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A B S T R A C T

The paper focusses on water distribution systems (WDSs) of a general configuration, whose operation profile
is decided by solving a sequential linear program (SLP). The paper introduces linearization procedure for a
general network. The necessary SLP mathematical form for a general WDS is also derived. Cost function and
all the constraints for the WDS optimization are elaborated. To validate the approach, the derived procedure is
applied to a toy example and to a large segment of a WDS from a city in Spain. The results are compared with
the operation policy obtained using hysteresis control and substantial operational costs reduction possibilities
are demonstrated while respecting all WDS constraints.
1. Introduction

Water distribution operators are looking for advanced water de-
livery strategies which bring energy-efficient and reliable solutions
for consumers (Martinez, Puig, Cembrano, & Quevedo, 2013). In the
face of rising complexity, future urban water delivery systems will
require increasingly sophisticated technologies to perform reliably and
effectively (Berkel, Caba, Bleich, & Liu, 2018). Water flow manipu-
lators (pumps and valves) have been used to maximize a variety of
objectives in water networks, including production and transporta-
tion costs, water quality, safe storage, smooth control actions, and
so on (Fooladivanda & Taylor, 2018). Further, as network topology
complexity grows (Archibald & Marshall, 2018), small perturbations
can cause significant performance decrease and even infeasibility of
optimal water flow problems (Goryashko & Nemirovski, 2014).

Optimal control in water networks deals with the problem of plan-
ning control inputs ahead of time, which adhere to all operational
constraints, while they achieve certain performance goals. They may in-
clude one or more of the following, according to the needs of a specific
utility: minimization of supply and pumping costs, maximization of
water quality, pressure regulation for leaks reduction, etc. (Cembrano,
Wells, Quevedo, Pérez, & Argelaguet, 2000). Model predictive control
(MPC), or receding horizon control, is a well-established method of
achieving optimal control (Rawlings, Mayne, & Diehl, 2017) and is
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E-mail addresses: blaz.korotaj@fer.unizg.hr (B. Korotaj), mario.vasak@fer.unizg.hr (M. Vašak).

increasingly applied to Water Distribution Systems (WDSs) (Engell,
2007) to improve operations in dynamic water demand conditions
while respecting all requirements and minimizing costs (Abdulrahman
& Nasher, 2010). The WDS model is inherently nonlinear because of the
nonlinear relationship between flow and pressure difference on WDS
elements, as a consequence of basic Bernoulli law of hydrodynamics. To
effectively control the system over a wide operating area, it is necessary
to utilize MPC with a nonlinear model. An attempt to take the pres-
sure/head model into account in the flow-based MPC is made in Sun,
Puig, and Cembrano (2014), where the non-linear constraints from
the flow-head equations are used to update the operational constraints
of tanks and actuators by solving a constraint satisfaction problem
prior to solving the flow-based linear MPC problem. Again, it was also
demonstrated that MPC with a nonlinear model is significantly more
computationally expensive compared to when a linear model is used,
making it challenging for implementation in a time-sensitive setting.

In Cembrano et al. (2000), the authors described an approach
to optimal control in water distribution networks, developing an op-
timal control tool and demonstrating its application to the city of
Sintra, Portugal. Furthermore, connection with other water manage-
ment tools, such as modelling and quality control programs, ensures
feasible and dependable solution. The latter research highlights that
complex networks, especially those with mesh structures, impose a high
computational burden. Optimization becomes challenging for large,
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interconnected water distribution networks with multiple reservoirs
and pumps. Simplifications, such as removing small-diameter pipes or
ow-capacity reservoirs, are required, which may impact model accu-

racy. In Wang, Ocampo-Martinez, and Puig (2015), authors successfully
mplemented the MPC strategy in the WDS using a control-oriented
odel that only takes flows into account. Accordingly, the explicit

onsideration of the pressures of each WDS element, including storage
anks, demand sectors, pipes, pumps, pressure-controlled valves and
low-controlled valves is omitted. For a certain WDS, it is necessary
o adhere to minimum pressure limits at each sector’s water demand
oint and in specific control points in addition.

In previous research, water distribution networks were often also
abstracted and simplified since the corresponding optimal control cal-
culations, and even just the simulations of the network hydraulic
model, were complex. In Baunsgaard, Ravn, Kallesøe, and Poulsen
(2016), the authors introduced a WDS model and a MPC procedure
or a network that includes only the fundamental components of a
istribution system. However, they did not propose a general approach
or advanced control solutions in the context of a broader distribution
ystem network. Furthermore, in Ciminski and Duzinkiewicz (2017)
PC is applied to WDS of the Chojnice city (Poland) based on a genetic

lgorithm. The primary shortcomings here are the difficulty in identi-
ying an appropriate fitness function, selecting the various parameters,
nd execution time. While the described procedure in Ciminski and
uzinkiewicz (2017) can be extended to larger WDS scales, it is impor-

tant to note that these shortcomings become more prominent in such
cases and may lead to infeasible solutions. Furthermore, the approach
in Shao, Zhou, Yu, Zhang, and Chul (2024) based on linearization and
onverting a mixed-integer nonlinear program (MINLP) into a mixed-
nteger linear program (MILP) in a large-scale WDS results in nearly
0% energy savings compared to the genetic algorithm. The drawback
f this approach is that the presence of complicated loops leads to
ncreased model-reality flows discrepancies, posing a potential issue in
ealistic large-scale WDSs. Another approach of transformation of the
riginal MINLP into a MILP through linearization in Vieira, Mayerle,

Campos, and Coelho (2020) not only cuts down the service provider’s
costs by over 16%, but also results in over 27% reduction in losses.
An additional positive outcome of the provided solution is a nearly
17% decrease in energy consumption. Despite this transformation,
the primary challenge remains the execution time, which hinders the
practical application of this method to real systems.

The research presented in Menke, Abraham, Parpas, and Stoianov
(2016), which focuses on demand response, illustrates that across var-
ious electricity tariffs and water demand scenarios, there are demand
response mechanisms that enable the WDS to offer demand response
capabilities. This not only lowers its operational costs but also provides
broader benefits in terms of green energy share increase and thus
further reinforced greenhouse emissions reduction based on optimal
control. One of the shortcomings in that research is that the WDS was
modelled using quasi-steady-state modelling.

The approach in this research is based on simulation of the full WDS
onlinear model using the open-source tool EPANET (Rossman, Woo,

Tryby, Shang, Janke, & Haxton, 2020) for simulating the hydraulics of
a complex WDS. Through simulation, a sequence of operational points
is obtained around which the WDS nonlinear model is then linearized.
The obtained linear models are used to formulate a linear program for
mprovement of WDS operation via an optimized perturbation of WDS

commands. Around the perturbed and improved response these steps
re repeatedly applied in a Sequential Linear Program (SLP) procedure.
he procedure is functional for complex distribution systems of a gen-
ral configuration without a need for any abstraction or simplification
f the network. Also, this approach does not encounter computational
ssues with complicated loops on large-scale networks and remains
omputationally efficient even on an average personal computer, unlike
he previously mentioned studies. For that purpose a new method
or modelling and linearizing the general distribution network is here
 e

2 
introduced and described. The approach is first validated on a toy-
example and then applied to a large WDS segment of a city in Spain.
The introduced approach leads to significant cost savings compared to
baseline management methods in real-world WDSs.

Main paper contributions are the following:

• A mathematical approach to solving a general water distribution
network via virtual cuts without any simplifying assumptions
regarding its structure.

• Sequential linear program for optimization of a water distribution
system operation.

• Derived procedures verified on a large-scale system indicating
high gains in use.

The paper is structured as follows: Section 2 describes a general
WDS setup; WDS optimization approach is explained in Section 3; Sec-
tion 4 describes SLP for a WDS; Optimization results for the toy example
and the real WDS segment case studies are reported in Section 5; and
Section 6 concludes the paper.

2. A general WDS setup considered

A WDS consists of storages, pressure- and flow-driven pumps, pres-
ure breaker valves (PBVs) and pipes. Its role is to deliver drinking
ater from the drinking water treatment plant (DWTP) to the end-

ustomers, under proper pressure conditions for a wide range of water
emands that the end-users generate. In this research, a general water
istribution network setup is being considered without any simplifica-
ions. There is no limit to the number of the network components. Let
he network consist of a set of nodes  indexed with integers and a
et of branches  connecting two neighbouring nodes. The branches
re ordered pairs (𝑚, 𝑛), 𝑚 < 𝑛, 𝑚, 𝑛 ∈  , also indexed with integers
. A subset of all branches (𝑚, 𝑛) starting from node 𝑚 is denoted with
(𝑚,⋅) and a subset of all branches (𝑚, 𝑛) ending at node 𝑛 is denoted
ith (⋅,𝑛). Fig. 1 displays the structure of an example complex network

in the EPANET tool. The dynamics of the WDS model is derived from
a sequence of ordinary differential equations (ODEs) that describe the
rate of change of the water level in storage units and has the following
form:

dℎ𝑛
d𝑡

= 1
𝐴𝑛

⎛

⎜

⎜

⎝

∑

𝑏∈(⋅,𝑛)

𝑞𝑏 −
∑

𝑏∈(𝑛,⋅)

𝑞𝑏
⎞

⎟

⎟

⎠

, (1)

where 𝑛 ∈ st or age and st or age is the set of storages in the WDS, 𝐴𝑛 [m2]
denotes the horizontal cross-section of the 𝑛th storage unit, 𝑡 is the time,
𝑞𝑏 [m

3

s ] represents the flow through branch 𝑏, whereas if it is described
with pair (𝑚, 𝑛), 𝑞𝑏 > 0 if water flows from 𝑚 to 𝑛 and 𝑞𝑏 < 0 if water
flows from 𝑛 to 𝑚. The Hazen–Williams formula is used to determine the
pressure difference between the nodes 𝑚 and 𝑛 bordering a pipe which
constitutes a branch (𝑚, 𝑛) indexed with 𝑏 (Rossman et al., 2020):

𝑝𝑛 = 𝑝𝑚 + 𝜌𝑔 𝛥ℎ𝑚_𝑛 − sgn (𝑞𝑏) ⋅ 𝛼 ⋅
𝐿𝑏

𝐶1.852
𝑏 ⋅ 𝑑4.871𝑏

⋅ |𝑞𝑏|
1.852, (2)

where 𝑝𝑚 [Pa] and 𝑝𝑛 [Pa] are the pressures at nodes 𝑚 and 𝑛, respec-
tively, 𝜌

[

k g
m3

]

is the water density, 𝑔
[

m
s2

]

is the acceleration of gravity,

ℎ𝑚_𝑛 [m] is the difference in elevation between nodes 𝑚 and 𝑛, 𝐿𝑏 [m]
is the pipe length, 𝑑𝑏 [m] is the pipe inner diameter, 𝐶𝑏 is the unitless
Hazen–Williams roughness coefficient and the conversion coefficient
𝛼

[

s1.852
m1.685

]

is equal to 1.0453 × 105. In this paper, for node 𝑛 pressure 𝑝𝑛
orresponds to the overpressure relative to the atmospheric pressure.
he leakage flow at certain node 𝑛 is modelled as (Van Zyl & Clayton,

2007):

𝑞loss,𝑛 = 𝐴leak,𝑛

√

2
𝜌
𝑝𝑛

[

m3

s

]

, (3)

where 𝐴leak,𝑛 denotes the area of the leak surface at node 𝑛.
The setting of the PBV determines the desired pressure differ-

nce along it, so the pressure difference 𝛥𝑝 across the PBV placed
PBV
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Fig. 1. Example of a complex water distribution network (Shiu, Chiang, & Chung,
2022).

between nodes 𝑚 and 𝑛, 𝑚 < 𝑛, is modelled as:

𝑝𝑛 = 𝑝𝑚 − sgn (𝑞) ⋅ 𝛥𝑝PBV, 𝛥𝑝PBV ≥ 0. (4)

The pressure difference 𝛥𝑝PDP across the pressure-driven pump (PDP)
placed between nodes 𝑚 and 𝑛, 𝑚 < 𝑛, is modelled as:

𝑝𝑛 = 𝑝𝑚 + 𝛥𝑝PDP. (5)

If 𝑛 is the storage output node placed at the bottom of the storage, the
pressure at node 𝑛 is:

𝑝𝑛 = 𝜌𝑔 ℎ𝑛. (6)

In the network, pressure-driven nodes (PDNs) are nodes in which the
pressure at a particular time instant does not depend on the inputs
setting or demands at that time — all nodes with water storage are
pressure-driven nodes as well as all nodes in which the pressure is kept
at a fixed value. Hence, if 𝑛 is a non-storage pressure-driven node, the
following holds:

𝑝𝑛 = 𝑝PDN, (7)

where 𝑝PDN is the atmospheric overpressure of the pressure-driven node
that is kept at a fixed value. In the case of a flow-driven pump (FDP),
the flow through the branch 𝑏 where the pump is located is defined as:

𝑞𝑏 = 𝑞FDP, (8)

where 𝑞FDP is the flow through the flow-driven pump. Otherwise, the
flow through the branch is determined by Eq. (2):

𝑞𝑏 = sgn (𝑟𝑚_𝑛) ⋅

(

|𝑟𝑚_𝑛| ⋅ 𝐶1.852
𝑏 ⋅ 𝑑4.871𝑏

𝛼 ⋅ 𝐿𝑏

)
1

1.852

, (9)

where 𝑟𝑚_𝑛 = 𝑝𝑚 − 𝑝𝑛 + 𝜌 ⋅ 𝑔 ⋅ 𝛥ℎ𝑚_𝑛. Since Eq. (9) has an infinite first
derivative at point zero, its behaviour in the interval 𝑟𝑚_𝑛 ∈ [−𝜀,+𝜀] is
approximated by a linear function. The parameter 𝜀 is a small enough
number introduced to ensure numerical stability. The pressure-driven
demand 𝑑dem,𝑛 at node 𝑛 is modelled through the demand satisfaction
ratio (DSR) (Muranho, Ferreira, Sousa, Gomes, & Marques, 2020):

𝑑dem,𝑛 = 𝐷dem,𝑛 ⋅ DSR𝑛, (10)

DSR𝑛 =

⎧

⎪

⎨

⎪

⎩

1 𝑝𝑛 ≥ 𝑝max
(

𝑝𝑛−𝑝min
𝑝𝑛−𝑝max

)𝜂
𝑝min < 𝑝n < 𝑝max

0 𝑝𝑛 ≤ 𝑝min,

(11)

where 𝐷dem,𝑛 is the high-pressure demand (HPD) at node 𝑛, 𝑝𝑛 is
the pressure at node 𝑛, 𝑝min is the pressure below which no water
can be supplied, 𝑝max is the pressure necessary to fully satisfy the
required demand 𝐷dem,𝑛 and 𝜂 is an exponent, usually with a value of
0.5 (Rossman et al., 2020).
3 
The electrical power for the case of the flow-driven pump is calcu-
lated as:

𝑆FDP =
𝛥𝑝FDP ⋅ 𝑞FDP

𝜂FDP
[W], (12)

where 𝛥𝑝FDP is the pressure difference across a flow-driven pump and
𝜂FDP is its electromechanical conversion efficiency. Furthermore, the
electrical power for the case of the pressure-driven pump is calculated
as:

𝑆PDP =
𝛥𝑝PDP ⋅ 𝑞PDP

𝜂PDP
[W], (13)

where 𝑞PDP is the flow through a pressure-driven pump and 𝜂PDP is its
electromechanical conversion efficiency.

The nonlinear state-space model of a WDS in general form is de-
scribed as follows:

�̇� = 𝑓𝑐 (𝐱,𝐮,𝐝), (14)

where the system states 𝐱 ∈ R𝑛x are the water levels ℎ𝑛 in the WDS
storages:

𝐱 = [(ℎ𝑛)𝑛∈st or age ]T. (15)

The function 𝑓𝑐 ∶ R𝑛x × R𝑛u × R𝑛d → R𝑛x is a general nonlinear vector
function and �̇� represents the time-derivative of 𝐱.

The actuators in the WDS – pumps and valves – are assumed to be
equipped with local controllers with the ability of continuous perfor-
mance in regulating the required pressure or flow on them, in the space
defined by physical constraints of the individual element, e.g. in the
form of the nominal 𝑄-𝐻 characteristics for a concrete pump. The WDS
model thus includes also the flows or pressures that should be main-
tained on individual controllable system elements. Control commands
provided from the central WDS controller for these individual local
control circuits are in the form of their respective reference signals. For
the presumed sampling time of the WDS system, the local controller
behaviour can be approximated with a simple identity between the
feasible reference value command and the specific flow or pressure that
is being maintained on that reference value. Thus, although actually the
reference value commands for specific controllable flows and pressures
would be the control inputs of the WDS system (14), due to this
presumed identity these controllable flows and pressures will be in
the sequel considered as control input variables of the WDS system.
Physical constraints of individual pumps and valves are used in the
subsequent control problem formulation to assure feasibility of the
issued commands.

The flows through the flow-driven pumps 𝑞FDP, pressure differences
across the pressure breaker valves, 𝛥𝑝PBV, and pressure differences
across the pressure-driven pumps, 𝛥𝑝PDP, are thus the system control
inputs 𝐮 ∈ R𝑛u :

𝐮 = [(𝑞FDP,𝑏)𝑏∈FDP
, (𝛥𝑝PBV,𝑏)𝑏∈PBV

, (𝛥𝑝PDP,𝑏)𝑏∈PDP
]T, (16)

where FDP is the set of branches with flow-driven pumps, PBV is
the set of branches with pressure breaker valves and PDP is the set
of branches with pressure-driven pumps. Branches with the aforemen-
tioned elements contain only them; they have no pipe characteristics
assigned and practically represent just segments between end-nodes
of these physical elements. The sets FDP, PBV and PDP consist of
integers, representing integers of respective branches to which they are
assigned.

The disturbance inputs in the system, denoted as 𝐝 ∈ R𝑛d , actually
represent the high-pressure demands in various points of the network
considered, 𝐷dem,𝑛, as well as pressures in pressure-driven non-storage
nodes (externally driven on a fixed pressure at a certain time instant):

𝐝 = [(𝐷dem,𝑛)𝑛∈HPD
, (𝑝𝑛)𝑛∈PDN

]T, (17)

where HPD is the set of WDS nodes with assigned demand and PDN is
the set of non-storage pressure-driven nodes in the network. Both sets
comprise integers used to index individual nodes. It is worth noting
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Table 1
Description of state-space model variables and parameters.

Notation Description Units

States (ℎ𝑛)𝑛∈st or age Water levels in the WDS storages m

Inputs
(𝑞FDP,𝑏)𝑏∈FDP

(Reference) flows through the flow-driven pumps m3∕s
(𝛥𝑝PBV,𝑏)𝑏∈PBV

(Reference) pressure differences across the pressure breaker valves Pa
(𝛥𝑝PDP,𝑏)𝑏∈PDP

(Reference) pressure differences across the pressure-driven pumps Pa

Disturbances (𝐷dem,𝑛)𝑛∈HPD
High-pressure demands m3∕s

(𝑝𝑛)𝑛∈PDN
Pressures in pressure-driven non-storage nodes Pa

Outputs

(𝑝𝑛)𝑛∈pr essur e Pressures in specific nodes of interest in the network Pa
(𝑞𝑏)𝑏∈f low Flows in specific branches of interest in the network m3∕s
(𝑞loss,𝑛)𝑛∈loss

Losses occurring in specific nodes of the network m3∕s
(𝑆FDP,𝑏)𝑏∈FDP

Flow-driven pump electrical power W
(𝑆PDP,𝑏)𝑏∈PDP

Pressure-driven pump electrical power W

Parameters

(𝐴𝑛)𝑛∈st or age Horizontal cross-section of the storage m2

𝜌 Water density k g∕m3

𝑔 Acceleration of gravity m∕s2

𝛥ℎ𝑚_𝑛 Difference in elevation between nodes 𝑚 and 𝑛 m
𝐿𝑏 Length of the pipe represented with branch 𝑏 of the network m
𝑑𝑏 Inner diameter of the pipe represented with branch 𝑏 of the network m
𝐶𝑏 The pipe (branch 𝑏) Hazen–Williams roughness coefficient –
𝛼 Conversion coefficient s1.852

m1.685

𝐴leak,𝑛 Area of the leak surface at node 𝑛 ∈ loss m2

𝑝min Pressure below which no water can be supplied Pa
𝑝max Pressure necessary to fully satisfy the required demand 𝐷dem,𝑛 Pa
𝜂 Exponent in the demand satisfaction ratio formula –
𝜂FDP Electromechanical conversion efficiency of a flow-driven pump –
𝜂PDP Electromechanical conversion efficiency of a pressure-driven pump −
t
e
d
a
i
a
t

here that the demand in each node is potentially an aggregate of
demands from multiple end-users of fresh water which are situated
in the marginal part of the network that is not considered in the
WDS model. Analogous note holds also for the loss assigned to the
node. The decision of exclusion of some marginal parts of the network
from consideration is not a consequence of inability to model them
with the elaborated procedure, but rather a consequence of insufficient
accuracy in predicting demands of individual end-users on a time
resolution required for operating predictive control. That is why it is
often beneficial to group more end-users in a single virtual demand
point whose demand follows more closely a classical Gaussian random
variable and is thus more easy to predict.

The system outputs 𝐲 ∈ R𝑛y can be represented as a static function
of state, controllable and disturbance inputs:

𝐲 = 𝑔(𝐱,𝐮,𝐝), (18)

where 𝑔 ∶ R𝑛x × R𝑛u × R𝑛d → R𝑛y is again a general nonlinear vector
unction. The system outputs considered include pressures, flows, and
osses in specific segments of the network, and all pumps powers, as

follows:

𝐲 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

(𝑝𝑛)𝑛∈pr essur e
(𝑞𝑏)𝑏∈f low

(𝑞loss,𝑛)𝑛∈loss
(𝑆FDP,𝑏)𝑏∈FDP
(𝑆PDP,𝑏)𝑏∈PDP

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (19)

where pr essur e is the set of nodes in the network where pressures
should be maintained within a certain range, f low is the set of branches
n the network where flows should be maintained and loss is the set
f network nodes where losses exist. The pressures (𝑝𝑛)𝑛∈pr essur e can be
xpressed using the vector of system outputs as:

(𝑝𝑛)𝑛∈pr essur e = 𝐏𝑛 ⋅ 𝐲, (20)

where 𝐏𝑛 represents the pressure selection matrix. For the sake of
clarity, all variables of the WDS state space model and parameters are
listed in Table 1 with the corresponding measurement units.
4 
3. WDS optimization

The operational cost of the WDS during a specific time period
consists of the combined costs associated with electrical energy con-
sumed by the pumps and the volume of water lost through leaks. The
primary objective in operating the WDS is to fulfil all demands at
demand nodes with adequate pressures and flows maintained, while
minimizing operational costs. For computer-based decision-making and
optimization, the behaviour of a continuous-time WDS is represented
hrough variables samples taken in discrete time instants. They are
venly distanced in time, and the corresponding sampling time is
enoted with 𝑇 . The values of time-dependent variables 𝐱,𝐮,𝐝 or 𝐲
t a specific time 𝑘𝑇 that is an integer multiple of the sampling time,
.e. 𝑘 ∈ Z, are denoted with 𝐱𝑘,𝐮𝑘,𝐝𝑘 and 𝐲𝑘, respectively. Under the
ssumption of constant inputs 𝐮 and 𝐝 between the sampling instants,
hat is in time period

𝑘 = [𝑘𝑇 , (𝑘 + 1)𝑇 ⟩, (21)

the nonlinear continuous-time dynamics represented with 𝑓𝑐 in (14) is
transformed in the discrete-time form

𝐱𝑘+1 = 𝑓𝑑 (𝐱𝑘,𝐮𝑘,𝐝𝑘), (22)

where 𝑓𝑑 ∶ R𝑛x × R𝑛u × R𝑛d → R𝑛x .
The cost function for the considered WDS is defined as follows:

 =
𝑁−1
∑

𝑘=0
𝑎e,𝑘𝐸𝑘 + 𝑎w𝑊𝑘, (23)

where 𝑎e,𝑘 [ EURk Wh ] is the price of electricity in the time period 𝑘,
𝐸𝑘 [k Wh] is the electrical energy consumed by the pumps in 𝑘,
𝑎w [ EURm3 ] is the price for lost water for the utility, 𝑊𝑘 [m3] is the volume
of the lost water in 𝑘 and 𝑁 𝑇 is the prediction horizon. The electrical
energy consumed by both flow-driven and pressure-driven pumps in
the time interval 𝑘 is determined as:

𝐸𝑘 = 1
3600 ⋅ 1000

(

∑

𝑏∈FDP
∫

(𝑘+1)𝑇

𝑘𝑇
𝑆FDP,𝑏(𝑡)d𝑡+

∑

∫

(𝑘+1)𝑇
𝑆PDP,𝑏(𝑡)d𝑡

)

,

(24)
𝑏∈PDP 𝑘𝑇
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while the volume of lost water in 𝑘 is:

𝑊𝑘 =
∑

𝑛∈loss
∫

(𝑘+1)𝑇

𝑘𝑇
𝑞loss,𝑛(𝑡)d𝑡. (25)

The integrals in Eqs. (24) and (25) are numerically solved, by applying
the trapezoidal rule on the values at the sampling instants.

Since it is necessary to meet all pressure requirements, pressure
constraints can be posed at any node of interest of the WDS as follows:

𝑃min,𝑛 ≤ 𝑝𝑛,𝑘 ≤ 𝑃max,𝑛 𝑘 = 0,… , 𝑁 − 1, (26)

where 𝑃min,𝑛 and 𝑃max,𝑛 are the minimum and maximum allowed pres-
ure at node 𝑛 ∈ pr essur e. Constraints are posed for branch 𝑏 ∈ f low
s follows:

𝑄min,𝑏 ≤ 𝑞𝑏,𝑘 ≤ 𝑄max,𝑏 𝑘 = 0,… , 𝑁 − 1, (27)

where 𝑄min,𝑏 and 𝑄max,𝑏 are the minimum and maximum allowed flow
hrough the branch 𝑏. Similarly, the constraints are posed also on the

water heights in the 𝑛th storage tank along the prediction horizon:

𝐻min,𝑛 ≤ ℎ𝑛,𝑘 ≤ 𝐻max,𝑛 𝑘 = 0,… , 𝑁 − 1, (28)

where 𝐻min,𝑛 and 𝐻max,𝑛 are minimum and maximum allowed water
evels in the storage tank 𝑛 ∈ st or age, respectively. Constraints are also
osed on the flows through flow-driven pumps, on the pressure differ-

ences across pressure breaker valves and on the pressure differences
across pressure-driven pumps, as follows:

𝑄FDP,min,𝑏 ≤ 𝑞FDP,𝑏,𝑘 ≤ 𝑄FDP,max,𝑏 𝑏 ∈ FDP, (29)

0 ≤ 𝛥𝑝PBV,𝑏,𝑘 ≤ 𝛥𝑃PBV,max,𝑏 𝑏 ∈ PBV, (30)

𝛥𝑃PDP,min,𝑏 ≤ 𝛥𝑝PDP,𝑏,𝑘 ≤ 𝛥𝑃PDP,max,𝑏 𝑏 ∈ PDP, (31)

where 𝑘 = 0,… , 𝑁 − 1, 𝑄FDP,min,𝑏 and 𝑄FDP,max,𝑏 are the maximum and
inimum allowed flows through the flow-driven pump in branch 𝑏 ∈
FDP, 𝛥𝑃PBV,max,𝑏 is the maximum allowed pressure difference across the
BV in branch 𝑏 ∈ PBV, 𝛥𝑃PDP,min,𝑏 and 𝛥𝑃PDP,max,𝑏 are the minimum
nd maximum allowed pressure differences across the pressure-driven
ump in branch 𝑏 ∈ PDP, respectively.

The nonlinear optimization problem for day-ahead scheduling is
osed here also with the initial state 𝐱𝟎 used within the optimization
ariable, where the usual daily periodicity in operation is required to
etermine the best possible behaviour for a repeatable daily distur-

bance sequence 𝐝0,𝐝1,… ,𝐝𝑁−1, and this results in the constraint on
repeatability of states

ℎ𝑛,0 = ℎ𝑛,𝑁 ∀𝑛 ∈ st or age. (32)

The optimization problem is as follows:

min
𝐱0 ,𝐮0 ,𝐮1 ,…,𝐮𝑁−1



ubject t o (22)– (32), (33)

where the optimization variable 𝐳 is defined as

𝐳 =
[

𝐱T0 𝐮T0 𝐮T1 ⋯ 𝐮T𝑁−1
]T . (34)

As the general WDS model described in Section 2 is nonlinear, solving
he optimization problem is performed iteratively by linearizing the

model. This linearized representation can then be used to solve the
problem for a small change in the initial conditions and control inputs,
s a linear program (LP). Next, it is shown how the linear approxima-
ion of the WDS behaviour for small changes of inputs or states can be

one, for a general WDS.

5 
3.1. General network solving for sensitivity analysis at an operation point

In this research, the fourth order Runge–Kutta method (RK4) (Press,
eukolsky, Vetterling, & Flannery, 2007) is used to numerically solve

Eq. (14) along the entire prediction horizon. EPANET was used to
determine all pressures and flows in the network for given 𝐱𝑘, 𝐮𝑘 and
𝐝𝑘 which are needed to evaluate the right-hand side of the differential
Eq. (14) in the steps of Runge–Kutta method. This choice was made
because of EPANET’s capacity to quickly calculate the instantaneous
ressures and flows throughout the entire network. The linearization
f the different elements of this optimization problem was performed
round the sequence of operating points determined with 𝐳0, obtained
y combining RK4 method of numerical integration and EPANET. In the
ontext of WDS model, each operating point determined with 𝐳0 at the
ime point 𝑡 = 𝑘𝑇 is defined by fixed states 𝐱𝑘,0 and control inputs 𝐮𝑘,0
long with predicted disturbances 𝐝𝑘,0 defined with (15)–(17). Along
ith 𝐱𝑘,0, 𝐮𝑘,0 and 𝐝𝑘,0 all pressures, flows and losses in the network

are determined for discrete times 𝑘 = 0,… , 𝑁 − 1:
⎡

⎢

⎢

⎣

(𝑝𝑛,𝑘,0)𝑛∈
(𝑞𝑏,𝑘,0)𝑏∈

(𝑞loss,𝑛,𝑘,0)𝑛∈loss

⎤

⎥

⎥

⎦

= 𝑓OP(𝐱𝑘,0,𝐮𝑘,0,𝐝𝑘,0). (35)

For each discrete time-step 𝑘 the network sensitivity computation needs
to be performed, which aims to assess how small changes in states,
control inputs and disturbances of the network affect pressures, flows,
losses and demands. In the following, to simplify the explanation the
time index 𝑘 in the variables is omitted. The states, i.e heights and
changes to control and disturbance inputs for the entire network can
be written as:

ℎ𝑛 = ℎ𝑛,0 + 𝛥ℎ𝑛 𝑛 ∈ st or age, (36)

𝑞FDP,𝑏 = 𝑞FDP,𝑏,0 + 𝛥𝑞FDP,𝑏 𝑏 ∈ FDP, (37)

𝑝PBV,𝑏 = 𝛥𝑝PBV,𝑏,0 + 𝛥(𝛥𝑝PBV,𝑏) 𝑏 ∈ PBV, (38)

𝛥𝑝PDP,𝑏 = 𝛥𝑝PDP,𝑏,0 + 𝛥(𝛥𝑝PDP,𝑏) 𝑏 ∈ PDP, (39)

𝐷dem,𝑛 = 𝐷dem,𝑛,0 + 𝛥𝐷dem,𝑛 𝑛 ∈ HPD, (40)

where 𝛥ℎ𝑛, 𝛥𝑞FDP,𝑏, 𝛥(𝛥𝑝PBV,𝑏), 𝛥(𝛥𝑝PDP,𝑏) and 𝛥𝐷dem,𝑛 are small changes
round the operating point. Changes of pressures, flows and power
onsumptions are introduced in the following manner:

𝑝𝑛 = 𝑝𝑛,0 + 𝛥𝑝𝑛 𝑛 ∈  , (41)

𝑞𝑏 = 𝑞𝑏,0 + 𝛥𝑞𝑏 𝑏 ∈ , (42)

𝑞loss,𝑛 = 𝑞loss,𝑛,0 + 𝛥𝑞loss,𝑛 𝑛 ∈ loss, (43)

𝑆FDP,𝑏 = 𝑆FDP,𝑏,0 + 𝛥𝑆FDP,𝑏 𝑏 ∈ FDP, (44)

PDP,𝑏 = 𝑆PDP,𝑏,0 + 𝛥𝑆PDP,𝑏 𝑏 ∈ PDP. (45)

In order to find relations between changes in (36)–(40) and (41)–
45), the following procedure is applied:

• The network is first by virtual cuts decomposed into paths where
loops are eliminated, by eliminating branches with the highest
resistance for a specific loop.

• Flow-driven pumps have infinity resistance while PDPs and PBVs
have zero-resistance.

• Resistance of other branches is determined based on last term
in Eq. (2).

• Virtual cuts are also introduced in paths that connect PDNs such
that there is no connection between PDNs in the network through
the retained branches.

The paths are virtually cut on branches with high resistance for numer-
ical stability of subsequent linearization of the network since the flow
change through these branches is least sensitive to changes of pressure
in the respective branch end-points. The variables considered further in
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Fig. 2. (a) An example of a network where additional labels 𝑝, 𝑞, 𝑞loss, and 𝑑 indicate
he nodes where it is necessary to maintain pressure, where it is necessary to maintain
low, where there are losses, and where demands are defined, respectively. (b) The
etwork from Fig. 2(a) after introducing virtual cuts and thus obtaining cut paths for

the subsequent sensitivity analysis.

the network are: pressures in PDNs, flows in remaining network paths
after the virtual cuts are introduced (termed ‘other flows’) and flows
hrough virtually cut branches (termed ‘connecting flows’). Let the set

of branches exhibiting other flows and connecting flows be defined by
of and cf , respectively.

Fig. 2(a) depicts a small network on which the introduced approach
to network solving is illustrated. The network is decomposed into
paths intersecting at the locations of the flow-driven pumps, specifically
between nodes 2 and 3, and nodes 13 and 14. Since the network forms a
loop delineated by nodes 9, 10, 11, and 12, it is necessary to cut the loop
at the branch with the highest resistance, which is in this network for
instance the branch between nodes 10 and 11. The network decomposed
in this way is shown in Fig. 2(b). Appendix A contains all the sets
defined so far for the network example shown in Fig. 2(a). In the
ollowing it will be assumed that the network is regular, which means
hat: (i) in the network there are no loops consisting of PDPs and/or
BVs only, and (ii) in the network there are no non-pressure-driven
odes in which meet only branches where flow is dictated by FDPs.
he sensitivity analysis introduced here is applicable to any regular
etwork.

Small changes in pressures, flows, and losses around the operating
oint are represented through linear relationships using small changes
n state 𝛥𝐱, control inputs 𝛥𝐮, and demands 𝛥𝐝. This is achieved by

applying a first-order Taylor approximation of the model nonlinearities.
The motivation for using Taylor series expansion is that it provides
insight into how small changes in flow, pressure, and losses affect
the system’s behaviour. The accuracy of linearization is maintained by
limiting small changes in both states and control inputs, as explained

4. Furthermore, small changes in pressures,
in more detail in Section P

6 
flows and losses are expressed in terms of matrices of coefficients 𝐊p,𝑛,
𝐊q,𝑏, 𝐊l,𝑛 as follows:

𝛥𝑝𝑛 = 𝐊p,𝑛 ⋅
⎡

⎢

⎢

⎣

𝛥𝐱
𝛥𝐮
𝛥𝐝

⎤

⎥

⎥

⎦

𝑛 ∈ pr essur e, (46)

𝛥𝑞𝑏 = 𝐊q,𝑏 ⋅
⎡

⎢

⎢

⎣

𝛥𝐱
𝛥𝐮
𝛥𝐝

⎤

⎥

⎥

⎦

𝑏 ∈ f low, (47)

𝛥𝑞loss,𝑛 = 𝐊l,𝑛 ⋅
⎡

⎢

⎢

⎣

𝛥𝐱
𝛥𝐮
𝛥𝐝

⎤

⎥

⎥

⎦

𝑛 ∈ loss. (48)

Again, the small changes in states, control inputs and disturbances 𝛥𝐱,
𝛥𝐮 and 𝛥𝐝, respectively, are small changes of variables in these vectors
as defined with (15)–(17). The matrices of coefficients 𝐊p,𝑛, 𝐊q,𝑏 and
𝐊l,𝑛 in expressions (46)–(48) are obtained as follows in Section 3.2.

3.2. Determining partial derivatives of WDS using virtual cuts

First, let pat h be the set of virtual cut paths of the network. Each
virtual cut path contains exactly one pressure-driven node. Starting
from that node, the pressure dependencies of other nodes are used in
a chain procedure by applying (6) for the storage output node, (7) for
DN, (2) for pipes, (4) for PBV and (5) for PDP. If node 𝑛 is either a
torage output node or a pressure-driven node, expressions (6) and (7)

must be respectively utilized as follows:
𝜕 𝑝𝑛

𝜕(𝐱,𝐮,𝐝)
= 𝜌𝑔 ⋅

𝜕 ℎ𝑛
𝜕(𝐱,𝐮,𝐝)

, (49)

𝜕 𝑝𝑛
𝜕(𝐱,𝐮,𝐝)

=
𝜕 𝑝PDN

𝜕(𝐱,𝐮,𝐝)
. (50)

The partial derivative in Eq. (49) is always zero, except when it corre-
sponds to an element from 𝐱, which exactly represents that storage and
in that case the derivative equals 1. Analogously, the partial derivative
in Eq. (50) is zero unless it corresponds to an element from 𝐝 that
pecifically represents that pressure-driven node and in that case the
erivative equals 1. The small change in pressure at node 𝑛, denoted as
𝑝𝑛, can be expressed as:

𝛥𝑝𝑛 =
𝑛x
∑

𝑗=1

𝜕 𝑝𝑛
𝜕 𝑥𝑗

𝛥𝑥𝑗 +
𝑛u
∑

𝑗=1

𝜕 𝑝𝑛
𝜕 𝑢𝑗

𝛥𝑢𝑗 +
𝑛d
∑

𝑗=1

𝜕 𝑝𝑛
𝜕 𝑑𝑗

𝛥𝑑𝑗 , (51)

and the same analogously holds for remaining changes of flows as
introduced in (42) and (43). The partial derivative of expression (2)
with respect to all system states, control inputs, and disturbances for a
pipe is found as:

𝜕 𝑝𝑛
𝜕(𝐱,𝐮,𝐝)

=
𝜕 𝑝𝑚

𝜕(𝐱,𝐮,𝐝)
−

d𝑓 (𝑞𝑏)
d𝑞𝑏

⋅
𝜕 𝑞𝑏

𝜕(𝐱,𝐮,𝐝)
, (52)

where 𝑏 is the branch between nodes 𝑚 and 𝑛 and 𝑓 (𝑞𝑏) represents the
unction of dependence of pressure with respect to flow, that is the
ight-hand side of Eq. (2). All flows 𝑞𝑏 through branches that remain

in the specific cut paths are grouped into the vector 𝐪of . If a PBV is
positioned between nodes 𝑚 and 𝑛, the necessary partial derivatives are
computed from expression (4):

𝜕 𝑝𝑛
𝜕(𝐱,𝐮,𝐝)

=
𝜕 𝑝𝑚

𝜕(𝐱,𝐮,𝐝)
+

𝜕 𝛥𝑝PBV
𝜕(𝐱,𝐮,𝐝)

. (53)

The last term in Eq. (53) is always zero, except when it corresponds
to an element from 𝐮, which exactly represents that PBV. If a PDP is
present between nodes 𝑚 and 𝑛, expression (5) is employed:

𝜕 𝑝𝑛
𝜕(𝐱,𝐮,𝐝)

=
𝜕 𝑝𝑚

𝜕(𝐱,𝐮,𝐝)
+

𝜕 𝛥𝑝PDP
𝜕(𝐱,𝐮,𝐝)

. (54)

Again, the last term in Eq. (54) is always zero, except when it corre-
ponds to an element from 𝐮, which exactly represents that PDP.

Finally, using (51), small changes in pressures of all nodes 𝑛 ∈ 
through the small changes in all other flows, pressure differences across
BVs, pressure differences across PDPs, water levels in storages and
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pressures of PDNs can be written as:
𝛥𝐩 =𝐌pr essur e,1 ⋅ 𝛥𝐩 +𝐌pr essur e,2 ⋅ 𝛥𝐪of+

𝐌pr essur e,3 ⋅ 𝛥(𝛥𝐩PBV) +𝐌pr essur e,4 ⋅ 𝛥(𝛥𝐩PDP)+
𝐌pr essur e,5 ⋅ 𝛥𝐡 +𝐌pr essur e,6 ⋅ 𝛥𝐩PDN,

(55)

where 𝐌pr essur e,1 to 𝐌pr essur e,6 are matrices of derivatives for all virtual
cut paths obtained by merging expressions (49), (50), (52)–(54) in (51).

Next, it is necessary to determine the expressions for small changes
n connecting flows 𝛥𝑞cf . Using expressions (8) and (9), the partial
erivatives are obtained depending on whether the branch is flow-
riven pump or pipe, respectively:
𝜕 𝑞cf

𝜕(𝐱,𝐮,𝐝)
=

𝜕 𝑞FDP
𝜕(𝐱,𝐮,𝐝)

, (56)

𝜕 𝑞cf
𝜕(𝐱,𝐮,𝐝)

=
d𝑓cf (𝑝𝑚, 𝑝𝑛)

d𝑝𝑚
⋅

𝜕 𝑝𝑚
𝜕(𝐱,𝐮,𝐝)

+
d𝑓cf (𝑝𝑚, 𝑝𝑛)

d𝑝𝑛
⋅

𝜕 𝑝𝑛
𝜕(𝐱,𝐮,𝐝)

, (57)

where 𝑓cf (𝑝𝑚, 𝑝𝑛) represents the function in dependence of pressures 𝑝𝑚
and 𝑝𝑛, that is the right-hand side of Eq. (9). Analogous to pressures,
expressions for small changes in connecting flows are obtained as a
inear function of small changes in flow through the flow-driven pumps
nd small changes in pressures.

𝛥𝐪cf = 𝐌cf ,1 ⋅ 𝛥𝐪FDP +𝐌cf ,2 ⋅ 𝛥𝐩, (58)

where 𝐌cf ,1 and 𝐌cf ,2 are matrices of derivatives for all virtually cut
connections between the retained paths that employ partial derivatives
obtained with (56) and (57) and merged into a Taylor series expansion
or connecting flows analogous to relation (51). The third part of
etwork sensitivity analysis is to determine the small change of losses

using partial derivative of the expression (3):
𝜕 𝑞loss

𝜕(𝐱,𝐮,𝐝)
=

d𝑞loss(𝑝𝑛)
d𝑝𝑛

⋅
𝜕 𝑝𝑛

𝜕(𝐱,𝐮,𝐝)
. (59)

The small change of losses can be expressed as:

𝛥𝐪loss = 𝐌loss ⋅ 𝛥𝐩, (60)

where 𝐌loss is the matrix of derivatives obtained from (59). The same
rocedure applies to demands, specifically to relations (10) and (11):
𝜕 𝑑dem,𝑛

𝜕(𝐱,𝐮,𝐝)
=
d𝑑dem,𝑛(𝑝𝑛, 𝐷dem,𝑛)

d𝑝𝑛
⋅

𝜕 𝑝𝑛
𝜕(𝐱,𝐮,𝐝)

+

d𝑑dem,𝑛(𝑝𝑛, 𝐷dem,𝑛)
d𝐷dem,𝑛

⋅
𝜕 𝐷dem,𝑛

𝜕(𝐱,𝐮,𝐝)
.

(61)

Moreover, the matrix equation of small changes in all demands through
the small changes in pressures and high-pressure demands is as follows:

𝛥𝐝dem = 𝐌dem,1 ⋅ 𝛥𝐩 +𝐌dem,2 ⋅ 𝛥𝐃dem, (62)

where 𝐌dem,1 and 𝐌dem,2 are matrices of derivatives obtained from (61).
From the network structure, a flow conservation equation is written

for each node except pressure-driven nodes, i.e 𝑛 ∈ { ⧵ (PDN ∪
st or age)}:
∑

𝑏∈(⋅,𝑛)

𝑞𝑏 =
∑

𝑏∈(𝑛,⋅)

𝑞𝑏 𝑛 ∈ { ⧵ (PDN ∪st or age)}. (63)

For every node except the pressure-driven node in every retained path
one can assign a one-to-one relation with a branch preceding this node

hen coming to it from the pressure-driven node. Since every retained
ath has exactly one pressure-driven node, this means that the overall
umber of other flows is exactly | |− |PDN ∪st or age|. Relation (63)
olds exactly that same number of equations with other flows which

means that a regular linear system of equations arises with respect to
other flows and it allows to express them explicitly with respect to
connecting flows, losses and demands, as follows:

𝛥𝐪of = 𝐌of ,1 ⋅ 𝛥𝐪cf +𝐌of ,2 ⋅ 𝛥𝐪loss +𝐌of ,3 ⋅ 𝛥𝐝dem. (64)

Eq. (55) represents | | equations for changes of pressures in | |

odes. Quantities in it which are not part of 𝛥𝐱, 𝛥𝐮 and 𝛥𝐝 can be
7 
expressed linearly with 𝛥𝐩 and 𝛥𝐱, 𝛥𝐮, 𝛥𝐝 by employing (58), (60),
62) and (64). This finally leads to the system of | | linear equations

with | | 𝛥𝐩 unknowns which can be solved thus leading to explicit
expression of 𝛥𝐩 with respect to 𝛥𝐱, 𝛥𝐮, 𝛥𝐝, as follows:

𝛥𝐩 = 𝐖pr essur e,𝑥 ⋅ 𝛥𝐱 +𝐖pr essur e,𝑢 ⋅ 𝛥𝐮 +𝐖pr essur e,𝑑 ⋅ 𝛥𝐝. (65)

Now with having 𝛥𝐩 explicitly expressed with 𝛥𝐱, 𝛥𝐮 and 𝛥𝐝, the
emaining network quantities on the left-hand sides of Eqs. (58), (60),
62) and (64) can as well be expressed explicitly with respect to 𝛥𝐱, 𝛥𝐮

and 𝛥𝐝, as follows:

𝛥𝐪cf = 𝐖cf ,𝑥 ⋅ 𝛥𝐱 +𝐖cf ,𝑢 ⋅ 𝛥𝐮 +𝐖cf ,𝑑 ⋅ 𝛥𝐝, (66)

𝛥𝐪loss = 𝐖loss,𝑥 ⋅ 𝛥𝐱 +𝐖loss,𝑢 ⋅ 𝛥𝐮 +𝐖loss,𝑑 ⋅ 𝛥𝐝, (67)

𝐝dem = 𝐖dem,𝑥 ⋅ 𝛥𝐱 +𝐖dem,𝑢 ⋅ 𝛥𝐮 +𝐖dem,𝑑 ⋅ 𝛥𝐝, (68)

𝐪of = 𝐖of ,𝑥 ⋅ 𝛥𝐱 +𝐖of ,𝑢 ⋅ 𝛥𝐮 +𝐖of ,𝑑 ⋅ 𝛥𝐝. (69)

Relation (46) directly corresponds to (65), relation (47) is obtained by
erging (66) and (69), while (48) is exactly represented by (67). The

elaborated procedure allows to analytically assess small changes in all
pressures, flows, demands and losses in the network with respect to
small changes of water heights in storages, small changes of control
commands and small changes of high-pressure demands and pressures
in non-storage pressure-driven nodes. It is universal for a regular WDS
of an arbitrary structure and thus it enables to create a universal code
for computing the network sensitivity, opening way for a universal
code for sequential linear programming for WDS optimization which
is described next.

4. Sequential linear program for WDS optimization

The methodology developed is targeted to improve the initial oper-
tion plan of the WDS given with:

𝐳0 =
[

𝐱T0,0 𝐮T0,0 𝐮T1,0 ⋯ 𝐮T𝑁−1,0

]T
. (70)

For these initial values the system model can be used in a system simu-
lation set-up, relied on numerical integration procedures, to determine
he response along the entire prediction horizon, i.e. the sequence of

states along the prediction horizon (𝐱0,0, 𝐱1,0, 𝐱2,0,… , 𝐱𝑁−1,0, 𝐱𝑁 ,0). From
now on, small disturbance changes 𝛥𝐝 will not be taken into account,
as the demands are considered constant once they are predicted with a
certain demand prediction algorithm and also an analogous claim holds
for the pressures in non-storage pressure-driven nodes. From (1) and
(47) for sufficiently small changes for each interval [𝑘𝑇 , (𝑘 + 1)𝑇 ⟩ the
following holds:
d𝛥𝐱(𝑡)
d𝑡

= 𝐊𝑥,𝑘𝛥𝐱(𝑡) +𝐊𝑢,𝑘𝛥𝐮(𝑡), (71)

where 𝑡 ∈ 𝑘, 𝐊𝑥,𝑘 ∈ R𝑛x×𝑛x and 𝐊𝑢,𝑘 ∈ R𝑛x×𝑛u are corresponding
matrices of derivatives.

After the discretization of Eq. (71) with the Zero-Order Hold (ZOH)
method, the expression of the dependence of a small change in state,
𝛥𝐱, namely, a small change in the water levels in the storages at time
instant 𝑘, is obtained:

𝛥𝐱𝑘+1 = 𝜶𝑘𝛥𝐱𝑘 + 𝜷𝑘𝛥𝐮𝑘, (72)

where 𝜶𝑘 and 𝜷𝑘 are, respectively

𝜶𝑘 = 𝑒𝐊𝑥,𝑘𝑇 , (73)

𝜷𝑘 = (𝐊𝑥,𝑘)−1 ⋅ (𝜶𝑘 − 𝐈) ⋅𝐊𝑢,𝑘. (74)

Now also all changes of states along the prediction horizon for 𝑘 =
, 1,… , 𝑁 can be expressed with respect to the change of the initial
tate 𝛥𝐱0 and the changes of the control input 𝛥𝐮𝑘, 𝑘 = 0, 1,… , 𝑁 − 1,
s follows (Vašak & Novak, 2019):

𝛥𝐗 = 𝐀𝛥𝐱 + 𝐁𝛥𝐔, (75)
0
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𝐀 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐈
𝜶0

𝜶0𝜶1

⋮
𝑁−1
∏

𝑖=0
𝜶𝑖

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (76)

𝐁 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝟎 𝟎 ⋯ 𝟎
𝜷0 𝟎 ⋯ 𝟎

𝜶1𝜷0 𝜷1 ⋯ 𝟎
⋮ ⋮ ⋯ ⋮

(𝑁−1
∏

𝑖=1
𝜶𝑖

)

𝜷0

(𝑁−1
∏

𝑖=2
𝜶𝑖

)

𝜷1 ⋯ 𝜷𝑁−1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (77)

with changes of states and control inputs defined as:

𝛥𝐗 =
[

𝛥𝐱T0 𝛥𝐱T1 ⋯ 𝛥𝐱T𝑁
]T , (78)

𝛥𝐔 =
[

𝛥𝐮T0 𝛥𝐮T1 ⋯ 𝛥𝐮T𝑁−1
]T . (79)

Furthermore, the changes of outputs 𝛥𝐲 defined with Eq. (19) along the
prediction horizon can also be expressed with respect to 𝛥𝐱0 and 𝛥𝐔.

ombining the coefficients from (46)–(48) yields the matrices 𝐂 and 𝐃
with respect to 𝛥𝐗 and 𝛥𝐔

𝛥𝐘 = 𝐂𝛥𝐗 + 𝐃𝛥𝐔. (80)

Substituting (75) into (80) yields the desired expression

𝛥𝐘 = 𝐂𝐀𝛥𝐱0 + (𝐂𝐁 + 𝐃)𝛥𝐔. (81)

In order to obtain the formulation of a Linear Program (LP) for
optimizing 𝛥𝐱0 and 𝛥𝐔, it is necessary first to derive equations for 𝐸𝑘
and 𝑊𝑘 that depend on a small change in the initial state 𝛥𝐱0 and a
small change in the control inputs 𝛥𝐔, utilizing Eqs. (12), (13), (24),
(25) and (81):

𝐸𝑘 = 1
2
𝛥𝐳T𝐅E,𝑘𝛥𝐳 +𝐆E,𝑘𝛥𝐳 + 𝐸𝑘,0, (82)

𝑊𝑘 = 𝐇loss,𝑘𝛥𝐳 +𝑊𝑘,0, (83)

where 𝐅E,𝑘 ∈ R(𝑛x+𝑁 ⋅𝑛u)×(𝑛x+𝑁 ⋅𝑛u), 𝐆E,𝑘 ∈ R1×(𝑛𝑥+𝑁 ⋅𝑛𝑢), 𝐸𝑘,0 ∈ R, 𝐇loss,𝑘 ∈
1×(𝑛x+𝑁 ⋅𝑛u), 𝑊𝑘,0 ∈ R, 𝑘 = 0, 1,… , 𝑁 − 1 and the small change of the
ptimization variable 𝛥𝐳 is defined as

𝛥𝐳 =
[

𝛥𝐱T0 𝛥𝐔T]T . (84)

The cost function  described with Eq. (23) can now be expressed with
respect to the change of the optimization variable 𝛥𝐳

 = 1
2
𝛥𝐳T𝐑𝛥𝐳 +𝐖𝛥𝐳 + 0, (85)

where 𝐑, 𝐖 and 0 are respectively:

𝐑 =
𝑁−1
∑

𝑘=0
𝑎e,𝑘𝐅E,𝑘, (86)

𝐖 =
𝑁−1
∑

𝑘=0
𝑎e,𝑘𝐆E,𝑘 + 𝑎w𝐇loss,𝑘, (87)

0 =
𝑁−1
∑

𝑘=0
𝑎e,𝑘𝐸𝑘,0 + 𝑎w𝑊𝑘,0. (88)

Since there is no guarantee that the matrix 𝐑 is positive semidefinite,
dditional linearization around 𝛥𝑧 = 0 approximates the cost function

so that the first term in (85) approaches zero, resulting in the
following expression:

 = 𝐖𝛥𝐳 + 0. (89)

Furthermore, the constraints for the pressure (26) can be expressed by
erging expressions (20), (41) and (81):
𝑃min,𝑛 ≤ 𝑝𝑛,𝑘,0 + 𝐏𝑛,𝑘 ⋅ ((𝐂𝐀) ⋅ 𝛥𝐱0 + (𝐂𝐁 + 𝐃) ⋅ 𝛥𝐔) ≤ 𝑃max,𝑛, (90) i

8 
where 𝐏𝑛,𝑘 is the selection matrix that extracts pressures from the
vector of small output changes 𝛥𝐘 at each time instant 𝑘. Similarly,
the constraints (27)–(31) can be expressed using the same procedure.
Additionally, limiting small changes in states and control inputs is
necessary to ensure the accuracy of linearization

−𝛥𝐗min ≤ 𝛥𝐱𝑘 ≤ 𝛥𝐗max, (91)

−𝛥𝐔min ≤ 𝛥𝐮𝑘 ≤ 𝛥𝐔max, (92)

where 𝛥𝐗min and 𝛥𝐗max are the vectors of the minimum and maximum
allowed small changes in state, that is small changes in the water
column height in the 𝑛th storage tank (𝛥ℎ𝑛,𝑘)𝑛∈st or age , while 𝛥𝐔min
nd 𝛥𝐔max are the vectors of the minimum and maximum allowed

small changes in control inputs (𝛥(𝑞FDP,𝑏,𝑘)𝑏∈FDP
, 𝛥(𝛥𝑝PBV,𝑏,𝑘)𝑏∈PBV

and
𝛥(𝛥𝑝PDP,𝑏,𝑘)𝑏∈PDP

). The limits of small changes were selected to ensure
that, during a series of simulations with complex network configura-
tions, the solution remained feasible in all iterations. This indicates that
he changes in the linearized model are small enough to closely follow
he nonlinear model with high accuracy. The LP for a general WDS is
erived by integrating all the previously described constraints. It can
e expressed as follows:

min
𝛥𝐳

 = min
𝛥𝐳

(

𝐖𝛥𝐳 + 0
)

(93)

subject to:

𝐀ineq𝛥𝐳 ≤ 𝐛ineq, (94)

𝐀eq𝛥𝐳 = 𝐛eq. (95)

The LP can be solved using one of the linear programming solvers,
leading to locally optimal changes

𝛥𝐳∗0 =
[

(𝛥𝐱∗0)
T (𝛥𝐮∗0)

T (𝛥𝐮∗1)
T ⋯ (𝛥𝐮∗𝑁−1)

T]T , (96)

and finally, the improved optimization variable is obtained as

𝐳1 = 𝐳0 + 𝛥𝐳∗0 . (97)

The optimization variable 𝐳1 is used as the initial point for the next
iteration of the optimization in the SLP procedure. In the 𝑖th iteration
of the SLP (𝑖 = 1, 2,… ) the optimization variable 𝐳𝑖 is obtained

𝐳𝑖 = 𝐳𝑖−1 + 𝛥𝐳∗𝑖−1. (98)

The sequence of SLP iterations can be stopped once the decrease in
the optimal cost falls below a certain threshold for several iterations,
r once the time allowed for computation has elapsed. The solution

obtained in the last iteration step max, 𝐳max
is the improvement,

potentially a substantial one, compared to the initial plan of running
the system represented with 𝐳0.

5. Case studies and results

A toy-example and a WDS segment of a city in Spain are processed
in MATLAB with the code for optimization that just uses a specific
description file in a universal format to accommodate to a specific
WDS configuration. The algorithm is universal and applicable to regular
networks of arbitrary structure. The sampling time (𝑇 ) of 15 min was
utilized. In this research, the parameter 𝜀 introduced in Section 2 is
0 Pa, and the solution remained feasible in each iteration, despite using
ery complex network configurations. In the following cases the price of
lectricity from including 07:00 to excluding 21:00 is 1 EUR∕k Wh, and
t other times it is 0.2 EUR∕k Wh. Cost of lost water for utility company
s set at 2 EUR∕m3 throughout the day.
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Fig. 3. WDS structure of the toy-example.

Fig. 4. High-pressure demands for the 9 supply nodes of the considered WDS, for the
whole day.

5.1. Baseline operation of the toy-example case study

The considered WDS consists of 1 storage tank, 1 valve, 2 pumps,
21 branches and 22 nodes, and is structured as provided in Fig. 3.
Demands are present in nodes denoted with the following indices: 5,
9, 12, 13, 15, 16, 19, 20, 21 and 22. Losses are assumed to occur in
nodes: 8, 12, 14, 18 and 21. High-pressure demand profiles for the
considered 10 supply nodes are provided in Fig. 4. The dimensions
of all states, control inputs, and disturbances for the toy-example case
study are presented in Table B.5, located in the Appendix B. All other
parameters of the network from Table 1 are directly retrieved from the
EPANET file. Hysteresis control was used as the baseline operation.
With hysteresis control, the pump turns on if the water level in the
tank falls below 17.5 m, and turns off if the water level rises above
22 m. The pump on and off levels are determined through simulation
to ensure that the pressure at the end-points does not drop below the
minimum allowed pressure, which is set to 1 bar (over the atmospheric
pressure), in order to meet all the defined constraints on pressures
with this control method. In hysteresis control, the settings of the PBV
and the PDP are assumed to remain constant throughout the day. The
simulation was repeated for several consecutive days, employing a
repeating disturbance sequence until a steady-state diurnal harmonic
behaviour was achieved. This was done to ensure a valid comparison
with the SLP.

5.2. SLP operation of the toy-example case study

The optimization procedure, starting with the response of the base-
line operation, yields the response of the storage level which is com-
pared with the baseline control in Fig. 5. The input flow profile after
application of the SLP procedure and the input flow profile obtained by
baseline control are compared in Fig. 6. The optimal operation profiles
of the PBV and the PDP are shown in Figs. 7 and 8. Pressures relative
to the atmospheric pressure at the end-points marked with 12, 19 and
22 after application of the SLP procedure and during baseline control
are shown in Fig. 9. Total cost of daily operation of the WDS through
9 
Fig. 5. Comparison of height profiles in the tank obtained using SLP and baseline
control.

Fig. 6. Baseline and computed optimal FDP flow.

Table 2
Daily cost comparison for the toy-example.

Overall cost for
lost water [EUR]

Overall cost for
electricity [EUR]

Total cost [EUR]

Baseline 204.60 133.78 338.38
SLP 160.59 78.56 239.15

iterations of the optimization procedure is shown in Fig. 10. The cost
value at iteration zero represents the cost associated with the baseline
operation. Comparison of costs due to water leakage and electricity as
well as total costs comparison are shown in Table 2. The relative total
cost savings using the SLP procedure compared to hysteresis control
is 𝟐𝟗.𝟑𝟑%. The obtained responses provide a suggestion for pump
operation to achieve maximum flow during periods of lower electricity
prices but without overcharging the storage to evade high pressures
and thus overly high losses. The optimal suggestions for the PDP and
PBV involve minimizing pressure to reduce losses while ensuring that
all requirements are met, such as maintaining overpressure greater
or equal to 1 bar. The procedure was performed on an ARM-based
Apple M1 SoC with 8 CPU and 8 GPU cores, while the RAM size is
8 GB. Maximum CPU clock rate is 3.2 GHz. MATLAB, in which the
program is executed, is also ARM-based. The execution time for the
whole optimization procedure including all the iterations shown as well
as generating the model structure in MATLAB from the description file,
is 𝟓𝟏.𝟕 s.

5.3. Baseline operation on WDS segment of a city in Spain

The considered WDS in the second case study consists of 10 storage
tanks, 8 FDPs, 1 PDP, 8 PBVs, 7380 branches and 6992 nodes. Demands
are specified across 631 nodes, with the distribution of the 10 demand
examples from Fig. 4 among these nodes. Losses are assumed to occur
in 728 nodes. The surface areas of leaks punctures are proportional to
the variance of the diameters of all pipes that meet at node 𝑛 ∈ loss:
𝐴leak,𝑛 = 𝑘loss ⋅ var (𝑑𝑏) 𝑏 ∈ (𝑛,⋅) ∪ (⋅,𝑛), (99)
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Fig. 7. Baseline and optimal PBV pressure drop profiles.

Fig. 8. Baseline and optimal pump difference pressure profiles.

Fig. 9. Baseline and computed optimal profiles of pressure in WDS end-points.

Fig. 10. Total cost of daily operation of the WDS through iterations of the optimization
rocedure.
10 
Fig. 11. Comparison of height profiles in the first tank obtained using SLP and baseline
control.

where var (𝑑𝑏), is the variance of the diameters of all pipes that meet
at node 𝑛 ∈ loss, and 𝑘loss is the proportionality coefficient. The
imensions of all states, control inputs, and disturbances for the WDS
egment of a city in Spain are presented in Table B.6, located in

the Appendix B. All other parameters of the considered network from
Table 1 are directly obtained from the EPANET file after transferring
the data from GIS to the EPANET file. Again, hysteresis control was
used as the baseline operation. In this scenario, seven flow-driven
pumps operate in parallel, turning on and off based on the level in one
of the tanks. The pumps are switched off when the water level exceeds
3.75 m and activated when it drops below 3.2 m. The remaining flow-
driven pump is activated or deactivated based on the water levels in
the six main adjacent tanks. That is, the pump is deactivated when the

ater level in any of the six tanks exceeds 5.8 m, and activated when
he water level drops below 5 m. The pump activation and deactivation

thresholds are selected to guarantee positive pressures throughout the
network and to prevent pressures at end-points from dropping below
the minimum overpressure threshold, i.e., 1 bar. In hysteresis control,
the settings of the PBVs and the PDP are assumed to remain constant
throughout the day. In this case study, the simulation was also repeated
for several consecutive days, utilizing a repeating disturbance sequence
until a steady-state diurnal harmonic behaviour was achieved. This was
done to ensure a valid comparison with the SLP.

5.4. SLP operation on WDS segment of a city in Spain

As with the toy-example case study, the optimization procedure is
started from the response of the system subject to baseline operation.
The comparison of water levels in the first tank is shown in Fig. 11.
Furthermore, comparison of the optimal input flow profiles and base-
line control for an individual pump and for one of the seven pumps
in parallel configuration are shown in Figs. 12 and 13, respectively.
The optimal PBV pressure drop profile and baseline control profile
for one of the PBVs are shown in Fig. 14. Comparison of the optimal
pump difference pressure profile and baseline control profile for the
DP is shown in Fig. 15. Fig. 16 shows overpressure at one node where

the constraint is defined that the overpressure must be greater than
r equal to 1 bar. That node is located downstream of the PBV to
rovide additional validation of the valve’s settings. Total cost of daily
peration of the WDS through iterations of the optimization procedure
s shown in Fig. 17. The cost value at iteration zero represents the cost

associated with the baseline operation. Finally, comparison of costs due
to water leakage and electricity consumption as well as comparison of
the total daily operation costs of the city WDS segment considered is
shown in Table 3.

The relative total cost savings using the SLP procedure compared to
hysteresis control is 𝟑𝟖.𝟔𝟖%. The procedure was performed on the same
computer platform as for the toy-example. The execution time for the
whole optimization procedure including all the iterations shown as well
as generating the model structure in MATLAB from the description file,
is 1 h and 4 min.



B. Korotaj and M. Vašak

p

p

o

a
o
e
p
w
p
a
t
t
c
t
c

Control Engineering Practice 156 (2025) 106232 
Fig. 12. Baseline and the optimal computed input flow for the individual FDP.

Fig. 13. Baseline and the optimal computed input flow for one of the FDPs located in
arallel.

Fig. 14. Baseline and optimal PBV pressure drop profile for one of the PBVs.

Fig. 15. Baseline and optimal pump pressure difference profiles.
11 
Fig. 16. The overpressure at a node after the PBV.

Fig. 17. Total cost of daily operation of the WDS through iterations of the optimization
rocedure.

Table 3
Daily cost comparison for a WDS segment within a city in Spain.

Overall cost for
lost water [EUR]

Overall cost for
electricity [EUR]

Total cost [EUR]

Baseline 18 286 4390 22 676
SLP 10 584 3320 13 904

Table 4
Daily cost comparison for a WDS segment within a city in Spain.

Overall cost for
lost water [EUR]

Overall cost for
electricity [EUR]

Total cost [EUR]

Advanced baseline 18 272 4027 22 299
SLP 10 225 3298 13 523

5.5. Comparison of advanced baseline and SLP operation on WDS segment
f a city in Spain

In addition, as a baseline control, a scenario is created in which
the hysteresis control takes into account the price of electricity as an
dditional condition. The scenario is designed so that the pumps are
nly turned off when the tanks are fully filled during periods of lower
lectricity prices. Also, in the period of lower electricity prices, the
umps are switched on at half of the minimum and maximum allowed
ater level in the tank. During periods of higher electricity prices, the
umps are activated only when the tank reaches the minimum allow-
ble level and are turned off once the tank reaches halfway between
he minimum and maximum allowable levels. For pumps located at
he tank outlet, the logic for switching them on and off is reversed
ompared to the previously described logic for pumps positioned at the
ank entrance. Comparison of costs due to water leakage and electricity
onsumption as well as comparison of total costs is shown in Table 4.

Using the described advanced baseline operation, total electricity
costs are 363 EUR lower compared to the baseline operation described
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in Section 5.3, confirming that some savings occurred. The optimization
procedure is once again initiated using the system’s response under the
advanced baseline operation. The relative total cost savings using the
SLP procedure compared to the described advanced baseline operation
is 𝟑𝟗.𝟑𝟔%. The significant potential of the approach is demonstrated by
his result, with even greater relative cost savings achieved in this case
ue to the convergence to a different local minimum.

6. Conclusion

Predictive control via sequential linear programming for a gen-
eral water distribution system (WDS) is introduced. A general water
istribution network setup is elaborated in the paper along with the

mathematical model in the general form. The WDS linearization proce-
ure for its general structure is explained in detail. The operating costs
f the WDS are introduced, which are locally minimized while meeting
ll requirements. The procedure was validated on a toy-example and
n a WDS segment of a city in Spain. The savings are substantial, both

in terms of electricity costs and lost water costs, indicating significant
economical potential for the implementation of the described procedure
on larger water distribution systems.
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Appendix A. Nodes and branches sets for WDS in Fig. 2

For the WDS in Fig. 2, the sets  , st or age, HPD, PDN, pr essur e
and loss are defined as the following sets of integers:

 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23},

(A.1)

st or age = {4, 16}, (A.2)

HPD = {12, 19, 23}, (A.3)

PDN = {1}, (A.4)

pr essur e = {11, 12, 19, 23}, (A.5)

loss = {5, 9, 15}. (A.6)

The sets of branches , FDP, PBV, PDP, f low, cf and of as the sets
of ordered pairs of two neighbouring nodes are defined as:

 = {(1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7), (7, 8),
(8, 9), (9, 10), (10, 11), (11, 12), (9, 12), (5, 13),
(13, 14), (14, 15), (15, 16), (15, 17), (17, 18), (18, 19),
(15, 20), (20, 21), (21, 22), (22, 23)},

(A.7)

FDP = {(2, 3), (13, 14)}, (A.8)

PBV = {(7, 8)}, (A.9)

PDP = {(21, 22)}, (A.10)

f low = {(10, 11)}, (A.11)
cf = {(2, 3), (10, 11), (13, 14)}, (A.12)

12 
Table B.5
State-space model dimensions for the toy-example.

Variable Dimensions

States (ℎ𝑛)𝑛∈st or age 1

Inputs
(𝑞FDP,𝑏)𝑏∈FDP

2
(𝛥𝑝PBV,𝑏)𝑏∈PBV

1
(𝛥𝑝PDP,𝑏)𝑏∈PDP

1

Disturbances (𝐷dem,𝑛)𝑛∈HPD
10

(𝑝𝑛)𝑛∈PDN
1

Outputs

(𝑝𝑛)𝑛∈pr essur e 20
(𝑞𝑏)𝑏∈f low 18
(𝑞loss,𝑛)𝑛∈loss

5
(𝑆FDP,𝑏)𝑏∈FDP

2
(𝑆PDP,𝑏)𝑏∈PDP

1

Table B.6
State-space model dimensions for the WDS segment of a city in Spain.

Variable Dimensions

States (ℎ𝑛)𝑛∈st or age 10

Inputs
(𝑞FDP,𝑏)𝑏∈FDP

8
(𝛥𝑝PBV,𝑏)𝑏∈PBV

8
(𝛥𝑝PDP,𝑏)𝑏∈PDP

1

Disturbances (𝐷dem,𝑛)𝑛∈HPD
631

(𝑝𝑛)𝑛∈PDN
1

Outputs

(𝑝𝑛)𝑛∈pr essur e 6992
(𝑞𝑏)𝑏∈f low 7380
(𝑞loss,𝑛)𝑛∈loss

728
(𝑆FDP,𝑏)𝑏∈FDP

8
(𝑆PDP,𝑏)𝑏∈PDP

1

of = {(1, 2), (3, 4), (4, 5), (5, 6), (6, 7), (7, 8),
(8, 9), (9, 10), (11, 12), (9, 12), (5, 13),
(14, 15), (15, 16), (15, 17), (17, 18), (18, 19),
(15, 20), (20, 21), (21, 22), (22, 23)}.

(A.13)

Specific ordered pair from the set  in (A.7) is also assigned with a
unique integer to represent a branch with a single branch integer index,
for easier notation.

Appendix B. State-space model dimensions for the case studies

The dimensions of the state-space model for the toy example are
shown in Table B.5, while those for the WDS segment of a city in Spain
are presented in Table B.6.
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