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Introduction 

Robot teleoperation enables humans to control robots remotely. It is mostly used in 

environments where direct human presence is not possible or where human presence can 

be hazardous or impractical. Mobile robotic platforms, capable of navigating dynamic 

environments, are widely used in logistics [1], disaster responses [2] as well as in 

healthcare both in surgeries [3] and in helping people with disabilities [4]. Due to dynamic 

environments, automatization of robots to complete given tasks can be exceptionally hard 

and very often requires intuition of an expert human to solve them [5]. To achieve effective 

teleoperation, robot platforms rely on real-time sensor feedback and data, fast and precise 

algorithms, real-time actuation as well as a consumer-friendly interface that enhances the 

operator interaction with the robot [6]. Traditional teleoperation interfaces are often unable 

to provide an immersive user experience, which can condition operator performance in 

high-stakes scenarios such as disaster responses during fires or lifesaving surgeries. Virtual 

Reality (VR) technology can help further improve immersion for users using 3D 

environments that correspond to real space, enhancing situational awareness and reducing 

cognitive load [7],[8]. Digital Twin (DT) is a virtual model of a physical system, with the 

potential to enhance robot teleoperation by synchronizing a real-world robot and its virtual 

counterpart [9]. This helps the operator in better understanding distant scenarios, reduces 

risk, and enables predictive analysis [10].  

This thesis explores the integration of VR and DT technologies for mobile 

teleoperation using Robot Operating System (ROS) Noetic [11] and a private 5G network. 

This thesis aims to design a VR-based interface for intuitive teleoperation of the robotic 

platform based on the ROS Noetic. The interface enables a VR user to use VR controllers 

to execute commands for real-time navigation and manipulation of the remote, and 

consequently, virtual robot, and to visualize a real-time video stream from the remote 

robot’s camera in the Virtual Environment (VE). The thesis provides a review of existing 

research on mobile robot teleoperation, DTs, and VR-based interfaces. Furthermore, the 

design and implementation of a VR-based DT system using Unity and ROS for real-time 

interaction with a robot is presented. Finally, a user study is conducted to evaluate latency, 

movement smoothness, and Quality of Experience (QoE) for the developed prototype. This 
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work aims to contribute to the field of human-robot interaction by demonstrating the 

potential of VR and DTs in mobile robot teleoperation, bridging the gap between 

upcoming technologies with great promise and practical applications.  

The thesis consists of six chapters and is organized as follows. The introductory 

chapter provides an overview of the thesis and is followed by a chapter that presents the 

theoretical background, including mobile robotics, teleoperation, DTs, VR, and ROS. The 

third chapter explains the design of the prototype, focusing on architecture, communication 

framework, and the VR scene. Chapter four focuses on the development of the prototype, 

creating the VR scene, used technologies and tools, and Unity-ROS integration. The 

following chapter is centered around a user study conducted to evaluate QoE, interface 

intuitiveness, and potential latency-related issues. The thesis is concluded by a summary 

that is based on analysis of the results and potential areas for future improvement. Finally, 

a list of references, figures, and abbreviations used within the thesis are also provided, 

along with the questionnaire that was used in the study and can be found in the appendix. 

The thesis was completed in part in the scope of the project XR Communication and 

Interaction Through a Dynamically Updated Digital Twin of a Smart Space – DIGIPHY, 

funded by the European Union – NextGenerationEU, Grant NPOO.C3.2.R3-I1.04.0070. 

The work was conducted in collaboration with the company Ericsson Nikola Tesla, who is 

a partner in the DIGIPHY project. 
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1. Theoretical Background  

1.1. Mobile Robotics and Teleoperation 

Mobile robotics refers to robotic platforms that are capable of navigating and operating in 

different environments without the restraint of staying in a fixed location [6]. These 

systems are equipped with motors that enable their movement as well as different sensors 

that help with the perception of the environment around them. Robots are equipped with 

many different types of sensors, ranging from video cameras and ultrasonic sensors to 

advanced sensors such as lidars, enabling robots to better perceive the environment and 

help the operator in interacting with it [13].      

 Teleoperation is a method of controlling a robot remotely, usually by a real-time 

human operator [12]. It is mostly used in dangerous or inaccessible environments, such as 

disaster zones or outer space, where direct task solving is not possible for humans [2]. A 

teleoperated robot relies on a safe and fast communication link over which it receives 

commands from the operator while simultaneously sending sensor feedback back to the 

operator to help in understanding the situation and the environment better. Recent 

advancements in teleoperation systems have incorporated haptic feedback, allowing 

operators to feel the forces experienced by the robot, further enhancing precision and 

control [14]. Integration of teleoperation into mobile platforms introduces challenges such 

as high latency, situational awareness, and synchronization. Solving these challenges helps 

ensure stability in an unpredictable distant environment. To overcome these challenges, 

advanced movement algorithms, sensor fusion, and interactive user interfaces are created 

and used. They cannot completely solve the problems these challenges present but can 

come remarkably close to giving precise real-time insights to the operator about the robot’s 

environment and its own status in it.  

1.2. Digital Twins 

A DT is a virtual replica of a physical entity that aims to represent the physical entity as 

close as possible. According to the Digital Twin Consortium, a DT is defined as “an 

integrated data-driven virtual representation of real-world entities and processes, with 
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synchronized interaction at a specified frequency and fidelity..” [44]. It can use monitoring, 

simulations, predictions, and optimizations in the created space to accurately represent 

events without having to execute the event in the physical space [15]. Furthermore, the use 

of DTs can give us the ability to test and simulate system performance in various scenarios 

and under various conditions. Originally created for engineering purposes, DTs have 

expanded into domains such as healthcare, urban planning and robotics [16]. DT is also a 

key factor in mobile robotics simulations as a data-dependent virtual model of a robotic 

platform and its environment can enable operators to have precise testing options due to its 

ability to visualize, interact, and simulate actions. Essential components of a DT are 

sensors and other Internet of Things (IoT) devices, which provide real-time data from the 

physical system. Using these components and machine learning inside DTs, it is possible 

to conduct complex simulations such as predicting robot behavior, evaluating control 

strategies and creating path simulations without the risk of damage on a physical robot 

[17]. 

1.3. Virtual Reality and Immersive Environments 

Virtual reality (VR) is a computer-generated environment that lets users immerse 

themselves in a simulated space, usually using a head-mounted display (HMD) to separate 

them from the real world [18] [19]. VR environments enable users to interact with digital 

objects and spaces as though they were physically present in them, using visual, audio, and 

lately haptic stimuli portray the real-world sensations as close as possible. Immersion is a 

psychological state in which the user feels completely surrounded by, included in, and 

engaged with a VE that delivers a constant flow of stimuli and experiences [20]. 

 Immersive environments are environments that engage users by simulating or 

augmenting reality, often using technologies such as VR, augmented reality (AR), and 

mixed reality (MR), all of which fall under the category of extended reality (XR). User 

interaction and perception may in certain cases be enhanced by combining various 

immersive technologies (e.g., AR, VR) rather than using just one [21].  By combining VR 

or other immersive realities with DTs, operators can control robots within a virtual 

representation of their real-world space. These technologies together can offer high levels 

of situational awareness, reducing cognitive load on users and improving their task speed 

and completion rate [7]. 
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 Relevant studies show that many teleoperation tasks over a VR interface can be 

successfully completed. However, they often take a longer time and struggle when it 

comes to high precision tasks comparing to direct human contact [39] [40]. Tasks that 

require high precision (e.g., block stacking of ten three-by-three centimeter blocks on top 

of each other [39]) had a low rate of completion in VR due to small errors made in VR 

being stacked until the tower falls. For easier tasks, the studies showed that participants 

were twice as slow in proximal teleoperation, and four times slower in VR teleoperation 

from a distant place compared to solving tasks without teleoperation. However, users 

improve their performance over time as they become more proficient with the VR 

interface. These insights emphasize the need and possibilities for further improvements in 

the VR interface to enhance speed and precision. They also show the importance of 

designing accessible and intuitive interfaces that enable users to learn and improve task 

solving skills faster and easier. 

1.4. Robot Operation System 

Robot operating system (ROS) is an open-source robot operating system that provides a 

structured communications layer above the host operating system [22]. It is used for 

development and deployment of robotic applications. It also provides a collection of tools, 

libraries and communication protocols that help users create a modular and scalable robot 

system.  

Most notable features of ROS include a modular architecture that enables easy 

organization of applications with packages and nodes, as well as a communication 

framework that uses a publish-subscribe model to efficiently exchange data with other 

applications and systems. It also provides community support and Unity integration for 

creating virtual simulations of a robot’s system and actions [23]. This connection enables 

real-time data streaming from the robot sensors to the VE and back in terms of a robot’s 

movements. All this together with a VR DT can ensure accurate synchronization. It can 

also support teleoperation functions such as navigation and inspection of spaces. Using 

more advanced sensors can also mimic virtual actions in real life without action errors even 

in dynamic environments. 

ROS supports a wide variety of hardware interfaces as well as microROS. MicroROS 

is a variant of ROS that runs natively on embedded microcontrollers running real time 
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operating systems [31]. ROS uses tools called topics and messages to help developers 

connect actuators and sensors with a robot’s control system. All of the communication can 

be recorded using ROS bag files or logs for easy testing and quality assurance. All of this 

lets ROS work with anything that has a software interface. 

ROS has evolved from ROS 1 to ROS 2, adding several improvements in 

performance, flexibility, and scalability of systems [31]. ROS 1 has been widely adopted 

due to its simplicity and community support. It relies on a centralized master for 

communication that can create problems in distributed or other complex systems. ROS 1 

was used as a part of this thesis as upgrades that ROS 2 provides were not needed in the 

scope of this thesis. ROS 2 offers improved security features and safer deployments in 

critical applications. In future endeavors, the prototype created as a part of this thesis can 

be upgraded to ROS 2 for implementation of new improvements. 
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2. Design of the VRobo prototype 

2.1. Prototype Overview 

The VRobo prototype is designed to connect a physical robot and its environment together 

with a VR robot and a DT of the environment, providing real-time synchronization 

between the physical robot and its virtual replica. The prototype uses a ROS-Unity based 

architecture and makes sure that the physical and virtual components are consistently 

connected and that they exchange real-time data [24]. The Unity side uses a Meta Quest 3 

headset and controllers while the ROS side uses a Ubiquity Magni robot1. 

2.1.1. Architecture Design 

The prototype enables bidirectional communication between the VR scene (accessed by a 

remote user via an HMD) and the robot, enabling teleoperation and sensor feedback. The 

physical robot is equipped with ultrasonic sensors2 and battery sensors that stream data to 

the VE in order to help the operator better understand the physical environment around the 

robot. The robot contains scripts for calculating and sending data as well as scripts for 

parsing received data and sending commands to the robot. The virtual scene ensures that 

the operator can move the robot around and sends movement data to the physical robot in 

order to synchronize the two robot entities. Communication between the real-world and the 

VR headset can be seen in Figure 2.1. 

 

1 https://www.ubiquityrobotics.com/products-magni/ 

2 https://learn.ubiquityrobotics.com/noetic_magnisilver_sonars 
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Figure 2.1: Real-world and VR application communication over a 5G network. 

 The left side of Figure 2.1 shows a picture of the real-world that is a room with a 

lamp and a robot equipped with a temperature sensor. The right side shows a VR user that 

sees a visual representation of the DT of the space with the information from the sensor. 

The user can move the robot in real space using VR controllers, and the position of the 

robot will be updated in the virtual environment that it sees. All the communication is 

happening over a private 5G network. 

2.1.2. Communication Overview 

The data from Meta Quest 3 controllers’ inputs is translated to Twist messages. These 

messages match the movement of the robot in the virtual scene and are simultaneously 

used to move the physical ROS Robot [25]. The designed architecture consists of three 

main components: the physical robot, the Unity scene and the communication framework 

that connects them, as shown in Figure 2.2 
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Figure 2.2: ROS - Unity Communication link overview, adapted from [24]. 

 The connection between the Unity game engine and ROS is created by Unity 

connecting to the ROS Bridge server using ROS Bridge external libraries and ROS Client. 

It can then subscribe and publish JSON3 data. ROS Bridge communicates with the ROS 

Master which is used to control and connect all nodes and scripts running on the ROS. It 

can generate data from the robot that will be sent over the ROS Bridge to Unity and can 

use received data from Unity to manipulate the robot. This architecture enables fast 

communication between the virtual and real-world robots, ensuring immersive interaction 

and improving spatial awareness of operators in VR.  

 

 

3 https://www.json.org/json-en.html 
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2.2. VR Scene Design 

The VR scene in VRobo is designed to integrate the virtual replica of a physical robot 

inside a VR-based representation of the DT of the environment where the physical robot is 

located. The scene shown in  Figure 2.3 is a VR-based representation of the DT of the 

physical room shown in Figure 2.4. The VE replicates the physical environment in which 

the robot operates. The virtual room and all virtual objects in it have the same width, 

length, and height compared to the robot as they do in the real world. Using this and Unity 

scene colliders [26] we can create an environment that very precisely corresponds to the 

real world environment. 

 

 

Figure 2.3: Virtual scene of the room. 
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Figure 2.4: Picture of the physical room. 

 

Interaction inside the scene is done using a Meta Quest 3 VR interface. The user 

can see the virtual robot from a third person view in the environment but can also use the 

robot’s front and back camera to view a real-time camera feed from the real world from a 

first-person point of view.  

Camera view position can be adjusted to fit the operator’s HMD screen, or the 

camera can be mounted on the robot and move with it inside the virtual space. The scene 

also contains a panel where the operator can see all the real-time data from the sensors in 

order to understand the robot’s operational status. The scene also has the option that lets 

the user interact with different virtual objects in the scene. These objects can later be 

connected to real life objects using actuators so not only robot’s movements can be 

controlled using the VR interface. Most of the dynamic devices inside the DT can be used 

as long as they have a connected device that can modify them. 

2.3. ROS Design and Functionalities 

The Robot Operating System serves as the middleware for managing communication and 

control in the VRobo prototype. It is responsible for handling real-time data exchange from 
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both sides of the communication channel. The prototype has ROS nodes and scripts that 

collect data from the robot’s sensors and cameras, then encrypts and sends the data over 

the channel to the Unity side. The ROS Bridge library is used inside Unity to handle the 

data before it is used in Unity scripts. ROS also has nodes and scripts that start and adjust 

camera settings, as well as those for motor control, enabling the operator to teleoperate the 

robot through transformed commands from the controllers.  

ROS topics are used for publishing and subscribing, ensuring modularity and 

scalability of the system. Topics are named buses over which nodes exchange messages. 

All the nodes and scripts are managed and registered with the ROS Master in order to find 

and communicate with each other. This enables smooth synchronization and also adds to 

the modularity and scalability of the system. 
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3. Development of VRobo 

The VRobo prototype integrates physical mobile robot teleoperation with a virtual reality-

based representation of a DT, allowing real-time teleoperation through VR controllers and 

feedback from the robot's sensors. Prototype development includes multiple technologies: 

Unity for the VE and moving interface, ROS for communication and control of the robot, 

and additional hardware such as sensors and a 5G router for more precise and faster data 

transfer. This section dives into the development process, with a focus on how each 

component of the prototype was created, integrated and transformed to achieve precise, 

fast and synchronized teleoperation.  

The mobile robot teleoperation prototype was designed to be integrated into the 

laboratory setup being developed in the scope of the project DIGIPHY. The goal of the 

DIGIPHY project is to research and design technologies that enable immersive and 

intuitive eXtended Reality (XR) inter-personal communication and interaction, as well 

as the remote presence and interaction of persons and objects in the visual representation of 

a dynamically updated digital twin (DT), spatially and temporally synchronized with a 

physical smart space (equipped with sensors and actuators).  

 

3.1. Used Technologies and Tools 

Various technologies and tools were used to enable real-time interaction between the 

physical and the virtual robot. The main technologies were: Unity for the Meta Quest 3 

application and VR scene creating, ROS as the operating system for moving and managing 

the robot, 5G router for enabling connection to a private 5G core network, cameras and 

sensors as additional hardware to help provide operators in VR with a higher level of 

immersion and more precise control with lower latency over the network [27]. The 

physical robot that was used in this prototype is a Ubiquity Robotics Magni Robot4 that is 

being managed and programed by a Raspberry Pi5 on which the ROS is run. 

 

4 https://learn.ubiquityrobotics.com/noetic_overview_magni_key 
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3.1.1. Unity 

Unity is a game engine that is primarily used for 2D and 3D applications and often games 

[28]. It is also a widely used tool for developing VR applications due to its powerful 3D 

engine and highly flexible framework with many external libraries for building interactive 

and immersive VR applications [29]. It allows developers to model virtual environments, 

simulate physical forces and integrate advanced interfaces that can later be deployed to 

HMDs such as Meta Quest 3 that is used in this thesis. Unity also has external packages 

that can easily be imported and configurated when connecting to ROS using the ROS 

Bridge server.  

Meta produced XR packages that contain Meta integration software development 

kits (SDKs) and Meta XR SDKs for easy connection and configuration of the Meta Quest 

3 and its controllers [32]. All the packages can be imported and edited inside Unity using 

the C# programming language [30]. C# is a high-level, general-purpose programming 

language that supports multiple paradigms. It is also used in the scope of this thesis to 

create custom scripts which enable interaction between objects and components in the 

scene. 

3.1.2. ROS 

As previously mentioned, Robot Operating System is an open-source framework widely 

used in robotics applications and mostly for handling complex robot control systems [31]. 

ROS is used as a key part in robots communication with external hardware and controllers. 

It uses a modular structure that breaks tasks into nodes. Each node operates independently 

and handles a specific function. While certain nodes use sensor data (e.g., a node that starts 

and keeps the camera stream alive), there are also nodes that are used to move the robot. 

Important topics include the following:  

• /battery_state: used to publish the current state of the robot’s battery. It is important 

as it lets the operator know the battery charge level, so the robot never runs out of 

battery and stops working during important tasks 

 

5 https://learn.ubiquityrobotics.com/noetic_overview_raspberrypi 
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• /cmd_vel: used to publish velocity commands to the robot’s base. The Unity 

application sends commands to move the robot to this topic, using 

geometry_msgs/Twist6.  

• /odom: represents the robot’s position and orientation over time. It is used to track 

robot’s position relative to the starting point in order to reduce movement errors 

that build up over time.  

• /motor_state: used to publish state of the motors. It publishes speed, torque and 

power status. It is used for diagnostics and to ensure proper functioning of the 

motor.  

• /pi_sonar: has five separate topics named Sonar_x where x represents a number 

from zero to four, each topic is related to a different ultrasonic sensor on the robot. 

Each topic publishes data from the connected sensor that shows proximity of the 

obstacle to the sensor. Data from those sensors is used for object detection and 

collision prevention. 

ROS Master is a critical part of the whole ROS; it is used to track and connect all 

active nodes and their topics with each other. ROS Master in the VRobo prototype is used 

to register nodes from the physical robot and connect them to their topics. Unity can then 

subscribe or publish to those topics in order to receive real-time sensor data and send robot 

movement commands back to the robot. This approach lets users very easily add new or 

replace old sensors. By adding new nodes and topics that are not dependent on other 

system components, external applications or controllers can then subscribe to the newly 

created topic and be notified with new sensor data. 

 

3.1.3. Additional Hardware 

Additional hardware refers to important system components which help stabilize and 

elevate the entire prototype to a new level that is faster and more precise. The front camera 

that is used is a Logitech Webcam C930e7 while the back camera used is a Raspberry Pi 

 

6 https://docs.ros.org/en/noetic/api/geometry_msgs/html/msg/Twist.html 

7 https://www.logitech.com/en-ae/products/webcams/c930e-business-webcam.960-000972.html 
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Camera Module8. Sonars used are a part of the Ubiquity Robots board that contains five 

ultrasonic raspberry sonars9. Data that sensors provide is crucial in creating an accurate DT 

of the real space in VE as they are the only part of this prototype that can provide real-time 

data about the dynamic changes that might occur in the real world environment of the 

robot, which can then be used to recreate those changes in the DT.  

Meta Quest 3 is the VR headset that is used to run the VR application, and which 

lets the operators interact inside the VR DT of the space [33]. It offers six degrees of 

freedom for motion tracking, ensuring that the user’s head and hands positioning and 

movements are always reflected in the virtual world. Meta Quest 3 controllers are used to 

control the robot and other objects in the virtual scene. Some of the buttons are remapped 

to send movement data to the real robot in order to synchronize it with the virtual robot.  

3.1.4. Connection via a private 5G network 

Private 5G networks offer organizations a secure, customizable, and high-performance 

solution when creating networks [35]. These networks use a dedicated infrastructure, 

ensuring high level of security, reliability, and control. With low latency, high bandwidth, 

and support for high device density, private 5G networks are used in advanced applications 

that use IoT, real-time analytics, and autonomous systems. The architecture of the private 

5G network set up at Ericsson Nikola Tesla and used to enable network communication in 

the scope of the VRobo prototype can be seen in Figure 3.1. 

 

8 https://www.raspberrypi.com/documentation/accessories/camera.html 

9 https://learn.ubiquityrobotics.com/noetic_magnisilver_sonars 

https://learn.ubiquityrobotics.com/noetic_magnisilver_sonars
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Figure 3.1: Private 5G network architecture example for this prototype. 

In this example, a robot vehicle connects to 5G via a dongle, ensuring reliable and 

fast connection for real-time operations. It connects to the Radio dot used to extend 5G 

coverage and ensure good signal strength. Radio dot is connected to the private 5G 

network over a fixed connection. The operator room consists of VR HMD that connects to 

the 5G router directly over Wi-Fi10. Router is connected to the radio dot in that room and 

that is how it gets access to the private 5G network.. 5G dongle is a crucial part, it enables 

robots to connect and communicate over a 5G network without built-in 5G hardware. 

Every part of this architecture has a purpose in creating and maintaining a low latency, 

high bandwidth connection required to teleoperate a robot in real-time. 

3.2. System Architecture Implementation 

The system architecture was designed and developed to allow for fast and efficient 

communication between the virtual and physical world. The architecture is made modular 

in the sense that it lets developers add new sensors and remap controllers easily, ensuring 

flexibility and scalability of the system.      

 The VRobo prototype follows a client-server model, where the Unity application 

and the virtual user act as a client, while the ROS that is running on the robot acts and 

operates as a server. The physical robot is kept synchronized with Unity and the virtual 

scene using the ROS Bridge, which is the communication layer between the Unity game 

 

10 https://en.wikipedia.org/wiki/Wi-Fi 
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engine and the ROS Master. A private 5G network is used to achieve low latency and high 

bandwidth communication. The ROS does not support 5G connectivity by itself, so it uses 

a 5G NR USB DONGLE11 that acts as a gateway and lets the ROS connect to the 5G 

network [34]. It plugs into a USB port on the robot and acts as a modem, allowing the 

robot to connect to the network using the 5G cellular network. Meta Quest 3 connects to 

5G network router using Wi-Fi. All data is transferred over this network using ROS nodes 

that read and publish sensor data continuously. Unity application also acts as a ROS node 

by subscribing to the data it needs as well as publishing data for the robot’s movements. 

Bidirectional communication over a 5G network allows the prototype to reflect real-time 

changes and elevated levels of synchronization [35]. 

3.3. VR Scene Implementation 

The VR environment is not only used as a visual representation of the robot’s real-world 

surroundings but also acts as a teleoperation environment. The virtual scene is a precise 

DT of the real-world to enable operators’ precise teleoperation even without seeing a 

robot’s camera or having other ways of seeing where the robot really is inside the real 

world. 

3.3.1. Scene Modeling 

Using Unity’s modeling and physics tools, the environment was created with the same 

dimensions and characteristics as the real world. Special attention was given to the 

placement of all objects and obstacles to match the position of them in the real world, and 

exact colliders were added to all objects in order to prevent unrealistic behavior during 

collisions. The scene was modelled as a copy of the static real world. Dynamic changes to 

the real world are not being updated inside the virtual scene which is why the robot has 

sensors and two cameras, front and rear. These cameras provide operators inside VR with 

extra information in situations where the environment might have changed dynamically 

during the applications use. Both camera views on the panel above the robot inside VR are 

portrayed in Figure 3.2. 

 

11 https://www.askey.com.tw/products-detail/ndq1300/ 

https://www.askey.com.tw/products-detail/ndq1300/
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Figure 3.2: Front and back camera view on the panel above the robot. 

 

Static changes in the real-world before starting the application need to be updated 

in the scene accordingly to achieve synchronization and an immersive feeling for the user. 

In addition to scene modeling, scene’s lighting, textures and physics were optimized for 

VR use, lowering detail and exactness of some virtual objects that were deemed less 

important in the scene, as shown in Figure 3.3. All this together with lightmaps baking and 

use of low-poly models was done in order to optimize Meta Quest 3 required processing 

power as it is limited and could cause frame drops that lead to VR sickness in some users. 
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Figure 3.3: Low-poly robot and other objects in the scene. 

 

3.3.2. VR Controller remapping 

In the Unity application, the Meta Quest 3 controllers were remapped to translate user 

actions into robot commands. Unity’s XR Input system that uses Meta XR SDK was used 

and changed to capture all user inputs from both controllers, such as thumbstick 

movements and clicks together with any button presses. These inputs are converted into 

ROS Twist messages, which are published to ROS Topics and then used to control the 

robot’s movement using linear and angular velocities. Internal testing of moving the robot 

was created in order to choose the combination of the easiest and most intuitive controls, as 

well as best buttons for controlling objects in the scene. A guide for using robot controls 

can be found inside the virtual scene on the right side of the operator’s spawn point and 

can be seen in Figure 3.4. 
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Figure 3.4: Mapping of VR controller buttons to robot control actions in the VRobo prototype. 

 

Each of the two thumbsticks as well as index and grip buttons that are shown in 

Figure 3.4 as forward and back actions, are mapped with sensitivity of the pressing or 

moving action. This means that pressing a button or moving the thumbstick halfway will 

move the robot with half of the power, both in VR and in the real world. This is important 

as it enables operators to easily adjust speed in scenarios when it is needed. Code that maps 

the sensitivity of the buttons can be seen in Figure 3.5. 

 

_pos = OVRInput.Get(OVRInput.Axis2D.PrimaryThumbstick); 

      _pos2 = OVRInput.Get(OVRInput.Axis2D.SecondaryThumbstick); 

if (_pos2.x > _pos.x && _pos2.x >0){ 

  _pos.x = _pos2.x;  

} 

if (_pos2.x < _pos.x && _pos2.x < 0){ 

  _pos.x = _pos2.x;  

} 

Figure 3.5: Code responsible for mapping sensitivity of thumbstick to motor actions.  

 Both pos variables for moving are an array of two float numbers minus one zero 

and one, depending on the position of the thumbstick in the two axis. These thumbsticks 

are then mapped to give priority to the controller with more power (e.g., the controller that 

moved the thumbstick further from the center will be the one that is sent to the robot).  
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3.3.3. First Person View Mode 

To enhance operator immersion and enable operators to control the robot from first person 

point of view using the robot’s front camera, a special panel with canvas elements was 

added that shows the robot’s camera in front of the user in the VE. This panel can be seen 

in Figure 3.6. Using FPV mode, the operator can navigate the real world without seeing 

the robot’s position in the DT. The operator can however use its position to gain extra 

information and have a more precise way to navigate the environment. This feature is 

particularly useful when the synchronization between real world robot and the virtual robot 

encounters a bigger error or when an obstacle appears in the real world that was not 

predicted and placed in the DT of the space.  

 

Figure 3.6: First Person view panel inside the DT with both cameras turned on. 

 FPV mode should also be used when doing any task in which the robot’s camera 

feedback is of great importance and can provide the operator with more information than 

the DTs position. 
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3.4. Implementation of ROS Functionalities  

ROS provides the main functionalities required for teleoperation, sensor data management, 

error handling mechanisms and maintaining communication with the Unity application. 

3.4.1. Teleoperation  

Teleoperation is the key functionality of the whole VRobo prototype, allowing users to 

control the real-world robot using the VR controllers. Unity constantly reads Meta Quest 3 

controller inputs and translates them into twist messages that contain linear and angular 

velocity commands for the robot. The code responsible for reading controller inputs can be 

seen in Figure 3.7, while the code responsible for transforming those inputs into twist 

messages can be seen in Figure 3.8. 

     _indexSpeedFW = OVRInput.Get(OVRInput.Axis1D.SecondaryIndexTrigger); 

     _indexSpeedBW = OVRInput.Get(OVRInput.Axis1D.SecondaryHandTrigger);     

     _indexSpeedFW2 = OVRInput.Get(OVRInput.Axis1D.PrimaryIndexTrigger);   

     _indexSpeedBW2 = OVRInput.Get(OVRInput.Axis1D.PrimaryHandTrigger); 

  

     if (_indexSpeedFW2 > _indexSpeedFW){  

_indexSpeedFW = _indexSpeedFW2;  

}  

     if (_indexSpeedBW2 > _indexSpeedBW) { 

_indexSpeedBW = _indexSpeedBW2;  

} 

     controllerInput.SendToRobot(-_pos.x, _indexSpeedFW); 

Figure 3.7: Reading input from Meta Quest 3 VR controllers. 

 OVRInput.Axis1D.PrimaryHandTrigger is a method from Meta Quest SDK that 

takes a one-dimensional control such as a trigger and reports its floating-point state into a 

variable. This variable is represented in C# as a float number between 0 and 1. A button 

that is not pressed would return 0, while a fully pressed button returns 1. This lets the user 

choose sensitivity of the press similar to rotation shown in Figure 3.5. The second part of 

the script shows choosing a controller with higher value as a choice of movement power. 

This happens by comparing values on both controllers for both forward and backward and 

assigning the higher value to the variables that will later be sent to the robot. 

 

 



 

24 

 

public TwistMsg twistMessage;  

void Start() { 

twistMessage = new TwistMsg(); 

}  

public void SendToRobot(float leftSpeed, float rightSpeed) { 

twistMessage.linear.x = rightSpeed * linearSpeedMultiplier; 

twistMessage.angular.z = leftSpeed * angularSpeedMultiplier; 

} 

Figure 3.8: Transforming controller inputs into twist messages. 

 A new twist message is created at the start. Inputs from the controllers are sent to 

the script where they are saved and sent to the correct part of the linear and angular vector 

that together represent a twist message. Each of the values is multiplied by a speed 

multiplier, making sure the robot moves at the chosen speed. Robot’s power forward is 

sent as a linear x variable, while the rotation of the robot is sent as an angular z variable. 

Both of the variables have to be between minus one and one. The robot moves its wheels 

according to the received twist messages and this enables the operators to teleoperate the 

robot. A float value of one indicates maximum power in a chosen direction. The virtual 

robot moves inside the DT of the space by the same amount it moves in the real-world.  

3.4.2. Sensor Data  

Sensor data is continuously collected and sent to the Unity application from the ROS. The 

two most important sensors in the VRobo prototype are the front and back camera. They 

are used to let the operator know what the robot’s surroundings are and if there are any 

unpredicted objects or events taking place in the real world that the DT might not be aware 

of. Besides the cameras, ultrasonic sensors and battery level sensors data is sent to the 

Unity application letting the operator know if any obstacles or terrain are close to the robot 

as well as letting the operator know the battery levels of the robot. All sensor information 

can be seen on the panel above the robot by pressing the predetermined button for that 

function which is ‘button B’ on the right controller and ‘button X’ on the left controller. 

The sensor data panel can be seen in Figure 3.9. 
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Figure 3.9: Panel above the robot showing battery percentage and ultrasonic sensor readings. 

  

 Data from the robot’s sensors is published by the ROS to the topics that the Unity 

application subscribed to. This prototype contains battery power data as well as the 

ultrasonic sensors data. More sensors and data can be added to the panel as well as 

showing more information about the sensors that are connected. For the purpose of this 

thesis, it was decided to use battery data to make sure the robot does not run out of battery 

and proximity of object for sensors to make sure the operators do not hit obstacles. 

Subscribing and reading battery percentage data from the topic inside Unity can be seen in 

Figure 3.10. 
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private _topicBattery = "/battery_state"; 

void Start(){ 

ros = ROSConnection.GetOrCreateInstance(); 

ros.Subscribe<BatteryStateMsg>(_topicBattery, 

BatteryStateReceived); 

StartCoroutine(ShowTopicInfoEverySeconds(topicRefreshRate)); 

 } 

IEnumerator ShowTopicInfoEverySeconds(int i){ 

while (true){ 

       UpdateTopicData(); 

            yield return new WaitForSeconds(i);  

      } 

} 

void UpdateTopicData(){ 

batteryTextField.text = _batteryData; 

} 

void BatteryStateReceived(BatteryStateMsg batteryStateMessage){ 

_batteryData = "Battery Percentage: " + 

(batteryStateMessage.percentage * 100).ToString("F2") + "%"; 

} 

Figure 3.10: Code used for subscribing to and parsing battery data in Unity. 

 Unity script connects to a ROS instance and uses a Subscribe method to get data 

from the ROS topic /battery_state. After that, the script starts with a coroutine that updates 

the panel inside the VE. ShowTopicInfoEverySeconds takes an int variable and calls the 

UpdateTopicData method with a pause of given seconds. ROS /battery_State topic is 

configured to send battery data every few seconds to save data. BatteryStateReceived 

method is called each time ROS publishes new data to the topic. It takes the data and 

parses it into percentages that are then shown on the panel to the user. Other sensors like 

cameras and ultrasonic sensors do not have a wait time as it is very important for them to 

be received in real time. Battery data is something that changes very slowly so the wait 

time is an optimization technique used to lower used data over the network. 

 Other sensors that are used are wheel encoders that measure the rotation of each 

wheel. These sensors can later be combined with an inertial measurement unit or radars to 

create very precise odometry information. ROS uses tf package12 to calculate and 

 

12 https://wiki.ros.org/tf 

https://wiki.ros.org/tf
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determine the robot’s location in the world. This odometry data is sent over the /odom13 

topic and is then read by Unity. When combined with other sensors, it can provide very 

precise information and can be used in error handling mechanisms in case the robot’s 

position in the virtual world does not correspond to the position of the robot in the real 

world. 

3.4.3. Error Handling Mechanisms 

The VRobo prototype implements some error handling mechanisms to ensure 

reliability of the prototype. ROS nodes are created in a way that if a sensor disconnects or a 

network issue occurs, the system triggers immediate recovery protocols, such as 

reconnecting to the sensor and sending feedback to the user. Unity has similar protocols for 

all external connections, making sure to retry connecting whenever the connection is lost. 

This is also important as camera feed resolution can be changed dynamically while the 

system is online. Unity application can also reconnect to the new video stream by itself.

 Different types of grounds can impact wheel slippage and can create movement 

errors between the real and the virtual world. Non-motorized wheels are also a big issue as 

they do not have wheel encoders to correct errors that happen when the robot is moving 

[38]. Without use of those sensors, and adding inertial measurement unit 14 or radars to the 

VRobo’s prototype, there currently is no opportunity for sensor fusion. Another way to 

manage small errors from the odometry and wheel slippage is by using AMCL15. It uses an 

adaptive Monte Carlo method 16 to find the location of the robot at any given time but 

requires some type of lidar to understand where in the space it is located so it can calculate 

and fix positional errors. 

3.5. ROS-Unity Communication Implementation 

Communication between the physical and virtual robot must be low latency and high 

bandwidth (high bandwidth due to streaming video form the robot camera). With this in 

 

13 https://wiki.ros.org/navigation/Tutorials/RobotSetup/Odom 

14 https://docs.clearpathrobotics.com/docs/ros/config/yaml/sensors/imu/ 

15 https://learn.ubiquityrobotics.com/noetic_quick_start_navigation 

16 https://en.wikipedia.org/wiki/Monte_Carlo_method 
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mind, ROS and Unity communication is created to ensure real-time data exchange and 

system responsiveness. This section discusses how communication between the systems 

was established and optimized. 

3.5.1. Establishing a Connection 

The connection between Unity and ROS is established using the ROS Bridge WebSocket 

protocol implemented by using rosbridge_suite17package that provides non-ROS 

programs. Unity uses this package to import a JSON application programming interface 

(API)18 to ROS functionalities. The Robot starts a ROS server the moment it is turned on 

together with all its scripts. The Unity application acts as a client and connects to the ROS 

server. The Unity window for ROS connection taken from the ROS package can be seen in 

Figure 3.11. 

 

Figure 3.11: Unity window with settings used for connecting to the ROS. 

 The IP address highlighted in Figure 3.11 represents the robot’s IP address and 

uses a placeholder in this example. Port 10000 is a default ROS Master port for outside 

connections to the ROS. Unity connects to the ROS master gaining access to and 

information about all the topics and nodes. After connection, the Unity subscribe and 

publish scripts are run to create data channels for data that Unity plans on receiving or 

 

17 https://wiki.ros.org/rosbridge_suite 

18 https://en.wikipedia.org/wiki/API 



 

29 

sending during the teleoperation period. An example of unity code that is used to subscribe 

to data using a ROS topic can be seen in Figure 3.10, while the code that publishes that 

data in ROS so Unity can subscribe to it can be seen in Figure 3.12. Unity code that is 

used to publish data to a ROS topic can be seen in Figure 3.13. 

 

class BatteryPublisher:  

def init(self):  

rospy.init_node('battery_publisher_node', anonymous=True)  

self.battery_pub = rospy.Publisher('/battery_state', 

BatteryState, queue_size=10)  

rospy.Subscriber('/battery', Float32MultiArray, 

self.battery_callback)  

self.rate = rospy.Rate(10)  

self.battery_voltage = 0.0  

def battery_callback(self, msg):  

self.battery_voltage = msg.data[0] 

… 
def publish_battery_state(self):  

while not rospy.is_shutdown():  

 full_charge = 29.4 

 low_charge = 21.0 

 … 
battery_msg = BatteryState()  

battery_msg.percentage = max(0.0, min(100, 100 * 

(self.battery_voltage – low_charge)/(full_charge – 
low_charge)))  

self.battery_pub.publish(battery_msg)  

… 
rospy.loginfo("Battery Voltage: {:.2f} V, Percentage: 

{:.2f}%".format(self.battery_voltage, 

battery_percentage))  

self.rate.sleep()  

 

if name == 'main':  

try:  

magni_battery_publisher = MagniBatteryPublisher() 

magni_battery_publisher.publish_battery_state() 

except rospy.ROSInterruptException:  

pass 

Figure 3.12: ROS code that publishes battery percentage data. 
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Code creates a class that is used for publishing battery data to the /battery_state topic. It 

subscribes to the ROS provided battery topic where it gets all the data about the battery and 

then transforms that data into information important to the user (code shows the part that 

sets battery percentage). The script first creates a new publisher with all the default settings 

and then subscribes to the /battery topic. Every time a new message is published by the 

battery the script takes the information and saves it into the battery_voltage variable. 10 Hz 

represents how often the script publishes data (ten times per second in this case). The script 

converts saved voltage to percentage, publishes it to the topic, and logs information into 

the system. 

public string topicName = "/cmd_vel"; 

void Start(){ 

ros = ROSConnection.GetOrCreateInstance(); 

      ros.RegisterPublisher<TwistMsg>(topicName); 

} 

private void Update(){ 

timeElapsed += Time.deltaTime; 

 if (timeElapsed > publishMessageFrequency){ 

if (ros != null && !string.IsNullOrEmpty(topicName) && 

ci.twistMessage != null){ 

                ros.Publish(topicName, ci.twistMessage); 

       } 

            timeElapsed = 0; 

      } 

} 

Figure 3.13: Unity code that published to the /cmd_vel topic. 

 This Unity code is used to send velocity commands to the wheels. It first uses 

RegisterPublisher method to register itself as a publisher on a ROS topic using TwistMsg. 

Depending on the publishMessageFrequency the code publishes messages received from the 

ControllerInput script seen in Figure 3.8. ROS uses the received data to turn the robot’s wheels 

and move the robot according to the virtual robot. 
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3.5.2. Data Transmission Protocols 

Data is transmitted between ROS and Unity using the ROS messages19, which structure the 

data into easily interpretable formats. One of the examples is Unity using twist messages to 

send movement data to ROS and control the robot’s motors. Similarly, ROS sends sensor 

data such as battery percentage using sensor_msgs  BatteryState20which Unity reads using 

its subscriber script from Figure 3.12 to process the message and change the VR 

environment or in this case change the VR battery percentage panel above the robot. 

Video feed from the cameras is being continuously published to an IP address using 

a python21 script that takes a camera feed and makes it available to all devices on the 

network. Parts of this script can be seen in Figure 3.14, while the Unity script that reads 

the video stream from the URL can be seen in Figure 3.15. 

global capture  

StreamProps = ps.StreamProps  

StreamProps.set_Page(StreamProps, HTML)  

address = ('0.0.0.0', 9001) 

capture = cv2.VideoCapture(1) 

… 
capture.set(cv2.CAP_PROP_FRAME_WIDTH, 640) 

capture.set(cv2.CAP_PROP_FRAME_HEIGHT, 480)  

capture.set(cv2.CAP_PROP_FPS, 30) 

… 
server = ps.Streamer(address, StreamProps) 

Figure 3.14: Parts of python script used to start and maintain video stream from the cameras. 

 Python script takes the camera feed, encodes it into Motion JPEG22 format and 

sends it to a chosen URL [36]. The python script takes the video feed from a device 

connected to port 1, sets the default resolution to 480p and framerate to 30 frames per 

second. The last part of the script starts the PyShine23 server on the chosen IP and port. 

 

19 https://wiki.ros.org/msg 

20 https://docs.ros.org/en/jade/api/sensor_msgs/html/msg/BatteryState.html 

21 https://www.python.org/about/ 

22 https://en.wikipedia.org/wiki/Motion_JPEG 

23 https://www.pyshine.com/ 
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This python script also lets the user choose the quality of the front camera video stream 

using a Web interface. Users have the option to choose between 480p or 720p. The quality 

of the stream changes dynamically on the robot so users can choose to change the quality 

in real-time depending on what task they are doing. The script for the second camera is 

similar, using different default settings since it is a different camera type. 

string defaultStreamURL = "http://ip:port/stream.mjpg"; 

public void StartStream(string url, bool isFW){ 

       StopStream(isFW); 

         isStreaming = true; 

         int threadID = randu.Next(65536); 

         if (isFW){ 

workerFW = new Thread(() => 

ReadMJPEGStreamWorker(threadID, url, frameQueueFW)); 

            workerFW.Start(); 

      } 

      else{ 

workerBW = new Thread(() => 

ReadMJPEGStreamWorker(threadID, url, frameQueueBW)); 

            workerBW.Start(); 

      } 

 } 

Figure 3.15: Unity script that reads the video stream from a URL. 

Unity uses WebRequest 24 and a ‘GET’ method to connect and read the stream from 

the given URL. It does this using two separate threads for the two streams, continuously 

reading and showing the camera feed on the panels inside the VR environment. A new 

thread is created for each of the streams, whereby threads are used to decode the incoming 

stream. They receive Motion JPEG packages and decode them into Texture2D25 that are 

then placed on RenderTextures26 inside the VR. 

 

24 https://learn.microsoft.com/en-us/dotnet/api/system.net.webrequest?view=net-9.0 

25 https://docs.unity3d.com/6000.0/Documentation/ScriptReference/Texture2D.html 

26 https://docs.unity3d.com/6000.0/Documentation/ScriptReference/RenderTexture.html 
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3.5.3. Latency Optimization 

Teleoperation requires low-latency and real-time responsiveness. Because of this, data 

packets were minimized in size and the back camera is using 480p resolution. The front 

can use 480p or 720p depending on operator preference, but never uses 1080p that it could 

use. The reason for this is that using such high quality would require more time to process 

and would raise latency considerably. Motion JPEG was used in encoding the video 

stream. It was the fastest encoding we managed to create, requiring higher bandwidth but 

lower encoding times with the video packets compared to other options considered such as 

H.26427 or H.26528 [36]. In video compression testing conducted in [41], Motion JPEG 

outperforms x26529 (implementation of the H.265 standard) being 7 times faster and 

outperforms H.264 being 22 times faster in terms of encoded frames per second as can be 

seen in Table 3.1. The speed of encoding comes at the cost of space and network 

bandwidth, for the purpose of the thesis we had a fast network and decided this was the 

best approach. 

 

27 https://en.wikipedia.org/wiki/Advanced_Video_Coding 

28 https://en.wikipedia.org/wiki/High_Efficiency_Video_Coding 

29 https://en.wikipedia.org/wiki/X265 
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Table 3.1: Performance comparison of video compression standards: MJPEG2000, HEVC HM, 

H.264, and x265 taken from [41]. 

The system also implements buffers to handle small network delays without them 

affecting the user experience. Using buffers on control inputs and sensor data ensures that 

the robot does not move in unpredicted ways. Control inputs from controllers are processed 

in their own thread and immediately sent to the robot while the sensor data is updated in 

Unity in near real-time. Use of a 5G network is crucial to enable all of this as it allows us 

to connect the devices using extremely low latency and high bandwidth. 

3.6. Prototype Limitations 

Despite the successful integration of various technologies, the current prototype has some 

limitations. Precision tasks remain a challenge due to the latency and robot’s motor 

precision. Movement errors are small but can cause problems when they build up over 

time. The system’s ability to synchronize after errors happen can improve using additional 

sensors and techniques. Additionally, the learning curve for users that are not familiar or 

do not use VR often can impact both task completion speed and success rate. Network 

slicing is not used in this system but can also be significant, enabling developers to reduce 

latency by providing dedicated and customized network resources [37]. This can be very 

useful in transmission of large volumes of data, such as high-quality video streams, even 

when combined with a lot of sensor information, all without degradation in performance. 
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The use of 5G not only reduces latency but increases security and reliability that can 

impact latency in the long run, enabling teleoperation without interruptions.  

These limitations provide important insights into the system and help create better 

future iterations. A future version of the VRobo prototype should be focused on improving 

accuracy, reducing latency, and evolving the VR interface. 
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4.  User Study 

In the scope of this thesis, a user study was conducted to evaluate latency, movement 

smoothness, and QoE for the developed prototype. By targeting different users and tasks, 

the study aims to evaluate intuitivity of the VR interface and how users adapt to the 

teleoperation system over time. Users tried out different control methods during the 

study. These control methods are: controlling the robot using only the digital robot’s 

position, controlling the robot using both the virtual position and the camera view, 

controlling the robot using only the camera view, and controlling the robot by pointing to 

the place on the ground where it should move. Camera view is the term that relates to the 

camera stream coming from the robot and is shown inside the VR. By randomizing 

control methods, it also examines how quickly users learn to perform tasks in VR. To 

address these goals, the study addresses the following research questions (RQs): 

RQ1: Which method of robot control is the easiest and most intuitive by the users? 

RQ2: Which method of robot control and camera view enables users to complete 

each task in the shortest amount of time? 

RQ3: How does the presence of a camera view impact users' precision and speed 

when controlling the robot? 

RQ4: Which method of robot control and camera view provides the highest level of 

accuracy for task completion (with tasks including driving towards a goal, driving 

around objects and parking)? 

RQ5: How do latency and stream quality (480p and low latency vs. 720p and high 

latency) affect user performance, task completion speed and preferences during 

teleoperation? 
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4.1. Methodology 

4.1.1.  Laboratory Setup 

The Study was conducted in a dedicated laboratory room and its corresponding DT (virtual 

replica). The virtual room was equipped with three cubes at different parts of the room that 

the user had to touch with the virtual robot. Each of the cubes represented a task, to touch 

the first cube, users had to navigate around the chair. For the second cube, the user had to 

make a 180° turn and navigate back around the chair. For the last and third task, the user 

had to drive backwards and ‘park’ the robot in the position it started from. All three tasks 

were performed across all 5 test scenarios (explained in the following section). Users could 

choose how they want to do the task and where they want to put most of their focus into. 

This included driving forward with rotating towards the point or driving both forward and 

backward depending on the situation. It also included focusing on only one, both, or 

neither camera. The only thing that remained the same was touching the cubes and 

checking if they turned green, which was the sign that the task has been successfully 

completed. Regardless of the user’s VR experience or speed in completing tasks, all users 

went through the same tasks and scenarios. The DT of the space can be seen in Figure 4.1, 

while the real life space used for the study can be seen in Figure 4.2. 

 

 

Figure 4.1: Virtual representation of the DT of the space used for the study. 
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Figure 4.2: Real life space used for the study. 

 

Assessing QoE in teleoperation has become increasingly important, particularly 

with immersive technologies such as VR .Previous work [43] explored interactive QoE 

assessment in the context of teleoperating robots, highlighting the complexities involved in 

user interactions with remote environments. The study uses a within-subjects design in 

which all users are playing all scenarios but in different order [42]. 

4.1.2. Test scenarios and procedure 

Participants went through the test that took approximately 30 minutes to complete. Users 

that have more experience with VR took less time to complete the study. Participants were 

first asked to sign a consent form and were then directed to the VR HMD where they 

started the study process. Participants then received instructions on how to use the given 

hardware and were explained what the tasks are and how to complete them. There were 

five test scenarios in total, four of them being done at random order. These scenarios can 

be seen in Figure 4.3 and include: 

▪ robot driving with camera on →Robot Camera scenario, 

▪ robot driving with camera off →Robot No Camera scenario, 
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▪ robot driving in FPV mode, high latency and high video quality → FPV High 

scenario, 

▪ robot driving by pointing → Point And Click scenario. 

▪ robot driving in FPV mode, low latency and low video quality → FPV Low 

scenario 

 

Figure 4.3: Screenshots of four different control methods inside VR: Robot Camera (a), Robot No 

Camera (b), Point And Click (c), and FPV (d). 

 

Each participant first tested four out of five above-mentioned scenarios in a 

randomized order, excluding one of the FPV scenarios. The participant then tested the 

remaining FPV scenario. The reason for this was that we did not want the users to play the 

FPV scenario twice and other scenarios once before the first section of the questionnaire. 

Which of the FPV scenarios was done in the first group and which was done fifth, was also 

randomized across participants. Robot driving with camera on is a scenario in which users 

drove the robot using the VR controllers and had the camera above the robot for extra 
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information about the environment. The resolution of the camera in all scenarios besides 

the FPV High scenario was 480p. Robot driving with camera off is the same as the 

previous scenario but without the camera. This is the only scenario where the users did not 

use the camera information and only used the virtual robot’s position when moving around 

the room.  

Robot driving by pointing is the only scenario in which the users did not have full 

control of the robot. They pointed to a spot in the VR environment where they wanted the 

robot to go. The robot would calculate the rotation and distance needed to reach the chosen 

point and would drive there automatically. In case there was an obstacle in the way of 

going from the current position to the newly set position, the robot would create the 

shortest path using waypoints and would make straight lines with stops to rotate. FPV 

scenarios had a panel showing both camera views on it. The panel was always in front of 

the user and took a big part of their screen. Users were still able to see parts of the DT 

around the panel, and could turn it off to fully see the VE. Finally, the difference between 

the “High” and “Low” FPV scenarios was that the higher resolution scenario used a video 

stream in 720p quality while the other scenario used a 480p quality. This resulted in three 

times more pixels being generated for the higher quality stream, thus resulting in higher 

latency. The latency when streaming 720p was approximately two times greater than the 

latency observed in the other scenarios. Estimated latency in the faster scenario (480p 

quality) was around 110ms while it was around 220ms for the slower scenario (720p 

quality) round. Latency was approximated using time stamps in Unity and it calculated 

round trip time latency. One timestamp when data to move the wheels was sent, and one 

when the data that the wheels were moved was received. Calculated latency varied 

depending on robot moving or standing still and camera stream quality. 

4.1.3. Collection of subjective and objective metrics 

To facilitate this study, a questionnaire was developed, consisting of 39 questions across 

four sections. Participants answered the questionnaire on a laptop by removing the VR 

HMD after doing each of the scenarios. The questionnaire is given in Appendix A. It 

consists of various question types: 

▪ multiple-choice (single select option), 

▪ 5 point absolute category rating (ACR) scale, 
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▪ ranking scenarios, and 

▪ open-ended question (optional, to further elaborate on their response). 

Each participant completed the first section of the questionnaire before completing 

any of the scenarios. This section collected demographics data and data regarding previous 

experience in using VR and radio-controlled vehicle technologies. After completing each 

of the scenarios, the part of the questionnaire regarding that scenario was filled. After 

completing all the scenarios, questions about ranking and comparing the scenarios were 

answered. Additionally, objective metrics that were measured were the number of errors 

per scenario and time to complete each of the tasks during the scenario. Any kind of 

impact between the real robot and the environment is considered an error and was collected 

manually by watching for collisions. Task completion time was collected by measuring the 

time it took the participants to complete each of the tasks. Each of the participants was 

asked to subjectively rate their performance per scenario in terms of speed and task 

completion rate. This was done in order to compare their subjectively perceived 

performance with the actual objective metrics of their performance. 

4.1.4. Participants 

The research study was done with 13 voluntary participants, with 8 identifying as male and 

5 identifying as female. The age range spanned from 22 to 55, with a mean age of 25. Out 

of 13 participants, 10 of them had previously operated a radio-controlled robot vehicle, 

while none of them reported doing so on a weekly basis. The frequency of using a VR 

device can be seen in Table 4.1. Four of the participants use VR devices on a weekly basis, 

only one participant used a VR device for the first time during the study. 
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Table 4.1: Experience using VR devices prior to the study. 

 Participants were also asked to describe their attitude towards virtual reality 

technology. Almost all the users gave a maximum positive rating, with only one user 

describing their attitude as negative. Average attitude was 4.46 on a range from 1 to 5 (1 

meaning mostly negative and 5 meaning mostly positive). Participant attitude towards VR 

technology can be seen in Table 4.2. 

 

 

Table 4.2: Participant attitude towards VR technology 

 

4.2. Results and Discussion 

This section presents results from both subjective user-reported and objective performance-

based metrics collected during the study. The discussion covers connections and 

discrepancies between subjective user feelings about how they did in the scenarios with 

measured metrics of how they actually did in them.  
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4.2.1. Subjective metrics data 

Participants’ perceptions of each scenario were assessed during the study. The study 

focused on users giving ratings about: video quality, ease of navigation, ability to complete 

the task, overall QoE, and level of frustration. Users’ ratings of video quality can be seen 

in Figure 4.4., portraying average scores (Mean Opinion Scores, MOS) with 95% 

confidence intervals (CI) shown. 

 

 

Figure 4.4: Average participants ratings on quality of video (with 95% CI). 

 Portrayed results only contain one FPV scenario and it is FPV Low scenario. Video 

settings in this scenario were the same as for Robot Camera and Point and Click, thus 

enabling us to compare perceived video quality only in terms of different view 

perspectives. All of the scenarios using a camera had a similar average rating with 

overlapping CIs. The ratings were given on a 5-tp ACR scale (1 being poor and 5 being 

excellent). The scenario with the highest average rating was 'Robot Camera' with 4.46 

while the lowest average rating was given to the FPV Low scenario with 4.08.  

Questions portraying QoE in the second section do not consider FPV High scenario 

as it used a different latency. Its purpose was to compare latency and camera resolution 

during the FPV scenarios. Participants' ratings on ability to complete the task that can be 

seen in Figure 4.5 gave data that aligned closely with ratings on ease of navigation that 

can be seen in Figure 4.6 and Figure 4.7. 
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Figure 4.5: Participants' average ratings on ability to complete the task (with 95% CI). 

 

 

Figure 4.6: Participants' ratings on ease of navigation (with 95% CI). 

. 
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Figure 4.7: Distribution of participant ratings per scenario when asked about ease of navigation. 

 With respect to ease of navigation, participants rated the ‘Robot Camera' scenario 

as the best one while the same scenario just without the camera was rated as second best in 

both categories. ‘Robot Camera’ did not receive any rating lower than a 3. ‘Point And 

Click’ scenario ratings differ from FPV Low scenario ratings by just one rating overall 

(rating 3 instead of rating 4). Most of the users felt that having the camera helped them in 

completing tasks faster and with higher precision. Many of the users also felt that the FPV 

Low scenario had a camera video feed screen that got in the way of their field of vision and 

interrupted them doing tasks. The ‘Point And Click' scenario received poor ratings as it 

was the one in which many of the users felt they had the lowest amount of control as the 

robot would calculate its own way to move and do so. There was no way for the 

participants to stop the robot once it started going. Only option users had was to change the 

target position to a new one. Three participants felt that 'Point And Click' was the best 

scenario as they didn’t have to think much and could just click and relax.  

Overall QoE of participants can be seen in Figure 4.8. 
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Figure 4.8: Participants' average ratings on overall QoE (with 95% CI). 

 Overall QoE follows the same pattern and exhibits similar trends to those seen in 

Figure 4.5 and Figure 4.6.  

The last subjective question in this section was about the level of frustration participants 

felt in the scenario. Ratings were given on a scale from 1 to 5 (1 being very low and 5 

being very high) and they can be seen in Figure 4.9. 

 

Figure 4.9: Participants' average ratings on level of frustration (with 95% CI). 
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 Data in this graph is consistent with the previous graphs giving lowest frustration 

scores to the 'Robot Camera' and 'Robot No Camera' scenarios. Main reasons that raised 

participants' level of frustration were (received from their feedback): 

▪ 'Robot No Camera' not having any camera information that would help them know 

where the robot is in the real world 

▪ 'Point And Click' not giving them enough control over the robot's movements 

▪ ‘FPV Low’ screen being in the way of seeing where the robot is in the virtual space 

Furthermore, the distribution of ratings for each of the scenarios regarding frustration 

can be seen in Figure 4.10. 

 

Figure 4.10: Number of ratings given to each scenario based on frustration. 

 All scenarios got the biggest number of ratings in the form of 1 meaning very low 

frustration. We can see that ‘Robot Camera’ did not receive a rating higher than 2. This 

matches the previous data as that was the easiest scenario in terms of navigation and ease 

of use for the participants. However, ‘Point And Click’ and FPV Low scenario were given 

a rating of 4 by two participants, meaning that they highly frustrated some of the 

participants. 

After completing all the scenarios, participants were asked to rank each of the four 

scenarios (not distinguishing between FPV high and low) from best to worst in terms of 

ease of use (1 being best, 4 being worst). The graph data mostly follows the previous 
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answers. Main difference is that after completing all the scenarios, average ratings indicate 

that ‘Robot Camera’ is by far the favorite scenario with 0 participants choosing it as worst 

in terms of ease of use. The interesting thing is that 3 out of the 13 participants chose Point 

And Click’ as their best scenario, while everyone else ranked it as worst or second to worst 

scenario. Results can be seen in Figure 4.11.  

 

Figure 4.11: Average rank of scenarios in terms of ease of use (with 95% CI). 

 Participants were further asked to choose whether they preferred a lower latency 

lower resolution camera or higher latency higher resolution camera (tested in the FPV 

scenarios). Results can be seen in Figure 4.12. 
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Figure 4.12: Participants’ latency and video quality preference. 

 The results show that most of the participants prefer low latency at the cost of 

lower video quality. The participants’ reasons for this choice were that the camera view 

wasn’t as important as the responsiveness of the robot (collected from the open questions 

from the users). The only person that chose higher resolution as more important did not 

give any reason for his/her choice. Most of the participants felt much more confident when 

the delay between the controls and the movements was lower. This made them make fewer 

mistakes and be faster overall. Camera view was only used to check whether the robot’s 

position is synchronized well with the virtual one and in order not to hit objects in the real 

world.  

Furthermore, participants were asked how much they felt the camera helped them when 

completing tasks.  Results can be seen in Figure 4.13. 

 

Figure 4.13: Participants feelings about camera help when doing tasks. 
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 Most of the participants felt the camera somewhat helped them while some think it 

helped to a great extent. Only one participant said it didn’t help at all. The main reason 

given for this was complete trust in the virtual robot’s position and feeling the camera was 

only in the way, taking a part of the screen. Others gave reasons that the camera was not in 

the way and it was nice to have it in case they wanted to check where the robot is in the 

real world. 

 

4.2.2. Objective metrics data 

Objective metrics focused on the number of collisions and the task completion times. The 

main reason that led to collisions were desynchronization due to wheel slippage and 

participants not paying attention to virtual or real-life objects when they were close to 

them. The number of collisions per scenario can be seen in Figure 4.14. 

 

Figure 4.14: Number of collisions per scenario (with 95% CI). 

 There were not a lot of collisions that happened across the study. Participants 

averaged 0.29 collisions per scenario. Five participants didn't make a single collision 

across all scenarios while the highest number of collisions per participant was 5 and it was 

done by only one participant. 'Point And Click' had by far the highest number of collisions. 

This happened because the robot was rotating a lot and users did not have full control after 

telling the robot where to move. In case the collision happened, the study administrator 

would move the robot back to the correct position. After correcting the position, the user 
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would continue the study. There was also a bug in the system that led to desynchronization 

if participants pressed wrong buttons while the robot was calculating its moving route.  

Fixing this bug could result in a lower number of collisions in future studies. Interestingly, 

the lowest number of collisions happened in the 'Robot No Camera' scenario which was the 

only scenario without the camera. Participants only focused on finishing tasks and didn’t 

take much care about anything else. There also wasn’t a camera feed panel that would take 

a part of their VR screen, resulting in their field of view being very clear.  

Average task completion times can be seen in Figure 4.15. 

 

Figure 4.15: Average task completion time in seconds for each of the tasks across all the scenarios 

(with 95% CI). 

 Average task completion times show us that 'Robot No Camera' was the fastest 

scenario across all three tasks. Its average time to finish all the tasks was more than 20 

seconds faster than the average finish time across all 5 scenarios.  'Robot Camera' was 

second in terms of speed. Users lost most of their time navigating around the chair and 

were otherwise very fast compared to other scenarios. Furthermore, 'FPV Low’ shows task 

completion times for FPV scenario with low latency low resolution camera are generally a 

bit faster than the same scenario with high latency high resolution called ‘FPV High. The 

reason for the times not having a bigger gap as can be expected from the subjective data is 

that ‘FPV High’ was often the last scenario. The participants were already very familiar 
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with the environment and the tasks which made it easier for them. Lastly, data shows that 

parking the robot in ‘Point And Click’ was the slowest out of all the scenarios. Time 

between the second and the third task shows how difficult and slow this task was for the 

users in the scenario. However, first and second task in these scenarios were done in times 

almost exact to the ‘Robot Camera’ scenario. Task completion time in seconds for just task 

two can be seen in Figure 4.16. 

 

Figure 4.16: Average participant time to finish the second task in seconds (with 95% CI). 

 The second task was the hardest one in terms of complexity. Participants had to 

navigate around the chair, either going backwards or turning around. After that, they had to 

drive to the other side of the room in order to collect the virtual cube. The graph in Figure 

4.16 shows that using the camera in this scenario slowed the users by over 20%. This lost 

time is very similar to how much ‘Point And Click’ was slower due to it rotating towards 

the point and then driving forward. FPV scenarios were both much slower than the other 3. 

The reason for this was that most of the users kept turning the FPV view on and off in 

order to see where the virtual robot is inside the VE. Doing this made them much slower in 

general when completing any task, but specifically during this task that needed an extra 

dose of maneuvering.  

 Comparing objective and subjective data we can conclude that participants feel 

safer and better when having a camera feed in the scene. However, having the camera 

makes them objectively slower as they have additional information to which they pay a lot 

of their attention that isn’t as important in completing the tasks. More experienced users 
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have a much smaller gap between times in their scenarios. This is probably due to the fact 

they are used to the controls and VE. Another important thing is they are not wasting much 

time thinking about the camera and the environment but rather spend most of their focus 

on completing the task.  

The study did not give a clear result in terms of which scenario is the most intuitive 

or easiest for the users but gave us important information about each of the scenarios. 

‘Robot Camera’ scenario seems to lead the way as the best out of the five. It has the fastest 

to learn and easiest to use controls on average with a camera stream that gives a feeling of 

safety to the users. ‘Robot No Camera’ is the fastest scenario that was great for more 

experienced participants and works great when synchronization errors do not exist or are 

minimal. FPV scenarios were good in situations where users had to use the camera for their 

tasks. There wasn’t much need for this in the study so most of the users felt it only got in 

the way of seeing the VE and doing the tasks. In different circumstances where camera is 

much more important such as tasks that require very high levels of precision or tasks that 

are unable to be completed using only the virtual representation of a robot. FPV scenarios 

could potentially be higher ranked. Lastly, the ‘Point And Click’ scenario has potential as 

the easiest method to drive the robot around. Users found it unsafe and unintuitive due to 

the lack of control after selecting the point to which the robot should move. Additional 

programing and sensors could make this the easiest and most intuitive control method. A 

bigger study that uses additional scenarios, additional tasks, and additional participants 

should be conducted to identify and confirm these results. 

 

4.2.3. Limitations 

This study aims to evaluate the effectiveness and intuitiveness of various remote mobile 

robot control methods using a VR-based interface. An important limitation to mention is 

the relatively small sample size of participants. This can impact statistical significance of 

the results and can make generalizing that depends on participant type incorrect. 

Additionally, the study incorporates 5 different scenarios in different orders. Doing the 

same task with different control methods for the first or fifth time can significantly impact 

user satisfaction and performance. Especially for users that do not use VR devices often as 

they need some time to get used to the new interface and now controls.  
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Future research would benefit from using larger and more diverse participant 

groups to obtain more reliable data. Subjective questions present another limitation 

considering a low number of participants. Participant feedback can vary depending on their 

view on VR and how they interpret questions. Most of the questions are multiple choice 

and close-ended in order to minimize different interpretations. Objective metrics such as 

task completion speed and number of errors were added to compare participants feeling 

with objective scores they had. Lastly, bugs in the system as well as collisions with the 

environment that made the robot’s virtual position different to the real robot’s position 

caused instances where the robot had to be manually set to a correct position. Additionally, 

a tutorial covering all the controls and tasks over the five different scenarios can be added 

to help users understand and adapt to the new environment. This can help minimize 

differences that occur between first and last scenario during the study. 
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Conclusion 

This thesis covers the research, design, development, and evaluation of VRobo, a virtual 

reality-based application that uses a DT for real-time synchronized teleoperation of a 

physical mobile robot. The prototype enables remote operators to control a physical robot 

by moving the virtual robot within a virtual scene, providing real-time camera visual 

feedback and sensor data from the physical robot.  

The development includes setup and use of bidirectional communication between 

the physical and the virtual robot, use of a private 5G network and mapping of VR 

controller inputs into robot actions. Methodologically, a conducted user study provided 

data about the most intuitive interaction modes and synchronization errors. 

The system has shown promising results in robot control and physical environment 

understanding inside VR. The camera stream from the robot that is seen inside the VE did 

not help participants in completing tasks faster. However, it did give participants better 

understanding of the environment and made them feel safer when doing tasks around the 

room. High levels of synchronization enabled users to confidently teleoperate a robot while 

performing different tasks. The study also helped identify the importance of camera, 

latency, and intuitiveness of a robot’s controls when teleoperating a mobile robot. 

In the future, improvements can be made by using more advanced sensors and by 

additionally optimizing latency using a different 5G network setup. This can enable users 

to better explore and understand dynamic environments inside VR and will offer users 

immersive experience for robot teleoperation. Making sure no errors in synchronization 

happen between physical and virtual worlds is another very important task as those errors 

can often stop the whole system from working correctly. 
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Appendix A. User Study Form 

User study questionnaire 
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User study for Master’s Thesis  
"Mobile Robot Teleoperation using a Virtual 
Reality-based Representation of a Digital Twin" 
The information and responses gathered by this user data will be used solely for 
research as part of the Master's Thesis  "Mobile Robot Teleoperation using a 
Virtual Reality-based Representation of a Digital Twin ". All data will be evaluated 
collectively, and your personal information will be kept anonymous.   

 

General information 

 

1. Age: 
 
____________________________ 

 

2. Gender: 

o Male 

o Female 

o Don’t want to say 

o Other... 

 

3. Choose the statement that best describes your experience with Virtual 
Reality (VR) devices 

o I have never used a VR device 

o I have tried a VR device 1 to 3 times in my life 

o I occasionally use a VR device, but less than once a month (on average) 

o I use a VR device once a month or more 

 

4. Choose the statement that best describes your experience with using 
robot vehicles (e.g. RC cars) 

o I have never used a robot vehicle 

o I have tried using a robot vehicle 

o I use a robot vehicle a couple of times per year 

o I use a robot vehicle every week 
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5. How would you describe your attitude towards virtual reality 
technology 
 
Mostly negative 

o 1 

o 2 

o 3 

o 4 

o 5 

Mostly positive 

 

 
Questions regarding each of the scenarios separately 

 

6. 🪟 FPV Rate the quality of the video 

Poor 

o 1 

o 2 

o 3 

o 4 

o 5 

Excellent 

 

7. 🪟 FPV Rate the ease of navigation 

Poor 

o 1 

o 2 

o 3 

o 4 

o 5 

Excellent 
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8. 🪟 FPV Rate ability to complete the task 

Poor 

o 1 

o 2 

o 3 

o 4 

o 5 

Excellent 

 

9. 🪟 FPV Rate overall QoE 

Poor 

o 1 

o 2 

o 3 

o 4 

o 5 

Excellent 

 

10. 🪟 FPV Rate level of frustration 

Poor 

o 1 

o 2 

o 3 

o 4 

o 5 

Excellent 
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11. 📸  ROBOT CAMERA Rate the quality of the video 

Poor 

o 1 

o 2 

o 3 

o 4 

o 5 

Excellent 

 

12. 📸 ROBOT CAMERA Rate the ease of navigation 

Poor 

o 1 

o 2 

o 3 

o 4 

o 5 

Excellent 

 

13. 📸  ROBOT CAMERA Rate ability to complete the task 

Poor 

o 1 

o 2 

o 3 

o 4 

o 5 

Excellent 
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14. 📸 ROBOT CAMERA Rate overall QoE 

Poor 

o 1 

o 2 

o 3 

o 4 

o 5 

Excellent 

 

15. 📸 ROBOT CAMERA Rate level of frustration 

Poor 

o 1 

o 2 

o 3 

o 4 

o 5 

Excellent 

 

16. 🚫 ROBOT NO CAMERA Rate ease of navigation 

Poor 

o 1 

o 2 

o 3 

o 4 

o 5 

Excellent 
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17. 🚫 ROBOT NO CAMERA Rate ability to complete the task 

Poor 

o 1 

o 2 

o 3 

o 4 

o 5 

Excellent 

 

18. 🚫 ROBOT NO CAMERA Rate overall QoE 

Poor 

o 1 

o 2 

o 3 

o 4 

o 5 

Excellent 

 

19. 🚫 ROBOT NO CAMERA Rate level of frustration 

Poor 

o 1 

o 2 

o 3 

o 4 

o 5 

Excellent 
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20. 👇 POINT & CLICK Rate the quality of the video 

Poor 

o 1 

o 2 

o 3 

o 4 

o 5 

Excellent 

 

21. 👇 POINT & CLICK Rate ease of navigation 

Poor 

o 1 

o 2 

o 3 

o 4 

o 5 

Excellent 

 

22. 👇 POINT & CLICK Rate ability to complete the task 

Poor 

o 1 

o 2 

o 3 

o 4 

o 5 

Excellent 
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23. 👇 POINT & CLICK Rate overall QoE 

Poor 

o 1 

o 2 

o 3 

o 4 

o 5 

Excellent 

 

24. 👇 POINT & CLICK Rate level of frustration 

Poor 

o 1 

o 2 

o 3 

o 4 

o 5 

Excellent 

 

 

Control Methods: Users' preferences across the four control methods   

 

25.  Rank the following robot control and camera view methods in terms of 
ease of use (1 - Best, 4 – Worst, cannot choose the same number twice) 

 1 - Best 2 3 4 - Worst 

FPV screen     

Robot 
camera view 

    

Robot without 
camera view 

    

Point and 
click driving 
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26.  Which control method did you feel was the most intuitive? Why?  

 

 

_______________________________________________________________ 

 

27.  Which control method did you find most frustrating or difficult? Why?  

 

 

_______________________________________________________________ 

 

28.  How confident were you in controlling the robot using each method? 

(1 = Not confident, 5 = Very confident)   

 

 1  2 3 4  5 

FPV screen      

Robot 
camera 

view 

     

Robot 
without 
camera 

view 

     

Point and 
click driving 

     

 

 

   Efficiency and camera modes 

 

29.  IN FPV - Which video quality setting did you prefer when performing 
tasks 

o Higher latency higher resolution camera 

o Lower latency lower resolution camera 

o Neither 
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30. To what extent do you feel that including a camera view impacted your 
ability to accurately complete tasks? 

o didn’t help at all 
o helped very little 

o somewhat helped 

o helped to a great extent 

 

31.  Did you feel that having the camera view helped you complete tasks 
faster as opposed to scenarios without a camera view? 

o didn’t help at all 
o helped very little 

o somewhat helped 

o helped to a great extent 

 

32.  In which situations would you prioritize low latency over video 
quality? (more than 1 choice enabled) 

✓ Navigation (Figuring out where to move next) 

✓ Precision tasks (Parking) 

✓ General driving (Moving around) 

✓ I prefer high latency and high resolution in all 

 

33.  What improvements would you suggest for the control methods or 
video quality settings? 

 

_______________________________________________________________ 

 

34.  Do you have any additional comments or feedback on your experience 

with controlling the robot?  

 

_______________________________________________________________ 
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Objective metrics 

 

35.  🪟  FPV mode used first 

o High Quality 

o Low Quality 

 

36.  Number of collisions 

 

_______________________________________________________________ 

 

37. Time to complete task 1 (Driving around objects) 

 

_______________________________________________________________ 

 

38. Time to complete task 2 (Driving towards point) 

 

_______________________________________________________________ 

 

39. Time to complete task 3 (Parking) 

 

_______________________________________________________________ 

 

End of the Questionnaire! 
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Abstract 

Mobile Robot Teleoperation using a Virtual Reality-based 

Representation of a Digital Twin 

This Master’s thesis presents the design and implementation of the VRobo prototype that 

integrates a physical robot with a virtual reality-based digital twin, allowing real-time 

teleoperation of the robot using a VR interface. It uses ROS to control the robot and its 

sensors and uses the Unity game engine to create an immersive virtual reality application 

for Meta Quest 3 with an interface for controlling the robot. The prototype communication 

is optimized using ROS Bridge and a 5G network to enable low-latency communication 

and achieve elevated levels of synchronization between the robots and technologies used. 

Quality of Experience testing was conducted in order to evaluate system performance, 

focusing on user satisfaction, intuitive interface for controlling the robot, and levels of 

operator immersion. This work advances the integration of robotics and virtual reality, 

using digital twins and 5G networks. It bridges the gap between virtual environments and 

real-world robotic control but also helps in creation and integration of virtual reality 

applications for operating dynamic real-world environments. 

Keywords: Mobile Robot, Teleoperation, VR, Virtual Reality, Digital Twin, ROS, Unity, 

Meta Quest 3 
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Sažetak 

Teleoperacija mobilnog robota korištenjem reprezentacije 
digitalnog blizanca temeljenoj na virtualnoj stvarnosti 

 

Ovaj diplomski rad predstavlja dizajn i implementaciju VRobo sustava koji upravlja 

fizičkim robotom unutar digitalnog blizanca temeljenog na virtualnoj stvarnosti. 

Omogućuje daljinsko upravljanje robotom u stvarnom vremenu s pomoću sučelja virtualne 

stvarnosti. Koristi ROS za upravljanje robotom i njegovim senzorima te Unity game 

engine za stvaranje imerzivne aplikacije virtualne stvarnosti sa sučeljem za upravljanje 

robotom unutar Meta Quest 3 virtualnih naočala. Komunikacija sustava optimizirana je s 

pomoću ROS Bridge-a i 5G mreže koja omogućuje komunikaciju niskog kašnjenja i koja 

omogućava postizanje visoke razine sinkronizacije između dvaju robota odnosno 

korištenih tehnologija. Rad sadrži i testiranje kvalitete iskustva kako bi se dobili dodani 

podaci o svojstvima sustava, fokusirajući se na zadovoljstvo korisnika, intuitivnost sučelja 

za upravljanje robotom te razinu imerzije upravljača. Ovaj rad pridonosi području robotike 

i virtualne stvarnosti, korištenju digitalnih blizanaca i 5G mreži. Stvara vezu između 

virtualnih okruženja i mobilnih robota u stvarnom svijetu, ali također pomaže u stvaranju i 

integraciji aplikacija virtualne stvarnosti za upravljanje dinamičkim okruženjima stvarnog 

svijeta. 

Ključne riječi: Mobilni Robot, Teleoperacija, VR, Virtualna Stvarnost, Digitalni Blizanac, 

ROS, Unity, Meta Quest 3 


