
Optimiranje neuronske mreže evolucijskim
računanjem za detekciju tumora u MR slikama mozga

Đurinec, Jan

Master's thesis / Diplomski rad

2025

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of
Zagreb, Faculty of Electrical Engineering and Computing / Sveučilište u Zagrebu, Fakultet
elektrotehnike i računarstva

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:168:222588

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-03-15

Repository / Repozitorij:

FER Repository - University of Zagreb Faculty of
Electrical Engineering and Computing repozitory

https://urn.nsk.hr/urn:nbn:hr:168:222588
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.fer.unizg.hr
https://repozitorij.fer.unizg.hr
https://zir.nsk.hr/islandora/object/fer:13264
https://repozitorij.unizg.hr/islandora/object/fer:13264
https://dabar.srce.hr/islandora/object/fer:13264

UNIVERSITY OF ZAGREB

FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

MASTER THESIS No. 705

EVOLUTIONARY COMPUTING OPTIMIZATION OF NEURAL

NETWORK FOR TUMOR DETECTION IN BRAIN MR IMAGES

Jan Đurinec

Zagreb, February 2025

UNIVERSITY OF ZAGREB

FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

MASTER THESIS No. 705

EVOLUTIONARY COMPUTING OPTIMIZATION OF NEURAL

NETWORK FOR TUMOR DETECTION IN BRAIN MR IMAGES

Jan Đurinec

Zagreb, February 2025

UNIVERSITY OF ZAGREB
FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

Zagreb, 30 September 2024

MASTER THESIS ASSIGNMENT No. 705

Student: Jan Đurinec (0036526931)

Study: Computing

Profile: Computer Science

Mentor: asst. prof. Jelena Božek, PhD

Title: Evolutionary computing optimization of neural network for tumor detection in
brain MR images

Description:

Evolutionary computation is a diverse family of algorithms inspired by the principles of biological evolution,
particularly suited for global optimization challenges. These algorithms have demonstrated significant potential
in medical image analysis, particularly in detecting tumors within brain MR images. They can efficiently navigate
complex, high-dimensional search spaces to identify patterns and abnormalities that may be difficult to capture
with traditional methods. This thesis aims to provide a comprehensive introduction to evolutionary computing,
followed by a detailed survey of the latest state-of-art application to brain tumor detection. The primary objective
is to implement evolutionary computing techniques for brain MR image segmentation, serving as a
preprocessing step for neural networks input, and to implement evolutionary computing optimized neural
network for brain tumor detection. Explore several optimization algorithms and compare their performance on
publicly available dataset comprising annotated brain MR images containing tumors.

Submission date: 14 February 2025

SVEUČILIŠTE U ZAGREBU
FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA

Zagreb, 30. rujna 2024.

DIPLOMSKI ZADATAK br. 705

Pristupnik: Jan Đurinec (0036526931)

Studij: Računarstvo

Profil: Računarska znanost

Mentorica: doc. dr. sc. Jelena Božek

Zadatak: Optimiranje neuronske mreže evolucijskim računanjem za detekciju tumora u MR
slikama mozga

Opis zadatka:

Evolucijsko računanje raznolika je obitelj algoritama nadahnutih načelima biološke evolucije, posebno prikladnih
za izazove globalne optimizacije. Ovi algoritmi pokazali su značajan potencijal u analizi medicinskih slika,
posebice u otkrivanju tumora na MR slikama mozga. Oni se mogu učinkovito kretati složenim,
visokodimenzionalnim prostorima pretraživanja kako bi identificirali obrasce i abnormalnosti koje je teško
uhvatiti tradicionalnim metodama. Ovaj diplomski rad ima za cilj pružiti sveobuhvatan uvod u evolucijsko
računanje, nakon čega slijedi detaljan pregled suvremenih primjena u području detekcije tumora mozga.
Primarni cilj je implementacija tehnika evolucijskog računanja za segmentaciju MR slike mozga, koja služi kao
korak predprocesiranja podataka za unos u neuronsku mrežu, i implementacija neuronske mreže optimirane
evolucijskim računanjem za detekciju tumora mozga. Potrebno je istražiti različite algoritme za optimizaciju i
usporediti njihovu izvedbu na javno dostupnom skupu podataka koji sadrži označene MR slike mozga koje
sadrže tumore.

Rok za predaju rada: 14. veljače 2025.

ii

Contents

Introduction ... 1

1.1. Brain tumor MRI ... 3

1.2. Machine learning ... 6

1.3. Convolutional neural networks .. 9

1.4. Evolutionary computing .. 13

2. Related work: evolutionary computing in DL ... 17

3. Brain tumor detection .. 20

3.1. Brain tumor detection – dataset ... 21

3.2. Brain tumor detection - CNN architecture .. 23

3.3. Proposed model for brain tumor detection .. 27

3.4. Model comparison ... 29

4. Evolutionary computing in brain tumor detection ... 34

4.1. Study 1 – input image segmentation ... 35

4.2. Study 2 – hyperparameter tuning .. 49

4.3. Study 3 – CNNs loss function optimization .. 59

4.4. Final CNN model .. 61

Conclusion ... 63

Literature ... 65

Summary .. 67

Summary in Croatian ... 68

Abbreviations .. 69

1

Introduction

In recent years, the global hype surrounding Artificial Intelligence (AI) and machine

learning (ML) has spurred across a variety of fields, from healthcare to autonomous vehicles.

As these technologies evolve, they continue to demonstrate their potential to transform

industries and improve our daily lives. One example is the realm of medical image analysis,

where brain tumors can be easily detected in brain magnetic resonance imaging (MRI) scans

with the help of AI. However, the complexity and high dimensionality of medical data pose

significant challenges, making it difficult for traditional algorithms to achieve optimal

results. Brain MRI scans are often large, containing vast amounts of information, and the

tumors themselves may vary in size, shape, and location. This variability makes it difficult

to identify tumors using conventional image processing techniques, which may struggle to

account for the wide range of possible tumor characteristics. This is where evolutionary

computing, a branch of AI inspired by biological evolution and nature behaviors, comes into

action. Evolutionary computing offers a unique approach to solving optimization problems.

By mimicking the way nature evolves organisms to adapt and survive, evolutionary

algorithms can explore large, complex solution spaces and find optimal or near-optimal

solutions in a more efficient manner. This thesis explores the application of evolutionary

computing algorithms was explored to optimize a process of brain tumor detection, with the

focus on image segmentation as a step to simplify and extract the most valuable features

from the MRI scans and optimization of convolutional neural networks. In the context of

brain tumor detection, evolutionary algorithms can be employed to optimize three main

aspects: the preprocessing step for the network’s input images, the selection of optimal

network hyperparameters, and the minimization of the network’s loss function. All of these

actions are necessary to improve the network’s performance and accuracy. The primary

objective is to implement an evolutionary computing optimized neural network for brain

tumor detection and to implement and explore evolutionary computing techniques for brain

MR image segmentation, serving as a preprocessing step for the network’s input.

Furthermore, the thesis aims to explore several optimization algorithms and compare their

performance on a publicly available dataset with brain MR images containing various types

of tumors. This work is organized as follows: a brief introduction to brain tumor MRI, ML

techniques, an introduction to CNNs and evolutionary computing, a short survey of related

2

works and finally, an overview of brain tumor detection system without evolutionary

computing (third section) and with evolutionary computing (fourth section). In summary,

the aim of this thesis is to provide a comprehensive introduction to evolutionary computing,

followed by a detailed survey of the latest state-of-the-art applications to brain tumor

detection and classification.

3

1.1. Brain tumor MRI

There are many ways and techniques for creating detailed brain images, their structure

and functionality. Some of the most renowned imaging techniques are:

- Magnetic resonance imaging (MRI) – a non-invasive method that creates an image

using magnetic fields and radio waves

- Functional magnetic resonance imaging (fMRI) – a subcategory of MRI, indirectly

measures the brain’s blood flow and creates an image based on that

- Computed tomography (CT) – uses X-rays to create an image, a method is avoided

due to ionizing radiation

- Positron emission tomography (PET) – uses a small sample of radioactive material

that is injected into the bloodstream

Similar to finding the best model in the field of machine learning, there is no best method to

create an optimal image of brain in general. It depends on a specific task and the health

condition of a subject. Some of the most important features in brain tumor detection and

classification problems are the volume of tumor, its texture, and the subject’s age and gender.

Based on those extracted features, machine learning models are able to learn the

characteristics of specific tumor types and make general assumptions on new, never seen

samples. Normal brain tissue is composed of gray matter, white matter, and cerebrospinal

fluid (CSF) and tumors can form anywhere in that area. According to definition [1], tumors

are abnormal growth of cells that can form in any part of the body. They occur when cells

begin to divide uncontrollably. Tumors can be benign, and non-cancerous, in which case

they usually do not spread, or they can be malignant, meaning they are cancerous and have

the potential to invade nearby tissues or spread to other parts of the body [2]. Because of

their nature, especially for malignant tumors, early detection is crucial for further diagnosis

and successful treatment. There are many types of brain tumors, and the dataset used in this

work, which will be further explained in the dataset section, contains only three types:

pituitary tumors, glioma tumors and meningioma tumors. Tumor cell characteristics,

including irregular shapes, heterogeneous intensity distributions, variability in tumor

location, and the presence of imaging artifacts, significantly impact the diagnostic process.

Tumor heterogeneity refers to the distinct morphological and phenotypic variations observed

among tumor cells, such as differences in cellular structure, gene expression profiles,

4

metabolic activity, motility, proliferation rates, and metastatic potential [5]. This

heterogeneity poses substantial challenges in the design and implementation of effective

treatment strategies. Studies conducted by the National Brain Tumor Foundation (NBTF)

indicate that brain tumors are a leading cause of mortality worldwide, with their incidence

having more than tripled over the past three decades [4]. This dramatic increase highlights

the urgent need for advanced and reliable detection or classification techniques, which are

essential for early diagnosis, precise treatment planning, and ultimately improving outcomes

for many patients impacted by this condition.

 In this work, only MRI samples are used, since MRI is one of the most used

techniques for brain imaging because of its non-invasive nature and high resolution. Those

images can provide critical information about the structure of the brain, which is crucial for

detecting abnormalities or classification of tumors. MRI scans can be performed using

various sequences, each designed to highlight specific tissue properties. The two most

common sequences are T1-weighted images and T2-weighted images.

Figure 1.1. T1 and T2 weighted MR image comparison

 [5]

5

T1-weighted images are often used to assess the overall structure of the brain and identify

abnormalities such as tumors or lesions. Cerebrospinal fluid has a dark appearance, and

white matter has a bright appearance as it can be seen in Figure 1.1. On the other hand, T2-

weighted images have cerebrospinal fluid appearing bright and white matter appearing dark.

They are often used for detecting areas of edema, inflammation or pathological changes [6].

MRI data can be acquired in either two-dimensional (2D) slices or three-dimensional (3D)

volumes. While 2D imaging involves capturing individual slices of the brain, 3D imaging

collects data across an entire volume, allowing for more detailed and isotropic analysis. In

research and clinical applications, 3D MRIs are often preferred because they enable more

precise segmentation, registration, and volumetric measurements. For the processing of MRI

data, there are significant computational challenges such as high dimensionality (a single 3D

MRI scan can contain hundreds of slices) or preprocessing complexity (noise reduction,

normalization…). Due to computational limitations of the available hardware, only 2D MRI

scans were utilized in this work. Processing 3D volumetric MRI data requires significant

amount of memory and computational power, which exceeded the capacity of the system

used in this work. The 2D approach, while less detailed than 3D analysis, still allowed

effective processing and analysis within the given constraints.

6

1.2. Machine learning

In general, machine learning (ML) is divided into supervised, unsupervised and semi-

supervised (reinforcement) machine learning (Figure 1.2.). The first category is supervised

learning, where models are trained on labeled data. In this case, each input is paired with a

corresponding output, allowing the model to learn the relationship between them. The

primary goal of supervised learning is to predict the output for new, unseen inputs. It is

commonly used for tasks such as classification, where the model predicts discrete categories,

and regression, where the model predicts continuous values. Examples include predicting

the type of brain tumor from MRI scans or estimating the age of a subject based on brain

imaging data. As opposed to supervised learning, unsupervised learning deals with unlabeled

data. In this approach, the model identifies patterns, structures, or relationships within the

data without explicit guidance. The main goal of unsupervised learning is to discover hidden

patterns or groupings in the data. This is particularly useful for clustering, where similar data

points are grouped together, or for dimensionality reduction, which reduces the number of

features while retaining significant information. For example, clustering techniques could

be used to group MRI scans based on texture or intensity, while dimensionality reduction

methods, like principal component analysis, can simplify complex datasets. Reinforcement

learning represents a different approach, where an agent learns to make decisions by

interacting with an environment. The agent receives feedback in the form of rewards or

penalties and optimizes its actions over time to maximize cumulative rewards. This type of

learning is widely used in robotics, game-playing AI, and autonomous systems, where

sequential decision-making is critical [7].

7

Machine learning

Supervised learning

Unsupervised

learning

Semi-supervised

learning

Classification

Regression

Clustering

Figure 1.2. Division of ML methods

In this work, the focus is going to be on supervised learning. Hence, other branches of

machine learning will not be further explained. Brain tumor detection, in this case, is a binary

classification problem. On the output of a model, there are only two classes: tumor is

detected and tumor is not detected. As mentioned above, the main difference between a

supervised and unsupervised approach is whether labeled data is available for the learning

process or not. Some of the most common classification algorithms are:

- Logistic regression: Despite its name, it is a classification algorithm. It predicts the

probability of a data point belonging to a specific class using a logistic function.

- Decision trees: These algorithms split data into subsets based on feature values,

creating trees of decision. They are very easy to interpret.

- Support vector machines (SVM): The algorithm finds the hyperplane that

optimally separates classes in the feature space. It is very effective in high-

dimensional space and for data with clear margins of separation.

- Neural networks: Inspired by biological neural systems, they are a powerful tool

for complex problems but require significant computational resources.

8

- Random forest: An ensemble method that combines decision trees to improve

classification accuracy and reduce overfitting.

- Naïve Bayes: Based on Bayes’ theorem, this algorithm assumes feature

independence. Works well for text classification problems.

There are several different machine learning classification algorithms that are not mentioned

above because they are either a combination of the algorithms above, their generalization,

or it was found that they do not perform well in practice. Furthermore, it is important to

mention that there is no single best classification algorithm. Each one of them depends on

computational resources and input data, and depending on data, they can perform better or

worse than the other ones. In order to find out the best possible machine learning model for

a specific input data, it is necessary to try various different models and compare their results.

Choosing the best possible ML model is often a matter of experience and domain knowledge,

because understanding the characteristics of the data and the problem is crucial for selecting

the most appropriate algorithm. In practice, small subsets of the data can be used to train and

evaluate different models, allowing for a quick comparison of their performance. This

approach, often referred to as model benchmarking, helps in identifying optimal candidates

without the need to invest excessive computational resources upfront. Once the best-

performing models are identified on the smaller subset, they can be further fine-tuned and

validated on the full dataset. Fine-tuning is a process of finding the optimal hyperparameters

for the chosen ML model. For example, finding the optimal number of decision trees in the

random forest algorithm.

9

1.3. Convolutional neural networks

One of the biggest aspects of this work are convolutional neural networks (CNNs),

which have revolutionized the field of machine learning, particularly in the realm of image

processing and computer vision. In order to fully grasp the significance and work behind the

CNNs, understanding the fundamentals of neural networks and the process of convolution

is essential. Some of the first learning algorithms we know today were designed as

computational representations of biological learning, or in other words, models of how

learning occurs or could occur in the brain. As a result, deep learning has often been referred

to as artificial neural networks (ANNs) [8]. These models consist of layers of interconnected

“neurons” that process input data, mimicking how biological neurons transmit and process

signals. They are connected by weighted links. Each connection between neurons represents

a synapse, and the weight associated with each link determines the strength of the

connection. As a result, the network is able to adapt to the data it processes because the

network’s weights are adjusted during the learning process (Figure 1.3.)

Figure 1.3. Components of the basic artificial neuron [10]

A neural network (NN) is organized in three types of layers: an input layer, hidden layers,

and an output layer (Figure 1.4.). The input layer receives raw data, which is then processed

through one or more hidden layers. Each neuron in these hidden layers applies a

mathematical function, known as an activation function, to the incoming signals. The most

common activation functions include the sigmoid, hyperbolic tangent (tanh), and Rectified

10

Linear Unit (ReLU). The processed data then passes to the output layer, which produces the

network's final predictions or decisions.

Input layer Hidden layer Output layer

Figure 1.4. Structure of NN

In machine learning, every algorithm is composed of three essential components: the model,

the loss function, and the optimization process. These components work together to enable

the algorithm to learn from the data – to train and generate predictions. Training involves

adjusting the weights of the network to minimize the difference between the predicted output

and the actual target. This is typically done using a supervised learning algorithm, where the

network is provided with input-output pairs, and the goal is to reduce the error between

predicted and true outputs. The error is usually measured using a loss function, such as mean

squared error (MSE), and the network updates its weights through a process called

backpropagation. Backpropagation computes the gradient of the loss function with respect

to each weight and adjusts the weights in the direction that reduces the error, using an

optimization algorithm like gradient descent. Müller [9] emphasizes that one of the

challenges in neural network training is avoiding overfitting, which occurs when a model

becomes too complex and performs well on training data, but poorly on unseen data.

Regularization techniques, such as dropout layers or L2 regularization, are often employed

to mitigate the issue of overfitting and help the network generalize better to new data. On

the other hand, underfitting occurs when a model is too simple, or too shallow. For example,

11

a linear model cannot successfully solve a problem, regression or classification, of input data

where the relationship of the features is non-linear. A field of machine learning that observes

deep neural networks – ones with many hidden layers, is called deep learning. These

networks have been instrumental in achieving breakthroughs in complex tasks such as object

detection, language translation, and medical diagnosis.

 Convolutional neural networks are a type of classical multi-layer feedforward neural

network consisting of an input layer, a hidden layer, and an output layer. The output of each

neuron is a feature map, while kernels are used instead of weights. (Figure 1.5.)

Figure 1.5. Typical CNN architecture [11]

CNNs are particularly suitable for classification, segmentation, and regression of image-

based inputs. The most common architecture consists of convolution layers, pooling layers,

and at the end, a few fully connected layers. The term “convolutional” comes from the

concept of convolution, whose mathematical definition describes it as an operation on two

functions that produces a third function which expresses how the shape of one alters the

other. In the context of machine learning, convolution occurs between the input feature map

and the kernels. In CNNs, convolution is a crucial step in feature extraction. Early

convolution layers can detect simple features such as edges and textures, while deeper layers

can detect more complex patterns such as shapes, objects, or even faces. Other types of

12

layers, besides convolutional or fully connected layers, are pooling layers. Pooling layers

reduce the resolution of the feature maps and increase the spatial invariance of the neural

network. There are several types of pooling, with max pooling being the most common. A

flattened layer, the one between the last pooling layer and the first fully connected layer

(Figure 1.5.), has a purpose to transform multi-dimensional input into a one-dimensional

vector. There are also layers such as the dropout layer and the batch normalization layer

which are used to prevent overfitting and stabilize the training process. The main advantage

of convolutional neural networks over fully connected networks is a smaller number of input

nodes, equivalence to small shifts in the image, fewer connections, and that they cannot

easily learn noise from the input data.

13

1.4. Evolutionary computing

Metaheuristics are advanced problem-solving techniques used to find solutions for

complex optimization problems that are hard to solve using exact methods. These algorithms

are designed to explore large solution spaces efficiently and to provide robust, approximate

solutions to a wide range of optimization challenges. They often draw inspiration from

natural phenomena or human problem-solving strategies, and their adaptability and ability

to escape local optima make them effective for real-world applications. Optimization

methods can be divided into two categories: exact methods and heuristic methods (Figure

1.6.). Exact methods, such as dynamic programming, A star and linear programming,

guarantee the optimal solution with a lack of scalability for large or complex problems.

These methods are computationally expensive. On the other hand, heuristic or approximate

methods, including metaheuristics, provide approximate solutions without guaranteeing

optimality. They are mostly used when a problem is too complex or a good-enough solution

is acceptable taking into account computational costs and computational time. Heuristic

methods are designed to explore the solution space more efficiently by applying simple rules.

Figure 1.6. Classic optimization methods [11]

14

Evolutionary computing (EC), a subset of metaheuristics – population-based

metaheuristics, is particularly influential, built on top of the principles of biological

evolution. It uses mechanisms such as selection, mutation, and recombination to evolve a

population of candidate solutions over successive generations. This approach includes

popular algorithms like Genetic Algorithms (GA), Genetic Programming (GP), Simulated

Annealing (SA), Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO),

which simulate the process of natural selection and survival of the fittest to progressively

improve solution quality. The flexibility of metaheuristics, and how they can be

implemented across diverse fields from engineering and logistics to artificial intelligence

has grown in the past years [11]. Overall, metaheuristic and evolutionary computing provide

powerful tools for tackling large-scale, complex optimization tasks where traditional exact

methods are not viable. In Figure 1.7. there is an obvious peek in deep learning and

evolutionary computing publications in the period from 2008 to 2018.

Figure 1.7. Histograms for deep learning and evolutionary computation publications

according to the Web of Science based on related keywords: a) total publications by year

and b) number of citations by year [12]

15

In the past decade, several evolutionary approaches have been proposed to solve learning

problems, and these approaches have displayed remarkably good performance compared to

the traditional learning methods that usually require human intervention and expertise.

Traditional gradient-based methods for training multilayer neural networks are prone to

problems like getting stuck in local optima and can be computationally expensive,

particularly when dealing with large training datasets. As a result, training neural networks

with multiple hidden layers has not been widely explored for various applications until

recently. This shift in interest is due to the development of adaptive stochastic variants of

the gradient descent method – a method to find the minimum in model’s complex loss

function. Additionally, metaheuristics can be used to optimize neural network parameters

(such as determining the number of hidden layers for a specific task) and improve prediction

accuracy. Notably, in recent years, there has been growing interest among core machine

learning researchers in using evolutionary computing algorithms for DL. As mentioned

above, the main objective of EC algorithms is to improve the efficiency of computations that

can assist in solving challenging computational problems. The initial population explores

the search space randomly, then the algorithm evaluates the obtained solutions to select some

of them for the further step (best ones, random ones…). The new population is built as a

better version of the first population (performing operations such as mutation or selection).

The previous population is often referred to as the parent of the current one. EC algorithm

performs a combination of exploration – investigating new areas of the search space and

exploitation – refining and improving the current best solution. After some iterations, the

algorithm converges to a good-enough, near-optimal solution. The balance between

exploration and exploitation is critical. If exploitation dominates, the algorithm might

converge too quickly to a local optimum. If exploration is too strong, the algorithm might

not focus enough on promising areas and fail to refine solutions effectively. The right

balance can reduce the risk of getting stuck in a local optimum. A local optimum refers to a

solution in an optimization problem that is the best within a specific neighborhood, but not

necessarily the best overall (global optimum), or relatively to a given neighboring function

N, a solution s ϵ S is a local optimum if it has a better quality than all its neighbors; that is, f(s) ≤ f(s’)² for all s’ ϵ N(s) (Figure 1.8.). Global optimum - a solution s* ϵ S is a global

optimum if it has a better objective function than all solutions of the search space, that is, ∀s ϵ S, f(s*) ≤ f(s) [11].

16

Figure 1.8. Local optimum and global optimum in a simple search space [11]

17

2. Related work: evolutionary computing in DL

As one of the main objectives of this work was to provide a comprehensive introduction

to evolutionary computing and a detailed survey of the latest state-of-the-art applications to

brain tumor detection, the following section will analyze and discuss the various approaches,

methodologies, and results from recent papers, theses and similar works. It is essential to

categorize these approaches, as EC can be applied in various ways, such as tuning the

hyperparameters of CNNs, serving as a loss function within the network, or being utilized

in the segmentation process of input images. Some of these approaches will be analyzed and

described in detail in the following sections.

As highlighted by Yao [13], learning and adaptation are two essential aspects of the

ability to adapt and learn, which have evolved over time in various species. The selection of

parameters, weights, and the appropriate architecture of an ANN are considered crucial

challenges. Evolutionary Computing (EC) can be applied at various stages of an ANN's

development, such as during training, weight optimization, and the design of learning rules.

Numerous approaches in literature have been proposed to tackle the optimization problem

of fine-tuning the architecture and parameters of ANNs. Leung et al. [14] proposed GA to

optimize the network structure and learning for a specific application by an ANN. Later, EC

was used to adjust the number of nodes, layers or even the polynomial type. The application

of EC in CNNs was introduced by Cheung and Sable in 2011 [15] where they used stochastic

diagonal Levenberg-Marquardt method to accelerate the convergence of training while

reducing the cost of fitness evaluation. Fujino et al. [16] used a GA to optimize the hyper-

parameters of a CNN. Typically, those parameters can be the number of iterations, learning

rate, momentum rate, number of filters, the shape of a filter and max pooling sizes. Aside

from finding the best parameters, Khalifa et al. [17] used PSO to optimize the connection

weights of the last classification layer of a seven-layer CNN architecture for handwritten

digit classification and reported better results over a normal CNN that uses stochastic

gradient descent (SGD) for all layers. Another example of using PSO algorithm can be found

in the study by Zhang et al. [18], where they explored a novel computer-aided diagnosis

system for detecting pathological brains in MRI scans. The authors combined wavelet

entropy for feature extraction and hybridization of biogeography-based optimization and

18

PSO for training an NN. The proposed system achieved 99.49% accuracy on the large dataset

which included 11 types of pathological conditions, such as glioma, Alzheimer’s disease,

and Huntington’s disease. The proposed system outperformed 14 state-of-the-art CAD

systems in accuracy. The following study by Dehkordi A. et al. [19] introduced enhanced

CNN architecture optimized using Nonlinear Levy Chaotic Moth-Flame Optimization

(NLCMFO) for brain tumor detection and classification. The performance of the proposed

model was validated using the BRATS 2015 dataset, achieving superior accuracy (97.4%)

and F1 score (96.6%) compared to the state-of-the-art methods. The model was also

benchmarked against PSO, MFO, Salp Swarm Algorithm (SSA), Whale Optimization

Algorithm (WOA) and Gray Wolf Optimizer (GWO) algorithms. As shown in the figure

below (Figure 2.1.), the NLCMFO algorithm achieved superior performance compared to

other methods in nearly every objective space explored in the paper even before the 200th

iteration. Overall, the authors concluded that metaheuristic optimization overcomes

premature convergence and improves convergence speed through the combination of chaotic

maps and levy flight theorem. The study above will be mentioned once again in the following

sections. The study by Mahesh K. and Renjit J. [20] provides a critical survey of evolutionary

intelligence and other segmentation techniques for recognizing brain tumors from MRI

images. It reviews various evolutionary computing and optimization algorithms used in brain

tumor recognition, alongside traditional approaches like thresholding, region-based

techniques, clustering, and model-based techniques. In the study, authors used GA for tumor

segmentation after preprocessing via Discrete Walvet Transform (DWT) and PSO to

enhance tumor classification on the BRATS dataset.

19

Figure 2.1. Convergence analysis of NLCMFO versus other approaches [19]

20

3. Brain tumor detection

As mentioned before, the significance of early brain tumor detection is crucial for

improving patient outcomes and the effectiveness of treatment options. Nowadays, there are

several solutions and algorithms suited for brain tumor detection, classification or

segmentation. Because the main focus of this work was CNN optimization, only the problem

of brain tumor detection has been further discussed with the appropriate implementation. In

general, the term object detection involves identifying and localizing specific objects within

and image. It provides the class labels and their location. On the other hand, classification

assigns a label to an entire image answering the question “What is in this image?”. Image

segmentation divides an image into multiple segments or regions. The process involves a

detailed understanding of object boundaries and shapes within the image. The following

implementation and work in general, refers to brain tumor detection as a binary classification

– if there is a tumor in the specific image or not. However, the work described in this thesis

can be adjusted and used in problems such as brain tumor classification, segmentation or

detection with the specified location of a tumor. Another important note regarding this and

the following sections, is that only the 2D brain MR images were used. Details will be

discussed in the section about dataset and data manipulation. Due to resource constraints

associated with the computational capabilities of the PC used in this work, it was not possible

to utilize 3D MRI scans. All the methods can be scaled to 3D MRI scans if appropriate

resources become available, but this is something for future work. The following section will

describe the process of developing a CNN for the binary classification of brain tumors using

MR images. Subsequently, evolutionary computing and metaheuristics will be employed to

enhance the metrics obtained in this section.

21

3.1. Brain tumor detection – dataset

The most important thing in any ML solution is a dataset. If there is no knowledge that

can be extracted from the given dataset, the ML algorithm cannot learn patterns and will

struggle to make accurate predictions. Poorly selected, incomplete, noisy or wrong-labeled

data can lead to inaccurate results. According to the survey by Anaconda [21] in 2022, data

scientists spend more than 50% of their time on data preparation tasks such as loading,

cleansing and visualizing the data. In this work, two datasets were merged together which

resulted in 3509 images of both T1-weighted and T2-weighted MRI scans acquired from

various perspectives containing 2915 images with tumor and 594 healthy brain images.

Figure below shows some samples without tumors (Figure 3.1.), and some samples with

tumors (Figure 3.2.)

Figure 3.1. Samples from the dataset without tumor

22

Figure 3.2. Samples from the dataset with tumor

The first dataset, publicly available on the Kaggle platform [22], contains 255 images in

total, including a few images that are not images of a brain, some with wrong labels, and

some duplicates. There are 98 images without tumors and 155 images with tumors. In the

end, a total of 247 images were used. A second dataset, also publicly available on the Kaggle

platform [23], contains 3264 images in total. This dataset was built for brain tumor

classification in four classes: no tumor, glioma tumor, meningioma tumor, and pituitary

tumor. For the purposes of this work, i.e. binary classification, all images with tumors were

put into the same folder and given the same label. After the collection of all images, they

were resized to the specified size (240 - width, 240 - height, 3 - color channels), normalized

and shuffled. Further processing will be explained in details in the next sections. It is

important to note that the dataset is slightly imbalanced, with only 15% of images

representing non-tumor class on the whole dataset. While data balancing was not addressed

in this work, it is acknowledged that implementing such techniques could enhance the

performance metrics and overall results. In the process of model training, 80% of the dataset

was used for training, whereas 10% of that 80% was used for validation. Another 20% of

the dataset was used for testing and calculating accuracy and F1 score metrics. The full

dataset was mainly used for training and testing the final optimized CNN model, whereas

for the research part (hyperparameter tuning, input image preprocessing…) only 70% of the

whole data was used as a subset to perform studies.

23

3.2. Brain tumor detection - CNN architecture

The second step in every data science or machine learning project is defining the

appropriate machine learning model. Based on previous experience and related work, CNNs

are used in this work. Determining the optimal architecture for CNNs - including aspects

such as depth, the number of convolutional layers, appropriate regularization techniques, and

kernel sizes - presents a significant challenge. A network that is too shallow may struggle

with generalization to unseen data. On the other hand, a network that is excessively deep

often demands a significant amount of time and computational resources for training, while

similar performance could potentially be achieved with a less complex architecture.

Furhtermore, deep networks often have problems such as exploding gradients (networks

have trouble with converging) and overfitting (performing well on training data and poor on

test data). One of the first approaches in optimizing the CNN was finding the optimal

convolutional kernel window size, convolutional input dimension and the pooling window

size. Those terms are explained in the first section. All the code is written in Python

programming language on a Linux machine. Specifications are the following:

- Version: #52-Ubuntu SMP PREEMPT_DYNAMIC

- Machine: x86_64

- Processor: x86_64

- CPU cores: 16

- RAM: 31 GB

- GPU: NVIDIA GeForce RTX 4070 8 GB

The first model used on the mentioned dataset was a CNN with two convolutional layers,

ReLu activation function, batch normalization layer, max pooling layer, dropout layer and

fully connected layer with sigmoid activation. The model was compiled with binary cross-

entropy loss and ADAM optimizer [24]. The whole architecture is shown below (Figure 3.3.)

24

Figure 3.3. First CNN arhitecture

The performance of the model was very poor. It achieved an accuracy of 63% and an F1

score of 71% on the first dataset – not the merged one used in the next sections. The model's

confusion matrix is shown below (Figure 3.4). A confusion matrix is one of the tools in

machine learning used to evaluate the performance of classification models. It provides a

comprehensive summary of the model's predictions compared to the actual outcome. It

shows the true positive (TP) rate – number of positive instances correctly predicted as

positive, the true negative (TN) rate – number of negative instances correctly predicted as

negative, the false positive (FP) rate – number of negative instances incorrectly predicted as

positive (Type I error) and the false negative (FN) rate – number of positive instances

incorrectly predicted as negative (Type II error).

25

Figure 3.4. First CNN model's confusion matrix

In medicine, type II errors or false negative samples are considered more significant

due to their potential to delay critical treatment. For example, if the model incorrectly

identifies an MRI scan as having a tumor when it does not, a specialist can give another look

and suggest getting a second opinion on the topic. But, if the model fails to identify an

existing tumor in an MRI scan from the start, second opinion might never be suggested. That

is the reason why all the metrics in the work contain the accuracy and the F1 binary score.

When class distributions are imbalanced, a model can reach an accuracy of over 90% by

predicting the majority class. For example, in a binary classification, where 95% of the

samples are from the majority class – with tumors, a model that always predicts 'tumor'

would still have high accuracy. That is the reason why the F1 score, or the F-measure, is

used. The mentioned metric takes into account harmonic mean between the model's precision

and recall. It ranges from 0 to 1, where 1 indicates perfect performance.

26

The following chunk of code showcases the implementation of the grid search method with

the aim of finding optimal parameters (number of filters in the convolution layer,

convolutional kernel window size and pooling layer window size) in a shallow CNN (Figure

3.5.)

output_sizes = [16, 32, 64, 128]

kernel_size = [3, 4, 5]

pooling_size = [2, 3, 4]

epochs = [5, 8, 12, 18]

for out in output_sizes:

 for kernel in kernel_size:

 for pool in pooling_size:

 for epoch in epochs:

 print(f'Params: output_size:{out} | kernel_size:{kernel} |

pooling_size:{pool} | epochs:{epoch}')

 m = get_model_v1_custom(out_dimension=out, kernel_window_size=kernel,

pooling_window_size=pool)

 acc, f1 = perform_training_on_model(m, X, y, epochs=epoch, verbose=False)

 best_acc = list(best.keys())[0]

 if best_acc < acc:

 best = {

 acc: (m, f1, (out, kernel, pool, epoch))

 }

 Figure 3.5. Grid search method to find optimal CNN’s parameters

The grid search method tried every combination of parameters mentioned above, and the

best model achieved an F1 score of 87%. Which is 16% more than the first, non-optimized

CNN model. The whole Jupyter Notebook is available on the link [25] by the name of

‘Brain_tumor_detection_v0_simple_grid_search.ipynb’. For further observation, the model

performance was still poor given the fact the problem is a simple binary classification. To

solve the problem, a deeper CNN architecture was introduced, as explained in the following

section.

27

3.3. Proposed model for brain tumor detection

In order to follow the principles of clean code and to make it easier for the reader to

understand the logic behind algorithms and methods described in this work, all the important

functions have been placed within the same file called helper_functions.py [25]. In the

mentioned file, functions such as plot_samples, perform_preprocesing (will be described in

the following sections), load_data, plot_metrics, test_model and train are developed. In

another Python file, called CNN.py [25], the model used for the rest of this work is defined

as shown in the listing below (3.6.)

Listing 3.5. Final CNN architecture

28

In the next sections, the same model will be used but with different hyperparameters and

optimizers. Hence, the get_CNN_model function takes as an input the defined optimizer and

the L2 regularization factor (figure 3.6.)

def get_CNN_model(optimizer, l2_reg = 0.01):

 model = Sequential([
 Input((IMG_SIZE[0],IMG_SIZE[1] ,3)),

 # First convolutional block

 Conv2D(128, 7, activation='relu', kernel_regularizer=l2(l2_reg)),

 MaxPooling2D(pool_size=(2, 2)),

 BatchNormalization(),

 # Second convolutional block

 Conv2D(64, 7, activation='relu', kernel_regularizer=l2(l2_reg)),

 MaxPooling2D(pool_size=(2, 2)),

 BatchNormalization(),

 # Third convolutional block

 Conv2D(64, 7, activation='relu', kernel_regularizer=l2(l2_reg)),

 MaxPooling2D(pool_size=(2, 2)),

 BatchNormalization(),

 # Forth convolutional block
 Conv2D(32, 7, activation='relu', kernel_regularizer=l2(l2_reg)),

 MaxPooling2D(pool_size=(2, 2)),

 BatchNormalization(),

 # Flatten

 Flatten(),
 Dense(1, activation='sigmoid')

])

 model.compile(loss='binary_crossentropy', optimizer=optimizer,

metrics=['accuracy'])

 return model

Figure 3.6. Python method to get a CNN model

The whole process of data loading, getting the CNN model, training the model and getting

the test metrics is described in the diagram below (Figure 3.7). In the end, the proposed CNN

model achieved the accuracy score of 63% and the F1 score of 70% without any

29

optimization. The mentioned metrics will be presented in the next section, where the model

will be compared with the same model with a slightly different optimizer and the famous

VGG-16 pre-trained model.

Figure 3.7. Point of view of a main program in terms of the code structure

3.4. Model comparison

The performance of the model described in the previous section was evaluated and their

performance was compared against other models in this section, specifically a version of the

same model with customized hyperparameters (random selection) and the VGG-16 pre-

trained model. All materials are available at the link [25]. People often use pre-trained

models to reduce the time and resources required for developing ML applications. Training

a model from scratch is an exhausting and time-consuming process. Pre-trained models often

show superior performance since they have been exposed to vast amounts of data from which

they can easily recognize patterns and features. Open-source pre-trained models, such as

VGG, can be customized, e.g. by adding a new classification layer or fine-tuning the existing

30

layers. Hence, they are simple and efficient to use. The mentioned model comparison is

performed over 639 colored images in 240 x 240 resolution format. The data is split in an

80-20 ratio, where every model trains on exactly the same data. All models performed 18

learning epochs with a validation split of 25%. The figure below displays the confusion

matrixes and metric for each model (Figure 3.8.), where a) is an initial CNN model with the

following hyperparameters:

- Learning rate: 0.05

- Momentum: 0.8

- Optimizer: SGD

- L2 regularization factor: 0.01

Another model, b), is the same CNN with different hyperparameters:

- Learning rate: RedcudeLROnPlateau adaptive learning rate starting with 0.01

- Momentum: 0.7

- Optimizer: SGD

- L2 regularization factor: 0

And the last model, c), is a VGG-16 pre-trained model with the following hyperparameters:

- Learning rate: RedcudeLROnPlateau adaptive learning rate starting with 0.01

- Optimizer: ADAM

- L2 regularization factor: 0

31

Figure 3.8. Models’ comparison, a) initial CNN architecture, b) initial CNN architecture

with different hyperparameters, c) VGG-16 model

The ReduceLROnPlateau function is a learning rate scheduler commonly used in training

ML models. It adjusts the learning rate based on the performance of a specified metric –

validation loss in this case. In theory, this technique helps to fine-tune the learning process,

especially when the models stagnate. Another so-called callback, a method that helps in fine-

tuning a learning process of a model, called ‘early stopping’ is used. It’s purpose is to stop

overfitting the model when the chosen metric (again validation loss) is not improving over

the iterations. Those callback functions are not used in the following sections, since they

were used only to observe patterns in different model training approaches. Momentum in the

32

SGD optimization algorithm is a technique used to accelerate convergence and smooth the

optimization process. It introduces a velocity vector that accumulates the gradients' direction

over time, helping the optimizer overcome small, inconsistent gradient fluctuations and push

through shallow or noisy regions in the loss landscape.

In Figure 3.8., the VGG-16 pre-trained model significantly outperforms the other two

models achieving an accuracy of 91% and the F1 score of 94%. In the notebook

‘Brain_tumor_detection_v3_grid_search.ipynb’ [25], the grid search method is

implemented to find the optimal combination of the learning rate, max. epochs, L2

regularization factor and the optimization algorithm momentum. One iteration of the

algorithm takes 30 seconds to finalize, and with 100 iterations the whole process would take

almost an hour. The code below shows how initial parameters are chosen (Figure 3.9.).

def create_n_random_entities(n: int) -> SortedSet:

 entities = SortedSet()

 for i in range(n):
 lr = round(random.uniform(0.001, 0.1),3)

 epochs = random.randint(5, 20)

 l2 = round(random.uniform(0.001, 0.1), 3)

 mom = round(random.uniform(0, 1), 3)

 entities.add(ParamsEntity("SGD",

 lr,
 epochs,

 l2,

 mom))
 return entities

Figure 3.9. Grid search method of finding the best CNN hyperparameters

Given that the entire process is both time-consuming and exhausting, there is no deeper logic

in the selection of these parameters. Duplicates are permitted, and each entity in the

population (in this case, a sorted list) lacks knowledge about the other entities. Furthermore,

the process relies heavily on chance when selecting these N entities. Each entity represents

a unique combination of one float value for the learning rate, one integer value for the

maximum number of epochs, and float values for the L2 regularization factor and the

momentum. The grid search method serves as a great motivation for using something more

intelligent while seeking the optimal, or almost semi-optimal combination of the mentioned

33

parameters. In the next section, such methods are introduced and implemented on the same

problem – a process of finding the best hyperparameters for the previously defined CNN

model. Unlike grid search, which exhaustively evaluates every combination of

hyperparameters in a predefined grid, evolutionary computing algorithms (EC) are way more

effective and adaptable in complex and high-dimensional optimization problems where

relationships between hyperparameters and model performance are not well understood.

Also, by leveraging a population of solutions and evolving them over generations

(iterations), EC algorithms can achieve better results in less time compared to e.g. the grid

search mentioned above. By introducing some knowledge into the population, the global

best solution is informing in which way should the algorithm converge and the randomness

is helping to explore the whole search space, EC algorithms are designed to maintain

diversity within the population, which helps prevent premature convergence, or getting stuck

in the local optima. Some optimization algorithms tend to get stuck in the local optima while

never discovering the global optimum, but all the details will be discussed in the following

section.

34

4. Evolutionary computing in brain tumor detection

This final section dives into the application of EC in three critical areas of brain tumor

detection: input image segmentation, hyperparameter tuning, and loss function optimization.

Each of these study goals addresses a unique aspect of the problem space, emphasizing the

effectiveness and adaptability of EC. First, the use of EC in input image segmentation

highlights its capability to optimize complex, non-linear boundaries in medical imaging data.

Motivated by many papers on the same topic, EC is commonly used for the image

enhancement process after which it is very easy to segment the image into various classes.

Second, hyperparameter tuning, often a time-intensive and computationally expensive

process, can benefit significantly from the efficiency of EC algorithms. Lastly, the

optimization function of the loss function for the CNN model opens plenty of possibilities

for EC algorithms to show their performance. By employing EC in these three domains, this

work underscores its role as a powerful and adaptable tool in not only the field of medicine

or machine learning, but also in other fields like aerodynamics, fluid dynamics,

telecommunications, robotics, physics, logistics and transportation, and similar. With

continual progress of computational technologies and hardware, EC algorithms are even

more applicable. On the other hand, it is not wise to use EC to solve problems where efficient

and exact algorithms are available. For an NP-hard problem where state-of-the-art exact

algorithms cannot solve the problem within the required search time, the use of EC

algorithms and metaheuristics is justified. For example, finding optimal hyperparameters for

CNN is considered an NP-hard problem since it involves searching through a high-

dimensional space of possible configurations. The interactions between these

hyperparameters can lead to exponential growth. Furthermore, there is no known algorithm

that can guarantee finding the global optimum in polynomial time for hyperparameter tuning.

35

4.1. Study 1 – input image segmentation

The first study covers the first primary objective of this work – the usage of EC in the

brain MRI image segmenting process. It is important to note that the dataset used in this

work (section 3.1.) was not originally tailored for the segmentation task. The labels provided

in the dataset were binary (0 or 1), indicating the presence or absence of the target class,

rather than detailed annotations for pixel-level segmentation. As a result, the segmentation

task was defined as isolating the brain matter from the skull region – also known as skull

stripping. Accurate segmentation of brain tissue by removal of non-brain tissues like skull,

muscle/skin, and cerebrospinal fluid is an important task since they produce a lot of noise on

the CNN’s input. The skull-stripping method involves a sequence of steps, starting with

image enhancement using the PSO algorithm to boost performance. This is followed by

background removal, histogram-based thresholding with maximum divergence to extract the

brain region, and morphological operations to eliminate non-brain tissues. The whole

research and final implementation are publicly available on GitHub with all the other

materials under the name ‘Brain_tumor_detection_v1_preprocessing.ipynb’ [25]. Gorai A.

and Ghosh A. [26] introduced PSO-based automatic image enhancement techniques

specifically designed for grayscale images. Their results were compared against linear

contrast stretching, histogram equalization, and genetic algorithm (GA) based image

enhancement approach. In most cases, the PSO-based method outperformed these

techniques, highlighting its effectiveness. One key advantage of the PSO algorithm is its

ability to produce better results through proper parameter tuning, a flexibility not available

in methods like contrast stretching and histogram equalization, which yield only a single

enhanced image for a given input. A similar method is used in this work. The enhancement

process can be denoted as follows: 𝑔(𝑖, 𝑗) = 𝑇[𝑓(𝑖, 𝑗)]
where f(i,j) is the original image and g(i,j) enhanced image. T is the transformation function.

Local enhancement methods apply transformations to a pixel by taking into account the

intensity distribution of its surrounding neighboring pixels. The transformation function is

defined as follows:

𝑔 (𝑖, 𝑗) = 𝑘 ∗ 𝐷𝜎(𝑖, 𝑗) + 𝑏 [𝑓(𝑖, 𝑗) − 𝑐 ∗ 𝑚(𝑖, 𝑗)] + 𝑚(𝑖, 𝑗)𝑎

36

Where D is the global mean and σ(i,j) is the local standard deviation of the (𝑖, 𝑗)𝑡ℎ pixel of

the input image over an 𝑛 𝑥 𝑛 window. 𝑚(𝑖, 𝑗) is the local mean of the (𝑖, 𝑗)𝑡ℎ pixel over the

same window. Parameters, namely a, b, c and k are introduced in the transformation function

to produce large variations in the processed image. For the evaluation of the image

enhancement process without human intervention, the objective function used the sum of

combined three performance measures: entropy value, sum of edge intensity and number of

edges. The work [26] showcases that maximizing those measures maximizes the

enhancement process and quality. The PSO algorithm is used to find the optimal

combination of a, b, c and k parameters, where the enhanced image has maximized the

mentioned evaluation function. Particle Swarm Optimization is a stochastic population-

based metaheuristic. It mimics the social behavior of swarms, such as flocks of birds or

schools of fish. In the basic PSO algorithm, a swarm consists of N particles that navigate

within a D-dimensional search space. Each particle 𝑖 represents a potential solution to the

problem and is described by the vector 𝑥𝑖. Each particle possesses its own position and

velocity, which define its movement direction and step size within the search space.

Optimization takes advantage of the communication between the particles - the best position

visited by the whole swarm or by particles neighborhood 𝑔𝑏𝑒𝑠𝑡 and memory of

remembering its own best position 𝑝𝑏𝑒𝑠𝑡𝑖. There are many topologies associated with the

swarm’s neighborhood, such as chain topology or graph topology. Depending on the

neighborhood structure, a leader refers to the particle that guides another particle’s search

toward a better solution. To sum it up, each particle has the following:

- X-vector of the current position in the search space

- V-vector of a gradient or velocity for the particle

- P-vector of the best solution found so far by the particle

- P-fitness value of the p-vector

The algorithm starts by defining the size of a swarm and creating particles with randomly

initialized starting positions. This step is crucial for the balance between exploration and

exploitation of a search space. All particles can explore different regions, which increases

the likelihood of finding the global optimum and reduces premature convergence. In the

implemented solution, this was achieved by creating a random, four-dimensional vector with

values from 0 up to 0.5. And a similar thing for velocity vectors, with values from -1 up to

1 (Figure 4.1.)

37

Figure 4.1. PSO algorithm constructor method

The initial vector and velocities are four-dimensional because there are four hyperparameters

the algorithm is trying to optimize, a, b, c and k. After the population is initialized, in the

algorithm we can decide whether to use a global neighborhood or a local neighborhood with

a chain topology (every particle is linked to its left and right neighbor). For simplicity, only

the global neighborhood is used in this study. The comparison and detailed explanation of

how the algorithm performs regarding those neighborhoods will be discussed in the

following sections. Next, the algorithm has to evaluate each particle. That is done by the

img_enhance method which takes the image and parameters a, b, c and k for the input, and

return the enhanced image and fitness value for the enhanced image (Figure 4.2.) The logic

for getting the fitness function and enhancing an input image is exactly the same as the one

described above with a mathematical background.

38

def img_enhance(img, a=0.1, b=0.2, c=0.3, k=1.5, n=121):

 # get local mean of (i,j)
 kernel = np.ones((n, n))

 local_mean = convolve(img, kernel, mode='reflect')

 # get local std of (i,j)

 std = pow(np.sum(abs(img - local_mean) ** 2) / (img.shape[0]*img.shape[1]

- 1), 0.5)

 # get global mean of pixels within MxN

 D = np.mean(img)

 # final result

 g = (k * (D / (std + b))) * (img - c * local_mean) + local_mean ** a

 # calculate fitness score

 hist, _ = np.histogram(g, bins=256, range=(0, 256), density=True)

 hist = hist[hist > 0]

 image_entropy = entropy(hist, base=2)

 sobel_edges = sobel(g)
 edge_intensity = np.sum(sobel_edges)

 edges_count = np.sum(sobel_edges > 0.1)

 fitness = np.log(image_entropy * edge_intensity * edges_count)

 return g, fitness

Figure 4.2. Image enhancing method with fitness function calculation

The most important part – particle evolution, of a PSO algorithm can now be explained.

With every new iteration algorithms work as follows:

1. Define two random vectors 𝑟1 and 𝑟2: introducing stochasticity to avoid

deterministic behavior, helping to escape local optima

2. Cognitive component, c, is calculated by the equation 𝑐 = 𝑐1 ∗ 𝑟1 ∗ (𝑝𝑏𝑒𝑠𝑡 − 𝑥𝑖)
3. Social component, s, is calculated by the equation, where the global

neighborhood is previously defined 𝑠 = 𝑐2 ∗ 𝑟2 ∗ (𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑖)

4. The new velocity is updated as following

39

𝑣𝑡+1 = 𝑤 ∗ 𝑣𝑡 + 𝑐 + 𝑠

5. The new particle position is updated as following 𝑥𝑡+1 = 𝑥𝑡 + 𝑣𝑡+1

6. After step 5, every particle is evaluated once again and if their current position is

better (defined by fitness function), the following logic applies 𝑖𝑓 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑖) > 𝑓𝑖𝑛𝑡𝑒𝑠𝑠(𝑝𝑏𝑒𝑠𝑡𝑖): 𝑝𝑏𝑒𝑠𝑡𝑖 = 𝑥𝑖
7. Finally, if the particle position is better than the global best position so far, the

following logic applies 𝑖𝑓 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑖) > 𝑓𝑖𝑛𝑡𝑒𝑠𝑠(𝑔𝑏𝑒𝑠𝑡): 𝑔𝑏𝑒𝑠𝑡 = 𝑥𝑖

The algorithm is performing steps 1 to 7 until the stopping criteria is met (Figure 4.3.), which

might be a maximum number of iterations, big enough fitness function of global best

position, time limit or something similar. In this case, the algorithm is built with only 3

maximum iterations. Three iterations were enough to prove the point (evolutionary

computing can be used for image segmentation) and to enhance the input image with decent

results. Also, keeping in mind that the mentioned dataset has almost 700 images, algorithm

has to perform three iterations for each image with 20 different particles.

Figure 4.3. Pseudocode of PSO algorithm

40

Parameters mentioned in the steps above, 𝑤, 𝑐1 and 𝑐2, are parameters of the PSO algorithm

where their proper tuning can allow the algorithm to adapt to different optimization

landscapes. E.g. if there is no social component (𝑐2 = 0), the particle’s movement depends

only on the best position discovered on their own. Without the social component particles

cannot effectively share information and converge into a global solution

. The social component is also called an exploitation factor, hence if the 𝑐2 factor is high, the

algorithm converges towards the global best solution which might not be the global

optimum. On the other hand, the cognitive factor (𝑐1) promotes algorithm exploration and

where each particle is trying to get closer to their so far best position. If the cognitive factor

is zero, the algorithm converges faster but with a high risk of not finding the global optimum.

Lastly, the third parameter 𝑤 is called the weight inertia factor or in some literature, learning

rate. It defines how fast particles will adapt to their new position, or how fast they will learn.

The optimal combination of those parameters is crucial for algorithm efficiency and good

convergence. In this work, the mentioned parameters were set as follows: 𝑤 = 0.6, 𝑐1 = 2.05, 𝑐2 = 1.7

After the PSO algorithm outputs the best parameters for the input image, an enhanced image

is used in the further process of skull stripping. The enhanced image is normalized, and by

using the Otsu’s thresholding method an image is separated into two distinct classes: a

foreground class and a background class. Otsu’s method is based on finding the optimal

threshold value to separate foreground pixels from the background pixels in the bimodal

histogram made from the grayscale image. The mentioned threshold needs to minimize the

variance within each class and maximize the variance between the classes. After the

thresholding process, a connected components analysis is performed to separate the groups

of contiguous pixels in the binary image to then identify the largest connected component

(skull or brain tissue) within the image. After the previous step, the brain mask is formed

simply by setting all the pixels beside the largest object as a background (white), figure

below c) (Figure 4.4). Next, the small holes inside the brain mask are filled using

morphological opening and median blurring, as shown in figure d) (Figure 4.4). In the last

step, the final brain mask is applied to the initial image giving the final result.

41

Figure 4.4. Skull stripping process; a) original image, b) enhanced image by PSO

algorithm, c) initial brain mask, d) smoothed brain mask, e) final image [25]

To compare how well the proposed method works, the same model was trained on the same

split of data (511 train images, and 128 test images), but the processing method was different

in 6 scenarios [25]. For simplicity, the lightweight CNN model with only one convolution

layer was used as reference. The 6 different scenarios are:

1. No processing, colored images

2. No processing, grayscale images

3. The first processing method, colored images

4. Proposed PSO processing method, colored images

5. Combination of the third and fourth methods, colored images

42

6. Combination of the fourth and third methods, colored images

The first scenario is used to define why we need image processing at the input of the CNN

model, and the second scenario is used to observe is the color within MRI scans significant

or not for tumor detection. For each scenario, the metric achieved on test data will be

presented as an accuracy score, F1 score and confusion matrix.

1. Scenario: no processing, colored images

Figure 4.5.1. Final metrics

43

2. Scenario: no processing, grayscale images

Figure 4.5.2. Final metrics

3. Scenario: first processing method, colored images

Figure 4.5.3. Final metrics

44

4. Scenario: proposed PSO processing method, colored images

Figure 4.5.4. Final metrics

5. Combination of the third and fourth scenario, colored images

Figure 4.5.5. Final metrics

45

6. Combination of the fourth and third scenario, colored images

Figure 4.5.6. Final metrics

46

Table 4.6. Scenarios comparison

 Scenario description Accuracy F1 score

Scenario 1 No processing, colored

images

0.86 0.90

Scenario 2 no processing,

grayscale images

0.84 0.89

Scenario 3 first processing method,

colored images

0.88 0.92

Scenario 4 proposed PSO

processing method,

colored images

0.78 0.85

Scenario 5 Combination of the

third and fourth

scenario, colored

images

0.80 0.86

Scenario 6 Combination of the

fourth and third

scenario, colored

images

0.80 0.86

The Table 4.6. shows the metrics for all scenarios in this study. Turning images to the

grayscale did not improve any metrics (scenario 1 versus scenario 2). Thus, for the following

scenarios only images with color are used. The third scenario is a simple processing method

that finds the largest contour within the image and resizes the original image to a uniform

size to fit the object within the largest contour perfectly. Simply put, the method is zooming

images to remove noise that is not part of the brain from the background which is not a part

of a brain (Figure 4.7.).

47

Figure 4.7. Brain zooming method; a)

original image, b) processed image

The scenario above outperformed the model with non-processed images by 2% in accuracy

and F1 score. The fourth scenario is a proposed PSO processing method, which performed

significantly worse even against the non-processed gray images. The figure below shows

original images a), and those images processed with the proposed method b) (Figure 4.8.) It

can be seen that for some samples algorithm works perfectly, it removes the skull and noise

area around brain tissue. But, for some samples, the algorithm got confused and removed

parts of a brain tissue, leaving the skull intact. The reason for that is difficulty in separating

the background from the foreground. As mentioned in section 3.2., the dataset contains both

T1-weighted and T2-weighted MRI scans of different resolutions and quality. The proposed

algorithm for skull stripping works well for only one type of MRI scan, since in T2 gray

matter is bright and white matter is darker than gray matter, while on the T1 scans gray

matter is dark and white matter is bright. The bone is usually bright in both scans. The logic

behind the skull stripping algorithm is to find the biggest connected object in the background

of an image and remove it. If the logic is applied to the T2 MRI scans, where cerebrospinal

fluid also appears bright, the algorithm will have trouble defining what is the background

and vice versa. Hence, the algorithm removes some parts of brain tissue with the skull and

the cerebrospinal fluid.

48

Figure 4.8. PSO processing method visualization; a) original images, b) processed images

Samples where algorithm removed a part of a brain tissue are highlighted with red circles

In addition, for the following studies, the chosen segmentation method is brain zooming

(scenario 3). The mentioned method performed well in this study (Figure 4.6.) and it was

well-suitable for the chosen dataset used in this work. It is worth noting though that

separating images into classes (e.g. T1, T2) before their segmentation would improve the

results.

49

4.2. Study 2 – hyperparameter tuning

As shown in section 3.4., finding the optimal hyperparameters for the specified CNN

model is challenging. Some computational intelligence is needed to speed up the process

and EC fits here perfectly. Three EC algorithms are introduced here to find the optimal

combination of the learning rate, maximum number of iterations, the L2 regularization factor

and the momentum factor for the SGD optimizer. Those algorithms are, namely:

- Particle Swarm Optimization (PSO)

- Moth Flame Optimizer (MFO)

- Non-linear Levy Chaotic Moth Flame Optimizer (NLCMFO)

A PSO algorithm was already introduced in the first study. The whole implementation can

be found in the PSO.py file [25]. The code is quite similar to the code for the first study.

Some of the differences are: different velocity and position limits and stagnation control (if

the algorithm have the same solution for the N iterations, stop the iterations). Optimization

class looks like this:

class CNN_optimization:

 def __init__(self):

 # load data

 X, y = load_data()

 self.X_train, self.y_train, self.X_test,

 self.y_test = train_test_split(X, y, test_size=0.2)

 def get_metrics(self, N: np.ndarray) -> tuple:

 optimizer = keras.optimizers.SGD(learning_rate=N[0], momentum=N[3])

 model = get_CNN_model(optimizer, l2_reg = N[2])

 return train(model, self.X_train, self.X_test, self.y_train, self.y_test,

epochs=int(N[1]), verbose=False)

Figure 4.9. CNN optimization class with get_metrics method

A get_metrics function will train a proposed CNN model (introduced in the third section),

using the SGD optimizer with selected hyperparameters as an input to the method, and test

the model using the test data. The method returns the accuracy and the F1 binary score. The

mentioned method is used for all of three EC algorithms introduced in this section and called

when the evaluation of a particle’s or a moth’s position is needed. It is important to note that

the train-test split is made only once, at the beginning of the optimization process. In any

other scenario, it would not make sense. Two versions of the PSO algorithm are observed in

50

this study, one with the global neighborhood and another with a chain topology

neighborhood. In general, it is observed that PSO algorithm with global neighborhood can

easily converge too early in some of the local optima. In this study, the number of iterations

is limited to 30 due to the limited computational power and resources. The first version with

the global neighborhood with the following parameters:

- Swarm size: 20

- Max. iterations: 30

- c1: 2

- c2: 1.75

- w: 0.5

The algorithm’s initial best position overall had an F1 score of 87%, whereas the last best

position had an F1 score of 93%. The PSO algorithm with global neighborhood optimized

the mentioned hyperparameters and boosted the F1 score by more than 6% within 15

iterations. The algorithm stagnated on the 15th iteration (Figure 4.10.)

Figure 4.10. PSO with global neighborhood score over iterations

51

Another interesting fact to observe in these algorithms is the movement of a single particle.

The graph below represents the F1 score of every position of the first particle in the swarm

(Figure 4.11.) From the movement of the selected particle, by the 6th iteration, the particle

was exploring the search space. After it found its personal best position, it tried to focus

close to that position (iterations 6 to 11).

Figure 4.11. Score over iterations for a single particle within a swarm

The whole experiment with the PSO algorithm is available on GitHub by the name of

Brain_tumor_detection_PSO.ipynb. Another instance of the PSO algorithm, but with a local

neighborhood showed a similar performance. The algorithm’s parameters were the same,

and the algorithm stagnated once again on the 15th iteration (Figure 4.12). The F1 score rose

from 84% to 90%. The only difference was the stability of a single particle since it was

updated based only on its left and right neighbors (Figure 4.13). For this problem, there was

no significant difference between the two versions of the same algorithm. The difference

would be visible only with a higher number of iterations. Unfortunately, it takes around 10

minutes for every iteration of the algorithm on the computational resources used for this

work. For the future reference, a bigger number of iterations would surely be a good path to

pursue.

52

Figure 4.12. PSO with local neighborhood score over iterations

Figure 4.13. Score over iterations for a single particle within a swarm

53

Another algorithm used in this study was introduced by Dehkordi et al. [19] in their paper

where it outperformed other optimization algorithms such as PSO, GA, GWO – Nonlinear

Levy Chaotic Moth Flame Optimizer (NLCMFO). But before explaining that part, it is

necessary to understand the base version of the algorithm, a simple Moth Flame Optimizer

(MFO).

MFO, population-based algorithm introduced by Mirjalili [27], mimics the transverse

orientation for particle navigation. The mentioned technique is used by moths at night. In

this algorithm, moth behavior is presented as an optimization technique where every moth

moves following the spiral movement around the flames. The algorithm begins similarly to

PSO, by randomly producing moths in the search space and evaluating their position

considering the optimal position with the flame. The moths are represented as search agents

that explore the search space, and the flames are represented as their flags or pins in their

way to find a better solution in the search space (Figure 4.14).

Figure 4.14. The spiral movement of a moth 𝑀𝑖 towards the flame 𝐹𝑗

The spiral motion of the moths around the flame ensures the balance between exploration

and exploitation in the MFO algorithm. A flame number is calculated dynamically over the

iterations following the equation:

𝑓𝑙𝑎𝑚𝑒_𝑛𝑜 = 𝑟𝑜𝑢𝑛𝑑(𝑁 − 𝑙 ∗ 𝑁 − 𝑙𝑇)

54

Where N represents the maximum number of flames (given to the algorithm on the start), l

is a current iteration and T is a maximal number of iterations (also given to the algorithm on

the start). The moth’s position is updated by the following equation: 𝑆(𝑀𝑖 , 𝐹𝑗) = 𝐷𝑖 ∗ 𝑒𝑏𝑡 ∗ cos(2𝜋𝑡) + 𝐹𝑗

Where the new position of a moth 𝑀𝑖 regarding the flame 𝐹𝑗, is represented as 𝑆(𝑀𝑖, 𝐹𝑗). 𝐷𝑖
is the distance between ith moth and jth flame, b is a constant value used to define the

logarithmic helix space, and t represents a random number between [-1, 1]. The equation for

getting the t value is following: 𝑡 = (𝑎 − 1) ∗ 𝑟𝑎𝑛𝑑 + 1

Where a is calculated for every iteration following the equation:

𝑎 = −1 + 𝑇𝑖 ∗ (−1𝑇)

Here, 𝑇𝑖 represents the ith iteration, and T represents a maximal number of iterations. This

helps the algorithm to know when to explore space and when to converge to the current best

solution. The implemented version of the algorithm was built on top of these equations.

Furthermore, a stagnation check was added and another check to see if the moth went out of

the search space. If true, its position was set within the borders of a search space. A Python

implementation of the MFO algorithm used NumPy arrays to store the moth’s and flame’s

positions. Where sorting those arrays would present the best so-far positions within the

search space. The flames are updated based on the best solution so far, and moths are updated

based on the logarithmic spiral. The process is repeated until the convergence or stopping

criterion is met. In this study, the stopping criteria is a maximal number of iterations – 10.

The algorithm is robust to getting stuck in local optima because of the dynamic number of

flames which gradually reduces over iterations. The mentioned behavior prevents premature

convergence. Another key factor is the simplicity of the algorithm, every moth has to know

only his position (no personal best or global best like in PSO). An overview of the

implementation is available in the files named MFO.py and

Brain_tumor_detection_MFO.ipynb [25].

55

The initial parameters of the MFO algorithm were:

- number of moths: 30

- max. number of iterations: 10

- max number of flames: 15

- b: 1

The optimization method boosted the F1 score from 86% to 90%. The total execution time

was around 150 minutes, similar to PSO’s time for 15 iterations. The graph below shows the

F1 score for the best position found in every iteration (Figure 4.15).

Figure 4.15. MFO score over iterations

As mentioned before, to solve some drawbacks mentioned in the paper [19], the NLCMFO

algorithm has been introduced as quoted “The primary purpose of the NLCMFO is to

increase the performance of the standard MFO in two segments. The initial stage is to

integrate MFO with Levy flight theory and chaotic maps, followed by employing the

nonlinear weight coefficient parameter as a control variable between both the algorithm's

exploration and exploitation processes.”

56

Chaotic maps play a crucial role in optimization algorithms and not only NLCMFO one, by

introducing deterministic, yet highly unpredictable behavior, making them a powerful

alternative to randomness. Unlike random parameters, chaotic maps leverage the non-

repetition and ergodicity of chaos to systematically and thoroughly explore the search space.

The use of chaotic maps helps optimization techniques improve their exploration

capabilities, covering diverse regions of the search space. This approach also helps in

avoiding local optima and accelerates convergence by maintaining a dynamic and non-linear

exploration pattern. In this thesis, the chosen chaotic map is a logistic map with the following

equation: 𝑋𝑛+1 = 𝑟 ∗ 𝑋𝑛(1 − 𝑋𝑛)

Where r was a random value set to 3.99 in this study.

Levy flight theory, a stochastic step method was used to control the step size depending on

the probability distribution function generated by the Levy distribution [28] followed by the

equation: 𝐿(𝑥𝑖) ≈ |𝑥𝑖|1−𝛼, 1 < 𝛼 ≤ 2

Lewy flight is generally connected with small steps, and rarely with long jumps. Hence, it is

more suitable for the optimization field than, for example, a uniform random search [29].

Overall, NLCMFO showed better performance and stability over the MFO algorithm both

in the mentioned paper [19], and in this thesis. The algorithm implementation is very similar

to the MFO algorithm implementation, with a few digressions:

- in the equation for the moth position update, instead of a b value the levy step over a

multiplied by alpha (value of 1.8 in this work)

- in the same equation, instead of a t value (the current iteration of the algorithm), a

logistic map has been applied to the randomly chosen number and constant r of 3.99

The final equation for updating the moth position is the following:

 𝑆′(𝑀𝑖, 𝐹𝑗) = 𝐷𝑖 ∗ 𝑒𝑙𝑒𝑣𝑦(𝑎∗1.8) ∗ cos(2𝜋 ∗ logMap(x, r)) + 𝐹𝑗

57

Where x represents a random value chosen at the beginning of the algorithm (before the first

iteration). The whole implementation is available by the name of NLCMFO.py and

Brain_tumor_detection_NLCMFO.ipynb [25].

The algorithm improved F1 score by almost 10% over only ten iterations as shown in the

graph below (Figure 4.16.)

Figure 4.16. NLCMFO score over iterations

Accordingly, the algorithm found a better solution in almost every new iteration, which

demonstrates the great ability to explore the given search space compared to PSO and MFO

algorithms. The graph below shows the motion of a single moth over the same iterations

(Figure 4.17). It can be observed that the specified moth improved its starting position

(fourth iteration), and stayed close to the best, optimal position.

58

Figure 4.17. Single moth score over iterations

The next study will show an even better comparison between MFO and NLCMFO

algorithms. In conclusion, all three algorithms have the same time and space complexity.

The PSO algorithm uses a bit more memory, given the fact it has to store all particle’s best

positions and their velocities. But on the other hand, MFO and NLCMFO algorithms have

to perform sorting operations. The NLCMFO algorithm showed better performance by

boosting the F1 score by almost 10%, whereas other algorithms did the same by only 6%.

All three algorithms are scalable for bigger problems and a greater number of iterations. For

future reference, a better comparison of different search spaces is needed.

Table 4.18. Metrics of different CNN models on a subset

 Accuracy F1 score

CNN – without EC 0.63 0.71

CNN – PSO 0.88 0.93

CNN - MFO 0.86 0.9

CNN - NLCMFO 0.89 0.93

59

4.3. Study 3 – CNNs loss function optimization

Traditional algorithms like Stochastic gradient descent (SGD), Adam, Adagrad, and

RMSprop have become the standard for optimizing CNN loss function. However, these

methods are often taken for granted, even though they rely on gradient information, making

them prone to challenges such as getting stuck in local optimum, sensitivity to

hyperparameters, or limited exploration. EC algorithms present a suitable alternative for

optimizing CNN loss functions. Unlike gradient-based methods, EC algorithms are gradient-

free, enabling them to effectively navigate rugged, high-dimensional search spaces without

relying on the differentiability of the loss surface. By leveraging mechanisms such as

population-based exploration, mutation, and crossover, EC algorithms can explore diverse

regions of the search space, avoid local optima, and discover more robust solutions. This

makes EC particularly suitable for optimizing CNN loss functions. Overall EC algorithm’s

time to converge is longer than in traditional gradient-based algorithms, but it may

outperform when gradients are noisy, or the loss function surface is highly non-convex. EC

methods have a high computational cost per iteration, and this was the case in this study as

well. For simplicity, a simple artificial NN was created for the purposes of this study. A 10-

dimensional input was connected to a hidden layer with five nodes, which was connected to

an output layer with two nodes. Next, a dummy data was created according to the code

below:

inputs = np.random.randn(5, 10)

labels = np.array([0, 1, 0, 1, 0])

Figure 4.19. Dummy data generating

For the study purpose, three EC versions were implemented again – PSO, MFO and

NLCMFO algorithms. The implementation was exactly the same as the one in the study

before, with a few minor modifications so it would fit the problem of this study. The purpose

of this study was to observe how well EC algorithms are performing compared to the famous

gradient-based algorithms. Furthermore, the main difference between PSO with a global

neighborhood and PSO with a local neighborhood is shown, such as a difference between

MFO and NLCMFO algorithms. For that purpose, a Python method was developed to

compare the average loss of different optimizers over multiple iterations on the same ANN.

The whole implementation is available in the file named Loss_function_opt.ipynb [25]. The

60

graph below displays the results of this study (figure 4.19.)

Figure 4.20. Average loss comparison on different optimizers over 25 epochs within

multiple iterations

In case of this simple problem, the learning process of a simple ANN, PSO algorithm with

a global neighborhood achieved very impressive results over 25 epochs within 10 different

iterations. Every optimizer performed a learning step over 25 epoch 10 times, with the

average displayed on the graph above. PSO algorithm with global neighborhood (light blue

line) scored the lowest average loss and converged fastest. Within only five epochs, the

algorithm converged. A PSO algorithm with a chain topology, scored impressive results as

well, with a slightly slower convergence (orange line). A global neighborhood forces the

algorithm to explore the search space more aggresively by guiding all particles toward the

global best solution, which is why the algorithm converges faster. This is not always a good

thing, if an algorithm is stuck in the local optimum, it may never get out of it. Green line

shows the performance of a basic MFO algorithm is displayed. Clearly, it performance is the

worst compared to other optimizers. However, the performance of the algorithm was boosed

61

significantly by the slight modification of the simple MFO algorithm, i.e. introduction

oflogistic maps and levy flights. The NLCMFO algorithm outperformed two commonly used

optimizers, SGD and Adagrad, within 20 epochs for this single problem. Because of limited

resources and computational power, the mentioned comparison was not suitable for the

optimization of the CNN used in this work. Hence, the optimizer used to train the mentioned

CNN model was still SGD, a gradient-based method. The following section will show the

comparison between the mentioned CNN model and the VGG-16 pre-trained model on a

whole dataset.

4.4. Final CNN model

In the processes of input image segmentation and the model's loss function optimization, no

EC was used for the reasons stated in previous sections. EC was used only to find optimal

hyperparameters of a mentioned CNN model. The process was done on a smaller subset,

which means those optimal hyperparameters should be tested on the whole dataset. From the

third chapter and graph comparison (Figure 3.8.), the proposed model achieved F1 score of

only 71% on a subset of the dataset. In the second study, the same model was optimized by

three different optimization algorithms: PSO, MFO and NLCMFO. The NLCMFO

algorithm found the following best hyperparameters:

- Learning rate: 0.0946

- Momentum: 0.5815

- Optimizer: SGD

- L2 regularization factor: 0

- Number of iterations: 20

With these it achieved the F1 score of 93%. In the final notebook, the mentioned CNN model

with optimal hyperparameters is trained on the whole dataset (total of 3509 images) and

compared to the VGG-16 pre-trained model. The results are shown in the table below (Table

4.20.)

62

Table 4.21. Introduced CNN and VGG-16 model final comparison

 Accuracy F1 score

CNN 0.95442 0.97283

VGG-16 0.96011 0.97623

The CNN model showed similar performance as the pre-trained VGG-16 model on this

specific data split. However, more important is the significant improvement of the F1 score

within the CNN model with different hyperparameters. In fact, it ensures that using the

optimal hyperparameters can boost the F1 score by more than 15%. Both models remain

insufficiently accurate for the task of simple binary classification, primarily due to the

imbalanced and noisy nature of the chosen dataset.

63

Conclusion

This thesis explores the potential of EC techniques was explored, specifically in the

context of brain tumor detection using CNNs. The early detection of brain tumors is crucial

for improving patient outcomes, as it enables timely intervention and treatment. AI models,

particularly CNNs, have shown promising results in medical image analysis, offering

accurate, efficient, and automated detection systems. The incorporation of EC methods, such

as Particle Swarm Optimization (PSO), Moth Flame Optimization (MFO), and Nonlinear

Levy Chaotic Moth-Flame Optimization (NLCMFO), has the potential to further enhance

the performance of CNNs in this domain.

In this research, the latest state-of-the-art methods using EC techniques for brain tumor

classification and detection were compared and implemented, shedding light on their

applications and the improvements they bring. Various approaches were assessed, from

optimizing CNN hyperparameters, enhancing segmentation and loss functions to achieving

better convergence speeds and avoiding premature convergence. Studies such as Dehkordi

et al. [19] and Zhang et al. [18] have demonstrated the effectiveness of EC methods in

optimizing CNN architectures and training processes, achieving high accuracy rates in brain

tumor detection.

Motivated by this fact, this research used a simple CNN model with two convolutional

layers, max pooling, and dropout layers. The model achieved an F1 score of 71% on a subset

of the dataset which has been previously merged and processed. Later, the same model

achieved an F1 score of 97% with optimal hyperparameters on the whole dataset. The

integration of evolutionary computing further improved the performance of the model.

Firstly, the PSO was employed for image segmentation, but the results were insufficient for

further use. Next, the CNN hyperparameters were fine-tuned using MFO, PSO, and

NLCMFO. The NLCMFO algorithm significantly improved the F1 score, achieving an

impressive performance boost of over 15%. Additionally, the research explored the

optimization of the loss function using MFO, PSO, and NLCMFO, although computational

limitations hindered the applicability to the CNN model. However, the results were very

interesting and they confirmed the theoretical foundation behind the mentioned optimization

algorithms.

64

A comparison between the CNN model optimized with NLCMFO hyperparameters and the

pre-trained VGG-16 model showed similar performance, further validating the effectiveness

of the proposed approach. While the results are promising, there is still considerable room

for improvement and further research. Future work should focus on extending and cleansing

the dataset, exploring 3D MRI scans, and adapting the models for real-time applications in

clinical settings. Furthermore, optimizing these models for larger and more diverse datasets

in high-performance computing environments could lead to even more accurate and robust

tumor detection systems.

In conclusion, the integration of evolutionary computing with deep learning models such as

CNNs has shown great potential for enhancing brain tumor detection, but continued research

is necessary to fully leverage these techniques and deploy them effectively in clinical

practice.

65

Literature

[1] Mayo Clinic, Brain tumor: Overview, (2024, December). URL:

https://www.mayoclinic.org/diseases-conditions/brain-tumor/symptoms-causes/syc-

20350084; accessed 21. December 2024.

[2] Judas M., Kostovic I., Temelji neuroznanosti, Zagreb: MD, 1997.

[3] Chang H., Valentino D.J., Duckwiler G.R., Toga A.W., Segmentation of brain MR

images using a charged fluid model, IEEE, 54, 10 (2007), pages 1798-1813

[4] El-Dahshan et al., Computer-aided diagnosis of human brain tumor through MRI: A

survey and a new algorithm, ScienceDirect, 41, 11 (2014), pages 5526-5545

[5] Lloyd-Jones G., Radiology masterclass – MRI interpretation, (September 2017).

URL: https://www.radiologymasterclass.co.uk/tutorials/mri/mri_scan; accessed 21.

December 2024.

[6] Sajedi H., Pardakhti N., Age prediction based on brain MRI image: A survey,

Springer, 43, 8 (2019), pages 279

[7] Wiering M., Otterlo M., Reinforcement learning, Berlin: Springer, 2012.

[8] Goodfellow I., Bengio Y., Courville A., Deep learning, United States: MIT Press,

2016.

[9] Muller B. et al., Neural networks: An introduction, Berlin: Springer, 1991.

[10] Towards data science, what’s the role of weights and bias in a neural network?
(2020, July). URL: https://towardsdatascience.com/whats-the-role-of-weights-and-

bias-in-a-neural-network-4cf7e9888a0f ; accessed 26. December 2024.

[11] El-Ghazali T., Metaheuristics – From design to implementation, United States: John

Wiley & Sons, 2009.

[12] Darwish A. et al., A survey of swarm and evolutionary computing approaches for

deep learning, Springer, 53, 1 (2019), pages 1767-1812

[13] Yao X, Evolving artificial neural networks, IEEE, 87, 9 (1999), pages 1423-1447

[14] Leung F. et al., Tuning of the structure and parameters of a neural network using an

improved genetic algorithm, IEEE, 1, 1 (2002), pages 25-30

[15] Cheung B., Sable C., Hybrid evolution of convolutional networks, IEEE, 1 (2011),

pages 293-297

[16] Fujino S., Mori N., Matsumoto K., Deep convolutional networks for human sketches

by means of the evolutionary deep learning, IEEE (2017), pages 1-5

[17] Khalifa M. et al., Particle swarm optimization for deep learning of convolution

neural network, IEEE (2017), pages 1-5

[18] Zhang Y. et al., Pathological brain detection in MRI scanning by wavelet entropy

and hybridization of biogeography-based optimization and particle swarm

optimization, Springerplus, 4, 1 (2015), pages 716

[19] Dehkordi A., Hashemi M., Neshat M., Mirjalili A., Sadiq A., Brain tumor detection

and classification using a new evolutionary CNN, SSRN (2022), pages 53

https://www.mayoclinic.org/diseases-conditions/brain-tumor/symptoms-causes/syc-20350084
https://www.mayoclinic.org/diseases-conditions/brain-tumor/symptoms-causes/syc-20350084
https://www.radiologymasterclass.co.uk/tutorials/mri/mri_scan
https://towardsdatascience.com/whats-the-role-of-weights-and-bias-in-a-neural-network-4cf7e9888a0f
https://towardsdatascience.com/whats-the-role-of-weights-and-bias-in-a-neural-network-4cf7e9888a0f

66

[20] Mahesh, K., Renjit A., Evolutionary intelligence for brain tumor recognition from

MRI images: a critical study and review. Springer, 11 (2018), pages 19-30

[21] Anaconda, 2022 State of Data Science (2022, May). URL:

https://www.anaconda.com/resources/whitepapers/state-of-data-science-report-2022 ;

accessed: 6. January 2025.

[22] Chakrabarty N., Brain MRI Images for Brain Tumor Detection, Kaggle (2019). URL:

https://www.kaggle.com/datasets/navoneel/brain-mri-images-for-brain-tumor-

detection/code ; accessed: 6. January 2025.

[23] Kanchan S., Chakrabarty N., Bhuvaji S. et al., Brain Tumor Classification (MRI),

Kaggle (2020). URL: https://www.kaggle.com/datasets/sartajbhuvaji/brain-tumor-

classification-mri ; accessed: 6. January 2025.

[24] Keras official documentation, ADAM optimizer class. URL:

https://keras.io/api/optimizers/adam/ ; accessed: 6. January 2025.

[25] Github materials, Brain tumor detection – Final thesis (2025, February). URL:

https://github.com/Jandjurinec/FinalThesis

[26] Gorai A., Ghosh A., Gray-level image enhancement by Particle Swarm Optimization,

IEEE, 1 (2009), pages 72-77

[27] Mirjalili S., Moth-flame optimization algorithm: A novel nature-inspired heuristic

paradigm, ScienceDirect, 89, 1 (2015), pages 228-249

[28] Siegrist K., 5.16: The Lévy Distribution (2022, April). URL:

https://stats.libretexts.org/Bookshelves/Probability_Theory/Probability_Mathematica

l_Statistics_and_Stochastic_Processes_(Siegrist)/05%3A_Special_Distributions/5.16

%3A_The_Levy_Distribution ; accessed: 12. January 2025.

[29] Faramarzi A. et al., Marine Predators Algorithm: A nature-inspired metaheuristic,

ScienceDirect, 152, 1 (2020), pages 113377

https://www.anaconda.com/resources/whitepapers/state-of-data-science-report-2022
https://www.kaggle.com/datasets/navoneel/brain-mri-images-for-brain-tumor-detection/code
https://www.kaggle.com/datasets/navoneel/brain-mri-images-for-brain-tumor-detection/code
https://www.kaggle.com/datasets/sartajbhuvaji/brain-tumor-classification-mri
https://www.kaggle.com/datasets/sartajbhuvaji/brain-tumor-classification-mri
https://keras.io/api/optimizers/adam/
https://github.com/Jandjurinec/FinalThesis
https://stats.libretexts.org/Bookshelves/Probability_Theory/Probability_Mathematical_Statistics_and_Stochastic_Processes_(Siegrist)/05%3A_Special_Distributions/5.16%3A_The_Levy_Distribution
https://stats.libretexts.org/Bookshelves/Probability_Theory/Probability_Mathematical_Statistics_and_Stochastic_Processes_(Siegrist)/05%3A_Special_Distributions/5.16%3A_The_Levy_Distribution
https://stats.libretexts.org/Bookshelves/Probability_Theory/Probability_Mathematical_Statistics_and_Stochastic_Processes_(Siegrist)/05%3A_Special_Distributions/5.16%3A_The_Levy_Distribution

67

Summary

Title: Evolutionary computing optimization of neural network for tumor detection in brain

MR images

Key words: Brain tumor detection, Convolutional neural networks, Evolutionary computing

This thesis explores the application of evolutionary computing (EC) techniques to

optimize convolutional neural networks (CNNs) for brain tumor detection in MRI scans. EC

techniques were used for image preprocessing, hyperparameter tuning, and loss function

optimization. Using a dataset of 3509 MRI scans, initial CNN F1 score was 71% (accuracy:

63%). Three EC algorithms—PSO, MFO, and NLCMFO—were tested, with NLCMFO

boosting the F1 score to 97%. While EC-assisted skull stripping showed mixed results,

simpler preprocessing proved more reliable. A final comparison between the optimized CNN

and the pre-trained VGG-16 model showed similar performance. This result highlights the

potential of evolutionary algorithms to enable custom CNNs to perform comparably to state-

of-the-art pre-trained models in medical image analysis. Despite computational costs and

dataset challenges, EC shows promise for enhancing medical image analysis, warranting

further research.

68

Summary in Croatian

Naslov: Optimiranje neuronske mreže evolucijskim računanjem za detekciju tumora u MR

slikama mozga

Ključne riječi: Detekcija tumora mozga, konvolucijske neuronske mreže, evolucijsko

računarstvo

Rad istražuje primjenu tehnika evolucijskog računanja (ER) za optimizaciju

konvolucijskih neuronskih mreža (CNN) u detekciji tumora mozga na MRI snimkama. ER

metode korištene su za obradu slika na ulazu modela, podešavanje hiperparametara i

optimizaciju funkcije gubitka. Na skupu podataka od 3509 MRI snimaka, početna F1 mjera

CNN-a iznosila je 71% (točnost: 63%). Testirana su tri ER algoritma: PSO, MFO i

NLCMFO – pri čemu je NLCMFO povećao F1 mjeru na 97%. ER metoda uklanjanja

lubanje nije pokazala značajnije rezultate. Konačna usporedba optimiziranog CNN-a s

unaprijed treniranim VGG-16 modelom pokazala je slične performanse. Navedeni rezultati

naglašavaju potencijal ER algoritama za optimiranje CNN modela kako bi postigli rezultate

usporedive sa state-of-the-art modelima. Unatoč računalnim troškovima i izazovima

vezanim uz podatke, ER pruža čvrste temelje za daljnja istraživanja u medicinskoj analizi

slika i općenito.

69

Abbreviations

ACO Ant Colony Optimization

ANN Artificial Neural Network

AI Artificial Intelligence

CNN Convolutional Neural Network

CT Computed Tomography

DL Deep Learning

DWT Discrete Wavelet Transform

EC Evolutionary Computing

FN False Negative

FP False Positive

GA Genetic Algorithm

GP Genetic Programming

GWO Grey Wolf Optimization

MFO Moth Flame Optimization

ML Machine Learning

MR Magnetic Resonance

MRI Magnetic Resonance Imaging

fMRI Functional Magnetic Resonance Imaging

MSE Mean Squared Error

NBTF National Brain Tumor Foundation

NLCMFO Nonlinear Levy Chaotic Moth Flame Optimization

NN Neural Network

NP Non-deterministic Polynomial-time

PC Personal Computer

PET Positron Emission Tomography

PSO Particle Swarm Optimization

ReLU Rectified Linear Unit

SVM Support Vector Machine

TN True Negative

TP True Positive

VGG Visual Geometry Group

