
Web-aplikacija za izgubljene i pronađene stvari

Macukić, Marcel

Undergraduate thesis / Završni rad

2024

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of
Zagreb, Faculty of Electrical Engineering and Computing / Sveučilište u Zagrebu, Fakultet
elektrotehnike i računarstva

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:168:968801

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-03-14

Repository / Repozitorij:

FER Repository - University of Zagreb Faculty of
Electrical Engineering and Computing repozitory

https://urn.nsk.hr/urn:nbn:hr:168:968801
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.fer.unizg.hr
https://repozitorij.fer.unizg.hr
https://zir.nsk.hr/islandora/object/fer:13234
https://repozitorij.unizg.hr/islandora/object/fer:13234
https://dabar.srce.hr/islandora/object/fer:13234

SVEUČILIŠTE U ZAGREBU

FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA

ZAVRŠNI RAD br. 10

WEB-APLIKACIJA ZA IZGUBLJENE I PRONAĐENE STVARI

Marcel Macukić

Zagreb, lipanj 2024.

SVEUČILIŠTE U ZAGREBU

FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA

ZAVRŠNI RAD br. 10

WEB-APLIKACIJA ZA IZGUBLJENE I PRONAĐENE STVARI

Marcel Macukić

Zagreb, lipanj 2024.

SVEUČILIŠTE U ZAGREBU
FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA

Zagreb, 4. ožujka 2024.

ZAVRŠNI ZADATAK br. 10

Pristupnik: Marcel Macukić (0135252557)

Studij: Computing

Modul: Computing

Mentor: prof. dr. sc. Boris Milašinović

Zadatak: Web-aplikacija za izgubljene i pronađene stvari

Opis zadatka:

Izraditi web-aplikaciju koja bi omogućila evidenciju izgubljenih i pronađenih stvari. Korisnik bi mogao prijaviti
nestanak, prijaviti pronalazak te pretraživati objave. Prilikom prijave nestanka omogućiti korisniku da na karti
označi područje na kojem smatra da je predmet nestao, a korisniku koji je pronašao stvar omogućiti točan unos
lokacije označavanjem na karti ili s pomoću GPS-a. Korisnici mogu unijeti fotografije pronađene ili izgubljene
stvari, podatak gdje se izgubljena stvar treba dostaviti, odnosno može pokupiti, pri čemu kontakt podatak ne
mora biti javno vidljiv, pa je unutar aplikacije potrebno podržati razgovore između korisnika.

Rok za predaju rada: 14. lipnja 2024.

Contents

1 Introduction . 3

2 Software Specification . 4

2.1 Functional Requirements . 4

2.1.1 Actors . 4

2.1.2 Use Cases . 4

2.2 Conceptual Model . 9

3 Technologies Used . 10

3.1 Frontend . 10

3.1.1 React . 10

3.2 Backend . 11

3.2.1 .NET . 11

3.3 Database . 13

3.3.1 MSSQL . 13

4 Implementation . 14

4.1 Backend . 15

4.2 Frontend . 20

4.3 Authentication . 21

4.4 Directory Layout . 23

4.5 Web Service . 24

5 Application Showcase . 27

6 Installation Manual . 31

1

7 Conclusion . 32

8 Bibliography . 33

Abstract . 34

Sažetak . 35

2

1 Introduction

In today’s fast-pacedworld, losing personal belongings has become an everyday problem.

Once you have realized you have lost something, the hardest part is to remember where

it could be. To address this issue, I have developed a web-based application designed to

simplify the process of reporting and recovering lost and found items. The idea is that

you have a place where you can have a quick look and see if the item you have lost has

been found by someone. If not, you can still make a post specifying what you lost and

where you think you lost it.

The web-based nature of this application is intentional. Unlike apps that require fre-

quent use and constant presence on a user’s phone, this application addresses a specific

need that does not occur daily. Users can conveniently access the platform from any web

browser without the need for a permanent app installation on their devices. You could

make a post that you lost something on your phone, go home and check up on it on your

laptop/PC.

3

2 Software Specification

In this section the focus will be on the actions that the web application needs to per-

form and it’s intended use. The application is implemented as a single page application,

meaning that once it is compiled and running, there is one page that is loaded and after

that all of the modification are done by the frontend. This allows the users to navigate

the application without constantly loading pages from the backend which can be really

slow. Single page applications however require more effort to maintain state. Running

the application is configured to be launched at once, as a SPA proxy. This means that it

is enough to launch the backend and the fronted will be launched automatically.

2.1 Functional Requirements

2.1.1 Actors

• Unregistered user

• Registered user

• Listing author

2.1.2 Use Cases

• View homepage

– Actors: Any website visitor

– Goal: Reading about the website

4

– Basic course:

* User types in the website URL.

* Users browser loads the website homepage.

• Register

– Actors: Unregistered user

– Goal: Registering an account

– Basic course:

* User types in the website URL

* Users browser loads the website homepage

* User navigates to the registration page

* User inputs the required data

* User registers an account

– Possible deviations:

* User inputs the wrong data

* Username already chosen

* Password too weak

• Log in

– Actors: Registered user

– Goal: Authenticating the user

– Basic course:

* User types in the website URL

* Users browser loads the website homepage

5

* User navigates to the Profile page

* User inputs the required data

* User Logs in to his profile

– Possible deviations:

* User inputs the wrong data

• Report lost/found item

– Actors: Registered user

– Goal: Create a listing with the information about the item

– Basic course:

* User navigates to the listings page

* User clicks on the "Report lost/found item" button

* User puts the required information into the form

* If the user allows, the application finds users location

* The user can upload a photo of the item

* User posts the listing

– Possible deviations:

* User inputs the wrong data

* User not logged in

* User does not input all of the required data

• Message user

– Actors: Registered user

– Goal: Send a message to the user who posted the listing

6

– Basic course:

* User navigates to the listings page

* User clicks on the message user button

* User types the message and sends it to the owner of the listing

– Possible deviations:

* User not logged in

• Delete listing

– Actors: Listing author

– Goal: Remove a listing from the database

– Basic course:

* User navigates to the profile page

* User checks his listings

* User chooses which listing to delete

– Possible deviations:

* User not logged in

7

• Search lost/found items

– Actors: Registered user

– Goal: Searching through the posted listings

– Basic course:

* User navigates to the listings page

* Browser loads the listings

* User searches through the listings

– Possible deviations:

* User not logged in

8

2.2 Conceptual Model

The conceptual model describes the relationships between entities present in the appli-

cation. The users can post many listings, and a listing can only be posted by one user.

User can send many messages and a message can only be sent by one user, and received

by one user. There can be manymessages in connection to one listing, but each message

can only be connected to one listing.

Image 2.1: Conceptual Model

9

3 Technologies Used

In this section, I will explain the technologies used during the development of the ap-

plication. The main technologies include React for the frontend, .NET for the backend,

and MSSQL for the database. The web application is implemented as a Single Page Ap-

plication (SPA), ensuring a smooth and responsive user experience.

3.1 Frontend

The frontend of the application is developed using React, a popular JavaScript library

for building user interfaces, particularly single-page applications where efficiency and a

seamless user experience are critical.

3.1.1 React

React is a powerful library that allows developers to create large web applications that

can update and render efficiently in response to data changes. Some of the key features

of React include:

• Component-BasedArchitecture: React enables the development of reusable UI

components, which help in maintaining a clean and manageable codebase. Each

component can be reused in any other componentwhichmakes the code very read-

able and easy to maintain.

• Virtual DOM: React uses a virtual DOM to optimize rendering. Instead of updat-

ing the entire page when data changes, React updates only the components that

have changed, resulting in faster and more efficient performance.

10

• JSX Syntax: JSX, a syntax extension for JavaScript, allows developers to write

HTML directly within JavaScript, making the code more readable and easier to

debug. An example of JSX syntakx can be seen in the ??.

• State Management: React’s state and props system helps manage the applica-

tion’s state effectively, ensuring that the UI reflects the current state of the data. In

React you can share the state of two components to always change together, and to

achieve this you remove the state from those components, move it to their closest

shared "parent" and pass it to them via props.

3.2 Backend

The backend of the application is built using .NET, a free, cross-platform, open-source

developer platform for building many different types of applications. The .NET frame-

work provides a robust and scalable solution for backend services.

3.2.1 .NET

.NET is a free and open-source application platform. With .NET you can build mobile

applications, desktop applications, microservices, games, web applications and much

more. For developingweb application I used theASP.NETCore, which is an open-source

framework that is known for it’s security and robustness. The language used to write

code in ASP.NET Core applications is C#. A general-purpose, high-level, object-oriented

programming language that supports multiple paradigms. C# is one of the most used

languages today, with some of the applications being AutoCAD, GitHub Desktop, Stack

Overflow and many more.

• ASP.NET Core: ASP.NET Core is an open-source web development framework

that was designed for building modern cloud-based applications. Compared to

the original ASP.NET framework, it has several benefits, such as enhanced perfor-

mance, cross-platform compatibility, and easier development. In contrast to earlier

iterations that were limited to Windows, ASP.NET Core is now cross-platform and

compatible with macOS and Linux.

11

• Entity Framework: The benefit of using Entity Framework is that you can work

with data using objects of domain without worrying about the database tables

where this data is actually stored. It allows the developer a higher level of abstrac-

tion when dealing with data. This all means that there is much less room for error

since most of the work is done by the framework. Entity Framework can connect

to an already existing database that has data in it, or it can create a database and

it’s tables based on the Context class.

• Context Class: Context class is a core part of the Entity Framework. It allows

CRUD operations on the database using a session. Context is used to represent the

data from the database in a way that is easiest for the developer to use.

• Models: Models are classes that represent data used in our application. Themodel

is used when creating a Context as a blueprint of how the data in the database

should be stored. This makes for easier programming and is much less prone to

errors. A model I made for listings can be seen in the ??.

• Controllers: A controller is a part of ASP.NET Core that is used for handling the

incoming Http requests, deciding which view to load and work with the model. It

is the part of the backend application that is in the center of all traffic.

12

3.3 Database

For the database, I used Microsoft SQL Server (MSSQL), a relational database manage-

ment system developed byMicrosoft. The server was running onmy personal laptop and

then using the Entity Framework a database was created based on the specified models

and DBContext.

3.3.1 MSSQL

MSSQLprovides a reliable and scalable solution for data storage andmanagement. Some

of the benefits of using MSSQL include:

• Robust Performance: MSSQL is designed to handle large volumes of data and

complex queries efficiently, ensuring high performance and reliability.

• Advanced Security Features: MSSQL includes advanced securitymeasures such

as encryption, access controls, and auditing to protect data.

• Integration with .NET: MSSQL seamlessly integrates with .NET, providing a co-

hesive development experience and simplifying data access and manipulation.

• ComprehensiveTools: MSSQL offers a variety of tools for databasemanagement,

monitoring, and optimization, making it easier tomaintain and scale the database.

13

4 Implementation

In this section the focus will be on how I used the before specified technologies to im-

plement the application and all of it’s required functionalities. The application is made

to be very responsive (fast response time) because it is implemented as a single page

application. The structure of the application can be seen in the image 4.1

Image 4.1: Diagram of The Application Structure

14

Database

The database is configured on a MSSQL server running locally on Ubuntu 23.04. The

database itself was generated using the Entity Framework and the database context that

uses the same models that the backend uses for manipulating the data. This allows for

seamless updates and corrections while developing the application.

Image 4.2: Database ER Diagram

4.1 Backend

The backend of the application is developed using the ASP.NET Core with addition of

Entity Framework. The application was setup in the Rider IDE by using the feature of

generating an application that is already setup to be run. The benefit to this is that the

developer can dive straight into the functionality of the application and not worry about

making everything work together. The application that was generated uses .NET C#

for the backend and React for the frontend. The backend and frontend are connected

automatically by the IDE when generated and work perfectly. The backend connection

to the database was made using the context class and Entity Framework.

Models

Implemented for this application we have the Listingmodel, UserModelmodel, UserDto

model (DTO means data transfer object), UserDtoRegister model and ListingDto model.

Models containing Dto in their name are used as data transfer objects, they are files used

15

by the controllers to transfer data from the frontend to the backend, or from the backend.

Once the data from the Dtomodels has been processed it is stored in it’s respectivemodel

(one without Dto).

UserModel

TheUserModel is a C# file that describes the user of the application. Each user has a first

name, last name, email, username and password. The UserModel is used by the Auth-

Controller to save user data when registering and to verify the user data when logging in.

The model is also used by the LostAndFoundContext which uses it to describe the user

table in the database.

namespace LostAndFound.Models;

public class UserModel

{

[Key]

public string UserName { get; set; }

public string FirstName { get; set; }

public string LastName { get; set; }

public string Email { get; set; }

public string PasswordHash { get; set; }

}

Code snippet 1: UserModel

Controllers

The controllers used for this application are the AuthController, used for registration,

login and getting information about the user and the ListingController, used to create or

delete listings about lost or found items.

16

AuthController

The AuthController is used while the user registers, logs in or to get user information

based on the JWT token that the user has stored in his browser. The AuthController is

implemented as an ApiController which means that it extends the ControllerBase class

instead of the Controller class. The main difference is that the ApiController does not

render views but instead returns data in the xml or json format. In the code snippet 2

we can see that the AuthController is indeed an ApiController since it inherits the Con-

trollerBase class. We can also see the _context variable which is used to manipulate the

database.

namespace LostAndFound.Controllers

{

[Route("api/[controller]")]

[ApiController]

public class AuthController : ControllerBase

{

private readonly LostAndFoundContext _context;

private static UserModel _user = new UserModel();

private readonly IConfiguration _configuration;

public AuthController(IConfiguration configuration,

LostAndFoundContext context)

{

_configuration = configuration;

_context = context;

}

...

Code snippet 2: Part of the AuthController

17

ListingController

The ListingController is also implemented as an ApiController. The function it serves is

to save the listings posted by the user or delete it. It also has a HttpGet function which

returns all of the listings that are posted in the database. In the code snippet 3 we can see

that the function to get all of the data is under the Authorize attribute, this means that

only an authorized user can use this function. The authentication is done by the JWT

token Bearer that is sent to the backend in the header of the request.

...

[HttpGet("getall")]

[Authorize]

public async Task<ActionResult<List<Listing>>> GetAllListings()

{

var listings = await _context.Listings.ToListAsync();

return Ok(listings);

}

...

Code snippet 3: HttpGet function from ListingController

Program.cs

Program.cs is a file written in C# that is used to add services to our application, build

it and run it. This file sets up the dependencies, registers the components and sets up

the configuration. In the file we can find a variable builder which is a variable used to

define said functionalities, add services and ultimately run the application. In the code

snippet 4 we can see a part of the Program.cs file where use the builder variable to add

authentication using the JWT token. This is setup for development purposes to use a

token set in the appsettings, in production it would use some third party tool for secret

safekeeping.

18

...

builder.Services.AddAuthentication(options =>

{

options.DefaultChallengeScheme = JwtBearerDefaults

.AuthenticationScheme;

options.DefaultAuthenticateScheme = JwtBearerDefaults

.AuthenticationScheme;

}).AddJwtBearer(options =>

{

options.RequireHttpsMetadata = false;

options.SaveToken = true;

options.TokenValidationParameters = new TokenValidationParameters

{

ValidateIssuerSigningKey = true,

IssuerSigningKey = new SymmetricSecurityKey(Encoding.UTF8

.GetBytes(builder.Configuration

.GetSection("AppSettings:token").Value!)),

ValidateIssuer = true,

ValidIssuer = jwtSettings["ValidIssuer"],

ValidateAudience = false,

ValidAudience = jwtSettings["ValidAudiences"],

};

});

...

Code snippet 4: Part of The Program.cs File

19

4.2 Frontend

The frontend application is developed using React.js, which is a popular JavaScript li-

brary that makes developing applications easier and more intuitive. The application is

implemented as a SPA (Single Page Application) which means all of the routing is done

on the frontend. This means that the initial page is loaded, and the content is dynami-

cally changed based on user interaction with the application.

Components

The frontend is divided into components which are the building blocks of React. The

components are exported and used by other components in a way you would use any

Html element. This allows us to reuse the component as may times as needed, saving

a lot of time and drastically lowering the chance of making an error. Components also

make updating the application much easier. A good example is the Registration compo-

nent which is used to display the registration form to the user, using which the user can

register an account. In the code snippet 5 we can see an asynchronous function from the

Registration controller which sends a http post request to the backend server and waits

for the response. If the username is not already in the database, the backend will create

a new user, store the information in the database and respond with the code 200 (OK).

20

async handleRegister(event) {

event.preventDefault();

const { userName, password , firstName, lastName, email} = this.state;

const response = await fetch('https://localhost:7186/api/auth/register',

{

method: 'POST',

headers: {

'Content-Type': 'application/json'

},

body:JSON.stringify({userName, password, firstName, lastName, email})

});

const data = await response.json();

if (response.ok) {

this.setState({ message: 'Registration successful!' });

} else{

this.setState({ message: data || 'Registration failed' });

}

}

Code snippet 5: Asynchronous function handleRegister from Register component

React Leaflet

Leaflet is an open-source JavaScript library for interactive maps. React Leaflet provides

us with bindings between React and Leaflet. This means that it leverages Leaflet to ab-

stract layers as React components. React does not render Leaflet layers to the DOM, this

is done by Leaflet itself. React Leaflet library can be imported and used just as any other

React library.

4.3 Authentication

It is always better to use third party solutions when it comes to authenticating users and

encrypting and storing sensitive data. Developing these parts of the application on your

21

own lead to potential weaknesses and security problems. This is why this application

uses the BCrypt library for hashing and encryption and JWT tokens for authentication.

JSON Web Token

JSON Web Token or JWT token for short, is an open standard that defines a way of se-

curely transmitting information between parties as a JSON object. This information is

trusted because it is digitally signed. JWTs can be signed using a secret or with a pub-

lic/private key pair. In this application it is implemented using a secret with the HMAC

algorithm. JWT consists of the header, payload and signature. In image 4.3 we can see

what the JWT token structure looks like

Image 4.3: jwt.io Website Debugger Screenshot

BCrypt

BCrypt in .NET is a cryptographic hashing library that provides secure hashing and pass-

word management capabilities. It is commonly used for hashing passwords before stor-

ing them in a database, ensuring that the passwords are stored in a secure, non-reversible

manner. It tries to prevent off-line password cracking using a computationally-intesive

hashing algorithm. The algorithm generates a random salt every time you use it so you

22

can has the same password multiple times and get different results.

code snippet 6 shows how we can use BCrypt to hash a password and code snippet 7

shows how we can use BCrypt to check if the password the user has provided to us,

matches the previously hashed password.

string passwordHash = BCrypt.Net.BCrypt.HashPassword(request.Password);

Code snippet 6: Example of Using BCrypt to Hash a Password

if (!BCrypt.Net.BCrypt.Verify(request.Password, user.PasswordHash))

{

return BadRequest("Log in failed!");

}

Code snippet 7: Example of Using BCrypt to Check The Password

4.4 Directory Layout

The directories are arranged as in the image 4.4. The ClientApp directory is where, as

the name sugests, all of the client application files can be found. In table 4.1 we can see

what each of the folders, and some important files within them represent.

LostAndFound

ClientApp

public

src

components

icons

Models

Controllers

Migrations

Pages

Image 4.4: This is a directory tree

23

Folder/File Description
LostAndFound/ The root directory of the project
ClientApp/ The directory containg the client application
src/ Folder containing client application source files
components/ Folder containing files describing React components
Models/ Folder containing C# files describing models
Controllers/ Folder containing C# files describing controllers
Migrations/ Folder containing C# files describing migrations
Pages/ Folder containing CSHTML files describing Views
appsettings.json File containing custom application configuration infor-

mation
Program.cs C# file that is the entrypoint of the application

Table 4.1: Folder Structure and Descriptions

4.5 Web Service

The application can be used from the browser through the frontend application, or it

can be used as a web service(Http API). The backend is implemented as a web service

meaning that we can use it by sending Http requests.

Register

POST /api/auth/register HTTP/1.1

Host: https://localhost:7186

Accept: application/json

{

"username": "somename",

"firstname": "some",

"lastname": "name",

"password": "password",

"email": "somename@gmail.com"

}

24

Log in

POST /api/auth/login HTTP/1.1

Host: https://localhost:7186

Authorization: Bearer YOUR_ACCESS_TOKEN

Accept: application/json

{

"username": "example",

"password": "example"

}

Get user information

GET /api/auth/getuser HTTP/1.1

Host: https://localhost:7186

Authorization: Bearer YOUR_ACCESS_TOKEN

Accept: application/json

Get all listings

POST /api/listing/getall HTTP/1.1

Host: https://localhost:7186

Authorization: Bearer YOUR_ACCESS_TOKEN

Accept: application/json

Delete a listing

DELETE /api/listing/deleteListing/listingId HTTP/1.1

Host: https://localhost:7186

Authorization: Bearer YOUR_ACCESS_TOKEN

25

Accept: application/json

Make a listing

POST /api/listing/makepost HTTP/1.1

Host: https://localhost:7186

Authorization: Bearer YOUR_ACCESS_TOKEN

Accept: application/json

{

"itemtype" : "keys",

"message" : "I found these keys on the road",

"latitude" : 45.5465,

"longitude" : 75.2342,

"address" : "Ilica 122"

}

Send a message

POST /api/messagess/sendMessage/listingId HTTP/1.1

Host: https://localhost:7186

Authorization: Bearer YOUR_ACCESS_TOKEN

Accept: application/json

{

"message" : "some message"

}

26

5 Application Showcase

Log In / Register

If the current user is not logged in, when the user clicks on the Profile link in the top

right corner, the website takes him to the log in screen(image 5.1). There the user can

log in, or if the user does not have an account, they can click on the Register link which

will take them to the registration screen(image 5.2).

Image 5.1: The log in screen

Image 5.2: The registration screen

27

Search / Create Listings

Once logged in, the user can access the full functionality of the web application. By

going to the Listings screen(image 5.3), the frontend loads all of the listings posted on the

website and displays them for the user. The user canmessage other users with questions

about their listings and search the listings by the type of item in the listing.

Image 5.3: The listings screen

To make a listing, the logged in user navigates to the listings screen (image 5.3) and

clicks on the Report a found item button. This will open a form to fill in the information

about the lost/found item. There will be a popup asking the user to allow the browser to

use his current location, and the mini map will set the pin to the received location. The

user can then correct the pin by dragging it on the map.

28

To search for listings using the item type the user simply writes the type of item he

would like to filter by and press the search button. If there are no listings with the spec-

ified item type, there will be no change in the listings displayed. To reset the search

criteria, the user presses the reset button.

Image 5.4: Making a listing

29

Profile

The profile screen, once the user has logged in will display the user information and if

there are any, his listings. The user can press the log out button to log out of the web

application and this will send him back to the log in screen. User can delete the listings

he has posted if he has posted any (image 5.5).

Image 5.5: The profile screen

30

6 Installation Manual

The application is located on https://github.com/Mmacukic/LostAndFound/. You need

to download it locally and open it in an IDE of your choice that supports ASP.NET Core

and JavaScript or open the directory in some sort of terminal or command prompt. The

first thing you need to do is install dotnet on your personal computer. After installing

dotnet you need to setup the application to work on your computer. First you need to

configure a database management server either locally or via some third party service.

The connection string is located in the Program.cs under the file The server is accessed by

the application using a connection string, which is a set of information that you need to

connect to the database server. After connecting to the server youneed to add amigration

using Entity Framework, either from the IDE or the terminal. In the terminal you need

to navigate to the directory inwhich the solution is located and run the command "dotnet

ef migrations add <name the migration> –project LostAndFound". This command will

create a migration that prepares the data to be added to a database. The next command

you need to run is "dotnet ef database update –project LostAndFound". This command

will create the database using the previously addedmigration. The next step is to provide

the JWT bearer function with a secret token. The token is used in the Program.cs file and

in the AuthController.If you want to deploy the application you need is to have a secure

third party application (AzureVault or something similar) to keep your connection string

and your secret token safe. To run the application you need to run the command "dotnet

run".

31

7 Conclusion

In this thesis, we have successfully developed and documented a web application for lost

and found items. The application is implemented using react.js on the client side, and

ASP.NET Core that is implemented as a web service. The application provides the user

with functionalities such as searching for listings, creating listings and messaging other

users about listings.

The application has many options for possible upgrades. One of them being implement-

ing a real-time chat that uses the SignalR package from .Net. This would provide the user

with a way to communicate in real time while, for example, trying to find each other to

retrieve or return the lost item. One other usefull upgrade would be to add a better form

of authenticating users on registration, such as email and phone number confirmation,

and providing a form of identification to prove that the given information is in fact true.

The application presents a useful solution to an everlasting problem that is present in

our day to day life.

32

8 Bibliography

[1] Umbarco, https://umbraco.com/knowledge-base/asp-dot-net-core/, 10.06.2024.

[2]Entity FrameworkTutorial , https://www.entityframeworktutorial.net/entityframework6/what-

is-entityframework.aspx, 11.06.2024.

[3] Dot Net Tutorials, https://dotnettutorials.net/lesson/controllers-asp-net-core-mvc/,

22.05.2024.

[4]MDNWebDocs, https://developer.mozilla.org/en-US/docs/Glossary/SPA, 19.05.2024.

[5]Microsoft Learnhttps://learn.microsoft.com/en-us/aspnet/core/fundamentals/, 05.06.2024.

[6] JWT Introduction https://jwt.io/introduction, 01.06.2024.

[7]React Leaflet Introduction, https://react-leaflet.js.org/docs/start-introduction/, 11.05.2024.

33

Abstract

Web application for Lost and Found Items

Marcel Macukić

The application developed in the scope of this thesis is designed for people who have

found or have lost an item. The application implements making a post about items using

the users current location. Users can message each other only through a post. Users

that have posted can see their posts on their profile page and delete them. Users can also

search through the posts using the search bar on top of the listings page. The search bar

only allows for searching by item type and can be reset using the reset button.

Keywords: dotnet; .NET; React; C#; leaflet; MSSQL; JavaScript

34

Sažetak

Web-aplikacija za izgubljene i pronađene stvari

Marcel Macukić

Aplikacija razvijena u okviru ovog rada je dizajnirana za ljude koji su pronašli ili iz-

gubili neku stvar. Aplikacija implementira izradu objave o izgubljenim ili nađenim stva-

rima koristeći trenutnu lokaciju korisnika. Korisnici mogu slati poruke jedni drugima

samo preko objave. Korisnici koji su objavili svoje objave mogu vidjeti na svojoj profilnoj

stranici i izbrisati ih. Korisnici također mogu pretraživati objave pomoću trake za pretra-

živanje na vrhu stranice listings. Traka za pretraživanje omogućuje samo pretraživanje

prema vrsti stavke i može se poništiti pomoću gumba reset.

Ključne riječi: dotnet; .NET; React; C#; leaflet; MSSQL; JavaScript

35

	Introduction
	Software Specification
	Functional Requirements
	Actors
	Use Cases

	Conceptual Model

	Technologies Used
	Frontend
	React

	Backend
	.NET

	Database
	MSSQL

	Implementation
	Backend
	Frontend
	Authentication
	Directory Layout
	Web Service

	Application Showcase
	Installation Manual
	Conclusion
	Bibliography
	Abstract
	Sažetak

