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Introduction 

In recent years, the global hype surrounding Artificial Intelligence (AI) and machine 

learning (ML) has spurred across a variety of fields, from healthcare to autonomous vehicles. 

As these technologies evolve, they continue to demonstrate their potential to transform 

industries and improve our daily lives. One example is the realm of medical image analysis, 

where brain tumors can be easily detected in brain magnetic resonance imaging (MRI) scans 

with the help of AI. However, the complexity and high dimensionality of medical data pose 

significant challenges, making it difficult for traditional algorithms to achieve optimal 

results. Brain MRI scans are often large, containing vast amounts of information, and the 

tumors themselves may vary in size, shape, and location. This variability makes it difficult 

to identify tumors using conventional image processing techniques, which may struggle to 

account for the wide range of possible tumor characteristics. This is where evolutionary 

computing, a branch of AI inspired by biological evolution and nature behaviors, comes into 

action. Evolutionary computing offers a unique approach to solving optimization problems. 

By mimicking the way nature evolves organisms to adapt and survive, evolutionary 

algorithms can explore large, complex solution spaces and find optimal or near-optimal 

solutions in a more efficient manner. This thesis explores the application of evolutionary 

computing algorithms was explored to optimize a process of brain tumor detection, with the 

focus on image segmentation as a step to simplify and extract the most valuable features 

from the MRI scans and optimization of convolutional neural networks. In the context of 

brain tumor detection, evolutionary algorithms can be employed to optimize three main 

aspects: the preprocessing step for the network’s input images, the selection of optimal 

network hyperparameters, and the minimization of the network’s loss function. All of these 

actions are necessary to improve the network’s performance and accuracy. The primary 

objective is to implement an evolutionary computing optimized neural network for brain 

tumor detection and to implement and explore evolutionary computing techniques for brain 

MR image segmentation, serving as a preprocessing step for the network’s input. 

Furthermore, the thesis aims to explore several optimization algorithms and compare their 

performance on a publicly available dataset with brain MR images containing various types 

of tumors. This work is organized as follows: a brief introduction to brain tumor MRI, ML 

techniques, an introduction to CNNs and evolutionary computing, a short survey of related 
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works and finally, an overview of brain tumor detection system without evolutionary 

computing (third section) and with evolutionary computing (fourth section). In summary, 

the aim of this thesis is to provide a comprehensive introduction to evolutionary computing, 

followed by a detailed survey of the latest state-of-the-art applications to brain tumor 

detection and classification. 
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1.1. Brain tumor MRI 

There are many ways and techniques for creating detailed brain images, their structure 

and functionality. Some of the most renowned imaging techniques are:  

- Magnetic resonance imaging (MRI) – a non-invasive method that creates an image 

using magnetic fields and radio waves 

- Functional magnetic resonance imaging (fMRI) – a subcategory of MRI, indirectly 

measures the brain’s blood flow and creates an image based on that 

- Computed tomography (CT) – uses X-rays to create an image, a method is avoided 

due to ionizing radiation 

- Positron emission tomography (PET) – uses a small sample of radioactive material 

that is injected into the bloodstream 

Similar to finding the best model in the field of machine learning, there is no best method to 

create an optimal image of brain in general. It depends on a specific task and the health 

condition of a subject. Some of the most important features in brain tumor detection and 

classification problems are the volume of tumor, its texture, and the subject’s age and gender. 

Based on those extracted features, machine learning models are able to learn the 

characteristics of specific tumor types and make general assumptions on new, never seen 

samples. Normal brain tissue is composed of gray matter, white matter, and cerebrospinal 

fluid (CSF) and tumors can form anywhere in that area. According to definition [1], tumors 

are abnormal growth of cells that can form in any part of the body. They occur when cells 

begin to divide uncontrollably. Tumors can be benign, and non-cancerous, in which case 

they usually do not spread, or they can be malignant, meaning they are cancerous and have 

the potential to invade nearby tissues or spread to other parts of the body [2]. Because of 

their nature, especially for malignant tumors, early detection is crucial for further diagnosis 

and successful treatment. There are many types of brain tumors, and the dataset used in this 

work, which will be further explained in the dataset section, contains only three types: 

pituitary tumors, glioma tumors and meningioma tumors. Tumor cell characteristics, 

including irregular shapes, heterogeneous intensity distributions, variability in tumor 

location, and the presence of imaging artifacts, significantly impact the diagnostic process. 

Tumor heterogeneity refers to the distinct morphological and phenotypic variations observed 

among tumor cells, such as differences in cellular structure, gene expression profiles, 
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metabolic activity, motility, proliferation rates, and metastatic potential [5]. This 

heterogeneity poses substantial challenges in the design and implementation of effective 

treatment strategies. Studies conducted by the National Brain Tumor Foundation (NBTF) 

indicate that brain tumors are a leading cause of mortality worldwide, with their incidence 

having more than tripled over the past three decades [4]. This dramatic increase highlights 

the urgent need for advanced and reliable detection or classification techniques, which are 

essential for early diagnosis, precise treatment planning, and ultimately improving outcomes 

for many patients impacted by this condition. 

 

 In this work, only MRI samples are used, since MRI is one of the most used 

techniques for brain imaging because of its non-invasive nature and high resolution. Those 

images can provide critical information about the structure of the brain, which is crucial for 

detecting abnormalities or classification of tumors. MRI scans can be performed using 

various sequences, each designed to highlight specific tissue properties. The two most 

common sequences are T1-weighted images and T2-weighted images. 

 

 

Figure 1.1. T1 and T2 weighted MR image comparison 

 [5] 
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T1-weighted images are often used to assess the overall structure of the brain and identify 

abnormalities such as tumors or lesions. Cerebrospinal fluid has a dark appearance, and 

white matter has a bright appearance as it can be seen in Figure 1.1. On the other hand, T2-

weighted images have cerebrospinal fluid appearing bright and white matter appearing dark. 

They are often used for detecting areas of edema, inflammation or pathological changes [6]. 

MRI data can be acquired in either two-dimensional (2D) slices or three-dimensional (3D) 

volumes. While 2D imaging involves capturing individual slices of the brain, 3D imaging 

collects data across an entire volume, allowing for more detailed and isotropic analysis. In 

research and clinical applications, 3D MRIs are often preferred because they enable more 

precise segmentation, registration, and volumetric measurements. For the processing of MRI 

data, there are significant computational challenges such as high dimensionality (a single 3D 

MRI scan can contain hundreds of slices) or preprocessing complexity (noise reduction, 

normalization…). Due to computational limitations of the available hardware, only 2D MRI 

scans were utilized in this work. Processing 3D volumetric MRI data requires significant 

amount of memory and computational power, which exceeded the capacity of the system 

used in this work. The 2D approach, while less detailed than 3D analysis, still allowed 

effective processing and analysis within the given constraints. 
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1.2. Machine learning 

In general, machine learning (ML) is divided into supervised, unsupervised and semi-

supervised (reinforcement) machine learning (Figure 1.2.). The first category is supervised 

learning, where models are trained on labeled data. In this case, each input is paired with a 

corresponding output, allowing the model to learn the relationship between them. The 

primary goal of supervised learning is to predict the output for new, unseen inputs. It is 

commonly used for tasks such as classification, where the model predicts discrete categories, 

and regression, where the model predicts continuous values. Examples include predicting 

the type of brain tumor from MRI scans or estimating the age of a subject based on brain 

imaging data. As opposed to supervised learning, unsupervised learning deals with unlabeled 

data. In this approach, the model identifies patterns, structures, or relationships within the 

data without explicit guidance. The main goal of unsupervised learning is to discover hidden 

patterns or groupings in the data. This is particularly useful for clustering, where similar data 

points are grouped together, or for dimensionality reduction, which reduces the number of 

features while retaining significant information. For example, clustering techniques could 

be used to group MRI scans based on texture or intensity, while dimensionality reduction 

methods, like principal component analysis, can simplify complex datasets. Reinforcement 

learning represents a different approach, where an agent learns to make decisions by 

interacting with an environment. The agent receives feedback in the form of rewards or 

penalties and optimizes its actions over time to maximize cumulative rewards. This type of 

learning is widely used in robotics, game-playing AI, and autonomous systems, where 

sequential decision-making is critical [7]. 
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Machine learning 

Supervised learning 

Unsupervised 

learning 

Semi-supervised 

learning 

Classification 

Regression 

Clustering 

Figure 1.2. Division of ML methods 

 

In this work, the focus is going to be on supervised learning. Hence, other branches of 

machine learning will not be further explained. Brain tumor detection, in this case, is a binary 

classification problem. On the output of a model, there are only two classes: tumor is 

detected and tumor is not detected. As mentioned above, the main difference between a 

supervised and unsupervised approach is whether labeled data is available for the learning 

process or not. Some of the most common classification algorithms are: 

 

- Logistic regression: Despite its name, it is a classification algorithm. It predicts the 

probability of a data point belonging to a specific class using a logistic function. 

- Decision trees: These algorithms split data into subsets based on feature values, 

creating trees of decision. They are very easy to interpret. 

- Support vector machines (SVM): The algorithm finds the hyperplane that 

optimally separates classes in the feature space. It is very effective in high-

dimensional space and for data with clear margins of separation. 

- Neural networks: Inspired by biological neural systems, they are a powerful tool 

for complex problems but require significant computational resources. 
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- Random forest: An ensemble method that combines decision trees to improve 

classification accuracy and reduce overfitting. 

- Naïve Bayes: Based on Bayes’ theorem, this algorithm assumes feature 

independence. Works well for text classification problems. 

There are several different machine learning classification algorithms that are not mentioned 

above because they are either a combination of the algorithms above, their generalization, 

or it was found that they do not perform well in practice. Furthermore, it is important to 

mention that there is no single best classification algorithm. Each one of them depends on 

computational resources and input data, and depending on data, they can perform better or 

worse than the other ones. In order to find out the best possible machine learning model for 

a specific input data, it is necessary to try various different models and compare their results. 

Choosing the best possible ML model is often a matter of experience and domain knowledge, 

because understanding the characteristics of the data and the problem is crucial for selecting 

the most appropriate algorithm. In practice, small subsets of the data can be used to train and 

evaluate different models, allowing for a quick comparison of their performance. This 

approach, often referred to as model benchmarking, helps in identifying optimal candidates 

without the need to invest excessive computational resources upfront. Once the best-

performing models are identified on the smaller subset, they can be further fine-tuned and 

validated on the full dataset. Fine-tuning is a process of finding the optimal hyperparameters 

for the chosen ML model. For example, finding the optimal number of decision trees in the 

random forest algorithm. 
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1.3. Convolutional neural networks 

One of the biggest aspects of this work are convolutional neural networks (CNNs), 

which have revolutionized the field of machine learning, particularly in the realm of image 

processing and computer vision. In order to fully grasp the significance and work behind the 

CNNs, understanding the fundamentals of neural networks and the process of convolution 

is essential. Some of the first learning algorithms we know today were designed as 

computational representations of biological learning, or in other words, models of how 

learning occurs or could occur in the brain. As a result, deep learning has often been referred 

to as artificial neural networks (ANNs) [8]. These models consist of layers of interconnected 

“neurons” that process input data, mimicking how biological neurons transmit and process 

signals. They are connected by weighted links. Each connection between neurons represents 

a synapse, and the weight associated with each link determines the strength of the 

connection. As a result, the network is able to adapt to the data it processes because the 

network’s weights are adjusted during the learning process (Figure 1.3.) 

 

Figure 1.3. Components of the basic artificial neuron [10] 

 

A neural network (NN) is organized in three types of layers: an input layer, hidden layers, 

and an output layer (Figure 1.4.). The input layer receives raw data, which is then processed 

through one or more hidden layers. Each neuron in these hidden layers applies a 

mathematical function, known as an activation function, to the incoming signals. The most 

common activation functions include the sigmoid, hyperbolic tangent (tanh), and Rectified 



 

10 

Linear Unit (ReLU). The processed data then passes to the output layer, which produces the 

network's final predictions or decisions. 

 

 

Input layer Hidden layer Output layer 

 

Figure 1.4. Structure of NN 

 

In machine learning, every algorithm is composed of three essential components: the model, 

the loss function, and the optimization process. These components work together to enable 

the algorithm to learn from the data – to train and generate predictions. Training involves 

adjusting the weights of the network to minimize the difference between the predicted output 

and the actual target. This is typically done using a supervised learning algorithm, where the 

network is provided with input-output pairs, and the goal is to reduce the error between 

predicted and true outputs. The error is usually measured using a loss function, such as mean 

squared error (MSE), and the network updates its weights through a process called 

backpropagation. Backpropagation computes the gradient of the loss function with respect 

to each weight and adjusts the weights in the direction that reduces the error, using an 

optimization algorithm like gradient descent. Müller [9] emphasizes that one of the 

challenges in neural network training is avoiding overfitting, which occurs when a model 

becomes too complex and performs well on training data, but poorly on unseen data. 

Regularization techniques, such as dropout layers or L2 regularization, are often employed 

to mitigate the issue of overfitting and help the network generalize better to new data. On 

the other hand, underfitting occurs when a model is too simple, or too shallow. For example, 
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a linear model cannot successfully solve a problem, regression or classification, of input data 

where the relationship of the features is non-linear. A field of machine learning that observes 

deep neural networks – ones with many hidden layers, is called deep learning. These 

networks have been instrumental in achieving breakthroughs in complex tasks such as object 

detection, language translation, and medical diagnosis. 

 

 Convolutional neural networks are a type of classical multi-layer feedforward neural 

network consisting of an input layer, a hidden layer, and an output layer. The output of each 

neuron is a feature map, while kernels are used instead of weights. (Figure 1.5.) 

 

 

Figure 1.5. Typical CNN architecture [11] 

 

CNNs are particularly suitable for classification, segmentation, and regression of image-

based inputs. The most common architecture consists of convolution layers, pooling layers, 

and at the end, a few fully connected layers. The term “convolutional” comes from the 

concept of convolution, whose mathematical definition describes it as an operation on two 

functions that produces a third function which expresses how the shape of one alters the 

other. In the context of machine learning, convolution occurs between the input feature map 

and the kernels. In CNNs, convolution is a crucial step in feature extraction. Early 

convolution layers can detect simple features such as edges and textures, while deeper layers 

can detect more complex patterns such as shapes, objects, or even faces. Other types of 
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layers, besides convolutional or fully connected layers, are pooling layers. Pooling layers 

reduce the resolution of the feature maps and increase the spatial invariance of the neural 

network. There are several types of pooling, with max pooling being the most common. A 

flattened layer, the one between the last pooling layer and the first fully connected layer 

(Figure 1.5.), has a purpose to transform multi-dimensional input into a one-dimensional 

vector. There are also layers such as the dropout layer and the batch normalization layer 

which are used to prevent overfitting and stabilize the training process. The main advantage 

of convolutional neural networks over fully connected networks is a smaller number of input 

nodes, equivalence to small shifts in the image, fewer connections, and that they cannot 

easily learn noise from the input data. 
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1.4. Evolutionary computing 

Metaheuristics are advanced problem-solving techniques used to find solutions for 

complex optimization problems that are hard to solve using exact methods. These algorithms 

are designed to explore large solution spaces efficiently and to provide robust, approximate 

solutions to a wide range of optimization challenges. They often draw inspiration from 

natural phenomena or human problem-solving strategies, and their adaptability and ability 

to escape local optima make them effective for real-world applications. Optimization 

methods can be divided into two categories: exact methods and heuristic methods (Figure 

1.6.). Exact methods, such as dynamic programming, A star and linear programming, 

guarantee the optimal solution with a lack of scalability for large or complex problems. 

These methods are computationally expensive. On the other hand, heuristic or approximate 

methods, including metaheuristics, provide approximate solutions without guaranteeing 

optimality. They are mostly used when a problem is too complex or a good-enough solution 

is acceptable taking into account computational costs and computational time. Heuristic 

methods are designed to explore the solution space more efficiently by applying simple rules. 

 

 

 

Figure 1.6. Classic optimization methods [11] 
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Evolutionary computing (EC), a subset of metaheuristics – population-based 

metaheuristics, is particularly influential, built on top of the principles of biological 

evolution. It uses mechanisms such as selection, mutation, and recombination to evolve a 

population of candidate solutions over successive generations. This approach includes 

popular algorithms like Genetic Algorithms (GA), Genetic Programming (GP), Simulated 

Annealing (SA), Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO), 

which simulate the process of natural selection and survival of the fittest to progressively 

improve solution quality. The flexibility of metaheuristics, and how they can be 

implemented across diverse fields from engineering and logistics to artificial intelligence 

has grown in the past years [11]. Overall, metaheuristic and evolutionary computing provide 

powerful tools for tackling large-scale, complex optimization tasks where traditional exact 

methods are not viable. In Figure 1.7. there is an obvious peek in deep learning and 

evolutionary computing publications in the period from 2008 to 2018.   

 

 

Figure 1.7. Histograms for deep learning and evolutionary computation publications 

according to the Web of Science based on related keywords: a) total publications by year 

and b) number of citations by year [12] 

 

 

 

 

 



 

15 

In the past decade, several evolutionary approaches have been proposed to solve learning 

problems, and these approaches have displayed remarkably good performance compared to 

the traditional learning methods that usually require human intervention and expertise. 

Traditional gradient-based methods for training multilayer neural networks are prone to 

problems like getting stuck in local optima and can be computationally expensive, 

particularly when dealing with large training datasets. As a result, training neural networks 

with multiple hidden layers has not been widely explored for various applications until 

recently. This shift in interest is due to the development of adaptive stochastic variants of 

the gradient descent method – a method to find the minimum in model’s complex loss 

function. Additionally, metaheuristics can be used to optimize neural network parameters 

(such as determining the number of hidden layers for a specific task) and improve prediction 

accuracy. Notably, in recent years, there has been growing interest among core machine 

learning researchers in using evolutionary computing algorithms for DL. As mentioned 

above, the main objective of EC algorithms is to improve the efficiency of computations that 

can assist in solving challenging computational problems. The initial population explores 

the search space randomly, then the algorithm evaluates the obtained solutions to select some 

of them for the further step (best ones, random ones…). The new population is built as a 

better version of the first population (performing operations such as mutation or selection). 

The previous population is often referred to as the parent of the current one. EC algorithm 

performs a combination of exploration – investigating new areas of the search space and 

exploitation – refining and improving the current best solution. After some iterations, the 

algorithm converges to a good-enough, near-optimal solution. The balance between 

exploration and exploitation is critical. If exploitation dominates, the algorithm might 

converge too quickly to a local optimum. If exploration is too strong, the algorithm might 

not focus enough on promising areas and fail to refine solutions effectively. The right 

balance can reduce the risk of getting stuck in a local optimum.  A local optimum refers to a 

solution in an optimization problem that is the best within a specific neighborhood, but not 

necessarily the best overall (global optimum), or relatively to a given neighboring function 

N, a solution s ϵ S is a local optimum if it has a better quality than all its neighbors; that is, f(s) ≤ f(s’)² for all s’ ϵ N(s) (Figure 1.8.). Global optimum - a solution s* ϵ S is a global 

optimum if it has a better objective function than all solutions of the search space, that is, ∀s ϵ S, f(s*) ≤ f(s) [11]. 
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Figure 1.8. Local optimum and global optimum in a simple search space [11] 
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2. Related work: evolutionary computing in DL 

As one of the main objectives of this work was to provide a comprehensive introduction 

to evolutionary computing and a detailed survey of the latest state-of-the-art applications to 

brain tumor detection, the following section will analyze and discuss the various approaches, 

methodologies, and results from recent papers, theses and similar works. It is essential to 

categorize these approaches, as EC can be applied in various ways, such as tuning the 

hyperparameters of CNNs, serving as a loss function within the network, or being utilized 

in the segmentation process of input images. Some of these approaches will be analyzed and 

described in detail in the following sections.  

 

As highlighted by Yao [13], learning and adaptation are two essential aspects of the 

ability to adapt and learn, which have evolved over time in various species. The selection of 

parameters, weights, and the appropriate architecture of an ANN are considered crucial 

challenges. Evolutionary Computing (EC) can be applied at various stages of an ANN's 

development, such as during training, weight optimization, and the design of learning rules. 

Numerous approaches in literature have been proposed to tackle the optimization problem 

of fine-tuning the architecture and parameters of ANNs. Leung et al. [14] proposed GA to 

optimize the network structure and learning for a specific application by an ANN. Later, EC 

was used to adjust the number of nodes, layers or even the polynomial type. The application 

of EC in CNNs was introduced by Cheung and Sable in 2011 [15] where they used stochastic 

diagonal Levenberg-Marquardt method to accelerate the convergence of training while 

reducing the cost of fitness evaluation. Fujino et al. [16] used a GA to optimize the hyper-

parameters of a CNN. Typically, those parameters can be the number of iterations, learning 

rate, momentum rate, number of filters, the shape of a filter and max pooling sizes. Aside 

from finding the best parameters, Khalifa et al. [17] used PSO to optimize the connection 

weights of the last classification layer of a seven-layer CNN architecture for handwritten 

digit classification and reported better results over a normal CNN that uses stochastic 

gradient descent (SGD) for all layers. Another example of using PSO algorithm can be found 

in the study by Zhang et al. [18], where they explored a novel computer-aided diagnosis 

system for detecting pathological brains in MRI scans. The authors combined wavelet 

entropy for feature extraction and hybridization of biogeography-based optimization and 
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PSO for training an NN. The proposed system achieved 99.49% accuracy on the large dataset 

which included 11 types of pathological conditions, such as glioma, Alzheimer’s disease, 

and Huntington’s disease. The proposed system outperformed 14 state-of-the-art CAD 

systems in accuracy. The following study by Dehkordi A. et al. [19] introduced enhanced 

CNN architecture optimized using Nonlinear Levy Chaotic Moth-Flame Optimization 

(NLCMFO) for brain tumor detection and classification. The performance of the proposed 

model was validated using the BRATS 2015 dataset, achieving superior accuracy (97.4%) 

and F1 score (96.6%) compared to the state-of-the-art methods. The model was also 

benchmarked against PSO, MFO, Salp Swarm Algorithm (SSA), Whale Optimization 

Algorithm (WOA) and Gray Wolf Optimizer (GWO) algorithms. As shown in the figure 

below (Figure 2.1.),  the NLCMFO algorithm achieved superior performance compared to 

other methods in nearly every objective space explored in the paper even before the 200th 

iteration. Overall, the authors concluded that metaheuristic optimization overcomes 

premature convergence and improves convergence speed through the combination of chaotic 

maps and levy flight theorem. The study above will be mentioned once again in the following 

sections. The study by Mahesh K. and Renjit J. [20] provides a critical survey of evolutionary 

intelligence and other segmentation techniques for recognizing brain tumors from MRI 

images. It reviews various evolutionary computing and optimization algorithms used in brain 

tumor recognition, alongside traditional approaches like thresholding, region-based 

techniques, clustering, and model-based techniques. In the study, authors used GA for tumor 

segmentation after preprocessing via Discrete Walvet Transform (DWT) and PSO to 

enhance tumor classification on the BRATS dataset. 
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Figure 2.1. Convergence analysis of NLCMFO versus other approaches [19] 
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3. Brain tumor detection  

As mentioned before, the significance of early brain tumor detection is crucial for 

improving patient outcomes and the effectiveness of treatment options. Nowadays, there are 

several solutions and algorithms suited for brain tumor detection, classification or 

segmentation. Because the main focus of this work was CNN optimization, only the problem 

of brain tumor detection has been further discussed with the appropriate implementation. In 

general, the term object detection involves identifying and localizing specific objects within 

and image. It provides the class labels and their location. On the other hand, classification 

assigns a label to an entire image answering the question “What is in this image?”. Image 

segmentation divides an image into multiple segments or regions. The process involves a 

detailed understanding of object boundaries and shapes within the image. The following 

implementation and work in general, refers to brain tumor detection as a binary classification 

– if there is a tumor in the specific image or not. However, the work described in this thesis 

can be adjusted and used in problems such as brain tumor classification, segmentation or 

detection with the specified location of a tumor. Another important note regarding this and 

the following sections, is that only the 2D brain MR images were used. Details will be 

discussed in the section about dataset and data manipulation. Due to resource constraints 

associated with the computational capabilities of the PC used in this work, it was not possible 

to utilize 3D MRI scans. All the methods can be scaled to 3D MRI scans if appropriate 

resources become available, but this is something for future work. The following section will 

describe the process of developing a CNN for the binary classification of brain tumors using 

MR images. Subsequently, evolutionary computing and metaheuristics will be employed to 

enhance the metrics obtained in this section.  
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3.1. Brain tumor detection – dataset 

The most important thing in any ML solution is a dataset. If there is no knowledge that 

can be extracted from the given dataset, the ML algorithm cannot learn patterns and will 

struggle to make accurate predictions. Poorly selected, incomplete, noisy or wrong-labeled 

data can lead to inaccurate results. According to the survey by Anaconda [21] in 2022, data 

scientists spend more than 50% of their time on data preparation tasks such as loading, 

cleansing and visualizing the data. In this work, two datasets were merged together which 

resulted in 3509 images of both T1-weighted and T2-weighted MRI scans acquired from 

various perspectives containing 2915 images with tumor and 594 healthy brain images. 

Figure below shows some samples without tumors (Figure 3.1.), and some samples with 

tumors (Figure 3.2.) 

 

Figure 3.1. Samples from the dataset without tumor 
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Figure 3.2. Samples from the dataset with tumor 

 

The first dataset, publicly available on the Kaggle platform [22], contains 255 images in 

total, including a few images that are not images of a brain, some with wrong labels, and 

some duplicates. There are 98 images without tumors and 155 images with tumors. In the 

end, a total of 247 images were used. A second dataset, also publicly available on the Kaggle 

platform [23], contains 3264 images in total. This dataset was built for brain tumor 

classification in four classes: no tumor, glioma tumor, meningioma tumor, and pituitary 

tumor. For the purposes of this work, i.e. binary classification, all images with tumors were 

put into the same folder and given the same label. After the collection of all images, they 

were resized to the specified size (240 - width, 240 - height, 3 - color channels), normalized 

and shuffled. Further processing will be explained in details in the next sections. It is 

important to note that the dataset is slightly imbalanced, with only 15% of images 

representing non-tumor class on the whole dataset. While data balancing was not addressed 

in this work, it is acknowledged that implementing such techniques could enhance the 

performance metrics and overall results. In the process of model training, 80% of the dataset 

was used for training, whereas 10% of that 80% was used for validation. Another 20% of 

the dataset was used for testing and calculating accuracy and F1 score metrics. The full 

dataset was mainly used for training and testing the final optimized CNN model, whereas 

for the research part (hyperparameter tuning, input image preprocessing…) only 70% of the 

whole data was used as a subset to perform studies. 
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3.2. Brain tumor detection - CNN architecture 

The second step in every data science or machine learning project is defining the 

appropriate machine learning model. Based on previous experience and related work, CNNs 

are used in this work. Determining the optimal architecture for CNNs - including aspects 

such as depth, the number of convolutional layers, appropriate regularization techniques, and 

kernel sizes - presents a significant challenge. A network that is too shallow may struggle 

with generalization to unseen data. On the other hand, a network that is excessively deep 

often demands a significant amount of time and computational resources for training, while 

similar performance could potentially be achieved with a less complex architecture. 

Furhtermore, deep networks often have problems such as exploding gradients (networks 

have trouble with converging) and overfitting (performing well on training data and poor on 

test data). One of the first approaches in optimizing the CNN was finding the optimal 

convolutional kernel window size, convolutional input dimension and the pooling window 

size. Those terms are explained in the first section. All the code is written in Python 

programming language on a Linux machine. Specifications are the following: 

- Version: #52-Ubuntu SMP PREEMPT_DYNAMIC 

- Machine: x86_64 

- Processor: x86_64 

- CPU cores: 16 

- RAM: 31 GB 

- GPU: NVIDIA GeForce RTX 4070 8 GB  

 

The first model used on the mentioned dataset was a CNN with two convolutional layers, 

ReLu activation function, batch normalization layer, max pooling layer, dropout layer and 

fully connected layer with sigmoid activation. The model was compiled with binary cross-

entropy loss and ADAM optimizer [24]. The whole architecture is shown below (Figure 3.3.) 
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Figure 3.3. First CNN arhitecture 

 

The performance of the model was very poor. It achieved an accuracy of 63% and an F1 

score of 71% on the first dataset – not the merged one used in the next sections. The model's 

confusion matrix is shown below (Figure 3.4). A confusion matrix is one of the tools in 

machine learning used to evaluate the performance of classification models. It provides a 

comprehensive summary of the model's predictions compared to the actual outcome. It 

shows the true positive (TP) rate – number of positive instances correctly predicted as 

positive, the true negative (TN) rate – number of negative instances correctly predicted as 

negative, the false positive (FP) rate – number of negative instances incorrectly predicted as 

positive (Type I error) and the false negative (FN) rate – number of positive instances 

incorrectly predicted as negative (Type II error). 
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Figure 3.4. First CNN model's confusion matrix 

 

In medicine, type II errors or false negative samples are considered more significant 

due to their potential to delay critical treatment. For example, if the model incorrectly 

identifies an MRI scan as having a tumor when it does not, a specialist can give another look 

and suggest getting a second opinion on the topic. But, if the model fails to identify an 

existing tumor in an MRI scan from the start, second opinion might never be suggested. That 

is the reason why all the metrics in the work contain the accuracy and the F1 binary score. 

When class distributions are imbalanced, a model can reach an accuracy of over 90% by 

predicting the majority class. For example, in a binary classification, where 95% of the 

samples are from the majority class – with tumors, a model that always predicts 'tumor' 

would still have high accuracy. That is the reason why the F1 score, or the F-measure, is 

used. The mentioned metric takes into account harmonic mean between the model's precision 

and recall. It ranges from 0 to 1, where 1 indicates perfect performance.  
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The following chunk of code showcases the implementation of the grid search method with 

the aim of finding optimal parameters (number of filters in the convolution layer, 

convolutional kernel window size and pooling layer window size) in a shallow CNN (Figure 

3.5.) 

 

 

output_sizes = [16, 32, 64, 128] 

kernel_size = [3, 4, 5] 

pooling_size = [2, 3, 4] 

epochs = [5, 8, 12, 18] 

 

for out in output_sizes: 

  for kernel in kernel_size: 

    for pool in pooling_size: 

      for epoch in epochs: 

        print(f'Params: output_size:{out} | kernel_size:{kernel} | 

pooling_size:{pool} | epochs:{epoch}') 

        m = get_model_v1_custom(out_dimension=out, kernel_window_size=kernel, 

pooling_window_size=pool) 

        acc, f1 = perform_training_on_model(m, X, y, epochs=epoch, verbose=False) 

        best_acc = list(best.keys())[0] 

        if best_acc < acc: 

          best = { 

                  acc: (m, f1, (out, kernel, pool, epoch)) 

                } 

 

 

  Figure 3.5. Grid search method to find optimal CNN’s parameters 

 

The grid search method tried every combination of parameters mentioned above, and the 

best model achieved an F1 score of 87%. Which is 16% more than the first, non-optimized 

CNN model. The whole Jupyter Notebook is available on the link [25] by the name of 

‘Brain_tumor_detection_v0_simple_grid_search.ipynb’. For further observation, the model 

performance was still poor given the fact the problem is a simple binary classification. To 

solve the problem, a deeper CNN architecture was introduced, as explained in the following 

section. 
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3.3. Proposed model for brain tumor detection 

In order to follow the principles of clean code and to make it easier for the reader to 

understand the logic behind algorithms and methods described in this work, all the important 

functions have been placed within the same file called helper_functions.py [25]. In the 

mentioned file, functions such as plot_samples, perform_preprocesing (will be described in 

the following sections), load_data, plot_metrics, test_model and train are developed. In 

another Python file, called CNN.py [25], the model used for the rest of this work is defined 

as shown in the listing below (3.6.) 

 

  

Listing 3.5. Final CNN architecture 
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In the next sections, the same model will be used but with different hyperparameters and 

optimizers. Hence, the get_CNN_model function takes as an input the defined optimizer and 

the L2 regularization factor (figure 3.6.) 

 

 

def get_CNN_model(optimizer, l2_reg = 0.01): 

  model = Sequential([ 
    Input((IMG_SIZE[0],IMG_SIZE[1] ,3)), 

 

    # First convolutional block 

    Conv2D(128, 7, activation='relu', kernel_regularizer=l2(l2_reg)), 

    MaxPooling2D(pool_size=(2, 2)), 

    BatchNormalization(), 
 

    # Second convolutional block 

    Conv2D(64, 7, activation='relu', kernel_regularizer=l2(l2_reg)), 

    MaxPooling2D(pool_size=(2, 2)), 

    BatchNormalization(), 

 
    # Third convolutional block 

    Conv2D(64, 7, activation='relu', kernel_regularizer=l2(l2_reg)), 

    MaxPooling2D(pool_size=(2, 2)), 

    BatchNormalization(), 

 

    # Forth convolutional block 
    Conv2D(32, 7, activation='relu', kernel_regularizer=l2(l2_reg)), 

    MaxPooling2D(pool_size=(2, 2)), 

    BatchNormalization(), 

 

    # Flatten 

    Flatten(), 
    Dense(1, activation='sigmoid') 

  ]) 

  model.compile(loss='binary_crossentropy', optimizer=optimizer, 

metrics=['accuracy']) 

  return model 
 

Figure 3.6. Python method to get a CNN model 

 

The whole process of data loading, getting the CNN model, training the model and getting 

the test metrics is described in the diagram below (Figure 3.7). In the end, the proposed CNN 

model achieved the accuracy score of 63% and the F1 score of 70% without any 
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optimization. The mentioned metrics will be presented in the next section, where the model 

will be compared with the same model with a slightly different optimizer and the famous 

VGG-16 pre-trained model. 

 

 

Figure 3.7. Point of view of a main program in terms of the code structure 

 

 

3.4. Model comparison  

The performance of the model described in the previous section was evaluated and their 

performance was compared against other models in this section, specifically a version of the 

same model with customized hyperparameters (random selection) and the VGG-16 pre-

trained model. All materials are available at the link [25]. People often use pre-trained 

models to reduce the time and resources required for developing ML applications. Training 

a model from scratch is an exhausting and time-consuming process. Pre-trained models often 

show superior performance since they have been exposed to vast amounts of data from which 

they can easily recognize patterns and features. Open-source pre-trained models, such as 

VGG, can be customized, e.g. by adding a new classification layer or fine-tuning the existing 
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layers. Hence, they are simple and efficient to use. The mentioned model comparison is 

performed over 639 colored images in 240 x 240 resolution format. The data is split in an 

80-20 ratio, where every model trains on exactly the same data.  All models performed 18 

learning epochs with a validation split of 25%. The figure below displays the confusion 

matrixes and metric for each model (Figure 3.8.), where a) is an initial CNN model with the 

following hyperparameters: 

- Learning rate: 0.05 

- Momentum: 0.8 

- Optimizer: SGD 

- L2 regularization factor: 0.01 

Another model, b), is the same CNN with different hyperparameters: 

- Learning rate: RedcudeLROnPlateau adaptive learning rate starting with 0.01 

- Momentum: 0.7 

- Optimizer: SGD 

- L2 regularization factor: 0 

And the last model, c), is a VGG-16 pre-trained model with the following hyperparameters: 

- Learning rate: RedcudeLROnPlateau adaptive learning rate starting with 0.01 

- Optimizer: ADAM 

- L2 regularization factor: 0 
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Figure 3.8. Models’ comparison, a) initial CNN architecture, b) initial CNN architecture 

with different hyperparameters, c) VGG-16 model 

 

The ReduceLROnPlateau function is a learning rate scheduler commonly used in training 

ML models. It adjusts the learning rate based on the performance of a specified metric – 

validation loss in this case. In theory, this technique helps to fine-tune the learning process, 

especially when the models stagnate. Another so-called callback, a method that helps in fine-

tuning a learning process of a model, called ‘early stopping’ is used. It’s purpose is to stop 

overfitting the model when the chosen metric (again validation loss) is not improving over 

the iterations. Those callback functions are not used in the following sections, since they 

were used only to observe patterns in different model training approaches. Momentum in the 
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SGD optimization algorithm is a technique used to accelerate convergence and smooth the 

optimization process. It introduces a velocity vector that accumulates the gradients' direction 

over time, helping the optimizer overcome small, inconsistent gradient fluctuations and push 

through shallow or noisy regions in the loss landscape. 

In Figure 3.8., the VGG-16 pre-trained model significantly outperforms the other two 

models achieving an accuracy of 91% and the F1 score of 94%. In the notebook 

‘Brain_tumor_detection_v3_grid_search.ipynb’ [25], the grid search method is 

implemented to find the optimal combination of the learning rate, max. epochs, L2 

regularization factor and the optimization algorithm momentum. One iteration of the 

algorithm takes 30 seconds to finalize, and with 100 iterations the whole process would take 

almost an hour. The code below shows how initial parameters are chosen (Figure 3.9.).  

 

def create_n_random_entities(n: int) -> SortedSet: 

  entities = SortedSet() 

  for i in range(n): 
    lr = round(random.uniform(0.001, 0.1),3) 

    epochs = random.randint(5, 20) 

    l2 = round(random.uniform(0.001, 0.1), 3) 

    mom = round(random.uniform(0, 1), 3) 

    entities.add(ParamsEntity("SGD", 

                                 lr, 
                                 epochs, 

                                 l2, 

                                 mom)) 
  return entities 

 

Figure 3.9. Grid search method of finding the best CNN hyperparameters 

 

Given that the entire process is both time-consuming and exhausting, there is no deeper logic 

in the selection of these parameters. Duplicates are permitted, and each entity in the 

population (in this case, a sorted list) lacks knowledge about the other entities. Furthermore, 

the process relies heavily on chance when selecting these N entities. Each entity represents 

a unique combination of one float value for the learning rate, one integer value for the 

maximum number of epochs, and float values for the L2 regularization factor and the 

momentum. The grid search method serves as a great motivation for using something more 

intelligent while seeking the optimal, or almost semi-optimal combination of the mentioned 
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parameters. In the next section, such methods are introduced and implemented on the same 

problem – a process of finding the best hyperparameters for the previously defined CNN 

model. Unlike grid search, which exhaustively evaluates every combination of 

hyperparameters in a predefined grid, evolutionary computing algorithms (EC) are way more 

effective and adaptable in complex and high-dimensional optimization problems where 

relationships between hyperparameters and model performance are not well understood. 

Also, by leveraging a population of solutions and evolving them over generations 

(iterations), EC algorithms can achieve better results in less time compared to e.g. the grid 

search mentioned above. By introducing some knowledge into the population, the global 

best solution is informing in which way should the algorithm converge and the randomness 

is helping to explore the whole search space, EC algorithms are designed to maintain 

diversity within the population, which helps prevent premature convergence, or getting stuck 

in the local optima. Some optimization algorithms tend to get stuck in the local optima while 

never discovering the global optimum, but all the details will be discussed in the following 

section. 

 



 

34 

4. Evolutionary computing in brain tumor detection 

This final section dives into the application of EC in three critical areas of brain tumor 

detection: input image segmentation, hyperparameter tuning, and loss function optimization. 

Each of these study goals addresses a unique aspect of the problem space, emphasizing the 

effectiveness and adaptability of EC. First, the use of EC in input image segmentation 

highlights its capability to optimize complex, non-linear boundaries in medical imaging data. 

Motivated by many papers on the same topic, EC is commonly used for the image 

enhancement process after which it is very easy to segment the image into various classes. 

Second, hyperparameter tuning, often a time-intensive and computationally expensive 

process, can benefit significantly from the efficiency of EC algorithms. Lastly, the 

optimization function of the loss function for the CNN model opens plenty of possibilities 

for EC algorithms to show their performance. By employing EC in these three domains, this 

work underscores its role as a powerful and adaptable tool in not only the field of medicine 

or machine learning, but also in other fields like aerodynamics, fluid dynamics, 

telecommunications, robotics, physics, logistics and transportation, and similar. With 

continual progress of computational technologies and hardware,  EC algorithms are even 

more applicable. On the other hand, it is not wise to use EC to solve problems where efficient 

and exact algorithms are available.  For an NP-hard problem where state-of-the-art exact 

algorithms cannot solve the problem within the required search time, the use of EC 

algorithms and metaheuristics is justified. For example, finding optimal hyperparameters for 

CNN is considered an NP-hard problem since it involves searching through a high-

dimensional space of possible configurations. The interactions between these 

hyperparameters can lead to exponential growth. Furthermore, there is no known algorithm 

that can guarantee finding the global optimum in polynomial time for hyperparameter tuning. 
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4.1. Study 1 – input image segmentation 

The first study covers the first primary objective of this work – the usage of EC in the 

brain MRI image segmenting process. It is important to note that the dataset used in this 

work (section  3.1.) was not originally tailored for the segmentation task. The labels provided 

in the dataset were binary (0 or 1), indicating the presence or absence of the target class, 

rather than detailed annotations for pixel-level segmentation. As a result, the segmentation 

task was defined as isolating the brain matter from the skull region – also known as skull 

stripping. Accurate segmentation of brain tissue by removal of non-brain tissues like skull, 

muscle/skin, and cerebrospinal fluid is an important task since they produce a lot of noise on 

the CNN’s input. The skull-stripping method involves a sequence of steps, starting with 

image enhancement using the PSO algorithm to boost performance. This is followed by 

background removal, histogram-based thresholding with maximum divergence to extract the 

brain region, and morphological operations to eliminate non-brain tissues. The whole 

research and final implementation are publicly available on GitHub with all the other 

materials under the name ‘Brain_tumor_detection_v1_preprocessing.ipynb’ [25]. Gorai A. 

and Ghosh A. [26] introduced PSO-based automatic image enhancement techniques 

specifically designed for grayscale images. Their results were compared against linear 

contrast stretching, histogram equalization, and genetic algorithm (GA) based image 

enhancement approach. In most cases, the PSO-based method outperformed these 

techniques, highlighting its effectiveness. One key advantage of the PSO algorithm is its 

ability to produce better results through proper parameter tuning, a flexibility not available 

in methods like contrast stretching and histogram equalization, which yield only a single 

enhanced image for a given input. A similar method is used in this work. The enhancement 

process can be denoted as follows: 𝑔(𝑖, 𝑗) = 𝑇[𝑓(𝑖, 𝑗)] 
where f(i,j) is the original image and g(i,j) enhanced image. T is the transformation function. 

Local enhancement methods apply transformations to a pixel by taking into account the 

intensity distribution of its surrounding neighboring pixels. The transformation function is 

defined as follows: 

𝑔 (𝑖, 𝑗) = 𝑘 ∗ 𝐷𝜎(𝑖, 𝑗) + 𝑏 [𝑓(𝑖, 𝑗) − 𝑐 ∗ 𝑚(𝑖, 𝑗)] + 𝑚(𝑖, 𝑗)𝑎 
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Where D is the global mean and σ(i,j) is the local standard deviation of the (𝑖, 𝑗)𝑡ℎ pixel of 

the input image over an 𝑛 𝑥 𝑛 window. 𝑚(𝑖, 𝑗) is the local mean of the (𝑖, 𝑗)𝑡ℎ pixel over the 

same window. Parameters, namely a, b, c and k are introduced in the transformation function 

to produce large variations in the processed image. For the evaluation of the image 

enhancement process without human intervention, the objective function used the sum of 

combined three performance measures: entropy value, sum of edge intensity and number of 

edges. The work [26] showcases that maximizing those measures maximizes the 

enhancement process and quality. The PSO algorithm is used to find the optimal 

combination of a, b, c and k parameters, where the enhanced image has maximized the 

mentioned evaluation function. Particle Swarm Optimization is a stochastic population-

based metaheuristic. It mimics the social behavior of swarms, such as flocks of birds or 

schools of fish. In the basic PSO algorithm, a swarm consists of N particles that navigate 

within a D-dimensional search space. Each particle 𝑖 represents a potential solution to the 

problem and is described by the vector 𝑥𝑖. Each particle possesses its own position and 

velocity, which define its movement direction and step size within the search space. 

Optimization takes advantage of the communication between the particles - the best position 

visited by the whole swarm or by particles neighborhood 𝑔𝑏𝑒𝑠𝑡 and memory of 

remembering its own best position 𝑝𝑏𝑒𝑠𝑡𝑖. There are many topologies associated with the 

swarm’s neighborhood, such as chain topology or graph topology. Depending on the 

neighborhood structure, a leader refers to the particle that guides another particle’s search 

toward a better solution. To sum it up, each particle has the following: 

- X-vector of the current position in the search space 

- V-vector of a gradient or velocity for the particle 

- P-vector of the best solution found so far by the particle 

- P-fitness value of the p-vector 

The algorithm starts by defining the size of a swarm and creating particles with randomly 

initialized starting positions. This step is crucial for the balance between exploration and 

exploitation of a search space. All particles can explore different regions, which increases 

the likelihood of finding the global optimum and reduces premature convergence. In the 

implemented solution, this was achieved by creating a random, four-dimensional vector with 

values from 0 up to 0.5. And a similar thing for velocity vectors, with values from -1 up to 

1 (Figure 4.1.) 
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Figure 4.1. PSO algorithm constructor method 

 

The initial vector and velocities are four-dimensional because there are four hyperparameters 

the algorithm is trying to optimize, a, b, c and k. After the population is initialized, in the 

algorithm we can decide whether to use a global neighborhood or a local neighborhood with 

a chain topology (every particle is linked to its left and right neighbor). For simplicity, only 

the global neighborhood is used in this study. The comparison and detailed explanation of 

how the algorithm performs regarding those neighborhoods will be discussed in the 

following sections. Next, the algorithm has to evaluate each particle. That is done by the 

img_enhance method which takes the image and parameters a, b, c and k for the input, and 

return the enhanced image and fitness value for the enhanced image (Figure 4.2.) The logic 

for getting the fitness function and enhancing an input image is exactly the same as the one 

described above with a mathematical background.  
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def img_enhance(img, a=0.1, b=0.2, c=0.3, k=1.5, n=121): 

  # get local mean of (i,j) 
  kernel = np.ones((n, n)) 

  local_mean = convolve(img, kernel, mode='reflect') 

 

  # get local std of (i,j) 

  std = pow(np.sum(abs(img - local_mean) ** 2) / (img.shape[0]*img.shape[1] 

- 1), 0.5) 
 

  # get global mean of pixels within MxN 

  D = np.mean(img) 

 

  # final result 

  g = (k * (D / (std + b))) * (img - c * local_mean) + local_mean ** a 
 

  # calculate fitness score 

  hist, _ = np.histogram(g, bins=256, range=(0, 256), density=True) 

  hist = hist[hist > 0] 

  image_entropy = entropy(hist, base=2) 

  sobel_edges = sobel(g) 
  edge_intensity = np.sum(sobel_edges) 

  edges_count = np.sum(sobel_edges > 0.1) 

  fitness = np.log(image_entropy * edge_intensity * edges_count) 

 

  return g, fitness 
 

 

Figure 4.2. Image enhancing method with fitness function calculation 

 

The most important part – particle evolution, of a PSO algorithm can now be explained.    

With every new iteration algorithms work as follows:  

1. Define two random vectors 𝑟1 and 𝑟2: introducing stochasticity to avoid 

deterministic behavior, helping to escape local optima 

2. Cognitive component, c, is calculated by the equation  𝑐 = 𝑐1 ∗ 𝑟1 ∗ (𝑝𝑏𝑒𝑠𝑡 − 𝑥𝑖)  
3. Social component, s, is calculated by the equation, where the global 

neighborhood is previously defined 𝑠 = 𝑐2 ∗ 𝑟2 ∗ (𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑖) 

4. The new velocity is updated as following 
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𝑣𝑡+1 = 𝑤 ∗ 𝑣𝑡 + 𝑐 + 𝑠 

5. The new particle position is updated as following 𝑥𝑡+1 = 𝑥𝑡 + 𝑣𝑡+1 

6. After step 5, every particle is evaluated once again and if their current position is 

better (defined by fitness function), the following logic applies 𝑖𝑓 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑖) > 𝑓𝑖𝑛𝑡𝑒𝑠𝑠(𝑝𝑏𝑒𝑠𝑡𝑖): 𝑝𝑏𝑒𝑠𝑡𝑖 = 𝑥𝑖 
7. Finally, if the particle position is better than the global best position so far, the 

following logic applies 𝑖𝑓 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑖) > 𝑓𝑖𝑛𝑡𝑒𝑠𝑠(𝑔𝑏𝑒𝑠𝑡): 𝑔𝑏𝑒𝑠𝑡 = 𝑥𝑖 
 

The algorithm is performing steps 1 to 7 until the stopping criteria is met (Figure 4.3.), which 

might be a maximum number of iterations, big enough fitness function of global best 

position, time limit or something similar. In this case, the algorithm is built with only 3 

maximum iterations. Three iterations were enough to prove the point (evolutionary 

computing can be used for image segmentation) and to enhance the input image with decent 

results. Also, keeping in mind that the mentioned dataset has almost 700 images, algorithm 

has to perform three iterations for each image with 20 different particles.  

 

Figure 4.3. Pseudocode of PSO algorithm 
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Parameters mentioned in the steps above, 𝑤, 𝑐1 and 𝑐2, are parameters of the PSO algorithm 

where their proper tuning can allow the algorithm to adapt to different optimization 

landscapes. E.g. if there is no social component (𝑐2 = 0), the particle’s movement depends 

only on the best position discovered on their own. Without the social component particles 

cannot effectively share information and converge into a global solution 

. The social component is also called an exploitation factor, hence if the 𝑐2 factor is high, the 

algorithm converges towards the global best solution which might not be the global 

optimum. On the other hand, the cognitive factor (𝑐1) promotes algorithm exploration and 

where each particle is trying to get closer to their so far best position. If the cognitive factor 

is zero, the algorithm converges faster but with a high risk of not finding the global optimum. 

Lastly, the third parameter 𝑤 is called the weight inertia factor or in some literature, learning 

rate. It defines how fast particles will adapt to their new position, or how fast they will learn. 

The optimal combination of those parameters is crucial for algorithm efficiency and good 

convergence. In this work, the mentioned parameters were set as follows: 𝑤 = 0.6, 𝑐1 = 2.05, 𝑐2 = 1.7 

After the PSO algorithm outputs the best parameters for the input image, an enhanced image 

is used in the further process of  skull stripping. The enhanced image is normalized, and by 

using the Otsu’s thresholding method an image is separated into two distinct classes: a 

foreground class and a background class. Otsu’s method is based on finding the optimal 

threshold value to separate foreground pixels from the background pixels in the bimodal 

histogram made from the grayscale image. The mentioned threshold needs to minimize the 

variance within each class and maximize the variance between the classes. After the 

thresholding process, a connected components analysis is performed to separate the groups 

of contiguous pixels in the binary image to then identify the largest connected component 

(skull or brain tissue) within the image. After the previous step, the brain mask is formed 

simply by setting all the pixels beside the largest object as a background (white), figure 

below c) (Figure 4.4). Next, the small holes inside the brain mask are filled using 

morphological opening and median blurring, as shown in figure d) (Figure 4.4). In the last 

step, the final brain mask is applied to the initial image giving the final result. 
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Figure 4.4. Skull stripping process; a) original image, b) enhanced image by PSO 

algorithm, c) initial brain mask, d) smoothed brain mask, e) final image [25] 

 

To compare how well the proposed method works, the same model was trained on the same 

split of data (511 train images, and 128 test images), but the processing method was different 

in 6 scenarios [25]. For simplicity, the lightweight CNN model with only one convolution 

layer was used as reference. The 6 different scenarios are: 

1. No processing, colored images 

2. No processing, grayscale images 

3. The first processing method, colored images 

4. Proposed PSO processing method, colored images 

5. Combination of the third and fourth methods, colored images 
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6. Combination of the fourth and third methods, colored images 

 

The first scenario is used to define why we need image processing at the input of the CNN 

model, and the second scenario is used to observe is the color within MRI scans significant 

or not for tumor detection. For each scenario, the metric achieved on test data will be 

presented as an accuracy score, F1 score and confusion matrix.  

 

1. Scenario: no processing, colored images  

 

Figure 4.5.1. Final metrics 
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2. Scenario: no processing, grayscale images  

 

Figure 4.5.2. Final metrics 

3. Scenario: first processing method, colored images  

 

Figure 4.5.3. Final metrics 
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4. Scenario: proposed PSO processing method, colored images  

 

Figure 4.5.4. Final metrics 

5. Combination of the third and fourth scenario, colored images  

 

Figure 4.5.5. Final metrics 
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6. Combination of the fourth and third scenario, colored images  

 

Figure 4.5.6. Final metrics 
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Table 4.6. Scenarios comparison 

 Scenario description Accuracy F1 score 

Scenario 1 No processing, colored 

images 

0.86 0.90 

Scenario 2 no processing, 

grayscale images 

0.84 0.89 

Scenario 3 first processing method, 

colored images 

0.88 0.92 

Scenario 4 proposed PSO 

processing method, 

colored images 

0.78 0.85 

Scenario 5 Combination of the 

third and fourth 

scenario, colored 

images 

0.80 0.86 

Scenario 6 Combination of the 

fourth and third 

scenario, colored 

images 

0.80 0.86 

 

The Table 4.6. shows the metrics for all scenarios in this study. Turning images to the 

grayscale did not improve any metrics (scenario 1 versus scenario 2). Thus, for the following 

scenarios only images with color are used. The third scenario is a simple processing method 

that finds the largest contour within the image and resizes the original image to a uniform 

size to fit the object within the largest contour perfectly. Simply put, the method is zooming 

images to remove noise that is not part of the brain from the background which is not a part 

of a brain (Figure 4.7.). 
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Figure 4.7. Brain zooming method; a)  

original image, b) processed image 

 

The scenario above outperformed the model with non-processed images by 2% in accuracy 

and F1 score.  The fourth scenario is a proposed PSO processing method, which performed 

significantly worse even against the non-processed gray images. The figure below shows 

original images a), and those images processed with the proposed method b) (Figure 4.8.) It 

can be seen that for some samples algorithm works perfectly, it removes the skull and noise 

area around brain tissue. But, for some samples, the algorithm got confused and removed 

parts of a brain tissue, leaving the skull intact. The reason for that is difficulty in separating 

the background from the foreground. As mentioned in section 3.2., the dataset contains both 

T1-weighted and T2-weighted MRI scans of different resolutions and quality. The proposed 

algorithm for skull stripping works well for only one type of MRI scan, since in T2 gray 

matter is bright and white matter is darker than gray matter, while on the T1 scans gray 

matter is dark and white matter is bright. The bone is usually bright in both scans. The logic 

behind the skull stripping algorithm is to find the biggest connected object in the background 

of an image and remove it. If the logic is applied to the T2 MRI scans, where cerebrospinal 

fluid also appears bright, the algorithm will have trouble defining what is the background 

and vice versa. Hence, the algorithm removes some parts of brain tissue with the skull and 

the cerebrospinal fluid.  
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Figure 4.8. PSO processing method visualization; a) original images, b) processed images 

Samples where algorithm removed a part of a brain tissue are highlighted with red circles  

 

In addition, for the following studies, the chosen segmentation method is brain zooming 

(scenario 3). The mentioned method performed well in this study (Figure 4.6.) and it was 

well-suitable for the chosen dataset used in this work. It is worth noting though that 

separating images into classes (e.g. T1, T2) before their segmentation would improve the 

results.  
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4.2. Study 2 – hyperparameter tuning 

As shown in section 3.4., finding the optimal hyperparameters for the specified CNN 

model is challenging. Some computational intelligence is needed to speed up the process 

and EC fits here perfectly. Three EC algorithms are introduced here to find the optimal 

combination of the learning rate, maximum number of iterations, the L2 regularization factor 

and the momentum factor for the SGD optimizer. Those algorithms are, namely: 

- Particle Swarm Optimization (PSO) 

- Moth Flame Optimizer (MFO) 

- Non-linear Levy Chaotic Moth Flame Optimizer (NLCMFO) 

A PSO algorithm was already introduced in the first study. The whole implementation can 

be found in the PSO.py file [25]. The code is quite similar to the code for the first study. 

Some of the differences are: different velocity and position limits and stagnation control (if 

the algorithm have the same solution for the N iterations, stop the iterations). Optimization 

class looks like this:  

 
class CNN_optimization: 

    def __init__(self): 

        # load data 

        X, y = load_data() 

        self.X_train, self.y_train, self.X_test, 

                  self.y_test = train_test_split(X, y, test_size=0.2) 

 

    def get_metrics(self, N: np.ndarray) -> tuple: 

        optimizer = keras.optimizers.SGD(learning_rate=N[0], momentum=N[3]) 

        model = get_CNN_model(optimizer, l2_reg = N[2]) 

        return train(model, self.X_train, self.X_test, self.y_train, self.y_test, 

epochs=int(N[1]), verbose=False) 

 
 

Figure 4.9. CNN optimization class with get_metrics method 

A get_metrics function will train a proposed CNN model (introduced in the third section), 

using the SGD optimizer with selected hyperparameters as an input to the method, and test 

the model using the test data. The method returns the accuracy and the F1 binary score. The 

mentioned method is used for all of three EC algorithms introduced in this section and called 

when the evaluation of a particle’s or a moth’s position is needed. It is important to note that 

the train-test split is made only once, at the beginning of the optimization process. In any 

other scenario, it would not make sense. Two versions of the PSO algorithm are observed in 
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this study, one with the global neighborhood and another with a chain topology 

neighborhood. In general, it is observed that PSO algorithm with global neighborhood can 

easily converge too early in some of the local optima. In this study, the number of iterations 

is limited to 30 due to the limited computational power and resources. The first version with 

the global neighborhood with the following parameters: 

- Swarm size: 20 

- Max. iterations: 30 

- c1: 2 

- c2: 1.75 

- w: 0.5 

The algorithm’s initial best position overall had an F1 score of 87%, whereas the last best 

position had an F1 score of 93%. The PSO algorithm with global neighborhood optimized 

the mentioned hyperparameters and boosted the F1 score by more than 6% within 15 

iterations. The algorithm stagnated on the 15th iteration (Figure 4.10.) 

 

 

Figure 4.10. PSO with global neighborhood score over iterations 
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Another interesting fact to observe in these algorithms is the movement of a single particle. 

The graph below represents the F1 score of every position of the first particle in the swarm 

(Figure 4.11.) From the movement of the selected particle, by the 6th iteration, the particle 

was exploring the search space. After it found its personal best position, it tried to focus 

close to that position (iterations 6 to 11).  

 

Figure 4.11. Score over iterations for a single particle within a swarm 

 

The whole experiment with the PSO algorithm is available on GitHub by the name of 

Brain_tumor_detection_PSO.ipynb. Another instance of the PSO algorithm, but with a local 

neighborhood showed a similar performance. The algorithm’s parameters were the same, 

and the algorithm stagnated once again on the 15th iteration (Figure 4.12). The F1 score rose 

from 84% to 90%. The only difference was the stability of a single particle since it was 

updated based only on its left and right neighbors (Figure 4.13). For this problem, there was 

no significant difference between the two versions of the same algorithm. The difference 

would be visible only with a higher number of iterations. Unfortunately, it takes around 10 

minutes for every iteration of the algorithm on the computational resources used for this 

work. For the future reference, a bigger number of iterations would surely be a good path to 

pursue.  
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Figure 4.12. PSO with local neighborhood score over iterations 

 

 

Figure 4.13. Score over iterations for a single particle within a swarm 
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Another algorithm used in this study was introduced by Dehkordi et al. [19] in their paper 

where it outperformed other optimization algorithms such as PSO, GA, GWO – Nonlinear 

Levy Chaotic Moth Flame Optimizer (NLCMFO). But before explaining that part, it is 

necessary to understand the base version of the algorithm, a simple Moth Flame Optimizer 

(MFO). 

MFO, population-based algorithm introduced by Mirjalili [27], mimics the transverse 

orientation for particle navigation. The mentioned technique is used by moths at night. In 

this algorithm, moth behavior is presented as an optimization technique where every moth 

moves following the spiral movement around the flames. The algorithm begins similarly to 

PSO, by randomly producing moths in the search space and evaluating their position 

considering the optimal position with the flame. The moths are represented as search agents 

that explore the search space, and the flames are represented as their flags or pins in their 

way to find a better solution in the search space (Figure 4.14). 

 

Figure 4.14. The spiral movement of a moth 𝑀𝑖 towards the flame 𝐹𝑗 

The spiral motion of the moths around the flame ensures the balance between exploration 

and exploitation in the MFO algorithm. A flame number is calculated dynamically over the 

iterations following the equation: 

𝑓𝑙𝑎𝑚𝑒_𝑛𝑜 = 𝑟𝑜𝑢𝑛𝑑(𝑁 − 𝑙 ∗  𝑁 − 𝑙𝑇 ) 
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Where N represents the maximum number of flames (given to the algorithm on the start), l 

is a current iteration and T is a maximal number of iterations (also given to the algorithm on 

the start). The moth’s position is updated by the following equation: 𝑆(𝑀𝑖 , 𝐹𝑗) = 𝐷𝑖 ∗ 𝑒𝑏𝑡 ∗ cos(2𝜋𝑡) + 𝐹𝑗 

Where the new position of a moth 𝑀𝑖 regarding the flame 𝐹𝑗, is represented as 𝑆(𝑀𝑖, 𝐹𝑗). 𝐷𝑖 
is the distance between ith moth and jth flame, b is a constant value used to define the 

logarithmic helix space, and t represents a random number between [-1, 1]. The equation for 

getting the t value is following: 𝑡 = (𝑎 − 1) ∗ 𝑟𝑎𝑛𝑑 + 1 

Where a is calculated for every iteration following the equation: 

𝑎 =  −1 + 𝑇𝑖 ∗ (−1𝑇 ) 

Here, 𝑇𝑖 represents the ith iteration, and T represents a maximal number of iterations. This 

helps the algorithm to know when to explore space and when to converge to the current best 

solution. The implemented version of the algorithm was built on top of these equations. 

Furthermore, a stagnation check was added and another check to see if the moth went out of 

the search space. If true, its position was set within the borders of a search space. A Python 

implementation of the MFO algorithm used NumPy arrays to store the moth’s and flame’s 

positions. Where sorting those arrays would present the best so-far positions within the 

search space. The flames are updated based on the best solution so far, and moths are updated 

based on the logarithmic spiral. The process is repeated until the convergence or stopping 

criterion is met. In this study, the stopping criteria is a maximal number of iterations – 10. 

The algorithm is robust to getting stuck in local optima because of the dynamic number of 

flames which gradually reduces over iterations. The mentioned behavior prevents premature 

convergence. Another key factor is the simplicity of the algorithm, every moth has to know 

only his position (no personal best or global best like in PSO). An overview of the 

implementation is available in the files named MFO.py and 

Brain_tumor_detection_MFO.ipynb [25]. 
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The initial parameters of the MFO algorithm were: 

- number of moths: 30 

- max. number of iterations: 10 

- max number of flames: 15 

- b: 1 

The optimization method boosted the F1 score from 86% to 90%. The total execution time 

was around 150 minutes, similar to PSO’s time for 15 iterations. The graph below shows the 

F1 score for the best position found in every iteration (Figure 4.15).  

 

 

Figure 4.15. MFO score over iterations 

As mentioned before, to solve some drawbacks mentioned in the paper [19], the NLCMFO 

algorithm has been introduced as quoted “The primary purpose of the NLCMFO is to 

increase the performance of the standard MFO in two segments. The initial stage is to 

integrate MFO with Levy flight theory and chaotic maps, followed by employing the 

nonlinear weight coefficient parameter as a control variable between both the algorithm's 

exploration and exploitation processes.” 
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Chaotic maps play a crucial role in optimization algorithms and not only NLCMFO one, by 

introducing deterministic, yet highly unpredictable behavior, making them a powerful 

alternative to randomness. Unlike random parameters, chaotic maps leverage the non-

repetition and ergodicity of chaos to systematically and thoroughly explore the search space. 

The use of chaotic maps helps optimization techniques improve their exploration 

capabilities, covering diverse regions of the search space. This approach also helps in 

avoiding local optima and accelerates convergence by maintaining a dynamic and non-linear 

exploration pattern. In this thesis, the chosen chaotic map is a logistic map with the following 

equation: 𝑋𝑛+1 = 𝑟 ∗ 𝑋𝑛(1 − 𝑋𝑛) 

Where r was a random value set to 3.99 in this study.  

Levy flight theory, a stochastic step method was used to control the step size depending on 

the probability distribution function generated by the Levy distribution [28] followed by the 

equation:  𝐿(𝑥𝑖)  ≈ |𝑥𝑖|1−𝛼,   1 <  𝛼 ≤ 2 

Lewy flight is generally connected with small steps, and rarely with long jumps. Hence, it is 

more suitable for the optimization field than, for example, a uniform random search [29]. 

Overall, NLCMFO showed better performance and stability over the MFO algorithm both 

in the mentioned paper [19], and in this thesis. The algorithm implementation is very similar 

to the MFO algorithm implementation, with a few digressions: 

- in the equation for the moth position update, instead of a b value the levy step over a 

multiplied by alpha (value of 1.8 in this work) 

- in the same equation, instead of a t value (the current iteration of the algorithm), a 

logistic map has been applied  to the randomly chosen number and constant r of 3.99  

The final equation for updating the moth position is the following: 

 𝑆′(𝑀𝑖, 𝐹𝑗) = 𝐷𝑖 ∗ 𝑒𝑙𝑒𝑣𝑦(𝑎∗1.8) ∗ cos(2𝜋 ∗ logMap(x, r)) + 𝐹𝑗  
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Where x represents a random value chosen at the beginning of the algorithm (before the first 

iteration). The whole implementation is available by the name of NLCMFO.py and 

Brain_tumor_detection_NLCMFO.ipynb [25]. 

The algorithm improved F1 score by almost 10% over only ten iterations as shown in the 

graph below (Figure 4.16.) 

 

Figure 4.16. NLCMFO score over iterations 

Accordingly, the algorithm found a better solution in almost every new iteration, which 

demonstrates the great ability to explore the given search space compared to PSO and MFO 

algorithms. The graph below shows the motion of a single moth over the same iterations 

(Figure 4.17). It can be observed that the specified moth improved its starting position 

(fourth iteration), and stayed close to the best, optimal position.  
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Figure 4.17. Single moth score over iterations 

The next study will show an even better comparison between MFO and NLCMFO 

algorithms. In conclusion, all three algorithms have the same time and space complexity. 

The PSO algorithm uses a bit more memory, given the fact it has to store all particle’s best 

positions and their velocities. But on the other hand, MFO and NLCMFO algorithms have 

to perform sorting operations. The NLCMFO algorithm showed better performance by 

boosting the F1 score by almost 10%, whereas other algorithms did the same by only 6%. 

All three algorithms are scalable for bigger problems and a greater number of iterations. For 

future reference, a better comparison of different search spaces is needed.  

Table 4.18. Metrics of different CNN models on a subset 

 Accuracy F1 score 

CNN – without EC 0.63 0.71 

CNN – PSO 0.88 0.93 

CNN - MFO 0.86 0.9 

CNN - NLCMFO 0.89 0.93 
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4.3. Study 3 – CNNs loss function optimization 

Traditional algorithms like Stochastic gradient descent (SGD), Adam, Adagrad, and 

RMSprop have become the standard for optimizing CNN loss function. However, these 

methods are often taken for granted, even though they rely on gradient information, making 

them prone to challenges such as getting stuck in local optimum, sensitivity to 

hyperparameters, or limited exploration. EC algorithms present a suitable alternative for 

optimizing CNN loss functions. Unlike gradient-based methods, EC algorithms are gradient-

free, enabling them to effectively navigate rugged, high-dimensional search spaces without 

relying on the differentiability of the loss surface. By leveraging mechanisms such as 

population-based exploration, mutation, and crossover, EC algorithms can explore diverse 

regions of the search space, avoid local optima, and discover more robust solutions. This 

makes EC particularly suitable for optimizing CNN loss functions. Overall EC algorithm’s 

time to converge is longer than in traditional gradient-based algorithms, but it may 

outperform when gradients are noisy, or the loss function surface is highly non-convex. EC 

methods have a high computational cost per iteration, and this was the case in this study as 

well. For simplicity, a simple artificial NN was created for the purposes of this study. A 10-

dimensional input was connected to a hidden layer with five nodes, which was connected to 

an output layer with two nodes. Next, a dummy data was created according to the code 

below: 

 

inputs = np.random.randn(5, 10) 

labels = np.array([0, 1, 0, 1, 0]) 
 

 

Figure 4.19. Dummy data generating 

For the study purpose, three EC versions were implemented again – PSO, MFO and 

NLCMFO algorithms. The implementation was exactly the same as the one in the study 

before, with a few minor modifications so it would fit the problem of this study. The purpose 

of this study was to observe how well EC algorithms are performing compared to the famous 

gradient-based algorithms. Furthermore, the main difference between PSO with a global 

neighborhood and PSO with a local neighborhood is shown, such as a difference between 

MFO and NLCMFO algorithms. For that purpose, a Python method was developed to 

compare the average loss of different optimizers over multiple iterations on the same ANN. 

The whole implementation is available in the file named Loss_function_opt.ipynb [25]. The 
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graph below displays the results of this study (figure 4.19.)     

     

 

Figure 4.20. Average loss comparison on different optimizers over 25 epochs within 

multiple iterations 

 

In case of this simple problem, the learning process of a simple ANN, PSO algorithm with 

a global neighborhood achieved very impressive results over 25 epochs within 10 different 

iterations. Every optimizer performed a learning step over 25 epoch 10 times, with the 

average displayed on the graph above. PSO algorithm with global neighborhood (light blue 

line) scored the lowest average loss and converged fastest. Within only five epochs, the 

algorithm converged.  A PSO algorithm with a chain topology, scored impressive results as 

well, with a slightly slower convergence (orange line). A global neighborhood forces the 

algorithm to explore the search space more aggresively by guiding all particles toward the 

global best solution, which is why the algorithm converges faster. This is not always a good 

thing, if an algorithm is stuck in the local optimum, it may never get out of it. Green line 

shows the performance of a basic MFO algorithm is displayed. Clearly, it performance is the 

worst compared to other optimizers. However, the performance of the algorithm was boosed 
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significantly by the slight modification of the simple MFO algorithm, i.e. introduction 

oflogistic maps and levy flights. The NLCMFO algorithm outperformed two commonly used 

optimizers, SGD and Adagrad, within 20 epochs for this single problem. Because of limited 

resources and computational power, the mentioned comparison was not suitable for the 

optimization of the CNN used in this work. Hence, the optimizer used to train the mentioned 

CNN model was still SGD, a gradient-based method. The following section will show the 

comparison between the mentioned CNN model and the VGG-16 pre-trained model on a 

whole dataset.  

 

4.4. Final CNN model 

In the processes of input image segmentation and the model's loss function optimization, no 

EC was used for the reasons stated in previous sections. EC was used only to find optimal 

hyperparameters of a mentioned CNN model. The process was done on a smaller subset, 

which means those optimal hyperparameters should be tested on the whole dataset. From the 

third chapter and graph comparison (Figure 3.8.), the proposed model achieved F1 score of 

only 71% on a subset of the dataset. In the second study, the same model was optimized by 

three different optimization algorithms: PSO, MFO and NLCMFO. The NLCMFO 

algorithm found the following best hyperparameters:  

- Learning rate: 0.0946 

- Momentum: 0.5815 

- Optimizer: SGD 

- L2 regularization factor: 0 

- Number of iterations: 20 

With these it achieved the F1 score of 93%. In the final notebook, the mentioned CNN model 

with optimal hyperparameters is trained on the whole dataset (total of 3509 images) and 

compared to the VGG-16 pre-trained model. The results are shown in the table below (Table 

4.20.) 
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Table 4.21. Introduced CNN and VGG-16 model final comparison 

 Accuracy F1 score 

CNN  0.95442 0.97283 

VGG-16 0.96011 0.97623 

 

The CNN model showed similar performance as the pre-trained VGG-16 model on this 

specific data split. However, more important is the significant improvement of the F1 score 

within the CNN model with different hyperparameters. In fact, it ensures that using the 

optimal hyperparameters can boost the F1 score by more than 15%. Both models remain 

insufficiently accurate for the task of simple binary classification, primarily due to the 

imbalanced and noisy nature of the chosen dataset. 
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Conclusion 

This thesis explores the potential of EC techniques was explored, specifically in the 

context of brain tumor detection using CNNs. The early detection of brain tumors is crucial 

for improving patient outcomes, as it enables timely intervention and treatment. AI models, 

particularly CNNs, have shown promising results in medical image analysis, offering 

accurate, efficient, and automated detection systems. The incorporation of EC methods, such 

as Particle Swarm Optimization (PSO), Moth Flame Optimization (MFO), and Nonlinear 

Levy Chaotic Moth-Flame Optimization (NLCMFO), has the potential to further enhance 

the performance of CNNs in this domain. 

In this research, the latest state-of-the-art methods using EC techniques for brain tumor 

classification and detection were compared and implemented, shedding light on their 

applications and the improvements they bring. Various approaches were assessed, from 

optimizing CNN hyperparameters, enhancing segmentation and loss functions to achieving 

better convergence speeds and avoiding premature convergence. Studies such as Dehkordi 

et al. [19] and Zhang et al. [18] have demonstrated the effectiveness of EC methods in 

optimizing CNN architectures and training processes, achieving high accuracy rates in brain 

tumor detection. 

Motivated by this fact, this research used a simple CNN model with two convolutional 

layers, max pooling, and dropout layers. The model achieved an F1 score of 71% on a subset 

of the dataset which has been previously merged and processed. Later, the same model 

achieved an F1 score of 97% with optimal hyperparameters on the whole dataset. The 

integration of evolutionary computing further improved the performance of the model. 

Firstly, the PSO was employed for image segmentation, but the results were insufficient for 

further use. Next, the CNN hyperparameters were fine-tuned using MFO, PSO, and 

NLCMFO. The NLCMFO algorithm significantly improved the F1 score, achieving an 

impressive performance boost of over 15%. Additionally, the research explored the 

optimization of the loss function using MFO, PSO, and NLCMFO, although computational 

limitations hindered the applicability to the CNN model. However, the results were very 

interesting and they confirmed the theoretical foundation behind the mentioned optimization 

algorithms.  
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A comparison between the CNN model optimized with NLCMFO hyperparameters and the 

pre-trained VGG-16 model showed similar performance, further validating the effectiveness 

of the proposed approach. While the results are promising, there is still considerable room 

for improvement and further research. Future work should focus on extending and cleansing 

the dataset, exploring 3D MRI scans, and adapting the models for real-time applications in 

clinical settings. Furthermore, optimizing these models for larger and more diverse datasets 

in high-performance computing environments could lead to even more accurate and robust 

tumor detection systems. 

In conclusion, the integration of evolutionary computing with deep learning models such as 

CNNs has shown great potential for enhancing brain tumor detection, but continued research 

is necessary to fully leverage these techniques and deploy them effectively in clinical 

practice. 
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Summary 

Title: Evolutionary computing optimization of neural network for tumor detection in brain 

MR images 

Key words: Brain tumor detection, Convolutional neural networks, Evolutionary computing 

 

This thesis explores the application of evolutionary computing (EC) techniques to 

optimize convolutional neural networks (CNNs) for brain tumor detection in MRI scans. EC 

techniques were used for image preprocessing, hyperparameter tuning, and loss function 

optimization. Using a dataset of 3509 MRI scans, initial CNN F1 score was 71% (accuracy: 

63%). Three EC algorithms—PSO, MFO, and NLCMFO—were tested, with NLCMFO 

boosting the F1 score to 97%. While EC-assisted skull stripping showed mixed results, 

simpler preprocessing proved more reliable. A final comparison between the optimized CNN 

and the pre-trained VGG-16 model showed similar performance. This result highlights the 

potential of evolutionary algorithms to enable custom CNNs to perform comparably to state-

of-the-art pre-trained models in medical image analysis. Despite computational costs and 

dataset challenges, EC shows promise for enhancing medical image analysis, warranting 

further research. 
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Summary in Croatian 

Naslov: Optimiranje neuronske mreže evolucijskim računanjem za detekciju tumora u MR 

slikama mozga 

Ključne riječi: Detekcija tumora mozga, konvolucijske neuronske mreže, evolucijsko 

računarstvo 

Rad istražuje primjenu tehnika evolucijskog računanja (ER) za optimizaciju 

konvolucijskih neuronskih mreža (CNN) u detekciji tumora mozga na MRI snimkama. ER 

metode korištene su za obradu slika na ulazu modela, podešavanje hiperparametara i 

optimizaciju funkcije gubitka. Na skupu podataka od 3509 MRI snimaka, početna F1 mjera 

CNN-a iznosila je 71% (točnost: 63%). Testirana su tri ER algoritma: PSO, MFO i 

NLCMFO – pri čemu je NLCMFO povećao F1 mjeru na 97%.  ER metoda uklanjanja 

lubanje nije pokazala značajnije rezultate. Konačna usporedba optimiziranog CNN-a s 

unaprijed treniranim VGG-16 modelom pokazala je slične performanse. Navedeni rezultati 

naglašavaju potencijal ER algoritama za optimiranje CNN modela kako bi postigli rezultate 

usporedive sa state-of-the-art modelima. Unatoč računalnim troškovima i izazovima 

vezanim uz podatke, ER pruža čvrste temelje za daljnja istraživanja u medicinskoj analizi 

slika i općenito.  
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Abbreviations 

ACO Ant Colony Optimization 

ANN Artificial Neural Network 

AI Artificial Intelligence 

CNN Convolutional Neural Network 

CT Computed Tomography 

DL Deep Learning 

DWT Discrete Wavelet Transform 

EC Evolutionary Computing 

FN False Negative 

FP False Positive 

GA Genetic Algorithm 

GP Genetic Programming 

GWO Grey Wolf Optimization 

MFO Moth Flame Optimization 

ML Machine Learning 

MR Magnetic Resonance 

MRI Magnetic Resonance Imaging 

fMRI Functional Magnetic Resonance Imaging 

MSE Mean Squared Error 

NBTF National Brain Tumor Foundation 

NLCMFO Nonlinear Levy Chaotic Moth Flame Optimization 

NN Neural Network 

NP Non-deterministic Polynomial-time 

PC Personal Computer 

PET Positron Emission Tomography 

PSO Particle Swarm Optimization 

ReLU Rectified Linear Unit 

SVM Support Vector Machine 

TN True Negative 

TP True Positive 

VGG Visual Geometry Group 

 


