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Abstract: Aphids are significant pests of winter wheat, causing damage by feeding on
plant sap and reducing crop yield and quality. This study evaluates the potential of hy-
perspectral remote sensing (350-2500 nm) and machine learning (ML) models for classi-
fying healthy and aphid-infested wheat canopies. Field-based hyperspectral measure-
ments were conducted at three growth stages—T1 (stem elongation-heading), T2 (flow-
ering), and T3 (milky grain development) —with infestation levels categorized according
to established economic thresholds (ET) for each growth stage. Spectral data were ana-
lyzed using Uniform Manifold Approximation and Projection (UMAP); vegetation indi-
ces; and ML classification models, including Logistic Regression (LR), k-Nearest Neigh-
bors (KNNs), Support vector machines (SVMs), Random Forest (RF), and Light Gradient
Boosting Machine (LGBM). The classification models achieved high performance, with
F1-scores ranging from 0.88 to 0.99, and SVM and RF consistently outperforming other
models across all input datasets. The best classification results were obtained at T2 with
an F1-score of 0.98, while models trained on the full spectrum dataset showed the highest
overall accuracy. Among vegetation indices, the Modified Triangular Vegetation Index,
MTVI (rpb = —0.77 to —0.82), and Triangular Vegetation Index, TVI (rpb = -0.66 to —-0.75),
demonstrated the strongest correlations with canopy condition. These findings under-
score the utility of canopy spectra and vegetation indices for detecting aphid infestations
above ET levels, allowing for a clear classification of wheat fields into “treatment re-
quired” and “no treatment required” categories. This approach provides a precise and
timely decision making tool for insecticide application, contributing to sustainable pest
management by enabling targeted interventions, reducing unnecessary pesticide use, and
supporting effective crop protection practices.
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1. Introduction

Winter wheat (Triticum aestivum L.) is one of the most widely cultivated cereals glob-
ally, occupying nearly a third of European agricultural land [1]. However, its production
is increasingly threatened by climate change and biotic stressors, particularly aphid infes-
tations, which contribute to significant yield losses [2-4]. Aphids (Hemiptera: Aphididae)
are major agricultural pests worldwide, causing crop damage by extracting photoassimi-
lates and transmitting plant viruses [5], the most important ones in cereal crops being
Barley Yellow Dwarf Virus (BYDV) and cereal yellow dwarf viruses (CYDVs) [6]. They
are particularly problematic due to their high reproductive capacity, short life cycle, and
polymorphic nature, leading to frequent outbreaks [7,8]. In Central and Southeastern Eu-
rope, cereals are attacked by more than seven aphid species, with four being predominant:
English grain aphid (Sitobion avenae, F.), bird cherry-oat aphid (Rhopalosiphum padi, L.),
rose-grain aphid (Metopolophium dirhodum, Walker), and greenbug aphid (Schizaphis
graminum, Rondani), collectively known as the cereal aphid complex [3,9,10]. The latter
species, S. graminum, has been increasing in importance due to climate change [11]. These
aphids differ in feeding site preferences: S. avenae colonizes the ear and upper leaves [8],
R. padi prefers the stem and lower leaf sheath [12], M. dirhodum feeds on the underside of
leaves, and S. graminum primarily targets leaf tissues, often leading to chlorosis [13].
Aphid feeding disrupts the physiology of wheat by extracting sap, inducing chlorophyll
loss and triggering oxidative stress, which leads to hypersensitive cell death and prema-
ture senescence [14]. This shortens the grain filling period, resulting in a lower grain
weight and empty ears. Each day with a shortened vegetation period can lead to yield
losses of up to 200 kg/ha [10]. Aphids feed exclusively on phloem sap with their stylet-
like mouthparts, and their feeding diverts nutrients to the infested tissue, further increas-
ing yield losses [15]. Severe infestations can cause direct yield reductions of 35-40% [16],
while levels as low as 10 aphids per tiller have been linked to a 6% yield reduction [17,18].

Cereal aphid populations tend to increase rapidly in the field, often reaching levels
where yield losses exceed treatment costs. Economic thresholds (ETs) for treatment vary
according to the growth stage, with intervention recommended at 4 aphids per tiller from
stem elongation to heading, 4-7 aphids per tiller during flowering, and 8-12 aphids per
tiller during mid-grain development [19-22]. The effective control of aphids requires
timely detection to prevent further spread and minimize yield losses. This is traditionally
achieved through frequent scouting and, if necessary, the application of foliar insecticides
[23]. While chemical control remains effective in reducing aphid populations [24], the indis-
criminate use of pesticides increases production costs, contributes to environmental risks, and
accelerates the development of resistance [25]. Given these limitations, there is an increasing
need for advanced monitoring methods that improve efficiency and accuracy.

Traditional scouting methods are labor-intensive and spatially limited, hindering rapid
aphid detection [26]. Remote sensing (RS) overcomes these limitations by using multi- or hy-
perspectral sensors on satellites, drones, or ground platforms to non-invasively collect spectral
data, enabling the real-time monitoring of crop health and pest infestations. This enhances
decision making efficiency in precision agriculture [27-30]. RS enables fast and scalable mon-
itoring, enhancing decision making in precision agriculture [31-33]. Since pests are typically
distributed in patches, precision agriculture technologies enable targeted, site-specific inter-
ventions, optimizing pest management and reducing unnecessary pesticide use [30,34].

The most important spectral ranges for plant studies include the visible range (VIS;
400-700 nm), the near-infrared (NIR; 750-1300 nm) and the shortwave infrared (SWIR;
13002500 nm), where stress responses are most evident [35]. However, due to the com-
plexity of hyperspectral data, dimensionality reduction techniques such as Principal Com-
ponent Analysis (PCA) and Uniform Manifold Approximation and Projection (UMAP)
are applied to extract the most relevant spectral features, while noise reduction enhances
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data quality [36-38]. PCA is a linear transformation method that projects data onto new
orthogonal axes to maximize variance, compressing hyperspectral information while pre-
serving key patterns. However, its linearity limits its ability to capture complex spectral
variations [38]. In contrast, UMAP is a non-linear dimensionality reduction technique that
preserves local and global data structures, making it highly effective for capturing com-
plex, non-linear patterns in hyperspectral datasets [39—41]. RS sensors measure spectral
reflectance, enabling vegetation index (VI) calculations, which are widely used for site-
specific crop management and aphid detection [26,42-48]. The VI indicates mathematical
combinations of reflectance values at different spectral bands, providing insights into
plant health, biomass accumulation, and chlorophyll content. Mapping the VI enables a
spatio-temporal analysis of crop conditions, supporting precision agriculture applications
[49]. Ground-based hyperspectral data provide high-resolution measurements at the can-
opy level, allowing for precise characterization of plant stress responses. Additionally,
they serve as a reference for calibrating large-scale RS applications, including drone- and
satellite-based monitoring [50-53].

Machine learning (ML) combines computer science and statistics to recognize pat-
terns and improve task performance through data learning [54]. In RS, ML algorithms
provide a powerful approach for classifying high-dimensional spectral data, as they can
model complex patterns, handle diverse input features, and operate without assumptions
about the data distribution [55]. These capabilities make ML particularly effective for de-
tecting and mapping vegetation stress, including pest-induced crop damage. ML models,
such as Support vector machines (SVMs) and Random Forest (RF), are widely used in
precision agriculture for their accuracy and robustness, while neural networks have also
proven effective in crop classification tasks [56,57]. By integrating hyperspectral data with
ML techniques, RS enables the early detection of aphid infestations, offering a scalable
and efficient approach to pest management.

This study explores the application of hyperspectral data and ML models to classify
aphid-infested winter wheat canopies across multiple growth stages, directly linking
spectral data to the ET for treatment decisions. By leveraging advanced ML techniques
and evaluating the VI's effectiveness at different growth stages, the findings provide new
insights into optimizing RS-based aphid detection in winter wheat.

The specific objectives of this study include the following: (1) to analyze canopy-level
spectral reflectance differences between aphid-infested wheat canopies above the ET and
healthy canopies across different growth stages, (2) to identify VIs that exhibit the strong-
est correlations with aphid-induced stress in winter wheat, and (3) to develop ML classi-
fication models for distinguishing between healthy and aphid-infested wheat canopies,
enabling treatment decision support.

2. Materials and Methods
2.1. Study Site and Experimental Design

The study was conducted on the experimental fields of the Bc Institute for Breeding
and Production of Field Crops, d.d., in Zagreb, Croatia (45°44'50.0"N, 15°56'18.8"E) (Fig-
ure 1). The institute specializes in seed production and breeding programs for the most
important arable crops. The experiment was conducted on a winter wheat field (variety:
Bc Opsesija) consisting of eight plots, each 10 x 3 m in size. The wheat was sown in rows
with a spacing of 12 cm and cultivated according to standard agronomic practices, includ-
ing fertilization and fungicide application. The water supply for cultivation was solely
dependent on natural rainfall. To evaluate the effects of aphid infestation on the reflec-
tance of the wheat canopy, the plots were divided into two treatment groups: four plots
were treated with insecticides to minimize aphid infestation, and the other four plots were
left untreated to allow natural aphid infestation to develop. The study was conducted
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from mid-April to mid-June 2022 and covered the main phenological stages for aphid in-
festation: stem elongation to heading (BBCH 30-55), flowering (BBCH 55-59), and milky
grain development (BBCH 69-75). Visual assessments and spectral measurements were
conducted on two consecutive days at each of these stages, focusing on the middle rows
to minimize edge effects and ensure uniform data collection (Figure 2). The study site had
been regularly infested by aphids in the past and was therefore suitable for this study. In
addition, the environmental conditions in 2022 were favorable for aphid development,
which contributed to a naturally high level of infestation in the untreated plots.
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Figure 1. Study area and experimental design. Map created using QGIS and Google Earth Pro.
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T1| stem elongation-heading

Figure 2. Fieldwork and canopy conditions during winter wheat growth stages. Spectral measure-
ments were conducted using a portable spectroradiometer (left). Canopy images show healthy (A)
and aphid-infested (B) wheat at three phenological stages: T1 (stem elongation-heading), T2 (flow-
ering), and T3 (milky grain development).

2.2. Data Collection
2.2.1. Visual Assessment of Aphid Density

Scouting for cereal aphids began at the stem elongation stage and continued until the
medium milk stage, in accordance with standard aphid population monitoring proce-
dures. Field assessments were carried out on 8 plots described in Section 2.1. Close exam-
ination of the winter wheat stands was carried out using a magnifying glass to ensure
accuracy. Whole tillers within the two inner rows of each plot were carefully inspected,
and the number of aphids per tiller was recorded.

In addition to aphid counts, the species within the established aphid complex (S.
avenae, R. padi, M. dirhodum, and S. graminum) were also identified during the assessments.
The different aphid species preferred certain parts of the plant, with infestations often
distributed over the ear, leaves, and stem. However, as the aphids were analyzed as a
complex and not as individual species, their exact location on the plant was not a distin-
guishing feature. Aphid density was consistently assessed by the total number per tiller,
which was classified as either below or above the economic threshold. The thresholds
used in this study were derived from existing research [19-22] to ensure consistency with
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established guidelines. The economic thresholds were determined based on the growth
stage of the plant (see Table 1). Measurements were taken on two consecutive days during
each of the three measurement periods: T1 (stem elongation to heading), T2 (flowering),
and T3 (milky grain development). Tillers were then categorized based on aphid density
relative to the ET. Tillers with aphid densities below the ET were classified as healthy (no
visible symptoms of infestation or below ET), while those with densities above the ET
were categorized as aphid-infested.

Table 1. Economic thresholds (ETs) for aphid infestation in winter wheat across growth stages T1,
T2, and T3 [19-22].

Growth Stage BBCH Stage ET
T1 (stem elongation-heading) 30-55 4 aphids/tiller
T2 (flowering) 55-59 4-7 aphids/tiller
T3 (milky grain development) 69-75 8-12 aphids/tiller

2.2.2. Spectral Data Collection

In this study, spectral measurements were conducted at the canopy level of winter
wheat stands using a pistol grip fiber holder attached to the Spectral Evolution® SR-2500
portable spectroradiometer (Haverhill, MA, USA). The device measures spectral reflec-
tance in a range from 350 to 2500 nm, covering the visible (VIS), near-infrared (NIR), and
short-wave infrared (SWIR) regions. It captures data in 2151 spectral bands and automat-
ically resamples the spectra with a resolution of 1 nm for export. The spectral resolution
varies between 5 nm in the 350-1000 nm range and 22 nm in the 1000-2500 nm range,
allowing precise data acquisition across the entire spectrum. Measurements were per-
formed by positioning the pistol grip fiber holder 50 cm above the surface of the canopy,
with the device’s 25° field of view covering an area of approximately 0.2 m? (based on the
field of view geometry). All measurements were conducted under sunny, cloud-free con-
ditions without wind, ensuring consistent lighting and minimizing environmental varia-
bility. Measurements were consistently taken between 10:00 and 14:00 to capture optimal
sunlight angles and avoid shading effects [58-61]. This approach enabled accurate and
consistent sampling of canopy reflectance. Calibration of the spectroradiometer was per-
formed every 10 scans using a white BaSO, reference panel (99% Spectralon; SphereOptics
GmbH, Herrsching, Germany) to ensure the accuracy of the spectral measurements. To
ensure consistency, the fixture was held vertically above the canopy and perpendicular to
the measured surface for all scans. Spectral measurements were taken at phenological
stages BBCH 30-75, corresponding to growth stages T1, T2, and T3. The device was con-
nected to a portable computer, and all data were stored using Darwin SP V1.5 software
(Spectral Evolution, Haverhill, MA, USA), which allowed efficient data management. This
setup minimized environmental disturbances, ensuring reliable and consistent data on
canopy reflectance. In total, 431 spectral reflectance samples of wheat canopies were col-
lected. The full raw spectral reflectance dataset used in this study is available as Supple-
mentary Materials and can be accessed at [62].

2.3. Data Analysis and Processing

A Savitzky—Golay filter with a window size of 11 and a polynomial order of 2 was
applied to smooth the canopy-level spectral reflectance curves, which are inherently noisy
due to environmental factors. This method preserved key spectral features while reducing
noise. Additionally, specific spectral regions affected by atmospheric noise or lacking in-
formative content were removed. These included the ranges of 1350-1450 nm, 1800-1950
nm, and 2400-2500 nm, which correspond to atmospheric interference, and the range of
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350400 nm, which is considered non-informative. The resulting preprocessed data en-
sured that only meaningful spectral regions were retained for further analysis. For statistical
analysis, Point Biserial Correlation (rpb) coefficient was used as a special case of the Pearson
Correlation, which is applied for measuring the relationship between a continuous variable,
i.e., spectral reflectances and VIs, and a dichotomous variable, i.e., a variable with two possible
values, healthy or aphid-infested. Point Biserial Correlation is calculated as

X — Xo \[n1'n0
Top = R e
p Sy nz

where X; is the mean value of all x for which y =1, X, is the mean value of all x for
which y =0, s, isthe standard deviation, n, isthe number of x;, n, the number of x,,
and n the sample size.

2.3.1. Uniform Manifold Approximation and Projection (UMAP) Analysis

To analyze the clustering patterns of canopy spectral reflectance data, UMAP was
applied as a dimensionality reduction technique [39,63]. UMAP was used to project high-
dimensional spectral data (preprocessed using the Savitzky-Golay filter and cleaned of
non-informative data and atmospheric noise) into a lower-dimensional space while
preserving the local and global structure of the dataset. For the transformation, the UMAP
parameter n neighbors was set to 20 so that the broader structure of the data was covered
well, while the minimum distance parameter was set to 0.1, making the UMAP-
transformed clusters denser and easier to visually analyze. For validation of the UMAP
transformation, a silhouette analysis was performed [64], where the obtained silhouette
score provides a numerical measure of how well are the transformed clusters of data
separated, i.e., how well the UMAP procedure separated the high-dimensional spectral
data into the lower-dimensional space.

2.3.2. Vegetation Indices (VI)

The selection of vegetation indices (VI) was based on a comprehensive review of the
latest scientific literature [65-72]. These indices were selected primarily to monitor plant
responses to aphid-induced stress in winter wheat, focusing on chlorophyll content, struc-
tural integrity and photosynthetic efficiency, earlier senescence, etc., which are known to
change under biotic stress caused by direct feeding by sap-sucking insects such as aphids.
Priority was given to indices that are highly sensitive to changes in canopy reflectance
associated with stress. These include indices related to chlorophyll content and photosyn-
thetic activity (NDVI, GNDVI, CCI, MTVI, and MTVI-2), which can indicate stress-in-
duced chlorophyll degradation. Additionally, stress-specific indices such as the Aphid In-
dex (AI), Aphid Stress Index (ASI-1), and Damage Sensitive Spectral Index-2 (DSSI-2)
were included to assess plant stress responses more directly. Indices designed to detect
leaf structural changes and pigment changes (SIPI, PSRI, and Chl SI-3) were also incorpo-
rated, as aphid feeding can alter the plant surface properties and leaf composition. Fur-
thermore, indices related to water content and senescence detection (NDWI, SAVI,
OSAVI, and TVI) were selected to capture broader plant responses to aphid infestations,
including changes in water regulation and premature senescence caused by prolonged
feeding. In total, 16 VI were selected (listed in Table 2) to analyze the hyperspectral data,
each defined using reflectance (R) at specific wavelengths.
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Table 2. List of vegetation indices (VI) considered for analysis, their formula, and source.

VI Formula Source
Rgoo — R
Normalized Difference Vegetation Index (NDVI) NDVI = 22670 Tucker (1979) [73]
R800 + R670
Red Edge Normalized Difference Vegetation Index NDVL.. = R750 = Ryos Gitelson and
(NDVI750) 750 ™ Ryso + Ryos Merzlyak (1998) [74]
Rgoo — R
Green Normalized Difference Vegetation Index (GNDVI) GNDVI = —2%¢___55¢0 de Souza et al. (2010)
Rgoo + Rsso [75]
. . _ R857 - R1241
Normalized Difference Water Index (NDWI) NDWI = ———— Gao (1996) [76]
R8§ + R1241
. _ R761 — Rogs ..
Aphid Index (AI) Al = ———— Mirik et al. (2006) [46]
R 12 — R 19
. R666 - R1462
Aphid Stress Index 1 (ASI-1) ASI-l = ———— Chen et al., (2018) [68]

R666 + R1462

Damage Sensitive Spectral Index-2 (DSSI-2)

R747 - R901 - R537 - R572

DSSI-2 =
(R747 = Ropy) + (Rs37 — Rs73)

Mirik et al. (2006) [47]

Chlorophyll Stress Index 3 (Chl SI-3)

R
Chl SI-3 = =22

915

Zhao et al. (2005) [77]

Structure Insensitive Pigment Index (SIPI)

SIPI = RSOO - R445

RSOO - R680

Kureel et al. (2022)
(78]

Modified Triangular Vegetation Index (MTVI)

MTVI = 1.2 * [1.2 * (Rgoo — Rsso) — 2.5 * (Re70 — Rss0)]

Haboudane et al.
(2004) [79]

Modified Triangular Vegetation Index 2 (MTVI-2)

MTVI-2= 1.5 * (1.2 * (Rggo — Rss0) — 2.5 * (Rg70 — Rss0)

(2R800 + 1) — (6R800 — 5 * ,/R670) — 0.5)

Haboudane et al.
(2004) [79]

; Rs32 — Reso Springer et al. (2017)
Chlorophyll/Carotenoid Index (CCI CCl = =2 %9
phy (D Rss2 + Reso [50]
R¢es — R P 1 1. (2021
Pigment Senescence Reflectance Index (PSRI) PSRI = y [8‘11]‘3 ekar et al. (2021)
740

(Rgaz — Rees) * (1 + L)

Soil-Adjusted Vegetation Index (SAVI) SAVI = Rgay + Rges + L Huete (1988)
— (82]
L=0,3
1+ 0.16) * (Rgoo — R .
Optimized Soil-Adjusted Vegetation Index (OSAVI) OSAVI = ¢ ) * (Rsoo =~ Rero) Haboudane et al

Rgoo + Rg70 + 0.16

(2002) [83]

Triangular Vegetation Index (TVI)

TVI = 0.5 * [120 * (R750 = Rsso) — 200 * (Re70 — Rss0)]

Mulla (2013) [42]

2.3.3. Machine Learning Analysis

The classification was performed by implementing a selection of machine learning
models, with analyses conducted individually for each growth stage individually (T1, T2,
and T3) and for all the growth stages unified in a single dataset (T123). Additionally, the
classifications were carried out separately for VI, full spectral reflectance data, and finally
on the UMAP transformed values. A supervised learning approach was applied, with
predefined classes distinguishing between healthy plants and those under stress caused
by aphid infestation. To ensure robust model evaluation and performance validation, a
nested cross-validation (CV) procedure was conducted, with both the outer and inner
loop performed in 5 separated stratified folds, with the data split into 80% for training and
20% for testing. The following selection of ML models was tuned and evaluated in this
paper: Logistic Regression (LR), K-Nearest Neighbors (KNN), Support vector machine
(SVM), Random Forest (RF), and Light Gradient-Boosting Machine (LGBM). The selected
list of models was derived such that several aspects of ML based classification were cov-
ered well, including model and model tuning complexity (from simple linear and decision
tree models to complex ensemble methods), variety of model structures (i.e linear, deci-
sion tree, and support vector machine), as well as model novelty (from baseline models
such as SVM and RF to state-of-the-art LGBM). For the tuning of respective model hy-
perparameters (Appendix A), a Tree-structured Parzen Estimator implemented within the
Optuna Python library was utilized [84]. Each tuning was performed over 200 trials, with
an additional execution time threshold set at 2 h. A complete list of individual model hy-
perparameters is presented in Appendix A.1, Table A1, while other relevant implementa-
tion aspects are presented in Appendix A.2.
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The models were evaulated using accuracy and F1 score classification metrics, calcu-
lated as follows:

TP + TN
TP + TN + FP + FN

Overall accuracy =

2TP
T 2TP+ FP + FN
where TP denotes True Positive classifications, TN denotes True Negative classifications,
FP denotes False Positive classifications, and FN denotes False Negative classifications.

F1

3. Results
3.1. Response of Winter Wheat Canopy Spectra to Aphid Infestation

The spectral reflectance curves for winter wheat canopies—healthy (below ET or
without visible symptoms) and aphid-infested (above ET)—are presented in Figure 3.
These curves reveal distinct spectral patterns across the VIS, NIR, and SWIR regions, re-
flecting the physiological and structural changes induced by aphid infestations exceeding
the ET. Across all growth stages, healthy plants consistently exhibited higher reflectance
in the NIR region compared to infested plants, though the magnitude of spectral differ-
ences varied. At T1, reflectance differences were most pronounced in the red-edge (680—
750 nm) and NIR regions, where healthy plants exhibited higher reflectance than infested
plants. At T2, the red-edge differences became slightly less distinct, while NIR differences
remained prominent. Additionally, infested plants displayed higher SWIR reflectance
compared to healthy plants, diverging from the trends observed at other stages. At T3, the
most significant differences were observed in the VIS and NIR regions. In the VIS region,
especially from 550 (green peak) and 630 (red peak) to 680 nm, infested plants exhibited
higher reflectance than healthy plants, leading up to the red-edge transition. In contrast,
NIR reflectance was markedly lower in infested plants, representing the most pronounced
spectral divergence at this stage (Figure 3).

The spectral reflectance curves for healthy winter wheat canopies across three growth
stages exhibit progressive changes that reflect physiological and structural development
over time. In the VIS region, reflectance increased progressively from T1 to T3, with the
highest values observed at T3, particularly around 550 nm. The red-edge slope was most
pronounced at T1 and T2, while at T3, the slope became less steep. In the NIR region,
reflectance was highest at T2, followed by T3, with the lowest values recorded at T1. The
largest difference was observed between T1 and T2, where reflectance increased sharply,
while at T3, a slight decrease was noted compared to T2 (Figure 3).
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Figure 3. Mean and standard deviation of canopy spectral reflectance curves for healthy (green) and
aphid-infested (red) winter wheat canopies across three growth stages: (A) T1—stem elongation—
heading (BBCH 30-55), (B) T2—flowering (BBCH 55-59), and (C) T3—milky grain development
(BBCH 69-75). Each mean spectral reflectance curve is based on 145 samples for T1, 141 samples for
T2, and 145 samples for T3. Spectral regions affected by atmospheric noise (1350-1450 nm, 1800—
1950 nm, and 2400-2500 nm) and non-informative content (350-400 nm) were excluded.

3.2. UMAP Visualization of Winter Wheat Canopy Spectra

The UMAP visualization (Figure 4) shows clear clustering of healthy (green) and
aphid-infested (red) winter wheat canopies across all three measurement stages (T1, T2,
and T3). In T1, the clusters for healthy and aphid-infested canopies are relatively distinct
but show some overlap, primarily due to a few outliers. This resulted in a silhouette score
of 0.76, which is still considered relevant despite being the lowest among all three growth
stages. In T2, the separation between the two clusters remains clear, with only minor con-
vergence visible, and a very confident silhouette score of 0.96. In T3, the distribution of
samples is similar to that in T2, but with a few more incorrectly classified samples. Con-
sequently, the silhouette score of 0.88, although marginally lower than that observed in
T2, remains within a range indicative of high separation confidence. The presented UMAP
transformation patterns indicate that differences in canopy spectral responses between
healthy and aphid-infested wheat are most pronounced at the T2 growth stage. In T1,
these differences remain only subtle, with less distinct reflectance profiles, resulting in less
robust transformation of the collected data. In T3, aphid-induced stress signals merge
more with natural senescence effects, leading to greater overlap (Figure 4).
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Figure 4. UMAP visualization of spectral data across three growth stages: (A) T1 —stem elongation—head-
ing (BBCH 30-55), (B) T2—flowering (BBCH 55-59), and (C) T3—milky grain development (BBCH 69—
75), showing clustering of healthy (green) and aphid-infested (red) winter wheat canopies. Each UMAP
projection is based on 145 samples for T1, 141 samples for T2, and 145 samples for T3.

3.3. Vegetation Indices Analysis

The boxplot analysis, as depicted in Figure 5, shows that indices such as NDVI,
NDVI750, and OSAVI consistently decreased in aphid-infested plants, highlighting their
sensitivity to reductions in vegetation greenness and canopy density. Conversely, stress-
sensitive indices like Chl SI-3, ASI-1, PSRI, SIPI, and DSSI-2 exhibited higher values in
infested plants, indicating their effectiveness in detecting pigment degradation and phys-
iological stress. The most pronounced differences between healthy and aphid-infested
plants were observed at T2, where the separation between groups was most distinct. This
trend suggests that VI are particularly effective in differentiating aphid stress during the
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flowering stage. For ease of interpretation and visualization, all VI values were standard-
ized (Figure 5).
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Figure 5. Boxplot distribution of vegetation indices across three growth stages: (A) T1—stem elon-
gation-heading (BBCH 30-55), (B) T2—flowering (BBCH 55-59), and (C) T3 —milky grain develop-
ment (BBCH 69-75) for healthy (green) and aphid-infested (red) plants. Each boxplot is based on
145 samples for T1, 141 samples for T2, and 145 samples for T3.

In Figure 6, the Point Biserial Correlation coefficients (rpb) for VI are shown across the
growth stages T1, T2, and T3. Among all indices, MTVI (rpp = -0.77, -0.79, -0.82) and TVI
(rpb=-0.75, —0.66, —0.66 consistently demonstrate the highest correlations with the canopy
state across all stages, indicating their strong and stable performance in distinguishing
between healthy and aphid-infested canopies.

Other indices that perform well and remain relatively stable across stages include
GNDVI (rpp=-0.66, —0.58, —0.57), Chl SI-3 (1pp= 0.65, 0.59, 0.58), DSSI-2 (rpp=0.57, 0.53, 0.56),
SAVI (1pb=—0.47, -0.57, -0.56), OSAVI (rpp=—0.48, —0.57, -0.56), and NDVI (rpb=—0.47, -0.56,
—0.55). These indices provide consistent differentiation between healthy and stressed
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plants, with GNDVI and Chl SI-3 particularly standing out due to their ability to track
chlorophyll content and canopy greenness effectively.

The correlation analysis (Figure 6) reveals that MTVI2 demonstrates a strong positive
relationship with plant health during T1 (rpp=0.73), indicating its effectiveness in detecting
early stage vegetation conditions. However, its correlation drops markedly during T2
(flowering, rpb = 0.3) and becomes negatively correlated during T3 (milky grain develop-
ment, rpp=-0.52). This trend suggests that MTVI2’s sensitivity to vegetation state is highly
stage-dependent. A similar situation is observed with NDWI, which shows inconsistent
behavior across growth stages, with a weak positive correlation during T1 (rpb = 0.20) but
negative correlations during T2 (rpb=-0.60) and T3 (rpp=-0.19). This variability likely re-
flects changes in canopy structure, chlorophyll saturation, and water dynamics as plants
transition to reproductive stages, making both MTVI2 and NDWI less reliable for detect-
ing aphid stress in mid-to-late growth stages (Figure 6).
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Figure 6. Point Biserial (rpb) correlations for vegetation indices (VI) across three growth stages: T1—
stem elongation-heading (BBCH 30-55), T2 —flowering (BBCH 55-59), and T3 —milky grain devel-
opment (BBCH 69-75).

3.4. Machine Learning Classification

The results of machine learning-based classification of aphid-infested and healthy
winter wheat canopies are presented in Tables 3-6. The classification performance is
reported for three different input datasets: VI (Table 3), full spectral reflectance data (Table
4), and UMAP-transformed data (Table 5). Finally, in Table 6, the classification results are
averaged across all ML models for the three corresponding input sets to provide an overall
evaluation of model performance. Due to the use of a 5-fold nested cross-validation
procedure, accuracy and Fl-score metrics are presented as mean values with standard
deviations, ensuring robust performance evaluation. Bolded values indicate the highest-
performing model for each growth stage (T1, T2, T3, and T123).
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The classification results demonstrate high overall performance, with accuracy
ranging from 88% to 98% and Fl-scores between 0.88 and 0.99. Among the tested ML
models, SVM and RF consistently achieved the highest classification accuracy across
different input sets and wheat growth stages. In Table 3 (VI-based classification), SVM
exhibited the highest accuracy and Fl-score in all growth stages, making it the most
effective model for classification based on vegetation indices (93.10-98.57% accuracy and
0.93-0.99 F1 score). In Table 4 (full spectral reflectance data), RF provided the best
classification results, with the highest accuracy and F1-score across most growth stages
(89.66-98.57% accuracy and 0.89-0.99 F1 score). In Table 5 (UMAP-transformed data), RF
and SVM showed the best performance, demonstrating strong classification accuracy
across different growth stages (90.34-94.48% accuracy and 0.90-0.94 F1 score). Across the
three individual growth stages, T2 exhibited the highest classification performance on
average, indicating a clearer distinction between healthy and aphid-infested wheat
canopies at this stage. In addition, models trained on the combined dataset (T123), which
includes all growth stages, produced comparable results to models trained on individual
growth stages.

Table 6 shows the overall classification performance averaged over all ML models
for the three input datasets (VI, full-spectrum, and UMAP-transformed data). The results
show that the highest overall accuracy and F1 score were obtained with the full spectrum
dataset, especially at T2, where the highest classification performance was observed
(97.86% accuracy and 0.98 F1 score). The VI dataset also performed well, showing
consistent accuracy and Fl-scores, with the best performance recorded at T2 (97.43%
accuracy and 0.97 F1-score), making it a highly effective input type for classification. The
UMAP-transformed data gave competitive results, especially at T3 (94.21% accuracy and
0.94 Fl-score), showing that classification performance can be maintained despite
dimensionality reduction. These results show that full spectral data provided the most
robust classification performance, while the VI and UMAP-transformed data provided a
reliable and computationally efficient alternative.

Table 3. Machine learning model’ classification performance based on vegetation indices for aphid
infestation detection in winter wheat across three phenological stages: T1 (stem elongation-head-

ing), T2 (flowering), and T3 (milky grain development).

LR KNN SVM RF LGBM
Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1
T1 93.10+545 093+0.05 9241+748 0.92+0.08 93.10+545 0.93+0.05 9034+5.67 090+0.06 91.72+523 0.92+0.05
T2 9786+1.96 098+0.02 9714299 097+0.03 9857+1.96 0.99+0.02 95.71+2.99 096+0.03 97.86+3.19 0.98+0.03
T3  9241+449 092+0.04 91.72+463 092+0.05 94.48+3.08 0.94%0.03 94.48+3.08 0.94+0.03 8828+393 0.88+0.04
T123 89.30+252 0.89+0.03 9442+094 094+0.02 95.35+0.82 0.95+0.01 93.49+1.95 094+0.02 91.86+3.94 0.92+0.04
Bold values denote highest-performing models for each growth stage (T1-T123).
Table 4. Machine learning models' classification performance based on full spectral reflectance da-
taset across three phenological stages: T1 (stem elongation-heading), T2 (flowering), and T3 (milky
grain development).
LR KNN SVM RF LGBM
Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1
T1 90.34+154 090+0.02 90.34+289 090+0.03 89.66+2.44 0.89+0.02 89.66+2.44 0.89+0.02 91.03 +£3.08 0.91+0.03
T2 97.86+1.96 098+0.02 97.14+299 0.97+0.03 97.86+1.96 0.98+0.02 98.57+1.96 0.99+0.02 97.86+1.96 0.98 +0.02
T3 94.48+3.08 094+0.03 93.79+1.54 0.94+0.02 90.34%5.11 090+0.05 95.17+3.08 0.95*0.03 93.79 +2.89 0.94 +0.03
T123 93.95+2.78 094+0.03 93.72+1.94 0.94+0.02 95.35%2.73 0.95+0.03 95.11+0.97 0.95+0.01 94.88+1.33 0.95+0.01

Bold values denote highest-performing models for each growth stage (T1-T123).
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Table 5. Machine learning models' classification performance for aphid infestation detection using
UMAP-transformed data across three phenological stages: T1 (stem elongation-heading), T2 (flow-
ering), and T3 (milky grain development).

LR KNN SVM RF LGBM
Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1
T1 90.34 +3.78 090+0.04 89.66+244 0.89+0.02 90.34+3.78 0.90+0.04 90.34+3.78 0.90+0.04 90.34 +3.78 0.90 +0.04
T2 96.43+357  096+0.04 9714+391 097+0.04 97.14+3.91 0.97+0.04 97.14+391 0.97+0.04 97.86%3.19 0.98 +0.03
T3 93.79 £2.89 094+0.03 94.48+1.89 0.94+0.02 94.48+1.89 0.94+0.02 94.48+1.89 0.94+0.02 93.79+2.89 0.94+0.03
T123 85.81 +2.89 0.86+0.03 93.72+325 0.94+0.03 94.19+3.29 0.94+0.03 93.95+3.53 0.94+0.04 93.49+2.92 0.93 +0.03
Bold values denote highest-performing models for each growth stage (T1-T123).
Table 6. Overall classification performance averaged across machine learning models using VI, full-
spectrum, and UMAP-transformed data across three phenological stages: T1 (stem elongation—
heading), T2 (flowering), and T3 (milky grain development).
VI Wwl UMAP
Acc. F1 Acc. F1 Acc. F1
T1 92.14+586 0.92+0.06 90.21+248 090+0.03 90.21+3.51 0.90 +0.04
T2 9743+£2.62 097+£0.03 9786%216 098x0.02 97.14+3.70 0.97+0.04
T3 9228+3.84 092+0.04 9352+3.14 093+0.03 94.21%229 0.94+£0.02
T123 9288210 093+0.02 94.61+x1.95 0.95+0.02 92.23+3.18 0.92+0.03

Bold values denote highest-performing models for each growth stage (T1-T123).

4. Discussion

The spectral reflectance differences observed in this study reveal key physiological
and structural changes in wheat canopies under aphid stress above ET (Figure 3). In the
VIS region, aphid-infested plants exhibited slightly higher reflectance, particularly at T3,
with the most pronounced separation from healthy plants around the green peak and red
region (550-680 nm). This pattern aligns with previous findings that aphid feeding leads
to chlorophyll degradation, increasing reflectance in the green and yellow spectral bands
7 [26]. As chlorophyll is crucial for photosynthesis [57,85], its decline at T3 coincides with
peak aphid populations (8-12 aphids per tiller), particularly S. avenae, which predomi-
nantly feeds on the wheat ear, exacerbating stress and reducing yield [86,87]. The red-
edge region (680-750 nm) showed consistent spectral differences between healthy and in-
fested canopies across all stages, reinforcing its sensitivity to aphid-induced stress [88].
This finding aligns with previous research demonstrating the utility of red-edge indices
for detecting soybean aphid stress on soybean canopies [89-91]. In the NIR region, aphid-
infested canopies exhibited the greatest reduction in reflectance at T3, likely due to meso-
phyll damage, which disrupts the internal leaf structure, reducing scattering efficiency
and increasing transmittance [92]. In contrast, healthy plants maintained a more intact
mesophyll structure, efficiently scattering NIR radiation within green tissues such as
leaves, flag leaves, glumes, and awns [93,94]. The SWIR region, strongly influenced by the
leaf water content [95], exhibited variable responses across growth stages. At T2, infested
canopies had higher SWIR reflectance, suggesting significant water stress, similar to find-
ings in brown planthopper-infested rice [96] and aphid-infested wheat leaf [26]. However,
at T1 and T3, healthy plants exhibited higher SWIR reflectance, possibly due to differences
in canopy moisture regulation, cuticular changes, or leaf structural properties [97]. The
pronounced differences in SWIR at T2 highlight the impact of aphid-induced water stress
during flowering, a critical phase for grain formation (Figure 3). Increased SWIR reflec-
tance in infested plants indicates water loss and structural disruption, which can impair
pollination and grain development. As this stage is highly sensitive to water availability,
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with drought known to reduce fertility [98], these findings underscore the importance of
early detection and intervention to mitigate yield losses.

This finding on the SWIR region is further supported by VI analysis (Figure 5), where
NDWTI exhibited the strongest negative correlation (rp» = —0.60) at T2, indicating reduced
water content in aphid-infested wheat canopies [76]. In addition to NDWI, several other
VIs demonstrated strong potential for detecting aphid-induced stress, with MTVI and TVI
consistently exhibiting the highest correlations across all growth stages (Figure 5). Their
strong negative correlations (rpb = —0.77 to —0.82 for MTVI, rpp = —0.66 to -0.82 for TVI)
confirm that aphid feeding reduces vegetation greenness and canopy integrity, making
these indices valuable for early stress detection. As an improved version of TVI, MTVI
enhances sensitivity to structural canopy changes while minimizing pigment-related var-
iations by incorporating reflectance at 800 nm instead of 750 nm [79]. Given its stability
across growth stages, MTVI is particularly suitable for early stress detection and aphid
hotspots mapping in site-specific pest management. TVI also performed well due to its
sensitivity to chlorophyll content and canopy structure, as it is derived from green (550
nm), red (670 nm), and NIR (750 nm) reflectance [99]. However, its reliance on pigment-
driven variations may limit its robustness compared to MTVI. MTVI2 demonstrated high
sensitivity to early vegetation conditions (rpb = 0.73 at T1) but showed declining perfor-
mance in later stages (rpb = 0.3 at T2, rpb = —0.52 at T3), indicating growth stage-dependent
behavior. While its soil adjustment factor (L = 0.5) improves early stage greenness detec-
tion [99], its instability at T2 and T3 reduces its applicability for consistent aphid stress
monitoring. Among stress-sensitive indices, DSSI-2 and Chl SI-3 showed strong correla-
tions with aphid infestation, reinforcing their value for early stress detection. DSSI-2 re-
mained positively correlated across all growth stages (rpb=0.53-0.57), effectively distin-
guishing between healthy and infested canopies. As an index designed to enhance con-
trast between vegetation and soil, DSSI-2 is particularly sensitive to pigment degradation
and subtle canopy changes associated with aphid feeding [47]. Similarly, Chl SI-3, which
tracks chlorophyll content, showed stable positive correlations (rp> = 0.65 at T1, 0.58 at T2
and T3), confirming its reliability in detecting aphid-induced pigment breakdown [77].
GNDVI, a greenness-related index that incorporates the green spectral band instead of
red, exhibited strong negative correlations across all growth stages (rp> =-0.66 at T1, —0.58
at T2, -0.57 at T3), aligning with reductions in chlorophyll concentration and canopy
greenness caused by aphid stress. Its effectiveness has also been demonstrated in cotton
aphid detection [100].

The classification results demonstrated consistently high accuracy, with overall per-
formance ranging from 88% to 98% and Fl-scores between 0.88 and 0.99. Among the
tested ML models, SVM and RF achieved the highest classification accuracy across differ-
ent input datasets and wheat growth stages (Tables 3-6), reinforcing their robustness for
aphid stress detection in field conditions. SVM’s strong performance can be attributed to
its ability to handle small and complex datasets effectively, leveraging its mathematical
foundations to optimize classification boundaries [101]. This aligns with findings by
Mountrakis et al. [37], who highlighted SVM’s effectiveness in remote sensing applica-
tions. The highest classification accuracy was observed at T2 (flowering), confirming this
stage as optimal for aphid stress detection. Since flowering is critical for grain formation,
timely intervention is essential to prevent yield losses [102]. Among the input datasets,
full spectral reflectance yielded the best classification performance, as expected, since di-
mensionality reduction through VI calculation or UMAP transformation inevitably re-
sulted in some information loss. However, VI-based classification (Table 3) maintained
high accuracy, indicating that key stress-related spectral features were effectively cap-
tured, supporting previous findings that highlight VI as a computationally efficient and
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scalable alternative for remote sensing-based stress detection [103]. Reducing dataset com-
plexity through VI selection or UMAP transformation minimizes data dimensionality and
significantly reduces processing time, making ML classification more efficient and scala-
ble for large-scale applications [104]. The selection of appropriate VI plays a crucial role
in classification accuracy. While this study used all selected VI (Table 2) for model train-
ing, optimizing VI selection per growth stage (T1, T2, and T3) could improve accuracy by
focusing only on the most relevant indices. This targeted approach would enhance model
efficiency while maintaining high reliability, reinforcing the need for tailored feature se-
lection in RS-based stress detection in precision agriculture.

These findings confirm the hypotheses that spectral reflectance differences and VI
correlations can accurately classify aphid-infested wheat canopies above ET levels. Fur-
thermore, ML models demonstrated high classification accuracy, validating the hypothe-
sis that hyperspectral data combined with ML techniques provide a robust approach for
early aphid stress detection across multiple growth stages. Building on these validated
hypotheses, this study also acknowledges certain limitations. The field-based hyperspec-
tral measurements were manually operated, requiring on-site data collection, which lim-
ited the temporal resolution. Additionally, all measurements were conducted under clear,
sunny conditions with no wind, potentially restricting applicability under variable
weather conditions. Despite these limitations, this study demonstrates significant ad-
vancements. By integrating hyperspectral data with ML models, it presents a scalable ap-
proach for aphid stress detection, supporting real-time pest monitoring and decision mak-
ing. The economic threshold-based classification approach could simplify intervention de-
cisions, enhancing site-specific pest management. Additionally, conducting the research
under realistic field conditions and at the canopy level increases the applicability of the
findings to practical agricultural settings. A particularly noteworthy advancement is the
high classification accuracy achieved with the generalized dataset, which combines data
from all three growth stages. This demonstrates the model’s robustness, indicating that
the developed models can accurately classify aphid infestations without requiring precise
knowledge of the exact growth stage. This generalization capability enhances the practical
applicability of the method, making it suitable for field-scale deployment where pheno-
logical stages may vary spatially and temporally. Furthermore, this study evaluates ML
classification accuracy using different sets of inputs, including full-spectrum measure-
ments, the VI, and UMAP-transformed data. This approach brings additional value in
terms of implementation analysis, as in the case of drone or satellite measurements, only
specific VI might be available for analysis. This adaptability makes the proposed method
highly versatile for various remote sensing platforms, ensuring scalability and practical
applicability.

The findings from this study have significant implications for aphid management in
cereals, particularly in advancing precision agriculture practices. Drones or satellites
could be used to map large areas and generate regional and local risk assessments,
prompting targeted scouting efforts [30]. Vegetation indices, already widely implemented
in remote sensing-based monitoring systems, could facilitate early aphid detection, ensur-
ing timely treatment decisions when infestations exceed economic threshold levels. How-
ever, further research is needed to distinguish aphid-induced stress from other biotic and
abiotic stressors to prevent misclassification and optimize remote sensing-based decision
support systems for precision pest management.
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5. Conclusions

This study highlights the potential of hyperspectral remote sensing (RS) and machine
learning (ML) for the early detection and classification of aphid infestations in winter
wheat, enabling more precise and targeted pest management. Aphid-induced stress re-
sulted in distinct spectral reflectance changes, particularly in the VIS and NIR regions,
with the most pronounced differences observed at T2, aligning with peak stress impact
during the flowering stage. Vegetation indices, particularly MTVI (rpp = —0.77 to —0.82) and
TVI (xpp = -0.75 to -0.66), exhibited strong and stable correlations with aphid stress, rein-
forcing their reliability for mapping infestation hotspots and supporting site-specific pest
control strategies. Machine learning models demonstrated high classification performance
(F1-scores of 0.89-0.99), with SVM and RF consistently outperforming other models. The full
spectral dataset yielded the highest classification accuracy, while VI-based classification pro-
vided a computationally efficient alternative with minimal performance reduction. UMAP
visualization effectively clustered healthy and infested plants, particularly at T2, supporting
the feasibility of dimensionality reduction for large-scale aphid detection. These findings con-
firm that the hypotheses proposed in this study are supported:

e  Canopy-level spectral reflectance effectively distinguishes between aphid-infested
wheat canopies above the economic threshold (ET) and healthy canopies across dif-
ferent growth stages.

e  MTVI and TVI are the most reliable vegetation indices for detecting aphid-induced
stress in winter wheat.

e ML classification models, particularly SVM and RF, accurately distinguish between
healthy and aphid-infested wheat canopies, enabling data-driven treatment decisions.

The integration of hyperspectral imaging with ML offers a scalable and automated
approach for real-time aphid stress detection and mapping, enhancing precision agricul-
ture practices. Drones or satellite-based monitoring could provide early warnings by iden-
tifying areas where aphid populations exceed the ET, prompting timely scouting and in-
tervention. These findings emphasize the importance of combining RS with ML to im-
prove field-scale pest monitoring, reduce unnecessary pesticide applications, and support
more sustainable crop protection strategies.
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Appendix A
Appendix A.1. ML Model Hyperparameters

Table Al. ML models' hyperparameter search space.

MODEL HYPERPARAMETER RANGE
C [1 x 107, 50], uniform distribution in the log domain
Logistic regression Tolerance [1 x 1061 x 10-], uniform distribution
Penalty [11, 12, elasticnet]
No. of neighbors [1, 50], integer
K-nearest Neighbors Weights [uniform, distance]
Metric [Euclidean, Manhattan, Minkowski]
Kernel [linear, rbf, poly, sigmoid]
Support vector machine C [0.1, 50], float
Gamma [0.0001, 0.001, 0.01, 0.1, 1, scale, auto]
Degree [2, 3, 4, 5], if kernel = poly
No. of estimators [1, 500], integer
Max features [auto, sqrt]
Random Forest Max depth [10, 110], integer, step =10
Min samples split [2, 10], integer, step =2
Min samples leaf [1, 4], integer
Objective Multiclass
Boosting type GBDT
No. of leaves [2, 256], integer
Learning rate [1 x 107 0.1], uniform distribution in the log domain
No. of estimators [10, 1000], integer
Reg alpha [1 x 107, 10], uniform distribution in the log domain
Reg lambda [1 x 107, 10], uniform distribution in the log domain
Subsample [0.5, 1], float, step =0.01
Light gradient-boosting machine Colsample bytree [0.5, 1], float, step = 0.01
Min child samples [6m 50], integer, step =5
Min child weight [1 x 103,10], float, step=1 x 107
Metric Multi logloss
Num of classes 4
Max depth -1
Subsample freq 1
Early stopping rounds 20
Objective Multiclass

* gray-shaded fields denote fixed hyperparameters.
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Appendix A.2. Implementation Aspects

The processing and analysis of data, including algorithms presented in Section 2.2,
Data Analysis, and Section 2.3, Machine Learning Analysis, was performed in Python 3.9,
with the utilization of the corresponding open-source libraries:

e  Scikit-learn: data processing, LR, KNN, SVM, RF [https://scikit-learn.org/stable/] (ac-
cessed on 21 November 2024).

e UMAP [https://umap-learn.readthedocs.io/en/latest/] (accessed on 16 November
2024).

e LightGBM [https://lightgbm.readthedocs.io/en/latest/] (accessed on 22 November
2024).

e Optuna [https://optuna.org/] (accessed on 22 November 2024).

The overall ML models' training, and validation procedure lasted for 16 h and 38 min
on a machine with 4 cores, 3.5 GHz clock, and 16 GB of RAM.
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