

ratios are shown in Table 5.2.

29

Table 5.2: Possible transcoding scenarios

Original resolution Possible transcoded resolutions

3840x2160

2560x1600 (𝜌𝑤=1.5, 𝜌ℎ=1.35)
1920x1080 (𝜌𝑤=2, 𝜌ℎ=2)
1280x720 (𝜌𝑤=3, 𝜌ℎ=3)
704x576 (𝜌𝑤=5.45, 𝜌ℎ=3.75)
640x480 (𝜌𝑤=6, 𝜌ℎ=4.5)

2560x1600

1920x1080 (𝜌𝑤=1.33, 𝜌ℎ=1.48)
1280x720 (𝜌𝑤=2, 𝜌ℎ=2.22)
704x576 (𝜌𝑤=3.63, 𝜌ℎ=2.77)
640x480 (𝜌𝑤=4, 𝜌ℎ=3.33)

1920x1080
1280x720 (𝜌𝑤=1.5, 𝜌ℎ=1.5)
704x576 (𝜌𝑤=2.72, 𝜌ℎ=1.875)
640x480 (𝜌𝑤=3, 𝜌ℎ=2.25)

1280x720 704x576 (𝜌𝑤=1.82, 𝜌ℎ=1.25)
640x480 (𝜌𝑤=2, 𝜌ℎ=1.5)

5.2 Heterogeneous processing environment

The heterogeneous processing system used in this thesis consisted of a host side with

CPU and the Kintex Ultrascale FPGA [55] on proFPGA quad Motherboard [56]. The host side

and FPGA were connected via fast PCIe interconnect (gen 3, 8-line). Characteristics of the host

and FPGA are given in Table 5.3 and Table 5.4 respectively.

Table 5.3: Host characteristics

Processor Intel i5 4570 (3.2 GHz)

Memory 32 GB

L1 cache 32kB

L2 cache 256 kB

Compiler Intel C++ 18.0

Operating system 64-bit Windows 10 Pro

Table 5.4: FPGA characteristics

System Logic Cells (K) 1451

DSP slices 5520

Block RAM (Mb) 75.9

16.6Gb/s Transceivers 64

I/O pins 832

30

5.3 Baseline transcoders

Validation of the proposed algorithm is done by comparing the results with two different

baseline transcoders. First one is the JiT transcoder based on Bolt65 software implementation

that re-encodes video sequence in real-time without reusing any of the data from the decoded

frame (described in chapter 4). Another baseline transcoder is based on the open-source

Kvazaar [57] encoder that encodes video sequences without strict timing requirements.

Comparisons with referent HM decoder/encoder [58] were not presented in the final validation

since the difference in processing times is substantial [50] and cannot be compared when it

comes to JiT transcoding.

5.3.1 Bolt Just-in-Time transcoder

Bolt65 described in chapter 4 is a HEVC encoder/transcoder that was explicitly

designed for Just-in-Time encoding and transcoding. Bolt65 Just-in-Time transcoder that will

be referred to as Bolt65 JiT in the rest of this thesis, does not use any data reusing algorithms

from the decoded frame. Instead, the decoded frame is downsized and re-encoded from scratch.

Comparisons with this type of transcoder help to comprehend gains of using the proposed data

reuse algorithm in terms of video quality and coding efficiency (i.e. bitrate).

In order to accomplish Just-in-Time transcoding, Bolt65 JiT uses a limited set of

encoding tools and parameters. Some of the tools used in HEVC to improve video quality and

increase coding efficiency, such as asymmetric prediction units, deblocking filters, and complex

rate-distortion optimization are omitted. Such approach sacrifices the highest possible quality

of the transcoded bitstream but is necessary in order to conform to JiT restrictions. Full set of

parameters used by JiT Bolt65 transcoder is shown in Table 5.5.

As can be observed from the configuration, there are a number of limitations for the re-

encoding in Bolt65 transcoder that are introduced to decrease the processing time of the

transcoder. Inter prediction is implemented with a simple three-step search (TSS) algorithm to

reduce the number of evaluated inter prediction candidates. In loop filters, deblocking and SAO

filter that are used to reduce artifact in the frame that can appear on the block boundaries are

disabled since they affect processing in both, decoder and encoder, and can thus compromise

transcoder execution for JiT. Also, there are no complex Rate Distortion Optimization (RDO)

algorithms that usually evaluate multiple versions of CU splits and prediction modes. Instead,

31

in both, intra and inter prediction, all blocks are assessed with the SAD block matching

algorithm, and the one with the lowest value of SAD is chosen as a final.

Table 5.5: Bolt65 JiT transcoding configuration

Coding option Parameter

QP Fixed – does not change within a video sequence

Search algorithm Three step search, with the defined search area (default search area is 64)

Decoded picture buffer Size of the decoded picture buffer is 1

GOP structure Only I and P frames are used

Intra prediction 35 possible modes are tested

In loop filters Both, deblocking and SAO filter disabled

CTU size 64x64

Minimum CU size 8x8

Transform tree Max depth = 0

Prediction Units Only 2Nx2N PUs supported

RDO No smart RDO algorithm

Block matching algorithm Sum of absolute differences (SAD)

 This baseline transcoder will be used to observe improvements in using a proposed

algorithm that utilizes coding information from the input video stream in terms of video quality

and coding efficiency.

5.3.2 Kvazaar

The second baseline will be used to observe losses in video quality and bitrate compared

with the transcoder that does not have timing requirements. For this purpose, open-source

Kvazaar encoder is chosen. Re-encoding with Kvazaar was performed with the default settings

with preset set on “medium” [57]. However, to obtain comparable results, several tools and

encoding parameters were overridden from the default preset. All overridden parameters and

the specific flags that were included when running the encoder are shown in Table 5.6. All other

parameters that are not shown in the table below were set to default values.

The reason behind changing the default values of Kvazaar encoder is to obtain results

that are comparable between all three transcoders: Bolt65 JiT, Kvazaar and the transcoder

proposed in this thesis. Including in loop filters in just one of these scenarios, would increase

32

video quality solely by introducing one or both of the filters, and the conclusions and

observations of using the proposed algorithm would not be based on valid assumptions.

Table 5.6: Kvazaar encoder configuration

Coding option Overridden parameter Kvazaar flag

QP Set as fixed --(no-)rdoq

Decoded picture buffer Size of the decoded picture buffer is 1 -r 1

In loop filters Both, deblocking and SAO filter disabled --sao=”off” --no-deblock

Prediction Units Only 2Nx2N PUs supported --no-amp --no-smp

5.4 Evaluation

During the transcoding process, three main aspects were considered and evaluated:

processing time, bitrate and PSNR.

5.4.1 Processing time

The idea of Just-in-Time transcoding is not merely to transcode the video as fast as

possible but to ensure that the video will be transcoded in a given period of time while trying

to provide the best trade-off between video quality and coding efficiency, depending on the

requirements and constraints of the system. Therefore, the value of tJiT is defined as a maximum

time that needs to be satisfied to achieve Just-in-Time video transcoding. From this point on,

the processing time required for JiT transcoding for a particular video sequence will be set as

tJiT and other times will be presented relative to tJiT. This representation is also a more

convenient way to show Just-in-Time constraint since it can depend on various conditions; from

the video sequence itself, where the video with higher frame rate has to be processed faster, to

the computing power of the system on which the transcoder is being run. With this

representation, all video sequences have a unified condition: if the processing time of the

transcoder for a specific video sequence is higher than 1.00 * tJiT than the transcoder does not

conform to JiT requirements. Otherwise, if the processing time is lower than 1.00 * tJiT than the

transcoder satisfies Just-in-Time. Exact processing speed expressed in frames per second (fps),

for each test video sequence is given in Table 5.7.

33

Table 5.7: tJiT for test video sequences

Video name tJiT [fps]
1 Shields 50.00
2 ParkRun 50.00
3 KristenAndSara 60.00
4 Johnny 60.00
5 FourPeople 60.00
6 BasketballDrive 50.00
7 Calendar 50.00
8 Cactus 50.00
9 BQTerrace 60.00
10 RushHour 25.00
11 Riverbed 25.00
12 PedestrianArea 25.00
13 BlueSky 25.00
14 Traffic 30.00
15 DuckTakeOff 50.00
16 Bosphorus 120.00
17 Beauty 120.00

5.4.2 Bitrate

One of the most important aspects of all video compression standards is bitrate. A video

bitrate is a number of bits needed to encode one second of the video sequence and is calculated

with the following formula:

𝐵𝑖𝑡𝑟𝑎𝑡𝑒 =

𝑁𝑏𝑖𝑡𝑠
𝑁𝑓𝑟𝑎𝑚𝑒𝑠

∗ 𝑓𝑟𝑎𝑚𝑒𝑅𝑎𝑡𝑒

1000
 [𝑘𝑏𝑝𝑠]

(5.1)

 𝑁𝑏𝑖𝑡𝑠 is an overall number of bits needed to encode video sequence, while 𝑁𝑓𝑟𝑎𝑚𝑒𝑠 is an

overall number of frames within a video. By dividing these two values, the average number of

bits needed to encode one frame is acquired. Multiplying average number of bits with the video

frame rate (i.e., number of frames in one second) bitrate in bits per second is obtained. Final

value is divided with 1000 to get bitrate in kilobits per second.

 Bitrate is a measurement that determines coding efficiency. Smaller bitrate means that

the same video is encoded with a lower number of bits, ergo coding efficiency for such encoding

is better. Bitrate reduction can be achieved by lowering video quality (e.g., in a live video chat

where throughput is more important than video quality) but could also indicate better

compression algorithm or standard. As mentioned in the introduction, HEVC standard doubles

the coding efficiency when compared to AVC, while keeping the same video quality. Thereby,

in order to get the full evaluation of the quality of a certain standard or algorithm, both

measurements have to be examined: bitrate and video quality.

34

5.4.3 PSNR

Peak signal-to-noise ratio (PSNR) is a term for the ratio between the maximum possible

power of a signal and the power of corrupting noise that affects the fidelity of its representation

[59]. In the image and video processing, PSNR is used to calculate video quality by comparing

the encoded video frame with the original frame. The signal is data from the original frame

while the noise is the error introduced by a compression.

PSNR is calculated as follows and is expressed in terms of the logarithmic decibel scale

[dB]:

𝑃𝑆𝑁𝑅𝑑𝐵 = 10 log10
(2𝑛 − 1)2

𝑀𝑆𝐸
 (5.2)

In the equation above, n is the number of bits used to represent one pixel of the video

frame (only luma sample). Giving that each pixel is represented with 8 bits, the peak signal is

255, which is the highest value of a pixel. MSE is a mean square error between the original and

an impaired reconstructed video frame and is calculated as follows:

𝑀𝑆𝐸 =
1

𝑓𝑟𝑎𝑚𝑒𝑆𝑖𝑧𝑒
∑ (𝑂𝑖 − 𝑅𝑖)

2

𝑓𝑟𝑎𝑚𝑒𝑆𝑖𝑧𝑒

𝑖=1

 (5.3)

Where 𝑂𝑖 is a value of a pixel in the original frame and 𝑅𝑖 is a value of a pixel in the

reconstructed frame. In the case of the transcoder, original frame is actually a frame that is

decoded from the original input bitstream, since the original frame is not available when it

comes to transcoding, while reference frame is transcoded frame. In all the test conducted and

presented in this thesis, PSNR values are obtained by comparing decoded and transcoded frame.

35

6 REUSING CODING INFORMATION

 Intelligent utilization of coding information extracted from the initial encoded video

stream has a key role in enhancing the process of video transcoding, especially when it comes

to Just-in-Time transcoding. This thesis presents a novel algorithm that reuses several data sets

extracted from input bitstream to achieve Just-In-time transcoding while trying to maintain the

quality of the encoded video sequence without significant impacts on coding efficiency. The

proposed algorithm reuses three types of data from the input video stream: size od decoded

coding units, a number of coding units mapped from the decoded frame and prediction modes

of decoded coding units.

6.1 Size of decoded coding units

When encoding raw video sequence, parts of the frame with more motion will usually

be encoded with a higher number of bits, while still parts of the frame, such as background, that

is not being changed between multiple frames, should be encoded with much higher coding

efficiency. This fact is demonstrated in Figure 6.1.

Figure 6.1: Heatmap for one frame in Calendar video sequence

Figure 6.1 shows a heatmap of one video frame in a Calendar video sequence that has

been encoded using the HEVC standard. In this video, the calendar is constantly moving around

the picture and represents a moving object. Darker squares show coding units that are encoded

with a smaller number of bits. The lighter the square is, the more bits were needed to encode

that particular coding unit. As can be expected, the background is mostly dark, while edges and

36

moving objects can be clearly distinguished with the presence of lighter squares. The same

pattern can be seen in other video sequences depicted in Figure 6.2.

Figure 6.2: Heatmap for video sequences BasketballDrive, BlueSky, Traffic, and KristenAndSara

In some cases, different behavior can be observed. Figure 4. shows a picture where the

background is encoded with a higher number of bits then the rest of the picture.

Figure 6.3: Heatmap for one frame in Beauty video sequence

This behavior occurs in high-resolution videos (e.g., 4K) that are encoded with low

quantization parameter, where the neighboring pixels in black background, such as in this case,

37

can differ more than usual. In this scenario, nor intra prediction, nor inter prediction (since there

is no real motion) do not form good residual, thereby resulting in a large number of transform

coefficients that have to be encoded. Nonetheless, other parts of the picture follow expected

behavior; moving parts (i.e., hair and eyes) are encoded with more bits then nonmoving parts

(i.e., cheeks, forehead, chin), so this data can be reused in the transcoding process.

Not all videos have a pronounced background or part of the picture that remains the

same throughout several frames. One example of such video sequence and its heatmap is given

in Figure 6.4.

Figure 6.4: Heatmap for one frame in Riverbed video sequence

In this video that shows waves of the river, there are no visible objects or edges nor the

big difference between neighboring coding units. Reusing information about sizes of decoded

coding units when transcoding this kind of video sequences does not present the basis for

relevant decisions.

6.2 Number of mapped coding units

CTU structure from the input video gives important information about RDO decisions

made in the original encoding process and reusing that structure could save a lot of time in the

transcoding process by avoiding full RDO in the encoding phase, which is one of the

computationally most demanding processes. However, since the target video is transcoded from

a higher resolution to a smaller resolution CTU structure cannot be simply taken as is and copied

to the transcoded frame for several reasons:

38

• CTU blocks in transcoded frame cover larger areas of the picture
• Reusing same structure could form invalid CU blocks in the transcoded frame

(e.g., blocks smaller than 8x8)
• Decisions made in the RDO process were based on different sets of pixels

The mapping between a higher resolution frame at the input and lower resolution frame

at the output must be conducted in order to reuse CTU structure from the decoded video

efficiently. Before beginning with the mapping mechanism, ratios between original and

transcoded video are defined as:

𝜌𝑤 =
𝑖𝑛𝑝𝑢𝑡𝑊𝑖𝑑𝑡ℎ

𝑜𝑢𝑡𝑝𝑢𝑡𝑊𝑖𝑑𝑡ℎ

(6.1)

𝜌ℎ =
𝑖𝑛𝑝𝑢𝑡𝐻𝑒𝑖𝑔ℎ𝑡

𝑜𝑢𝑡𝑝𝑢𝑡𝐻𝑒𝑖𝑔ℎ𝑡
 (6.2)

𝜌𝑤 and 𝜌ℎ represent width ratio and height ratio when downsizing the picture. Although

a lot of standard video formats use 16:9 aspect ratio today, and transcoding between those

standards would infer same 𝜌𝑤 and 𝜌ℎ , this does not have to always be the case. With a plethora

of different mobile devices that are able to play video and that can have different resolutions,

these ratios can be arbitrary.

Figure 6.5 shows an example of mapping one CTU from lower 1280x720 resolution,

marked with a red square to CTU structure of video encoded in 1920x1080 resolution, marked

with black squares.

CTU 0 CTU 1

CTU 3CTU 2

Figure 6.5: Mapping CTU structure

39

As it can be seen from the previous figure one CTU of downsized frame cover area of

four CTUs in the original frame, some of which are covered in full (CTU 0) and some partially

(CTU 1, 2, 3). Number of CTUs that are mapped from original to transcoded frame can be

defined as:

𝑀𝐶𝑇𝑈𝑠´ = (⌈𝜌𝑤 + 1⌉) ∗ (⌈𝜌ℎ + 1⌉) (6.3)

 where 𝐶𝑇𝑈𝑠´ are CTUs in origanal frame that can be mapped, in full or partially, to the

transcoded frame, and 𝑀𝐶𝑇𝑈𝑠´ is the number of 𝐶𝑇𝑈𝑠´. In the worst case scenario, decimal part

of transcoding ratios (i.e., partially covered mapped CTUs) can cover the area below and above,

or to the righ and to the left of the full mapped CTU, which is why the 1 is added to both factors.

Next step in the mapping process is to determine all CUs from the original video that are

incorporated in transcoded CTU. To facilitate the search of all mapped CUs, only CUs from

𝑀𝐶𝑇𝑈𝑠´ are considered. Group of all mapped CUs can for CU in the transcoded video be defined

as:

𝐶𝑈𝐶𝑈𝑠´ = {(𝜔𝑖, 𝐶𝑈´𝑖)}, 𝑤ℎ𝑒𝑟𝑒 0 ≤ 𝑖 < 𝑀𝐶𝑈´ 𝑎𝑛𝑑 𝑖 ∈ 𝑁 (6.4)

 where 𝑀𝐶𝑈´ is a number of all CUs that are mapped, i is the index of the mapped CU´

and 𝜔𝑖is the mapping coefficient that denotes the ratio of mapped CU within transcoded CU.

Mapping coefficient ω is calculated as a ratio of the area of CU´ that is included in transcoded

CU and is shown with the following equations:

𝜔 = 𝜔𝑤 ∗ 𝜔ℎ (6.5)

𝜔𝑤 =
𝑤𝑖𝑑𝑡ℎ´

𝐶𝑈′𝐵𝑆

(6.6)

𝜔ℎ =
ℎ𝑒𝑖𝑔ℎ𝑡´

𝐶𝑈′𝐵𝑆
 (6.7)

 Final mapping factor ω is obtained as a factor of width and height mapping factors that

are calculated as a ratio between width/height (in pixels) that coincide (width´ and height´) and

size of the 𝐶𝑈′ block (CU´BS). To visualize the calculation of mapping factor, an example of

calculating ω for CTU 1 from Figure 6.5 is given in Figure 6.6.

40

CTU 0

CTU 3CTU 2

CTU 1

width´

height´

Figure 6.6: Calculation of mapping factor ω

For CTU 1 from the above figure mapping coefficients are 𝜔𝑤=0.5, 𝜔ℎ=1, making final

ω=0.5, which, in this case, can be easily deducted from the presented picture. Finally, the entire

process of mapping of one CTU, showed as a red square in Figure 6.5 and Figure 6.6 is shown

with the representation (6.8) and depicted in Figure 6.7.

𝐶𝑇𝑈𝐶𝑈𝑠´ = {(1.0, 𝐶𝑈0), (1.0, 𝐶𝑈1), (1.0, 𝐶𝑈2), (1.0, 𝐶𝑈3), (1.0, 𝐶𝑈4),

(1.0, 𝐶𝑈5), (1.0, 𝐶𝑈6), (0.5, 𝐶𝑈7), (1.0, 𝐶𝑈8),

(1.0, 𝐶𝑈9), (1.0, 𝐶𝑈10), (1.0, 𝐶𝑈11), (1.0, 𝐶𝑈12),

(1.0, 𝐶𝑈13), (1.0, 𝐶𝑈14), (1.0, 𝐶𝑈15), (1.0, 𝐶𝑈16)}

(6.8)

41

CTU 0 CTU 1

CTU 3CTU 2

0 1

2

4 5

3

8

10 11

9 13

15 16

14

6

12

7

Figure 6.7: Final mapping

In the case when CTU that is being considered is split, re-mapping for all children is

performed. Example of remapping CUs for the first child when the split is executed is given

with Figure 6.8 and representation (6.8)(6.9).

CTU 0 CTU 1

CTU 3CTU 2

0 1

2 3 4

Figure 6.8: Mapping after the split

𝐶𝑈𝐶𝑈𝑠´ = {(1.0, 𝐶𝑈0), (0.5, 𝐶𝑈1), (1.0, 𝐶𝑈2), (1.0, 𝐶𝑈3), (0.25, 𝐶𝑈4)} (6.9)

42

6.3 Mode of mapped coding units

During the encoding of the video sequence, one of the most demanding tasks is to find

the best possible prediction decision for each CU depending on the requirements of the system.

If the main focus is to accomplish best coding efficiency, decisions will be directed to form the

smallest possible bitstream, which could influence the quality of the encoded video. On the

other hand, if the goal of the encoder is to create a video of the highest quality, size of the output

bitstream will be larger. However, real-world video content providers rarely focus on

maximizing one of these characteristics. Instead, they target to achieve the most suitable trade-

off between coding efficiency and video quality. This trade-off is accomplished by

implementing and incorporating complex Rate-Distortion Optimization algorithms in an

encoding scheme. In RDO algorithms, multiple different modes for encoding single CU block

are evaluated, and the best one is chosen based on the preferences and configuration of the

encoder. In Just-in-Time encoding, less complex RDO algorithms have to be considered to

ensure predictability in an environment bounded by strict timing constraints. Therefore, in Just-

in-Time encoding, coding efficiency and video quality are considered only after the adequate

performance is guaranteed. However, in the transcoding, modes that were chosen as the best

ones in the original process of encoding can be reused and remapped when re-encoding the

video. Although those decisions were made based on different conditions (i.e., on a higher

resolution frame), they can be used as a starting point for CU prediction mode evaluation in the

re-encoding. Reusing prediction modes can significantly reduce the number of operations

needed to find the best possible mode for each CU block. In the case of Just-in-Time

transcoding, in order to accelerate application execution, number of operations can be furtherly

reduced by finding CU mode that does not have to be the best one, but is still “good enough”,

meaning that choosing that mode over the best possible one will not have a major impact on the

video quality or coding efficiency. Therefore, reusing modes from decoded bitstream is one of

the fundamental techniques used in Just-in-Time transcoding, not only to achieve Just-in-Time

execution but to maintain quality and coding efficiency of the original video as well, which is

one of the biggest shortcomings in Just-in-Time encoding.

To reuse information about intra and inter prediction modes from the decoded bitstream,

modes of all mapped CU have to be considered. Figure 6.9 shows prediction modes of all

mapped CUs in transcoding from 1920x1080 to 1280x720 resolution.

43

INTRA: DCINTRA: PLANAR INTRA: PLANAR

INTRA: ANGULAR
26

INTRA:
ANGULAR 26

INTRA:
ANGULAR 19

INTRA:
ANGULAR 28

INTER

(-16, -10)INTER

INTER

INTER

INTER

INTER INTER

INTER INTER

INTER

(0, 0)

(0, 0) (0, 0)

(-13, -11)

(-14, 0) (-8, -4)

(0, 0)

(0, -2)

(6, 4)

Figure 6.9: Distribution of prediction modes in mapped CUs

Distribution of different modes within transcoded CU can suggest its complexity for the

re-encoding phase. If all mapped CUs have similar modes (e.g., all mapped CUs are inter

predicted and have motion vectors that point in the same direction), a number of operations for

finding the mode for transcoded CU can be reduced by evaluating only a subset of candidates

(e.g., only motion vectors in the direction of mapped CUs). Otherwise, if there is a big

difference between modes of mapped CUs, that could indicate a need for further splitting or a

more sophisticated algorithm for searching suitable prediction candidate.

44

7 CATEGORIZATION

One of the main aspects of the novel software algorithm presented in this thesis is a

categorization of coding units based on the coding information from the input video stream.

The idea behind the categorization is to divide different blocks into certain categories and

process them in different manners. Some high complex CUs, where a lot of information is

contained should be analyzed in more details since they can have a higher impact on final

bitstream. On the contrary, decisions about less complex CUs can be taken earlier to speed up

the process, without sacrificing quality. This trade-off between coding efficiency and output

video quality, while satisfying strict timing requirements can be controlled by manipulating

decision process for each of the defined categories. In the next chapters categorization based on

three different aspects is introduced using three different types of information, as described in

chapter 6:

• Categorization based on the decoded number of bits
• Categorization based on the number of CUs mapped from the decoded frame
• Categorization based on the modes of mapped CUs retrieved from the decoded

frame

7.1 Categorization based on a size of decoded coding units

While decoding input bitstream number of bits that were needed to originally encode

each CU can be retrieved without any additional processing, i.e., without impact on processing

time. However, when downsizing video and re-encoding it with new parameters, number of bits

that will be needed to encode new video is not available in advance. Only by implementing

complex RDO algorithms that implement encoding loop in which several modes are tested,

encoded and evaluated in terms of coding efficiency, this could be achieved. This method

introduces huge computational complexity and is not viable in Just-in-Time transcoding.

Thereby, a number of bits from the decoded bitstream can be used to approximate the

complexity of transcoding CUs. Equation (7.1) shows how the approximated number of bits

(B´) for transcoded CU is computed.

𝐵´ = ∑ 𝜔𝑖 ∗ 𝐵𝑖

𝑀𝐶𝑈´

𝑖=0

 (7.1)

 𝑀𝐶𝑈´ and 𝜔𝑖 are a number of mapped CUs and mapping coefficients for each mapped

CU as described in chapter 6. Notice that, if the analogue approach is followed to find B´ for

45

all CUs in the transcoded frame, number of bits needed to encode original video will be the

same as the number of approximated bits for transcoded video. Hence:

∑ 𝐵𝑖

𝑁𝐶𝑈𝑂

𝑖=0

= ∑ ∑ 𝜔𝑘 ∗ 𝐵𝑘

𝑀𝐶𝑈´

𝑘=0

𝑁𝐶𝑈𝑇

𝑗=0

 (7.2)

 NCUO and NCUT are the number of coding units in the original and transcoded frame,

respectively. This statement cannot be true since a number of bits needed to encode lower

resolution of the video is less than a number of bits needed to encode the same video in higher

resolution. Thereby, the value of B´ is defined, not as an approximated number of bits that will

be needed to encode target video in a smaller resolution, but as the complexity of CU induced

by the number of bits from a decoded video stream, or CU bit complexity. Bit complexity can

be used as relevant information for decision making in the transcoding process because values

of B´ will be considered in a relative manner.

 CUs with a smaller number of bits usually present more static parts of the picture that

can be predicted with less complex prediction algorithms, without considerable losses in quality

or coding efficiency. Following this assumption, Category LBC (Low Bit Complexity) is

defined, where a certain percentage of CUs with the lowest bit complexity are assigned. CU is

categorized as LBC if the following condition is true:

0 ≤ 𝐵´ ≤ 𝛽𝐿 ∗ 𝐵´𝑚𝑎𝑥 , 𝑤ℎ𝑒𝑟𝑒 0 ≤ 𝛽𝐿 ≤ 1 𝑎𝑛𝑑 𝛽𝐿 ∈ 𝑄 (7.3)

 B´max is the value of the highest bit complexity of a CU in a frame for the considered

block size. Coefficient 𝛽𝐿 specifies a boundary to form a subset of CUs with a smallest bit

complexity. If 𝛽𝐿 equals 0.1, all CUs with bit complexity within 10% of maximum CU bit

complexity in that frame will be categorized as LBC.

Similarly, two additional categories based on bit sizes are introduced; Category HBC

(High Bit Complexity), that contains CUs with highest bit complexity, and Category MBC

(Medium Bit Complexity) that contains all other CUs. CU is categorized as HBC if the

following condition is met:

𝛽𝐻 ∗ 𝐵´𝑚𝑎𝑥 ≤ 𝐵´ ≤ 𝐵´𝑚𝑎𝑥 , 𝑤ℎ𝑒𝑟𝑒 0 ≤ 𝛽𝐻 ≤ 1 𝑎𝑛𝑑 𝛽𝐻 ∈ 𝑄 (7.4)

Coefficient 𝛽𝐻 specifies a boundary to form a subset of CUs with the largest values of

B´. All other CUs that do not fit in Category LBC or HBC, are placed in the category MBC.

Hence, category MBC is restricted to the following scope:

46

𝛽𝐿 ∗ 𝐵´𝑚𝑎𝑥 < 𝐵´ < 𝛽𝐻 ∗ 𝐵´𝑚𝑎𝑥 (7.5)

With this approach, where CUs are categorized relatively to 𝐵´𝑚𝑎𝑥, blocks, where the static

parts of the frame are located, should be detected more accurately. In cases where there are no

static areas in a frame, there will be a small number of blocks that fit in this category because

of the smaller differences between CU bit complexities within the frame. To test these

assumptions two videos were transcoded, one with the clearly visible static background

(BasketballDrive) and one with the random motion throughout the frame and without the

distinguishable background (Riverbed, also shown in Figure 6.4). The test is conducted by

transcoding videos to the same resolution, just to test and observe the distribution of CUs within

a frame. In this case, where there is no downsizing, B´ is equal to B since the mapping of

decoded CUs is the one-to-one to transcoded CUs, meaning that the bit complexity of the

transcoded CU is the same as the number of bits needed to encode the same CU in the original

video (7.2). The same distribution can be expected in any of the downsized versions of the video

sequence. Bit sizes for all 32x32 CUs were obtained, and their distribution is demonstrated in

Figure 7.1 and Figure 7.2 for mentioned video sequences. The x-axis in the graph shows the

number of bits needed to encode a CU, grouped in range of 5 bits, while Y-axis denotes the

number of CUs that are encoded within the defined range. To demonstrate the difference in

categorization between the sequences, coefficients 𝛽𝐿 and 𝛽𝐻 are fixed to 0.1 and 0.7,

respectively.

MBC HBCLBC

= 0.1 = 0.7

Figure 7.1: Categorization based on number of bits for BasketballDrive video sequence

47

Figure 7.1 shows a distribution for a video sequence with a pronounced background,

where a lot of CUs are grouped at the start of the graph, meaning that high number of CUs

belong to the static part of the image and can be categorized to Category LBC. With the

𝐵´𝑚𝑎𝑥=2218, boundaries for categorization are set on 0.1 * 2218 = 222 bits and 0.7 * 2218 =

1553 bits.

LBC MBC HBC

= 0.1 = 0.7

Figure 7.2: Categorization based on number of bits for Riverbed video sequence

 In Figure 7.2 most of the CUs are grouped in the middle of the graph. With the

𝐵´𝑚𝑎𝑥=2092, boundaries for categorization are set on 0.1 * 2092= 209 bits and 0.7 * 2092 =

1464 bits. Considering that there is no clearly expressed background in this video sequence and

that the motion is distributed randomly across the frame, prediction, and transformation in the

encoding process give a high number of transform coefficients that are consequently encoded

with a higher number of bits. This graph also depicts the major advantage of the introduced

approach, where boundaries are set relatively in regard to B´max. As can be seen from Figure

7.2 only one CU is categorized as LBC. Otherwise, if the lower boundary was set absolutely to

10% of all CUs in the frame, a large number of CUs would be wrongly assumed to be part of

the background and the further decisions in the process of transcoding could be made on a false

premise.

 Using 𝛽𝐿 and 𝛽𝐻 as adaptive parameters enables more control over the transcoding

process. Since the different categories will be processed in a different manner, higher quality

48

and coding efficiency can be achieved by reducing coefficients 𝛽𝐿 and 𝛽𝐻 and thereby

increasing the number of CUs in categories MBC and HBC. Higher 𝛽𝐿 and 𝛽𝐻 coefficients

increase number of CUs in the LBC category and decrease number of CUs in the HBC category,

leading to lower computational complexity and faster execution of the transcoding process.

To conclude, CU can be categorized into three different categories, based on the value of CU

bit complexity (B´).

𝐶𝑈 ∈ {

 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝐿𝐵𝐶, 0 ≤ 𝐵´ ≤ 𝛽𝐿 ∗ 𝐵´𝑚𝑎𝑥
𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝑀𝐵𝐶, 𝛽𝐿 ∗ 𝐵´𝑚𝑎𝑥 ≤ 𝐵´ ≤ 𝛽𝐻 ∗ 𝐵´𝑚𝑎𝑥
𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝐻𝐵𝐶, 𝛽𝐻 ∗ 𝐵´𝑚𝑎𝑥 ≤ 𝐵´ ≤ 𝐵´𝑚𝑎𝑥

 (7.6)

7.2 Categorization based on the number of mapped CUs

When mapping CUs from decoded video to downsized transcoded video, a number of

mapped CUs (MCU´) can be useful information that can be reused for decisions in the re-

encoding phase. If a large number of CUs from input frame were mapped to one transcoded CU

that means that that area of the original picture was divided into smaller CUs more frequently,

which could indicate areas of the picture with more details. On the contrary, if there is a smaller

number of mapped CUs, there is a higher probability of that area of the picture being uniform,

containing fewer details. Figure 7.3 visualizes this fact by demonstrating CU distribution for

one encoded video frame of the BlueSky video sequence.

Figure 7.3: CU distribution in the original video sequence (BlueSky)

Sky, as homogeneous part of the frame, is divided into larger blocks, meaning that CUs

in the transcoded video that are located in that area will have a fewer number of mapped CUs.

On the left and upper right part of the frame, where the two trees are located, CUs are split more

frequently to form a more fine-grained structure. Mapping CUs that coincide with these, more

detailed parts of the frame, will consequently have a higher value of MCU´.

49

For every CU in the transcoded video maximum and minimum number of MCU´ can

be determined depending on the CU block size CUBS:

max(𝑀𝐶𝑈´) = ⌈
𝐶𝑈𝐵𝑆 ∗ (𝜌𝑤 + 1)

𝐶𝑈´min𝐵𝑆
⌉ ∗ ⌈

𝐶𝑈𝐵𝑆 ∗ (𝜌ℎ + 1)

𝐶𝑈´min𝐵𝑆
⌉

(7.7)

min(𝑀𝐶𝑈´) = ⌈
𝐶𝑈𝐵𝑆 ∗ 𝜌𝑤
𝐶𝑈´max𝐵𝑆

⌉ ∗ ⌈
𝐶𝑈𝐵𝑆 ∗ 𝜌ℎ
𝐶𝑈´max𝐵𝑆

⌉ (7.8)

 𝐶𝑈´min𝐵𝑆 and 𝐶𝑈´max𝐵𝑆 represent minumum and maximum block size for an input

video stream, while 𝜌𝑤 and 𝜌ℎ are width and height transcoding ratio (6.1)(6.2). In HEVC

standard, maxium CU block size can be 64x64, while minumum block size is 8x8. However,

these values can be restricted and adapted for each bitstream.

Based on the number of mapped CUs three categories are introduced: Category LM

(Low Mapped) where the CUs with the smallest MCU´ are located, Category HM (High Mapped)

where the CUs with highest values of MCU´ are located and Category MM (Medium Mapped)

where all other CUs that do not fit in the previous two categories are associated. Similar as for

the categorization that is based on bit complexity, two coefficients 𝜇𝐿 and 𝜇𝐻 that can be

adapted based on the requirements of the transcoding system are introduced. Hence, CU is

categorized as LM if the following condition is true:

min (𝑀𝐶𝑈´) ≤ 𝑀𝐶𝑈´ ≤ 𝜇𝐿 ∗ max (𝑀𝐶𝑈´), 𝑤ℎ𝑒𝑟𝑒 0 ≤ 𝜇𝐿 ≤ 1 𝑎𝑛𝑑 𝜇𝐿 ∈ 𝑄 (7.9)

where min(MCU´) and max(MCU´) are the values for the considered CU block size.

Category HB is described with the following condition:

𝜇𝐻 ∗ max (𝑀𝐶𝑈´) ≤ 𝑀𝐶𝑈´ ≤ 𝑚ax (𝑀𝐶𝑈´),𝑤ℎ𝑒𝑟𝑒 0 ≤ 𝜇𝐻 ≤ 1 𝑎𝑛𝑑 𝜇𝐻 ∈ 𝑄 (7.10)

Category MM covers the remaining CUs:

𝜇𝐿 ∗ max(𝑀𝐶𝑈´) < 𝑀𝐶𝑈´ < 𝜇𝐻 ∗ max (𝑀𝐶𝑈´) (7.11)

Coefficients 𝜇𝐿 and 𝜇𝐻 can be adjusted at the beginning or in the runtime to enable more

control during the transcoding process. Increasing or decreasing 𝜇𝐿 and 𝜇𝐻 will affect the

number of CUs in each of the defined categories LM, MM, and HM. The higher the coefficient

𝜇𝐿 is, more CUs will be assigned to the LM category. Analogously, the lower the 𝜇𝐻 is, more

CUs will fit in category HM. In the re-encoding phase of the transcoder, some conclusions and

50

decisions can be made based on the categories formed in regard to a number of mapped CUs.

For example, if the CU belongs to HM category, it can be expected that considered CU would

be split in the encoding of a downsized video more likely than if the same CU was part of a LM

category. To verify this assumption, BlueSky video sequence from Figure 7.3 originally

encoded in 1920x1080 resolution was decoded, downsized to 1280x720 resolution and then

fully re-encoded without reusing any information from decoded bitstream. Distribution of CUs

in the downsized video is shown in Figure 7.4.

Figure 7.4: CU distribution in the downsized video sequence (BlueSky 1280x720)

As can be seen from the figure above, distribution of CUs and block sizes in the

downsized transcoded bitstream follow a similar pattern as in original bitstream depicted in

Figure 7.3.

To conclude, CU can be categorized into three different categories, based on number

CUs mapped from the decoded bitstream (MCU´).

𝐶𝑈 ∈ {

𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝐿𝑀, min (𝑀𝐶𝑈´) ≤ 𝑀𝐶𝑈´ ≤ 𝜇𝐿 ∗ max (𝑀𝐶𝑈´)

 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝑀𝑀, 𝜇𝐿 ∗ max(𝑀𝐶𝑈´) < 𝑀𝐶𝑈´ < 𝜇𝐻 ∗ max (𝑀𝐶𝑈´)
𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝐻𝑀, 𝜇𝐻 ∗ max (𝑀𝐶𝑈´) ≤ 𝑀𝐶𝑈´ ≤ 𝑚ax (𝑀𝐶𝑈´)

 (7.12)

7.3 Categorization based on prediction modes

Transcoded CUs can be processed differently based on a variety of prediction modes of

mapped CUs. Similar modes of all mapped CUs could suggest a homogeneous area that can be

predicted with either inter or intra mode which can be extracted from the modes of mapped

CUs. Thereby, two categories are defined, one for CUs that contain only intra mapped

prediction modes and one for CUs that contain only inter predicted mapped CUs. Therefore, if

all mapped CUs from the decoded bitstream are predicted in intra mode (7.13), CU is assigned

to category IntraM (All intra mapped).

51

𝑀𝐶𝑈´ = 𝑀𝐶𝑈´(𝐼𝑁𝑇𝑅𝐴) (7.13)

Likewise, if all mapped CUs are inter predicted (7.14), CU is assigned to category

InterM (All inter mapped).

𝑀𝐶𝑈´ = 𝑀𝐶𝑈´(𝐼𝑁𝑇𝐸𝑅) (7.14)

All other CUs that do not fit in either of the two categories are categorized as ComboM

(Combo mapped). Consequently, for CUs in ComboM category, the following conditions have

to be fulfilled:

0 < 𝑀𝐶𝑈´(𝐼𝑁𝑇𝑅𝐴) < 𝑀𝐶𝑈´
(7.15)

0 < 𝑀𝐶𝑈´(𝐼𝑁𝑇𝐸𝑅) < 𝑀𝐶𝑈´ (7.16)

𝑀𝐶𝑈´(𝐼𝑁𝑇𝑅𝐴) + 𝑀𝐶𝑈´(𝐼𝑁𝑇𝐸𝑅) = 𝑀𝐶𝑈´ (7.17)

To obtain the frequency of occurrence for each of the defined categories, set of videos

with the original spatial resolution of 1920x1080 were transcoded to two different resolutions:

1280x720 and 640x480. Input video sequences were encoded with four different QP values of

22, 27, 32, 37, as defined in Common Test Conditions [60]. For each CU block size (32x32,

16x16 and 8x8), values of 𝑀𝐶𝑈´, 𝑀𝐶𝑈´(𝐼𝑁𝑇𝑅𝐴) and 𝑀𝐶𝑈´(𝐼𝑁𝑇𝐸𝑅) were observed, based on

which CUs were categorized to one of the above-mentioned categories. Statistics was gathered

only for P frames, since in I frame all CUs have to be intra predicted. The frequency of

occurrence of categories was examined and showed in following tables.

52

Table 7.1: Frequency of occurence of categories IntraM, InterM and ComboM for 32x32 blocks

when transcoding from 1920x1080 to 1280x720 (%)

QP 22 27 32 37
Video
sequence

Intra
M

Inter
M Comb Intra

M
Inter

M Comb Intra
M

Inter
M Comb Intra

M
Inter

M Comb

Basketball
Drive

1.86 12.70 85.44 1.20 21.24 77.56 1.17 21.14 77.69 1.14 21.69 77.17

BlueSky 2.45 30.38 67.18 4.63 38.94 56.43 3.45 41.75 54.80 1.63 41.75 56.62

BQTerrace 0.73 10.73 88.54 0.04 40.73 59.23 0.03 56.30 43.66 0.05 60.68 39.27

Cactus 0.98 27.45 71.57 0.63 52.44 46.93 0.72 58.04 41.25 0.74 60.01 39.25

Calendar 0.22 21.69 78.09 0.28 42.88 56.84 0.32 55.75 43.92 0.30 62.35 37.35
Pedestrian
Area

5.00 31.81 63.18 6.03 37.37 56.60 6.69 39.48 53.83 6.99 41.32 51.68

Riverbed 46.97 0.03 53.00 42.48 0.04 57.49 32.36 0.10 67.54 18.52 0.30 81.18

RushHour 1.57 3.33 95.10 1.76 13.92 84.33 1.76 25.54 72.70 1.58 33.85 64.57

Table 7.2: Frequency of occurence of categories IntraM, InterM and ComboM for 16x16 blocks

when transcoding from 1920x1080 to 1280x720 (%)

QP 22 27 32 37
Video
sequence

Intra
M

Inter
M Comb Intra

M
Inter

M Comb Intra
M

Inter
M Comb Intra

M
Inter

M Comb

Basketball
Drive

5.93 35.12 58.96 4.21 44.40 51.39 4.27 43.91 51.82 4.27 43.86 51.87

BlueSky 7.13 53.44 39.43 9.25 58.03 32.72 6.80 59.77 33.43 3.66 61.17 35.18

BQTerrace 4.42 30.56 65.03 0.29 67.41 32.30 0.21 76.32 23.47 0.26 78.28 21.46

Cactus 2.94 53.41 43.65 1.87 71.54 26.59 2.02 73.70 24.28 2.13 74.30 23.56

Calendar 2.25 45.24 52.51 1.81 61.82 36.37 1.71 70.47 27.82 1.57 74.73 23.70
Pedestrian
Area

11.92 48.54 39.54 12.44 51.72 35.84 13.00 52.63 34.38 13.32 53.46 33.22

Riverbed 67.76 0.94 31.30 63.19 1.19 35.62 54.71 1.87 43.41 40.44 3.52 56.03

RushHour 5.39 21.60 73.01 4.75 37.17 58.08 4.29 48.14 47.57 3.83 54.93 41.24

Table 7.3: Frequency of occurence of categories IntraM, InterM and ComboM for 8x8 blocks

when transcoding from 1920x1080 to 1280x720 (%)

QP 22 27 32 37
Video
sequence

Intra
M

Inter
M Comb Intra

M
Inter

M Comb Intra
M

Inter
M Comb Intra

M
Inter

M Comb

Basketball
Drive

12.66 52.44 34.91 10.46 60.53 29.01 11.29 60.22 28.49 11.76 60.19 28.05

BlueSky 12.99 65.83 21.18 14.49 68.49 17.03 11.92 70.73 17.35 8.67 73.04 18.29

BQTerrace 11.48 47.01 41.51 2.36 80.17 17.46 2.11 85.62 12.26 2.20 86.68 11.12

Cactus 6.35 68.25 25.40 4.19 81.07 14.74 4.57 82.13 13.30 4.95 82.35 12.70

Calendar 8.48 61.96 29.57 6.82 73.81 19.37 5.78 79.60 14.62 5.17 82.44 12.39
Pedestrian
Area

18.32 59.39 22.29 18.67 61.72 19.61 19.25 62.28 18.47 19.62 62.72 17.66

Riverbed 77.65 4.37 17.99 73.92 5.57 20.51 67.49 7.61 24.91 55.71 11.82 32.47

RushHour 13.97 42.22 43.81 12.03 55.69 32.27 10.53 63.94 25.53 9.45 68.76 21.78

 Table 7.1, Table 7.2 and Table 7.3 show that the percentage of IntraM and InterM

increases as CU block sizes decrease. This behavior is expected since the maximum number of

53

mapped CUs (max(MCU´)) gets smaller for smaller blocks sizes, which increases the chance of

all mapped CUs being predicted in the same mode. Also, the characteristics of certain videos

can influence the occurrence of different prediction modes. For example, in Riverbed video

sequence, which does not have any regular motion between the frames, there is the highest

number of IntraM CUs, since, in that kind of scenario, intra prediction modes give better

prediction than inter modes. Increasing quantization parameter does not follow any regular

pattern in terms of categorization based on intra and inter modes.

 Following three tables represent the same statistics, but for transcoding to a lower

resolution of 640x480, thus with higher transcoding ratios (𝜌𝑤=3, 𝜌ℎ=2,25).

Table 7.4: Frequency of occurence of categories IntraM, InterM and ComboM for 32x32 blocks

when transcoding from 1920x1080 to 640x480 (%)

QP 22 27 32 37
Video
sequence

Intra
M

Inter
M Comb Intra

M
Inter

M Comb Intra
M

Inter
M Comb Intra

M
Inter

M Comb

Basketball
Drive

1.86 12.70 85.44 1.20 21.24 77.56 1.17 21.14 77.69 1.14 21.69 77.17

BlueSky 2.45 30.38 67.18 4.63 38.94 56.43 3.45 41.75 54.80 1.63 41.75 56.62

BQTerrace 0.73 10.73 88.54 0.04 40.73 59.23 0.03 56.30 43.66 0.05 60.68 39.27

Cactus 0.98 27.45 71.57 0.63 52.44 46.93 0.72 58.04 41.25 0.74 60.01 39.25

Calendar 0.22 21.69 78.09 0.28 42.88 56.84 0.32 55.75 43.92 0.30 62.35 37.35
Pedestrian
Area

5.00 31.81 63.18 6.03 37.37 56.60 6.69 39.48 53.83 6.99 41.32 51.68

Riverbed 46.97 0.03 53.00 42.48 0.04 57.49 32.36 0.10 67.54 18.52 0.30 81.18

RushHour 1.57 3.33 95.10 1.76 13.92 84.33 1.76 25.54 72.70 1.58 33.85 64.57

Table 7.5: Frequency of occurence of categories IntraM, InterM and ComboM for 16x16 blocks

when transcoding from 1920x1080 to 640x480 (%)

QP 22 27 32 37
Video
sequence

Intra
M

Inter
M Comb Intra

M
Inter

M Comb Intra
M

Inter
M Comb Intra

M
Inter

M Comb

Basketball
Drive

5.93 35.12 58.96 4.21 44.40 51.39 4.27 43.91 51.82 4.27 43.86 51.87

BlueSky 7.13 53.44 39.43 9.25 58.03 32.72 6.80 59.77 33.43 3.66 61.17 35.18

BQTerrace 4.42 30.56 65.03 0.29 67.41 32.30 0.21 76.32 23.47 0.26 78.28 21.46

Cactus 2.94 53.41 43.65 1.87 71.54 26.59 2.02 73.70 24.28 2.13 74.30 23.56

Calendar 2.25 45.24 52.51 1.81 61.82 36.37 1.71 70.47 27.82 1.57 74.73 23.70
Pedestrian
Area

11.92 48.54 39.54 12.44 51.72 35.84 13.00 52.63 34.38 13.32 53.46 33.22

Riverbed 67.76 0.94 31.30 63.19 1.19 35.62 54.71 1.87 43.41 40.44 3.52 56.03

RushHour 5.39 21.60 73.01 4.75 37.17 58.08 4.29 48.14 47.57 3.83 54.93 41.24

54

Table 7.6: Frequency of occurence of categories IntraM, InterM and ComboM for 8x8 blocks

when transcoding from 1920x1080 to 640x480 (%)

QP 22 27 32 37
Video
sequence

Intra
M

Inter
M Comb Intra

M
Inter

M Comb Intra
M

Inter
M Comb Intra

M
Inter

M Comb

Basketball
Drive

12.66 52.44 34.91 10.46 60.53 29.01 11.29 60.22 28.49 11.76 60.19 28.05

BlueSky 12.99 65.83 21.18 14.49 68.49 17.03 11.92 70.73 17.35 8.67 73.04 18.29

BQTerrace 11.48 47.01 41.51 2.36 80.17 17.46 2.11 85.62 12.26 2.20 86.68 11.12

Cactus 6.35 68.25 25.40 4.19 81.07 14.74 4.57 82.13 13.30 4.95 82.35 12.70

Calendar 8.48 61.96 29.57 6.82 73.81 19.37 5.78 79.60 14.62 5.17 82.44 12.39
Pedestrian
Area

18.32 59.39 22.29 18.67 61.72 19.61 19.25 62.28 18.47 19.62 62.72 17.66

Riverbed 77.65 4.37 17.99 73.92 5.57 20.51 67.49 7.61 24.91 55.71 11.82 32.47

RushHour 13.97 42.22 43.81 12.03 55.69 32.27 10.53 63.94 25.53 9.45 68.76 21.78

Table 7.4, Table 7.5 and Table 7.6 show that by increasing downsizing ratio between

original and transcoded video, the possibility of occurrences of IntraM and InterM categories

decreases, which is expected since the CU in the smaller, transcoded video, covers a larger area

in the original video. Also, in the second case, where downsizing ratios are 𝜌𝑤=3 and 𝜌ℎ=2.25

value of max(MCU´) is higher than in the first scenario 𝜌𝑤=3 and 𝜌ℎ=2.25, meaning that the

probability of all mapped CUs being predicted in the same mode is lower.

 In most of the presented cases, ComboM is the most common category. However, within

ComboM category there can be different cases. Even if one mapped CU is intra predicted and

all others are inter predicted or vice-versa, CU will be assigned to the ComboM category.

Hence, ComboM category is disjointed to two separate categories based on the ratio between a

number of mapped CUs that are predicted in inter and intra mode. Therefore, two additional

categories are introduced: ComboInter, where more mapped CUs are inter predicted, and

ComboIntra, where more mapped CUs are intra predicted. The same test used to observe the

frequency of occurrence of each category was repeated, and the average ratio between

prediction modes (γ) as defined in (7.18) is observed.

𝛾 =
𝑀𝐶𝑈´(𝐼𝑁𝑇𝐸𝑅)

𝑀𝐶𝑈´(𝐼𝑁𝑇𝑅𝐴)
 (7.18)

Obtained values are presented in Table 7.7 for transcoding to 1280x720 resolution and

in Table 7.8 for transcoding to 640x480 resolution.

55

Table 7.7:Values of γ when transcoding from 1920x1080 to 1280x720

Video sequence QP = 22 QP = 27 QP = 32 QP = 37
BasketballDrive 1.91 1.97 1.89 1.90

BlueSky 3.39 3.21 2.78 2.81

BQTerrace 2.32 4.30 4.08 4.01

Cactus 3.13 3.16 2.48 2.26

Calendar 2.41 2.56 2.52 2.51

PedestrianArea 1.54 1.46 1.44 1.44

Riverbed 0.44 0.49 0.50 0.57

RushHour 1.78 2.15 2.32 2.45

Table 7.8:Values of γ when transcoding from 1920x1080 to 640x480

Video sequence QP = 22 QP = 27 QP = 32 QP = 37
BasketballDrive 2.14 2.44 2.41 2.47

BlueSky 4.82 5.22 4.51 4.49

BQTerrace 2.59 6.37 7.13 7.45

Cactus 3.93 4.46 3.57 3.39

Calendar 2.99 3.99 4.21 4.20

PedestrianArea 1.92 1.95 1.98 2.03

Riverbed 0.35 0.40 0.42 0.52

RushHour 1.84 2.53 3.09 3.54

 Table 7.7 and Table 7.8 show that the ratio γ generally diverge to one of the modes and

that the value of γ is rarely close to 1, which would indicate the same number of inter and intra

mapped CUs. Therefore, instead of simply defining categories ComboIntra and ComboInter as

categories that have a higher number of one of the prediction modes, these categories are

defined relatively, based on coefficient δ. CU is allocated to ComboInter category if the

following condition is true:

𝑀𝐶𝑈´(𝐼𝑁𝑇𝐸𝑅) > 𝛿 ∗ 𝑀𝐶𝑈´(𝐼𝑁𝑇𝑅𝐴),𝑤ℎ𝑒𝑟𝑒 𝛿 > 0 𝑎𝑛𝑑 𝛿 ∈ 𝑄 (7.19)

 Otherwise, CU is categorized as ComboIntra.

𝑀𝐶𝑈´(𝐼𝑁𝑇𝐸𝑅) ≤ 𝛿 ∗ 𝑀𝐶𝑈´(𝐼𝑁𝑇𝑅𝐴),𝑤ℎ𝑒𝑟𝑒 𝛿 > 0 𝑎𝑛𝑑 𝛿 ∈ 𝑄 (7.20)

With this approach, condition for categorization in one of these categories can be set

dynamically and can be adapted depending on the specific video sequence. Also, this concept

enables detection of CUs that stand out from the average CU ratio, which would not be possible

if the categorization was based solely on the higher number of prediction modes (i.e., if δ is

fixed to 1).

56

All the facts presented above can be used in the decision-making process of a transcoder.

Depending on the occurrence of the particular category within the decoded frame, focus can be

directed to a different category in the re-encoding phase. For, example, if video sequence

Riverbed is being transcoded, more precise intra prediction will be performed, since the

occurrence of IntraM category for that particular video sequence is very high.

To conclude, CU can be categorized into four different categories, based on prediction

modes of mapped CUs (CUCU´).

𝐶𝑈 ∈

{

𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝐼𝑛𝑡𝑒𝑟𝑀, 𝑀𝐶𝑈´ = 𝑀𝐶𝑈´(𝐼𝑁𝑇𝐸𝑅)
𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝐼𝑛𝑡𝑟𝑎𝑀, 𝑀𝐶𝑈´ = 𝑀𝐶𝑈´(𝐼𝑁𝑇𝑅𝐴)

𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝐶𝑜𝑚𝑏𝑜𝐼𝑛𝑡𝑒𝑟, 𝑀𝐶𝑈´(𝐼𝑁𝑇𝐸𝑅) > 𝛿 ∗ 𝑀𝐶𝑈´(𝐼𝑁𝑇𝑅𝐴)

𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝐶𝑜𝑚𝑏𝑜𝐼𝑛𝑡𝑟𝑎, 𝑀𝐶𝑈´(𝐼𝑁𝑇𝐸𝑅) ≤ 𝛿 ∗ 𝑀𝐶𝑈´(𝐼𝑁𝑇𝑅𝐴)

 (7.21)

57

8 ALGORITHM FOR REUSING CODING INFORMATION

An optimized algorithm for just in time video transcoding based on the utilization of

coding statistics from the input video stream is presented in this thesis. The proposed algorithm

targets to achieve an optimal trade-off between video quality of the transcoded bitstream and

coding efficiency while conforming to strict timing requirements imposed by Just-in-Time

transcoding. The basic concept behind this novel algorithm is to estimate the computational

complexity of re-encoding each block based on the information retrieved from the decoded

frame and to balance the workload of the transcoder accordingly. More computing resources

will be assigned to processing more complex CUs that usually contain more detailed

information within the video frame.

After introducing the concept of categorization of coding units based on the data

extracted from the decoded frame, this chapter presents an algorithm for Just-in-Time video

transcoding built based on this idea. Depending on the affiliation of each CU to particular

categories, different algorithms are used to decide whether CU will be split or not, and which

mode will be used for its prediction in the re-encoding phase.

8.1 Input data

To be able to categorize CU, several coefficients that define boundaries for

categorization have to be defined:

• 𝛽𝐿 and 𝛽𝐻 for categorization based on the bit complexity
• 𝜇𝐿 and 𝜇𝐻 for categorization based on the number of CUs mapped from the

decoded frame
• 𝛿 for categorization based on the modes of mapped CUs retrieved from the

decoded frame

In the initial version of the algorithm, values of all coefficients are preset to default

values for all video sequences and will not be adapted during the execution of the transcoder.

Coefficients are defined in the configuration file of the application. Dynamic adaptation of

coefficients are introduced later in this thesis.

Besides coefficients needed to form boundaries for the categorization, several other

values are required before the beginning of the transcoding process and have to be calculated.

These include:

58

• Transcoding width and height ratios - 𝜌𝑤 and 𝜌ℎ
• Maximum and minimum number of mapped CUs for each block size -

min (𝑀𝐶𝑈´) , max (𝑀𝐶𝑈´)
• Maximum bit complexity for each block size – B´max
• Set of mapped CUs for each CU – CUCU´

While transcoding ratios and values of min (𝑀𝐶𝑈´) and max(𝑀𝐶𝑈´) can be calculated

immediately after decoding sequence parameter set (SPS) of the original bitstream, set of

mapped CUs and maximum bit complexity have to be determined in the encoder part of the

transcoder. Whenever a CU is formed in the encoder, either by creating new CTU or by splitting

existing CU, CUs from the decoded frame are mapped and the set CUCU´ is assembled, while

the corresponding value of B´max is updated accordingly.

8.2 Initial split

At the beginning of the encoding phase, a frame is divided into Coding Tree Units, CUs

with largest block sizes. Each of these CTUs can be further split multiple times to form a tree

of CUs (as shown in Figure 2.2). The maximum size of CTU is defined in HEVC standard

(64x64) but can be limited for each bitstream to 32x32 or 16x16. So, the first step in the

algorithm is to decide whether to split CTU or not. The analysis was made to determine the

frequency of occurrence of 64x64 blocks that are not split. Only videos with resolutions of

1920x1080 and higher were taken into consideration since the probability of 64x64 CUs in

lower resolutions is very small. Table 8.1 shows the percentages of occurrence of 64x64 blocks

that are not split in the original bitstream.

The analysis shows that the presence of 64x64 CU blocks in an encoded bitstream is

very low for all video sequences and all QP values. Also, if the CTU is not split to smaller CUs,

it has to be split to multiple transcoding units (TU) that are predicted individually with the same

intra mode. Thereby, coding efficiency when using 64x64 CUs is achieved only by not signaling

intra mode for each TU independently, which is almost negligible when the number of such

CTUs is low, as depicted in Table 8.1.

59

Table 8.1: Frequency of occurence of non-split 64x64 blocks

Video
sequence

Resolution QP = 22 QP = 27 QP = 32 QP = 37

BasketballDrive 1920x1080 0.03 0.04 0.04 0.05

BlueSky 1920x1080 0.06 0.20 0.35 0.40

BQTerrace 1920x1080 0.00 0.01 0.01 0.02

Cactus 1920x1080 0.01 0.02 0.02 0.02

Calendar 1920x1080 0.01 0.02 0.04 0.04

PedestrianArea 1920x1080 0.06 0.12 0.21 0.32

Riverbed 1920x1080 1.46 1.24 0.71 0.34

RushHour 1920x1080 0.02 0.02 0.03 0.03

Traffic 2560x1600 0.00 0.00 0.00 0.00

Beauty 3840x2160 3.11 0.34 0.04 0.00

Bosphorus 3840x2160 0.00 0.00 0.00 0.03

DuckTakeOff 3840x2160 0.22 0.02 0.00 0.00

Taking into consideration results presented above, all CTUs in the re-encoding phase

are unconditionally split if their size is 64x64. Bypassing evaluation of modes for the largest

coding blocks in HEVC standard helps to reduce the overall number of operations for finding

final prediction mode with no significant losses in coding efficiency. Thus, the first operation

in this phase of the algorithm is to split all CTUs. While splitting CTU following operations are

performed:

• All mapped CUs (CUCU´) are re-mapped from CTU to appropriate child CU as
depicted in Figure 6.8

• Bit complexity (B´) is calculated for each newly created CU, and the value of
B´max is updated accordingly

• Child CUs are categorized based on bit complexity, number of mapped CUs and
modes of mapped CUs as described in chapter 7

After initial CTU split, every 32x32 CU block is evaluated based on the associated

categories, and the initial decision about the further splitting of the CU is made. If the 32x32

CU block belongs to both categories, LBC (Low bit complexity) and LM (Low mapped), that

CU block is not split and is marked as “split concluded” by setting a flag SC to 1. When a SC

flag in CU is set to 1, it means that decision about the split is final and that no further

considerations for splitting will be conducted later in the algorithm. All other combinations of

60

categories based on bit complexity and a number of mapped CUs lead to splitting 32x32 CU

and repeating the same process for four 16x16 CUs. Notice that, for initial split decisions, only

the first two categorizations are taken into account. Categorization based on the modes of

mapped CUs will be used later in the algorithm. For 16x16 CU blocks, the same procedure is

repeated if they belong to the LBC and LM category. However, for 16x16 block sizes, only

CUs that belong to most complex categories, HBC and HM, are split. All other 16x16 CUs that

are associated with different combinations of categories are not split, and their SC flag is set to

0, meaning that this CU can be still examined by a different process and that the decision about

the split is not final. For 8x8 CU blocks that are formed after splitting 16x16 CUs, only re-

mapping and categorization is performed, since they cannot be furtherly split. SC flag for 8x8

blocks is set to 1 by default. Figure 8.1 shows a flowchart of an initial split decision for CU.

Figure 8.1: Initial split flowchart

61

Initial split only makes final split decisions for two types of CUs:

• Most complex CUs - 16x16 CU blocks with the highest bit complexity and the
highest number of mapped CUs

• Least complex CUs - 32x32 blocks with the lowest bit complexity and the lowest
number of mapped elements

Number of CUs for which split decision is final (i.e., SC flag is equal to 1) after an initial

split depends on the coefficients 𝛽𝐿 ,𝛽𝐻 , 𝜇𝐿 and 𝜇𝐻. Figure 8.2 shows the CU distribution within

one frame of three video sequences (BlueSky, KristenAndSara and BasketballDrive) after

performing the initial split, for three different sets of coefficients:

A. 𝛽𝐿 = 0.4 , 𝛽𝐻 = 0.9 , 𝜇𝐿 = 0.5, 𝜇𝐻 = 0.9
B. 𝛽𝐿 = 0.3 , 𝛽𝐻 = 0.6 , 𝜇𝐿 = 0.3, 𝜇𝐻 = 0.6
C. 𝛽𝐿 = 0.1 , 𝛽𝐻 = 0.5, 𝜇𝐿 = 0.2, 𝜇𝐻 = 0.5

Figure 8.2: CU distribution after the initial split for three different sets of coefficients

The first set of predefined coefficients (A) is most suitable for fast transcoding since a

large number of CUs are categorized as an LBC and LM. Setting high values of coefficients 𝛽𝐻

and 𝜇𝐻 decreases the number of CUs in most complex categories HBC and HM, which is why

the number of 8x8 CU blocks is relatively small. Third set of coefficients (C) does exactly the

62

opposite, which has decreased number of 32x32 CU blocks as a consequence. This

configuration increases overall video quality but can compromise Just-in-Time execution. By

changing these coefficients to different values, the balance between video quality and execution

time can be achieved. One such examplesis given with the second set of coefficients (B) that

shows the coefficients set between the two extremes (A and C). To quantify the number of CUs

for which decision has been made during the initial split, Table 8.2 that shows a number of

blocks with sizes of 8x8, 16x16 and 32x32 for each of predefined sets of coefficients is

presented. As expected, the number of 32x32 blocks is the highest for the first configuration

(A) and the lowest for the third and vice-versa for 8x8 CU blocks

Table 8.2: Distribution of CU blocks after the initial split (per block size)

Configuration A) B) c) Video sequence Blocks
BlueSky 32x32 507 263 128

16x16 1571 2490 2858
8x8 4 232 920

KristenAndSara 32x32 539 346 181
16x16 1435 2184 2807
8x8 36 128 276

BasketballDrive 32x32 452 161 14
16x16 1778 2886 3380
8x8 16 280 656

8.3 Prediction decisions

Next step in the algorithm is to determine a prediction mode for each CU that is formed

after the initial split. This decision is based on the modes of mapped CUs since it can be

expected that transcoded block will have similar prediction mode as one or more of its mapped

CUs. Next few chapters describe the process of determining prediction modes for each of the

categories: IntraM, InterM, ComboInter, and ComboIntra.

The main idea behind the concept of categorization based on modes of CUs mapped

from the decoded frame is to find the best prediction candidates with the number of operations

as low as possible in order to conform to strict timing requirements imposed by Just-in-Time

video transcoding. The first step in this approach is to divide blocks into different categories

based on characteristics of the mapped coding units. For each of the defined categories, a

different set of rules and algorithms are used to find a prediction that is close to the best possible

prediction which would be selected if a full re-encoding, without time constraints, is used.

63

8.3.1 Prediction for IntraM category

There are 35 possible modes for intra prediction: DC, Planar and 33 angular modes. In

the encoding process, if the CU is intra predicted, all the modes can be evaluated, and the one

with the best prediction (i.e., the smallest residual) is selected. Different algorithms can be used

to decrease the number of intra modes that are being evaluated ([61],[62],[63]), thereby

reducing the complexity of intra prediction.

In the transcoding, information about modes of CUs from the input frame is available

and can be utilized to minimize the number of evaluated modes. If the CU belongs to IntraM

category, there is a high probability that this CU would also be intra predicted in the encoding

phase. However, during the downsizing of the decoded frame, some information is lost, and the

transcoded pixels, although similar, are not the same as in the decoded frame. Therefore,

transcoded CU in some cases can be inter predicted, regardless of all mapped CUs being intra

predicted. So, when determining prediction mode in transcoded CU, this has to be taken into

consideration. Figure 8.3 shows the prediction decision process for CU that is categorized as

IntraM.

Find prediction
mode for CU

Is LBC or LM
category?

YES

Is HBC or HM
category?

NO

YES

NO

SC == 1?
YES

Split CU?

NO

NO

Split CU and categorize
child CUs

Prediction: INTRA
INTRA prediction: Only mapped
modes

Prediction: INTRA or INTER
INTRA prediction: Mapped modes +
refinement
INTER prediction: TSS or Diamond

Prediction: INTRA
INTRA prediction: Mapped modes +
refinement

Figure 8.3: Prediction decision for IntraM category

64

If the IntraM CU is also categorized as LBC or LM, only intra prediction modes of

mapped CUs are evaluated, and the best among them is taken as a final prediction mode. In this

scenario, the maximum number of tested modes is MCU´. However, since the intra modes of

mapped CUs can be the same, the average number of tested intra modes is often lower than

MCU´.

Otherwise, if the CU fits in either HBC or HM category, the more detailed decision

process is performed to obtain better residual. First, if the split has not been considered in the

initial split phase (i.e., if the flag SC is set to 0), then the decision about the split is reevaluated.

Algorithm for this decision is given with the following pseudocode:

if SC = 1

 Do not split

avgFirst = Find the average mode of first two mapped CUs

avgLast = Find the average mode of last two mapped CUs

difference = abs(avgFirst – avgLast)

if difference > (Number of INTRA modes / 2)

 Split CU

 Categorize child CUs

else

 Do not split CU

SC = 1

The split is performed only if there is a considerable difference in modes between the

first two mapped and last two mapped CUs. This occurrence should indicate pixel diversity

within the same block, which is why the decision to split is made. If the CU is split, four children

are formed and categorized, and the same process is repeated for each newly created CU. If the

split is not performed, then the prediction is made by evaluating the subset of both, intra and

inter candidates. For intra prediction, modes from mapped CUs with the refinement of ± 1 are

evaluated. Refinement of ±1 evaluates three modes if possible; that exact mode, and the modes

below and above. For example, let’s assume that there are five mapped CUs with the following

intra modes:

𝑀𝑎𝑝𝑝𝑒𝑑 𝑚𝑜𝑑𝑒𝑠 {0, 9,12,11,9} (8.1)

Giving that the second mapped CU is predicted with intra mode 9, for the transcoding,

three modes will be evaluated: 8, 9 and 10. With this approach, a wider range of modes is

checked. Since the neighboring intra modes are very similar (Figure 2.3) and the resized frame

65

can have slight differences within the same area of the picture in terms of texture, checking

neighboring modes can give more precise residual. Following the same concept for all mapped

modes, a set of all evaluated intra modes will be:

𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑 𝑚𝑜𝑑𝑒𝑠 {0,1, 8, 9,10,11,12,13} (8.2)

 As already mentioned, the best prediction for re-encoding IntraM CU does not

necessarily have to be intra prediction, which is why for high complex IntraM CUs inter

prediction is also tested. However, in IntraM category, there is no inter mapped coding units,

so there is no possibility of reusing any information about motion vectors from decoded frames.

Therefore, a simple search algorithm, such as Three Step Search or Diamond Search, is used to

find best inter predicted candidate. After both predictions, intra and inter are tested, the best

residual is selected, and the CU is predicted with appropriate mode. Of course, if the frame that

is being re-encoded is intra frame, inter prediction is not possible and will be skipped.

Finally, if the IntraM CU is not in any of these categories, hence belongs to MM and

MBC, only intra prediction that checks modes from mapped CUs with the refinement of ± 1

will be conducted.

Notice that for IntraM category, inter prediction is only considered for most complex

CUs, i.e., those who fit in either HBC or HM category. Evaluation of inter prediction for less

complex IntraM coding units is omitted, and the number of evaluated candidates is restricted to

reduce computational complexity. Including inter prediction in such blocks, could, in some

cases, result in finding better residual blocks, but the difference between best inter predicted

and best intra predicted block is usually not substantial in terms of final bit rate and quality.

8.3.2 Prediction for InterM category

For InterM category, all mapped modes are inter predicted, so it is highly unlikely that

the best prediction mode for InterM CU in the re-encoding will be intra predicted. Thereby, for

InterM category, only inter prediction is considered, but the algorithm and search area for

finding best motion vector depends on the other categories. Figure 8.4 shows the prediction

decision process for InterM category.

66

Find prediction
mode for CU

Is LBC or LM
category?

Prediction: INTER
INTER prediction: Weighted average of
mapped motion vectors

YES

Is HBC or HM
category?

NO

YES

NO

Prediction: INTER
Inter prediction: Weighted average of
mapped motion vectors + 1 pixel refinement

SC == 1?
Prediction: INTER
Inter prediction: Weighted average of
mapped motion vectors + 2 pixel refinement

YES

Split CU?

NO

NO

Split CU and categorize
child CUs

Figure 8.4: Prediction decision for InterM category

If the CU also belongs to either of the least complex categories LBC or LM than the

weighted average of mapped motion vectors is chosen as a final motion vector, and no

additional operations or search algorithms are performed. The transcoding motion vector is

derived as follows:

𝑚𝑣𝑥 = [

∑ 𝑚𝑣´𝑥 ∗ 𝜔 ∗
1
𝜌
𝑤

𝑀𝐶𝑈¨
0

𝑀𝐶𝑈´
] (8.3)

𝑚𝑣𝑦 = [

∑ 𝑚𝑣´𝑦 ∗ 𝜔 ∗
1
𝜌
ℎ

𝑀𝐶𝑈¨
0

𝑀𝐶𝑈´
]

(8.4)

Each motion vector from the mapped CUs is scaled to fit the transcoded frame. If the

motion in the decoded frame was by X pixels to the right, that same motion vector in the frame

that was downsized from 1920x1080 to 1280x720 has to be scaled to 𝑋 ∗ 1
𝜌𝑤

= 0.66 ∗ 𝑋 to fit

the new picture dimensions.

67

Apart from the downsizing factor, the motion vector is also multiplied with its weight

ω (6.5). Obtained motion vector is rounded to the nearest integer to form a valid motion vector.

The weighted average approach to calculate transcoding motion vector is chosen because it

gives the best trade-off between precision and computational complexity [42].

If the CU fits in one of the complex categories (HBC or HM) than the split decision is

reevaluated, but only if the SC flag is set to 0. Pseudocode for deciding whether to split the

current CU or not is given below:

if SC = 1

 Do not split

avgFirst = Find the average phase of the first two mapped motion vectors

avgLast = Find the average phase of the last two mapped motion vectors

difference = abs(avgFirst – avgLast)

if difference > π/2 AND difference < 3 * π /2

 Split CU

 Categorize child CUs

else

 Do not split CU

SC = 1

If the motion vectors of the first two and last two CUs point to different directions, then

the split is performed, and the prediction process is repeated for four children CU blocks. Such

example is given in Figure 8.5, where the motion vectors of mapped CUs, located at the bottom

right area of the transcoded block, point to a different direction than the rest. The cause of this

behavior in this particular block is the presence of a basketball that is being moved by a player,

while the rest of the block is located in the picture background.

Figure 8.5: Difference in mapped motion vectors

68

If the mapped motion vectors have similar direction, the split is not performed, and the

transcoding motion vector is being calculated for that CU. As a base for a calculation of motion

vector for higher complex InterM CUs, weighted motion vector (8.3) is used. Unlike before,

the weighted average MV is not simply taken as the best prediction. Instead, the refinement by

±2 pixel is carried out. The refinement process tests area around the block to which the weighted

average motion vector is pointing and finds the best among them. In order to avoid

interpolation, which is one of the computationally most demanding kernels in entire HEVC

algorithm, only integer motion vectors are evaluated.

Otherwise, if the InterM CU belongs to both, MM and MBC category, the same

algorithm with the refinement is used, but with the reduced search area around the weighted

motion vector. Refinement area in such cases is ±1.

Described inter prediction algorithm tries to minimize the number of searches for each

block, since that process includes fetching the block from the reference frame and comparing

that block to the one in the original frame and can thus be very memory and data intensive.

Reusing motion vectors from the decoded frame helps to focus the search area to more relevant

parts of the frame and to reduce the number of evaluated prediction candidates.

8.3.3 Prediction for ComboIntra category

For ComboIntra category, both prediction modes are tested in all cases. However, since

the number of intra modes in mapped CUs is higher than average (as set by a 𝛾 coefficient),

more focus is set on intra modes, although, for the most complex CUs within this category

larger number of intra and inter candidates are tested. Prediction decision for ComboIntra

category follows the same pattern as for IntraM and InterM and is depicted in Figure 8.6.

69

Find prediction
mode for CU

Is LBC or LM
category?

Prediction: INTER or INTRA
INTER prediction: Weighted average of
mapped motion vectors
INTRA prediction: Only mapped modes

YES

Is HBC or HM
category?

NO

YES

NO

SC == 1?
YES

Split CU?

NO

NO

Split CU and categorize
child CUs

Prediction: INTER or INTRA
INTER prediction: Weighted average of
mapped motion vectors + 1 pixel refinement
INTRA prediction: Mapped modes +
refinement

Prediction: INTER or INTRA
INTER prediction: Weighted average of
mapped motion vectors
INTRA prediction: Mapped mode +
refinement

Figure 8.6: Prediction decision for ComboIntra category

For the least complex CUs within ComboIntra category, simple intra and inter prediction

is conducted. Intra prediction tests only mapped intra modes in the same manner as for least

complex IntraM CUs, while inter predicted checks the residual only for one motion vector that

is calculated as a weighted average of mapped inter modes, as in InterM category. The

prediction mode that gives the best residual is chosen as a final.

Split for High complex CUs in ComboIntra category is evaluated as follows:

if SC = 1

 Do not split

Initialize SplitFlag = 0

Check prediction modes of all mapped CUs

if the first three mapped CUs are INTER predicted

 SplitFlag = 1

if the last three mapped CUs are INTER predicted

 SplitFlag = 1

avgFirst = Find the average mode of first two INTRA mapped CUs

avgLast = Find the average mode of last two INTRA mapped CUs

difference = abs(avgFirst – avgLast)

70

if difference > (Number of INTRA modes / 2)

SplitFlag = 1

if SplitFlag = 1

 Split CU

 Categorize child CUs

else

 Do not split CU

SC = 1

If the first three or the last three mapped CUs are inter predicted, in a category that is

mostly intra predicted, then the split is immediately performed. Otherwise, the same condition

as for IntraM category is checked to evaluate the difference between the intra modes in the top

left corner of the block (first two intra mapped CUs) and the bottom right corner of the block

(last two intra mapped CUs). If the decision not to split CU has been made, intra prediction

candidates of intra mapped CUs with the refinement of ±1 and inter prediction candidates of

weighted average with ±1 refinement are tested.

Medium complexity CUs within ComboIntra category evaluate the same set of intra

candidates as a higher complex ones, but limit the inter prediction only to the weighted average

motion vector, without the refinement.

8.3.4 Prediction for ComboInter category

In ComboInter category, most of the mapped CUs are inter predicted, or at least a

number of inter predicted mapped modes is higher than average for a given video sequence and

the transcoding configuration. Therefore, the focus is set on inter prediction, while, for intra

prediction, only mapped modes are tested, regardless of other categories. Figure 8.7 shows the

flowchart for the prediction process of ComboInter category. As can be seen from the figure,

intra mode evaluation is the same for all ComboInter CUs, while the inter prediction algorithm

is very similar, but with different size of refinement area depending on the complexity. Most

complex CUs have refinement area of ±2, medium complexity is evaluated with ±1 refinement

area, while the least complex CU test only one motion vector in the same manner as for InterM

and ComboIntra categories.

71

Find prediction
mode for CU

Is LBC or LM
category?

Prediction: INTER or INTRA
INTER prediction: Weighted average of
mapped motion vectors
INTRA prediction: Only mapped modes

YES

Is HBC or HM
category?

NO

YES

NO

SC == 1?
YES

Split CU?

NO

NO

Split CU and categorize
child CUs

Prediction: INTER or INTRA
INTER prediction: Weighted average of
mapped motion vectors + 2 pixel refinement
INTRA prediction: Only mapped modes

Prediction: INTER or INTRA
INTER prediction: Weighted average of
mapped motion vectors + 1 pixel refinement
INTRA prediction: Only mapped mode

Figure 8.7: Prediction decision for ComboInter category

Split reevaluation for ComboInter CUs follows a similar concept as reevaluations of

previously described mode-based categories:

if SC = 1

 Do not split

Initialize SplitFlag = 0

Check prediction modes of all mapped CUs

if the first three mapped CUs are INTRA predicted

 SplitFlag = 1

if the last three mapped CUs are INTRA predicted

 SplitFlag = 1

avgFirst = Find the average phase of the first two mapped motion vectors

avgLast = Find the average phase of the last two mapped motion vectors

difference = abs(avgFirst – avgLast)

if difference > π/2 AND difference < 3 * π /2

 SplitFlag = 1

if SplitFlag = 1

 Split CU

 Categorize child CUs

else

72

 Do not split CU

SC = 1

If the first or the last three mapped modes are intra predicted, in a category that has most

inter predicted mapped modes, decision to split current CU is made. Also, if the difference in

phase between motion vectors in the top left area of the block and the bottom right is larger

than π/2 and smaller than 3*π/2 (or between 90° and 270°) the split is performed. In all other

cases, CU is not split further.

8.4 Determining coefficients

Before evaluating the proposed algorithm, the method for determining several adaptive

coefficients introduced throughout this thesis is explained in this chapter. Adaptive coefficients

include: 𝛽𝐿, 𝛽𝐻, 𝜇𝐿 and 𝜇𝐻 and 𝛿.

8.4.1 Coefficient 𝜹

As described in section 7.3, coefficient 𝛿 is used to divide ComboM category in two

different categories based on the ratio (𝛾) of intra and inter CUs mapped from the decoded

bitstream: ComboInter and ComboIntra. Changing this coefficient affects the number of CUs

that fit in one of these categories. Increasing 𝛿 will result in a higher number of CUs being

categorized as ComboIntra and vice versa. If the 𝛿 is set to 1, then the categorization is straight-

forward; if the CU has more intra mapped CUs it is assigned to ComboIntra, otherwise, it

belongs to ComboInter category. However, setting coefficient 𝛿 to 1 is not always the optimal

solution. Depending on the video sequence and quantization parameter, frequency of

occurrence of intra and inter modes in original bitstream can vary significantly. Some video

sequences can have a higher number of intra predicted blocks than average (e.g., Riverbed) or

a higher number of inter predicted block (e.g., BlueSky) as presented in Table 7.7 and Table

7.8. Thereby, it is important to identify those CUs who diverge from the average ratio within

the same video sequence. For example, if the ratio 𝛾 is equal to 1, it does not have the same

significance in the sequence where an average ratio is 0.5 and in the sequence with an average

ratio is 4. In the first case, observed CU diverge from the average distribution by having more

inter mapped CUs than most of other CUs within that video sequence. On the contrary, in the

second video sequence, observed CU has much more intra predicted CUs than average, so that

should be taken into consideration when determining prediction mode. This fact could infer that

73

setting the coefficient 𝛿 to the average ratio for each video sequence and configuration would

be a good solution to distinguish CUs below and above average. However, the higher ratio still

means that most of the mapped CUs are inter predicted and that the probability of inter

prediction in the transcoding is higher, so setting the coefficient 𝛿 at the average ratio is still

not the optimal solution. If this was the case, CU from the BlueSky video sequence (with 𝛾=4)

that has three times more inter predicted than intra predicted mapped CU blocks (𝛾=3) would

be categorized as ComboIntra, which would set more focus in evaluating intra modes, which is

not an ideal scenario. Therefore, the coefficient 𝛿 is calculated during the transcoding process

and is adapted in runtime depending on the video sequence and the current configuration of the

transcoder. Pseudocode of determining 𝛿 is given below.

Set 𝛿𝑚𝑎𝑥 = 2.0

Set 𝛿𝑚𝑖𝑛 = 0.5

If frameNum = 1

 Set 𝛿𝑐𝑢𝑟𝑟 = 1

If frameNum % FR = 0

 Get average ratio 𝛾

 If 𝛾 > 𝛿𝑐𝑢𝑟𝑟 and 𝛿𝑐𝑢𝑟𝑟 < 𝛿𝑚𝑎𝑥

 𝛿𝑐𝑢𝑟𝑟 = 𝛿𝑐𝑢𝑟𝑟 + (𝛾 − 𝛿𝑐𝑢𝑟𝑟)/2

 Else if 𝛾 < 𝛿𝑐𝑢𝑟𝑟 and 𝛿𝑐𝑢𝑟𝑟 > 𝛿𝑚𝑖𝑛

 𝛿𝑐𝑢𝑟𝑟 = 𝛿𝑐𝑢𝑟𝑟 - (𝛿𝑐𝑢𝑟𝑟 − 𝛾)/2

 If 𝛿𝑐𝑢𝑟𝑟 > 𝛿𝑚𝑎𝑥

 𝛿𝑐𝑢𝑟𝑟 = 𝛿𝑚𝑎𝑥

 Else if 𝛿𝑐𝑢𝑟𝑟 < 𝛿𝑚𝑖𝑛

 𝛿𝑐𝑢𝑟𝑟 = 𝛿𝑚𝑖𝑛

Calculate and update average ratio 𝛾

At the beginning of the transcoding minimum and maximum possible values (𝛿𝑚𝑎𝑥 and

𝛿𝑚𝑖𝑛) of coefficient 𝛿 are set to 0.5 and 2.0 respectively. These boundaries are fixed so that

every CU, regardless of the configuration and video sequence, that has more than the double of

the amount of mapped CUs with certain prediction mode are assigned to the appropriate

category. Setting these limits ensures that no CUs is wrongly categorized, which could happen

if the 𝛿 is simply set to average 𝛾 as described in a paragraph above.

For the first several frames, distribution of intra and inter modes is not known, so the

initial 𝛿𝑐𝑢𝑟𝑟 is set to 1. After that, the coefficient 𝛿𝑐𝑢𝑟𝑟 is adapted periodically on every frame

74

number that corresponds to frame rate (FR), meaning that for the video sequence with a frame

rate of 30, 𝛿𝑐𝑢𝑟𝑟 will be updated on every 30th frame. Adaptation is based on the statistics that

is constantly calculated and updated during the transcoding phase. Ratio 𝛾 between intra and

inter frames is updated after every frame and is examined during the adaptation process. If the

ratio 𝛾 is larger than than 𝛿𝑐𝑢𝑟𝑟 than the current value of the 𝛿𝑐𝑢𝑟𝑟 is increased by half of the

difference between the two values. Similarly, 𝛿𝑐𝑢𝑟𝑟 is decreased by the same value if the ratio

𝛾 is smaller than 𝛿𝑐𝑢𝑟𝑟. If, at any point of the algorithm, the value 𝛿𝑐𝑢𝑟𝑟 exceedes minimum

and maximum extremes 𝛿𝑚𝑎𝑥 or 𝛿𝑚𝑖𝑛, 𝛿𝑐𝑢𝑟𝑟 is clipped to fit within the boundaries.

With the adaptive calculation of coefficient 𝛿, CUs in the transcoded frame are

categorized depending on the characteristics of the video sequence that is being transcoded and

the current configuration of the encoder. This approach enables more precise categorization that

can lead to better prediction evaluation.

8.4.2 Coefficients 𝜷𝑳,𝜷𝑯,𝝁𝑳 and 𝝁𝑯

Coefficients 𝛽𝐿and 𝛽𝐻 that are used for categorization based on bit complexity, and

coefficients 𝜇𝐿 and 𝜇𝐻that are used for categorization based on a number of mapped CUs are

also adaptive coefficients that have to be determined before running any evaluations of the

proposed algorithm. As mentioned in sections 7.1 and 7.2 that describe the concept of

categorization, changing coefficients 𝛽𝐿,𝛽𝐻,𝜇𝐿 and 𝜇𝐻 ultimately affect the complexity of the

transcoding by distributing CUs to different categories. If the more CUs are located in more

complex categories, such as HBC or HM, the computational complexity of the transcoder is

increased, but the quality of the output bitstream should be higher. To observe the impact of

changing values of the coefficients on the transcoding process, three fixed set of values were

defined in Table 8.3.

Table 8.3: Sets of fixed coefficients

Set 𝛽𝐿 𝛽𝐻 𝜇𝐿 𝜇𝐻 Complexity
1 0.4 0.9 0.5 0.9 Low
2 0.3 0.6 0.3 0.6 Medium
3 0.1 0.5 0.2 0.5 High

The first set of coefficients sets a high boundary for most complex categories. Only the

small number of CUs with the highest complexity will be categorized as HBC or HM, which is

why the complexity of the first set is set as low. Set 3 has the opposite influence on

categorization. With set 3 very few CUs will be assigned to low complex categories, so this set

of coefficients is marked with high complexity. The second set from Table 8.3 puts the

75

boundaries between set 1 and set 3 and is referred to as a set with medium complexity. Notice

that these are the same sets of coefficients that were used to demonstrate the initial split phase

of the proposed algorithm in section 8.2.

 Video transcoder was run with the proposed algorithm with all three sets of coefficients

to obtain results that will be used to measure the impact of the defined coefficients on the

processing time, quality and bitrate. Results are obtained for transcoding from original

resolution to 1280x720 resolution and on two quantization parameters: 22 and 32. Due to

simplicity, only the results for these two transcoding scenarios are shown, since the obtained

conclusions can be mapped to all cases. Notice that these scenarios also include different width

and height transcoding ratios as defined in Table 5.2. Tables below (Table 8.4 and Table 8.5)

show the results for each of the quantization parameters. All the values are shown in relative

when compared to the with Bolt JiT transcoder:

• Processing time – processing time (t) compared to Just-in-Time requirement tJiT
(section 5.4.1)

• PSNR - the difference in PSNR between the observed transcoder and Bolt JiT in
dB

• Bitrate - the difference in bitrate compared to Bolt JiT in kilobits (negative
values indicate better coding efficiency)

Table 8.4: Comparison of transcoding with fixed sets of coefficients (QP=22)

Video
sequence

Set 1 Set 2 Set 3
Processing

time
[t / tjiT]

PSNR
[ΔdB]

Bitrate
[Δkbps]

Processing
time

[t / tjiT]

PSNR
[ΔdB]

Bitrate
[Δkbps]

Processing
time

[t / tjiT]

PSNR
[ΔdB]

Bitrate
[Δkbps]

Shields 64.68% 1.131 -28507 65.73% 1.271 -28914 80.36% 1.303 -23774
ParkRun 69.78% 0.794 -28403 75.55% 0.827 -28233 83.86% 0.897 -25306
KristenAndSara 83.95% 0.628 -2428 89.39% 0.941 -2778 91.89% 1.37 -3113
Johnny 81.92% 0.519 -2163 87.17% 0.783 -2477 92.30% 1.08 -2841
FourPeople 83.40% 0.406 -1533 88.27% 0.73 -1940 90.99% 0.991 -2547
BasketballDrive 88.85% 0.967 -6650 98.75% 1.085 -5350 109.33% 1.051 -4098
Calendar 88.26% 0.964 -1102 92.29% 1.563 -1381 98.96% 1.582 -1472
Cactus 87.07% 0.412 -6022 89.13% 0.513 -6059 102.27% 0.494 -4847
BQTerrace 85.28% 0.548 -14744 87.92% 0.619 -13793 100.28% 0.615 -9988
RushHour 99.81% 0.818 -511 117.07% 1.114 -347 121.72% 1.134 -46
Riverbed 80.47% 1.69 -4025 87.19% 1.68 -4021 93.88% 1.647 -3773
PedestrianArea 89.57% 1.235 -1822 92.02% 1.47 -1773 93.20% 1.466 -1581
BlueSky 79.93% 0.575 -7453 87.81% 0.512 -4770 98.42% 0.508 -3705
Traffic 84.48% 0.367 -5253 87.40% 0.471 -5627 92.23% 0.459 -5171
DuckTakeOff 99.03% 0.164 -4212 144.25% 0.105 -702 154.77% 0.103 672
Bosphorus 99.60% 0.468 -7221 124.46% 0.687 -7796 138.62% 0.716 -5387
Beauty 98.01% 0.932 -1741 117.83% 0.993 -702 124.14% 1.017 193

Average 86.12% 0.742 -7281 96.01% 0.904 -6862 103.96% 0.967 -5693

76

Table 8.5: Comparison of transcoding with fixed sets of coefficients (QP =32)

Video
sequence

Set 1 Set 2 Set 3

Processing
time
[t / tjiT]

PSNR
[Δ dB]

Bitrate
[Δkbps]

Processing
time
[t / tjiT]

PSNR
[Δ dB]

Bitrate
[Δkbps]

Processing
time
[t / tjiT]

PSNR
[Δ dB]

Bitrate
[Δkbps]

Shields 33.36% 1.428 -6480 33.17% 1.603 -6825 31.34% 3.251 -8232
ParkRun 33.17% 1.564 -11463 33.95% 1.771 -11595 34.69% 2.125 -12166
KristenAndSara 59.61% 0.616 -456 60.73% 0.833 -498 65.64% 1.762 -698
Johnny 57.95% 0.543 -457 58.56% 0.746 -479 66.82% 1.545 -600
FourPeople 57.42% 0.475 -321 57.75% 0.766 -425 64.46% 1.229 -656
BasketballDrive 55.72% 1.288 -1186 59.06% 1.491 -548 63.97% 1.389 514
Calendar 59.44% 0.808 -309 61.84% 1.077 -116 72.16% 1.201 767
Cactus 46.81% 0.464 -1287 49.65% 0.65 -1012 55.01% 0.624 -369
BQTerrace 41.65% 0.641 -4516 44.25% 0.693 -3499 50.32% 0.639 -245
RushHour 69.20% 0.746 -135 72.79% 0.921 6 79.87% 0.965 267
Riverbed 52.08% 2.298 -1105 55.88% 2.345 -1004 62.04% 2.341 -841
PedestrianArea 58.19% 1.507 -423 61.19% 1.741 -356 67.41% 1.724 -156
BlueSky 39.54% 1.175 -3712 45.30% 0.768 -1637 54.79% 0.2 1895
Traffic 48.74% 0.25 -935 51.98% 0.495 -1010 54.42% 0.485 -1008
DuckTakeOff 67.85% 0.091 -676 74.69% 0.043 -162 84.82% 0.016 848
Bosphorus 76.17% 0.141 -573 76.76% 0.277 -314 86.01% 0.487 359
Beauty 70.62% 1.013 -488 76.23% 1.186 -247 87.83% 1.272 326

Average 54.56% 0.885 -2030 57.28% 1.024 -1748 63.62% 1.250 -1176

Presented results show the expected behavior in terms of processing time and video

quality. In both cases (i.e., both quantization parameters) average processing time, as well as

video quality, is increasing as the more complex set of coefficients is used. However, although

average values follow expected behavior, this is not always the case for specific video

sequences. Sometimes minimal gain in video quality can affect significant losses in bitrate (e.g.,

Beauty for QP =22), which imposes the question: is it worth to significantly sacrifice bitrate to

get little better video quality. In some cases, using the more complex set does not give better

quality nor better coding efficiency (BlueSky for QP =22), while in the other instances (e.g.,

Calendar for QP=22 or ParkRun for QP =32) using more complex set significantly improves

both, video quality and coding efficiency. Trade-offs between video quality and coding

efficiency can depend on the requirements of the system, that can favor one of the two.

However, with Just-in-Time requirements, one condition must be met: processing time has to

be below 100% of tJiT. Therefore, using a high complex set of coefficients for transcoding some

of the video sequences with the quantization parameter 22 is not possible because it would

cause violation of timing constraints.

Giving that characteristics of transcoded bitstream highly depend on a particular video

sequence, coefficients 𝛽𝐿,𝛽𝐻,𝜇𝐿 and 𝜇𝐻 are not fixed at the beginning of the transcoding

process, but are adapted during the transcoding process as follows:

77

Set 𝛽𝐿𝑚𝑖𝑛 = 0.1, 𝛽𝐿𝑚𝑎𝑥=0.5

Set 𝛽𝐻𝑚𝑖𝑛 = 0.5, 𝛽𝐻𝑚𝑎𝑥=0.9

Set 𝜇𝐿𝑚𝑖𝑛 = 0.2, 𝜇𝐿𝑚𝑎𝑥 =0.5

Set 𝜇𝐻𝑚𝑖𝑛 = 0.5, 𝜇𝐻𝑚𝑎𝑥 =0.9

Set AdaptHigher = 1

If frameNum = 1

 Set 𝛽𝐿𝑐𝑢𝑟𝑟 = 0.5

Set 𝛽𝐻𝑐𝑢𝑟𝑟 = 0.9

Set 𝜇𝐿𝑐𝑢𝑟𝑟 = 0.5

Set 𝜇𝐻𝑐𝑢𝑟𝑟 = 0.9

If frameNum % FR = 0

 time = Get processing time for last period

 diffFPS = (FR /time) - FR

 If diffFPS < 0

 If (-diffFPS) < 0.3 * FR

 𝛽𝐻𝑐𝑢𝑟𝑟=𝛽𝐻𝑐𝑢𝑟𝑟+ (diffFPS/FR)

 𝜇𝐻𝑐𝑢𝑟𝑟=𝜇𝐻𝑐𝑢𝑟𝑟+ (diffFPS/FR)

 𝛽𝐿𝑐𝑢𝑟𝑟=𝛽𝐻𝑐𝑢𝑟𝑟+ (diffFPS/FR)

 𝜇𝐿𝑐𝑢𝑟𝑟=𝜇𝐿𝑐𝑢𝑟𝑟+ (diffFPS/FR)

 Else

 𝛽𝐿𝑐𝑢𝑟𝑟 = 0.5

 𝛽𝐻𝑐𝑢𝑟𝑟 = 0.9

 𝜇𝐿𝑐𝑢𝑟𝑟 = 0.5

 𝜇𝐻𝑐𝑢𝑟𝑟 = 0.9

 Else if diffFPS < 0

 Calculate quality gains/losses from the last adaptations

 Calculate bitrate gains/losses from the last adaptations

 Revert = 0

 If quality worse and bitrate worse

 Revert = 1

 If quality gains < 0.1dB and bitrate loss > 10%

 Revert = 1

 If Revert = 1

 Revert to best previous set of coefficients

 If Revert = 0

 If AdaptHigher = 1

 𝛽𝐻𝑐𝑢𝑟𝑟= 𝛽𝐻𝑐𝑢𝑟𝑟- 0.1

 𝜇𝐻𝑐𝑢𝑟𝑟=𝜇𝐻𝑐𝑢𝑟𝑟 - 0.1

 AdaptHigher = 0

 Else

 𝛽𝐿𝑐𝑢𝑟𝑟=𝛽𝐻𝑐𝑢𝑟𝑟 - 0.1

 𝜇𝐿𝑐𝑢𝑟𝑟=𝜇𝐿𝑐𝑢𝑟𝑟 - 0.1

 AdaptHigher = 1

78

 Clip 𝛽𝐿𝑐𝑢𝑟𝑟 in range between 𝛽𝐿𝑚𝑖𝑛 and 𝛽𝐿𝑚𝑎𝑥

 Clip 𝛽𝐻𝑐𝑢𝑟𝑟 in range between 𝛽𝐻𝑚𝑖𝑛 and 𝛽𝐻𝑚𝑎𝑥

 Clip 𝜇𝐿𝑐𝑢𝑟𝑟 in range between 𝜇𝐿𝑚𝑖𝑛 and 𝜇𝐿𝑚𝑎𝑥

 Clip 𝜇𝐻𝑐𝑢𝑟𝑟 in range between 𝜇𝐻𝑚𝑖𝑛 and 𝜇𝐻𝑚𝑎𝑥

 If 𝛽𝐿𝑐𝑢𝑟𝑟 = 𝛽𝐻𝑐𝑢𝑟𝑟

 𝛽𝐿𝑐𝑢𝑟𝑟 = 𝛽𝐿𝑐𝑢𝑟𝑟 - 0.1

 If 𝜇𝐿𝑐𝑢𝑟𝑟= 𝜇𝐻𝑐𝑢𝑟𝑟

 𝜇𝐿𝑐𝑢𝑟𝑟=𝜇𝐿𝑐𝑢𝑟𝑟 - 0.1

Monitor video quality and bitrate

At the beginning of the process, when no information about the video sequence is

available, coefficients are set for low complexity transcoding to ensure Just-in-Time execution

at the start of the transcoding. On every frame number that is a multiplier of a frame rate of a

video, coefficients are reevaluated and adapted. In the period between two adaptations, exactly

N number of frames were processed, with N being frame rate, which means that the time

between two evaluations must not exceed 1 second. Otherwise, Just-in-Time constraints are not

met. Therefore, the difference between calculated time and maximum allowed time of 1 second

is used to determine if JiT execution is satisfied and to decide how the coefficients will be

adapted. In the above pseudocode, value diffFPS contains the difference between achieved and

required fps (i.e., frames processed per second). If that value is smaller than 0 than the

coefficients have to be adapted to increase the speed of the transcoder. To achieve this, 𝛽𝐿,𝛽𝐻,𝜇𝐿

and 𝜇𝐻 are increased so that the smaller number of CUs in future categorizations fit in high

complex categories. Degree of increasing the coefficients is proportional to diffFPS. For

example, if the last 30 frames in a video sequence that has a frame rate of 30 were processed in

1.1 s, diffFPS will be (30/1.1)-30 = -2,72 fps, meaning that the transcoder was too slow to

achieve JiT, but it was relatively close. Thereby, coefficients are adapted just slightly by the

value of (2.72/30) = 0.09. If the difference was higher than one third of the required fps than

the coefficients are set to initial values. This scenario should not happen often in this algorithm,

since the evaluation is performed periodically, and the execution time of the transcoder is

constantly monitored. When the execution for JiT is already satisfied, then the possibility of

improving video quality is considered. First step is to compare quality and bitrate with

previously tested sets of coefficients. If one of the previous sets gave better results than

currently tested in terms of video quality and/or coding efficiency while fulfilling JiT

constraints, then it is chosen as a new set again. Otherwise, the new set is formed and tested by

79

adapting the current values of 𝛽𝐿,𝛽𝐻,𝜇𝐿 and 𝜇𝐻. In this case, where the JiT is satisfied and where

only the trade-off between bitrate and quality is considered, coefficients are decreased

gradually, by alternately decreasing 𝛽𝐻 and 𝜇𝐻 and than 𝛽𝐿 and 𝜇𝐿 and overseeing impact on

all of the characteristics. This way, as the video sequence progresses, coefficients are slowly

advancing towards the most optimal solution for the given video sequence. Any sudden

decrease of any of the considered coefficients in this phase could jeopardize JiT execution,

which is why there are no adjustment larger than 0.1. Not only that this approach adjusts the

algorithm for a specific video sequence but is also resistant to changes within the same sequence

(e.g., change of scene). At the end of the adaptation process, each coefficient is validated to

ensure that invalid set is not used for the categorization of future frames.

8.5 Final algorithm

After determining methods for computation of all the adaptive coefficients that are used

to form the boundaries for the suggested categorization mechanism, all the aspects of the

proposed algorithm are considered and set based on the analysis of the transcoding process. The

high-level scheme of the final algorithm is given in Figure 8.8.

At the beginning of the transcoding, input bitstream is decoded frame by frame, and all

the data from the decoded frame is gathered so it can be reused for improving the re-encoding

phase. All the coefficients used in the proposed algorithm are set to their initial values. After

decoding, the encoded frame is formed and split to the largest coding units – CTUs, that are

immediately categorized based on the data previously obtained from the decoded frame. Each

CTU is categorized based on three different information sets from the decoded input bitstream:

number of bits, number of mapped CUs and prediction modes of mapped CUs. Depending on

the categorization results, the decision to split CTUs to multiple 32x32, 16x16 and 8x8 blocks

is made in the initial split phase of the algorithm, after which newly created blocks are

categorized again. Prediction modes for each of the CUs are chosen based on the affiliation in

one of the categories: InterM, IntraM, ComboInter, and ComboIntra. On every Nth frame, with

N being frame rate, all the coefficients are updated depending on the current state of the

transcoding process in terms of video quality, bitrate, and processing time.

80

Input bitstream

Decode frame

Set initial coefficients

Gather decoded data

Split to CTUs

Categorize CTUs

Initial split

Categorize CUs

Predict CUs

Frame = N?

Monitor quality,bitrate and performance

Update coefficients

Encoder

Figure 8.8: Final high-level diagram of the proposed algorithm

81

9 EXPERIMENTAL RESULTS ON CPU-ONLY ARCHITECTURE

This chapter presents experimental results of the proposed algorithm based on the

categorization of the data from the decoded frame implemented on the CPU-only architecture.

9.1 Methodology

Algorithm for utilization of coding information from the input video stream is evaluated

by running three different transcoders and comparing the obtained results. Scheme of the

evaluation process is given in Figure 9.1.

Original
video

HEVC encoded
bitstream

Encode

Server Transcoder

Decode
Decoded

video

Transcoded
video

Transcoded

video

Transcoded

video

Bolt65 JiT

Kvazaar

Proposed method

Figure 9.1: Evaluation scheme

The evaluation presented in the scheme above simulates the scenario of a real-world

video content provider. Initially, the original video is encoded to the desired format and stored

on the server. The original video is any video that is uploaded from the user and can be

represented in several different formats and resolutions. After the initial encoding and storing

the bitstream on a server, the original video is usually discarded, so all the quality loss imposed

by the initial encoding is irreversible. Thereby, the usual practice of most video content

providers is to store this video in highest quality so that every future transcoding does not

introduce even larger quality degradations. Afterward, if the user requests a certain video, that

video sequence is fetched from the server and transcoded on-the-fly based on the end user

requirements.

In the evaluation of the proposed algorithm, original videos are 17 raw video sequences

as listed in Table 5.1. All videos are encoded with Kvazaar and stored on the server and will be

82

used as an input for all observed transcoders. Generated input bitstreams are transcoded with

three different transcoders to every possible resolution (Table 5.2), and the results are

compared. Giving that the decoding part of the transcoder is always the same, i.e., it does not

depend on the transcoding algorithm that is being used, only re-encoding phase for all

transcoders was observed and evaluated in terms of video quality and bitrate. During the

transcoding process, three main aspects were considered and assessed: processing time, bitrate

and PSNR.

9.2 Comparison with Bolt65 JiT

Comparison with Bolt JiT transcoder (section 5.3.1) is conducted by comparing video

quality and bitrate between transcoded bitstreams. In the analysis of different categorization

coefficient sets (Table 8.4) it is shown that for every video sequence in the most complex

transcoding mode, where the video is transcoded with the smallest width and height ratios and

with quantization parameter 22, JiT execution is always satisfied for the low complex Set 1.

However, video quality and bitrate can be increased for some video sequences by using more

complex sets of coefficients without compromising JiT, which is why coefficients are

dynamically adapted during the transcoding. Therefore, when comparing the proposed

algorithm with Bolt JiT transcoder only the improvement in video quality (PSNR) and bitrate

(kbps) is observed.

The difference in the bitrate is presented in two ways, as a percentage of improvement

accomplished by using the proposed algorithm (negative values represent worse PSNR and

better bitrate) and as a relative difference in bitrate. The reason behind representing data in this

fashion is to get a better perspective of the obtained results. The small relative reduction in

bitrate (e.g., 500 kbps) can in some cases signify major improvement, such as for small

transcoding resolutions where overall bitrate is small. On the contrary, improvement by a small

percentage can be relevant in some cases, when a large video file is being sent over the network.

For the PSNR only relative improvement is shown since the percentages are always relatively

small and do not represent meaningful information. Notice that larger PSNR indicates higher

quality, while lower bitrate indicates better coding efficiency. Results here are shown only for

the quantization parameter of 22 due to simplicity and better visibility of the presented data.

Tables below show rwsults grouped by a resolution of the transcoded video, so in every table

83

different ratios 𝜌𝑤 and 𝜌ℎ are present. Only valid transcoding options are shown, meaning that

situations were video is upscaled to higher resolution are not considered.

Table 9.1: Proposed algorithm vs. Bolt65 Jit - transcoding to 2560x1600 with QP =22

Video
sequence

Original
resolution

𝜌𝑤 𝜌ℎ PSNR
[Δ dB]

Bitrate
[Δ kbps]

Bitrate
[%]

DuckTakeOff 3840x2160 1.5 1.35 0.346 -14102 -5.98%
Bosphorus 3840x2160 1.5 1.35 0.265 -215 -28.09%
Beauty 3840x2160 1.5 1.35 1.336 -57767 -51.33%
Average 0.649 -24028.0 -28.47%

Table 9.2: Proposed algorithm vs. Bolt65 Jit - transcoding to 1920x1080 with QP =22

Video
sequence

Original
resolution

𝜌𝑤 𝜌ℎ PSNR
[Δ dB]

Bitrate
[Δ kbps]

Bitrate
[%]

Traffic 2560x1600 1.33 1.48 0.445 -2600 -9.01%
DuckTakeOff 3840x2160 2 2 0.412 -5100 -4.04%
Bosphorus 3840x2160 2 2 0.640 -7464 -23.01%
Beauty 3840x2160 2 2 1.613 -9431 -19.00%
Average 0.778 -6148.8 -13.77%

Table 9.3: Proposed algorithm vs. Bolt65 Jit - transcoding to 1280x720 with QP =22

Video sequence Original
resolution

𝜌𝑤 𝜌ℎ PSNR
[Δ dB]

Bitrate
[Δ kbps]

Bitrate
[%]

BasketballDrive 1920x1080 1.5 1.5 1.080 -5420 -16.71%
Calendar 1920x1080 1.5 1.5 1.601 -1354 -16.54%
Cactus 1920x1080 1.5 1.5 0.513 -5222 -25.60%
BQTerrace 1920x1080 1.5 1.5 0.620 -10243 -29.61%
RushHour 1920x1080 1.5 1.5 1.131 -94 -1.84%
Riverbed 1920x1080 1.5 1.5 1.688 -3910 -22.07%
PedestrianArea 1920x1080 1.5 1.5 1.472 -1640 -31.53%
BlueSky 1920x1080 1.5 1.5 0.571 -4680 -17.27%
Traffic 2560x1600 2 2.22 0.470 -5127 -37.21%
DuckTakeOff 3840x2160 3 3 0.166 -300 -0.83%
Bosphorus 3840x2160 3 3 0.685 -5941 -35.84%
Beauty 3840x2160 3 3 1.038 -380 -3.08%
Average 0.920 -3692.6 -19.84%

Table 9.4: Proposed algorithm vs. Bolt65 Jit - transcoding to 704x576 with QP =22

Video sequence Original
resolution

𝜌𝑤 𝜌ℎ PSNR
[Δ dB]

Bitrate
[Δ kbps]

Bitrate
[%]

Shields 1280x720 1.82 1.25 0.686 -5818 -36.72%
ParkRun 1280x720 1.82 1.25 0.443 -7390 -20.73%
KristenAndSara 1280x720 1.82 1.25 0.669 -894 -22.46%
Johnny 1280x720 1.82 1.25 0.479 -577 -17.43%
FourPeople 1280x720 1.82 1.25 0.597 -876 -23.78%
BasketballDrive 1920x1080 2.72 1.875 1.032 -2020 -15.54%
Calendar 1920x1080 2.72 1.875 1.441 -939 -15.56%
Cactus 1920x1080 2.72 1.875 0.540 -2518 -18.64%
BQTerrace 1920x1080 2.72 1.875 0.691 -5419 -21.35%
RushHour 1920x1080 2.72 1.875 0.984 -298 -7.03%
Riverbed 1920x1080 2.72 1.875 1.103 -1996 -20.85%
PedestrianArea 1920x1080 2.72 1.875 1.330 -1014 -30.46%
BlueSky 1920x1080 2.72 1.875 0.428 -2088 -13.83%
Traffic 2560x1600 3.63 2.77 0.470 -3444 -44.58%
DuckTakeOff 3840x2160 5.45 3.75 0.055 -852 -3.61%
Bosphorus 3840x2160 5.45 3.75 0.385 -4442 -26.70%

84

Beauty 3840x2160 5.45 3.75 0.936 -601 -1.84%
Average 0.722 -2422.7 -20.07%

Table 9.5: Table 9.4: Proposed algorithm vs. Bolt65 Jit - transcoding to 640x480 with QP =22

Video sequence Original
resolution

𝜌𝑤 𝜌ℎ PSNR
[Δ dB]

Bitrate
[Δ kbps]

Bitrate
[%]

Shields 1280x720 2 1.5 0.815 -11964 -79.88%
ParkRun 1280x720 2 1.5 0.542 -9743 -48.56%
KristenAndSara 1280x720 2 1.5 0.828 -1343 -42.26%
Johnny 1280x720 2 1.5 0.568 -787 -33.25%
FourPeople 1280x720 2 1.5 0.750 -1351 -43.90%
BasketballDrive 1920x1080 3 2.25 1.003 -2762 -28.13%
Calendar 1920x1080 3 2.25 1.431 -1528 -33.13%
Cactus 1920x1080 3 2.25 0.564 -2816 -31.28%
BQTerrace 1920x1080 3 2.25 0.698 -5141 -37.05%
RushHour 1920x1080 3 2.25 0.956 -464 -17.83%
Riverbed 1920x1080 3 2.25 0.895 -1462 -18.32%
PedestrianArea 1920x1080 3 2.25 1.312 -1142 -44.54%
BlueSky 1920x1080 3 2.25 0.511 -3409 -39.31%
Traffic 2560x1600 4 3.33 0.480 -3253 -53.27%
DuckTakeOff 3840x2160 6 4.5 0.060 -1067 -4.73%
Bosphorus 3840x2160 6 4.5 0.487 -4099 -39.40%
Beauty 3840x2160 6 4.5 0.941 -489 -6.52%
Average 0.755 -3107.1 -35.37%

Tables displayed above show that for every video sequence and every pair of original

and transcoded resolutions proposed algorithm gives transcoded bitstream with the better video

quality, where, in the same time, the coding efficiency, represented by bitrate, of the transcoder

that implements this algorithm is also higher for every transcoding scenario observed in the

scope of this analysis.

For smaller transcoding ratios, as in most of the examples from Table 9.1, Table 9.2 and

Table 9.3, advantages of using the proposed algorithm is higher, which can be seen from the

average values of PSNR. This behavior can be expected since the data mapped from the

decoded frame provides more meaningful information for the decisions in re-encoding phase.

For example, when transcoding from 3840x2160 to 640x480, where 𝜌𝑤 equals to 6 and 𝜌ℎ

equals 4.5 small area in the transcoded frame is mapped to rather large area of the original

frame. One 32x32 block is such case is mapped to a 192x144 size area, which makes decisions

in the re-encoding phase less precise. Nevertheless, results for high ratio transcoding are still

significantly better than Bolt65 JiT. Figure 9.2 shows the trend of PSNR improvement when

increasing transcoding ratio for several video sequences. Transcoding ratio is calculated as a

product of width and height ratios.

85

Figure 9.2: Improvements in PSNR depending on transcoding ratio

As it can be observed from the presented graph, improvements in PSNR slowly decrease

as the transcoding ratio grows. On the contrary, bitrate reduction grows with the transcoding

ratio as shown in Figure 9.3. Therefore, if the frame is downscaled by a larger factor, gains in

video quality are smaller, but the bitrate is reduced significantly, which demonstrates the trade-

off between coding efficiency and video quality achieved with the proposed algorithm.

Figure 9.3: Bitrate reduction depending on transcoding ratio

86

Overall gain per video sequence is calculated as an average gain of all possible

transcoding scenarios for the particular sequence and is given in the following table.
Video sequence Original

resolution
PSNR
[Δ dB]

Bitrate
[Δ kbps]

Bitrate
[%]

Shields 1280x720 0.750 -8891.0 -58.30%
ParkRun 1280x720 0.493 -8566.5 -34.65%
KristenAndSara 1280x720 0.749 -1118.5 -32.36%
Johnny 1280x720 0.524 -682.0 -25.34%
FourPeople 1280x720 0.674 -1113.5 -33.84%
BasketballDrive 1920x1080 1.038 -3400.7 -20.13%
Calendar 1920x1080 1.491 -1273.7 -21.74%
Cactus 1920x1080 0.539 -3518.7 -25.17%
BQTerrace 1920x1080 0.670 -6934.3 -29.34%
RushHour 1920x1080 1.024 -285.3 -8.90%
Riverbed 1920x1080 1.229 -2456.0 -20.41%
PedestrianArea 1920x1080 1.371 -1265.3 -35.51%
BlueSky 1920x1080 0.503 -3392.3 -23.47%
Traffic 2560x1600 0.473 -3941.3 -45.02%
DuckTakeOff 3840x2160 0.208 -1829.8 -3.84%
Bosphorus 3840x2160 0.492 -4432.2 -30.61%
Beauty 3840x2160 1.173 -13733.6 -16.35%
Average 0.788 -3931.5 -27.35%

Figure 9.4: Average gains per video sequence compared with Bolt65 JiT

The proposed algorithm achieves 0.788 dB better PSNR on average for all tested

transcoding scenarios. The most considerable improvement is for Calendar video sequence

where there is 1.491 dB difference compared with Bolt65 JiT, while the smallest improvement

can be seen for DuckTakeOff sequence where PSNR is improved by 0.208 dB. Regarding the

bitrate, the biggest reduction of 58.30% is achieved for Shields and the smallest of 3.84 % for

DuckTakeOff video sequence. Average bitrate savings are 27.35%.

9.3 Comparison with Kvazaar

In order to analyze the degradation of transcoded bitstream when compared with

encoders that do not have Just-in-Time requirements, Bolt65 JiT transcoder with the

implemented proposed algorithm is compared with open-source Kvazaar encoder. Since there

is no Kvazaar decoder or transcoder available, input bitstream was decoded with Bolt65

software suite, and the decoded video was set as an input to Kvazaar encoder. Besides the

difference in PSNR and bitrate that were shown in the previous comparison, execution speedup

was also analyzed. Speedup represents the difference in the processing times between two

transcoders, where the value of 2.0x means that transcoder with the proposed algorithm is two

times faster than Kvazaar. Tables below depict results for each transcoding resolution.

87

Table 9.6: Proposed algorithm vs Kvazaar- transcoding to 2560x1600 with QP=22

Video
sequence

Original
resolution

𝜌𝑤 𝜌ℎ Speedup PSNR
[Δ dB]

Bitrate
[Δ kbps]

Bitrate
[%]

DuckTakeOff 3840x2160 1.5 1.35 3.11x -0.940 -16384 -7.06%
Bosphorus 3840x2160 1.5 1.35 3.51x -1.280 25680 33.22%
Beauty 3840x2160 1.5 1.35 4.13x -0.416 -15141 -21.46%
Average 3.58x -0.879 -1948.3 1.57%

Table 9.7: Proposed algorithm vs Kvazaar- transcoding to 1920x1080 with QP=22

Video
sequence

Original
resolution

𝜌𝑤 𝜌ℎ Speedup PSNR
[Δ dB]

Bitrate
[Δ kbps]

Bitrate
[%]

Traffic 2560x1600 1.33 1.48 2.15x -0.618 11170 37.20%
DuckTakeOff 3840x2160 2 2 2.07x -0.770 -7076 -5.88%
Bosphorus 3840x2160 2 2 2.32x -0.644 7681 22.86%
Beauty 3840x2160 2 2 3.27x -0.013 -95 -0.18%
Average 2.45x -0.511 2920.0 13.50%

Table 9.8: Proposed algorithm vs Kvazaar- transcoding to 1280x720 with QP=22

Video sequence Original
resolution

𝜌𝑤 𝜌ℎ Speedup PSNR
[Δ dB]

Bitrate
[Δ kbps]

Bitrate
[%]

BasketballDrive 1920x1080 1.5 1.5 2.46x 1.009 5043 21.95%
Calendar 1920x1080 1.5 1.5 2.45x -1.310 4387 41.55%
Cactus 1920x1080 1.5 1.5 2.20x -0.533 4321 27.11%
BQTerrace 1920x1080 1.5 1.5 2.04x -0.682 6642 27.47%
RushHour 1920x1080 1.5 1.5 2.65x -1.050 759 15.12%
Riverbed 1920x1080 1.5 1.5 3.43x -1.020 -579 -3.35%
PedestrianArea 1920x1080 1.5 1.5 2.69x -0.638 1293 22.70%
BlueSky 1920x1080 1.5 1.5 2.11x -1.422 4368 21.10%
Traffic 2560x1600 2 2.22 2.00x -0.534 6320 45.75%
DuckTakeOff 3840x2160 3 3 1.82x -0.919 -2319 -4.29%
Bosphorus 3840x2160 3 3 2.03x -0.441 6700 34.06%
Beauty 3840x2160 3 3 2.79x -0.114 3293 20.36%
Average 2.39x -0.638 3352.3 22.46%

Table 9.9: Proposed algorithm vs Kvazaar- transcoding to 704x576 with QP=22

Video sequence Original
resolution

𝜌𝑤 𝜌ℎ Speedup PSNR
[Δ dB]

Bitrate
[Δ kbps]

Bitrate
[%]

Shields 1280x720 1.82 1.25 1.74x -0.506 13536 47.77%
ParkRun 1280x720 1.82 1.25 1.91x -0.639 11770 30.64%
KristenAndSara 1280x720 1.82 1.25 2.39x -1.320 1653 42.81%
Johnny 1280x720 1.82 1.25 2.36x -0.645 1385 44.59%
FourPeople 1280x720 1.82 1.25 2.41x -1.067 1809 44.64%
BasketballDrive 1920x1080 2.72 1.875 2.16x -1.017 4790 33.33%
Calendar 1920x1080 2.72 1.875 2.19x -1.638 3632 54.55%
Cactus 1920x1080 2.72 1.875 2.04x -0.795 4427 32.08%
BQTerrace 1920x1080 2.72 1.875 1.80x -0.198 8702 38.37%
RushHour 1920x1080 2.72 1.875 2.42x -0.710 854 28.17%
Riverbed 1920x1080 2.72 1.875 3.05x -0.879 -295 -3.08%
PedestrianArea 1920x1080 2.72 1.875 2.46x -0.682 1176 31.86%
BlueSky 1920x1080 2.72 1.875 1.75x -1.350 6790 42.15%
Traffic 2560x1600 3.63 2.77 1.76x -0.542 3469 45.34%
DuckTakeOff 3840x2160 5.45 3.75 1.56x -0.828 -286 -1.10%
Bosphorus 3840x2160 5.45 3.75 1.66x -0.574 5861 43.50%
Beauty 3840x2160 5.45 3.75 2.50x -0.234 2268 26.75%
Average 2.13x -0.801 4208.3 34.26%

88

Table 9.10: Proposed algorithm vs Kvazaar- transcoding to 640x480 with QP=22

Video sequence Original
resolution

𝜌𝑤 𝜌ℎ Speedup PSNR
[Δ dB]

Bitrate
[Δ kbps]

Bitrate
[%]

Shields 1280x720 2 1.5 1.91x -0.404 3986 29.66%
ParkRun 1280x720 2 1.5 2.01x -0.364 2771 12.62%
KristenAndSara 1280x720 2 1.5 2.29x -1.210 1126 38.70%
Johnny 1280x720 2 1.5 2.30x -0.596 2776 44.97%
FourPeople 1280x720 2 1.5 2.33x -1.083 1268 40.00%
BasketballDrive 1920x1080 3 2.25 2.04x -0.969 2899 31.08%
Calendar 1920x1080 3 2.25 2.03x -1.420 2842 53.63%
Cactus 1920x1080 3 2.25 1.96x -0.740 2685 31.97%
BQTerrace 1920x1080 3 2.25 1.70x -0.295 5128 36.17%
RushHour 1920x1080 3 2.25 2.22x -0.678 628 27.93%
Riverbed 1920x1080 3 2.25 2.76x -0.833 -286 -3.60%
PedestrianArea 1920x1080 3 2.25 2.30x -0.628 867 29.08%
BlueSky 1920x1080 3 2.25 1.74x -1.210 3850 46.20%
Traffic 2560x1600 4 3.33 1.69x -0.484 5846 43.49%
DuckTakeOff 3840x2160 6 4.5 1.48x -0.722 -428 -2.15%
Bosphorus 3840x2160 6 4.5 1.57x -0.386 3958 42.76%
Beauty 3840x2160 6 4.5 1.99x -0.264 1881 27.15%
Average 2.02 -0.723 2458.6 31.16%

As can be concluded from the presented results, video quality is higher for all video

sequences and all transcoding resolution, while bitrate is better in most of the cases when using

Kvaazar encoder. This behavior can be expected since the focus of the Kvazaar is aimed at

achieving higher video quality and coding efficiency, which is not a case in transcoders whose

primary goal is to satisfy timing requirements. Consequently, transcoder based on the proposed

algorithms achieves significant speedups, from 3.58x on average when transcoding to

2560x1600 resolution, to approximately 2x for downsizing to smaller resolutions (704x576 and

640x480). Average losses and speedups per video sequence, as well as overall statistics, are

shown in Table 9.11.

Table 9.11: Average losses per video sequence compared to Kvazaar

Video sequence Original
resolution

Speedup PSNR
[Δ dB]

Bitrate
[Δ kbps]

Bitrate
[%]

Shields 1280x720 1.83x -0.455 8761.0 38.72%
ParkRun 1280x720 1.96x -0.502 7270.5 21.63%
KristenAndSara 1280x720 2.34x -1.265 1389.5 40.76%
Johnny 1280x720 2.33x -0.621 2080.5 44.78%
FourPeople 1280x720 2.37x -1.075 1538.5 42.32%
BasketballDrive 1920x1080 2.22x -0.326 4244.0 28.79%
Calendar 1920x1080 2.22x -1.456 3620.3 49.91%
Cactus 1920x1080 2.07x -0.689 3811.0 30.39%
BQTerrace 1920x1080 1.85x -0.392 6824.0 34.00%
RushHour 1920x1080 2.43x -0.813 747.0 23.74%
Riverbed 1920x1080 3.08x -0.911 -386.7 -3.34%
PedestrianArea 1920x1080 2.48x -0.649 1112.0 27.88%

89

BlueSky 1920x1080 1.87x -1.327 5002.7 36.48%
Traffic 2560x1600 1.90x -0.545 6701.3 42.95%
DuckTakeOff 3840x2160 2.01x -0.836 -5298.6 -4.10%
Bosphorus 3840x2160 2.22x -0.665 9976.0 35.28%
Beauty 3840x2160 2.94x -0.208 -1558.8 10.52%
Average 2.24x -0.749 3284.4 29.45%

Highest loss in video quality of 1.456 dB between the transcoded bitstreams can be

observed for video sequence Calendar, while the smallest difference of 0.208 dB is when

transcoding Beauty video sequence. The overall average loss for all transcoding scenarios is

0.749 dB. Regarding the bitrate, some video sequences achieve even better bitrate when using

the proposed algorithm, such as Riverbed, DuckTakeOff, and Beauty, while the highest bitrate

loss of almost 50% can be seen when transcoding Calendar. Average bitrate loss is

approximately 30%. These losses, however, come with the increased transcoding speed, which

is imperative if the goal is to achieve JiT encoding. Average speedup of the proposed algorithm

for all scenarios is 2.24x, which mostly depend on the video resolution to which original

bitstream is being transcoded.

9.4 Comparison with State-of-the-art algorithms

Most of the research activities in the area of video transcoding are focused on speeding

up the process of transcoding, but very few of them cover same aspects that are considered in

this thesis, i.e., Just-in-Time video transcoding and homogeneous transcoding based on HEVC

standard.

Research presented [47] and [48] have similar approaches to transcoding, where a single

video is pre-transcoded to several versions and only specific data, such as information about

motion vectors, is stored on the server. When a low fidelity version of the video stream is

requested from the system, the original video is transcoded by using pre-stored motion vectors.

These approaches decrease the computational complexity of transcoder since they avoid

complex motion estimation but increase storage costs because additional information for all

different versions of the video has to be stored on a server. While authors in [47] verify their

approach by comparing bitrate to scalable coding, without taking into consideration Just-in-

Time execution, authors in [48] are focused on achieving Just-in-Time transcoding. However,

both solutions increase storage costs and do not enable transcoding to arbitrary ratios. Instead,

only the versions for which pre-transcoding was performed are available. Since most of the

transcoding process is performed upfront, the results are not comparable with the algorithm

proposed in this thesis.

90

In [49] authors present different transcoding techniques that can reduce the transcoder

complexity in both CU and PU optimization levels. The fastest proposed approach is able to

reduce the complexity of the transcoder by 83% while keeping the bitrate loss below 3%.

However, time savings are presented in relative to other transcoders and Just-in-Time execution

is not addressed. Also, presented techniques do not include spatial resolution reduction, which

is one of the main aspects of this thesis.

91

10 HARDWARE ACCELERATOR FOR INTER PREDICTION

Achieving JiT transcoding requires a lot of sacrifices that have to be made in a re-

encoding process to conform to imposed timing requirements, which ultimately affects video

quality and coding efficiency of the transcoding process. Exploiting coding information from

the decoded frame helps to improve the processing time of the transcoding but can still not

ensure JiT transcoding. The software-based algorithm proposed in this thesis reuses information

from the decoded bitstream to re-encode original bitstream while monitoring and adapting the

computational complexity of the transcoding process to guarantee JiT execution. However,

during the design of the algorithm, some functionalities had to be reduced to ensure the

predictability of the execution. Using hardware accelerator for some of the functions and

kernels in the transcoding process could help to achieve the same results in terms of timing, but

by using a broader set of functionalities that can further improve quality of output bitstream.

Therefore, analysis is made to identify suitable kernels in the application that could be

accelerated in hardware to enhance final transcoded bitstream. Results of the analysis are shown

in chapter 10.1. Overview of the functionality of hardware accelerator is given in 10.2.

Architecture and implementation of a hardware accelerator for the selected kernel are presented

in chapters 10.3 and 10.4 while the performance validation of stand-alone hardware accelerator

is shown in chapter 10.5.

10.1 Kernel analysis

Complexity analysis of HEVC encoder shows that one of the most exhaustive kernels

in the encoding process is inter prediction that consists of motion estimation and motion

compensation. Depending on the configuration of the encoder motion estimation can consume

up to 85% of overall encoding time [11]. Although in Just-in-Time transcoding share of motion

estimation is not nearly as high, because faster motion estimation algorithms are employed to

reduce the processing time, this fact emphasizes the importance of inter prediction on quality

of output bitstream. More precise inter prediction process is able to find a better predicted block,

forming residual with smaller prediction errors.

The algorithm proposed in this thesis retrieves motion vectors found in a motion

estimation process in the original encoding and reuses them to facilitate inter prediction in the

re-encoding phase of the transcoder. Motion estimation in the defined algorithm depends on the

complexity of currently observed CU which is determined based on its categorization. For more

92

complex CUs more precise refinement is conducted, while for less complex CUs, a motion

vector is calculated as the weighted average of appropriate motion vectors from the original

bitstream. Refinement steps are minimal, increasing the search area around the considered CU

by 1 or 2 pixels for higher complexity, to ensure fast execution. However, by adding hardware

accelerator modules specifically designed for inter prediction, the refinement area could be

widened for all CU categories, without sacrificing the performance of the transcoder. To test

the behavior of the transcoder and to verify benefits of increasing the refinement search area

and meaningfulness of creating special hardware accelerator for this specific purpose, inter

prediction of the proposed algorithm is adapted as listed in Table 10.1.

Table 10.1: Inter prediction mode adaptation

Prediction
category

Condition SW inter prediction HW inter prediction

InterM LBC or LM Weighted MV Weighted MV + 1 pixel refinement
InterM MBC and MM Weighted MV + 1 pixel refinement Weighted MV + 2 pixel refinement
InterM HBC or HM Weighted MV + 2 pixel refinement Weighted MV + 4 pixel refinement
ComboIntra LBC or LM Weighted MV Weighted MV + 1 pixel refinement
ComboIntra MBC and MM Weighted MV Weighted MV + 1 pixel refinement
ComboIntra HBC or HM Weighted MV + 1 pixel refinement Weighted MV + 2 pixel refinement
ComboInter LBC or LM Weighted MV Weighted MV + 1 pixel refinement
ComboInter MBC and MM Weighted MV + 1 pixel refinement Weighted MV + 2 pixel refinement
ComboInter HBC or HM Weighted MV + 2 pixel refinement Weighted MV + 4 pixel refinement

Refinement area larger than four pixels was not considered since it has been shown in

previous research [3] that the overall gain in video quality becomes almost negligible when

increasing the search window by more than four pixels.

Transcoder was run with both version of inter prediction: software-based version as

described in previous chapters in this thesis and proposed hardware-based version with adapted

inter prediction. To ensure comparable results, coefficients 𝛽𝐿,𝛽𝐻,𝜇𝐿 and 𝜇𝐻 are set to fixed

values defined with set 1 (Table 8.3). Otherwise, the difference in video quality and/or bitrate

would be caused by a different distribution of CUs into categories. Average results per video

sequence are shown in Table 10.2, where the differences in PSNR and bitrate are compared

with the software version of the algorithm, while the processing time is compared to tJiT to show

if the JiT execution is satisfied.

93

Table 10.2: Comparison between SW and proposed HW algorithm with adapted inter prediction

Video sequence Original
resolution

Processing
time
[t / tjiT]

PSNR
[Δ dB]

Bitrate
[Δ kbps]

Bitrate
[%]

Shields 1280x720 70.40% 0.248 -7357.0 -26.24%
ParkRun 1280x720 81.56% 0.128 -7767.0 -20.39%
KristenAndSara 1280x720 98.12% 0.022 -577.5 -15.10%
Johnny 1280x720 96.53% 0.074 -466.0 -15.14%
FourPeople 1280x720 99.30% 0.102 -270.5 -7.29%
BasketballDrive 1920x1080 109.11% 0.134 -533.3 -4.49%
Calendar 1920x1080 104.03% 0.160 -178.3 -2.78%
Cactus 1920x1080 101.97% 0.118 -1711.0 -10.90%
BQTerrace 1920x1080 98.60% 0.138 -2715.3 -9.49%
RushHour 1920x1080 125.16% 0.122 -48.3 -2.12%
Riverbed 1920x1080 98.12% 0.127 -384.0 -3.35%
PedestrianArea 1920x1080 103.53% 0.110 -373.3 -9.55%
BlueSky 1920x1080 103.60% 0.096 -3852.3 -19.75%
Traffic 2560x1600 101.25% 0.091 -1548.3 -13.83%
DuckTakeOff 3840x2160 164.30% 0.082 -1693.2 -3.28%
Bosphorus 3840x2160 140.12% 0.252 -7041.8 -24.61%
Beauty 3840x2160 129.52% 0.168 -54.6 -0.35%
Average 107.37% 0.128 -2144.9 -11.10%

Results show that by increasing the refinement search area by 1 pixel for low and

medium complex CUs and by 2 pixels for complex CUs PSNR increases by 0.128 dB, while

bitrate reduces for 11% on average. However, Just-in-Time requirement is not satisfied for most

of the video sequences, giving that average processing time is 107.37% of tJiT , which is an

increase from 96.01% for the original algorithm with the same set of coefficients (Table 8.4,

set 2). With presented results, a conclusion can be reached, that increasing the refinement area

in inter prediction can lead to notable improvements of the final bitstream, but in order to keep

the algorithm within the same timing constraints this operation should be accelerated.

Therefore, a custom hardware accelerator for inter prediction operation is designed,

implemented and presented in the following subchapters.

10.2 Functionality

The core functionality of a custom hardware accelerator that is designed, implemented

and integrated with JiT transcoder in the scope of this thesis is to find best inter predicted block

based on motion vector obtained as a weighted average of mapped motion vectors and the

defined refinement search area. Figure 10.1 depicts the inter prediction scheme that is employed

as a custom hardware accelerator.

94

CU

Search area

CU

Search area

Figure 10.1: Inter prediction search scheme implemented in hardware accelerator

The left part of the figure shows a search area in regular motion estimation for the

current CU block in the frame. Usually, the area in a reference frame that corresponds to the

position around that exact block in the current frame is searched for the best candidate.

However, in the transcoding, information about motion vectors from the original bitstream can

be used to steer the search to an area where there is a higher probability for finding better inter

predicted candidate. Therefore, in the proposed algorithm search area is located around the

block to which weighted motion vector is pointing, as visualized in the right part of the figure

above.

Another important functionality that is implemented in hardware accelerator is the

possibility of processing CUs with variable block sizes and different sizes of search areas. Thus,

one instance of hardware accelerator can be used for all blocks and for all transcoding

configurations. Although hardware accelerator in this particular case is used to implement

function depicted in the right frame in Figure 10.1, it can also be used for regular inter prediction

full integer search by setting the input parameter values to appropriate values (i.e., setting the

starting index of original and reference CU to the same location).

10.3 Architecture

Hardware accelerator is designed to find the best inter predicted block in a defined

search area and to return the motion vector as a result. Black-box model of hardware accelerator

with defined inputs and outputs is given in Figure 10.2.

95

Inter prediction
hardware accelerator

st_idx

ref_idx

search_area

block_size

frame_width

frame_height

mv_x

mv_y

memory

Figure 10.2: Model of a custom hardware accelerator for inter prediction

Inputs to the custom hardware accelerator are:

• memory - pointer to an address in memory where original and reference frame
are located

• st_idx - starting index of the most-top-left pixel of current CU within the current
frame

• ref_idx - starting index of the most-top-left pixel of CU predicted with weighted
motion vector within the reference frame

• search_area - the size of a refinement search area (around the block with starting
index ref_idx)

• block_size - size of CU block (e.g., for 32x32 CU block, block_size =32)
• frame_width, frame_height – dimensions of original and reference frame

Outputs from the accelerator are:

• mv_x, mv_y – motion vector (X, Y) for the best predicted block found in the
defined search area

High-level block scheme of a custom hardware accelerator is given in Figure 10.3.

96

Control Unit

Local memory

Search area

SAD engine Comparator Indexer

Best SAD

MV X

MV Y

Current CU

External memory Host CPU

Figure 10.3: High-level hardware accelerator block scheme

Inter prediction hardware accelerator consists of several modules: Control unit, SAD

engine, Comparator, and Indexer. The inter prediction operations starts by fetching data of the

original CU block and search area from the external memory. Number of pixels fetched from

memory for original CU block are equal to 𝑏𝑙𝑜𝑐𝑘_𝑠𝑖𝑧𝑒 ∗ 𝑏𝑙𝑜𝑐𝑘_𝑠𝑖𝑧𝑒, while number of pixels

that need to be fetched for search area with defined search_area are (2 ∗ 𝑠𝑒𝑎𝑟𝑐ℎ_𝑎𝑟𝑒𝑎 +

𝑏𝑙𝑜𝑐_𝑠𝑖𝑧𝑒) ∗ (2 ∗ 𝑠𝑒𝑎𝑟𝑐ℎ_𝑎𝑟𝑒𝑎 + 𝑏𝑙𝑜𝑐𝑘_𝑠𝑖𝑧𝑒). Data fetched from external memory is stored

in local memory. All computations within the hardware accelerator from this point on are based

on a data stored in local memory, meaning that only one access to external memory is needed

per one inter prediction operation.

After fetching the data needed for computation, the control unit initiates the process of

finding the best predicted block from the defined search area. SAD engine calculates the sum

of absolute differences between original CU and the predicted CU at the location ref_idx. Result

of the SAD engine is forwarded to Comparator module that compares given value with the best

SAD. If the calculated SAD value is better than best SAD stored as a register in local memory,

then the value of best SAD is updated with current SAD and motion vector for that predicted

block is calculated and stored in registers MV X and MV Y. After comparison, the Indexer

97

module refreshes index of next predicted block within search_area (ref_idx) making sure that

the index does not point beyond frame boundaries. Control unit repeats the process until all

possible blocks from search area are evaluated. Finally, at the end of the evaluation process, the

best motion vector from registers MV X and MV Y are sent to the host processor.

10.4 Implementation and synthesis

Custom hardware accelerator was implemented and synthesized using Vivado High-

Level Synthesis (HLS) tool. Vivado HLS allows functions written in C, C++, System-C and

OpenCL kernels to be synthesized into RTL implementation and directly targeted into Xilinx

programmable devices [64]. Each function from the high-level source code is translated into an

RTL block in hardware. The top-level function interPredictionAcc that describes inter

prediction accelerator is defined as:

void interPredictionAcc(volatile unsigned int *memory, unsigned int

st_idx, unsigned int ref_idx, unsigned int search_area, unsigned int

block_size, unsigned int frame_width, unsigned int frame_height, int

*mv_x, int *mv_y)

Besides the main accelerator function, other modules from Figure 10.3 are defined as

functions, along with two functions that help accelerate computation by avoiding multiplication

and division to facilitate hardware translation. The list of all functions used to design hardware

accelerator with a brief description of functionality is listed below.

• fetchBlockFromMem() – fetching block from memory, depending on the offset
address. It is used to fetch both, original CU block from the original frame and
search area from the reference frame

• sad() – calculates the sum of absolute differences between original and reference
block. Instead of fetching the predicted block from the search area in local
memory, differences are calculated based on an index of the predicted block in
the search area.

• comparator() – compares calculated SAD value with the best SAD value found
so far in the process. If the value is better, registers Best SAD, MV X and MV
Y are updated accordingly

• indexer() – refreshes indexes of next predicted block within the reference frame
and search area. It checks if the value is valid and notifies control unit if all the
blocks have been evaluated.

• divideInt() – a function that divides two integer numbers. Result of this function
is quotient and reminder. Since there are no demands for floating point division
in inter prediction algorithm, this function is implemented in order to avoid

98

regular division which could influence translation to hardware. The
implemented algorithm for the division was based on

• multiplyInt() – a function that multiplies two integer numbers. Implemented for
same reason as divideInt().

Finding the best predicted block with the described functions of hardware accelerator

follows the procedure given with the pseudocode below.

originalCU = fetchBlockFromMem(original_cu_address)

searchArea = fetchBlockFromMem(search_area_address)

isEnd = false;

predictedIndex = 0

while(!isEnd)

{

 currentSAD = sad(originalCU,predictedIndex)

 comparator(currentSAD)

 isEnd = indexer(predictedIndex)

}

Functions in code represent the design hierarchy that is translated into RTL blocks in

hardware design, while the arguments of top-level function determine the hardware RTL

interface ports. Giving that the top-level function is interPredictionAcc(), its arguments are

synthesized as an input or output ports in exported design, as shown in Figure 10.4.

Control ports

Inter prediction
RTL

st_idx

ref_idx

search_area

block_size

frame_width

frame_height

mv_x_vld

memory

Exported design

ap_start ap_done

ap_idle

ap_rst
Clock and reset ports

ap_clk

mv_y_vld

ap_ready

AXI4 Lite
Slave

Accelerator
parameters

Memory interface AXI4
Master

Figure 10.4: Exported hardware accelerator scheme

99

Along with accelerator parameters, synthesis adds additional input and output ports

necessary for the successful operation of the accelerator. In addition to standard input signals,

clock and reset, HLS also adds block level control signals: start, done, idle and ready. The

ap_start signal controls the block execution and must be asserted to logic 1 for the design to

begin operation. The ap_ready is an output signal that indicates when the accelerator is ready

to receive new inputs, while ap_done indicates when the accelerator has completed all the

operations in the current transaction, i.e., when the inter prediction is finished, and the best

predicted block is found. When the accelerator is not doing any work, the ap_idle signal is set

to logic 1. For each output parameter, in this case, motion vector X and Y, an additional signal

that indicates if the valid data is set to output is added to design (mv_x_vld and mv_y_vld).

All the accelerator parameters and the control ports are grouped into a single common

AXI4 lite slave interface that is used to pass parameters from CPU host to accelerator and vice

versa. AXI-lite is light-weight, low-throughput memory mapped interface that has a small logic

footprint and it is suitable for passing control and status signals to and from the accelerator [65].

A larger amount of data, however, cannot be efficiently transferred via AXI lite interface, since

it allows only one data transfer per transaction. Thereby, memory port for accessing DDR

memory to fetch data from original and reference frame is connected to the AXI4 Full interface

that allows a burst of up to 256 data transfer cycles with just a single address phase.

The designed hardware accelerator was exported as an IP core using the Vivado HLS

tool, and the final block is shown in Figure 10.5.

interPredictionAcc_0

Figure 10.5: IP core of a custom hardware accelerator for inter prediction

Table 10.3 shows a report of how many resources are necessary for the implemented

design (a number of BRAMs, DSPs, FFs, and LUTs). Percentages of overall hardware area

100

resources used are based on the target device for synthesis: Xilinx Kintex Ultrascale FPGA

(xcku115-flvb2104-2-e).

Table 10.3: Hardware utilization of inter prediction custom hardware accelerator

 BRAM_18K DSP48E FF LUT
Total used 6 24 3501 6065
Available 4320 5520 1326720 663360

Utilization (%) 0.0013% 0.0043% 0.0026% 0.0091%

10.5 Performance validation

Functional validation of custom hardware accelerator for inter prediction was conducted

by comparing output results with the software version of the same algorithm. The most

important aspect of the designed accelerator is performance improvement compared with

software implementation. As demonstrated in section 10.1, expanding the search area for all

inter prediction cases in the proposed transcoding algorithm causes violation of JiT

requirements. Therefore, custom hardware accelerator has been introduced to cope with the

increased computational complexity induced with the expansion of the search area. Two use

cases were tested to validate and compare the performance of the accelerator:

• Inter prediction of CU blocks with different block sizes (𝑏𝑙𝑜𝑐𝑘_𝑠𝑖𝑧𝑒 ∈
{8,16,32})) and fixed search area (𝑠𝑒𝑎𝑟𝑐ℎ_𝑎𝑟𝑒𝑎 = 5)

• Inter prediction of CU blocks with a fixed block size (𝑏𝑙𝑜𝑐𝑘_𝑠𝑖𝑧𝑒 = 32) and
variable search area (𝑠𝑒𝑎𝑟𝑐ℎ_𝑎𝑟𝑒𝑎 ∈ {1,2,3,4,5,6,7})

Hardware accelerator for inter prediction was validated and verified on operating

frequency of 250MHz. To benchmark the performance, 100 inter prediction tasks were

offloaded to hardware accelerator and compared the same amount of tasks run in software

implementation. Average time needed to finish the operation for one block (in milliseconds) is

retrieved and depicted in the figures below. Figure 10.7 shows that the difference in execution

time between software and hardware implementation significantly increases for larger blocks.

When processing smaller block sizes, the impact of memory accesses to overall time is much

higher than for larger blocks, which is not ideal for hardware accelerators that mainly focus on

the enhancement of computational aspects of the algorithm. Therefore, hardware accelerator

performs much better in situations where the ratio between computation and memory accesses

leans toward computation.

101

Figure 10.6: Comparison between hardware accelerator and software implementation of inter prediction

(per CU block size for search area size 5)

Similar behavior can be observed when increasing the search area in the inter prediction

(Figure 10.7).

Figure 10.7: Comparison between hardware accelerator and software implementation of inter prediction

(per search area size for block size 32)

0,205
0,319

0,7690,454

1,746

9,163

0

1

2

3

4

5

6

7

8

9

10

2 7 12 17 22 27 32 37

El
ap

se
d

 t
im

e
[m

s]

Block size

HW acc

SW

0,246
0,324 0,437 0,586 0,769 0,985 1,194

0,918
2,101

3,804

6,124

9,163

12,542

16,202

0

2

4

6

8

10

12

14

16

18

0 1 2 3 4 5 6 7 8

El
ap

se
d

 t
im

e
[m

s]

Search area size

HW acc

SW

102

Although the elapsed time of hardware accelerator gradually increases with larger block

sizes, the software implementation increases at a much higher rate. Speedup of using hardware

accelerator increases from 3.73x for search area of 1 pixel to 13.5x for search area of 7 pixels.

Now, the changes in inter prediction proposed in the Table 10.1 to increase the video

quality of the transcoded bitstream can be observed form the hardware accelerator standpoint,

since the software implementation of these adaptations was not viable due to increased

transcoding time that broke the limits set by JiT transcoding. By comparing times needed for

software execution of original inter prediction in the proposed algorithm that conforms to JiT

requirements and times needed for hardware execution of the adapted inter prediction

algorithm, some conclusions about the feasibility of the JiT transcoding with the new proposed

inter prediction scheme can be made. For example, for most complex CUs within InterM

category original prediction was made with the refinement of 2 pixels, but with the proposed

custom hardware accelerator refinement of 4 pixels is approximately four times faster than a

refinement of 2 pixels on same CU block in software. This fact should ensure JiT transcoding,

taking into account that software 2-pixel refinement is proven to satisfy JiT requirements.

However, in order to confirm these assumptions, integration of hardware accelerator to a Bolt65

transcoder with the implemented proposed JiT algorithm for data reusing has to be conducted

and verified.

103

11 INTEGRATION AND FINAL RESULTS

This chapter describes the integration scheme of a custom hardware accelerator for inter

prediction with video transcoding algorithm based on the utilization of decoded information

from the original stream presented in this thesis. A platform for connecting hardware accelerator

with the host side using high-performance PCI Express interconnect is presented in chapter

11.1. Different approaches to using the accelerator from the host side and its performance

validation within the transcoding application is described in chapter 11.2. Final results of the

integrated solution are shown in chapter 11.3.

11.1 Integration platform

Before starting the accelerator, the input data (i.e., data from the original CU and search

area) has to be transferred from the host side. In heterogeneous systems, the time needed to

transfer data from the host side to heterogeneous node and vice versa can often quash all the

performance benefits gained by faster execution of hardware accelerator, becoming one of the

main bottlenecks in the entire system. Therefore, for the connection between inter prediction

hardware accelerator and the host that is running video transcoding, high-performance PCI

Express Gen3x8 interconnect, that is able to achieve a speed of up to 8 Gbytes/sec was used to

minimize the influence of data transfers on overall transcoding time. The block design of the

platform that contains custom hardware accelerator is given in Figure 11.1.

104

Figure 11.1: Block design of the integrated platform

D
M

A
A

X
I

in
te

rc
o

n
n

ec
t

H
ar

d
w

ar
e

ac
ce

le
ra

to
r

D
D

R
4

105

The DMA system for PCIe masters read and write requests on the PCI Express and

enables performing direct memory transfers from host to the FPGA platform and from the

FPGA platform to the host [66]. AXI interconnect core is used to connect more AXI memory

mapped master devices to one or more memory-mapped slave devices. In the design above, the

procedure for running the accelerator follows the data path controlled by AXI interconnect as

follows:

• Input data for inter prediction accelerator, pixels of current CU and search area
from the reference frame, is written to DDR memory. Data is passed over the
DMA and AXI interconnect, directly to DDR memory.

• The arguments for the accelerator (block size, size of the search area, etc.) are
passed from the host side via AXI lite interface. Besides input parameters,
addresses where the output motion vector will be located, as well as the address
where the input data is located in DDR memory are also passed to the accelerator
in the same transfer

• Control signal ap_start is set to logic 1, also over AXI lite interface, to initiate
the start of the execution

• Hardware accelerator fetches the data from DDR, previously transferred from
the host side, and starts the execution.

• After completion of the kernel, the calculated motion vector is written on defined
addresses, and the control signal ap_done is set to 1

• After the host reads that ap_done is set to 1, the output from the accelerator is
transferred to the host side, over the AXI-lite interface

Hardware utilization of the designed architecture is obtained with Vivado tool and is

depicted in Figure 11.2.

Figure 11.2: Hardware utilization of integrated design

106

11.2 Performance validation

There are several factors that influence the performance of an integrated solution,

including data transfer rate, interrupt processing and the smart utilization of hardware

accelerator. An important factor that affects data throughput is interrupt processing. Once the

accelerator is finished with finding the best inter prediction candidate, the accelerator sends an

interrupt to the host side and waits for the host side to process the status. However, this wait

time is not predictable, which is why another approach is considered in the design of the

integrated system. Instead of waiting for the interrupt from the hardware accelerator, the host

uses poll mode, which gives the best data transfer rates [67]. In poll mode, the host needs to

monitor the completion status of hardware accelerator (ap_done signal) to check if the operation

is executed. However, while waiting for the completion, additional processing can be done on

the host side in parallel, which will be presented later in this chapter.

Another important aspect of the overall performance is the utilization of hardware

accelerator. Two working modes were tested and compared in the scope of this integration:

• Standalone mode – Hardware accelerator receives the data for processing
individual tasks. All the parameters, along with original CU and search area data
are sent every time accelerator is started.

• Iterative mode – Hardware accelerator receives only the input parameters for
processing individual task. Original CU and search area data are fetched from
DDR memory, where the two whole frames (original and reference) have been
previously transferred from the host side.

Notice that for the standalone mode there will be multiple smaller data transfers for

processing one frame, while in iterative mode, only one, significantly larger, data transfer is

needed per frame. To compare the two working modes a test that encodes one Full HD frame

in both ways is conducted. The frame was split only to 32x32 blocks, with the refinement search

area of 5 pixels (i.e., size od search area is 42x42). In Full HD frame (1920x1080) there are

2040 32x32 CU blocks, which means that the number and size of data transfers per mode will

be:

𝑆𝑡𝑎𝑛𝑑𝑎𝑙𝑜𝑛𝑒 𝑚𝑜𝑑𝑒: 2040 ∗ ((32 ∗ 32) + (42 ∗ 42)) = 2040 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑠 𝑥 2788 𝑏𝑦𝑡𝑒𝑠

𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑣𝑒 𝑚𝑜𝑑𝑒: 1 ∗ (2 ∗ 1920 ∗ 1080) = 1 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑥 4147200 𝑏𝑦𝑡𝑒𝑠

107

The ratio between time spent on memory transfers and processing in two modes is given

with Figure 11.3.

Figure 11.3: Ratio between memory transfer and processing for two working modes

In a standalone mode, where there are multiple transfers between the host side and the

hardware platform, data transfer takes about 6.4% of the time needed to perform inter prediction

for the entire frame. In an iterative working mode, this time significantly decreases and is

negligible compared to the time necessary to process the inter prediction operation, taking

0.005% of the overall time. This behavior can be explained by the nature of data transfers via

PCIe interconnect, where a much higher transfer speed is achieved by transferring larger

amounts of data, as shown in Figure 11.4, where to use cases are observed: transfer from host

side to FPGA platform and vice versa.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Standalone Iterative

Memory transfer Processing

108

Figure 11.4: PCI Express transfer speeds in correlation with transfer size, source [67]

With the accomplished speed of the data transfers between the host side and the FPGA

platform, overhead of passing the data to and from the accelerator has been reduced to a

minimum and does not present a bottleneck in the integrated system.

After the host initiates the start of a hardware accelerator, the transcoding process can

be further optimized by running other tasks on the host side in parallel with the inter prediction

that is being executed on the hardware platform. Giving that the proposed data reusing

algorithm evaluates inter and intra prediction candidates for most of the CUs, transcoding

process can be parallelized so that inter prediction is conducted on customized hardware

accelerator, while the intra prediction is performed on the host side. Taking into account the

adopted changes, the final scheme of the proposed data reusing algorithm on the heterogeneous

platform is presented in Figure 11.5. Modules that imply using a hardware platform, transferring

decoded and reference frame to DDR memory and inter prediction, are denoted with the green

colors.

109

Input bitstream

Decode frame

Set initial coefficients

Gather decoded data

Split to CTUs

Categorize CTUs

Initial split

Categorize CUs

Frame = N?

Monitor quality,bitrate and performance

Update coefficients

Encoder

Transfer decoded and reference frame
to HW

Predict block

Inter predictionIntra prediction

Inter or Intra predicted?

Figure 11.5: Final scheme of the algorithm on the integrated heterogeneous platform

11.3 Final results

Transcoder with implemented novel data reuse algorithm and the custom hardware

accelerator for inter prediction has been deployed to the integrated heterogeneous platform and

compared with the results of the CPU-only implementation of the same algorithm and with Just-

110

in-Time configuration of Bolt65 transcoder that does not reuse any data from the original

bitstream (Bilt65 JiT). Results presented in Figure 11.5 show average gains in PSNR and bitrate

for all transcoding scenarios, compared to baseline Bolt65 JiT straight-forward transcoder.

Table 11.1: Comparison between CPU-only implementation and implementation on a

heterogeneous integrated platform

Video name CPU-only implementation Heterogeneous implementation Speedup
[tSW/tHW] PSNR

[Δ dB]
Bitrate
[Δ kbps]

Bitrate
[%]

PSNR
[Δ dB]

Bitrate
[Δ kbps]

Bitrate
[%]

Shields 0.750 -8891.0 -58.30% 1.100 -12881.0 -66.12% 1.03x
ParkRun 0.493 -8566.5 -34.65% 0.695 -11935.0 -41.51% 1.09x
KristenAndSara 0.749 -1118.5 -32.36% 0.853 -1328.5 -39.67% 1.08x
Johnny 0.524 -682.0 -25.34% 0.669 -1084.5 -39.25% 1.07x
FourPeople 0.674 -1113.5 -33.84% 0.864 -1280.0 -39.14% 1.02x
BasketballDrive 1.038 -3400.7 -20.13% 1.222 -3991.0 -26.33% 1.06x
Calendar 1.491 -1273.7 -21.74% 1.615 -1315.3 -27.47% 1.06x
Cactus 0.539 -3518.7 -25.17% 0.706 -4204.7 -34.08% 1.01x
BQTerrace 0.670 -6934.3 -29.34% 0.859 -8914.3 -43.60% 1.03x
RushHour 1.024 -285.3 -8.90% 1.174 -274.7 -8.31% 1.02x
Riverbed 1.229 -2456.0 -20.41% 1.430 -2389.3 -20.34% 1.07x
PedestrianArea 1.371 -1265.3 -35.51% 1.466 -1349.3 -39.75% 1.10x
BlueSky 0.503 -3392.3 -23.47% 0.622 -5874.0 -44.93% 1.11x
Traffic 0.473 -3941.3 -45.02% 0.588 -5012.3 -56.16% 1.09x
DuckTakeOff 0.208 -1829.8 -3.84% 0.286 -3321.4 -6.02% 1.08x
Bosphorus 0.492 -4432.2 -30.61% 0.616 -7458.0 -47.29% 1.06x
Beauty 1.173 -13733.6 -16.35% 1.295 -13655.2 -16.03% 1.04x
Average 0.788 -3931.5 -27.35% 0.945 -5074.6 -35.06% 1.06x

Results show that the proposed algorithm ran on heterogeneous platform outperforms

CPU-only implementation of the same algorithm in both, average PSNR and bitrate. Compared

with Bolt65 JiT transcoder, CPU-only solution has an average increase in PSNR of 0.788 dB,

while for implementation on the heterogeneous platform this gain rises to 0.945 dB. Regarding

the bitrate, reduction of 27.35% obtained with SW implementation is improved to 35.06%.

Transcoding on a heterogeneous platform also increases performance time by an average of

6%. However, since the proposed algorithm adapts the coefficients that define categorization

boundaries depending on the processing time, the number and configuration of inter prediction

tasks are not the same, so the observed speedup is not based solely by increasing the speed of

inter prediction operation. Notice that for the same reason, PSNR gains are higher compared

with CPU-only implementation than in previously observed scenario (section 10.1).

After presenting and explaining all the concepts of the proposed algorithm for JiT

transcoding based on the utilization of coding information from the input bitstream and the

heterogeneous architecture with a custom hardware accelerator for inter prediction, a final

111

comparison between two baseline transcoders and the two versions of the novel algorithm

presented in this thesis can be made.

Figure 11.6 shows the average PSNR gains for transcoding video sequence from the

original resolution to all possible resolutions defined in the test methodology in chapter 5.

Lowest quantization parameter defined in Common Test Conditions [60] of 22 was observed

since it represents the most complex transcoding scenario with the highest demands on

computational resources.

Figure 11.6: Final PSNR comparison

36,0 38,0 40,0 42,0 44,0

Shields

ParkRun

KristenAndSara

Johnny

FourPeople

BasketballDrive

Calendar

Cactus

BQTerrace

RushHour

Riverbed

PedestrianArea

BlueSky

Traffic

DuckTakeOff

Bosphorus

Beauty

Kvazaar Proposed algorithm - SW-HW

Proposed algorithm - SW Bolt JiT

112

Proposed algorithm deployed to a system that contains only CPU achieves a significant

increase in video quality compared to Just-in-Time transcoder that re-encodes video sequence

from scratch, without reusing information extracted from the input bitstream. By introducing

custom hardware accelerator for inter prediction on the FPGA platform and adapting the

algorithm to heterogeneous architecture that consists of FPGA and CPU, even larger gains in

video quality can be observed. However, average PSNR is still lower than for transcoder that

uses open-source Kvaazaar encoder that does not comply with JiT transcoding.

A similar analysis is made for bitrate reduction, where the percentage of the reduction

compared with Bolt JiT transcoder is presented in Figure 11.7.

Figure 11.7: Final bitrate comparison

-80,00% -70,00% -60,00% -50,00% -40,00% -30,00% -20,00% -10,00% 0,00% 10,00%

Shields

ParkRun

KristenAndSara

Johnny

FourPeople

BasketballDrive

Calendar

Cactus

BQTerrace

RushHour

Riverbed

PedestrianArea

BlueSky

Traffic

DuckTakeOff

Bosphorus

Beauty

Kvazaar Proposed algorithm - SW-HW Proposed algorithm - SW

113

Constant improvement in bitrate reduction compared with straight-forward Bolt65

transcoder can be seen in the figure above. Implementation of the transcoder on the

heterogeneous platform gives better bitrate in most of the video sequences compared with CPU-

only implementation. For some video sequences, achieved bitrate reduction is even better than

for Kvazaar transcoder.

Better video quality and bitrate in Kvazaar transcoder come at the cost of increased

processing time, which causes violation of Just-in-Time transcoding. Figure 11.8 depicts

differences in processing times between the observed transcoders. The dotted red line in the

graph illustrates the limit for achieving JiT transcoding (100% of tJiT).

Figure 11.8: Final processing time comparison

0,00% 50,00% 100,00% 150,00% 200,00% 250,00% 300,00% 350,00%

Shields

ParkRun

KristenAndSara

Johnny

FourPeople

BasketballDrive

Calendar

Cactus

BQTerrace

RushHour

Riverbed

PedestrianArea

BlueSky

Traffic

DuckTakeOff

Bosphorus

Beauty

Kvazaar Proposed algorithm - SW-HW Proposed algorithm - SW Bolt JiT

114

The regulation process of the proposed algorithm (i.e., monitoring and adaptation of the

categorization coefficients) ensures Just-in-Time transcoding for all scenarios and all video

sequences, which is manifested in the graph above. Kvazaar transcoder, contrarily, breaks the

JiT limits by a minimum of 50% (for Shield video sequence), while the processing time for

some sequences is almost 3 times higher than needed for JiT transcoding.

115

12 CONCLUSION

Algorithms for efficient utilization of coding information extracted from the input video

stream in the process of video transcoding were investigated in the scope of research conducted

for this thesis. Since the software solutions alone cannot most efficiently provide Just-in-Time

video transcoding, hardware-based accelerators of key compute-intensive kernels were also

examined in order to achieve the best trade-off between coding efficiency and video quality

while fulfilling Just-in-Time constraints. Performance-efficient integration of algorithms and

hardware-based accelerator kernels into one high-performance system was the final

contribution of this thesis.

The algorithm presented in this thesis tries to estimate the computational complexity

needed for re-encoding each coding block. The estimation is based on the concept of

categorization, where each coding unit is categorized in regard to three different types of

information extracted from the decoded frame: the size of decoded coding units, number of

coding units mapped from the decoded frame and prediction modes of mapped coding units.

Depending on the output of the categorization process, different algorithms are used to encode

particular coding unit. More computing resources will be assigned to processing more complex

CUs that usually contain more detailed information within the video frame and that have a

higher impact on the quality of final transcoded bitstream. Boundaries for categorization are

adapted during the transcoding process to ensure predictability and guarantee Just-in-Time

execution. The developed algorithm, ported on CPU-only architecture achieves higher PSNR

and reduced bitrate for all transcoding scenarios compared to Just-in-Time transcoder that does

not reuse data from the input bitstream.

Furthermore, a custom hardware accelerator for one of the most compute-intensive

kernels in the process of video transcoding, inter prediction, was designed and implemented.

By utilizing hardware accelerator, inter prediction used in the software version of the algorithm

was enhanced by expanding the search area in the motion estimation process, without

compromising Just-in-Time execution. With the expanded search area, a larger set of inter

prediction candidates could be evaluated, increasing possibility of fining the best inter predicted

block.

Integration of custom hardware accelerator for inter prediction with the proposed

algorithm was conducted on a system that consists of CPU on the host side and the FPGA

116

hardware platform. Communication between the host side and the hardware accelerator was

implemented using high-throughput PCI Express interconnect to minimize the influence of time

needed for memory transfers on the overall processing time and to avoid possible bottlenecks.

The integrated solution increases video quality by 0.945 dB and reduces bitrate by 35.06% on

average compared with JiT transcoder. Compared to transcoder without timing requirements,

average losses of 0.592 in PSNR and 21.74% in bitrate were achieved, but with significant

speedups of up to 4 times.

Finally, contributions of the research conducted for this thesis are:

• Perfomance-optimized algorithms and hardware-based accelerator kernels on

heterogeneous high performance computing architectures for just-in-time video

transcoding based on utilisation of coding information from input video stream

• Performance-efficient integration of system architectures composed of

implemented algorithms and hardware-based accelerator kernels on

heterogeneous high performance computing architectures for just-in-time video

transcoding

Future work in this research area will include several aspects. A larger set of encoding

tools introduced in HEVC will be analysed to try to achieve even higher gains in video quality

compared with straight-forward transcoders. Inclusion of tools, such as symmetric and

asymmetric prediction units, deeper transform trees, in-loop filters or interpolation, can help to

enhance transcoded bitstream. However, this compromises Just-in-Time execution, so detailed

analysis must be performed before adding any of the proposed tools in the existing solution.

More compute-intensive kernels will be investigated, and their influence on the overall

process of video transcoding will be analysed. Custom hardware accelerators for other suitable

kernels will be designed and integrated with the integrated solution. Possible kernel candidates

for hardware acceleration include interpolation, transformation, and quantization. Different

types of processing units, besides custom accelerator-based cores on FPGA platform, will also

be investigated, such as GPU core, RISC-V, and GPU-like core.

With the increased number of kernels and processing cores, the advanced resource

manager will have to be developed to control and monitor the execution of the entire process.

Some other aspects of the system, besides video quality, coding efficiency and performance,

such as power consumption will also have to be taken into consideration.

117

REFERENCES

[1] Cisco Visual Networking Index: Forecast and Methodology, 2017–2022, available at

https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-

index-vni/white-paper-c11-741490.html, (3th May 2019.)

[2] Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2017–

2022, available at https://www.cisco.com/c/en/us/solutions/collateral/service-

provider/visual-networking-index-vni/white-paper-c11-738429.html, (3th May 2019.)

[3] Vetro A., Christopoulos C., Sun H., "Video transcoding architectures and techniques: an

overview," in IEEE Signal Processing Magazine, vol. 20, no. 2, pp. 18-29, March 2003.

[4] Schwarz H., Marpe D., Wiegand T., "Overview of the Scalable Video Coding Extension

of the H.264/AVC Standard", in IEEE Transactions on Circuits and Systems for Video

Technology, vol. 17, no. 9, pp. 1103-1120, September 2007.

[5] Boyce J. M., Ye Y., Chen J., Ramasubramonian A. K., "Overview of SHVC: Scalable

Extensions of the High Efficiency Video Coding Standard," in IEEE Transactions on

Circuits and Systems for Video Technology, vol. 26, no. 1, pp. 20-34, January 2016.

[6] Dragić L., Hofman D., Kovač M., Žagar M., Knezović J., "Power consumption and

bandwidth savings with video transcoding to mobile device-specific spatial resolution,"

2014 9th International Symposium on Communication Systems, Networks & Digital

Sign (CSNDSP), pp. 348-352, Manchester 2014.

[7] Gao G., Wen Y., Zhang W., Hu H., "Cost-efficient and QoS-aware content management

in media cloud: Implementation and evaluation," 2015 IEEE International Conference

on Communications (ICC), pp. 6880-6886, London 2015.

[8] Kim J.W., Kwon G.-R-, Kim N.-H., Morales A., Ko S.-J., "Efficient video transcoding

technique for QoS-based home gateway service," in IEEE Transactions on Consumer

Electronics, vol. 52, no. 1, pp. 129-137, February 2006.

[9] Alsrehin, N., Clyde S., "QoS-Aware Video Transcoding Service Selection Process," in

Journal of Media & Mass Communication, vol. 1, no. 2, pp. 61-68, December 2015.

118

[10] Sullivan G. J., Ohm J. R., Han W. J., Wiegand T., "Overview of the High Efficiency

Video Coding (HEVC) Standard," in IEEE Transactions on Circuits and Systems for

Video Technology, vol. 22, no. 12, pp. 1649-1668, Dec. 2012.

[11] Bossen F., Bross B., Suhring K., Flynn D., "HEVC Complexity and Implementation

Analysis," in IEEE Transactions on Circuits and Systems for Video Technology, vol.

22, no. 12, pp. 1685-1696, December 2012.

[12] Flich, J., Agosta G., Ampletzer P., Atienza D., Brandolese C., Cilardo A., Fornaciari

W., Hoornenborg Y., Kovač M., Piljić I., Duspara A., Dragić L., Knezović J., Sruk V.,

Hofman D., Maitre B., Massari G., Mlinarić H., Papastefanakis E., Roudet F., Tornero

R., Zoni D., "MANGO: Exploring Manycore Architectures for Next-GeneratiOn HPC

Systems", 2017 Euromicro Conference on Digital System Design (DSD), pp. 478-485.,

Vienna, 2017.

[13] Sze V., Budagavi M., Sullivan G.J., “High Efficiency Video Coding (HEVC),”

Springer, 2014.

[14] Kim I., Min J., Lee T., Han W., Park J., "Block Partitioning Structure in the HEVC

Standard," in IEEE Transactions on Circuits and Systems for Video Technology, vol.

22, no. 12, pp. 1697-1706, December 2012.

[15] Lainema J., Bossen F., Han W., Min J., Ugur K., "Intra Coding of the HEVC Standard,"

in IEEE Transactions on Circuits and Systems for Video Technology, vol. 22, no. 12,

pp. 1792-1801, December 2012.

[16] Ugur K., Alshin A., Alshina E., Bossen F., Han W., Park J., Lainema J., "Motion

Compensated Prediction and Interpolation Filter Design in H.265/HEVC," in IEEE

Journal of Selected Topics in Signal Processing, vol. 7, no. 6, pp. 946-956, December

2013.

[17] Ismail Y., El-Medany W., Al-Junaid H., Abdelgawad A., “High performance

architecture for real-time HDTV broadcasting,” J. Real-Time Image Process., vol. 11,

no. 4, pp. 633–644, 2016.

[18] Amirpour H., Mousavinia A., Shamsi N., "Predictive Three Step Search (PTSS)

algorithm for motion estimation," 2013 8th Iranian Conference on Machine Vision and

Image Processing (MVIP), pp. 48-52, Zanjan 2013.

119

[19] Zhu S., Ma K.-K., "A new diamond search algorithm for fast block-matching motion

estimation," in IEEE Transactions on Image Processing, vol. 9, no. 2, pp. 287-290,

February 2000.

[20] Choi C., Jeong J., "Successive Elimination Algorithm for Constrained One-bit

Transform Based Motion Estimation Using the Bonferroni Inequality," in IEEE Signal

Processing Letters, vol. 21, no. 10, pp. 1260-1264, October 2014.

[21] Goel S., Ismail Y., Bayoumi M. A., "Adaptive search window size algorithm for fast

motion estimation in H.264/AVC standard," in 48th Midwest Symposium on Circuits

and Systems, vol 2., pp. 1557-1560, Covington, KY 2005.

[22] Norkin A., Andersson K., Fuldseth A., Bjøntegaard G., “HEVC deblocking filtering and

decisions,” in Proc. SPIE. 8499, Applications of Digital Image Processing XXXV, no.

849912, October 2012.

[23] Fu C., Chen C., Huang Y., Lei S., "Sample adaptive offset for HEVC," in 2011 IEEE

13th International Workshop on Multimedia Signal Processing, pp. 1-5., Hangzhou

2011.

[24] Sze V., Budagavi M., "High Throughput CABAC Entropy Coding in HEVC," in IEEE

Transactions on Circuits and Systems for Video Technology, vol. 22, no. 12, pp. 1778-

1791, December 2012

[25] Zhu X., Yu L., "Binarization and context model selection of CABAC based on the

distribution of syntax element," in 2012 Picture Coding Symposium, pp. 77-80.,

Krakow 2012.

[26] Misra K., Segall A., Horowitz M., Xu S., Fuldseth A., Zhou M., “An overview of tiles

in HEVC,” in IEEE Journal of Selected Topics in Signal Processing, vol. 7, no. 6, pp.

969-977, December 2013.

[27] Koziri M.G., Papadopoulos P., Tziritas N., Dadaliaris A.N., Loukopoulos T., Khan

S.U., Xu C.-Z., “Adaptive Tile Parallelization for Fast Video Encoding in HEVC,” in

IEEE International Conference on Internet of Things (iThings) and IEEE Green

Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social

Computing (CPSCom) and IEEE Smart Data (SmartData), Chengdu, December 2016.

120

[28] Storch I., Palomino D., Zatt B., Agostini L., "Speedup-aware history-based tiling

algorithm for the HEVC standard, " in 2016 IEEE International Conference on Image

Processing (ICIP), pp. 824-828, Phoenix AZ, 2016.

[29] Dragić L., Piljić I., Kovač M., “Dynamic load balancing algorithm based on HEVC tiles

for Just-in-Time video encoding for heterogeneous architectures,” in Automatika

Journal for Control, Measurement, Electronics, Computing and Communications, vol.

60, no. 2, pp. 239-244, 2019.

[30] Xin J., Lin C-W., Sun M-T., “Digital Video Transcoding,” in Proceedings of the IEEE,

vol. 93, no. 1, pp. 84-97, January 2005

[31] Ahmad I., Wei X., Sun Y., Zhang Y., “Video transcoding: An Overview of Various

Techniques and Research Issues,” in IEEE Transactions on Multimedia, vol. 7, no. 5,

pp. 793–804, October 2005.

[32] Eleftheriadis A., Anastassiou D, "Constrained and general dynamic rate shaping of

compressed digital video," in International Conference on Image Processing, vol 3., pp.

396-399, Washington 1995.

[33] Sun H., Kwok W., Zdepski J.W., "Architectures for MPEG compressed bitstream

scaling," in IEEE Transactions on Circuits and Systems for Video Technology, vol. 6,

no. 2, pp. 191-199, April 1996.

[34] Assuncao P. A. A., Ghanbari M., "A frequency-domain video transcoder for dynamic

bit-rate reduction of MPEG-2 bit streams," in IEEE Transactions on Circuits and

Systems for Video Technology, vol. 8, no. 8, pp. 953-967, December 1998.

[35] Yuan L., Wu F., Chen Q., Li S., Gao W., "The fast close-loop video transcoder with

limited drifting error", in 2004 IEEE International Symposium on Circuits and Systems,

pp.769 -772 , Vancouver 2004.

[36] Yin P., Vetro A., Liu B., Sun H., "Drift compensation for reduced spatial resolution

transcoding," in IEEE Transactions on Circuits and Systems for Video Technology, vol.

12, no. 11, pp. 1009-1020, November 2002.

[37] Ahmad I., Wei X., Sun Y., Zhang Y.-Q., "Video transcoding: an overview of various

techniques and research issues," in IEEE Transactions on Multimedia, vol. 7, no. 5, pp.

793-804, October 2005

121

[38] Youn J., Sun M.-T., "Adaptive motion vector refinement for high performance

transcoding," in Proceedings 1998 International Conference on Image Processing, vol 3,

pp 596-600, Chicago 1998.

[39] Shanableh T., Ghanbari M., "Heterogeneous video transcoding to lower spatio-temporal

resolutions and different encoding formats," in IEEE Transactions on Multimedia, vol.

2, no. 2, pp. 101-110, June 2000.

[40] Mohan R., Smith J. R., Li C.-S., "Adapting multimedia Internet content for universal

access," in IEEE Transactions on Multimedia, vol. 1, no. 1, pp. 104-114, March 1999.

[41] Carey W. K., Chuang D. B., Hemami S. S., "Regularity-preserving image

interpolation," in IEEE Transactions on Image Processing, vol. 8, no. 9, pp. 1293-1297,

September 1999.

[42] Tan Y.-P., Sun H., Liang Y.Q., "On the methods and applications of arbitrarily

downsizing video transcoding," in IEEE International Conference on Multimedia and

Expo, vol. 1, pp. 609-612, Lausanne 2002.

[43] Xu D., Nasiopoulos P., "Logo insertion transcoding for H.264/AVC compressed video",

in IEEE International Conference on Image Processing (ICIP), pp. 3693-3696, Cairo

2009.

[44] Zhang J., Ho A. T. S., Qiu G., Marziliano P., "Robust Video Watermarking of

H.264/AVC," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 54,

no. 2, pp. 205-209, February 2007.

[45] Reyes de los G., Reibman A. R., Chang S.-F., Chuang J. C.-I., “Error-resilient

transcoding for video over wireless channels,” in IEEE J. Sel. Areas Commun., vol. 18,

no. 6, pp. 1063–1074, June 2000.

[46] Dogan S., Cellatoglu A., Uyguroglu M., Sadka A. H., Kondoz A. M., "Error-resilient

video transcoding for robust internetwork communications using GPRS," in IEEE

Transactions on Circuits and Systems for Video Technology, vol. 12, no. 6, pp. 453-

464, June 2002.

[47] Van Wallendael G., De Cock J., Van de Walle R., "Fast transcoding for video delivery

by means of a control stream," in 19th IEEE International Conference on Image

Processing, pp. 733-736, Orlando 2012.

122

[48] Rusert T., Andersson K., Yu R., Nordgren H., "Guided just-in-time transcoding for

cloud-based video platforms," in IEEE International Conference on Image Processing

(ICIP), pp. 1489-1493, Phoenix 2016.

[49] Pham Van L., De Praeter J., Van Wallendael G., Van Leuven S., De Cock J., Van de

Walle R., "Efficient Bit Rate Transcoding for High Efficiency Video Coding," in IEEE

Transactions on Multimedia, vol. 18, no. 3, pp. 364-378, March 2016.

[50] Piljić I., Dragić L., Duspara A., Čobrnić M., Mlinarić H., Kovač M.,” Bolt65 –

performance-optimized HEVC HW/SW suite for Just-in-Time video processing,” in

International Convention on Information and Communication Technology, Electronics

and Microelectronics, pp. 1121-1126, Opatija 2019.

[51] Intel Corporation, Intel Advanced Vector Instructions 2, available at

https://software.intel.com/en-us/cpp-compiler-developer-guide-and-reference-overview-

intrinsics-for-intel-advanced-vector-extensions-2-intel-avx2-instructions (5th May

2019.)

[52] Piljić I., Dragić L., Kovač M.,” Performance-efficient integration and programming

approach of DCT accelerator for HEVC in MANGO platform,” in Automatika Journal

for Control, Measurement, Electronics, Computing and Communications, vol. 60, no. 2,

pp. 245-252, 2019.

[53] Aalborg University: Video Trace Library, YUV video sequences, available at

http://trace.eas.asu.edu/yuv/ (6th May 2019.)

[54] Xiph Video Test Media, available at https://media.xiph.org/video/derf/ (6th May 2019.)

[55] Xilinx, “UltraScale Architecture and Product Data Sheet: Overview,” available at

https://www.xilinx.com/support/documentation/data_sheets/ds890-ultrascale-

overview.pdf, February 2019.

[56] ProFPGA, “FPGA Based Prototyping Solution,” available at

https://www.profpga.com/products/motherboards-overview/profpga-quad (6th May

2019.)

[57] Kvazaar HEVC encoder, available at https://github.com/ultravideo/kvazaar (6th May

2019.)

123

[58] Joint Collaborative Team on Video Coding Reference Software ver. HM 16.20,

available at http://hevc.hhi.fraunhofer.de/ (6th May 2019.)

[59] Wikipedia contributors, “Peak signal-to-noise ratio,” available at

https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio (6th May 2019.)

[60] Bossen F., “Common test conditions and software reference configurations,” Tech. Rep.

JCTVC-H1100, 2012

[61] Yao F., Zhang X., Gao Z., Yang B., "Fast mode and depth decision algorithm for HEVC

intra coding based on characteristics of coding bits," int IEEE International Symposium

on Broadband Multimedia Systems and Broadcasting (BMSB), pp. 1-4., Nara 2016,

[62] Shen L., Zhang Z., An P., "Fast CU size decision and mode decision algorithm for

HEVC intra coding," in IEEE Transactions on Consumer Electronics, vol. 59, no. 1, pp.

207-213, February 2013.

[63] Zhao L., Zhang L., Ma S., Zhao D., "Fast mode decision algorithm for intra prediction

in HEVC," in Visual Communications and Image Processing (VCIP), pp. 1-4, Tainan

2011.

[64] Xilinx, “Vivado Design Suite User Guide: High-Level Synthesis,” available at

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_4/ug902-

vivado-high-level-synthesis.pdf, February 2018.

[65] Xilinx, “AXI Reference Guide,” available at

https://www.xilinx.com/support/documentation/ip_documentation/ug761_axi_reference

_guide.pdf, March 2011.

[66] Xilinx, “7 Series FPGAs Integrated Block for PCI Express 3.0”, available at

https://www.xilinx.com/support/documentation/ip_documentation/pcie_7x/v3_0/pg054-

7series-pcie.pdf, November 2014.

[67] Xilinx, “DMA subsystem for PCI Express – Performance numbers,” available at

https://www.xilinx.com/support/answers/68049.html, April 2016.

124

LIST OF FIGURES

Figure 2.1: HEVC encoder scheme .. 5

Figure 2.2: Example of partitioning CTU to smaller CUs ... 7

Figure 2.3: Angular intra prediction modes, source [13] ... 8

Figure 2.4: Inter prediction concept, source [13] ... 9

Figure 2.5: Transform and quantization process in encoder and decoder 10

Figure 2.6: Deblocking filter example ... 11

Figure 2.7: Dividing the frame to 3x3 uniform tiles .. 13

Figure 3.1: HEVC transcoder scheme example ... 14

Figure 3.2: Open-loop transcoder architecture, source [30] ... 15

Figure 3.3: CPDT architecture, source [30] ... 16

Figure 3.4: DCT - domain transcoder architecture, source [30] .. 17

Figure 3.5: Temporal scalability in HEVC, source [13] .. 19

Figure 3.6: Vector remapping problem in spatial reduction transcoding 20

Figure 6.1: Heatmap for one frame in Calendar video sequence .. 35

Figure 6.2: Heatmap for video sequences BasketballDrive, BlueSky, Traffic, and

KristenAndSara .. 36

Figure 6.3: Heatmap for one frame in Beauty video sequence .. 36

Figure 6.4: Heatmap for one frame in Riverbed video sequence ... 37

Figure 6.5: Mapping CTU structure ... 38

Figure 6.6: Calculation of mapping factor ω .. 40

Figure 6.7: Final mapping .. 41

Figure 6.8: Mapping after the split ... 41

Figure 6.9: Distribution of prediction modes in mapped CUs ... 43

Figure 7.1: Categorization based on number of bits for BasketballDrive video sequence 46

Figure 7.2: Categorization based on number of bits for Riverbed video sequence 47

125

Figure 7.3: CU distribution in the original video sequence (BlueSky) 48

Figure 7.4: CU distribution in the downsized video sequence (BlueSky 1280x720) 50

Figure 8.1: Initial split flowchart .. 60

Figure 8.2: CU distribution after the initial split for three different sets of coefficients.......... 61

Figure 8.3: Prediction decision for IntraM category .. 63

Figure 8.4: Prediction decision for InterM category .. 66

Figure 8.5: Difference in mapped motion vectors .. 67

Figure 8.6: Prediction decision for ComboIntra category .. 69

Figure 8.7: Prediction decision for ComboInter category .. 71

Figure 8.8: Final high-level diagram of the proposed algorithm ... 80

Figure 9.1: Evaluation scheme ... 81

Figure 9.2: Improvements in PSNR depending on transcoding ratio 85

Figure 9.3: Bitrate reduction depending on transcoding ratio .. 85

Figure 9.4: Average gains per video sequence compared with Bolt65 JiT 86

Figure 10.1: Inter prediction search scheme implemented in hardware accelerator 94

Figure 10.2: Model of a custom hardware accelerator for inter prediction 95

Figure 10.3: High-level hardware accelerator block scheme ... 96

Figure 10.4: Exported hardware accelerator scheme ... 98

Figure 10.5: IP core of a custom hardware accelerator for inter prediction 99

Figure 10.6: Comparison between hardware accelerator and software implementation of inter

prediction (per CU block size for search area size 5)... 101

Figure 10.7: Comparison between hardware accelerator and software implementation of inter

prediction (per search area size for block size 32) ... 101

Figure 11.1: Block design of the integrated platform .. 104

Figure 11.2: Hardware utilization of integrated design .. 105

Figure 11.3: Ratio between memory transfer and processing for two working modes.......... 107

126

Figure 11.4: PCI Express transfer speeds in correlation with transfer size, source [67] 108

Figure 11.5: Final scheme of the algorithm on the integrated heterogeneous platform 109

Figure 11.6: Final PSNR comparison .. 111

Figure 11.7: Final bitrate comparison .. 112

Figure 11.8: Final processing time comparison ... 113

127

LIST OF TABLES

Table 5.1: Set of test video sequences .. 28

Table 5.2: Possible transcoding scenarios .. 29

Table 5.3: Host characteristics ... 29

Table 5.4: FPGA characteristics ... 29

Table 5.5: Bolt65 JiT transcoding configuration ... 31

Table 5.6: Kvazaar encoder configuration ... 32

Table 5.7: tJiT for test video sequences .. 33

Table 7.1: Frequency of occurence of categories IntraM, InterM and ComboM for 32x32 blocks

when transcoding from 1920x1080 to 1280x720 (%) .. 52

Table 7.2: Frequency of occurence of categories IntraM, InterM and ComboM for 16x16 blocks

when transcoding from 1920x1080 to 1280x720 (%) .. 52

Table 7.3: Frequency of occurence of categories IntraM, InterM and ComboM for 8x8 blocks

when transcoding from 1920x1080 to 1280x720 (%) .. 52

Table 7.4: Frequency of occurence of categories IntraM, InterM and ComboM for 32x32 blocks

when transcoding from 1920x1080 to 640x480 (%) .. 53

Table 7.5: Frequency of occurence of categories IntraM, InterM and ComboM for 16x16 blocks

when transcoding from 1920x1080 to 640x480 (%) .. 53

Table 7.6: Frequency of occurence of categories IntraM, InterM and ComboM for 8x8 blocks

when transcoding from 1920x1080 to 640x480 (%) .. 54

Table 7.7:Values of γ when transcoding from 1920x1080 to 1280x720 55

Table 7.8:Values of γ when transcoding from 1920x1080 to 640x480 55

Table 8.1: Frequency of occurence of non-split 64x64 blocks .. 59

Table 8.2: Distribution of CU blocks after the initial split (per block size) 62

Table 8.3: Sets of fixed coefficients ... 74

Table 8.4: Comparison of transcoding with fixed sets of coefficients (QP=22) 75

Table 8.5: Comparison of transcoding with fixed sets of coefficients (QP =32) 76

128

Table 9.1: Proposed algorithm vs. Bolt65 Jit - transcoding to 2560x1600 with QP =22 83

Table 9.2: Proposed algorithm vs. Bolt65 Jit - transcoding to 1920x1080 with QP =22 83

Table 9.3: Proposed algorithm vs. Bolt65 Jit - transcoding to 1280x720 with QP =22 83

Table 9.4: Proposed algorithm vs. Bolt65 Jit - transcoding to 704x576 with QP =22 83

Table 9.5: Table 9.4: Proposed algorithm vs. Bolt65 Jit - transcoding to 640x480 with QP =22

 .. 84

Table 9.6: Proposed algorithm vs Kvazaar- transcoding to 2560x1600 with QP=22 87

Table 9.7: Proposed algorithm vs Kvazaar- transcoding to 1920x1080 with QP=22 87

Table 9.8: Proposed algorithm vs Kvazaar- transcoding to 1280x720 with QP=22 87

Table 9.9: Proposed algorithm vs Kvazaar- transcoding to 704x576 with QP=22 87

Table 9.10: Proposed algorithm vs Kvazaar- transcoding to 640x480 with QP=22 88

Table 9.11: Average losses per video sequence compared to Kvazaar 88

Table 10.1: Inter prediction mode adaptation .. 92

Table 10.2: Comparison between SW and proposed HW algorithm with adapted inter prediction

 .. 93

Table 10.3: Hardware utilization of inter prediction custom hardware accelerator 100

Table 11.1: Comparison between CPU-only implementation and implementation on a

heterogeneous integrated platform ... 110

129

BIOGRAPHY

Igor Piljić was born in 1989 in Sarajevo, Bosnia and Herzegovina. He graduated in 2013.

at the Faculty of Electrical Engineering and Computing, University of Zagreb, Croatia. After

graduation, he started working as a software developer in “Hrvatski autoklub” (HAK). From

2014. he works in the Faculty of Electrical Engineering and Computing in Zagreb as a research

associate in the Department of Control and Computer Engineering, where he started his

postgraduate studies under the mentorship of prof.dr.sc. Mario Kovač. During postgraduate

studies, he was included in several national and international research projects. His area of

expertise includes high-performance computing and algorithm optimization for heterogeneous

many-core architectures with special focus set on exploring multimedia architectures and just-

in-time video transcoding. He is a member of HPC architecture and application research center

and HiPEAC organization. He is author and co-author of several scientific papers published in

international conferences and journals.

PUBLISHED PAPERS

1. Piljić I., Dragić L., Kovač M.,” Performance-efficient integration and programming

approach of DCT accelerator for HEVC in MANGO platform”, in Automatika Journal

for Control, Measurement, Electronics, Computing and Communications, vol 60, no 2.,

pp. 245-252, 2019.

2. Piljić I., Dragić L., Duspara A., Čobrnić M., Mlinarić H., Kovač M.,” Bolt65 –

performance-optimized HEVC HW/SW suite for Just-in-Time video processing”, in

International Convention on Information and Communication Technology, Electronics

and Microelectronics, pp. 1121-1126, Opatija 2019.

3. Piljić I., Dragić L., Franček P., Kovač M., Mlinarić H., Gvozdanović D., “Bringing

generations together: Social network adapted for elders”, in 57th International

Symposium ELMAR (ELMAR), pp. 255-258, Zadar 2015.

4. Dragić L., Piljić I., Kovač M., “Dynamic load balancing algorithm based on HEVC tiles

for Just-in-Time video encoding for heterogeneous architectures”, in Automatika

Journal for Control, Measurement, Electronics, Computing and Communications, , vol

60, no 2., pp. 239-244, 2019.

5. Iranfar A., Terraneo F., Simon W.A., Dragić L., Piljić I., Zapater Sancho M., Fornaciari

W., Kovač M., Atienza Alonso D., "Thermal characterization of next-generation

workloads on heterogeneous MPSoCs", in International Conference on Embedded

130

Computer Systems: Architectures, Modeling, and Simulation (SAMOS), pp. 286-291.,

Pythagorion 2017.

6. Flich, J., Agosta G., Ampletzer P., Atienza D., Brandolese C., Cilardo A., Fornaciari

W., Hoornenborg Y., Kovač M., Piljić I., Duspara A., Dragić L., Knezović J., Sruk V.,

Hofman D., Maitre B., Massari G., Mlinarić H., Papastefanakis E., Roudet F., Tornero

R., Zoni D., "MANGO: Exploring Manycore Architectures for Next-GeneratiOn HPC

Systems", 2017 Euromicro Conference on Digital System Design (DSD), pp. 478-485.,

Vienna, 2017.

7. Flich J., Giovanni A., Ampletzer P., Atienza D., Brandolese C., Cappe E., Cilardo A.,

Dragić L., Dray A., Duspara A., Fornaciari W., Fussela E., Gagliardi M., Guillaume G.,

Hofman D., Hoornenborg Y., Iranfar A., Kovač M., Libutti S., Maitre B., Martinez J.M.,

Massari G., Meinds K., Mlinarić H., Papastefanakis E., Picornell Sanjuan T., Piljić I.,

Pupykina A., Reghenzani F., Staub I., Tornero R., Zanella M., Zapater M., Zoni D.,

“Exploring Manycore Architectures for Next-Generation HPC Systems through the

MANGO Approach”, in Microprocessors and Microsystems, vol 61, pp. 154-170,

Septemner 2018.

8. Dragić L., Piljić I., Kovač M., Mlinarić H., Franček P., Žagar M., Sruk V.,

Gvozdanović., “Home Health Smart TV - Bringing e-Health closer to elders”, in

Proceedings of the Fourth International Conference on Telecommunications and

Remote Sensing Including a Special Session on eHealth Services and Technologies

(EHST), pp. 116-121., Rhodos 2015.

9. Dragić L., Piljić I., Franček P., Kovač M., Mlinarić H., Gvozdanović D.,” Home Health

Smart TV - platform for accessing multimedia e-health content”, in 57th International

Symposium ELMAR (ELMAR), pp. 251-254., Zadar 2015.

10. Franček P., Piljić I., Dragić L., Mlinarić H., Kovač M., Gvozdanović D., “Overcoming

e-health interoperability obstacles: Integrating PHR and EHR using HL7 CCD”, in 57th

International Symposium ELMAR (ELMAR), pp. 73-76., Zadar 2015.

11. Gvozdanović D., Kovač M., Mlinarić H., Dragić L., Piljić I., Franček P., Žagar M., Sruk

V., “Interoperability Within E-Health Arena”, in Proceedings of the Fourth International

Conference on Telecommunications and Remote Sensing Including a Special Session

on eHealth Services and Technologies (EHST), pp. 81-86., Rhodos 2015.

131

ŽIVOTOPIS

Igor Piljić rođen je 1989. godine u Sarajevu u Bosni i Hercegovini. Diplomirao je 2013.

godine na Fakultetu elektrotehnike i računarstva u Zagrebu. Nakon diplome zaposlio se kao

projektant programmer u Hrvatskom autoklubu (HAK). Od 2014. godine zaposlen je na

matičnom fakultetu kao zavodski suradnik na Zavodu za automatiku i računalno inženjerstvo,

a 2015. godine upisuje poslijediplomski studij pod mentorstvom prof. dr. sc. Maria Kovača.

Tijekom doktorata sudjelovao je na provedbi nekoliko nacionalnih i međunarodnih

istraživačkih projekata. Područja znanstvenog interesa su mu računarstvo visokih performanci

s posebnim fokusom na algoritme za video procesiranje optimirane za izvođenje na

raznorodnim arhitekturama. Član je centra za istraživanje arhitektura i aplikacija za računarstvo

visokih performanci (“HPC Architecture and Application Research Centar”) i organizacije

HiPEAC. Autor je ili koautor više znanstvenih radova objavljenim u međunarodnim

konferencijama i časopisima.

