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SUMMARY 

Latest analysis show that 82 percent of global IP traffic will be video traffic by 2022. 

Handling this amount of data is a very challenging task for video content providers. Another 

factor that highlights this problem is the continuously growing number of different devices that 

are able to play video content. With such diversity of devices, with different characteristics, a 

single copy of the encoded video cannot match requirements of all playback conditions. Just-

in-Time (JiT) video transcoding has one of the key roles in resolving these issues. However, it 

is an extremely compute-intensive and resource-hungry process, especially when it is based on 

the novel High Efficiency Video Coding standard.  

This thesis presents a novel algorithm for reusing coding information from the input 

video stream. The main concept behind the proposed algorithm is to estimate the computational 

complexity of re-encoding each coding block based on the information retrieved from the 

decoded frame and to balance the workload of the transcoder accordingly. The final goal is to 

achieve an optimal trade-off between video quality of the transcoded bitstream and coding 

efficiency while conforming to strict timing requirements imposed by Just-in-Time transcoding. 

To achieve a more efficient solution, a hardware accelerator for inter prediction, as one of the 

key compute-intensive kernels in video transcoding based on HEVC, is designed and 

implemented.  

An integrated system composed of implemented algorithm and custom hardware 

accelerator is evaluated and compared to two baseline transcoders: Just-in-Time transcoder 

without reusing data and regular transcoder without timing restrictions. Compared with JiT 

transcoder, the proposed solution increases video quality by 0.945 dB and reduces bitrate on 

average by 35.06%. Significant speedups of up to 4 times are achieved compared with 

transcoder without timing requirements but with average losses of 0.592 in PSNR and 21.74% 

in bitrate.  

Keywords: video transcoding, HEVC, reusing data, hardware accelerators, heterogeneous 

high-performance architectures 

 

 

 



 

 

Sustav za pravovremeno videotranskodiranje na raznorodnim arhitekturama za 

računarstvo visokih performanci  

Statistike pokazuju da će 82% globalnog Internet Protokol (IP) prometa do 2022. godine 

činiti video promet, što je povećanje sa 75% udjela u 2017. godini. Godišnji globalni IP promet 

će doseći granicu od 4.8 ZB (ZB= 1000 Egzabajta) do 2022. godine, što znači da će približno 

3.9 ZB biti promet video sadržaja. Preračunato u minute, do 2022. svake sekunde će mrežom 

proći preko milijun minuta videa.  

Rukovanje tolikom količinom podataka predstavlja iznimno zahtjevan zadatak za 

poslužitelje video sadržaja. Još jedan faktor koji naglašava složenost ovog problema je činjenica 

da broj različitih uređaja koji mogu prikazivati video sadržaj konstantno raste. Takvu 

raznovrsnost uređaja, koji mogu imati različitu procesorsku snagu, sposobnost dekodiranja i 

različite rezolucije, a mogu biti spojeni i na mreže s niskom ili visokom propusnosti, nemoguće 

je zadovoljiti samo jednom verzijom videa. Na primjer, slanje videa visoke rezolucije (1080p) 

koji ima 60 okvira u sekundi (60fps) mobilnom uređaju koji nema tako visoku rezoluciju 

zaslona i koji je spojen na mrežu niske propusnosti je, ne samo nepotreban trošak resursa, nego 

će vjerojatno uzrokovati i kašnjenje u prikazu videa, smanjujući time iskustvenu kvalitetu 

korisnika. 

Trenutni poslužitelji video usluga pokušavaju riješiti ovaj problem tako da prvo kodiraju 

isti video u više različitih verzija te nakon toga korisniku pošalju onu verziju koja najbolje 

odgovara njegovim zahtjevima. Ovakav pristup zahtjeva veliku količinu memorije za pohranu 

svih verzija, a osim toga odabrana verzija ne mora u potpunosti odgovarati svim zahtjevima 

krajnjeg korisnika. Nadalje, korištenje novih rezolucija (4K, 8K,…), kao i činjenica da je video 

sadržaj raspodijeljen tako da 90% sadržaja gleda samo 10% korisnika i obrnuto (distribucija 

„dugog repa“), čine ovakav koncept teško održivim. Pravovremeno videotranskodiranje ima 

jednu od ključnih uloga u rješavanju ovog problema. Videotranskodiranje se odnosi na 

prilagodbu video sadržaja ovisno o specifičnim okolnostima i karakteristikama uređaja, a 

uključuje promjenu prostorne, vremenske ili amplitudne rezolucije, te video formata. Umjesto 

spremanja više verzija jednog videa, poslužitelji mogu spremiti samo jednu verziju s najvišom 

kvalitetom, a zatim na zahtjev korisnika, transkodirati video u stvarnom vremenu, ovisno o 

trenutnom zahtjevu, a zatim taj transkodirani video poslati korisniku. Iako pravovremeno 

videotranskodiranje povećava učinkovitost sustava osiguravajući najbolju iskustvenu kvalitetu, 

to je iznimno računalno zahtjevan postupak. Još jedan od pristupa koji se danas koristi je 



 

 

Skalabilno video kodiranje (eng. Scalable Video Coding – SVC). SVC sadrži kodiranu 

najkvalitetniju verziju videa, a za slučaj da je potreban zapis manje kvalitete, potrebno je samo 

izbaciti određene pakete unutar SVC formata prilikom slanja. Spremanje videa u SVC formatu 

značajno smanjuje cijenu pohrane podataka, ali i dalje ne omogućuje najbolju iskoristivost 

resursa, niti najbolju kvalitetu videa. Neka istraživanja kombiniraju postupke pravovremenog 

videotranskodiranja sa spremanjem više verzija videa u hibridne platforme koje koriste 

statistiku pregleda da bi odlučili koje video zapise ili dijelove videa je potrebno pravovremeno 

transkodirati, a koje dijelove se isplati pohraniti u više verzija.  

HEVC ili H.265 (eng. High Efficiency Video Coding) norma za video kodiranje postiže 

značajan napredak u kompresiji za razliku od prethodne AVC norme. Uz istu subjektivnu 

kvalitetu, HEVC ostvaruje približno 50% bolju kompresiju, ali povećava računalnu složenost i 

zahtjev za resursima i do 10 puta. Prilikom razvoja HEVC norme, posebna pozornost bila je 

usmjerena na mogućnosti paralelizacije algoritama te njihovo izvođenje na sklopovskim 

arhitekturama. Učinkovito iskorištavanje ovih koncepata je ključno kada govorimo o 

pravovremenom videotranskodiranju visokih performanci, pogotovo na raznorodnim 

višejezgrenim arhitekturama.  

Pravovremeno videotranskodiranje zasnovano na HEVC normi je iznimno računalno 

zahtjevan postupak te je postizanje najboljeg odnosa između kvalitete videa i računalne 

složenosti tema brojnih istraživanja. Pametno iskorištavanje informacija o kodiranju početnog 

video zapisa ima ključnu ulogu u gotovo svim povezanim istraživanjima. Programski algoritmi 

mogu postići značajan napredak u smanjenju složenosti i ubrzanju postupka, ali da bi se 

zadovoljili strogi vremenski zahtjevi, moraju se istražiti i iskoristiti sklopovske jezgre za 

ubrzanje i raznorodne arhitekture na računalima visokih performanci. Optimizacija i učinkovito 

raspoređivanje pojedinih dijelova algoritma na različite jezgre raznorodnog sustava je nužno da 

bi se postigao najbolji balans između kvalitete videa, potrošnje energije i kompresije videa, a 

istovremeno zadovoljavajući zahtjeve pravovremenog izvođenja i željene kvalitete usluge. 

Glavni cilj ove doktorske disertacije bilo je istražiti tehnike iskorištavanja informacija 

o kodiranju ulaznog video toka kodiranog HEVC standardom da bi se ubrzao proces ponovnog 

kodiranja, ali bez negativnog utjecaja na kvalitetu videa i/ili učinkovitost kodiranja. U cilju 

daljnjeg poboljšanja procesa videotranskodiranja, istražene su i učinkovite izvedbe 

pravovremenog videotranskodiranja na raznorodnim arhitekturama za računarstvo visokih 

performanci.  



 

 

U sklopu provedenog istraživanja razvijeno je  programsko-sklopovsko rješenje Bolt65. 

Bolt65 sastoji se od enkodera, dekodera i transkodera zasnovanog na HEVC standardu, čiji je 

glavni cilj ostvariti videotranskodiranje u stvarnom vremenu. Poseban fokus pri razvoju ovog 

rješenja postavljen je na učinkovitost s obzirom na performance ostvarenu optimizacijom za 

programsko-sklopovske sustave. Algoritam za iskorištavanje informacija o kodiranju ulaznog 

video toka, predstavljen kao jedan od doprinosa ove disertacije, ugrađen je i testiran unutar 

Bolt65 rješenja.  

Za validaciju i verifikaciju  svih provedenih eksperimenata korišten je isti set videa, s 

različitim vremenskim i prostornim rezolucijama da bi se pokrio što širi spektar mogućih 

kombinacija pri videotranskodiranju. U obzir su uzete video sekvence rezolucije veće od 

1280x720 piksela s maksimalnim brojem od 120 okvira u sekundi. Raznorodni sustav na kojem 

su izvršena sva testiranja sastoji se od procesora opće namjene i Kintex Ultrascale FPGA 

pločice koji su međusobno povezani preko visoko propusne PCIe (Gen3 x8) sabirnice. Rezultati 

razvijenog transkodera uspoređeni su s dva transkodera: pravovremenog Bolt65 transkodera i 

Kvazaar transkodera. Tri glavne karakteristike transkodiranja su praćene prilikom vrednovanja 

svih rezultata: vrijeme izvođenja, bitovna brzina prijenosa (eng. bitrate) za analizu 

učinkovitosti kodiranja te PSNR (eng. Peak signal-to-noise ratio) za mjerenje kvalitete 

transkodiranog video zapisa. 

Inteligentno iskorištavanje informacija o kodiranju ulaznog video zapisa ima ključnu 

ulogu u poboljšavanju procesa video transkodiranja. U ovoj disertaciji identificirane su i 

korištene tri vrste podataka iz ulaznog video toka:  

• Veličina dekodiranih kodnih blokova (eng. Coding Unit - CU), odnosno broj 

bitova koji je bio potreban da bi se pojedini kodni blok kodirao u originalnom 

video zapisu 

• Broj mapiranih kodnih blokova, odnosno broj kodnih blokova iz originalnog 

videa koji pokriva isto područje slike kao i trenutno promatrani kodni blok u 

transkodiranoj slici 

• Vrsta predikcije mapiranih kodnih blokova, odnosno način predikcije (intra ili 

inter) pojedinih kodnih blokova iz originalnog videa 

Jedan od glavnih aspekata predstavljenog programskog algoritma je kategorizacija 

kodnih blokova. Glavna zamisao ovog koncepta je razdvojiti kodne blokove u različite 



 

 

kategorije ovisno o složenosti njihovog procesiranja, a zatim kodirati pojedine blokove ovisno 

o kategorijama kojima pripadaju. Više procesorske moći će biti uloženo u analizu i 

transkodiranje složenijih blokova kodiranja, s obzirom na to da je veća vjerojatnost da se upravo 

u tom dijelu slike nalazi više detalja. Tri su skupine kategorija u kojoj se kategorizira svaki 

kodni blok:  

• Kategorizacija temeljena na broju bitova iz dekodiranog videa – kategorije LBC 

(eng. Low Bit Complexity), MBC (eng. Medium Bit Complexity) i HBC (eng. 

High Bit Complexity) 

• Kategorizacija temeljena na broju mapiranih kodnih blokova – kategorije LM 

(eng. Low Mapped), MM (eng. Medium Mapped) i HM (eng. High Mapped) 

• Kategorizacija temeljena na vrsti predikcije mapiranih kodnih blokova – 

kategorije InterM, IntraM, ComboInter, ComboIntra 

Svaka od tri vrste kategorizacije kontrolirana je zasebnim koeficijentima kojima se 

može regulirati broj kodnih blokova u svakoj od kategorija te koji se mogu dinamički mijenjati 

tijekom procesa transkodiranja, što je iznimno bitno kod pravovremenog izvođenja. Primjerice, 

ako se prilikom transkodiranja detektira da brzina izvođenja pada te da je izvođenje u stvarnom 

vremenu ugroženo, koeficijenti se mogu podesiti tako da se veći broj kodnih blokova 

kategorizira u manje složene kategorije (npr. LBC ili LM), čime se automatski smanjuje 

složenost ukupnog transkodiranja te samim time ubrzava čitav proces. 

Algoritam predstavljen u ovoj disertaciji iskorištava informacije o kodiranju ulaznog 

video toka da bi kategorizirao kodne blokove ovisno o njihovoj složenosti, nakon čega donosi 

odluke u fazi transkodiranja ovisno o tome kojim kategorijama pojedini kodni blok pripada. Na 

samom početku, nakon dekodiranja okvira, izvlače se svi relevantni podaci o kodiranju 

originalnog videa, nakon čega se kreće u novo kodiranje s novim parametrima. Transkodirani 

okvir se zatim dijeli u najveće moguće kodne blokove (64x64 piksela) te se svi blokovi 

kategoriziraju u svaku od tri već navedene kategorije. Idući korak je inicijalna podjela kodnih 

blokova na manje blokove veličine od 32x32 do 8x8 piksela. U ovom koraku odluka o podjeli 

temelji se na prve dvije kategorizacije (kategorizacija temeljena na broju bitova iz dekodiranog 

videa i kategorizacija temeljena na broju mapiranih kodnih blokova).  Vjerojatnost da će kodni 

blok biti podijeljen na manje blokove je veća ako kodni blok pripada nekoj od složenijih 

kategorija (npr. HM i/ili HBC). Nakon inicijalne podjele, svaki novonastali blok ponovo prolazi 

kroz proces kategorizacije. Idući korak je odluka o načinu predikcije koja se donosi isključivo 



 

 

ovisno o trećoj vrsti kategorizacije – kategorizacija temeljena na vrsti predikcije mapiranih 

kodnih blokova. Ovisno o načinima predikcije mapiranih kodnih blokova te broju mapiranih 

kodnih blokova koji imaju sličan način predikcije, stvara se podskup intra i inter predikcijskih 

kandidata koji se evaluiraju da bi se dobila najbolja moguća predikcija za transkodiranje 

trenutnog kodnog bloka. U slučaju da se detektira da se načini predikcije mapiranih kodnih 

blokova uvelike razlikuju, postoji mogućnost daljnjeg dijeljenja na manje blokove da bi se 

ostvarila preciznija predikcija. 

Prilikom transkodiranja stanje svih parametara se konstantno prati da bi se osigurala 

pravovremena izvedba. Nakon svakih nekoliko okvira provjerava se brzina izvođenja, 

učinkovitost kodiranja te kvaliteta videa. U slučaju da pravovremeno izvođenje nije 

zadovoljeno, svi koeficijenti se podešavaju da bi se smanjila složenost transkodiranja u 

sljedećem periodu. U suprotnom slučaju, kada je pravovremeno izvođenje zadovoljeno, 

razmatra se podešavanje svih koeficijenata u cilju povećanja kvalitete videa i/ili učinkovitosti 

kodiranja u onim granicama koje ne predstavljaju rizik pravovremenom izvođenju. Stalno 

praćenje i nadzor svih parametara te podešavanje koeficijenata u cilju postizanja što bolje 

kvalitete videa bez ugrožavanja pravovremenog izvođenja čini ovaj algoritam otpornim na 

promjene unutar same video sekvence i unutar sustava na kojem se izvodi videotranskodiranje. 

Korištenjem predstavljenog algoritma zadovoljava se pravovremenost u svim 

slučajevima, a postiže se bolja kvaliteta (PSNR) za sve promatrane scenarije transkodiranja u 

odnosu na pravovremeni Bolt65 transkoder, i to za 0.788 dB u prosjeku. Učinkovitost kodiranja 

uvećana je za 27.35% u prosjeku. U usporedbi s Kvaazar transkoderom koji transkodira video 

bez striktnih vremenskih zahtjeva, predloženi algoritam transkodira s lošijom kvalitetom za 

0.749 dB te lošijom učinkovitosti kodiranja za otprilike 30% u prosjeku. Ovi gubici uzrokovani 

su ograničenjima u brzini izvođenja. Naime, Kvaazar ne zadovoljava pravovremeno 

transkodiranje ni za jednu testnu video sekvencu, a prosječno ubrzanje koje se dobije 

korištenjem predloženog algoritma u odnosu na Kvazaar je 2.24 puta.  

Programska izvedba opisanog algoritma postiže napredak u odnosu na druge 

promatrane pravovremene transkodere, međutim, da bi se postiglo videotranskodiranje sa 

strogim vremenskim ograničenjima nužno je smanjiti set funkcionalnosti koji je moguć pri 

transkodiranju HEVC standardom. Neki alati, kao što su npr. interpolacijski filteri koji mogu 

značajno poboljšati  kvalitetu videa i učinkovitost kodiranja, se ne koriste s obzirom na to da 

njihova složenost uvelike utječe na ukupno vrijeme transkodiranja. Uvođenjem sklopovskih 



 

 

ubrzivača za pojedine jezgre može se ubrzati čitav proces, čime bi se otvorio prostor za 

uvođenje novih alata ili proširivanje postojećih, što bi poboljšalo kvalitetu transkodiranog 

videa. Naime, kod pravovremenog videotranskodiranja, krajnji cilj nije izvršiti transkodiranje 

što je brže moguće, već postići što bolji omjer kvalitete videa i učinkovitosti kodiranja, uz 

zadovoljavanje postavljenih vremenskih ograničenja.   

Analizom HEVC transkodera identificirano je nekoliko jezgri koje najviše utječu na 

ukupno trajanje izvođenja. Kao najbolji kandidat za sklopovsko ubrzanje u razvijenom 

algoritmu odabrana je inter predikcija, koja ne samo da utječe na ukupno vrijeme izvođenja 

nego također uvelike utječe i na kvalitetu krajnjeg video zapisa te učinkovitost kodiranja. 

Razvijen je specijalizirani sklopovski ubrzivač za FPGA koji postiže ubrzanja od 4 do 13 puta, 

ovisno o veličini blokova i veličini područja pretrage, u odnosu na čistu programsku 

implementaciju.  

Integracija razvijenog programskog rješenja i specijaliziranog sklopovskog ubrzivača 

izvedena je na već opisanom sustavu s jednim procesorom opće namjene i Kintex Ultrascale 

FPGA pločicom na kojoj je postavljen projektirani sklopovski ubrzivač za inter predikciju. 

Komunikacija između procesora opće namjene i sklopovskog ubrzivača odvija se preko DMA 

(eng. Direct Memory Access) sklopa i AXI sučelja, a svi podaci o video okvirima spremaju se 

u DDR memoriju. Maksimalna moguća brzina prijenosa koja se može dostići u ovom sustavu 

iznosi 8 Gb/s.  

S obzirom na to da se s integriranim rješenjem dobije ubrzanje videotranskodiranja, 

višak vremena koji se time dobije može se iskoristiti za proširivanje područja pretrage inter 

predikcije ili za prilagodbu koeficijenata na način da više kodnih blokova pripada složenijim 

kategorijama koje se detaljnije obrađuju, čime se u konačnici dobiva na kvaliteti transkodiranog 

videa i učinkovitosti kodiranja. Ovakvo rješenje integrirano na raznorodnoj arhitekturi visokih 

performanci postiže bolju kvalitetu u odnosu na Bolt65 pravovremeni transkoder od 0.945 dB, 

što je rast u odnosu na 0.788 dB koji se dobio samo programskom izvedbom. Učinkovitost 

kodiranja također raste sa 27.35% na 35.06%. Analogno tome, gubici u odnosu na Kvazaar 

transkoder, koji ne realizira pravovremeno transkodiranje, su manji i što se tiče kvalitete videa 

i učinkovitosti kodiranja.  

Ključne riječi: videotranskodiranje, HEVC, iskorištavanje informacija o kodiranju ulaznog 

video toka,  sklopovske jezgre za ubrzanje, raznorodne arhitekture visokih performanci 
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1 INTRODUCTION 

Statistics show that global video IP traffic will be 82 percent of all consumer internet 

traffic by 2022, up from 75 percent in 2017. Annual global IP traffic will reach 4.8 Zettabytes 

(1 ZB = 1000 Exabytes) per year by 2022, meaning that approximately 3.9 ZB of video content 

will cross the network in 2022 [1]. Handling this enormous amount of data is a very challenging 

task for video content providers in years to come. Another factor that highlights this problem is 

the fact that the number of different devices that are able to play video content is constantly 

growing, with the number of mobile-connected devices per capita predicted to reach 1.5 by 

2022 [2]. With such diversity of devices, that have different decoding capabilities, computing 

resources, network bandwidths, and screen resolutions, a single copy of the encoded video 

cannot efficiently match the requirements of all devices and different playback conditions. For 

example, serving video with 1080p resolution and 60fps to a low-resolution mobile device with 

low bandwidth connection would be not only the waste of resources, but it would probably 

cause playback delays and thereby lower Quality of the Experience (QoE).  

Current video providers usually tackle this problem by pre-encoding input video with 

different configurations and storing multiple copies of the same video on the server [3]. When 

the user requests the video, the server provides the version that best satisfies the requirements 

of the end user. Such an approach has very high storage costs, and pre-encoded video streams 

may still not exactly match end-user requirements. Furthermore, emerging spatial resolutions 

(4K, 8K, etc.), as well as the long-tail distribution of video content, where 90 percent of videos 

are viewed by only 10 percent of users and vice versa, make this concept hardly sustainable. 

Just-in-Time (JiT) video transcoding has one of the key roles in resolving these issues. Video 

transcoding refers to the problem of adapting on-the-fly Internet video content based on user’s 

device features or specific operational conditions. Adaptation involves changing video 

properties, such as spatial, temporal and amplitude resolution, bitrate and video format. Instead 

of storing multiple copies on the server, only one version with the highest quality can be stored 

and transcoded on demand in real-time. 

Although Just-in-Time transcoding increases efficiency while providing the best 

possible QoE, it is extremely compute-intensive and data-intensive operation. Other approaches 

that are commonly used by video content providers are Scalable Video Coding (SVC) [4] and 

newer standard Scalable Extensions of the High Efficiency Video Coding Standard (SHVC) 
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[5]. SVC and SHVC provide high-quality video stream that contains multiple subset bit streams, 

representing video with lower quality, that are derived by dropping packets from the larger 

video to reduce bandwidth. Storing video in one of these formats reduces storage significantly 

but does not provide the best quality nor best resource management [6]. Some studies combine 

video transcoding and storing multiple copies in a hybrid system that use previously measured 

video statistics to determine what videos (or parts of the video) will be transcoded on demand 

and what videos will be stored in multiple copies ([7],[8],[9]). 

High Efficiency Video Coding (HEVC/H.265) standard shows a significant advance in 

compression efficiency than its predecessor AVC [10]. At the same subjective quality, HEVC 

saves approximately 50% bitrate but increases computational complexity and resource 

requirements ten times [11]. Other important aspects that were considered while developing 

HEVC are its potential for parallel processing and support for hardware implementation. 

Efficient exploration of these concepts is crucial when it comes to high-performance Just-in-

Time video transcoding based on HEVC, especially on heterogeneous many-core architectures. 

Just-In-Time video transcoding based on HEVC is extremely computationally 

expensive and resource-hungry process and achieving the best possible video quality with the 

lowest possible computational complexity is a topic of numerous researches. Intelligent 

utilization of coding information extracted from the initial encoded video stream has a key role 

in almost every study related to this topic. Software algorithms can accomplish significant 

improvements, but with the strict timing requirements, hardware accelerators and 

heterogeneous architectures on high-performance computers have to be analysed and exploited. 

Efficient mapping and optimization of key compute-intensive algorithms to different types of 

cores to achieve the best trade-off between coding efficiency, video quality and power 

consumption, while fulfilling real-time constraints and QoS demands is essential.  

This thesis investigates novel techniques for Just-in-Time transcoding based on HEVC 

standard by exploiting data retrieved from the input video stream to increase the speed of the 

re-encoding operation while trying to preserve video quality and bitrate of the originally 

encoded bitstream. The exploitation of heterogeneous architectures and performance efficient 

integration of system architectures composed of all associated modules in order to improve the 

process of the transcoding is also considered in the scope of this thesis. One of the main goals 

of the presented research is to contribute to video content server architectures by designing a 

heterogeneous system that is capable of Just-in-Time transcoding based on HEVC standard. 
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Previous studies on algorithms and architectures that reuse and utilize coding information from 

the input video stream, usually cover only a subset of the described research area and rarely 

cover all aspects: Just-in-Time requirement, execution on heterogeneous high performance 

computers and transcoding based on HEVC standard. 

1.1 Thesis outline 

Chapter 2 starts with the introduction to a novel standard for video compression – High 

Efficiency Video Coding (HEVC or H.265). All the coding tools used in HEVC and their 

impact on video quality and computational complexity are briefly described.  

Chapter 3 gives a brief overview of video transcoding. Several transcoding architectures 

and techniques used to facilitate the process of video transcoding are also presented along with 

their advantages and disadvantages. Finally, the specifics and challenges of Just-in-Time 

transcoding are explained. 

In Chapter 4, Bolt65 software/hardware suite consisting of the encoder, decoder and 

transcoder developed as a part of research activities conducted for this thesis is presented. 

Special focus is set on the configuration used to achieve Just-in-Time encoding and transcoding.  

Chapter 5 describes the methodology and test environment used to evaluate all solutions 

developed in the scope of this thesis. All data sets used, as well as the system on which 

integrated solution is ported, are described in more details in chapter 5. Baseline transcoders 

used to evaluate the final integrated system are also presented.  

In Chapter 6 three types of coding information that is reused in the proposed algorithm 

are defined: the size of decoded coding units, the number of mapped coding units and prediction 

modes of the mapped coding units.  

Concept of categorization based on the coding information presented in Chapter 6 is 

described in Chapter 7, while the algorithm for Just-in-Time transcoding that processes each 

coding unit depending on the results of the categorization is presented in Chapter 8. 

Evaluation and validation of the proposed algorithm on CPU-only architectures are 

given in Chapter 9, where the comparison with two baseline transcoders is conducted and 

presented.  
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Functionality, design, synthesis, and implementation of a custom hardware accelerator 

for inter prediction is described in Chapter 10. Analysis and impact of including hardware 

accelerator in a previously proposed algorithm are also presented.  

Performance-efficient integration of implemented software algorithm and custom 

hardware-based accelerator on high performance computing architecture is given in Chapter 

11. The integrated solution is compared with CPU-only implementation of the algorithm as well 

as with two baseline transcoders. 

Finally, Chapter 12 summarizes the achievements of this thesis and proposes some 

directions for future work in this domain. 
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2 HIGH EFFICIENCY VIDEO CODING (HEVC) STANDARD 

High Efficiency Video Coding (HEVC or H.265) is a video compression standard 

developed by the Joint Collaborative Team on Video Coding (JCT-VC), a collaboration 

between Video Coding Experts Group (VCEG) and ITU Telecommunication Standardization 

Sector (ITU-T) [13]. The HEVC standard enables major advance in compression relative to its 

predecessors, such as Advanced Video Coding (AVC) or MPEG-2, doubling compression rate 

of encoded bitstream compared to AVC without sacrificing quality. This compression 

efficiency of HEVC standard is not accomplished with a single novel compression technique 

but is a result of multiple contributions in all stages of the encoding process.  

2.1 HEVC architecture 

Scheme of the HEVC video encoder, which also contains all the building blocks that are 

incorporated in the decoder and transcoder as well, is given in Figure 2.1 

 

Figure 2.1: HEVC encoder scheme 
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HEVC follows block-based video coding, where the input frame is first partitioned to 

smaller blocks and then predicted using intra or inter prediction. The prediction errors or 

residual, formed as a difference between original and predicted block, is transformed, quantized 

and finally, entropy encoded into the bitstream. Decoding loop, where quantized values are de-

quantized, inverse transformed and stored to the decoded picture buffer is also present in the 

encoder scheme to obtain a decoded frame for predictions of future frames. Other tools, such 

as in-loop filtering can be incorporated in the encoding, but can also be skipped, depending on 

the configuration of the encoder.  

Final encoded bitstream must comply with the rules defined in the standard, but the 

standard itself does not govern the encoding process or the algorithms that are used to form the 

bitstream. More complex and compute demanding algorithms usually lead to better 

compression efficiency but at the cost of increased processing time, so finding the best trade-

offs between these parameters depends on the system requirements.  

All of the building blocks shown in Figure 2.1 are described in more details in the 

following sections.  

2.2 Block partitioning 

The first step after fetching the frame from the input video sequence is to divide the 

frame into smaller square-shaped blocks called Coding Tree Units (CTU) [14]. A CTU 

represents a basic processing unit in HEVC and all future operations in the encoding process 

are based on CTU. CTU can be split into more smaller Coding Units (CU) of variable sizes, 

with a minimum CU size of 8x8 and maximum of 64x64. Each coding unit consists of precisely 

three Coding Blocks (CB), one luma block and two corresponding chroma blocks. Dividing 

CTU to multiple smaller CUs follows the quadtree structure as shown in Figure 2.2.  

Each leaf CU can act as a root for residual quadtree (RQT). The residual quadtree is a 

tree of Transform Units (TU) containing Transform Blocks (TB) that can be created to enable 

the adaptation of the transform functions to the varying space-frequency characteristics of the 

residual signal. Leaf CUs can also be split to up to four Prediction Units (PU) that can be used 

for more precise motion estimation. 
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Figure 2.2: Example of partitioning CTU to smaller CUs 

A flexible partitioning mechanism that enables variable blocks sizes helps to adapt the 

encoding process to characteristics of the specific video sequence. More detailed parts of the 

frame can be divided into smaller blocks to describe that area in more details, while the static 

parts of the frame can be divided into larger blocks. Partition decisions can also have a notable 

impact on the quality of the encoded bitstream, as well as on the computational complexity of 

the encoder. Therefore, when considering Just-in-Time encoding or transcoding, block 

partitioning has to be taken into account.  

2.3 Prediction 

Each coding unit can be predicted by exploiting either spatial (intra prediction) [15] or 

temporal (inter prediction) [16] redundancy in video frames. Difference between the predicted 

and original block forms a residual that is passed as an input in following steps of the encoder.  

Depending on the defined Group of Pictures (GOP), the frame can be intra, or inter 

predicted. GOP represents a collection of successive pictures within a coded video stream, and 

it specifies the order in which intra and inter frames are arranged. In the intra frame, all coding 

units have to be intra predicted. Otherwise, coding units can be either inter or intra predicted, 

depending on the algorithm that determines prediction modes.  

2.3.1 Intra prediction 

Intra prediction uses neighbouring pixels from adjacent reconstructed coding blocks 

within the same frame to calculate the predicted block. To predict different kinds of content, 

HEVC supports prediction methods that can be classified into two categories: angular intra 
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prediction methods that accurately model structures with directional edges and Planar and DC 

predictions that provide an estimation of smooth image content.  

Planar and DC predictions can also be used for predicting complex textures that cannot 

be adequately modeled with any of the angular prediction modes. In the case of DC prediction, 

predicted block is generated with the constant value obtained as an average of the reference 

pixels immediately left and to the above of the current block, while the planar mode populates 

predicted block by averaging horizontal and vertical linear predictions based on reference 

samples.   

HEVC defines a set of 33 angular prediction modes that differ by a direction angle as 

shown in Figure 2.3. Predicted block in angular modes is generated based on the reference 

samples and the angle of the prediction mode.  

 

Figure 2.3: Angular intra prediction modes, source [13] 

2.3.2 Inter prediction 

Predicting the current frame based on previously encoded frames is also known as inter 

prediction, while the process for finding the block in a reference frame that is the most similar 

to the current block is called motion estimation. The final result of motion estimation is a motion 

vector that represents the movement direction of the considered block between the current and 

reference frame. Concept of inter prediction and the motion vector is depicted in Figure 2.4.  
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Figure 2.4: Inter prediction concept, source [13] 

Finding the best motion vector can have a significant impact on the quality of encoded 

bitstream and coding efficiency of the encoder. More complex motion estimation algorithms, 

such as Full Search Motion Estimation (FSME), give the most similar block from the reference 

frame, forming a low-energy residual that guarantees high video quality and high compression. 

However, these algorithms consume most of the encoding time [17] and can not be considered 

in Just-in-Time domain. Therefore, many fast motion estimation algorithms that evaluate a 

subset of possible motion vectors within the defined search area were developed to cope with 

this problem, some of which are: Three Step Search (TSS) [18], Diamond Search (DS) [19], 

Successive Elimination Algorithm (SEA) [20]. Adaptive Seach Windows Size (ASWS) [21] 

and many others.  

Since the real object displacement from one picture to another does not follow the grid 

structure in a digital representation of the picture, sub-pixel movements are used to capture 

continuous motions more accurately. HEVC supports quarter-pixel accuracy for luma samples 

and eight-pixel accuracy for corresponding chroma samples. If the motion vector has sub-pixel 

accuracy, samples at fractional positions have to be derived from the integer positions using the 

process called interpolation. The luma interpolation process in HEVC uses an 8-tap filter for 

half-pixel samples and 7-tap filter for quarter-pixel samples while for chroma component 4-tap 

filter is used. Including the need for interpolation in the motion estimation can drastically 

increase computational complexity. Therefore, in Just-in-Time encoding, algorithms for motion 

estimation usually evaluate only full-pixel motions. 
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2.4 Transform and quantization 

The transform is applied to the residual signal resulting from the prediction. Each CU 

residual block is input to two-dimensional NxN forward transform, which is a separable 

operation that can be also performed as two one-dimensional transform for each row and 

column. The resulting transform coefficients are then quantized (i.e., divided with the 

quantization step - Qstep) to obtain quantized transform coefficients that are used as an input 

to entropy encoder. To retrieve the reconstructed frame that is stored in Decoded Picture Buffer 

(DBP) for future inter predictions, each block has to be de-quantized and inverse transformed 

as well. This process in the encoder and decoder is shown in Figure 2.5. 
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Figure 2.5: Transform and quantization process in encoder and decoder 

For the transformation purposes, Discrete Cosine Transform (DCT) is used for most of 

the blocks in HEVC standard. In the original form, the DCT uses floating point operation which 

increases computational complexity and errors between the forward and inverse transforms. 

Therefore, HEVC specifies two-dimensional finite precision integer approximation of DCT 

transform, referred to as core transform. The core transform specifies the kernel matrices for 

each block size, designed to enable efficient implementation in both, software and hardware. 

To achieve more optimal de-correlation of the residual input block, HEVC also specifies 

alternate transform based on Discrete Sine Transform (DST), which is used exclusively for 4x4 

luma blocks.  
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A quantization process is performed based on the quantization parameter (QP) set as an 

input to the encoder. Depending on the QP, that can be in the range from 0 to 51 inclusive, for 

8-bit pixel samples, Qstep is calculated.  

2.5 In-Lop filters 

There are two types of in-loop filters defined in HEVC standard: Deblocking filter [22] 

and Sample adaptive offset (SAO) filter [23]. Both filters are applied in the encoding and 

decoding loops, deblocking filter, if enabled, first and then SAO, before storing the frame in 

DPB. The main goal of in-loop filters is to increase the subjective quality of reconstructed 

pictures by smoothening the artifacts that can appear on the block boundaries.  

When two neighboring blocks are predicted from the non-adjacent blocks in the 

reference frame, an artifact may appear on the boundary of the two blocks. The deblocking 

filter attenuates this appearance by averaging pixel values near the block boundaries. Example 

of the deblocking filter is given in Figure 2.6, where pixels A0-A3 belong to a row in the first 

block, while pixels B0-B3 belong to a row in an adjacent block. The dotted line shows the pixel 

adaptation by using a deblocking filter.  

B0

B1 B2

B3

A0

A1

A2

A3

A2
´

A3
´

B0
´

B1
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Figure 2.6: Deblocking filter example 

The main goal of the SAO filter is to smooth the ringing artifacts and changes in sample 

intensity of some areas of the picture that can appear when transforming lager blocks.  

Using in-loop filters increases the quality of the encoded video and coding efficiency, 

but at the same time introduces additional operation that has to be performed. Although the 
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deblocking filter is not as complex as some other operations, it can affect strict timing 

requirements set in Just-In-Time systems, which has to be taken into consideration. 

2.6 HEVC syntax and entropy coding   

In HEVC, high-level syntax describes the structure of the bitstream which includes the 

signaling of high-level information that applies to one or more slices. HEVC bitstream consists 

of a sequence of data units called a network abstraction layer (NAL) units. Some NAL units 

carry parameter sets containing control information, while other carry coded segments of an 

individual picture. Each picture is partitioned into one or multiple slices of which each one is 

independent of others. A slice consists of one or multiple slice segments where only the first 

one is independent while others depend on previous slice segments. Each coded slice segment 

consists of a slice segment header with the control information followed by slice segment data 

with the coded samples. 

After the video input has been converted to a series of syntax elements, entropy coding 

is performed. Context-Based Adaptive Binary Arithmetic Coding (CABAC) is a method of 

entropy coding used in HEVC [24]. CABAC is a lossless compression scheme that uses the 

statistical properties to compress data. In HEVC bitstream, only syntax elements belonging to 

the slice segment data are CABAC coded, while others are coded either with zero-order 

Exponential (Exp)-Golomb codes or fixed-pattern bit strings. Key elements of the basic 

CABAC design are binarization, context modeling, and binary arithmetic coding [25]. 

2.7 HEVC parallelization  

HEVC introduces two novel parallelization concepts, Tiles [26] and Wavefront parallel 

processing, along with the slices, which were also available in previous AVC standard. Tiles, 

performance-wise, outperform other parallelization concepts in HEVC, so for Just-in-Time 

encoding, the focus is set on efficient implementation and usage of tile mechanism.  

Tiles are rectangular-shaped groups of CTUs that divide the frame based on set vertical 

and horizontal boundaries. Each tile can be encoded independently, without the need for the 

communication between the units that process different tiles. Dividing the frame to multiple 

tiles can be done in two ways: uniformly, where the boundaries are set so that each tile has 

approximately the same the number of CTUs, and non-uniformly with arbitrarily defined tile 

boundaries. Example of dividing one frame to nine (3x3) uniform tiles is depicted in Figure 2.7.  
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Figure 2.7: Dividing the frame to 3x3 uniform tiles 

The number of tiles and tile distribution can be set for each frame individually, which 

enables adaptation of tile structure during the encoding process. This fact can be used on 

heterogeneous multicores systems to enhance load balancing between processing cores. 

Previous research in this field includes algorithms that calculate the time needed to process each 

tile in the previously encoded frame and based on that information dynamically adapt tile 

boundaries [27] [28]. This concept, however, is not ideal for heterogeneous architectures, where 

processing time highly depends on the processing core type. Therefore, a novel algorithm that 

overcomes this issue and approximates the computational complexity of each tile is developed 

as a part of the research conducted for this thesis and is presented in [29]. 
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3 VIDEO TRANSCODING 

Video transcoding is a process of converting video sequence from one format to another. 

A video format is defined by several characteristics, such as bitrate, frame rate, spatial 

resolution, and coding standard [30]. The main goal of video transcoding is to adapt the original 

video to specific end-user requirements in order to provide the best quality of experience. 

Transcoding also enables multimedia devices of diverse capabilities and formats to exchange 

video content on heterogeneous network platforms, which is extremely important in today's 

world, where the number and diversity of devices that are able to play video content continually 

increases. The parameters of the transcoded video can depend on multiple factors, such as 

network bandwidth, client's device capabilities (computing resources, display resolution, power 

consumption) and the limits of the human visual system (HVS). Some of the conditions can 

vary during the streaming process.   

A transcoder is achieved as a cascade of a decoder, followed by an encoder. Input for 

the transcoder is an encoded video bitstream, which is then decoded or partially decoded and 

re-encoded to obtain transcoded bitstream. Example of homogeneous transcoding, where the 

video is transcoded to the same standard (HEVC) is shown in Figure 3.1. Only homogeneous, 

HEVC based transcodings are considered in this thesis. 

 

Figure 3.1: HEVC transcoder scheme example 

The figure above shows an example of spatial and temporal reduction by transcoding 

from 1920x1280 resolution with 60 frames per second (fps) to 1280x720 resolution with 30 

frames per second. By decoding compressed video stream, raw video data is retrieved and re-

encoded with new parameters to form HEVC transcoded bitstream at the output. Along with 

the inputs and outputs to the transcoder, throughputs needed to satisfy Just-in-Time transcoding 

are also depicted in the figure.  
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A straightforward forward transcoder that fully decodes and re-encodes video sequence 

is extremely compute and data-intensive process. Therefore, different architectures and 

techniques are considered to facilitate the process of transcoding [31]. 

3.1 Transcoding architectures 

Reducing the complexity of the straightforward realization of the transcoder is driving 

force behind most of the research activities related to video transcoding.  The challenge is how 

to intelligently utilize the coding statistics and parameters that can be easily obtained from the 

input bitstream to achieve the best possible video quality and the lowest possible computational 

complexity.  

Generally, there are three main transcoding architectures: open-loop transcoder [32], 

cascaded pixel-domain transcoder (CDPT) [33] and DCT-domain transcoder (DDT) [34]. 

Hybrid-domain and simplified transcoding architectures are usually derived from these three 

types in order to achieve trade-offs between computational complexity and picture quality. 

3.1.1 Open-loop transcoder 

The open-loop transcoder is simplest and computationally most efficient architecture. 

In the scheme, shown in Figure 3.2, after variable length decoding (i.e., entropy decoding in 

terms of HEVC standard) the quantized coefficients are inverse quantized and then re-quantized 

to satisfy the new output bit rate. Finally, the re-quantized coefficients are again variable length 

coded to get output video stream. 

 

Figure 3.2: Open-loop transcoder architecture, source [30] 

The open loop architectures include selective transmission, where high-frequency 

transform coefficients are discarded and re-quantization, where the transform coefficients are 

re-quantized with different quantization step. The most significant advantage of this 

architecture is that it is computationally efficient, but it suffers from the drift problem. 
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Drift can be explained as the blurring or smoothing of successively predicted frames. 

Video picture or a frame is predicted from its reference pictures, and only prediction errors are 

coded. For the decoder to work properly, reference pictures stored in decoder must be the same 

as those in the encoder. Otherwise, predicted frames wouldn’t be the same as the original. Since 

open-loop transcoders change the prediction errors by re-quantizing the stream, decoder and 

encoder do not have same reference pictures stored in the buffer, which causes error 

accumulation and may cause severe degradation to the video quality. Since intra pictures are 

not predicted from reference pictures but are coded independently, drift will be terminated with 

intra pictures. For the applications where two intra pictures are relatively close in GOP structure 

drift could be tolerated, especially if complexity reduction is a priority. Studies in [35] and [36] 

show that drifting error in open-loop architectures can be reduced. 

3.1.2 Cascaded pixel-domain transcoder 

Unlike open-loop transcoders, cascade pixel domain transcoder (CPDT) is drift-free 

architecture. CPDT decodes the original signal, performs the appropriate intermediate 

processing and then re-encodes processed signal with new constraints. This operation is very 

compute-intensive, so research activities in this domain mainly focus on reducing the 

complexity while achieving minimal degradation of video quality. 

Figure 3.3 illustrates a scheme of CPDT architecture.  

 

Figure 3.3: CPDT architecture, source [30] 

To reduce the complexity of the full-scale transcoder, information extracted from the 

input video stream, such as motion vectors, can be reused and adapted for the re-encoding. 



17 

 

Reusing data from the input video stream in order to achieve Just-in-Time transcoding is the 

main focus of this thesis, so all the data that is being reused and the methods for reusing are 

explained in more details in following chapters.  

3.1.3 DCT – domain transcoder 

Besides motion estimation, one of the most compute expensive operations in video 

encoding is the DCT transform. In DCT-domain transform architecture, only syntax decoding 

and inverse quantization are performed on the decoder side. The reference frame buffer in the 

encoder stores DCT values after inverse quantization. These values are then used for frequency-

domain motion compensation module using a motion vector reusing algorithm. Motion 

compensated residue errors are then encoded through re-quantization and variable length 

coding. Although less computation is achieved by avoiding DCT/IDCT transform operation, 

DDT architecture suffers from the drift problem. The simplified DCT-domain transcoder 

(Figure 3.4) assumes that DCT, IDCT, and MC are linear operations, reducing complexity at 

the expense of picture quality. 

 

Figure 3.4: DCT - domain transcoder architecture, source [30] 

3.2 Transcoding techniques 

The initial need for transcoding was to reduce bitrate to meet the available network 

capacity. With a large number of different devices with limited displays and processing power 

that started to reproduce video content, transcoding for spatial and temporal resolution 

adaptation increased. Transcoding for error-resilience is used to gain robustness of video 

streaming, especially over mobile access networks. 
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3.2.1 Bitrate reduction 

One of the main objectives of transcoding is to reduce the bitrate, but at the same time 

to maintain video quality as high as possible. Since the spatial and temporal reduction obviously 

reduce bitrate, the focus is on techniques that reduce bit rate but keep the same spatial and 

temporal resolution. There are two techniques that can be used for this purpose: re-quantization 

and selective transmission [37].  

Re-quantization performs quantization with the increased quantization step at the 

encoder. This approach decreases the number of non-zero coefficients, thus reducing the 

number of bits needed to encode outgoing bitstream. Selective transmission explained in open-

loop transcoder architectures can also reduce bitrate by discarding some of the higher frequency 

coefficients.  

3.2.2 Temporal resolution reduction 

Reducing the temporal resolution is achieved by dropping certain number of frames 

from the original video stream. It may be used to reduce the bitrate requirements imposed by a 

network while maintaining a higher quality of encoded frames or in cases when the end-system 

supports only a lower frame rate.  

With frame dropping, motion vectors extracted from the decoded frame cannot be 

directly re-used, since they can point to a reference frame that does not exist in the transcoded 

video. Therefore, motion vectors for re-encoding have to be derived from the input motion 

vectors. There are several algorithms for reusing motion vector in temporal reduction, such as 

Forward Dominant Vector Selection (FDVS) [38] or Telescopic Vector Composition (TVC) 

[39].  

Some coding standards, such as HEVC or AVC, include temporal scalability, where 

parts of the stream can be removed in a way that resulting substream forms another valid 

bitstream that represents original video content with the lower frame rate. In HEVC, this is 

achieved by denoting each NAL unit that contains frame information with the temporal sub-

layer id. A simple example of temporal scalability with two temporal layers is depicted in Figure 

3.5.  
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Figure 3.5: Temporal scalability in HEVC, source [13] 

Frames have to be arranged in a GOP structure so that frames in any of the lower 

temporal sub-layers do not have any dependencies on frames in higher temporal sub-layers. 

This fact can also be seen in the figure above, where frames P2 and P4 depend only on frames 

within the same sub-layer. Since the temporal sub-layer 0 has no dependencies from sub-layer 

1, it is possible to remove higher sub-layer without any consequences or needs for motion vector 

adaptation. Since the temporal resolution reduction in transcoding can be efficiently solved by 

using temporal scalability in the HEVC standard, the focus of this thesis is set exclusively on 

spatial resolution reduction.  

3.2.3 Spatial resolution reduction 

The original video is usually captured at a high spatial resolution and as such, stored on 

the server. With the emergence of mobile devices that are capable of playing video content, 

there is a strong need for efficient techniques for spatial resolution reduction.  

When changing the resolution of the original picture, the pixels of the downsized frame 

have to be generated by subsampling original pixels. Several techniques are commonly used 

for image scaling: Filtering and subsampling, pixel averaging [40], bilinear or bicubic 

interpolation [41] and nearest neighbor. Another problem that arises when reducing spatial 

resolution is reusing motion vectors, since the original motion vectors were obtained for the 

higher resolution frame. This problem is visualized in Figure 3.6 for the downsizing factor of 

2, where four blocks in the original picture are mapped to one block in the downsized picture.  
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Figure 3.6:  Vector remapping problem in spatial reduction transcoding 

Several standard methods are used to calculate the transcoded motion vector [42]: 

• Simple average – an average of all original motion vectors 

• Weighted average – an average of original motion vectors based on the ratio of 

the original block within a transcoded block 

• Area-weighted average – an average of original motion vectors based on the 

ratio and size of the original block within a transcoded block 

• Maximum area – takes the motion vector of the original block with the largest 

area within a transcoded block 

• Median – a median of all original motion vectors 

Other techniques for motion vector remapping are usually derived as a combination or 

adaptation of one or more of the listed methods. 

Similar as for temporal scalability, HEVC standard introduces Scalable High Efficiency 

Video Coding (SHVC) extension that enables simultaneous encoding in multiple layers, each 

with different spatial resolution [5]. With this extension, multiple versions of the same video 

with different spatial resolution can be stored as a single file on a server. When end-user 

requests the video, sub-bitstream with most suitable resolution will be sent to the user. 

However, SHVC contains only several predefined spatial resolutions while the transcoding 

offers output videos in any arbitrary resolution. Also, storing original video in this format 

increases storage costs by 30 % due to layering overhead, compared with storing only the video 

with the highest resolution [5].  
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3.2.4 Information insertion 

Transcoding can also be used to insert additional information to the output video stream. 

For copyright protection, video watermarks or company logos can be added. Since logo affects 

only a part of the video picture, incoming motion vectors can be reused for parts of pictures 

unaffected by the logo, while others have to be modified. Efficient architectures for logo and 

watermark insertion are analyzed in [43], [44]. 

In practical applications, video transcoder can be placed in a network node, connected 

to a high-loss network to insert error-resilience features. The transcoder first extracts video 

features from the incoming bitstream and estimates client channel conditions based on feedback 

channel statistics. These features are then used to determine error-resilience policy. Other error- 

resilience architectures and techniques are presented in [45] and [46]. 

3.2.5 Standard transcoding 

In many applications, video coded in one standard (e.g., AVC) has to be converted to 

another standard (e.g., HEVC). This type of transcoding is referred to as heterogeneous 

transcoding. Heterogeneous transcoding is often needed when the end device supports a 

standard that is different than the one stored on the server.   The main challenge in cross standard 

transcoding is syntax translation between different formats with minimal influence on quality.  

However, the focus of this theses is set on homogeneous video transcoding based on 

HEVC standard.  

3.3 Just-in-Time video transcoding 

Most of today's video content providers use hybrid architectures that combine storing 

multiple versions of the same video sequence with video transcoding on demand to balance the 

costs of content storage, power consumption and transport. Most popular and frequently 

accessed content is stored in multiple versions to avoid constant transcoding. However, video 

content stored on a server follows a long-tail distribution, meaning that the vast majority of 

viewers watch a very small portion of the stored content, which leaves a large amount of video 

content eating up storage resources. Therefore, infrequently requested content is usually stored 

only in the highest quality representation, while the lower quality versions are generated on the 

fly at the moment of request. When generating content at the moment of the request, video 

transcoding must be done in real time or faster, to serve the end-user without the lag. Video 
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transcoding restricted with this timing requirement is referred to as Just-in-Time video 

transcoding. Compared with upfront transcoding, JiT transcoding is done on every request and 

is computationally much more expensive, but can provide better overall system efficiency.  

A lot of the research in the area of video transcoding is set on speeding up the process 

of transcoding, but very few of them aim at Just-in-Time transcoding. Authors in [47] provide 

a fast transcoding solution using a control stream that assumes that different predefined versions 

of the same video content are available. This approach increases storage costs compared to 

storing only one version of the video and does not aim to satisfy Just-in-Time requirements. 

Guided Just-in-Time transcoding architecture for cloud-based video platforms is presented in 

[48], where the basic idea is to execute the most complex part of the transcoding, such as motion 

estimation, upfront for each representation below the highest available and to store only 

information about obtained motion vectors. When the video with lower resolution is requested, 

the original bitstream is transcoded based on previously calculated motion vectors. This 

approach increases storage costs since it stores information for different representations of the 

same video and does not enable transcoding with arbitrary transcoding ratio. Research 

conducted in [49] proposes several optimized transrating techniques for HEVC. However, only 

bitrate reduction without frame downscaling was considered without Just-in-Time 

requirements.  

The approach presented in this thesis aims at Just-in-Time video transcoding that 

enables arbitrary ratio downscaling without any increase in storage cost.  



23 

 

4 BOLT65 SOFTWARE/HARDWARE SUITE 

Bolt65 is performance-optimized HEVC hardware/software suite for Just-in-Time video 

processing developed as a part of the research activities conducted for this thesis [50]. Bolt65 

is „clean-room“ suite that consists of an encoder, decoder, and transcoder based on HEVC 

standard. Special focus in the development of the Bolt65 was set on the performance-efficiency 

achieved by low-level optimizations and hardware-software co-design adapted for the efficient 

exploitation of heterogeneous accelerator-based architectures. Another important focus of 

Bolt65 is the just-in-time processing requirement which sets constraints on processing time 

making Bolt65 suitable for encoding/transcoding on demand. 

A novel algorithm for reusing coding information from the input video stream presented 

in this thesis is incorporated and tested within Bolt65 software/hardware suite.  

This chapter provides a brief overview of all the tools and techniques used in HEVC  

encoder, decoder, and transcoder developed in the scope of Bolt65 suite.   

4.1 Configuration 

Configuration for Bolt65 encoder, decoder and transcoder can be defined in two ways 

before running the application: through configuration file which contains all necessary data or 

through the console, where each parameter can be set individually. Example of the 

configuration file used for transcoding BasketballDrive video sequence from the original 

resolution of 1920x1080 to 1280x720 is given below.  

NumberOfFrames   : 500 

InputFile    : BasketballDrive_1920x1080_50p.hevc 

OutputFile    : BasketballDrive_1280x720_25p.hevc 

PictureWidth   : 1280 

PictureHeight   : 720 

FrameRate    : 50 

QP     : 32 

BitNumber    : 8 

CtbLog2SizeY   : 6 

MinCbLog2SizeY   : 3 

DeblockingFilter   : 0 

SAOFilter    : 0 

DPBSize    : 1 

GOP     : IPPPPPPPPPP 

SearchAlgorithm   : 3 

SearchArea    : 6 

InterpolateAlgorithm  : 0 

BlockMatching   : 0 
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#Monitor variables 

StatMode    : 1 

ShowStatisticsPerFrame  : 1 

ShowStatisticsPerTile  : 0 

CalculatePSNR   : 1 

CalculateBitsPerFrame  : 1 

CalculateProcessingTime  : 1 

CSV     : performance.csv 

 

UsePolicy    : 0 

PolicySocketHost   : localhost 

PolicySocketPortNumber  : 5717 

 

Threads    : 4 

 

TilesEnabled   : 1 

TilesInRow    : 2 

TilesInColumn   : 2 

TileLoadBalancingAlgorithm : 0 

TileLoadBalancingInterval : 0 

 

AVX     : 1 

DCT_HW_ACC    : 0 

INTER_HW_ACC   : 0 

Meaning and the usage of parameters defined in the configuration file above is explained 

in the following chapters.  

4.2 HEVC implementation 

The input to the encoder is raw video stream that is being encoded to the final HEVC 

bitstream. Two types of files that represent raw video stream are supported by the Bolt65 

encoder: YUV and Y4M. Both of these types contain raw pixel data, with the difference that 

Y4M file also contains a header with additional information about the video, such as frame 

width, height or frame rate. Input video data with 8 bits per sample and the representation with 

luma brightness signal and two chroma channels that have half the luma resolution both 

horizontally and vertically (color space 4:2:0) is supported.  

Reading large input files frame by frame is a demanding task that can become a 

bottleneck in a process bounded by strict timing requirements. Therefore, prefetching of the 

frames from the input file into a specific buffer is implemented in Bolt65 to avoid waiting for 

the frame data to be loaded from the source after encoding each frame. Input and output 

parameters are defined in configuration file with options: InputFile, OutputFile, PictureWidth, 

PictureHeight, FrameRate and BitNumber.  
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Bolt65 supports CTU sizes of NxN, where N∈{16,32,64}, resulting luma CTB size of 

NxN and chroma CTB sizes of (N/2xN/2) due to 4:2:0 color subsampling. CTUs can be divided 

into four smaller units CUs following a quadtree structure. CU supported by Bolt65 are NxN, 

with Nmin≤N≤Nmax and N∈{8,16,32}. Nmin and Nmax can be defined in configuration 

(CtbLog2SizeY and MinCbLogSizeY), if not, default values of Nmin =8 and Nmax =32 are used. 

Each CU can act as a root for residual quadtree that is made of TUs with corresponding TBs. 

In Bolt65, luma TB sizes are MxM, while chroma TB sizes are (M/2)x(M/2), where M≤N and 

M∈{4,8,16,32}, N being the size of RQT root. Leaf CUs can also be split to up to four PUs that 

can be used for more precise motion estimation. HEVC standard supports 8 partitioning modes 

for splitting CU to PU: PxP, Px(P/2), (P/2)xP, (P/2)x(P/2), Px(P/4), Px(3P/4), (P/4)xP and 

(3P/4)xP, all of which are also supported in Bolt65. 

All 35 (33 angular, DC and Planar) intra prediction modes are supported in Bolt65. The 

distortion between original and predicted block can be evaluated by several algorithms 

(determined with BlockMatching flag): Sum of absolute differences (SAD), Sum of absolute 

transform differences (SATD) or Mean Square Error (MSE). Different algorithms for block 

matching have different effects on coding efficiency and computational complexity, which is 

an important aspect that has to be considered in Just-in-Time transcoding. Motion estimation 

algorithms that are supported and can be used in inter prediction are (determined with 

SearchAlgorithm and SearchArea flags): Three Step Search (TSS), Diamond Search (DS) and 

Full Search Motion Estimation (FSME). For Just-in-Time transcoding fast TSS algorithm that 

evaluates only blocks moved by integer motion vectors to avoid interpolation is used. Only P 

frames are supported in Bolt65, while bi-predictive B frames that use two reference frames for 

prediction are not implemented due to increased computational complexity induced by motion 

estimation on two separate reference frames. After the prediction residual is transformed and 

quantized based on RQT partitioning.  

In-loop filters can be disabled or enabled by setting the flags DeblockingFilter and 

SAOFilter either to 0 (disabled) or 1 (enabled). 

4.3 Bolt65 on heterogeneous architectures 

In the scope of the Bolt65 suite, along with the CPU implementation of HEVC codec, 

several kernels were offloaded to different processing nodes and integrated into one 

heterogeneous system.  
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Advanced Vector Extensions (AVX, AVX2) are extensions to the x86 instruction set 

architectures for processors from Intel that can support 128 and 256-bit SIMD vector 

instructions [51]. Two kernels were implemented in AVX2 in Bolt65: Sum of Absolute 

differences, and integer DCT. Both kernels were chosen for implementation on vector 

extensions due to their highly parallelizable nature. Integer DCT transformation for HEVC is 

based on matrix multiplication, where more than one element can be calculated in parallel. 

Similarly, in the SAD kernel, the 256-bit vector can be utilized to conduct 32 substractions of 

8-bit pixel samples in parallel.  Average speedup in the encoding time when SAD and DCT are 

ported to AVX2 compared to implementation without AVX ranges between 78% and 160% 

depending on the quantization parameter.  

A high-throughput fully pipelined FPGA-based accelerator for HEVC DCT has also 

been designed and implemented. The architecture consists of two cascaded 1D DCT cores with 

a constant throughput of 32 pixels per cycle in all size modes. The accelerator receives the data 

through a 512-bit bus which enables fetching 32 16-bit samples in a single clock. The pipeline 

for worst-case scenario consists of 75 stages which means that for processing a single 32x32 

matrix, 106 cycles are necessary. The efficient integration of the custom DCT hardware 

accelerator in a novel heterogeneous MANGO platform [12] is presented in [52]. 

Custom hardware-based accelerator for inter prediction, designed and implemented to 

enhance software algorithm presented in this thesis is described in chapter 10. 

4.4 Monitoring and statistics 

During the execution of the application, whether it is an encoder, decoder, or transcoder, 

several parameters can be monitored. Those parameters include processing time to observe 

execution speed, bitrate to analyze coding efficiency and PSNR for video quality. Depending 

on the user requirements, monitoring can be performed on tile, frame or video level.  

In the algorithm proposed in this thesis, monitoring has one of the critical roles in 

achieving Just-in-Time execution, while trying to maintain video quality and coding efficiency 

of the input bitstream. 

Bolt65 encoder and transcoder execution can be controlled during runtime by an 

external process that can monitor the current state of the encoding/transcoding. Changing some 

of the parameters, such as quantization parameter, search algorithm or GOP structure can be 

used to increase or decrease coding efficiency, power consumption or performance, depending 
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on the current requirements posed by an external factor of the system. Hence, different policies 

can be implemented and used while running the application, without the need for modification 

of existing source code. 

4.5 Parallelization techniques 

Bolt65 implements support for tiles, a novel parallelization concept introduced in 

HEVC. Both, uniform and non-uniform tile distribution are available by setting the options 

TilesEnabled, TilesInRow, and TilesInColumn to appropriate values in the configuration file. 

Ordinarily, each tile is processed on a separate core, where the number of processing cores 

equals the number of tiles in a frame. However, this does not always have to be the case. When 

a number of available processing cores in a system is smaller than a number of tiles, smart load 

balancing is performed so that the waiting time between the processing cores is the smallest 

possible. Algorithm for dynamic load balancing in an encoding where the number of 

heterogeneous cores is the same as the number of tiles was developed in the scope of research 

activities for this thesis and is presented in [29]. 
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5 METHODOLOGY AND TEST ENVIRONMENT 

This chapter describes the test environment and methodology used for the validation of 

developed algorithms throughout this thesis.  

5.1 Test video sequences 

For all experiments conducted in this thesis, the same test set of videos, with different 

resolutions and frames rates is used, as shown in Table 5.1. Original videos with resolution 

lower than 1280x720 were not considered since the complexity of their transcoding is much 

smaller. Besides that, today’s video content providers usually have an original video sequence 

stored in one of the higher resolutions. All of the test video sequences can be downloaded from 

the internet [53][54] and used for testing. 

Table 5.1: Set of test video sequences 

# Video name Resolution Frames Frame rate 
1 Shields 1280x720 504 50 
2 ParkRun 1280x720 504 50 
3 KristenAndSara 1280x720 600 60 
4 Johnny 1280x720 600 60 
5 FourPeople 1280x720 600 60 
6 BasketballDrive 1920x1080 500 50 
7 Calendar 1920x1080 500 50 
8 Cactus 1920x1080 500 50 
9 BQTerrace 1920x1080 600 60 
10 RushHour 1920x1080 500 25 
11 Riverbed 1920x1080 250 25 
12 PedestrianArea 1920x1080 375 25 
13 BlueSky 1920x1080 217 25 
14 Traffic 2560x1600 150 30 
15 DuckTakeOff 3840x2160 500 50 
16 Bosphorus 3840x2160 600 120 
17 Beauty 3840x2160 600 120 

Although the proposed algorithm is designed for arbitrary transcoding ratio downscaling, 

several fixed standard resolutions were chosen for testing. Resolutions were selected so that 

they can represent a broader range of possible combinations, with different width and height 

downsizing ratios (width ratio 𝜌𝑤 and height ratio 𝜌ℎ) that do not have to keep the same aspect 

ratio. All possible combinations of transcoding along with the downsizing width and height 

ratios are shown in Table 5.2. 
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Table 5.2: Possible transcoding scenarios 

Original resolution Possible transcoded resolutions 

3840x2160 

2560x1600 (𝜌𝑤=1.5, 𝜌ℎ=1.35) 
1920x1080 (𝜌𝑤=2, 𝜌ℎ=2) 
1280x720 (𝜌𝑤=3, 𝜌ℎ=3) 
704x576 (𝜌𝑤=5.45, 𝜌ℎ=3.75) 
640x480 (𝜌𝑤=6, 𝜌ℎ=4.5) 

2560x1600 

1920x1080 (𝜌𝑤=1.33, 𝜌ℎ=1.48) 
1280x720 (𝜌𝑤=2, 𝜌ℎ=2.22) 
704x576 (𝜌𝑤=3.63, 𝜌ℎ=2.77) 
640x480 (𝜌𝑤=4, 𝜌ℎ=3.33) 

1920x1080 
1280x720 (𝜌𝑤=1.5, 𝜌ℎ=1.5) 
704x576 (𝜌𝑤=2.72, 𝜌ℎ=1.875) 
640x480 (𝜌𝑤=3, 𝜌ℎ=2.25) 

1280x720 704x576 (𝜌𝑤=1.82, 𝜌ℎ=1.25) 
640x480 (𝜌𝑤=2, 𝜌ℎ=1.5) 

5.2 Heterogeneous processing environment 

The heterogeneous processing system used in this thesis consisted of a host side with 

CPU and the Kintex Ultrascale FPGA [55] on proFPGA quad Motherboard [56]. The host side 

and FPGA were connected via fast PCIe interconnect (gen 3, 8-line). Characteristics of the host 

and FPGA are given in Table 5.3 and Table 5.4 respectively.  

Table 5.3: Host characteristics 

Processor Intel i5 4570 (3.2 GHz) 

Memory 32 GB 

L1 cache 32kB 

L2 cache 256 kB 

Compiler Intel C++ 18.0 

Operating system 64-bit Windows 10 Pro 

 

Table 5.4: FPGA characteristics 

System Logic Cells (K) 1451 

DSP slices 5520 

Block RAM (Mb) 75.9 

16.6Gb/s Transceivers 64 

I/O pins 832 
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5.3 Baseline transcoders 

Validation of the proposed algorithm is done by comparing the results with two different 

baseline transcoders. First one is the JiT transcoder based on Bolt65 software implementation 

that re-encodes video sequence in real-time without reusing any of the data from the decoded 

frame (described in chapter 4). Another baseline transcoder is based on the open-source 

Kvazaar [57] encoder that encodes video sequences without strict timing requirements. 

Comparisons with referent HM decoder/encoder [58] were not presented in the final validation 

since the difference in processing times is substantial [50] and cannot be compared when it 

comes to JiT transcoding. 

5.3.1 Bolt Just-in-Time transcoder 

Bolt65 described in chapter 4 is a HEVC encoder/transcoder that was explicitly 

designed for Just-in-Time encoding and transcoding. Bolt65 Just-in-Time transcoder that will 

be referred to as Bolt65 JiT in the rest of this thesis, does not use any data reusing algorithms 

from the decoded frame. Instead, the decoded frame is downsized and re-encoded from scratch. 

Comparisons with this type of transcoder help to comprehend gains of using the proposed data 

reuse algorithm in terms of video quality and coding efficiency (i.e. bitrate). 

In order to accomplish Just-in-Time transcoding, Bolt65 JiT uses a limited set of 

encoding tools and parameters. Some of the tools used in HEVC to improve video quality and 

increase coding efficiency, such as asymmetric prediction units, deblocking filters, and complex 

rate-distortion optimization are omitted. Such approach sacrifices the highest possible quality 

of the transcoded bitstream but is necessary in order to conform to JiT restrictions. Full set of 

parameters used by JiT Bolt65 transcoder is shown in Table 5.5.  

As can be observed from the configuration, there are a number of limitations for the re-

encoding in Bolt65 transcoder that are introduced to decrease the processing time of the 

transcoder. Inter prediction is implemented with a simple three-step search (TSS) algorithm to 

reduce the number of evaluated inter prediction candidates. In loop filters, deblocking and SAO 

filter that are used to reduce artifact in the frame that can appear on the block boundaries are 

disabled since they affect processing in both, decoder and encoder, and can thus compromise 

transcoder execution for JiT. Also, there are no complex Rate Distortion Optimization (RDO) 

algorithms that usually evaluate multiple versions of CU splits and prediction modes. Instead, 
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in both, intra and inter prediction, all blocks are assessed with the SAD block matching 

algorithm, and the one with the lowest value of SAD is chosen as a final. 

Table 5.5: Bolt65 JiT transcoding configuration 

Coding option Parameter 

QP Fixed – does not change within a video sequence 

Search algorithm Three step search, with the defined search area (default search area is 64) 

Decoded picture buffer Size of the decoded picture buffer is 1 

GOP structure Only I and P frames are used 

Intra prediction 35 possible modes are tested 

In loop filters Both, deblocking and SAO filter disabled 

CTU size 64x64 

Minimum CU size 8x8 

Transform tree Max depth = 0 

Prediction Units Only 2Nx2N PUs supported  

RDO No smart RDO algorithm  

Block matching algorithm  Sum of absolute differences (SAD) 

 This baseline transcoder will be used to observe improvements in using a proposed 

algorithm that utilizes coding information from the input video stream in terms of video quality 

and coding efficiency. 

5.3.2 Kvazaar 

The second baseline will be used to observe losses in video quality and bitrate compared 

with the transcoder that does not have timing requirements. For this purpose, open-source 

Kvazaar encoder is chosen. Re-encoding with Kvazaar was performed with the default settings 

with preset set on “medium” [57]. However, to obtain comparable results, several tools and 

encoding parameters were overridden from the default preset. All overridden parameters and 

the specific flags that were included when running the encoder are shown in Table 5.6. All other 

parameters that are not shown in the table below were set to default values. 

The reason behind changing the default values of Kvazaar encoder is to obtain results 

that are comparable between all three transcoders: Bolt65 JiT, Kvazaar and the transcoder 

proposed in this thesis. Including in loop filters in just one of these scenarios, would increase 
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video quality solely by introducing one or both of the filters, and the conclusions and 

observations of using the proposed algorithm would not be based on valid assumptions. 

Table 5.6: Kvazaar encoder configuration 

Coding option Overridden parameter Kvazaar flag 

QP Set as fixed --(no-)rdoq 

Decoded picture buffer Size of the decoded picture buffer is 1 -r 1 

In loop filters Both, deblocking and SAO filter disabled --sao=”off”  --no-deblock 

Prediction Units Only 2Nx2N PUs supported  --no-amp --no-smp 

5.4 Evaluation 

During the transcoding process, three main aspects were considered and evaluated: 

processing time, bitrate and PSNR.  

5.4.1 Processing time 

The idea of Just-in-Time transcoding is not merely to transcode the video as fast as 

possible but to ensure that the video will be transcoded in a given period of time while trying 

to provide the best trade-off between video quality and coding efficiency, depending on the 

requirements and constraints of the system. Therefore, the value of tJiT is defined as a maximum 

time that needs to be satisfied to achieve Just-in-Time video transcoding. From this point on, 

the processing time required for JiT transcoding for a particular video sequence will be set as 

tJiT and other times will be presented relative to tJiT. This representation is also a more 

convenient way to show Just-in-Time constraint since it can depend on various conditions; from 

the video sequence itself, where the video with higher frame rate has to be processed faster, to 

the computing power of the system on which the transcoder is being run.  With this 

representation, all video sequences have a unified condition: if the processing time of the 

transcoder for a specific video sequence is higher than 1.00 * tJiT than the transcoder does not 

conform to JiT requirements. Otherwise, if the processing time is lower than 1.00 * tJiT than the 

transcoder satisfies Just-in-Time. Exact processing speed expressed in frames per second (fps), 

for each test video sequence is given in Table 5.7. 
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Table 5.7:  tJiT for test video sequences 

# Video name tJiT [fps] 
1 Shields 50.00  
2 ParkRun 50.00 
3 KristenAndSara 60.00 
4 Johnny 60.00 
5 FourPeople 60.00 
6 BasketballDrive 50.00 
7 Calendar 50.00 
8 Cactus 50.00 
9 BQTerrace 60.00 
10 RushHour 25.00 
11 Riverbed 25.00 
12 PedestrianArea 25.00 
13 BlueSky 25.00 
14 Traffic 30.00 
15 DuckTakeOff 50.00 
16 Bosphorus 120.00 
17 Beauty 120.00 

5.4.2 Bitrate 

One of the most important aspects of all video compression standards is bitrate. A video 

bitrate is a number of bits needed to encode one second of the video sequence and is calculated 

with the following formula: 

𝐵𝑖𝑡𝑟𝑎𝑡𝑒 =  

𝑁𝑏𝑖𝑡𝑠
𝑁𝑓𝑟𝑎𝑚𝑒𝑠

∗ 𝑓𝑟𝑎𝑚𝑒𝑅𝑎𝑡𝑒

1000
 [𝑘𝑏𝑝𝑠] 

(5.1) 

 

 𝑁𝑏𝑖𝑡𝑠 is an overall number of bits needed to encode video sequence, while 𝑁𝑓𝑟𝑎𝑚𝑒𝑠 is an 

overall number of frames within a video. By dividing these two values, the average number of 

bits needed to encode one frame is acquired. Multiplying average number of bits with the video 

frame rate (i.e., number of frames in one second) bitrate in bits per second is obtained. Final 

value is divided with 1000 to get bitrate in kilobits per second. 

 Bitrate is a measurement that determines coding efficiency. Smaller bitrate means that 

the same video is encoded with a lower number of bits, ergo coding efficiency for such encoding 

is better. Bitrate reduction can be achieved by lowering video quality (e.g., in a live video chat 

where throughput is more important than video quality) but could also indicate better 

compression algorithm or standard. As mentioned in the introduction, HEVC standard doubles 

the coding efficiency when compared to AVC, while keeping the same video quality. Thereby, 

in order to get the full evaluation of the quality of a certain standard or algorithm, both 

measurements have to be examined: bitrate and video quality. 
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5.4.3 PSNR 

Peak signal-to-noise ratio (PSNR) is a term for the ratio between the maximum possible 

power of a signal and the power of corrupting noise that affects the fidelity of its representation 

[59]. In the image and video processing, PSNR is used to calculate video quality by comparing 

the encoded video frame with the original frame. The signal is data from the original frame 

while the noise is the error introduced by a compression. 

PSNR is calculated as follows and is expressed in terms of the logarithmic decibel scale 

[dB]: 

𝑃𝑆𝑁𝑅𝑑𝐵 = 10 log10
(2𝑛 − 1)2

𝑀𝑆𝐸
 (5.2) 

 

In the equation above, n is the number of bits used to represent one pixel of the video 

frame (only luma sample). Giving that each pixel is represented with 8 bits, the peak signal is 

255, which is the highest value of a pixel. MSE is a mean square error between the original and 

an impaired reconstructed video frame and is calculated as follows: 

𝑀𝑆𝐸 =  
1

𝑓𝑟𝑎𝑚𝑒𝑆𝑖𝑧𝑒
∑ (𝑂𝑖 − 𝑅𝑖)

2

𝑓𝑟𝑎𝑚𝑒𝑆𝑖𝑧𝑒

𝑖=1

 (5.3) 

Where 𝑂𝑖 is a value of a pixel in the original frame and 𝑅𝑖 is a value of a pixel in the 

reconstructed frame. In the case of the transcoder, original frame is actually a frame that is 

decoded from the original input bitstream, since the original frame is not available when it 

comes to transcoding, while reference frame is transcoded frame. In all the test conducted and 

presented in this thesis, PSNR values are obtained by comparing decoded and transcoded frame. 
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6 REUSING CODING INFORMATION  

  Intelligent utilization of coding information extracted from the initial encoded video 

stream has a key role in enhancing the process of video transcoding, especially when it comes 

to Just-in-Time transcoding. This thesis presents a novel algorithm that reuses several data sets 

extracted from input bitstream to achieve Just-In-time transcoding while trying to maintain the 

quality of the encoded video sequence without significant impacts on coding efficiency. The 

proposed algorithm reuses three types of data from the input video stream: size od decoded 

coding units, a number of coding units mapped from the decoded frame and prediction modes 

of decoded coding units.  

6.1 Size of decoded coding units 

When encoding raw video sequence, parts of the frame with more motion will usually 

be encoded with a higher number of bits, while still parts of the frame, such as background, that 

is not being changed between multiple frames, should be encoded with much higher coding 

efficiency. This fact is demonstrated in Figure 6.1. 

 

Figure 6.1: Heatmap for one frame in Calendar video sequence 

Figure 6.1 shows a heatmap of one video frame in a Calendar video sequence that has 

been encoded using the HEVC standard. In this video, the calendar is constantly moving around 

the picture and represents a moving object. Darker squares show coding units that are encoded 

with a smaller number of bits. The lighter the square is, the more bits were needed to encode 

that particular coding unit. As can be expected, the background is mostly dark, while edges and 



36 

 

moving objects can be clearly distinguished with the presence of lighter squares. The same 

pattern can be seen in other video sequences depicted in Figure 6.2. 

 

Figure 6.2: Heatmap for video sequences BasketballDrive, BlueSky, Traffic, and KristenAndSara 

In some cases, different behavior can be observed. Figure 4. shows a picture where the 

background is encoded with a higher number of bits then the rest of the picture. 

 

Figure 6.3: Heatmap for one frame in Beauty video sequence 

This behavior occurs in high-resolution videos (e.g., 4K) that are encoded with low 

quantization parameter, where the neighboring pixels in black background, such as in this case, 
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can differ more than usual. In this scenario, nor intra prediction, nor inter prediction (since there 

is no real motion) do not form good residual, thereby resulting in a large number of transform 

coefficients that have to be encoded. Nonetheless, other parts of the picture follow expected 

behavior; moving parts (i.e., hair and eyes) are encoded with more bits then nonmoving parts 

(i.e., cheeks, forehead, chin), so this data can be reused in the transcoding process. 

Not all videos have a pronounced background or part of the picture that remains the 

same throughout several frames. One example of such video sequence and its heatmap is given 

in Figure 6.4.  

 

Figure 6.4: Heatmap for one frame in Riverbed video sequence 

In this video that shows waves of the river, there are no visible objects or edges nor the 

big difference between neighboring coding units. Reusing information about sizes of decoded 

coding units when transcoding this kind of video sequences does not present the basis for 

relevant decisions. 

6.2 Number of mapped coding units 

CTU structure from the input video gives important information about RDO decisions 

made in the original encoding process and reusing that structure could save a lot of time in the 

transcoding process by avoiding full RDO in the encoding phase, which is one of the 

computationally most demanding processes. However, since the target video is transcoded from 

a higher resolution to a smaller resolution CTU structure cannot be simply taken as is and copied 

to the transcoded frame for several reasons: 
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• CTU blocks in transcoded frame cover larger areas of the picture 
• Reusing same structure could form invalid CU blocks in the transcoded frame 

(e.g., blocks smaller than 8x8) 
• Decisions made in the RDO process were based on different sets of pixels  

The mapping between a higher resolution frame at the input and lower resolution frame 

at the output must be conducted in order to reuse CTU structure from the decoded video 

efficiently. Before beginning with the mapping mechanism, ratios between original and 

transcoded video are defined as: 

𝜌𝑤 =
𝑖𝑛𝑝𝑢𝑡𝑊𝑖𝑑𝑡ℎ

𝑜𝑢𝑡𝑝𝑢𝑡𝑊𝑖𝑑𝑡ℎ
 

(6.1) 

𝜌ℎ = 
𝑖𝑛𝑝𝑢𝑡𝐻𝑒𝑖𝑔ℎ𝑡

𝑜𝑢𝑡𝑝𝑢𝑡𝐻𝑒𝑖𝑔ℎ𝑡
 (6.2) 

 

𝜌𝑤 and 𝜌ℎ represent width ratio and height ratio when downsizing the picture. Although 

a lot of standard video formats use 16:9 aspect ratio today, and transcoding between those 

standards would infer same 𝜌𝑤 and 𝜌ℎ  , this does not have to always be the case. With a plethora 

of different mobile devices that are able to play video and that can have different resolutions, 

these ratios can be arbitrary. 

Figure 6.5 shows an example of mapping one CTU from lower 1280x720 resolution, 

marked with a red square to CTU structure of video encoded in 1920x1080 resolution, marked 

with black squares. 

CTU 0 CTU 1

CTU 3CTU 2

 

Figure 6.5: Mapping CTU structure 
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As it can be seen from the previous figure one CTU of downsized frame cover area of 

four CTUs in the original frame, some of which are covered in full (CTU 0) and some partially 

(CTU 1, 2, 3). Number of CTUs that are mapped from original to transcoded frame can be 

defined as: 

𝑀𝐶𝑇𝑈𝑠´ = (⌈𝜌𝑤 + 1⌉) ∗ (⌈𝜌ℎ + 1⌉) (6.3) 

 where 𝐶𝑇𝑈𝑠´ are CTUs in origanal frame that can be mapped, in full or partially, to the 

transcoded frame, and 𝑀𝐶𝑇𝑈𝑠´ is the number of  𝐶𝑇𝑈𝑠´. In the worst case scenario, decimal part 

of transcoding ratios (i.e., partially covered mapped CTUs) can cover the area below and above, 

or to the righ and to the left of the full mapped CTU, which is why the 1 is added to both factors. 

Next step in the mapping process is to determine all CUs from the original video that are 

incorporated in transcoded CTU. To facilitate the search of all mapped CUs, only CUs from  

𝑀𝐶𝑇𝑈𝑠´ are considered. Group of all mapped CUs can for CU in the transcoded video be defined 

as: 

𝐶𝑈𝐶𝑈𝑠´ = {(𝜔𝑖, 𝐶𝑈´𝑖)}, 𝑤ℎ𝑒𝑟𝑒 0 ≤ 𝑖 < 𝑀𝐶𝑈´ 𝑎𝑛𝑑 𝑖 ∈ 𝑁 (6.4) 

 where 𝑀𝐶𝑈´ is a  number of all CUs that are mapped, i is the index of the mapped CU´ 

and 𝜔𝑖is the mapping coefficient that denotes the ratio of mapped CU within transcoded CU. 

Mapping coefficient ω is calculated as a ratio of the area of CU´ that is included in transcoded 

CU and is shown with the following equations: 

𝜔 = 𝜔𝑤 ∗ 𝜔ℎ (6.5) 

𝜔𝑤 = 
𝑤𝑖𝑑𝑡ℎ´

𝐶𝑈′𝐵𝑆
 

(6.6) 

𝜔ℎ = 
ℎ𝑒𝑖𝑔ℎ𝑡´

𝐶𝑈′𝐵𝑆
 (6.7) 

 

 Final mapping factor ω is obtained as a factor of width and height mapping factors that 

are calculated as a ratio between width/height (in pixels) that coincide (width´ and height´) and 

size of the  𝐶𝑈′  block (CU´BS). To visualize the calculation of mapping factor, an example of 

calculating ω for CTU 1 from Figure 6.5 is given in Figure 6.6. 
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CTU 0

CTU 3CTU 2

CTU 1

width´

height´

 

Figure 6.6: Calculation of mapping factor ω 

For CTU 1 from the above figure mapping coefficients are 𝜔𝑤=0.5, 𝜔ℎ=1, making final 

ω=0.5, which, in this case, can be easily deducted from the presented picture. Finally, the entire 

process of mapping of one CTU, showed as a red square in Figure 6.5 and Figure 6.6 is shown 

with the representation (6.8) and depicted in Figure 6.7. 

𝐶𝑇𝑈𝐶𝑈𝑠´ = {(1.0, 𝐶𝑈0), (1.0, 𝐶𝑈1), (1.0, 𝐶𝑈2), (1.0, 𝐶𝑈3), (1.0, 𝐶𝑈4), 

(1.0, 𝐶𝑈5), (1.0, 𝐶𝑈6), (0.5, 𝐶𝑈7), (1.0, 𝐶𝑈8), 

(1.0, 𝐶𝑈9), (1.0, 𝐶𝑈10), (1.0, 𝐶𝑈11), (1.0, 𝐶𝑈12),  

(1.0, 𝐶𝑈13), (1.0, 𝐶𝑈14), (1.0, 𝐶𝑈15), (1.0, 𝐶𝑈16)} 

 

(6.8) 
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Figure 6.7: Final mapping 

In the case when CTU that is being considered is split, re-mapping for all children is 

performed. Example of remapping CUs for the first child when the split is executed is given 

with Figure 6.8 and representation (6.8)(6.9). 

CTU 0 CTU 1

CTU 3CTU 2

0 1

2 3 4

 

Figure 6.8: Mapping after the split 

𝐶𝑈𝐶𝑈𝑠´ = {(1.0, 𝐶𝑈0), (0.5, 𝐶𝑈1), (1.0, 𝐶𝑈2), (1.0, 𝐶𝑈3), (0.25, 𝐶𝑈4)} (6.9) 
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6.3 Mode of mapped coding units 

During the encoding of the video sequence, one of the most demanding tasks is to find 

the best possible prediction decision for each CU depending on the requirements of the system. 

If the main focus is to accomplish best coding efficiency, decisions will be directed to form the 

smallest possible bitstream, which could influence the quality of the encoded video. On the 

other hand, if the goal of the encoder is to create a video of the highest quality, size of the output 

bitstream will be larger. However, real-world video content providers rarely focus on 

maximizing one of these characteristics. Instead, they target to achieve the most suitable trade-

off between coding efficiency and video quality. This trade-off is accomplished by 

implementing and incorporating complex Rate-Distortion Optimization algorithms in an 

encoding scheme. In RDO algorithms, multiple different modes for encoding single CU block 

are evaluated, and the best one is chosen based on the preferences and configuration of the 

encoder. In Just-in-Time encoding, less complex RDO algorithms have to be considered to 

ensure predictability in an environment bounded by strict timing constraints. Therefore, in Just-

in-Time encoding, coding efficiency and video quality are considered only after the adequate 

performance is guaranteed. However, in the transcoding, modes that were chosen as the best 

ones in the original process of encoding can be reused and remapped when re-encoding the 

video. Although those decisions were made based on different conditions (i.e., on a higher 

resolution frame), they can be used as a starting point for CU prediction mode evaluation in the 

re-encoding. Reusing prediction modes can significantly reduce the number of operations 

needed to find the best possible mode for each CU block. In the case of Just-in-Time 

transcoding, in order to accelerate application execution,  number of operations can be furtherly 

reduced  by finding CU mode that does not have to be the best one, but is still “good enough”, 

meaning that choosing that mode over the best possible one will not have a major impact on the 

video quality or coding efficiency. Therefore, reusing modes from decoded bitstream is one of 

the fundamental techniques used in Just-in-Time transcoding, not only to achieve Just-in-Time 

execution but to maintain quality and coding efficiency of the original video as well, which is 

one of the biggest shortcomings in Just-in-Time encoding.   

To reuse information about intra and inter prediction modes from the decoded bitstream, 

modes of all mapped CU have to be considered. Figure 6.9 shows prediction modes of all 

mapped CUs in transcoding from 1920x1080 to 1280x720 resolution.  
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Figure 6.9: Distribution of prediction modes in mapped CUs 

Distribution of different modes within transcoded CU can suggest its complexity for the 

re-encoding phase. If all mapped CUs have similar modes (e.g., all mapped CUs are inter 

predicted and have motion vectors that point in the same direction), a number of operations for 

finding the mode for transcoded CU can be reduced by evaluating only a subset of candidates 

(e.g., only motion vectors in the direction of mapped CUs). Otherwise, if there is a big 

difference between modes of mapped CUs, that could indicate a need for further splitting or a 

more sophisticated algorithm for searching suitable prediction candidate. 
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7 CATEGORIZATION 

One of the main aspects of the novel software algorithm presented in this thesis is a 

categorization of coding units based on the coding information from the input video stream. 

The idea behind the categorization is to divide different blocks into certain categories and 

process them in different manners. Some high complex CUs, where a lot of information is 

contained should be analyzed in more details since they can have a higher impact on final 

bitstream. On the contrary, decisions about less complex CUs can be taken earlier to speed up 

the process, without sacrificing quality. This trade-off between coding efficiency and output 

video quality, while satisfying strict timing requirements can be controlled by manipulating 

decision process for each of the defined categories. In the next chapters categorization based on 

three different aspects is introduced using three different types of information, as described in 

chapter 6: 

• Categorization based on the decoded number of bits  
• Categorization based on the number of CUs mapped from the decoded frame 
• Categorization based on the modes of mapped CUs retrieved from the decoded 

frame 

7.1 Categorization based on a size of decoded coding units 

While decoding input bitstream number of bits that were needed to originally encode 

each CU can be retrieved without any additional processing, i.e., without impact on processing 

time. However, when downsizing video and re-encoding it with new parameters, number of bits 

that will be needed to encode new video is not available in advance. Only by implementing 

complex RDO algorithms that implement encoding loop in which several modes are tested, 

encoded and evaluated in terms of coding efficiency, this could be achieved. This method 

introduces huge computational complexity and is not viable in Just-in-Time transcoding. 

Thereby, a number of bits from the decoded bitstream can be used to approximate the 

complexity of transcoding CUs. Equation (7.1) shows how the approximated number of bits 

(B´) for transcoded CU is computed. 

𝐵´ =  ∑ 𝜔𝑖 ∗ 𝐵𝑖

𝑀𝐶𝑈´

𝑖=0

 (7.1) 

 𝑀𝐶𝑈´ and 𝜔𝑖 are a number of mapped CUs and mapping coefficients for each mapped 

CU as described in chapter 6. Notice that, if the analogue approach is followed to find B´ for 
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all CUs in the transcoded frame, number of bits needed to encode original video will be the 

same as the number of approximated bits for transcoded video. Hence: 

∑ 𝐵𝑖

𝑁𝐶𝑈𝑂

𝑖=0

= ∑ ∑ 𝜔𝑘 ∗ 𝐵𝑘

𝑀𝐶𝑈´

𝑘=0

𝑁𝐶𝑈𝑇

𝑗=0

 (7.2) 

 NCUO and NCUT are the number of coding units in the original and transcoded frame, 

respectively. This statement cannot be true since a number of bits needed to encode lower 

resolution of the video is less than a number of bits needed to encode the same video in higher 

resolution. Thereby, the value of B´ is defined, not as an approximated number of bits that will 

be needed to encode target video in a smaller resolution, but as the complexity of CU induced 

by the number of bits from a decoded video stream, or CU bit complexity. Bit complexity can 

be used as relevant information for decision making in the transcoding process because values 

of B´ will be considered in a relative manner.  

 CUs with a smaller number of bits usually present more static parts of the picture that 

can be predicted with less complex prediction algorithms, without considerable losses in quality 

or coding efficiency. Following this assumption, Category LBC (Low Bit Complexity) is 

defined, where a certain percentage of CUs with the lowest bit complexity are assigned. CU is 

categorized as LBC if the following condition is true: 

0 ≤ 𝐵´ ≤  𝛽𝐿 ∗ 𝐵´𝑚𝑎𝑥 , 𝑤ℎ𝑒𝑟𝑒 0 ≤  𝛽𝐿 ≤ 1 𝑎𝑛𝑑 𝛽𝐿 ∈ 𝑄 (7.3) 

 B´max is the value of the highest bit complexity of a CU in a frame for the considered 

block size. Coefficient  𝛽𝐿 specifies a boundary to form a subset of CUs with a smallest bit 

complexity. If 𝛽𝐿 equals 0.1, all CUs with bit complexity within 10% of maximum CU bit 

complexity in that frame will be categorized as LBC. 

Similarly, two additional categories based on bit sizes are introduced; Category HBC 

(High Bit Complexity), that contains CUs with highest bit complexity, and Category MBC 

(Medium Bit Complexity) that contains all other CUs. CU is categorized as HBC if the 

following condition is met:  

𝛽𝐻 ∗ 𝐵´𝑚𝑎𝑥 ≤ 𝐵´ ≤  𝐵´𝑚𝑎𝑥 , 𝑤ℎ𝑒𝑟𝑒 0 ≤  𝛽𝐻 ≤ 1 𝑎𝑛𝑑 𝛽𝐻 ∈ 𝑄 (7.4) 

Coefficient 𝛽𝐻 specifies a boundary to form a subset of CUs with the largest values of 

B´. All other CUs that do not fit in Category LBC or HBC, are placed in the category MBC. 

Hence, category MBC is restricted to the following scope: 
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𝛽𝐿 ∗ 𝐵´𝑚𝑎𝑥 < 𝐵´ <  𝛽𝐻 ∗ 𝐵´𝑚𝑎𝑥 (7.5) 

With this approach, where CUs are categorized relatively to 𝐵´𝑚𝑎𝑥, blocks, where the static 

parts of the frame are located, should be detected more accurately. In cases where there are no 

static areas in a frame, there will be a small number of blocks that fit in this category because 

of the smaller differences between CU bit complexities within the frame. To test these 

assumptions two videos were transcoded, one with the clearly visible static background 

(BasketballDrive) and one with the random motion throughout the frame and without the 

distinguishable background (Riverbed, also shown in Figure 6.4). The test is conducted by 

transcoding videos to the same resolution, just to test and observe the distribution of CUs within 

a frame. In this case, where there is no downsizing, B´ is equal to B since the mapping of 

decoded CUs is the one-to-one to transcoded CUs, meaning that the bit complexity of the 

transcoded CU is the same as the number of bits needed to encode the same CU in the original 

video (7.2). The same distribution can be expected in any of the downsized versions of the video 

sequence. Bit sizes for all 32x32 CUs were obtained, and their distribution is demonstrated in 

Figure 7.1 and Figure 7.2 for mentioned video sequences. The x-axis in the graph shows the 

number of bits needed to encode a CU, grouped in range of 5 bits, while Y-axis denotes the 

number of CUs that are encoded within the defined range. To demonstrate the difference in 

categorization between the sequences, coefficients 𝛽𝐿 and 𝛽𝐻 are fixed to 0.1 and 0.7, 

respectively. 

MBC HBCLBC

= 0.1 = 0.7

 

Figure 7.1: Categorization based on number of bits for BasketballDrive video sequence 
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Figure 7.1 shows a distribution for a video sequence with a pronounced background, 

where a lot of CUs are grouped at the start of the graph, meaning that high number of CUs 

belong to the static part of the image and can be categorized to Category LBC. With the 

𝐵´𝑚𝑎𝑥=2218, boundaries for categorization are set on 0.1 * 2218 = 222 bits and 0.7 * 2218 = 

1553 bits. 

LBC MBC HBC

= 0.1 = 0.7

 

Figure 7.2: Categorization based on number of bits for Riverbed video sequence 

 In Figure 7.2 most of the CUs are grouped in the middle of the graph. With the 

𝐵´𝑚𝑎𝑥=2092, boundaries for categorization are set on 0.1 * 2092= 209 bits and 0.7 * 2092 = 

1464 bits. Considering that there is no clearly expressed background in this video sequence and 

that the motion is distributed randomly across the frame, prediction, and transformation in the 

encoding process give a high number of transform coefficients that are consequently encoded 

with a higher number of bits. This graph also depicts the major advantage of the introduced 

approach, where boundaries are set relatively in regard to B´max. As can be seen from Figure 

7.2 only one CU is categorized as LBC. Otherwise, if the lower boundary was set absolutely to 

10% of all CUs in the frame, a large number of CUs would be wrongly assumed to be part of 

the background and the further decisions in the process of transcoding could be made on a false 

premise. 

 Using  𝛽𝐿 and  𝛽𝐻 as adaptive parameters enables more control over the transcoding 

process. Since the different categories will be processed in a different manner, higher quality 
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and coding efficiency can be achieved by reducing coefficients 𝛽𝐿 and  𝛽𝐻 and thereby 

increasing the number of CUs in categories MBC and HBC. Higher 𝛽𝐿 and  𝛽𝐻 coefficients 

increase number of CUs in the LBC category and decrease number of CUs in the HBC category, 

leading to lower computational complexity and faster execution of the transcoding process.  

To conclude, CU can be categorized into three different categories, based on the value of CU 

bit complexity (B´). 

𝐶𝑈 ∈  {

          𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝐿𝐵𝐶, 0 ≤ 𝐵´ ≤  𝛽𝐿 ∗ 𝐵´𝑚𝑎𝑥
𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝑀𝐵𝐶, 𝛽𝐿 ∗ 𝐵´𝑚𝑎𝑥 ≤ 𝐵´ ≤  𝛽𝐻 ∗ 𝐵´𝑚𝑎𝑥
𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝐻𝐵𝐶, 𝛽𝐻 ∗ 𝐵´𝑚𝑎𝑥 ≤ 𝐵´ ≤  𝐵´𝑚𝑎𝑥  

 (7.6) 

7.2 Categorization based on the number of mapped CUs 

When mapping CUs from decoded video to downsized transcoded video, a number of 

mapped CUs (MCU´) can be useful information that can be reused for decisions in the re-

encoding phase. If a large number of CUs from input frame were mapped to one transcoded CU 

that means that that area of the original picture was divided into smaller CUs more frequently, 

which could indicate areas of the picture with more details. On the contrary, if there is a smaller 

number of mapped CUs, there is a higher probability of that area of the picture being uniform, 

containing fewer details. Figure 7.3 visualizes this fact by demonstrating CU distribution for 

one encoded video frame of the BlueSky video sequence. 

 

Figure 7.3: CU distribution in the original video sequence (BlueSky) 

Sky, as homogeneous part of the frame, is divided into larger blocks, meaning that CUs 

in the transcoded video that are located in that area will have a fewer number of mapped CUs. 

On the left and upper right part of the frame, where the two trees are located, CUs are split more 

frequently to form a more fine-grained structure. Mapping CUs that coincide with these, more 

detailed parts of the frame, will consequently have a higher value of MCU´.  
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For every CU in the transcoded video maximum and minimum number of MCU´ can 

be determined depending on the CU block size CUBS: 

max(𝑀𝐶𝑈´) = ⌈
𝐶𝑈𝐵𝑆 ∗ (𝜌𝑤 + 1)

𝐶𝑈´min𝐵𝑆
⌉ ∗ ⌈

𝐶𝑈𝐵𝑆 ∗ (𝜌ℎ + 1)

𝐶𝑈´min𝐵𝑆
⌉  

(7.7) 

min(𝑀𝐶𝑈´) = ⌈
𝐶𝑈𝐵𝑆 ∗ 𝜌𝑤
𝐶𝑈´max𝐵𝑆

⌉ ∗ ⌈
𝐶𝑈𝐵𝑆 ∗ 𝜌ℎ
𝐶𝑈´max𝐵𝑆

⌉  (7.8) 

 

 𝐶𝑈´min𝐵𝑆 and 𝐶𝑈´max𝐵𝑆  represent minumum and maximum block size for an input 

video stream, while 𝜌𝑤 and 𝜌ℎ are width and height transcoding ratio (6.1)(6.2).  In HEVC 

standard, maxium CU block size can be 64x64, while minumum block size is 8x8. However, 

these values can be restricted and adapted for each bitstream. 

Based on the number of mapped CUs three categories are introduced: Category LM 

(Low Mapped) where the CUs with the smallest MCU´ are located, Category HM (High Mapped) 

where the CUs with highest values of MCU´ are located and Category MM (Medium Mapped) 

where all other CUs that do not fit in the previous two categories are associated. Similar as for 

the categorization that is based on bit complexity, two coefficients 𝜇𝐿 and 𝜇𝐻 that can be 

adapted based on the requirements of the transcoding system are introduced. Hence, CU is 

categorized as LM if the following condition is true:  

min (𝑀𝐶𝑈´) ≤ 𝑀𝐶𝑈´ ≤ 𝜇𝐿 ∗ max (𝑀𝐶𝑈´), 𝑤ℎ𝑒𝑟𝑒 0 ≤  𝜇𝐿 ≤ 1 𝑎𝑛𝑑 𝜇𝐿 ∈ 𝑄 (7.9) 

where min(MCU´) and max(MCU´) are the values for the considered CU block size. 

Category HB is described with the following condition: 

𝜇𝐻 ∗ max (𝑀𝐶𝑈´) ≤ 𝑀𝐶𝑈´ ≤  𝑚ax (𝑀𝐶𝑈´),𝑤ℎ𝑒𝑟𝑒 0 ≤  𝜇𝐻 ≤ 1 𝑎𝑛𝑑 𝜇𝐻 ∈ 𝑄 (7.10) 

Category MM covers the remaining CUs:  

𝜇𝐿 ∗ max(𝑀𝐶𝑈´) < 𝑀𝐶𝑈´ < 𝜇𝐻 ∗ max (𝑀𝐶𝑈´) (7.11) 

Coefficients 𝜇𝐿 and 𝜇𝐻 can be adjusted at the beginning or in the runtime to enable more 

control during the transcoding process. Increasing or decreasing 𝜇𝐿 and 𝜇𝐻 will affect the 

number of CUs in each of the defined categories LM, MM, and HM. The higher the coefficient 

𝜇𝐿 is, more CUs will be assigned to the LM category. Analogously, the lower the 𝜇𝐻 is, more 

CUs will fit in category HM. In the re-encoding phase of the transcoder, some conclusions and 
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decisions can be made based on the categories formed in regard to a number of mapped CUs. 

For example, if the CU belongs to HM category, it can be expected that considered CU would 

be split in the encoding of a downsized video more likely than if the same CU was part of a LM 

category. To verify this assumption, BlueSky video sequence from Figure 7.3 originally 

encoded in 1920x1080 resolution was decoded, downsized to 1280x720 resolution and then 

fully re-encoded without reusing any information from decoded bitstream. Distribution of CUs 

in the downsized video is shown in Figure 7.4. 

 

Figure 7.4: CU distribution in the downsized video sequence (BlueSky 1280x720) 

As can be seen from the figure above, distribution of CUs and block sizes in the 

downsized transcoded bitstream follow a similar pattern as in original bitstream depicted in 

Figure 7.3.  

To conclude, CU can be categorized into three different categories, based on number 

CUs mapped from the decoded bitstream (MCU´).  

𝐶𝑈 ∈  {

𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝐿𝑀, min (𝑀𝐶𝑈´) ≤ 𝑀𝐶𝑈´ ≤ 𝜇𝐿 ∗ max (𝑀𝐶𝑈´)

         𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝑀𝑀, 𝜇𝐿 ∗ max(𝑀𝐶𝑈´) < 𝑀𝐶𝑈´ < 𝜇𝐻 ∗ max (𝑀𝐶𝑈´)
𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝐻𝑀, 𝜇𝐻 ∗ max (𝑀𝐶𝑈´) ≤ 𝑀𝐶𝑈´ ≤  𝑚ax (𝑀𝐶𝑈´) 

 (7.12) 

7.3 Categorization based on prediction modes 

Transcoded CUs can be processed differently based on a variety of prediction modes of 

mapped CUs. Similar modes of all mapped CUs could suggest a homogeneous area that can be 

predicted with either inter or intra mode which can be extracted from the modes of mapped 

CUs. Thereby, two categories are defined, one for CUs that contain only intra mapped 

prediction modes and one for CUs that contain only inter predicted mapped CUs. Therefore, if 

all mapped CUs from the decoded bitstream are predicted in intra mode (7.13), CU is assigned 

to category IntraM (All intra mapped). 
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𝑀𝐶𝑈´ = 𝑀𝐶𝑈´(𝐼𝑁𝑇𝑅𝐴) (7.13) 

Likewise, if all mapped CUs are inter predicted (7.14), CU is assigned to category 

InterM (All inter mapped). 

𝑀𝐶𝑈´ = 𝑀𝐶𝑈´(𝐼𝑁𝑇𝐸𝑅) (7.14) 

All other CUs that do not fit in either of the two categories are categorized as ComboM 

(Combo mapped).  Consequently, for CUs in ComboM category, the following conditions have 

to be fulfilled:  

0 < 𝑀𝐶𝑈´(𝐼𝑁𝑇𝑅𝐴) < 𝑀𝐶𝑈´ 
(7.15) 

0 < 𝑀𝐶𝑈´(𝐼𝑁𝑇𝐸𝑅) < 𝑀𝐶𝑈´ (7.16) 

 

𝑀𝐶𝑈´(𝐼𝑁𝑇𝑅𝐴) + 𝑀𝐶𝑈´(𝐼𝑁𝑇𝐸𝑅) =  𝑀𝐶𝑈´ (7.17) 

 

To obtain the frequency of occurrence for each of the defined categories, set of videos 

with the original spatial resolution of 1920x1080 were transcoded to two different resolutions: 

1280x720 and 640x480. Input video sequences were encoded with four different QP values of 

22, 27, 32, 37, as defined in Common Test Conditions [60]. For each CU block size (32x32, 

16x16 and 8x8), values of 𝑀𝐶𝑈´, 𝑀𝐶𝑈´(𝐼𝑁𝑇𝑅𝐴) and 𝑀𝐶𝑈´(𝐼𝑁𝑇𝐸𝑅) were observed, based on 

which CUs were categorized to one of the above-mentioned categories. Statistics was gathered 

only for P frames, since in I frame all CUs have to be intra predicted. The frequency of 

occurrence of categories was examined and showed in following tables. 
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Table 7.1: Frequency of occurence of categories IntraM, InterM and ComboM for 32x32 blocks 

when transcoding from 1920x1080 to 1280x720 (%) 

QP 22 27 32 37 
Video 
sequence 

Intra
M 

Inter
M Comb Intra

M 
Inter

M Comb Intra
M 

Inter
M Comb Intra

M 
Inter

M Comb 

Basketball
Drive 

1.86 12.70 85.44 1.20 21.24 77.56 1.17 21.14 77.69 1.14 21.69 77.17 

BlueSky 2.45 30.38 67.18 4.63 38.94 56.43 3.45 41.75 54.80 1.63 41.75 56.62 

BQTerrace 0.73 10.73 88.54 0.04 40.73 59.23 0.03 56.30 43.66 0.05 60.68 39.27 

Cactus 0.98 27.45 71.57 0.63 52.44 46.93 0.72 58.04 41.25 0.74 60.01 39.25 

Calendar 0.22 21.69 78.09 0.28 42.88 56.84 0.32 55.75 43.92 0.30 62.35 37.35 
Pedestrian
Area 

5.00 31.81 63.18 6.03 37.37 56.60 6.69 39.48 53.83 6.99 41.32 51.68 

Riverbed 46.97 0.03 53.00 42.48 0.04 57.49 32.36 0.10 67.54 18.52 0.30 81.18 

RushHour 1.57 3.33 95.10 1.76 13.92 84.33 1.76 25.54 72.70 1.58 33.85 64.57 

Table 7.2: Frequency of occurence of categories IntraM, InterM and ComboM for 16x16 blocks 

when transcoding from 1920x1080 to 1280x720 (%) 

QP 22 27 32 37 
Video 
sequence 

Intra
M 

Inter
M Comb Intra

M 
Inter

M Comb Intra
M 

Inter
M Comb Intra

M 
Inter

M Comb 

Basketball
Drive 

5.93 35.12 58.96 4.21 44.40 51.39 4.27 43.91 51.82 4.27 43.86 51.87 

BlueSky 7.13 53.44 39.43 9.25 58.03 32.72 6.80 59.77 33.43 3.66 61.17 35.18 

BQTerrace 4.42 30.56 65.03 0.29 67.41 32.30 0.21 76.32 23.47 0.26 78.28 21.46 

Cactus 2.94 53.41 43.65 1.87 71.54 26.59 2.02 73.70 24.28 2.13 74.30 23.56 

Calendar 2.25 45.24 52.51 1.81 61.82 36.37 1.71 70.47 27.82 1.57 74.73 23.70 
Pedestrian
Area 

11.92 48.54 39.54 12.44 51.72 35.84 13.00 52.63 34.38 13.32 53.46 33.22 

Riverbed 67.76 0.94 31.30 63.19 1.19 35.62 54.71 1.87 43.41 40.44 3.52 56.03 

RushHour 5.39 21.60 73.01 4.75 37.17 58.08 4.29 48.14 47.57 3.83 54.93 41.24 

Table 7.3: Frequency of occurence of categories IntraM, InterM and ComboM for 8x8 blocks 

when transcoding from 1920x1080 to 1280x720 (%) 

QP 22 27 32 37 
Video 
sequence 

Intra
M 

Inter
M Comb Intra

M 
Inter

M Comb Intra
M 

Inter
M Comb Intra

M 
Inter

M Comb 

Basketball
Drive 

12.66 52.44 34.91 10.46 60.53 29.01 11.29 60.22 28.49 11.76 60.19 28.05 

BlueSky 12.99 65.83 21.18 14.49 68.49 17.03 11.92 70.73 17.35 8.67 73.04 18.29 

BQTerrace 11.48 47.01 41.51 2.36 80.17 17.46 2.11 85.62 12.26 2.20 86.68 11.12 

Cactus 6.35 68.25 25.40 4.19 81.07 14.74 4.57 82.13 13.30 4.95 82.35 12.70 

Calendar 8.48 61.96 29.57 6.82 73.81 19.37 5.78 79.60 14.62 5.17 82.44 12.39 
Pedestrian
Area 

18.32 59.39 22.29 18.67 61.72 19.61 19.25 62.28 18.47 19.62 62.72 17.66 

Riverbed 77.65 4.37 17.99 73.92 5.57 20.51 67.49 7.61 24.91 55.71 11.82 32.47 

RushHour 13.97 42.22 43.81 12.03 55.69 32.27 10.53 63.94 25.53 9.45 68.76 21.78 

 Table 7.1, Table 7.2 and Table 7.3 show that the percentage of IntraM and InterM 

increases as CU block sizes decrease. This behavior is expected since the maximum number of 
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mapped CUs (max(MCU´)) gets smaller for smaller blocks sizes, which increases the chance of 

all mapped CUs being predicted in the same mode. Also, the characteristics of certain videos 

can influence the occurrence of different prediction modes. For example, in Riverbed video 

sequence, which does not have any regular motion between the frames, there is the highest 

number of IntraM CUs, since, in that kind of scenario, intra prediction modes give better 

prediction than inter modes. Increasing quantization parameter does not follow any regular 

pattern in terms of categorization based on intra and inter modes. 

 Following three tables represent the same statistics, but for transcoding to a lower 

resolution of 640x480, thus with higher transcoding ratios (𝜌𝑤=3, 𝜌ℎ=2,25). 

Table 7.4: Frequency of occurence of categories IntraM, InterM and ComboM for 32x32 blocks 

when transcoding from 1920x1080 to 640x480 (%) 

QP 22 27 32 37 
Video 
sequence 

Intra
M 

Inter
M Comb Intra

M 
Inter

M Comb Intra
M 

Inter
M Comb Intra

M 
Inter

M Comb 

Basketball
Drive 

1.86 12.70 85.44 1.20 21.24 77.56 1.17 21.14 77.69 1.14 21.69 77.17 

BlueSky 2.45 30.38 67.18 4.63 38.94 56.43 3.45 41.75 54.80 1.63 41.75 56.62 

BQTerrace 0.73 10.73 88.54 0.04 40.73 59.23 0.03 56.30 43.66 0.05 60.68 39.27 

Cactus 0.98 27.45 71.57 0.63 52.44 46.93 0.72 58.04 41.25 0.74 60.01 39.25 

Calendar 0.22 21.69 78.09 0.28 42.88 56.84 0.32 55.75 43.92 0.30 62.35 37.35 
Pedestrian
Area 

5.00 31.81 63.18 6.03 37.37 56.60 6.69 39.48 53.83 6.99 41.32 51.68 

Riverbed 46.97 0.03 53.00 42.48 0.04 57.49 32.36 0.10 67.54 18.52 0.30 81.18 

RushHour 1.57 3.33 95.10 1.76 13.92 84.33 1.76 25.54 72.70 1.58 33.85 64.57 

Table 7.5: Frequency of occurence of categories IntraM, InterM and ComboM for 16x16 blocks 

when transcoding from 1920x1080 to 640x480 (%) 

QP 22 27 32 37 
Video 
sequence 

Intra
M 

Inter
M Comb Intra

M 
Inter

M Comb Intra
M 

Inter
M Comb Intra

M 
Inter

M Comb 

Basketball
Drive 

5.93 35.12 58.96 4.21 44.40 51.39 4.27 43.91 51.82 4.27 43.86 51.87 

BlueSky 7.13 53.44 39.43 9.25 58.03 32.72 6.80 59.77 33.43 3.66 61.17 35.18 

BQTerrace 4.42 30.56 65.03 0.29 67.41 32.30 0.21 76.32 23.47 0.26 78.28 21.46 

Cactus 2.94 53.41 43.65 1.87 71.54 26.59 2.02 73.70 24.28 2.13 74.30 23.56 

Calendar 2.25 45.24 52.51 1.81 61.82 36.37 1.71 70.47 27.82 1.57 74.73 23.70 
Pedestrian
Area 

11.92 48.54 39.54 12.44 51.72 35.84 13.00 52.63 34.38 13.32 53.46 33.22 

Riverbed 67.76 0.94 31.30 63.19 1.19 35.62 54.71 1.87 43.41 40.44 3.52 56.03 

RushHour 5.39 21.60 73.01 4.75 37.17 58.08 4.29 48.14 47.57 3.83 54.93 41.24 
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Table 7.6: Frequency of occurence of categories IntraM, InterM and ComboM for 8x8 blocks 

when transcoding from 1920x1080 to 640x480 (%) 

QP 22 27 32 37 
Video 
sequence 

Intra
M 

Inter
M Comb Intra

M 
Inter

M Comb Intra
M 

Inter
M Comb Intra

M 
Inter

M Comb 

Basketball
Drive 

12.66 52.44 34.91 10.46 60.53 29.01 11.29 60.22 28.49 11.76 60.19 28.05 

BlueSky 12.99 65.83 21.18 14.49 68.49 17.03 11.92 70.73 17.35 8.67 73.04 18.29 

BQTerrace 11.48 47.01 41.51 2.36 80.17 17.46 2.11 85.62 12.26 2.20 86.68 11.12 

Cactus 6.35 68.25 25.40 4.19 81.07 14.74 4.57 82.13 13.30 4.95 82.35 12.70 

Calendar 8.48 61.96 29.57 6.82 73.81 19.37 5.78 79.60 14.62 5.17 82.44 12.39 
Pedestrian
Area 

18.32 59.39 22.29 18.67 61.72 19.61 19.25 62.28 18.47 19.62 62.72 17.66 

Riverbed 77.65 4.37 17.99 73.92 5.57 20.51 67.49 7.61 24.91 55.71 11.82 32.47 

RushHour 13.97 42.22 43.81 12.03 55.69 32.27 10.53 63.94 25.53 9.45 68.76 21.78 

Table 7.4, Table 7.5 and Table 7.6 show that by increasing downsizing ratio between 

original and transcoded video, the possibility of occurrences of IntraM and InterM categories 

decreases, which is expected since the CU in the smaller, transcoded video, covers a larger area 

in the original video. Also, in the second case, where downsizing ratios are 𝜌𝑤=3 and 𝜌ℎ=2.25 

value of max(MCU´) is higher than in the first scenario 𝜌𝑤=3 and 𝜌ℎ=2.25, meaning that the 

probability of all mapped CUs being predicted in the same mode is lower. 

 In most of the presented cases, ComboM is the most common category. However, within 

ComboM category there can be different cases. Even if one mapped CU is intra predicted and 

all others are inter predicted or vice-versa, CU will be assigned to the ComboM category. 

Hence, ComboM category is disjointed to two separate categories based on the ratio between a 

number of mapped CUs that are predicted in inter and intra mode. Therefore, two additional 

categories are introduced: ComboInter, where more mapped CUs are inter predicted, and 

ComboIntra, where more mapped CUs are intra predicted. The same test used to observe the 

frequency of occurrence of each category was repeated, and the average ratio between 

prediction modes (γ) as defined in (7.18) is observed.  

𝛾 =
𝑀𝐶𝑈´(𝐼𝑁𝑇𝐸𝑅)

𝑀𝐶𝑈´(𝐼𝑁𝑇𝑅𝐴)
 (7.18) 

Obtained values are presented in Table 7.7 for transcoding to 1280x720 resolution and 

in Table 7.8 for transcoding to 640x480 resolution. 
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Table 7.7:Values of γ when transcoding from 1920x1080 to 1280x720 

Video sequence QP = 22 QP = 27 QP = 32 QP = 37 
BasketballDrive 1.91 1.97 1.89 1.90 

BlueSky 3.39 3.21 2.78 2.81 

BQTerrace 2.32 4.30 4.08 4.01 

Cactus 3.13 3.16 2.48 2.26 

Calendar 2.41 2.56 2.52 2.51 

PedestrianArea 1.54 1.46 1.44 1.44 

Riverbed 0.44 0.49 0.50 0.57 

RushHour 1.78 2.15 2.32 2.45 

Table 7.8:Values of γ when transcoding from 1920x1080 to 640x480 

Video sequence QP = 22 QP = 27 QP = 32 QP = 37 
BasketballDrive 2.14 2.44 2.41 2.47 

BlueSky 4.82 5.22 4.51 4.49 

BQTerrace 2.59 6.37 7.13 7.45 

Cactus 3.93 4.46 3.57 3.39 

Calendar 2.99 3.99 4.21 4.20 

PedestrianArea 1.92 1.95 1.98 2.03 

Riverbed 0.35 0.40 0.42 0.52 

RushHour 1.84 2.53 3.09 3.54 

 Table 7.7 and Table 7.8 show that the ratio γ generally diverge to one of the modes and 

that the value of γ is rarely close to 1, which would indicate the same number of inter and intra 

mapped CUs. Therefore, instead of simply defining categories ComboIntra and ComboInter as 

categories that have a higher number of one of the prediction modes, these categories are 

defined relatively, based on coefficient δ. CU is allocated to ComboInter category if the 

following condition is true: 

𝑀𝐶𝑈´(𝐼𝑁𝑇𝐸𝑅) > 𝛿 ∗ 𝑀𝐶𝑈´(𝐼𝑁𝑇𝑅𝐴),𝑤ℎ𝑒𝑟𝑒 𝛿 > 0 𝑎𝑛𝑑 𝛿 ∈ 𝑄 (7.19) 

 Otherwise, CU is categorized as ComboIntra. 

𝑀𝐶𝑈´(𝐼𝑁𝑇𝐸𝑅) ≤ 𝛿 ∗ 𝑀𝐶𝑈´(𝐼𝑁𝑇𝑅𝐴),𝑤ℎ𝑒𝑟𝑒 𝛿 > 0 𝑎𝑛𝑑 𝛿 ∈ 𝑄 (7.20) 

With this approach, condition for categorization in one of these categories can be set 

dynamically and can be adapted depending on the specific video sequence. Also, this concept 

enables detection of CUs that stand out from the average CU ratio, which would not be possible 

if the categorization was based solely on the higher number of prediction modes (i.e., if δ is 

fixed to 1).  
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All the facts presented above can be used in the decision-making process of a transcoder. 

Depending on the occurrence of the particular category within the decoded frame, focus can be 

directed to a different category in the re-encoding phase. For, example, if video sequence 

Riverbed is being transcoded, more precise intra prediction will be performed, since the 

occurrence of IntraM category for that particular video sequence is very high. 

To conclude, CU can be categorized into four different categories, based on prediction 

modes of mapped CUs (CUCU´). 

𝐶𝑈 ∈  

{
 
 

 
 

𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝐼𝑛𝑡𝑒𝑟𝑀, 𝑀𝐶𝑈´ = 𝑀𝐶𝑈´(𝐼𝑁𝑇𝐸𝑅)
𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝐼𝑛𝑡𝑟𝑎𝑀, 𝑀𝐶𝑈´ = 𝑀𝐶𝑈´(𝐼𝑁𝑇𝑅𝐴)

𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝐶𝑜𝑚𝑏𝑜𝐼𝑛𝑡𝑒𝑟, 𝑀𝐶𝑈´(𝐼𝑁𝑇𝐸𝑅) > 𝛿 ∗ 𝑀𝐶𝑈´(𝐼𝑁𝑇𝑅𝐴)

𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝐶𝑜𝑚𝑏𝑜𝐼𝑛𝑡𝑟𝑎, 𝑀𝐶𝑈´(𝐼𝑁𝑇𝐸𝑅) ≤ 𝛿 ∗ 𝑀𝐶𝑈´(𝐼𝑁𝑇𝑅𝐴)
 

 (7.21) 

 

 

  

 

  



57 

 

8 ALGORITHM FOR REUSING CODING INFORMATION 

An optimized algorithm for just in time video transcoding based on the utilization of 

coding statistics from the input video stream is presented in this thesis. The proposed algorithm 

targets to achieve an optimal trade-off between video quality of the transcoded bitstream and 

coding efficiency while conforming to strict timing requirements imposed by Just-in-Time 

transcoding. The basic concept behind this novel algorithm is to estimate the computational 

complexity of re-encoding each block based on the information retrieved from the decoded 

frame and to balance the workload of the transcoder accordingly. More computing resources 

will be assigned to processing more complex CUs that usually contain more detailed 

information within the video frame. 

After introducing the concept of categorization of coding units based on the data 

extracted from the decoded frame, this chapter presents an algorithm for Just-in-Time video 

transcoding built based on this idea. Depending on the affiliation of each CU to particular 

categories, different algorithms are used to decide whether CU will be split or not, and which 

mode will be used for its prediction in the re-encoding phase.  

8.1 Input data 

To be able to categorize CU, several coefficients that define boundaries for 

categorization have to be defined: 

•  𝛽𝐿 and  𝛽𝐻 for categorization based on the bit complexity 
•  𝜇𝐿 and 𝜇𝐻  for categorization based on the number of CUs mapped from the 

decoded frame 
• 𝛿 for categorization based on the modes of mapped CUs retrieved from the 

decoded frame 

In the initial version of the algorithm, values of all coefficients are preset to default 

values for all video sequences and will not be adapted during the execution of the transcoder. 

Coefficients are defined in the configuration file of the application. Dynamic adaptation of 

coefficients are introduced later in this thesis. 

Besides coefficients needed to form boundaries for the categorization, several other 

values are required before the beginning of the transcoding process and have to be calculated. 

These include:  
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• Transcoding width and height ratios - 𝜌𝑤 and 𝜌ℎ   
• Maximum and minimum number of mapped CUs for each block size - 

min (𝑀𝐶𝑈´) , max (𝑀𝐶𝑈´) 
• Maximum bit complexity for each block size – B´max 
• Set of mapped CUs for each CU – CUCU´  

While transcoding ratios and values of  min (𝑀𝐶𝑈´)  and max(𝑀𝐶𝑈´) can be calculated 

immediately after decoding sequence parameter set (SPS) of the original bitstream, set of 

mapped CUs and maximum bit complexity have to be determined in the encoder part of the 

transcoder. Whenever a CU is formed in the encoder, either by creating new CTU or by splitting 

existing CU, CUs from the decoded frame are mapped and the set CUCU´ is assembled, while 

the corresponding value of B´max is updated accordingly. 

8.2 Initial split 

At the beginning of the encoding phase, a frame is divided into Coding Tree Units, CUs 

with largest block sizes. Each of these CTUs can be further split multiple times to form a tree 

of CUs (as shown in Figure 2.2). The maximum size of CTU is defined in HEVC standard 

(64x64) but can be limited for each bitstream to 32x32 or 16x16. So, the first step in the 

algorithm is to decide whether to split CTU or not. The analysis was made to determine the 

frequency of occurrence of 64x64 blocks that are not split. Only videos with resolutions of 

1920x1080 and higher were taken into consideration since the probability of 64x64 CUs in 

lower resolutions is very small. Table 8.1 shows the percentages of occurrence of 64x64 blocks 

that are not split in the original bitstream. 

The analysis shows that the presence of 64x64 CU blocks in an encoded bitstream is 

very low for all video sequences and all QP values. Also, if the CTU is not split to smaller CUs, 

it has to be split to multiple transcoding units (TU) that are predicted individually with the same 

intra mode. Thereby, coding efficiency when using 64x64 CUs is achieved only by not signaling 

intra mode for each TU independently, which is almost negligible when the number of such 

CTUs is low, as depicted in Table 8.1. 
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Table 8.1: Frequency of occurence of non-split 64x64 blocks 

Video 
sequence 

Resolution QP = 22 QP = 27 QP = 32 QP = 37 

BasketballDrive 1920x1080 0.03 0.04 0.04 0.05 

BlueSky 1920x1080 0.06 0.20 0.35 0.40 

BQTerrace 1920x1080 0.00 0.01 0.01 0.02 

Cactus 1920x1080 0.01 0.02 0.02 0.02 

Calendar 1920x1080 0.01 0.02 0.04 0.04 

PedestrianArea 1920x1080 0.06 0.12 0.21 0.32 

Riverbed 1920x1080 1.46 1.24 0.71 0.34 

RushHour 1920x1080 0.02 0.02 0.03 0.03 

Traffic 2560x1600 0.00 0.00 0.00 0.00 

Beauty 3840x2160 3.11 0.34 0.04 0.00 

Bosphorus 3840x2160 0.00 0.00 0.00 0.03 

DuckTakeOff 3840x2160 0.22 0.02 0.00 0.00 

Taking into consideration results presented above, all CTUs in the re-encoding phase 

are unconditionally split if their size is 64x64. Bypassing evaluation of modes for the largest 

coding blocks in HEVC standard helps to reduce the overall number of operations for finding 

final prediction mode with no significant losses in coding efficiency. Thus, the first operation 

in this phase of the algorithm is to split all CTUs. While splitting CTU following operations are 

performed: 

• All mapped CUs (CUCU´) are re-mapped from CTU to appropriate child CU as 
depicted in Figure 6.8 

• Bit complexity (B´) is calculated for each newly created CU, and the value of 
B´max is updated accordingly  

• Child CUs are categorized based on bit complexity, number of mapped CUs and 
modes of mapped CUs as described in chapter 7 

After initial CTU split, every 32x32 CU block is evaluated based on the associated 

categories, and the initial decision about the further splitting of the CU is made. If the 32x32 

CU block belongs to both categories, LBC (Low bit complexity) and LM (Low mapped), that 

CU block is not split and is marked as “split concluded” by setting a flag SC to 1. When a SC 

flag in CU is set to 1, it means that decision about the split is final and that no further 

considerations for splitting will be conducted later in the algorithm. All other combinations of 
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categories based on bit complexity and a number of mapped CUs lead to splitting 32x32 CU 

and repeating the same process for four 16x16 CUs. Notice that, for initial split decisions, only 

the first two categorizations are taken into account. Categorization based on the modes of 

mapped CUs will be used later in the algorithm. For 16x16 CU blocks, the same procedure is 

repeated if they belong to the LBC and LM category. However, for 16x16 block sizes, only 

CUs that belong to most complex categories, HBC and HM, are split. All other 16x16 CUs that 

are associated with different combinations of categories are not split, and their SC flag is set to 

0, meaning that this CU can be still examined by a different process and that the decision about 

the split is not final. For 8x8 CU blocks that are formed after splitting 16x16 CUs, only re-

mapping and categorization is performed, since they cannot be furtherly split. SC flag for 8x8 

blocks is set to 1 by default. Figure 8.1 shows a flowchart of an initial split decision for CU. 

 

Figure 8.1: Initial split flowchart 



61 

 

Initial split only makes final split decisions for two types of CUs: 

• Most complex CUs - 16x16 CU blocks  with the highest bit complexity and the 
highest number of mapped CUs 

• Least complex CUs - 32x32 blocks with the lowest bit complexity and the lowest 
number of mapped elements 

Number of CUs for which split decision is final (i.e., SC flag is equal to 1) after an initial 

split depends on the coefficients 𝛽𝐿 ,𝛽𝐻 , 𝜇𝐿 and 𝜇𝐻. Figure 8.2 shows the CU distribution within 

one frame of three video sequences (BlueSky, KristenAndSara and BasketballDrive) after 

performing the initial split, for three different sets of coefficients:  

A. 𝛽𝐿 = 0.4 , 𝛽𝐻 = 0.9 , 𝜇𝐿 = 0.5, 𝜇𝐻 = 0.9 
B. 𝛽𝐿 = 0.3 , 𝛽𝐻 = 0.6 , 𝜇𝐿 = 0.3, 𝜇𝐻 = 0.6 
C. 𝛽𝐿 = 0.1 , 𝛽𝐻 = 0.5, 𝜇𝐿 = 0.2, 𝜇𝐻 = 0.5 

 

Figure 8.2: CU distribution after the initial split for three different sets of coefficients 

The first set of predefined coefficients (A) is most suitable for fast transcoding since a 

large number of CUs are categorized as an LBC and LM. Setting high values of coefficients 𝛽𝐻 

and 𝜇𝐻 decreases the number of CUs in most complex categories HBC and HM, which is why 

the number of 8x8 CU blocks is relatively small. Third set of coefficients (C) does exactly the 
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opposite, which has decreased number of 32x32 CU blocks as a consequence. This 

configuration increases overall video quality but can compromise Just-in-Time execution. By 

changing these coefficients to different values, the balance between video quality and execution 

time can be achieved. One such examplesis given with the second set of coefficients (B) that 

shows the coefficients set between the two extremes (A and C). To quantify the number of CUs 

for which decision has been made during the initial split, Table 8.2 that shows a number of 

blocks with sizes of 8x8, 16x16 and 32x32 for each of predefined sets of coefficients is 

presented. As expected, the number of 32x32 blocks is the highest for the first configuration 

(A) and the lowest for the third and vice-versa for 8x8 CU blocks 

Table 8.2: Distribution of CU blocks after the initial split (per block size) 

Configuration A) B) c) Video sequence Blocks 
BlueSky 32x32 507 263 128 

16x16 1571 2490 2858 
8x8 4 232 920 

KristenAndSara 32x32 539 346 181 
16x16 1435 2184 2807 
8x8 36 128 276 

BasketballDrive 32x32 452 161 14 
16x16 1778 2886 3380 
8x8 16 280 656 

8.3 Prediction decisions 

Next step in the algorithm is to determine a prediction mode for each CU that is formed 

after the initial split. This decision is based on the modes of mapped CUs since it can be 

expected that transcoded block will have similar prediction mode as one or more of its mapped 

CUs. Next few chapters describe the process of determining prediction modes for each of the 

categories: IntraM, InterM, ComboInter, and ComboIntra. 

The main idea behind the concept of categorization based on modes of CUs mapped 

from the decoded frame is to find the best prediction candidates with the number of operations 

as low as possible in order to conform to strict timing requirements imposed by Just-in-Time 

video transcoding. The first step in this approach is to divide blocks into different categories 

based on characteristics of the mapped coding units. For each of the defined categories, a 

different set of rules and algorithms are used to find a prediction that is close to the best possible 

prediction which would be selected if a full re-encoding, without time constraints, is used.  
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8.3.1 Prediction for IntraM category 

There are 35 possible modes for intra prediction: DC, Planar and 33 angular modes. In 

the encoding process, if the CU is intra predicted, all the modes can be evaluated, and the one 

with the best prediction (i.e., the smallest residual) is selected. Different algorithms can be used 

to decrease the number of intra modes that are being evaluated ([61],[62],[63]), thereby 

reducing the complexity of intra prediction.  

In the transcoding, information about modes of CUs from the input frame is available 

and can be utilized to minimize the number of evaluated modes. If the CU belongs to IntraM 

category, there is a high probability that this CU would also be intra predicted in the encoding 

phase. However, during the downsizing of the decoded frame, some information is lost, and the 

transcoded pixels, although similar, are not the same as in the decoded frame. Therefore, 

transcoded CU in some cases can be inter predicted, regardless of all mapped CUs being intra 

predicted. So, when determining prediction mode in transcoded CU, this has to be taken into 

consideration. Figure 8.3 shows the prediction decision process for CU that is categorized as 

IntraM. 

Find prediction 
mode for CU 

Is LBC or LM 
category? 

YES

Is HBC or HM 
category? 

NO

YES

NO

SC == 1?  
YES

Split CU?

NO

NO

Split CU and categorize 
child CUs

Prediction: INTRA
INTRA prediction: Only mapped 
modes

Prediction: INTRA or INTER
INTRA prediction: Mapped modes + 
refinement
INTER prediction: TSS or Diamond

Prediction: INTRA
INTRA prediction: Mapped modes + 
refinement

 

Figure 8.3: Prediction decision for IntraM category 
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If the IntraM CU is also categorized as LBC or LM, only intra prediction modes of 

mapped CUs are evaluated, and the best among them is taken as a final prediction mode. In this 

scenario, the maximum number of tested modes is MCU´. However, since the intra modes of 

mapped CUs can be the same, the average number of tested intra modes is often lower than 

MCU´.  

Otherwise, if the CU fits in either HBC or HM category, the more detailed decision 

process is performed to obtain better residual. First, if the split has not been considered in the 

initial split phase (i.e., if the flag SC is set to 0), then the decision about the split is reevaluated. 

Algorithm for this decision is given with the following pseudocode: 

if SC = 1 

 Do not split  

 

avgFirst = Find the average mode of first two mapped CUs 

avgLast = Find the average mode of last two mapped CUs 

 

difference = abs(avgFirst – avgLast) 

 

if difference > (Number of INTRA modes / 2) 

 Split CU 

 Categorize child CUs 

else  

 Do not split CU  

 

SC = 1 

The split is performed only if there is a considerable difference in modes between the 

first two mapped and last two mapped CUs. This occurrence should indicate pixel diversity 

within the same block, which is why the decision to split is made. If the CU is split, four children 

are formed and categorized, and the same process is repeated for each newly created CU. If the 

split is not performed, then the prediction is made by evaluating the subset of both, intra and 

inter candidates. For intra prediction, modes from mapped CUs with the refinement of ± 1 are 

evaluated. Refinement of ±1 evaluates three modes if possible; that exact mode, and the modes 

below and above. For example, let’s assume that there are five mapped CUs with the following 

intra modes: 

𝑀𝑎𝑝𝑝𝑒𝑑 𝑚𝑜𝑑𝑒𝑠 {0, 9,12,11,9} (8.1) 

Giving that the second mapped CU is predicted with intra mode 9, for the transcoding, 

three modes will be evaluated: 8, 9 and 10. With this approach, a wider range of modes is 

checked. Since the neighboring intra modes are very similar (Figure 2.3) and the resized frame 
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can have slight differences within the same area of the picture in terms of texture, checking 

neighboring modes can give more precise residual. Following the same concept for all mapped 

modes, a set of all evaluated intra modes will be: 

𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑 𝑚𝑜𝑑𝑒𝑠 {0,1, 8, 9,10,11,12,13} (8.2) 

 As already mentioned, the best prediction for re-encoding IntraM CU does not 

necessarily have to be intra prediction, which is why for high complex IntraM CUs inter 

prediction is also tested. However, in IntraM category, there is no inter mapped coding units, 

so there is no possibility of reusing any information about motion vectors from decoded frames. 

Therefore, a simple search algorithm, such as Three Step Search or Diamond Search, is used to 

find best inter predicted candidate. After both predictions, intra and inter are tested, the best 

residual is selected, and the CU is predicted with appropriate mode. Of course, if the frame that 

is being re-encoded is intra frame, inter prediction is not possible and will be skipped. 

Finally, if the IntraM CU is not in any of these categories, hence belongs to MM and 

MBC, only intra prediction that checks modes from mapped CUs with the refinement of ± 1 

will be conducted.  

Notice that for IntraM category, inter prediction is only considered for most complex 

CUs, i.e., those who fit in either HBC or HM category. Evaluation of inter prediction for less 

complex IntraM coding units is omitted, and the number of evaluated candidates is restricted to 

reduce computational complexity. Including inter prediction in such blocks, could, in some 

cases, result in finding better residual blocks, but the difference between best inter predicted 

and best intra predicted block is usually not substantial in terms of final bit rate and quality.  

8.3.2 Prediction for InterM category 

For InterM category, all mapped modes are inter predicted, so it is highly unlikely that 

the best prediction mode for InterM CU in the re-encoding will be intra predicted. Thereby, for 

InterM category, only inter prediction is considered, but the algorithm and search area for 

finding best motion vector depends on the other categories. Figure 8.4 shows the prediction 

decision process for InterM category. 
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Figure 8.4: Prediction decision for InterM category 

If the CU also belongs to either of the least complex categories LBC or LM than the 

weighted average of mapped motion vectors is chosen as a final motion vector, and no 

additional operations or search algorithms are performed. The transcoding motion vector is 

derived as follows: 

𝑚𝑣𝑥 = [

∑ 𝑚𝑣´𝑥 ∗ 𝜔 ∗
1
𝜌
𝑤

𝑀𝐶𝑈¨
0

𝑀𝐶𝑈´
] (8.3) 

𝑚𝑣𝑦 = [

∑ 𝑚𝑣´𝑦 ∗ 𝜔 ∗
1
𝜌
ℎ

𝑀𝐶𝑈¨
0

𝑀𝐶𝑈´
] 

(8.4) 

 

Each motion vector from the mapped CUs is scaled to fit the transcoded frame. If the 

motion in the decoded frame was by X pixels to the right, that same motion vector in the frame 

that was downsized from 1920x1080 to 1280x720 has to be scaled to 𝑋 ∗ 1
𝜌𝑤

= 0.66 ∗ 𝑋 to fit 

the new picture dimensions. 
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Apart from the downsizing factor, the motion vector is also multiplied with its weight 

ω (6.5). Obtained motion vector is rounded to the nearest integer to form a valid motion vector. 

The weighted average approach to calculate transcoding motion vector is chosen because it 

gives the best trade-off between precision and computational complexity [42]. 

If the CU fits in one of the complex categories (HBC or HM) than the split decision is 

reevaluated, but only if the SC flag is set to 0. Pseudocode for deciding whether to split the 

current CU or not is given below: 

if SC = 1 

 Do not split  

 

avgFirst = Find the average phase of the first two mapped motion vectors  

avgLast = Find the average phase of the last two mapped motion vectors  

 

difference = abs(avgFirst – avgLast) 

 

if difference > π/2 AND difference < 3 * π /2 

 Split CU 

 Categorize child CUs 

else  

 Do not split CU  

 

SC = 1 

If the motion vectors of the first two and last two CUs point to different directions, then 

the split is performed, and the prediction process is repeated for four children CU blocks. Such 

example is given in Figure 8.5, where the motion vectors of mapped CUs, located at the bottom 

right area of the transcoded block, point to a different direction than the rest. The cause of this 

behavior in this particular block is the presence of a basketball that is being moved by a player, 

while the rest of the block is located in the picture background. 

 

Figure 8.5: Difference in mapped motion vectors 
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If the mapped motion vectors have similar direction, the split is not performed, and the 

transcoding motion vector is being calculated for that CU. As a base for a calculation of motion 

vector for higher complex InterM CUs, weighted motion vector (8.3) is used. Unlike before, 

the weighted average MV is not simply taken as the best prediction. Instead, the refinement by 

±2 pixel is carried out. The refinement process tests area around the block to which the weighted 

average motion vector is pointing and finds the best among them. In order to avoid 

interpolation, which is one of the computationally most demanding kernels in entire HEVC 

algorithm, only integer motion vectors are evaluated.  

Otherwise, if the InterM CU belongs to both, MM and MBC category, the same 

algorithm with the refinement is used, but with the reduced search area around the weighted 

motion vector. Refinement area in such cases is ±1.  

Described inter prediction algorithm tries to minimize the number of searches for each 

block, since that process includes fetching the block from the reference frame and comparing 

that block to the one in the original frame and can thus be very memory and data intensive. 

Reusing motion vectors from the decoded frame helps to focus the search area to more relevant 

parts of the frame and to reduce the number of evaluated prediction candidates. 

8.3.3 Prediction for ComboIntra category 

For ComboIntra category, both prediction modes are tested in all cases. However, since 

the number of intra modes in mapped CUs is higher than average (as set by a 𝛾 coefficient), 

more focus is set on intra modes, although, for the most complex CUs within this category 

larger number of intra and inter candidates are tested. Prediction decision for ComboIntra 

category follows the same pattern as for IntraM and InterM and is depicted in Figure 8.6. 



69 

 

Find prediction 
mode for CU 

Is LBC or LM 
category? 

Prediction: INTER or INTRA
INTER prediction: Weighted average of 
mapped motion vectors
INTRA prediction: Only mapped modes

YES

Is HBC or HM 
category? 

NO

YES

NO

SC == 1?  
YES

Split CU?

NO

NO

Split CU and categorize 
child CUs

Prediction: INTER or INTRA
INTER prediction: Weighted average of 
mapped motion vectors + 1 pixel refinement
INTRA prediction: Mapped modes + 
refinement

Prediction: INTER or INTRA
INTER prediction: Weighted average of 
mapped motion vectors
INTRA prediction: Mapped mode + 
refinement

 

Figure 8.6: Prediction decision for ComboIntra category 

For the least complex CUs within ComboIntra category, simple intra and inter prediction 

is conducted.  Intra prediction tests only mapped intra modes in the same manner as for least 

complex IntraM CUs, while inter predicted checks the residual only for one motion vector that 

is calculated as a weighted average of mapped inter modes, as in InterM category. The 

prediction mode that gives the best residual is chosen as a final. 

Split for High complex CUs in ComboIntra category is evaluated as follows: 

if SC = 1 

 Do not split  

 

Initialize SplitFlag = 0 

Check prediction modes of all mapped CUs 

 

if the first three mapped CUs are INTER predicted  

 SplitFlag = 1 

 

if the last three mapped CUs are INTER predicted  

 SplitFlag = 1 

 

avgFirst = Find the average mode of first two INTRA mapped CUs 

avgLast = Find the average mode of last two INTRA mapped CUs 

 

difference = abs(avgFirst – avgLast) 
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if difference > (Number of INTRA modes / 2) 

SplitFlag = 1 

 

if SplitFlag = 1 

 Split CU 

 Categorize child CUs 

else  

 Do not split CU  

 

SC = 1 

If the first three or the last three mapped CUs are inter predicted, in a category that is 

mostly intra predicted, then the split is immediately performed. Otherwise, the same condition 

as for IntraM category is checked to evaluate the difference between the intra modes in the top 

left corner of the block (first two intra mapped CUs) and the bottom right corner of the block 

(last two intra mapped CUs). If the decision not to split CU has been made, intra prediction 

candidates of intra mapped CUs with the refinement of ±1 and inter prediction candidates of 

weighted average with ±1 refinement are tested.  

Medium complexity CUs within ComboIntra category evaluate the same set of intra 

candidates as a higher complex ones, but limit the inter prediction only to the weighted average 

motion vector, without the refinement. 

8.3.4 Prediction for ComboInter category 

In ComboInter category, most of the mapped CUs are inter predicted, or at least a 

number of inter predicted mapped modes is higher than average for a given video sequence and 

the transcoding configuration. Therefore, the focus is set on inter prediction, while, for intra 

prediction, only mapped modes are tested, regardless of other categories. Figure 8.7 shows the 

flowchart for the prediction process of ComboInter category. As can be seen from the figure, 

intra mode evaluation is the same for all ComboInter CUs, while the inter prediction algorithm 

is very similar, but with different size of refinement area depending on the complexity. Most 

complex CUs have refinement area of ±2, medium complexity is evaluated with ±1 refinement 

area, while the least complex CU test only one motion vector in the same manner as for InterM 

and ComboIntra categories. 
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Figure 8.7: Prediction decision for ComboInter category 

Split reevaluation for ComboInter CUs follows a similar concept as reevaluations of 

previously described mode-based categories: 

if SC = 1 

 Do not split  

 

Initialize SplitFlag = 0 

Check prediction modes of all mapped CUs 

 

if the first three mapped CUs are INTRA predicted  

 SplitFlag = 1 

 

if the last three mapped CUs are INTRA predicted  

 SplitFlag = 1 

 

avgFirst = Find the average phase of the first two mapped motion vectors  

avgLast = Find the average phase of the last two mapped motion vectors  

 

difference = abs(avgFirst – avgLast) 

 

if difference > π/2 AND difference < 3 * π /2 

 SplitFlag = 1 

 

if SplitFlag = 1 

 Split CU 

 Categorize child CUs 

else  
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 Do not split CU  

 

SC = 1 

If the first or the last three mapped modes are intra predicted, in a category that has most 

inter predicted mapped modes, decision to split current CU is made. Also, if the difference in 

phase between motion vectors in the top left area of the block and the bottom right is larger 

than π/2 and smaller than 3*π/2 (or between 90° and 270°) the split is performed. In all other 

cases, CU is not split further.  

8.4 Determining coefficients 

Before evaluating the proposed algorithm, the method for determining several adaptive 

coefficients introduced throughout this thesis is explained in this chapter. Adaptive coefficients 

include: 𝛽𝐿, 𝛽𝐻, 𝜇𝐿 and 𝜇𝐻 and 𝛿.  

8.4.1 Coefficient 𝜹 

As described in section 7.3, coefficient 𝛿 is used to divide ComboM category in two 

different categories based on the ratio (𝛾) of intra and inter CUs mapped from the decoded 

bitstream: ComboInter and ComboIntra. Changing this coefficient affects the number of CUs 

that fit in one of these categories. Increasing 𝛿 will result in a higher number of CUs being 

categorized as ComboIntra and vice versa. If the 𝛿 is set to 1, then the categorization is straight-

forward; if the CU has more intra mapped CUs it is assigned to ComboIntra, otherwise, it 

belongs to ComboInter category. However, setting coefficient 𝛿 to 1 is not always the optimal 

solution. Depending on the video sequence and quantization parameter, frequency of 

occurrence of intra and inter modes in original bitstream can vary significantly. Some video 

sequences can have a higher number of intra predicted blocks than average (e.g., Riverbed) or 

a higher number of inter predicted block (e.g., BlueSky) as presented in Table 7.7 and Table 

7.8. Thereby, it is important to identify those CUs who diverge from the average ratio within 

the same video sequence. For example, if the ratio 𝛾 is equal to 1, it does not have the same 

significance in the sequence where an average ratio is 0.5 and in the sequence with an average 

ratio is 4. In the first case, observed CU diverge from the average distribution by having more 

inter mapped CUs than most of other CUs within that video sequence. On the contrary, in the 

second video sequence, observed CU has much more intra predicted CUs than average, so that 

should be taken into consideration when determining prediction mode. This fact could infer that 
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setting the coefficient 𝛿 to the average ratio for each video sequence and configuration would 

be a good solution to distinguish CUs below and above average. However, the higher ratio still 

means that most of the mapped CUs are inter predicted and that the probability of inter 

prediction in the transcoding is higher, so setting the coefficient 𝛿 at the average ratio is still 

not the optimal solution. If this was the case, CU from the BlueSky video sequence (with 𝛾=4) 

that has three times more inter predicted than intra predicted mapped CU blocks (𝛾=3) would 

be categorized as ComboIntra, which would set more focus in evaluating intra modes, which is 

not an ideal scenario. Therefore, the coefficient 𝛿 is calculated during the transcoding process 

and is adapted in runtime depending on the video sequence and the current configuration of the 

transcoder. Pseudocode of determining 𝛿 is given below. 

Set 𝛿𝑚𝑎𝑥 = 2.0 

Set 𝛿𝑚𝑖𝑛 = 0.5 

 

If frameNum = 1  

 Set 𝛿𝑐𝑢𝑟𝑟 = 1 

 

If frameNum % FR = 0 

 Get average ratio 𝛾 

 

 If 𝛾 > 𝛿𝑐𝑢𝑟𝑟 and 𝛿𝑐𝑢𝑟𝑟 < 𝛿𝑚𝑎𝑥 

  𝛿𝑐𝑢𝑟𝑟 = 𝛿𝑐𝑢𝑟𝑟 + (𝛾 − 𝛿𝑐𝑢𝑟𝑟)/2 

 

 Else if 𝛾 < 𝛿𝑐𝑢𝑟𝑟 and 𝛿𝑐𝑢𝑟𝑟 > 𝛿𝑚𝑖𝑛 

  𝛿𝑐𝑢𝑟𝑟 = 𝛿𝑐𝑢𝑟𝑟 - ( 𝛿𝑐𝑢𝑟𝑟 − 𝛾)/2 

  

 If 𝛿𝑐𝑢𝑟𝑟 > 𝛿𝑚𝑎𝑥 

  𝛿𝑐𝑢𝑟𝑟 = 𝛿𝑚𝑎𝑥 

 

 Else if 𝛿𝑐𝑢𝑟𝑟 < 𝛿𝑚𝑖𝑛 

  𝛿𝑐𝑢𝑟𝑟 = 𝛿𝑚𝑖𝑛 

 

Calculate and update average ratio 𝛾 

At the beginning of the transcoding minimum and maximum possible values (𝛿𝑚𝑎𝑥 and 

𝛿𝑚𝑖𝑛) of coefficient 𝛿 are set to 0.5 and 2.0 respectively. These boundaries are fixed so that 

every CU, regardless of the configuration and video sequence, that has more than the double of 

the amount of mapped CUs with certain prediction mode are assigned to the appropriate 

category. Setting these limits ensures that no CUs is wrongly categorized, which could happen 

if the 𝛿 is simply set to average 𝛾 as described in a paragraph above.  

For the first several frames, distribution of intra and inter modes is not known, so the 

initial 𝛿𝑐𝑢𝑟𝑟 is set to 1. After that, the coefficient 𝛿𝑐𝑢𝑟𝑟 is adapted periodically on every frame 
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number that corresponds to frame rate (FR), meaning that for the video sequence with a frame 

rate of 30, 𝛿𝑐𝑢𝑟𝑟 will be updated on every 30th frame. Adaptation is based on the statistics that 

is constantly calculated and updated during the transcoding phase. Ratio 𝛾 between intra and 

inter frames is updated after every frame and is examined during the adaptation process. If the 

ratio 𝛾 is larger than than 𝛿𝑐𝑢𝑟𝑟 than the current value of the 𝛿𝑐𝑢𝑟𝑟 is increased by half of the 

difference between the two values. Similarly,  𝛿𝑐𝑢𝑟𝑟 is decreased by the same value if the ratio 

𝛾 is smaller than 𝛿𝑐𝑢𝑟𝑟. If, at any point of the algorithm, the value  𝛿𝑐𝑢𝑟𝑟 exceedes minimum 

and maximum extremes  𝛿𝑚𝑎𝑥 or 𝛿𝑚𝑖𝑛, 𝛿𝑐𝑢𝑟𝑟 is clipped to fit within the boundaries.  

With the adaptive calculation of coefficient 𝛿, CUs in the transcoded frame are 

categorized depending on the characteristics of the video sequence that is being transcoded and 

the current configuration of the encoder. This approach enables more precise categorization that 

can lead to better prediction evaluation. 

8.4.2 Coefficients 𝜷𝑳,𝜷𝑯,𝝁𝑳 and 𝝁𝑯 

Coefficients 𝛽𝐿and 𝛽𝐻 that are used for categorization based on bit complexity, and 

coefficients 𝜇𝐿 and 𝜇𝐻that are used for categorization based on a number of mapped CUs are 

also adaptive coefficients that have to be determined before running any evaluations of the 

proposed algorithm. As mentioned in sections 7.1 and 7.2 that describe the concept of 

categorization, changing coefficients 𝛽𝐿,𝛽𝐻,𝜇𝐿 and 𝜇𝐻 ultimately affect the complexity of the 

transcoding by distributing CUs to different categories. If the more CUs are located in more 

complex categories, such as HBC or HM, the computational complexity of the transcoder is 

increased, but the quality of the output bitstream should be higher. To observe the impact of 

changing values of the coefficients on the transcoding process, three fixed set of values were 

defined in Table 8.3. 

Table 8.3: Sets of fixed coefficients 

Set 𝛽𝐿 𝛽𝐻 𝜇𝐿 𝜇𝐻 Complexity 
1 0.4 0.9 0.5 0.9 Low 
2 0.3 0.6 0.3 0.6 Medium 
3 0.1 0.5 0.2 0.5 High 

The first set of coefficients sets a high boundary for most complex categories. Only the 

small number of CUs with the highest complexity will be categorized as HBC or HM, which is 

why the complexity of the first set is set as low. Set 3 has the opposite influence on 

categorization. With set 3 very few CUs will be assigned to low complex categories, so this set 

of coefficients is marked with high complexity. The second set from Table 8.3 puts the 
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boundaries between set 1 and set 3 and is referred to as a set with medium complexity. Notice 

that these are the same sets of coefficients that were used to demonstrate the initial split phase 

of the proposed algorithm in section 8.2. 

 Video transcoder was run with the proposed algorithm with all three sets of coefficients 

to obtain results that will be used to measure the impact of the defined coefficients on the 

processing time, quality and bitrate. Results are obtained for transcoding from original 

resolution to 1280x720 resolution and on two quantization parameters: 22 and 32. Due to 

simplicity, only the results for these two transcoding scenarios are shown, since the obtained 

conclusions can be mapped to all cases. Notice that these scenarios also include different width 

and height transcoding ratios as defined in Table 5.2. Tables below (Table 8.4 and Table 8.5) 

show the results for each of the quantization parameters. All the values are shown in relative 

when compared to the with Bolt JiT transcoder: 

• Processing time – processing time (t) compared to Just-in-Time requirement tJiT 
(section 5.4.1) 

• PSNR - the difference in PSNR between the observed transcoder and Bolt JiT in 
dB 

• Bitrate - the difference in bitrate compared to Bolt JiT in kilobits (negative 
values indicate better coding efficiency) 

Table 8.4: Comparison of transcoding with fixed sets of coefficients (QP=22) 

Video 
sequence  

Set 1 Set 2 Set 3 
Processing 

time 
[t / tjiT] 

PSNR 
[ΔdB] 

Bitrate 
[Δkbps] 

Processing 
time 

[t / tjiT] 

PSNR 
[ΔdB] 

Bitrate 
[Δkbps] 

Processing 
time 

[t / tjiT] 

PSNR 
[ΔdB] 

Bitrate 
[Δkbps] 

Shields 64.68% 1.131 -28507 65.73% 1.271 -28914 80.36% 1.303 -23774 
ParkRun 69.78% 0.794 -28403 75.55% 0.827 -28233 83.86% 0.897 -25306 
KristenAndSara 83.95% 0.628 -2428 89.39% 0.941 -2778 91.89% 1.37 -3113 
Johnny 81.92% 0.519 -2163 87.17% 0.783 -2477 92.30% 1.08 -2841 
FourPeople 83.40% 0.406 -1533 88.27% 0.73 -1940 90.99% 0.991 -2547 
BasketballDrive 88.85% 0.967 -6650 98.75% 1.085 -5350 109.33% 1.051 -4098 
Calendar 88.26% 0.964 -1102 92.29% 1.563 -1381 98.96% 1.582 -1472 
Cactus 87.07% 0.412 -6022 89.13% 0.513 -6059 102.27% 0.494 -4847 
BQTerrace 85.28% 0.548 -14744 87.92% 0.619 -13793 100.28% 0.615 -9988 
RushHour 99.81% 0.818 -511 117.07% 1.114 -347 121.72% 1.134 -46 
Riverbed 80.47% 1.69 -4025 87.19% 1.68 -4021 93.88% 1.647 -3773 
PedestrianArea 89.57% 1.235 -1822 92.02% 1.47 -1773 93.20% 1.466 -1581 
BlueSky 79.93% 0.575 -7453 87.81% 0.512 -4770 98.42% 0.508 -3705 
Traffic 84.48% 0.367 -5253 87.40% 0.471 -5627 92.23% 0.459 -5171 
DuckTakeOff 99.03% 0.164 -4212 144.25% 0.105 -702 154.77% 0.103 672 
Bosphorus 99.60% 0.468 -7221 124.46% 0.687 -7796 138.62% 0.716 -5387 
Beauty 98.01% 0.932 -1741 117.83% 0.993 -702 124.14% 1.017 193 

Average 86.12% 0.742 -7281 96.01% 0.904 -6862 103.96% 0.967 -5693 
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Table 8.5: Comparison of transcoding with fixed sets of coefficients (QP =32) 

Video 
sequence  

Set 1 Set 2 Set 3 

Processing 
time  
[t / tjiT] 

PSNR 
[Δ dB] 

Bitrate 
[Δkbps] 

Processing 
time 
[t / tjiT] 

PSNR 
[Δ dB] 

Bitrate 
[Δkbps] 

Processing 
time 
[t / tjiT] 

PSNR 
[Δ dB] 

Bitrate 
[Δkbps] 

Shields 33.36% 1.428 -6480 33.17% 1.603 -6825 31.34% 3.251 -8232 
ParkRun 33.17% 1.564 -11463 33.95% 1.771 -11595 34.69% 2.125 -12166 
KristenAndSara 59.61% 0.616 -456 60.73% 0.833 -498 65.64% 1.762 -698 
Johnny 57.95% 0.543 -457 58.56% 0.746 -479 66.82% 1.545 -600 
FourPeople 57.42% 0.475 -321 57.75% 0.766 -425 64.46% 1.229 -656 
BasketballDrive 55.72% 1.288 -1186 59.06% 1.491 -548 63.97% 1.389 514 
Calendar 59.44% 0.808 -309 61.84% 1.077 -116 72.16% 1.201 767 
Cactus 46.81% 0.464 -1287 49.65% 0.65 -1012 55.01% 0.624 -369 
BQTerrace 41.65% 0.641 -4516 44.25% 0.693 -3499 50.32% 0.639 -245 
RushHour 69.20% 0.746 -135 72.79% 0.921 6 79.87% 0.965 267 
Riverbed 52.08% 2.298 -1105 55.88% 2.345 -1004 62.04% 2.341 -841 
PedestrianArea 58.19% 1.507 -423 61.19% 1.741 -356 67.41% 1.724 -156 
BlueSky 39.54% 1.175 -3712 45.30% 0.768 -1637 54.79% 0.2 1895 
Traffic 48.74% 0.25 -935 51.98% 0.495 -1010 54.42% 0.485 -1008 
DuckTakeOff 67.85% 0.091 -676 74.69% 0.043 -162 84.82% 0.016 848 
Bosphorus 76.17% 0.141 -573 76.76% 0.277 -314 86.01% 0.487 359 
Beauty 70.62% 1.013 -488 76.23% 1.186 -247 87.83% 1.272 326 

Average 54.56% 0.885 -2030 57.28% 1.024 -1748 63.62% 1.250 -1176 

Presented results show the expected behavior in terms of processing time and video 

quality. In both cases (i.e., both quantization parameters) average processing time, as well as 

video quality, is increasing as the more complex set of coefficients is used. However, although 

average values follow expected behavior, this is not always the case for specific video 

sequences. Sometimes minimal gain in video quality can affect significant losses in bitrate (e.g., 

Beauty for QP =22), which imposes the question: is it worth to significantly sacrifice bitrate to 

get little better video quality. In some cases, using the more complex set does not give better 

quality nor better coding efficiency (BlueSky for QP =22), while in the other instances (e.g., 

Calendar for QP=22 or ParkRun for QP =32) using more complex set significantly improves 

both, video quality and coding efficiency. Trade-offs between video quality and coding 

efficiency can depend on the requirements of the system, that can favor one of the two. 

However, with Just-in-Time requirements, one condition must be met: processing time has to 

be below 100% of tJiT. Therefore, using a high complex set of coefficients for transcoding some 

of the video sequences with the quantization parameter 22 is not possible because it would 

cause violation of timing constraints. 

Giving that characteristics of transcoded bitstream highly depend on a particular video 

sequence, coefficients 𝛽𝐿,𝛽𝐻,𝜇𝐿 and 𝜇𝐻 are not fixed at the beginning of the transcoding 

process, but are adapted during the transcoding process as follows: 
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Set 𝛽𝐿𝑚𝑖𝑛 = 0.1, 𝛽𝐿𝑚𝑎𝑥=0.5 

Set 𝛽𝐻𝑚𝑖𝑛 = 0.5, 𝛽𝐻𝑚𝑎𝑥=0.9 

Set 𝜇𝐿𝑚𝑖𝑛 = 0.2, 𝜇𝐿𝑚𝑎𝑥 =0.5 

Set 𝜇𝐻𝑚𝑖𝑛 = 0.5, 𝜇𝐻𝑚𝑎𝑥 =0.9 

Set AdaptHigher = 1 

 

If frameNum = 1  

 Set 𝛽𝐿𝑐𝑢𝑟𝑟 = 0.5 

Set 𝛽𝐻𝑐𝑢𝑟𝑟 = 0.9 

Set 𝜇𝐿𝑐𝑢𝑟𝑟 = 0.5 

Set 𝜇𝐻𝑐𝑢𝑟𝑟 = 0.9 

 

 

If frameNum % FR = 0 

 time = Get processing time for last period 

 diffFPS = (FR /time) - FR 

 

 If diffFPS < 0      

  If (-diffFPS) < 0.3 * FR 

   𝛽𝐻𝑐𝑢𝑟𝑟=𝛽𝐻𝑐𝑢𝑟𝑟+ (diffFPS/FR) 

   𝜇𝐻𝑐𝑢𝑟𝑟=𝜇𝐻𝑐𝑢𝑟𝑟+ (diffFPS/FR) 

   𝛽𝐿𝑐𝑢𝑟𝑟=𝛽𝐻𝑐𝑢𝑟𝑟+ (diffFPS/FR) 

   𝜇𝐿𝑐𝑢𝑟𝑟=𝜇𝐿𝑐𝑢𝑟𝑟+ (diffFPS/FR) 

  Else  

   𝛽𝐿𝑐𝑢𝑟𝑟 = 0.5 

              𝛽𝐻𝑐𝑢𝑟𝑟 = 0.9 

         𝜇𝐿𝑐𝑢𝑟𝑟 = 0.5 

    𝜇𝐻𝑐𝑢𝑟𝑟 = 0.9 

 

 Else if diffFPS < 0   

  Calculate quality gains/losses from the last adaptations 

  Calculate bitrate gains/losses from the last adaptations 

   

  Revert = 0 

 

  If quality worse and bitrate worse 

   Revert = 1 

  If quality gains < 0.1dB and bitrate loss > 10% 

   Revert = 1 

   

  If Revert = 1 

  Revert to best previous set of coefficients 

  If Revert = 0 

  If AdaptHigher = 1 

   𝛽𝐻𝑐𝑢𝑟𝑟= 𝛽𝐻𝑐𝑢𝑟𝑟- 0.1 

    𝜇𝐻𝑐𝑢𝑟𝑟=𝜇𝐻𝑐𝑢𝑟𝑟 - 0.1 

    AdaptHigher = 0 

   Else 

    𝛽𝐿𝑐𝑢𝑟𝑟=𝛽𝐻𝑐𝑢𝑟𝑟 - 0.1 

    𝜇𝐿𝑐𝑢𝑟𝑟=𝜇𝐿𝑐𝑢𝑟𝑟 - 0.1 

    AdaptHigher = 1 
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 Clip 𝛽𝐿𝑐𝑢𝑟𝑟 in range between 𝛽𝐿𝑚𝑖𝑛 and 𝛽𝐿𝑚𝑎𝑥  

 Clip 𝛽𝐻𝑐𝑢𝑟𝑟 in range between 𝛽𝐻𝑚𝑖𝑛 and 𝛽𝐻𝑚𝑎𝑥  

  Clip 𝜇𝐿𝑐𝑢𝑟𝑟 in range between 𝜇𝐿𝑚𝑖𝑛 and 𝜇𝐿𝑚𝑎𝑥   

 Clip 𝜇𝐻𝑐𝑢𝑟𝑟 in range between 𝜇𝐻𝑚𝑖𝑛 and 𝜇𝐻𝑚𝑎𝑥  

 If 𝛽𝐿𝑐𝑢𝑟𝑟 = 𝛽𝐻𝑐𝑢𝑟𝑟 

  𝛽𝐿𝑐𝑢𝑟𝑟 = 𝛽𝐿𝑐𝑢𝑟𝑟 - 0.1 

 If 𝜇𝐿𝑐𝑢𝑟𝑟= 𝜇𝐻𝑐𝑢𝑟𝑟 

  𝜇𝐿𝑐𝑢𝑟𝑟=𝜇𝐿𝑐𝑢𝑟𝑟 - 0.1 

 

 

Monitor video quality and bitrate 

At the beginning of the process, when no information about the video sequence is 

available, coefficients are set for low complexity transcoding to ensure Just-in-Time execution 

at the start of the transcoding. On every frame number that is a multiplier of a frame rate of a 

video, coefficients are reevaluated and adapted. In the period between two adaptations, exactly 

N number of frames were processed, with N being frame rate, which means that the time 

between two evaluations must not exceed 1 second. Otherwise, Just-in-Time constraints are not 

met. Therefore, the difference between calculated time and maximum allowed time of 1 second 

is used to determine if JiT execution is satisfied and to decide how the coefficients will be 

adapted. In the above pseudocode, value diffFPS contains the difference between achieved and 

required fps (i.e., frames processed per second). If that value is smaller than 0 than the 

coefficients have to be adapted to increase the speed of the transcoder. To achieve this, 𝛽𝐿,𝛽𝐻,𝜇𝐿 

and 𝜇𝐻 are increased so that the smaller number of CUs in future categorizations fit in high 

complex categories. Degree of increasing the coefficients is proportional to diffFPS. For 

example, if the last 30 frames in a video sequence that has a frame rate of 30 were processed in 

1.1 s, diffFPS will be (30/1.1)-30 = -2,72 fps, meaning that the transcoder was too slow to 

achieve JiT, but it was relatively close. Thereby, coefficients are adapted just slightly by the 

value of (2.72/30) = 0.09. If the difference was higher than one third of the required fps than 

the coefficients are set to initial values. This scenario should not happen often in this algorithm, 

since the evaluation is performed periodically, and the execution time of the transcoder is 

constantly monitored. When the execution for JiT is already satisfied, then the possibility of 

improving video quality is considered. First step is to compare quality and bitrate with 

previously tested sets of coefficients. If one of the previous sets gave better results than 

currently tested in terms of video quality and/or coding efficiency while fulfilling JiT 

constraints, then it is chosen as a new set again. Otherwise, the new set is formed and tested by 
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adapting the current values of 𝛽𝐿,𝛽𝐻,𝜇𝐿 and 𝜇𝐻. In this case, where the JiT is satisfied and where 

only the trade-off between bitrate and quality is considered, coefficients are decreased 

gradually, by alternately decreasing 𝛽𝐻 and 𝜇𝐻 and than  𝛽𝐿 and  𝜇𝐿 and overseeing impact on 

all of the characteristics. This way, as the video sequence progresses, coefficients are slowly 

advancing towards the most optimal solution for the given video sequence. Any sudden 

decrease of any of the considered coefficients in this phase could jeopardize JiT execution, 

which is why there are no adjustment larger than 0.1. Not only that this approach adjusts the 

algorithm for a specific video sequence but is also resistant to changes within the same sequence 

(e.g., change of scene). At the end of the adaptation process, each coefficient is validated to 

ensure that invalid set is not used for the categorization of future frames. 

8.5 Final algorithm  

After determining methods for computation of all the adaptive coefficients that are used 

to form the boundaries for the suggested categorization mechanism, all the aspects of the 

proposed algorithm are considered and set based on the analysis of the transcoding process. The 

high-level scheme of the final algorithm is given in Figure 8.8. 

At the beginning of the transcoding, input bitstream is decoded frame by frame, and all 

the data from the decoded frame is gathered so it can be reused for improving the re-encoding 

phase. All the coefficients used in the proposed algorithm are set to their initial values. After 

decoding, the encoded frame is formed and split to the largest coding units – CTUs, that are 

immediately categorized based on the data previously obtained from the decoded frame. Each 

CTU is categorized based on three different information sets from the decoded input bitstream: 

number of bits, number of mapped CUs and prediction modes of mapped CUs. Depending on 

the categorization results, the decision to split CTUs to multiple 32x32, 16x16 and 8x8 blocks 

is made in the initial split phase of the algorithm, after which newly created blocks are 

categorized again.  Prediction modes for each of the CUs are chosen based on the affiliation in 

one of the categories: InterM, IntraM, ComboInter, and ComboIntra. On every Nth frame, with 

N being frame rate, all the coefficients are updated depending on the current state of the 

transcoding process in terms of video quality, bitrate, and processing time. 
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Figure 8.8: Final high-level diagram of the proposed algorithm 
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9 EXPERIMENTAL RESULTS ON CPU-ONLY ARCHITECTURE 

This chapter presents experimental results of the proposed algorithm based on the 

categorization of the data from the decoded frame implemented on the CPU-only architecture.  

9.1 Methodology  

Algorithm for utilization of coding information from the input video stream is evaluated 

by running three different transcoders and comparing the obtained results. Scheme of the 

evaluation process is given in Figure 9.1. 

Original 
video

HEVC encoded 
bitstream

Encode

Server Transcoder

Decode
Decoded 

video

Transcoded 
video

Transcoded 

video

Transcoded 

video

Bolt65 JiT

Kvazaar

Proposed method

 

Figure 9.1: Evaluation scheme 

The evaluation presented in the scheme above simulates the scenario of a real-world 

video content provider. Initially, the original video is encoded to the desired format and stored 

on the server. The original video is any video that is uploaded from the user and can be 

represented in several different formats and resolutions. After the initial encoding and storing 

the bitstream on a server, the original video is usually discarded, so all the quality loss imposed 

by the initial encoding is irreversible. Thereby, the usual practice of most video content 

providers is to store this video in highest quality so that every future transcoding does not 

introduce even larger quality degradations. Afterward, if the user requests a certain video, that 

video sequence is fetched from the server and transcoded on-the-fly based on the end user 

requirements.  

In the evaluation of the proposed algorithm, original videos are 17 raw video sequences 

as listed in Table 5.1. All videos are encoded with Kvazaar and stored on the server and will be 
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used as an input for all observed transcoders. Generated input bitstreams are transcoded with 

three different transcoders to every possible resolution (Table 5.2), and the results are 

compared. Giving that the decoding part of the transcoder is always the same, i.e., it does not 

depend on the transcoding algorithm that is being used, only re-encoding phase for all 

transcoders was observed and evaluated in terms of video quality and bitrate. During the 

transcoding process, three main aspects were considered and assessed: processing time, bitrate 

and PSNR. 

9.2 Comparison with Bolt65 JiT 

Comparison with Bolt JiT transcoder (section 5.3.1) is conducted by comparing video 

quality and bitrate between transcoded bitstreams. In the analysis of different categorization 

coefficient sets (Table 8.4) it is shown that for every video sequence in the most complex 

transcoding mode, where the video is transcoded with the smallest width and height ratios and 

with quantization parameter 22, JiT execution is always satisfied for the low complex Set 1. 

However, video quality and bitrate can be increased for some video sequences by using more 

complex sets of coefficients without compromising JiT, which is why coefficients are 

dynamically adapted during the transcoding. Therefore, when comparing the proposed 

algorithm with Bolt JiT transcoder only the improvement in video quality (PSNR) and bitrate 

(kbps) is observed. 

The difference in the bitrate is presented in two ways, as a percentage of improvement 

accomplished by using the proposed algorithm (negative values represent worse PSNR and 

better bitrate) and as a relative difference in bitrate. The reason behind representing data in this 

fashion is to get a better perspective of the obtained results. The small relative reduction in 

bitrate (e.g., 500 kbps) can in some cases signify major improvement, such as for small 

transcoding resolutions where overall bitrate is small.  On the contrary, improvement by a small 

percentage can be relevant in some cases, when a large video file is being sent over the network. 

For the PSNR only relative improvement is shown since the percentages are always relatively 

small and do not represent meaningful information. Notice that larger PSNR indicates higher 

quality, while lower bitrate indicates better coding efficiency. Results here are shown only for 

the quantization parameter of 22 due to simplicity and better visibility of the presented data. 

Tables below show rwsults grouped by a resolution of the transcoded video, so in every table 
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different ratios 𝜌𝑤 and 𝜌ℎ are present. Only valid transcoding options are shown, meaning that 

situations were video is upscaled to higher resolution are not considered.   

Table 9.1: Proposed algorithm vs. Bolt65 Jit - transcoding to 2560x1600 with QP =22 

Video 
sequence 

Original 
resolution 

𝜌𝑤 𝜌ℎ PSNR 
[Δ dB] 

Bitrate 
[Δ kbps] 

Bitrate 
[%] 

DuckTakeOff 3840x2160 1.5 1.35 0.346 -14102 -5.98% 
Bosphorus 3840x2160 1.5 1.35 0.265 -215 -28.09% 
Beauty 3840x2160 1.5 1.35 1.336 -57767 -51.33% 
Average    0.649 -24028.0 -28.47% 

Table 9.2: Proposed algorithm vs. Bolt65 Jit - transcoding to 1920x1080 with QP =22 

Video 
sequence 

Original 
resolution 

𝜌𝑤 𝜌ℎ PSNR 
[Δ dB] 

Bitrate 
[Δ kbps] 

Bitrate 
[%] 

Traffic 2560x1600 1.33 1.48 0.445 -2600 -9.01% 
DuckTakeOff 3840x2160 2 2 0.412 -5100 -4.04% 
Bosphorus 3840x2160 2 2 0.640 -7464 -23.01% 
Beauty 3840x2160 2 2 1.613 -9431 -19.00% 
Average    0.778 -6148.8 -13.77% 

Table 9.3: Proposed algorithm vs. Bolt65 Jit - transcoding to 1280x720 with QP =22 

Video sequence Original 
resolution 

𝜌𝑤 𝜌ℎ PSNR 
[Δ dB] 

Bitrate 
[Δ kbps] 

Bitrate 
[%] 

BasketballDrive 1920x1080 1.5 1.5 1.080 -5420 -16.71% 
Calendar 1920x1080 1.5 1.5 1.601 -1354 -16.54% 
Cactus 1920x1080 1.5 1.5 0.513 -5222 -25.60% 
BQTerrace 1920x1080 1.5 1.5 0.620 -10243 -29.61% 
RushHour 1920x1080 1.5 1.5 1.131 -94 -1.84% 
Riverbed 1920x1080 1.5 1.5 1.688 -3910 -22.07% 
PedestrianArea 1920x1080 1.5 1.5 1.472 -1640 -31.53% 
BlueSky 1920x1080 1.5 1.5 0.571 -4680 -17.27% 
Traffic 2560x1600 2 2.22 0.470 -5127 -37.21% 
DuckTakeOff 3840x2160 3 3 0.166 -300 -0.83% 
Bosphorus 3840x2160 3 3 0.685 -5941 -35.84% 
Beauty 3840x2160 3 3 1.038 -380 -3.08% 
Average    0.920 -3692.6 -19.84% 

Table 9.4: Proposed algorithm vs. Bolt65 Jit - transcoding to 704x576 with QP =22 

Video sequence Original 
resolution 

𝜌𝑤 𝜌ℎ PSNR 
[Δ dB] 

Bitrate 
[Δ kbps] 

Bitrate 
[%] 

Shields 1280x720 1.82 1.25 0.686 -5818 -36.72% 
ParkRun 1280x720 1.82 1.25 0.443 -7390 -20.73% 
KristenAndSara 1280x720 1.82 1.25 0.669 -894 -22.46% 
Johnny 1280x720 1.82 1.25 0.479 -577 -17.43% 
FourPeople 1280x720 1.82 1.25 0.597 -876 -23.78% 
BasketballDrive 1920x1080 2.72 1.875 1.032 -2020 -15.54% 
Calendar 1920x1080 2.72 1.875 1.441 -939 -15.56% 
Cactus 1920x1080 2.72 1.875 0.540 -2518 -18.64% 
BQTerrace 1920x1080 2.72 1.875 0.691 -5419 -21.35% 
RushHour 1920x1080 2.72 1.875 0.984 -298 -7.03% 
Riverbed 1920x1080 2.72 1.875 1.103 -1996 -20.85% 
PedestrianArea 1920x1080 2.72 1.875 1.330 -1014 -30.46% 
BlueSky 1920x1080 2.72 1.875 0.428 -2088 -13.83% 
Traffic 2560x1600 3.63 2.77 0.470 -3444 -44.58% 
DuckTakeOff 3840x2160 5.45 3.75 0.055 -852 -3.61% 
Bosphorus 3840x2160 5.45 3.75 0.385 -4442 -26.70% 
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Beauty 3840x2160 5.45 3.75 0.936 -601 -1.84% 
Average    0.722 -2422.7 -20.07% 

 

Table 9.5: Table 9.4: Proposed algorithm vs. Bolt65 Jit - transcoding to 640x480 with QP =22 

Video sequence Original 
resolution 

𝜌𝑤 𝜌ℎ PSNR 
[Δ dB] 

Bitrate 
[Δ kbps] 

Bitrate 
[%] 

Shields 1280x720 2 1.5 0.815 -11964 -79.88% 
ParkRun 1280x720 2 1.5 0.542 -9743 -48.56% 
KristenAndSara 1280x720 2 1.5 0.828 -1343 -42.26% 
Johnny 1280x720 2 1.5 0.568 -787 -33.25% 
FourPeople 1280x720 2 1.5 0.750 -1351 -43.90% 
BasketballDrive 1920x1080 3 2.25 1.003 -2762 -28.13% 
Calendar 1920x1080 3 2.25 1.431 -1528 -33.13% 
Cactus 1920x1080 3 2.25 0.564 -2816 -31.28% 
BQTerrace 1920x1080 3 2.25 0.698 -5141 -37.05% 
RushHour 1920x1080 3 2.25 0.956 -464 -17.83% 
Riverbed 1920x1080 3 2.25 0.895 -1462 -18.32% 
PedestrianArea 1920x1080 3 2.25 1.312 -1142 -44.54% 
BlueSky 1920x1080 3 2.25 0.511 -3409 -39.31% 
Traffic 2560x1600 4 3.33 0.480 -3253 -53.27% 
DuckTakeOff 3840x2160 6 4.5 0.060 -1067 -4.73% 
Bosphorus 3840x2160 6 4.5 0.487 -4099 -39.40% 
Beauty 3840x2160 6 4.5 0.941 -489 -6.52% 
Average    0.755 -3107.1 -35.37% 

Tables displayed above show that for every video sequence and every pair of original 

and transcoded resolutions proposed algorithm gives transcoded bitstream with the better video 

quality, where, in the same time, the coding efficiency, represented by bitrate, of the transcoder 

that implements this algorithm is also higher for every transcoding scenario observed in the 

scope of this analysis.  

For smaller transcoding ratios, as in most of the examples from Table 9.1, Table 9.2 and 

Table 9.3, advantages of using the proposed algorithm is higher, which can be seen from the 

average values of PSNR. This behavior can be expected since the data mapped from the 

decoded frame provides more meaningful information for the decisions in re-encoding phase. 

For example, when transcoding from 3840x2160 to 640x480, where 𝜌𝑤 equals to 6 and  𝜌ℎ 

equals 4.5 small area in the transcoded frame is mapped to rather large area of the original 

frame. One 32x32 block is such case is mapped to a 192x144 size area, which makes decisions 

in the re-encoding phase less precise. Nevertheless, results for high ratio transcoding are still 

significantly better than Bolt65 JiT. Figure 9.2 shows the trend of PSNR improvement when 

increasing transcoding ratio for several video sequences. Transcoding ratio is calculated as a 

product of width and height ratios. 
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Figure 9.2: Improvements in PSNR depending on transcoding ratio 

As it can be observed from the presented graph, improvements in PSNR slowly decrease 

as the transcoding ratio grows. On the contrary, bitrate reduction grows with the transcoding 

ratio as shown in Figure 9.3. Therefore, if the frame is downscaled by a larger factor, gains in 

video quality are smaller, but the bitrate is reduced significantly, which demonstrates the trade-

off between coding efficiency and video quality achieved with the proposed algorithm. 

 

Figure 9.3: Bitrate reduction depending on transcoding ratio 
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Overall gain per video sequence is calculated as an average gain of all possible 

transcoding scenarios for the particular sequence and is given in the following table.  
Video sequence Original 

resolution 
PSNR 
[Δ dB] 

Bitrate 
[Δ kbps] 

Bitrate 
[%] 

Shields 1280x720 0.750 -8891.0 -58.30% 
ParkRun 1280x720 0.493 -8566.5 -34.65% 
KristenAndSara 1280x720 0.749 -1118.5 -32.36% 
Johnny 1280x720 0.524 -682.0 -25.34% 
FourPeople 1280x720 0.674 -1113.5 -33.84% 
BasketballDrive 1920x1080 1.038 -3400.7 -20.13% 
Calendar 1920x1080 1.491 -1273.7 -21.74% 
Cactus 1920x1080 0.539 -3518.7 -25.17% 
BQTerrace 1920x1080 0.670 -6934.3 -29.34% 
RushHour 1920x1080 1.024 -285.3 -8.90% 
Riverbed 1920x1080 1.229 -2456.0 -20.41% 
PedestrianArea 1920x1080 1.371 -1265.3 -35.51% 
BlueSky 1920x1080 0.503 -3392.3 -23.47% 
Traffic 2560x1600 0.473 -3941.3 -45.02% 
DuckTakeOff 3840x2160 0.208 -1829.8 -3.84% 
Bosphorus 3840x2160 0.492 -4432.2 -30.61% 
Beauty 3840x2160 1.173 -13733.6 -16.35% 
Average  0.788 -3931.5 -27.35% 

Figure 9.4: Average gains per video sequence compared with Bolt65 JiT 

The proposed algorithm achieves 0.788 dB better PSNR on average for all tested 

transcoding scenarios. The most considerable improvement is for Calendar video sequence 

where there is 1.491 dB difference compared with Bolt65 JiT, while the smallest improvement 

can be seen for DuckTakeOff sequence where PSNR is improved by 0.208 dB. Regarding the 

bitrate, the biggest reduction of 58.30% is achieved for Shields and the smallest of 3.84 % for 

DuckTakeOff video sequence. Average bitrate savings are 27.35%. 

9.3 Comparison with Kvazaar 

In order to analyze the degradation of transcoded bitstream when compared with 

encoders that do not have Just-in-Time requirements, Bolt65 JiT transcoder with the 

implemented proposed algorithm is compared with open-source Kvazaar encoder. Since there 

is no Kvazaar decoder or transcoder available, input bitstream was decoded with Bolt65 

software suite, and the decoded video was set as an input to Kvazaar encoder. Besides the 

difference in PSNR and bitrate that were shown in the previous comparison, execution speedup 

was also analyzed. Speedup represents the difference in the processing times between two 

transcoders, where the value of 2.0x means that transcoder with the proposed algorithm is two 

times faster than Kvazaar. Tables below depict results for each transcoding resolution.  
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Table 9.6: Proposed algorithm vs Kvazaar- transcoding to 2560x1600 with QP=22 

Video 
sequence 

Original 
resolution 

𝜌𝑤 𝜌ℎ Speedup PSNR 
[Δ dB] 

Bitrate 
[Δ kbps] 

Bitrate 
[%] 

DuckTakeOff 3840x2160 1.5 1.35 3.11x -0.940 -16384 -7.06% 
Bosphorus 3840x2160 1.5 1.35 3.51x -1.280 25680 33.22% 
Beauty 3840x2160 1.5 1.35 4.13x -0.416 -15141 -21.46% 
Average    3.58x -0.879 -1948.3 1.57% 

Table 9.7: Proposed algorithm vs Kvazaar- transcoding to 1920x1080 with QP=22 

Video 
sequence 

Original 
resolution 

𝜌𝑤 𝜌ℎ Speedup PSNR 
[Δ dB] 

Bitrate 
[Δ kbps] 

Bitrate 
[%] 

Traffic 2560x1600 1.33 1.48 2.15x -0.618 11170 37.20% 
DuckTakeOff 3840x2160 2 2 2.07x -0.770 -7076 -5.88% 
Bosphorus 3840x2160 2 2 2.32x -0.644 7681 22.86% 
Beauty 3840x2160 2 2 3.27x -0.013 -95 -0.18% 
Average    2.45x -0.511 2920.0 13.50% 

Table 9.8: Proposed algorithm vs Kvazaar- transcoding to 1280x720 with QP=22 

Video sequence Original 
resolution 

𝜌𝑤 𝜌ℎ Speedup PSNR 
[Δ dB] 

Bitrate 
[Δ kbps] 

Bitrate 
[%] 

BasketballDrive 1920x1080 1.5 1.5 2.46x 1.009 5043 21.95% 
Calendar 1920x1080 1.5 1.5 2.45x -1.310 4387 41.55% 
Cactus 1920x1080 1.5 1.5 2.20x -0.533 4321 27.11% 
BQTerrace 1920x1080 1.5 1.5 2.04x -0.682 6642 27.47% 
RushHour 1920x1080 1.5 1.5 2.65x -1.050 759 15.12% 
Riverbed 1920x1080 1.5 1.5 3.43x -1.020 -579 -3.35% 
PedestrianArea 1920x1080 1.5 1.5 2.69x -0.638 1293 22.70% 
BlueSky 1920x1080 1.5 1.5 2.11x -1.422 4368 21.10% 
Traffic 2560x1600 2 2.22 2.00x -0.534 6320 45.75% 
DuckTakeOff 3840x2160 3 3 1.82x -0.919 -2319 -4.29% 
Bosphorus 3840x2160 3 3 2.03x -0.441 6700 34.06% 
Beauty 3840x2160 3 3 2.79x -0.114 3293 20.36% 
Average    2.39x -0.638 3352.3 22.46% 

Table 9.9: Proposed algorithm vs Kvazaar- transcoding to 704x576 with QP=22 

Video sequence Original 
resolution 

𝜌𝑤 𝜌ℎ Speedup PSNR 
[Δ dB] 

Bitrate 
[Δ kbps] 

Bitrate 
[%] 

Shields 1280x720 1.82 1.25 1.74x -0.506 13536 47.77% 
ParkRun 1280x720 1.82 1.25 1.91x -0.639 11770 30.64% 
KristenAndSara 1280x720 1.82 1.25 2.39x -1.320 1653 42.81% 
Johnny 1280x720 1.82 1.25 2.36x -0.645 1385 44.59% 
FourPeople 1280x720 1.82 1.25 2.41x -1.067 1809 44.64% 
BasketballDrive 1920x1080 2.72 1.875 2.16x -1.017 4790 33.33% 
Calendar 1920x1080 2.72 1.875 2.19x -1.638 3632 54.55% 
Cactus 1920x1080 2.72 1.875 2.04x -0.795 4427 32.08% 
BQTerrace 1920x1080 2.72 1.875 1.80x -0.198 8702 38.37% 
RushHour 1920x1080 2.72 1.875 2.42x -0.710 854 28.17% 
Riverbed 1920x1080 2.72 1.875 3.05x -0.879 -295 -3.08% 
PedestrianArea 1920x1080 2.72 1.875 2.46x -0.682 1176 31.86% 
BlueSky 1920x1080 2.72 1.875 1.75x -1.350 6790 42.15% 
Traffic 2560x1600 3.63 2.77 1.76x -0.542 3469 45.34% 
DuckTakeOff 3840x2160 5.45 3.75 1.56x -0.828 -286 -1.10% 
Bosphorus 3840x2160 5.45 3.75 1.66x -0.574 5861 43.50% 
Beauty 3840x2160 5.45 3.75 2.50x -0.234 2268 26.75% 
Average    2.13x -0.801 4208.3 34.26% 
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Table 9.10: Proposed algorithm vs Kvazaar- transcoding to 640x480 with QP=22 

Video sequence Original 
resolution 

𝜌𝑤 𝜌ℎ Speedup PSNR 
[Δ dB] 

Bitrate 
[Δ kbps] 

Bitrate 
[%] 

Shields 1280x720 2 1.5 1.91x -0.404 3986 29.66% 
ParkRun 1280x720 2 1.5 2.01x -0.364 2771 12.62% 
KristenAndSara 1280x720 2 1.5 2.29x -1.210 1126 38.70% 
Johnny 1280x720 2 1.5 2.30x -0.596 2776 44.97% 
FourPeople 1280x720 2 1.5 2.33x -1.083 1268 40.00% 
BasketballDrive 1920x1080 3 2.25 2.04x -0.969 2899 31.08% 
Calendar 1920x1080 3 2.25 2.03x -1.420 2842 53.63% 
Cactus 1920x1080 3 2.25 1.96x -0.740 2685 31.97% 
BQTerrace 1920x1080 3 2.25 1.70x -0.295 5128 36.17% 
RushHour 1920x1080 3 2.25 2.22x -0.678 628 27.93% 
Riverbed 1920x1080 3 2.25 2.76x -0.833 -286 -3.60% 
PedestrianArea 1920x1080 3 2.25 2.30x -0.628 867 29.08% 
BlueSky 1920x1080 3 2.25 1.74x -1.210 3850 46.20% 
Traffic 2560x1600 4 3.33 1.69x -0.484 5846 43.49% 
DuckTakeOff 3840x2160 6 4.5 1.48x -0.722 -428 -2.15% 
Bosphorus 3840x2160 6 4.5 1.57x -0.386 3958 42.76% 
Beauty 3840x2160 6 4.5 1.99x -0.264 1881 27.15% 
Average    2.02 -0.723 2458.6 31.16% 

 

As can be concluded from the presented results, video quality is higher for all video 

sequences and all transcoding resolution, while bitrate is better in most of the cases when using 

Kvaazar encoder. This behavior can be expected since the focus of the Kvazaar is aimed at 

achieving higher video quality and coding efficiency, which is not a case in transcoders whose 

primary goal is to satisfy timing requirements. Consequently, transcoder based on the proposed 

algorithms achieves significant speedups, from 3.58x on average when transcoding to 

2560x1600 resolution, to approximately 2x for downsizing to smaller resolutions (704x576 and 

640x480). Average losses and speedups per video sequence, as well as overall statistics, are 

shown in Table 9.11. 

Table 9.11: Average losses per video sequence compared to Kvazaar 

Video sequence Original 
resolution 

Speedup PSNR 
[Δ dB] 

Bitrate 
[Δ kbps] 

Bitrate 
[%] 

Shields 1280x720 1.83x -0.455 8761.0 38.72% 
ParkRun 1280x720 1.96x -0.502 7270.5 21.63% 
KristenAndSara 1280x720 2.34x -1.265 1389.5 40.76% 
Johnny 1280x720 2.33x -0.621 2080.5 44.78% 
FourPeople 1280x720 2.37x -1.075 1538.5 42.32% 
BasketballDrive 1920x1080 2.22x -0.326 4244.0 28.79% 
Calendar 1920x1080 2.22x -1.456 3620.3 49.91% 
Cactus 1920x1080 2.07x -0.689 3811.0 30.39% 
BQTerrace 1920x1080 1.85x -0.392 6824.0 34.00% 
RushHour 1920x1080 2.43x -0.813 747.0 23.74% 
Riverbed 1920x1080 3.08x -0.911 -386.7 -3.34% 
PedestrianArea 1920x1080 2.48x -0.649 1112.0 27.88% 
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BlueSky 1920x1080 1.87x -1.327 5002.7 36.48% 
Traffic 2560x1600 1.90x -0.545 6701.3 42.95% 
DuckTakeOff 3840x2160 2.01x -0.836 -5298.6 -4.10% 
Bosphorus 3840x2160 2.22x -0.665 9976.0 35.28% 
Beauty 3840x2160 2.94x -0.208 -1558.8 10.52% 
Average  2.24x -0.749 3284.4 29.45% 

Highest loss in video quality of 1.456 dB between the transcoded bitstreams can be 

observed for video sequence Calendar, while the smallest difference of 0.208 dB is when 

transcoding Beauty video sequence. The overall average loss for all transcoding scenarios is 

0.749 dB. Regarding the bitrate, some video sequences achieve even better bitrate when using 

the proposed algorithm, such as Riverbed, DuckTakeOff, and Beauty, while the highest bitrate 

loss of almost 50% can be seen when transcoding Calendar. Average bitrate loss is 

approximately 30%. These losses, however, come with the increased transcoding speed, which 

is imperative if the goal is to achieve JiT encoding. Average speedup of the proposed algorithm 

for all scenarios is 2.24x, which mostly depend on the video resolution to which original 

bitstream is being transcoded. 

9.4 Comparison with State-of-the-art algorithms 

Most of the research activities in the area of video transcoding are focused on speeding 

up the process of transcoding, but very few of them cover same aspects that are considered in 

this thesis, i.e., Just-in-Time video transcoding and homogeneous transcoding based on HEVC 

standard.  

Research presented [47] and [48] have similar approaches to transcoding, where a single 

video is pre-transcoded to several versions and only specific data, such as information about 

motion vectors, is stored on the server. When a low fidelity version of the video stream is 

requested from the system, the original video is transcoded by using pre-stored motion vectors. 

These approaches decrease the computational complexity of transcoder since they avoid 

complex motion estimation but increase storage costs because additional information for all 

different versions of the video has to be stored on a server. While authors in [47] verify their 

approach by comparing bitrate to scalable coding, without taking into consideration Just-in-

Time execution, authors in [48] are focused on achieving Just-in-Time transcoding. However, 

both solutions increase storage costs and do not enable transcoding to arbitrary ratios. Instead, 

only the versions for which pre-transcoding was performed are available. Since most of the 

transcoding process is performed upfront, the results are not comparable with the algorithm 

proposed in this thesis.  



90 

 

In [49] authors present different transcoding techniques that can reduce the transcoder 

complexity in both CU and PU optimization levels. The fastest proposed approach is able to 

reduce the complexity of the transcoder by 83% while keeping the bitrate loss below 3%. 

However, time savings are presented in relative to other transcoders and Just-in-Time execution 

is not addressed. Also, presented techniques do not include spatial resolution reduction, which 

is one of the main aspects of this thesis.  
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10 HARDWARE ACCELERATOR FOR INTER PREDICTION 

Achieving JiT transcoding requires a lot of sacrifices that have to be made in a re-

encoding process to conform to imposed timing requirements, which ultimately affects video 

quality and coding efficiency of the transcoding process. Exploiting coding information from 

the decoded frame helps to improve the processing time of the transcoding but can still not 

ensure JiT transcoding. The software-based algorithm proposed in this thesis reuses information 

from the decoded bitstream to re-encode original bitstream while monitoring and adapting the 

computational complexity of the transcoding process to guarantee JiT execution. However, 

during the design of the algorithm, some functionalities had to be reduced to ensure the 

predictability of the execution. Using hardware accelerator for some of the functions and 

kernels in the transcoding process could help to achieve the same results in terms of timing, but 

by using a broader set of functionalities that can further improve quality of output bitstream.  

Therefore, analysis is made to identify suitable kernels in the application that could be 

accelerated in hardware to enhance final transcoded bitstream. Results of the analysis are shown 

in chapter 10.1. Overview of the functionality of hardware accelerator is given in 10.2. 

Architecture and implementation of a hardware accelerator for the selected kernel are presented 

in chapters 10.3 and 10.4 while the performance validation of stand-alone hardware accelerator 

is shown in chapter 10.5. 

10.1 Kernel analysis 

Complexity analysis of HEVC encoder shows that one of the most exhaustive kernels 

in the encoding process is inter prediction that consists of motion estimation and motion 

compensation. Depending on the configuration of the encoder motion estimation can consume 

up to 85% of overall encoding time [11]. Although in Just-in-Time transcoding share of motion 

estimation is not nearly as high, because faster motion estimation algorithms are employed to 

reduce the processing time, this fact emphasizes the importance of inter prediction on quality 

of output bitstream. More precise inter prediction process is able to find a better predicted block, 

forming residual with smaller prediction errors. 

The algorithm proposed in this thesis retrieves motion vectors found in a motion 

estimation process in the original encoding and reuses them to facilitate inter prediction in the 

re-encoding phase of the transcoder. Motion estimation in the defined algorithm depends on the 

complexity of currently observed CU which is determined based on its categorization. For more 
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complex CUs more precise refinement is conducted, while for less complex CUs, a motion 

vector is calculated as the weighted average of appropriate motion vectors from the original 

bitstream. Refinement steps are minimal, increasing the search area around the considered CU 

by 1 or 2 pixels for higher complexity, to ensure fast execution. However, by adding hardware 

accelerator modules specifically designed for inter prediction, the refinement area could be 

widened for all CU categories, without sacrificing the performance of the transcoder. To test 

the behavior of the transcoder and to verify benefits of increasing the refinement search area 

and meaningfulness of creating special hardware accelerator for this specific purpose, inter 

prediction of the proposed algorithm is adapted as listed in Table 10.1. 

Table 10.1: Inter prediction mode adaptation 

Prediction 
category 

Condition SW inter prediction HW inter prediction 

InterM LBC or LM Weighted MV Weighted MV + 1 pixel refinement 
InterM MBC and MM Weighted MV + 1 pixel refinement Weighted MV + 2 pixel refinement 
InterM HBC or HM  Weighted MV + 2 pixel refinement Weighted MV + 4 pixel refinement 
ComboIntra LBC or LM Weighted MV Weighted MV + 1 pixel refinement 
ComboIntra MBC and MM Weighted MV  Weighted MV + 1 pixel refinement 
ComboIntra HBC or HM  Weighted MV + 1 pixel refinement Weighted MV + 2 pixel refinement 
ComboInter LBC or LM Weighted MV Weighted MV + 1 pixel refinement 
ComboInter MBC and MM Weighted MV + 1 pixel refinement Weighted MV + 2 pixel refinement 
ComboInter HBC or HM  Weighted MV + 2 pixel refinement Weighted MV + 4 pixel refinement 

Refinement area larger than four pixels was not considered since it has been shown in 

previous research [3] that the overall gain in video quality becomes almost negligible when 

increasing the search window by more than four pixels. 

Transcoder was run with both version of inter prediction: software-based version as 

described in previous chapters in this thesis and proposed hardware-based version with adapted 

inter prediction. To ensure comparable results, coefficients 𝛽𝐿,𝛽𝐻,𝜇𝐿 and 𝜇𝐻 are set to fixed 

values defined with set 1 (Table 8.3). Otherwise, the difference in video quality and/or bitrate 

would be caused by a different distribution of CUs into categories. Average results per video 

sequence are shown in Table 10.2, where the differences in PSNR and bitrate are compared 

with the software version of the algorithm, while the processing time is compared to tJiT to show 

if the JiT execution is satisfied.  
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Table 10.2: Comparison between SW and proposed HW algorithm with adapted inter prediction 

Video sequence Original 
resolution 

Processing 
time 
[t / tjiT] 

PSNR 
[Δ dB] 

Bitrate 
[Δ kbps] 

Bitrate 
[%] 

Shields 1280x720 70.40% 0.248 -7357.0 -26.24% 
ParkRun 1280x720 81.56% 0.128 -7767.0 -20.39% 
KristenAndSara 1280x720 98.12% 0.022 -577.5 -15.10% 
Johnny 1280x720 96.53% 0.074 -466.0 -15.14% 
FourPeople 1280x720 99.30% 0.102 -270.5 -7.29% 
BasketballDrive 1920x1080 109.11% 0.134 -533.3 -4.49% 
Calendar 1920x1080 104.03% 0.160 -178.3 -2.78% 
Cactus 1920x1080 101.97% 0.118 -1711.0 -10.90% 
BQTerrace 1920x1080 98.60% 0.138 -2715.3 -9.49% 
RushHour 1920x1080 125.16% 0.122 -48.3 -2.12% 
Riverbed 1920x1080 98.12% 0.127 -384.0 -3.35% 
PedestrianArea 1920x1080 103.53% 0.110 -373.3 -9.55% 
BlueSky 1920x1080 103.60% 0.096 -3852.3 -19.75% 
Traffic 2560x1600 101.25% 0.091 -1548.3 -13.83% 
DuckTakeOff 3840x2160 164.30% 0.082 -1693.2 -3.28% 
Bosphorus 3840x2160 140.12% 0.252 -7041.8 -24.61% 
Beauty 3840x2160 129.52% 0.168 -54.6 -0.35% 
Average  107.37% 0.128 -2144.9 -11.10% 

Results show that by increasing the refinement search area by 1 pixel for low and 

medium complex CUs and by 2 pixels for complex CUs PSNR increases by 0.128 dB, while 

bitrate reduces for 11% on average. However, Just-in-Time requirement is not satisfied for most 

of the video sequences, giving that average processing time is 107.37% of tJiT , which is an 

increase from 96.01% for the original algorithm with the same set of coefficients (Table 8.4, 

set 2). With presented results, a conclusion can be reached, that increasing the refinement area 

in inter prediction can lead to notable improvements of the final bitstream, but in order to keep 

the algorithm within the same timing constraints this operation should be accelerated. 

Therefore, a custom hardware accelerator for inter prediction operation is designed, 

implemented and presented in the following subchapters. 

10.2 Functionality 

The core functionality of a custom hardware accelerator that is designed, implemented 

and integrated with JiT transcoder in the scope of this thesis is to find best inter predicted block 

based on motion vector obtained as a weighted average of mapped motion vectors and the 

defined refinement search area. Figure 10.1 depicts the inter prediction scheme that is employed 

as a custom hardware accelerator. 
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Figure 10.1: Inter prediction search scheme implemented in hardware accelerator 

The left part of the figure shows a search area in regular motion estimation for the 

current CU block in the frame. Usually, the area in a reference frame that corresponds to the 

position around that exact block in the current frame is searched for the best candidate. 

However, in the transcoding, information about motion vectors from the original bitstream can 

be used to steer the search to an area where there is a higher probability for finding better inter 

predicted candidate. Therefore, in the proposed algorithm search area is located around the 

block to which weighted motion vector is pointing, as visualized in the right part of the figure 

above.  

Another important functionality that is implemented in hardware accelerator is the 

possibility of processing CUs with variable block sizes and different sizes of search areas. Thus, 

one instance of hardware accelerator can be used for all blocks and for all transcoding 

configurations. Although hardware accelerator in this particular case is used to implement 

function depicted in the right frame in Figure 10.1, it can also be used for regular inter prediction 

full integer search by setting the input parameter values to appropriate values (i.e., setting the 

starting index of original and reference CU to the same location). 

10.3 Architecture  

Hardware accelerator is designed to find the best inter predicted block in a defined 

search area and to return the motion vector as a result. Black-box model of hardware accelerator 

with defined inputs and outputs is given in Figure 10.2. 
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Figure 10.2: Model of a custom hardware accelerator for inter prediction 

Inputs to the custom hardware accelerator are:  

• memory - pointer to an address in memory where original and reference frame 
are located   

• st_idx - starting index of the most-top-left pixel of current CU within the current 
frame 

• ref_idx - starting index of the most-top-left pixel of CU predicted with weighted 
motion vector within the reference frame  

• search_area - the size of a refinement search area (around the block with starting 
index ref_idx) 

• block_size - size of CU block (e.g., for 32x32 CU block, block_size =32) 
• frame_width, frame_height – dimensions of original and reference frame 

Outputs from the accelerator are:  

• mv_x, mv_y – motion vector (X, Y) for the best predicted block found in the 
defined search area 

High-level block scheme of a custom hardware accelerator is given in Figure 10.3. 
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Figure 10.3: High-level hardware accelerator block scheme 

Inter prediction hardware accelerator consists of several modules: Control unit, SAD 

engine, Comparator, and Indexer. The inter prediction operations starts by fetching data of the 

original CU block and search area from the external memory. Number of pixels fetched from 

memory for original CU block are equal to 𝑏𝑙𝑜𝑐𝑘_𝑠𝑖𝑧𝑒 ∗ 𝑏𝑙𝑜𝑐𝑘_𝑠𝑖𝑧𝑒, while number of pixels 

that need to be fetched for search area with defined search_area are (2 ∗ 𝑠𝑒𝑎𝑟𝑐ℎ_𝑎𝑟𝑒𝑎 +

𝑏𝑙𝑜𝑐_𝑠𝑖𝑧𝑒) ∗ (2 ∗ 𝑠𝑒𝑎𝑟𝑐ℎ_𝑎𝑟𝑒𝑎 + 𝑏𝑙𝑜𝑐𝑘_𝑠𝑖𝑧𝑒). Data fetched from external memory is stored 

in local memory. All computations within the hardware accelerator from this point on are based 

on a data stored in local memory, meaning that only one access to external memory is needed 

per one inter prediction operation. 

After fetching the data needed for computation, the control unit initiates the process of 

finding the best predicted block from the defined search area. SAD engine calculates the sum 

of absolute differences between original CU and the predicted CU at the location ref_idx. Result 

of the SAD engine is forwarded to Comparator module that compares given value with the best 

SAD. If the calculated SAD value is better than best SAD stored as a register in local memory, 

then the value of best SAD is updated with current SAD and motion vector for that predicted 

block is calculated and stored in registers MV X and MV Y. After comparison, the Indexer 



97 

 

module refreshes index of next predicted block within search_area (ref_idx) making sure that 

the index does not point beyond frame boundaries. Control unit repeats the process until all 

possible blocks from search area are evaluated. Finally, at the end of the evaluation process, the 

best motion vector from registers MV X and MV Y are sent to the host processor.  

10.4 Implementation and synthesis 

Custom hardware accelerator was implemented and synthesized using Vivado High-

Level Synthesis (HLS) tool. Vivado HLS allows functions written in C, C++, System-C and 

OpenCL kernels to be synthesized into RTL implementation and directly targeted into Xilinx 

programmable devices [64]. Each function from the high-level source code is translated into an 

RTL block in hardware. The top-level function interPredictionAcc that describes inter 

prediction accelerator is defined as: 

void interPredictionAcc(volatile unsigned int *memory, unsigned int 

st_idx, unsigned int ref_idx, unsigned int search_area, unsigned int 

block_size, unsigned int frame_width, unsigned int frame_height, int 

*mv_x, int *mv_y) 

Besides the main accelerator function, other modules from Figure 10.3 are defined as 

functions, along with two functions that help accelerate computation by avoiding multiplication 

and division to facilitate hardware translation. The list of all functions used to design hardware 

accelerator with a brief description of functionality is listed below. 

• fetchBlockFromMem() – fetching block from memory, depending on the offset 
address. It is used to fetch both, original CU block from the original frame and 
search area from the reference frame 

• sad() – calculates the sum of absolute differences between original and reference 
block. Instead of fetching the predicted block from the search area in local 
memory, differences are calculated based on an index of the predicted block in 
the search area.  

• comparator() – compares calculated SAD value with the best SAD value found 
so far in the process. If the value is better, registers Best SAD, MV X and MV 
Y are updated accordingly 

• indexer() – refreshes indexes of next predicted block within the reference frame 
and search area. It checks if the value is valid and notifies control unit if all the 
blocks have been evaluated.  

• divideInt() – a function that divides two integer numbers. Result of this function 
is quotient and reminder. Since there are no demands for floating point division 
in inter prediction algorithm, this function is implemented in order to avoid 
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regular division which could influence translation to hardware. The 
implemented algorithm for the division was based on 

• multiplyInt() – a function that multiplies two integer numbers. Implemented for 
same reason as divideInt().  

Finding the best predicted block with the described functions of hardware accelerator 

follows the procedure given with the pseudocode below. 

originalCU = fetchBlockFromMem(original_cu_address) 

searchArea = fetchBlockFromMem(search_area_address) 

isEnd = false; 

predictedIndex = 0 

 

while(!isEnd) 

{ 

 currentSAD = sad(originalCU,predictedIndex) 

 comparator(currentSAD) 

 isEnd = indexer(predictedIndex) 

} 

Functions in code represent the design hierarchy that is translated into RTL blocks in 

hardware design, while the arguments of top-level function determine the hardware RTL 

interface ports. Giving that the top-level function is interPredictionAcc(), its arguments are 

synthesized as an input or output ports in exported design, as shown in Figure 10.4. 
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Figure 10.4: Exported hardware accelerator scheme 
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Along with accelerator parameters, synthesis adds additional input and output ports 

necessary for the successful operation of the accelerator. In addition to standard input signals, 

clock and reset, HLS also adds block level control signals: start, done, idle and ready. The 

ap_start signal controls the block execution and must be asserted to logic 1 for the design to 

begin operation. The ap_ready is an output signal that indicates when the accelerator is ready 

to receive new inputs, while ap_done indicates when the accelerator has completed all the 

operations in the current transaction, i.e., when the inter prediction is finished, and the best 

predicted block is found. When the accelerator is not doing any work, the ap_idle signal is set 

to logic 1. For each output parameter, in this case, motion vector X and Y, an additional signal 

that indicates if the valid data is set to output is added to design (mv_x_vld and mv_y_vld). 

All the accelerator parameters and the control ports are grouped into a single common 

AXI4 lite slave interface that is used to pass parameters from CPU host to accelerator and vice 

versa. AXI-lite is light-weight, low-throughput memory mapped interface that has a small logic 

footprint and it is suitable for passing control and status signals to and from the accelerator [65]. 

A larger amount of data, however, cannot be efficiently transferred via AXI lite interface, since 

it allows only one data transfer per transaction. Thereby, memory port for accessing DDR 

memory to fetch data from original and reference frame is connected to the AXI4 Full interface 

that allows a burst of up to 256 data transfer cycles with just a single address phase. 

The designed hardware accelerator was exported as an IP core using the Vivado HLS 

tool, and the final block is shown in Figure 10.5. 

interPredictionAcc_0

 

Figure 10.5: IP core of a custom hardware accelerator for inter prediction 

Table 10.3 shows a report of how many resources are necessary for the implemented 

design (a number of BRAMs, DSPs, FFs, and LUTs). Percentages of overall hardware area 



100 

 

resources used are based on the target device for synthesis: Xilinx Kintex Ultrascale FPGA 

(xcku115-flvb2104-2-e). 

Table 10.3: Hardware utilization of inter prediction custom hardware accelerator 

 BRAM_18K DSP48E FF LUT 
Total used 6 24 3501 6065 
Available 4320 5520 1326720 663360 

Utilization (%) 0.0013% 0.0043% 0.0026% 0.0091% 

10.5 Performance validation 

Functional validation of custom hardware accelerator for inter prediction was conducted 

by comparing output results with the software version of the same algorithm. The most 

important aspect of the designed accelerator is performance improvement compared with 

software implementation. As demonstrated in section 10.1, expanding the search area for all 

inter prediction cases in the proposed transcoding algorithm causes violation of JiT 

requirements. Therefore, custom hardware accelerator has been introduced to cope with the 

increased computational complexity induced with the expansion of the search area. Two use 

cases were tested to validate and compare the performance of the accelerator:  

• Inter prediction of CU blocks with different block sizes (𝑏𝑙𝑜𝑐𝑘_𝑠𝑖𝑧𝑒 ∈
{8,16,32})) and fixed search area (𝑠𝑒𝑎𝑟𝑐ℎ_𝑎𝑟𝑒𝑎 = 5) 

• Inter prediction of CU blocks with a fixed block size (𝑏𝑙𝑜𝑐𝑘_𝑠𝑖𝑧𝑒 = 32) and 
variable search area (𝑠𝑒𝑎𝑟𝑐ℎ_𝑎𝑟𝑒𝑎 ∈ {1,2,3,4,5,6,7}) 

Hardware accelerator for inter prediction was validated and verified on operating 

frequency of 250MHz. To benchmark the performance, 100 inter prediction tasks were 

offloaded to hardware accelerator and compared the same amount of tasks run in software 

implementation. Average time needed to finish the operation for one block (in milliseconds) is 

retrieved and depicted in the figures below. Figure 10.7 shows that the difference in execution 

time between software and hardware implementation significantly increases for larger blocks. 

When processing smaller block sizes, the impact of memory accesses to overall time is much 

higher than for larger blocks, which is not ideal for hardware accelerators that mainly focus on 

the enhancement of computational aspects of the algorithm. Therefore, hardware accelerator 

performs much better in situations where the ratio between computation and memory accesses 

leans toward computation. 
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Figure 10.6: Comparison between hardware accelerator and software implementation of inter prediction 

(per CU block size for search area size 5) 

Similar behavior can be observed when increasing the search area in the inter prediction 

(Figure 10.7).  

 

Figure 10.7: Comparison between hardware accelerator and software implementation of inter prediction 

(per search area size for block size 32) 
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Although the elapsed time of hardware accelerator gradually increases with larger block 

sizes, the software implementation increases at a much higher rate. Speedup of using hardware 

accelerator increases from 3.73x for search area of 1 pixel to 13.5x for search area of 7 pixels. 

Now, the changes in inter prediction proposed in the Table 10.1 to increase the video 

quality of the transcoded bitstream can be observed form the hardware accelerator standpoint, 

since the software implementation of these adaptations was not viable due to increased 

transcoding time that broke the limits set by JiT transcoding. By comparing times needed for 

software execution of original inter prediction in the proposed algorithm that conforms to JiT 

requirements and times needed for hardware execution of the adapted inter prediction 

algorithm, some conclusions about the feasibility of the JiT transcoding with the new proposed 

inter prediction scheme can be made. For example, for most complex CUs within InterM 

category original prediction was made with the refinement of 2 pixels, but with the proposed 

custom hardware accelerator refinement of 4 pixels is approximately four times faster than a 

refinement of 2 pixels on same CU block in software. This fact should ensure JiT transcoding, 

taking into account that software 2-pixel refinement is proven to satisfy JiT requirements. 

However, in order to confirm these assumptions, integration of hardware accelerator to a Bolt65 

transcoder with the implemented proposed JiT algorithm for data reusing has to be conducted 

and verified.  
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11 INTEGRATION AND FINAL RESULTS 

This chapter describes the integration scheme of a custom hardware accelerator for inter 

prediction with video transcoding algorithm based on the utilization of decoded information 

from the original stream presented in this thesis. A platform for connecting hardware accelerator 

with the host side using high-performance PCI Express interconnect is presented in chapter 

11.1. Different approaches to using the accelerator from the host side and its performance 

validation within the transcoding application is described in chapter 11.2. Final results of the 

integrated solution are shown in chapter 11.3. 

11.1 Integration platform 

Before starting the accelerator, the input data (i.e., data from the original CU and search 

area) has to be transferred from the host side. In heterogeneous systems, the time needed to 

transfer data from the host side to heterogeneous node and vice versa can often quash all the 

performance benefits gained by faster execution of hardware accelerator, becoming one of the 

main bottlenecks in the entire system. Therefore, for the connection between inter prediction 

hardware accelerator and the host that is running video transcoding, high-performance PCI 

Express Gen3x8 interconnect, that is able to achieve a speed of up to 8 Gbytes/sec was used to 

minimize the influence of data transfers on overall transcoding time. The block design of the 

platform that contains custom hardware accelerator is given in Figure 11.1. 
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Figure 11.1: Block design of the integrated platform 
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The DMA system for PCIe masters read and write requests on the PCI Express and 

enables performing direct memory transfers from host to the FPGA platform and from the 

FPGA platform to the host [66]. AXI interconnect core is used to connect more AXI memory 

mapped master devices to one or more memory-mapped slave devices. In the design above, the 

procedure for running the accelerator follows the data path controlled by AXI interconnect as 

follows: 

• Input data for inter prediction accelerator, pixels of current CU and search area 
from the reference frame, is written to DDR memory. Data is passed over the 
DMA and AXI interconnect, directly to DDR memory.   

• The arguments for the accelerator (block size, size of the search area, etc.) are 
passed from the host side via AXI lite interface. Besides input parameters, 
addresses where the output motion vector will be located, as well as the address 
where the input data is located in DDR memory are also passed to the accelerator 
in the same transfer 

• Control signal ap_start is set to logic 1, also over AXI lite interface, to initiate 
the start of the execution 

• Hardware accelerator fetches the data from DDR, previously transferred from 
the host side, and starts the execution.  

• After completion of the kernel, the calculated motion vector is written on defined 
addresses, and the control signal ap_done is set to 1  

• After the host reads that ap_done is set to 1, the output from the accelerator is 
transferred to the host side, over the AXI-lite interface 

Hardware utilization of the designed architecture is obtained with Vivado tool and is 

depicted in Figure 11.2. 

 

Figure 11.2: Hardware utilization of integrated design 
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11.2 Performance validation 

There are several factors that influence the performance of an integrated solution, 

including data transfer rate, interrupt processing and the smart utilization of hardware 

accelerator. An important factor that affects data throughput is interrupt processing. Once the 

accelerator is finished with finding the best inter prediction candidate, the accelerator sends an 

interrupt to the host side and waits for the host side to process the status. However, this wait 

time is not predictable, which is why another approach is considered in the design of the 

integrated system. Instead of waiting for the interrupt from the hardware accelerator, the host 

uses poll mode, which gives the best data transfer rates [67]. In poll mode, the host needs to 

monitor the completion status of hardware accelerator (ap_done signal) to check if the operation 

is executed. However, while waiting for the completion, additional processing can be done on 

the host side in parallel, which will be presented later in this chapter.  

Another important aspect of the overall performance is the utilization of hardware 

accelerator. Two working modes were tested and compared in the scope of this integration: 

• Standalone mode – Hardware accelerator receives the data for processing 
individual tasks. All the parameters, along with original CU and search area data 
are sent every time accelerator is started.  

• Iterative mode – Hardware accelerator receives only the input parameters for 
processing individual task. Original CU and search area data are fetched from 
DDR memory, where the two whole frames (original and reference) have been 
previously transferred from the host side.  

Notice that for the standalone mode there will be multiple smaller data transfers for 

processing one frame, while in iterative mode, only one, significantly larger, data transfer is 

needed per frame. To compare the two working modes a test that encodes one Full HD frame 

in both ways is conducted. The frame was split only to 32x32 blocks, with the refinement search 

area of 5 pixels (i.e., size od search area is 42x42). In Full HD frame (1920x1080) there are 

2040 32x32 CU blocks, which means that the number and size of data transfers per mode will 

be: 

𝑆𝑡𝑎𝑛𝑑𝑎𝑙𝑜𝑛𝑒 𝑚𝑜𝑑𝑒: 2040 ∗ ((32 ∗ 32) + (42 ∗ 42)) = 2040 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑠 𝑥 2788 𝑏𝑦𝑡𝑒𝑠 

𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑣𝑒 𝑚𝑜𝑑𝑒: 1 ∗ (2 ∗ 1920 ∗ 1080) = 1 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑥 4147200 𝑏𝑦𝑡𝑒𝑠 
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The ratio between time spent on memory transfers and processing in two modes is given 

with Figure 11.3. 

 

Figure 11.3: Ratio between memory transfer and processing for two working modes 

In a standalone mode, where there are multiple transfers between the host side and the 

hardware platform, data transfer takes about 6.4% of the time needed to perform inter prediction 

for the entire frame. In an iterative working mode, this time significantly decreases and is 

negligible compared to the time necessary to process the inter prediction operation, taking 

0.005% of the overall time. This behavior can be explained by the nature of data transfers via 

PCIe interconnect, where a much higher transfer speed is achieved by transferring larger 

amounts of data, as shown in  Figure 11.4, where to use cases are observed: transfer from host 

side to FPGA platform and vice versa.  
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Figure 11.4: PCI Express transfer speeds in correlation with transfer size, source [67] 

With the accomplished speed of the data transfers between the host side and the FPGA 

platform, overhead of passing the data to and from the accelerator has been reduced to a 

minimum and does not present a bottleneck in the integrated system. 

After the host initiates the start of a hardware accelerator, the transcoding process can 

be further optimized by running other tasks on the host side in parallel with the inter prediction 

that is being executed on the hardware platform. Giving that the proposed data reusing 

algorithm evaluates inter and intra prediction candidates for most of the CUs, transcoding 

process can be parallelized so that inter prediction is conducted on customized hardware 

accelerator, while the intra prediction is performed on the host side. Taking into account the 

adopted changes, the final scheme of the proposed data reusing algorithm on the heterogeneous 

platform is presented in Figure 11.5. Modules that imply using a hardware platform, transferring 

decoded and reference frame to DDR memory and inter prediction, are denoted with the green 

colors.   

 



109 

 

Input bitstream

Decode frame

Set initial coefficients

Gather decoded data

Split to CTUs

Categorize CTUs

Initial split

Categorize CUs

Frame = N?

Monitor quality,bitrate and performance

Update coefficients

Encoder

Transfer decoded and reference frame 
to HW

Predict block

Inter predictionIntra prediction

Inter or Intra predicted?

 

Figure 11.5: Final scheme of the algorithm on the integrated heterogeneous platform 

11.3 Final results 

Transcoder with implemented novel data reuse algorithm and the custom hardware 

accelerator for inter prediction has been deployed to the integrated heterogeneous platform and 

compared with the results of the CPU-only implementation of the same algorithm and with Just-
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in-Time configuration of Bolt65 transcoder that does not reuse any data from the original 

bitstream (Bilt65 JiT). Results presented in Figure 11.5 show average gains in PSNR and bitrate 

for all transcoding scenarios, compared to baseline Bolt65 JiT straight-forward transcoder. 

Table 11.1: Comparison between CPU-only implementation and implementation on a 

heterogeneous integrated platform 

Video name CPU-only implementation Heterogeneous implementation Speedup 
[tSW/tHW] PSNR 

[Δ dB] 
Bitrate 
[Δ kbps] 

Bitrate 
[%] 

PSNR 
[Δ dB] 

Bitrate 
[Δ kbps] 

Bitrate 
[%] 

Shields 0.750 -8891.0 -58.30% 1.100 -12881.0 -66.12% 1.03x 
ParkRun 0.493 -8566.5 -34.65% 0.695 -11935.0 -41.51% 1.09x 
KristenAndSara 0.749 -1118.5 -32.36% 0.853 -1328.5 -39.67% 1.08x 
Johnny 0.524 -682.0 -25.34% 0.669 -1084.5 -39.25% 1.07x 
FourPeople 0.674 -1113.5 -33.84% 0.864 -1280.0 -39.14% 1.02x 
BasketballDrive 1.038 -3400.7 -20.13% 1.222 -3991.0 -26.33% 1.06x 
Calendar 1.491 -1273.7 -21.74% 1.615 -1315.3 -27.47% 1.06x 
Cactus 0.539 -3518.7 -25.17% 0.706 -4204.7 -34.08% 1.01x 
BQTerrace 0.670 -6934.3 -29.34% 0.859 -8914.3 -43.60% 1.03x 
RushHour 1.024 -285.3 -8.90% 1.174 -274.7 -8.31% 1.02x 
Riverbed 1.229 -2456.0 -20.41% 1.430 -2389.3 -20.34% 1.07x 
PedestrianArea 1.371 -1265.3 -35.51% 1.466 -1349.3 -39.75% 1.10x 
BlueSky 0.503 -3392.3 -23.47% 0.622 -5874.0 -44.93% 1.11x 
Traffic 0.473 -3941.3 -45.02% 0.588 -5012.3 -56.16% 1.09x 
DuckTakeOff 0.208 -1829.8 -3.84% 0.286 -3321.4 -6.02% 1.08x 
Bosphorus 0.492 -4432.2 -30.61% 0.616 -7458.0 -47.29% 1.06x 
Beauty 1.173 -13733.6 -16.35% 1.295 -13655.2 -16.03% 1.04x 
Average 0.788 -3931.5 -27.35% 0.945 -5074.6 -35.06% 1.06x 

Results show that the proposed algorithm ran on heterogeneous platform outperforms 

CPU-only implementation of the same algorithm in both, average PSNR and bitrate. Compared 

with Bolt65 JiT transcoder, CPU-only solution has an average increase in PSNR of 0.788 dB, 

while for implementation on the heterogeneous platform this gain rises to 0.945 dB. Regarding 

the bitrate, reduction of 27.35% obtained with SW implementation is improved to 35.06%. 

Transcoding on a heterogeneous platform also increases performance time by an average of 

6%. However, since the proposed algorithm adapts the coefficients that define categorization 

boundaries depending on the processing time, the number and configuration of inter prediction 

tasks are not the same, so the observed speedup is not based solely by increasing the speed of 

inter prediction operation. Notice that for the same reason, PSNR gains are higher compared 

with CPU-only implementation than in previously observed scenario (section 10.1). 

After presenting and explaining all the concepts of the proposed algorithm for JiT 

transcoding based on the utilization of coding information from the input bitstream and the 

heterogeneous architecture with a custom hardware accelerator for inter prediction, a final 
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comparison between two baseline transcoders and the two versions of the novel algorithm 

presented in this thesis can be made.  

Figure 11.6 shows the average PSNR gains for transcoding video sequence from the 

original resolution to all possible resolutions defined in the test methodology in chapter 5. 

Lowest quantization parameter defined in Common Test Conditions [60] of 22 was observed 

since it represents the most complex transcoding scenario with the highest demands on 

computational resources.  

 

Figure 11.6: Final PSNR comparison 
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Proposed algorithm deployed to a system that contains only CPU achieves a significant 

increase in video quality compared to Just-in-Time transcoder that re-encodes video sequence 

from scratch, without reusing information extracted from the input bitstream. By introducing 

custom hardware accelerator for inter prediction on the FPGA platform and adapting the 

algorithm to heterogeneous architecture that consists of FPGA and CPU,  even larger gains in 

video quality can be observed. However, average PSNR is still lower than for transcoder that 

uses open-source Kvaazaar encoder that does not comply with JiT transcoding.  

A similar analysis is made for bitrate reduction, where the percentage of the reduction 

compared with Bolt JiT transcoder is presented in Figure 11.7. 

 

Figure 11.7: Final bitrate comparison 
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Constant improvement in bitrate reduction compared with straight-forward Bolt65 

transcoder can be seen in the figure above. Implementation of the transcoder on the 

heterogeneous platform gives better bitrate in most of the video sequences compared with CPU-

only implementation. For some video sequences, achieved bitrate reduction is even better than 

for Kvazaar transcoder.  

Better video quality and bitrate in Kvazaar transcoder come at the cost of increased 

processing time, which causes violation of Just-in-Time transcoding. Figure 11.8 depicts 

differences in processing times between the observed transcoders. The dotted red line in the 

graph illustrates the limit for achieving JiT transcoding (100% of tJiT).  

 

Figure 11.8: Final processing time comparison 
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The regulation process of the proposed algorithm (i.e., monitoring and adaptation of the 

categorization coefficients) ensures Just-in-Time transcoding for all scenarios and all video 

sequences, which is manifested in the graph above. Kvazaar transcoder, contrarily, breaks the 

JiT limits by a minimum of 50% (for Shield video sequence), while the processing time for 

some sequences is almost 3 times higher than needed for JiT transcoding.  
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12 CONCLUSION 

Algorithms for efficient utilization of coding information extracted from the input video 

stream in the process of video transcoding were investigated in the scope of research conducted 

for this thesis. Since the software solutions alone cannot most efficiently provide Just-in-Time 

video transcoding, hardware-based accelerators of key compute-intensive kernels were also 

examined in order to achieve the best trade-off between coding efficiency and video quality 

while fulfilling Just-in-Time constraints. Performance-efficient integration of algorithms and 

hardware-based accelerator kernels into one high-performance system was the final 

contribution of this thesis.  

The algorithm presented in this thesis tries to estimate the computational complexity 

needed for re-encoding each coding block. The estimation is based on the concept of 

categorization, where each coding unit is categorized in regard to three different types of 

information extracted from the decoded frame: the size of decoded coding units, number of 

coding units mapped from the decoded frame and prediction modes of mapped coding units. 

Depending on the output of the categorization process, different algorithms are used to encode 

particular coding unit. More computing resources will be assigned to processing more complex 

CUs that usually contain more detailed information within the video frame and that have a 

higher impact on the quality of final transcoded bitstream. Boundaries for categorization are 

adapted during the transcoding process to ensure predictability and guarantee Just-in-Time 

execution. The developed algorithm, ported on CPU-only architecture achieves higher PSNR 

and reduced bitrate for all transcoding scenarios compared to Just-in-Time transcoder that does 

not reuse data from the input bitstream.  

Furthermore, a custom hardware accelerator for one of the most compute-intensive 

kernels in the process of video transcoding, inter prediction, was designed and implemented. 

By utilizing hardware accelerator, inter prediction used in the software version of the algorithm 

was enhanced by expanding the search area in the motion estimation process, without 

compromising Just-in-Time execution. With the expanded search area, a larger set of inter 

prediction candidates could be evaluated, increasing possibility of fining the best inter predicted 

block. 

Integration of custom hardware accelerator for inter prediction with the proposed 

algorithm was conducted on a system that consists of CPU on the host side and the FPGA 



116 

 

hardware platform. Communication between the host side and the hardware accelerator was 

implemented using high-throughput PCI Express interconnect to minimize the influence of time 

needed for memory transfers on the overall processing time and to avoid possible bottlenecks. 

The integrated solution increases video quality by 0.945 dB and reduces bitrate by 35.06% on 

average compared with JiT transcoder. Compared to transcoder without timing requirements, 

average losses of 0.592 in PSNR and 21.74% in bitrate were achieved, but with significant 

speedups of up to 4 times.  

Finally, contributions of the research conducted for this thesis are:  

• Perfomance-optimized algorithms and hardware-based accelerator kernels on 

heterogeneous high performance computing architectures for just-in-time video 

transcoding based on utilisation of coding information from input video stream 

• Performance-efficient integration of system architectures composed of 

implemented algorithms and hardware-based accelerator kernels on 

heterogeneous high performance computing architectures for just-in-time video 

transcoding 

Future work in this research area will include several aspects. A larger set of encoding 

tools introduced in HEVC will be analysed to try to achieve even higher gains in video quality 

compared with straight-forward transcoders. Inclusion of tools, such as symmetric and 

asymmetric prediction units, deeper transform trees, in-loop filters or interpolation, can help to 

enhance transcoded bitstream. However, this compromises Just-in-Time execution, so detailed 

analysis must be performed before adding any of the proposed tools in the existing solution.  

More compute-intensive kernels will be investigated, and their influence on the overall 

process of video transcoding will be analysed. Custom hardware accelerators for other suitable 

kernels will be designed and integrated with the integrated solution. Possible kernel candidates 

for hardware acceleration include interpolation, transformation, and quantization. Different 

types of processing units, besides custom accelerator-based cores on FPGA platform, will also 

be investigated, such as GPU core, RISC-V, and GPU-like core.  

With the increased number of kernels and processing cores, the advanced resource 

manager will have to be developed to control and monitor the execution of the entire process. 

Some other aspects of the system, besides video quality, coding efficiency and performance, 

such as power consumption will also have to be taken into consideration.  
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