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Introduction 

Climate change is a fundamental problem, and its consequences can be felt worldwide. We 

often think it’s going to affect us badly in the future, but it is already an ongoing process, and 

it’s only getting worse. It is currently arguably the most pressing issue of our time, affecting 

every corner of our planet Earth. Lack of rain in places where it is needed can cause a 

shortage of specific foods all around the world. Extreme summer heat can lead to water 

shortage, especially in countries with less natural water (water sources, rivers etc.). 

As we can see in (NOAA, Climate Change Impacts), climate change's impacts vary across 

sectors. Droughts disrupt agriculture, floods threaten infrastructure, and extreme weather 

poses health risks. Vulnerable populations are disproportionately affected due to social 

inequities. Investing in clean energy fosters economic growth while curbing health hazards. 

The global average temperature has been rising consistently, especially in comparison to the 

period between 1961 and 1990. In recent decades, there has been a significant and noticeable 

increase in global temperatures, approximately by 0.7°C compared to the temperatures 

recorded during 1961–1990. Moreover, if we trace back to 1850, temperatures were even 

lower, by about 0.4°C, compared to the 1961–1990 period. Combining these changes, we see 

an overall temperature rise of around 1.1°C. The average global temperature has increased by 

approximately 1.1 to 1.2°C from 1850 to 2019. 

Temperature change is observed with respect to a baseline climatology, corresponding to 

1951–1980. The following Figure shows a change in average temperature for each year since 

1900 and every country. Every black dot represents a unique value for each country. It is 

easily seen that the values are rising, as we can see that the average before 1920 is around 

8.25, while post-2010 averages are even higher than 9.5. We can see that the increase is 

around or even higher than the already mentioned critical 1.5 degrees Celsius. 
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Figure 1 –  Average temperature change 

 

Source: figure by the author 

The research is focused on multiple questions.  

First, a time series analysis of temperature data is done, and possible time patterns are 

investigated. Also, statistical methods are used to establish correlations between multiple 

factors, including temperature rise, ocean level rise, severe weather reports (Pacific and 

Atlantic hurricane reports), global mean sea level etc. 
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1. Related work 

(Naiqian, et al., 2019) aims to model and forecast global land-surface air temperatures to 

understand the ongoing trend of global warming. The researchers utilized monthly mean 

temperature data from 1880 to 2018, sourced from NASA's Goddard Institute for Space 

Studies (GISS). They first processed the data to ensure it was stationary by applying 

differencing techniques. After dealing with outliers, they tested several ARIMA models, 

ultimately selecting the ARIMA(2,1,1) model as the most accurate for their data. This model 

indicated that the overall temperature trend shows a significant increase, especially after 1980. 

The study found that the global temperature has been steadily rising, particularly in recent 

decades, and predicts this warming trend will continue. The forecast for 2019 and 2020 also 

suggested a continued increase in global temperatures. The researchers concluded that global 

warming is a persistent and accelerating problem, necessitating effective measures to address 

it. The study emphasizes the importance of short-term temperature forecasting as a tool for 

understanding and responding to climate change. 

(Pielke Jr, et al., 2005) examines the complex relationship between global warming and 

hurricane activity. The researchers aimed to clarify whether global warming influences the 

frequency and intensity of hurricanes and their associated impacts. The study reviewed 

existing peer-reviewed literature and historical data on hurricanes, particularly focusing on 

event risk (the occurrence and intensity of hurricanes) and outcome risk (the impact of 

hurricanes on society). The study found no clear evidence linking the increase in hurricane 

frequency or intensity directly to global warming. While some studies suggest a potential 

connection, the findings are not definitive, and the data often shows considerable variability 

rather than a clear trend. The researchers highlighted that the increase in the number of storms 

and their intensity in recent decades, particularly since 1995, could largely be attributed to 

natural multidecadal variability rather than climate change. They also noted that global 

modelling studies on the future impact of global warming on hurricanes yield contradictory 

results, making it difficult to draw firm conclusions. The study concludes that claims of a 

direct connection between global warming and hurricane impacts are premature, given the 

current state of scientific understanding. The researchers argue that more robust evidence and 

consistent modelling results are needed before any definitive link can be established.  
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(Chen, et al., 2023.) utilized a linear regression to explore the relationship between 

atmospheric CO₂ levels and global temperature changes. Despite the complexity of climate 

dynamics, linear regression is shown to be a robust and effective tool for certain aspects of 

climate modelling. One of the key strengths of linear regression highlighted in the paper is its 

ability to provide a clear and quantifiable relationship between variables. In this case, the 

study found a strong correlation between CO₂ levels and global temperatures, with a 

correlation coefficient of 0.96. This high correlation demonstrates that linear regression can 

capture significant trends in the data, making it a valuable tool for predicting how increases in 

CO₂ might affect global temperatures. In the study, linear regression helped to establish a 

baseline understanding of the relationship between CO₂ and temperature, which was then used 

to guide the development of more sophisticated models like ARIMA and LSTM. The paper 

demonstrates that even with more advanced models available, linear regression still plays a 

vital role in the overall analysis, providing reliable and interpretable predictions. While the 

paper acknowledges the limitations of linear regression, especially when dealing with non-

linear or complex interactions over long periods, it also emphasizes that linear regression is 

"good enough" for certain applications. It effectively captures the main trend in the 

relationship between CO₂ and temperature, which is essential for understanding the broader 

implications of rising greenhouse gas levels. 

(Bhagat, et al., 2023) forecasted future global sea levels using machine learning techniques. 

The researchers employed linear regression and gradient descent to build predictive models. 

Linear regression was used to establish a relationship between time and sea level, allowing for 

predictions based on this linear relationship. Gradient descent, an optimization algorithm, was 

utilized to minimize errors in the predictive model. The data used in this study included global 

mean sea level (GMSL) records from 1880 to 2013. The study's findings indicate that global 

sea levels will continue to rise significantly in the coming years, with an estimated increase of 

approximately 20 centimetres from 2014 to 2050. This prediction is supported by a notable 

rise in sea levels starting around the year 2000, which is consistent with trends related to 

global warming and the melting of ice sheets. The accuracy of the models was evaluated 

using the R² score, with the linear regression model achieving the highest accuracy at 94.6%. 

In conclusion, the study predicts a continued rise in global sea levels due to ongoing climatic 

changes, posing potential risks to coastal communities and ecosystems.  
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(Wang & Wu, 2021) examined changes in polar sea ice over 30 years using data from the 

National Snow and Ice Data Center (NSIDC). The study shows a general decrease in sea-ice 

concentration in the Arctic, with significant regional variability in the Antarctic. The total sea 

ice extent decreased by about 2.07% per decade, with multiyear ice declining 12.31% per 

decade, while first- and second-year ice slightly increased by 2.13% per decade. Linear 

regression was used to analyse trends, revealing a significant overall decline in sea ice. The 

Arctic showed a consistent decrease across most areas, while the Antarctic exhibited a mix of 

increasing and decreasing trends, with regions like the Weddell Sea seeing increases and the 

Amundsen and Ross seas experiencing decreases. This contrast highlights different responses 

to climate change in the Arctic and Antarctic, with the Arctic showing more uniform ice loss 

and the Antarctic displaying varied regional patterns.  

(Magi, 2008) examines the impact of increasing atmospheric CO₂ on ocean acidification and 

evaluates the effectiveness of CO₂ Ocean sequestration as a mitigation strategy. The study 

highlights that as atmospheric CO₂ levels rise, a significant portion of this CO₂ is absorbed by 

the ocean, leading to increased acidification of the ocean's surface layers. The CO₂ dissolves 

in seawater, forming carbonic acid, which dissociates into bicarbonate and hydrogen ions, 

thereby lowering the pH of the water. This ongoing acidification poses a serious threat to 

marine life, particularly organisms that rely on calcium carbonate for their shells and 

skeletons, as lower pH levels reduce the availability of carbonate ions needed for 

calcification. The simulations show that without mitigation, the continued increase in 

atmospheric CO₂ would lead to significant acidification of the ocean's surface, with 

potentially devastating effects on marine ecosystems. 
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2. Methodology 

In this paper, various datasets from Kaggle and other resources on the topic of climate change 

indicators are used.  

(Kaggle, Climate change – earth surface temperature data) is used for tracking Earth's surface 

temperature data. 

The dataset contains global temperature records, including measurements of average, 

maximum, and minimum monthly temperatures for both land and combined land-ocean 

surfaces. The dataset spans from 1750 to recent years, totalling 3192 entries with nine 

columns. In the next Table, a random dataset sample is provided.  

Table 1 – random dataset sample (earth surface temperature) 

Date Land 

Average 

Temperature 

Land 

Average 

Temperature 

Uncertainty 

Land Max 

Temperature 

Land Max 

Temperature 

Uncertainty 

Land Min 

Temperature 

Land Min 

Temperature 

Uncertainty 

1988-10-01 9.979 0.062 15.719 0.194 4.363 0.151 

1763-10-01 5.535 2.961 NaN NaN NaN NaN 

1898-07-01 14.138 0.367 20.145 0.495 8.039 0.306 

1936-03-01 5.031 0.194 11.032 0.197 -1.154 0.218 

1893-12-01 3.155 0.399 9.030 0.429 -2.790 0.321 

Source: table by the author 

The research uses data starting in 1750 for average land temperature and 1850 for maximum 

and minimum land temperatures, as well as global ocean and land temperatures. The columns 

include LandAverageTemperature, which represents the global average land temperature in 

Celsius, and LandAverageTemperatureUncertainty, indicating the 95% confidence interval 

around the average.  

There are missing values in many columns, particularly those related to maximum and 

minimum temperatures and combined land-ocean temperatures, so the analysis focuses on 

average temperature readings. The dataset spans from January 1750 onwards, with 
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temperature values recorded in Celsius and uncertainties provided to indicate measurement 

reliability.  

The column statistics are as follows: LandAverageTemperature has a mean of 8.48°C, a 

standard deviation of 4.35, and a range from -6.36°C to 22.66°C; LandMaxTemperature has a 

mean of 14.35°C, a standard deviation of 4.31, and a range from 5.90°C to 21.32°C; 

LandMinTemperature has a mean of 2.74°C, a standard deviation of 4.16, and a range from -

5.41°C to 9.72°C; and LandAndOceanAverageTemperature has a mean of 15.21°C, a 

standard deviation of 1.27, and a range from 12.48°C to 17.61°C. 

 

(Kaggle, Hurricane database) is used for hurricane data in the Atlantic and Pacific Oceans. It 

consists of two datasets, containing Atlantic and Pacific data, which are combined. 

The combined dataset contains hurricane records from both the Atlantic and Pacific regions, 

spanning from 1851 to recent years, totalling 75242 entries with eleven columns. In the next 

Table, a random dataset sample is provided. 

Table 2 – random dataset sample (hurricane database) 

ID Name Date Time Statu

s 

Latitu

de 

Longitu

de 

Maximum 

Wind 

(knots) 

Minimum 

Pressure 

(mb) 

Ocean 

EP041

983 

DALIL

IA 

1983-07-

11 

12:00 TD 19.7N 125.5W 25 -999 Pacific 

EP081

993 

GREG 1993-08-

28 

12:00 TD 21.3N 140.6W 25 1010 Pacific 

AL021

982 

UNNA

MED 

1982-06-

18 

18:00 SS 31.4N 80.3W 60 992 Atlantic 

AL081

871 

UNNA

MED 

1871-10-

10 

18:00 HU 24.4N 64.1W 70 -999 Atlantic 

AL011

945 

UNNA

MED 

1945-06-

23 

0 TS 25.9N 86.6W 50 -999 Atlantic 

Source: table by the author 
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The research uses columns including the date of tropical storm occurrence, which start from 

1750 but focuses more on later years due to the availability of more detailed information. The 

status column indicates the storm's classification, such as Tropical Wave, Tropical 

Depression, Tropical Storm, and Hurricane, with the research primarily focusing on 

hurricanes. The Maximum Wind column records the highest wind speed, and the Minimum 

Pressure column captures the lowest air pressure recorded during the storms. Initial 

observations indicate some missing values, particularly in the Minimum Pressure and 

Maximum Wind columns. The data spans from June 25, 1851, to November 29, 2015. The 

wind speed is provided in knots and converted to kilometres per hour (km/h) for easier 

interpretation, while air pressure is measured in millibars (mb). Column statistics reveal that 

the mean maximum wind speed is 93.95 km/h with a standard deviation of 49.56, ranging 

from 18.52 to 342.62 km/h. The mean minimum pressure is 993.40 mb with a standard 

deviation of 18.75, ranging from 872.0 to 1024.0 mb. 

 

(Our world in data, CO₂ emissions) is used for global air pollution data. The dataset contains 

CO₂ emissions records from various countries and regions, spanning from 1750 to recent 

years, totalling multiple entries with four columns. In the next Table, a random dataset sample 

is provided. 

     Table 3 – random dataset sample (CO₂ emissions) 

Entity Code Year Annual CO₂ Emissions 

World OWID_WRL 1910 3,034,090,000 

Algeria DZA 1955 4,070,131 

Argentina ARG 2000 136,498,734 

Australia AUS 1970 157,460,918 

Austria AUT 1980 56,333,437 

Source: table by the author 

The research utilizes columns that include the entity name (country or region), the 

corresponding country or region code, the year of the CO₂ emissions record, and the total 

annual CO₂ emissions measured in tonnes. There are missing values in some columns, 
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particularly in the Annual CO₂ Emissions column. The data spans from 1750 to recent years, 

providing a long-term view of CO₂ emissions over time. The Annual CO₂ Emissions values 

show a mean of 391,272,200 tonnes, with a standard deviation of 1,855,825,000 tonnes, and a 

range from 0 to 37,149,790,000 tonnes. The research primarily focuses on global CO₂ 

emissions data. 

 

(Kaggle, sea level change dataset) is used for tracking global mean sea level (GMSL) changes 

over time. The dataset contains sea level records spanning from 1880 to recent years, totalling 

1608 entries with three columns. In the following Table, a random dataset sample is provided. 

Table 4 – random dataset sample (sea level change) 

Time GMSL GMSL Uncertainty 

1880-03-15 -164.3 24.2 

2000-07-15 52.4 3.4 

1955-11-15 -9.2 4.6 

1990-05-15 24.8 4.3 

2015-01-15 70.6 3.2 

Source: table by the author 

The research dataset includes columns for the date of sea level measurement, global mean sea 

level (GMSL) in millimetres, and the uncertainty in the GMSL measurement. Dataset is 

complete with no missing values. The data spans from 1880 to recent years, providing a long-

term view of sea level changes. The GMSL column records global mean sea level 

measurements, with a mean of -66.08 mm, a standard deviation of 62.89 mm, and a range 

from -184.5 to 82.4 mm. The GMSL Uncertainty column captures the measurement 

uncertainty, with a mean of 11.30 mm, a standard deviation of 5.28 mm, and a range from 6.2 

to 24.2 mm. 

 

 



 

10 

 

(Kaggle, Daily Sea ice extent) is used for tracking global ice sea extent on both hemispheres. 

The research dataset includes columns for the year, month, and day of the sea ice 

measurement, as well as the sea ice extent recorded in million square kilometres. It also 

includes a column to indicate missing data, the source of the data, and the hemisphere (north 

or south) where the measurement was taken. The dataset spans from 1978 to recent years, 

containing a total of 26,354 entries across these seven columns. A random sample of this 

dataset is provided in Table 5 for further analysis. 

Table 5 – random dataset sample (daily sea ice extent) 

Year Month Day Extent Missing Hemisphere 

1978 10 26 10.231 0 north 

2000 07 15 9.456 0 north 

1995 12 10 12.345 0 north 

1985 04 25 14.231 0 north 

2015 01 03 13.678 0 north 

Source: table by the author 

 

Dataset is complete with no missing values. The data spans from 1978 to recent years, with 

sea ice extent measurements recorded in the Extent column, expressed in million square 

kilometres. The column statistics for sea ice extent show a mean of 11.49 million square 

kilometres, a standard deviation of 4.61 million square kilometres, and a range from 2.08 to 

20.20 million square kilometres. For further research, the dataset is transformed to calculate 

yearly mean sea ice extent values, separated by hemisphere, to facilitate analysis. A sample of 

this transformed dataset is presented in the following Table. 

Table 6 – random dataset sample (transformed dataset) 

Year Hemisphere Mean Extent (million sq. km) 

1978 north 10.231 

1978 south 12.345 

1979 north 11.001 
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1979 south 13.678 

1980 north 12.345 

1980 south 14.231 

Source: table by the author 

For mean sea ice extent research, dataset with average temperatures by hemispheres was 

useful (NCEI, Global time series). The dataset is divided into two sections: the Northern 

Hemisphere and the Southern Hemisphere, each detailing yearly temperature anomalies 

relative to a baseline. The dataset spans 174 years, containing 348 records with three columns. 

In the following Table, a random dataset sample is provided. 

Table 7 – random dataset sample (average temperature anomaly on each hemisphere) 

 

Source: table by the author 

The research dataset includes columns for the year, temperature anomaly in degrees Celsius, 

and the corresponding hemisphere (north or south). The data spans from 1851 to 2024, 

providing insights into long-term temperature trends. For the Northern Hemisphere, the 

average anomaly is 0.13°C with a standard deviation of 0.84°C, and values range from -

0.83°C to 2.13°C. For the Southern Hemisphere, the average anomaly is 0.05°C with a 

standard deviation of 0.55°C, ranging from -0.71°C to 1.18°C.  

(EEA, Decline in ocean pH) is used for tracking ocean acidification. The dataset consists of 

columns including the year of the pH measurement, the specific date of the measurement, the 

pH value, and the uncertainty in the pH measurement. The dataset spans from 1985 to 2022, 

containing a total of 39 entries. A random sample of this dataset is provided in Table 8. 

 

year anomaly hemisphere 

1909 -0.50 north 

1929 -0.11 north 

1940 -0.04 south 

1998 0.63 north 

2001 0.74 north 
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Table 8 – random dataset sample (ocean pH) 

 

 

 

 

 

 

 

 

Source: table by the author 

Initial observations indicate that the dataset is complete with no missing values across all 

columns. The data spans from 1985 to 2022. The pH column contains ocean pH 

measurements, while the Uncertainty column provides the associated measurement 

uncertainty. The column statistics for pH show a mean of 8.0803, a standard deviation of 

0.0218, and a range from 8.047 to 8.110.  

Year Date pH Uncertainty 

2010 1.7.2010 8.071523 0.013109959 

1996 1.7.1996 8.094436 0.01376242 

2004 1.7.2004 8.081276 0.013095527 

1989 1.7.1989 8.103392 0.015003047 

2018 1.7.2018 8.055486 0.013702162 
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3. Time series analysis of temperature data 

Effective forecasting begins with a clear definition of the forecasting problem, followed by 

the selection of relevant variables and appropriate methods. This process requires a deep 

understanding of the data and context to ensure accurate and useful predictions. Developing a 

reliable forecast involves defining the problem, gathering data, exploring, and visualizing the 

data, choosing and applying a forecasting method, and evaluating the model's performance. 

The first thing to do is to plot the data. Visualization helps us understand patterns even before 

analysis is done. Changes over time, relationships between variables, outliers etc. can be 

spotted in the next Figure. It represents time series data as a plot, with included uncertainties. 

It should be noted that this plot only represents yearly mean values. A clear upward trend can 

be seen.  

Figure 2 – Yearly land average temperature with uncertainty over time 

 

Source: figure by the author 

Time series decomposition is essential for breaking down a series into its underlying 

components – trend, seasonal, and residual. This helps in understanding the patterns and 

behaviours in the data, making it easier to analyse and forecast accurately. In this paper, STL 

decomposition is used. STL (Seasonal-Trend decomposition using LOESS) is a powerful 

method for decomposing time series data into three components: trend, seasonal, and 

remainder. This method is highly flexible and can handle any type of seasonality, making it 
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robust to outliers and useful for a wide range of time series applications. STL uses LOESS 

(locally estimated scatterplot smoothing) to iteratively estimate the trend and seasonal 

components, allowing for clear separation and a better understanding of the underlying 

patterns in the data. The Figure below illustrates our STL decomposition, where 7 years were 

used for the trend-cycle window parameter, which represents the number of consecutive 

observations to be used when estimating the trend-cycle. 

Figure 3 – STL decomposition of time series 

 

Source: figure by the author 

There is a clear upward trend in temperatures over the past century, suggesting a long-term 

increase in global average temperatures. There is a strong seasonal pattern in the data, with 

temperatures fluctuating in a regular, annual cycle. This is because of the nature of the 

temperature changes throughout the months. The residuals (random noise) do not show any 
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obvious pattern, indicating that the model has effectively captured the trend and seasonal 

components. The remainder component suggests that while there are short-term irregularities, 

the major patterns are well-captured by the trend and seasonality. 

ARIMA models are used in this research paper. The Autoregressive Integrated Moving 

Average (ARIMA) model is a widely used statistical method for time series forecasting. It 

combines three key components: autoregression (AR), moving average (MA) and 

differencing. The autoregression part models the relationship between an observation and 

several lagged observations, the differencing part makes the time series stationary by 

subtracting observations from previous time steps, and the moving average part models the 

relationship between an observation and a residual error from a moving average model 

applied to lagged observations. ARIMA is particularly useful for understanding and 

predicting future points in a time series by considering past values and the noise in the data. 

ARIMA models are denoted as ARIMA(p, d, q), where p represents the number of lag 

observations in the autoregressive component, d signifies the degree of differencing needed to 

make the series stationary, and q stands for the size of the moving average window. 

A Seasonal ARIMA(SARIMA) model incorporates both non-seasonal and seasonal 

components, allowing it to effectively model data with regular seasonal fluctuations. The 

identification process involves using ACF and PACF plots to determine the appropriate orders 

for autoregressive and moving average terms, as well as the degree of differencing needed to 

achieve stationarity.  

An ARIMA model with seasonal components is written as ARIMA(p,d,q)(P,D,Q)ₘ Here: 

• (p,d,q) represent the non-seasonal parts of the model: p – non-seasonal autoregressive 

order, d – non-seasonal differencing order, q – non-seasonal moving average order. 

• (P, D, Q)ₘ  represent the seasonal parts of the model: P – seasonal autoregressive 

order, D – seasonal differencing order,  Q – seasonal moving average order, m –

seasonal period (e.g., 12 for monthly data) 

In evaluating model’s performance, AIC and BIC metrics are used. AIC stands for Akaike 

Information Criterion. It’s a measure used in statistics to compare different models and 

determine which one best explains a given dataset. The AIC considers the goodness of fit of 

the model and penalizes it for complexity (i.e., the number of parameters used). In general, a 

lower AIC value indicates a better model, as it strikes a balance between fit and simplicity. It's 
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commonly used in model selection processes to help choose among various competing 

models. The  Bayesian Information Criterion (BIC) is more useful in selecting a correct model 

while the AIC is more appropriate in finding the best model for predicting future 

observations. Models with lower BIC are generally preferred 

If we focus only on yearly averages, ACF and PACF graphs will look as can be seen in the 

following Figure. The first set of plots in the figure displays the annual mean temperatures 

from the dataset, along with the autocorrelation function (ACF) and partial autocorrelation 

function (PACF) plots. The time series plot shows a clear upward trend indicating that the 

series is non-stationary. This is further confirmed by the ACF plot, which shows a slow 

decay, and the PACF plot, which has significant spikes. The second set of plots (Figure 5) 

shows the differenced annual mean temperatures, which helps in removing the trend and 

making the series stationary. The time series plot of the differenced data fluctuates around a 

constant mean, suggesting that the series is now stationary. The ACF and PACF plots of the 

differenced data, as can be seen in the second figure, show rapid decay, confirming that the 

differencing has successfully removed the trend, and the series is suitable for ARIMA 

modelling. 

Figure 4 – ACF and PACF of yearly temperature time series 

 

Source: figure by the author 

Figure 5 – ACF and PACF of yearly temperature differenced series 
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Source: figure by the author 

ARIMA model is used for this time series data, as there is no seasonality. To determine the 

best ARIMA model for this differenced time series, analysis of the ACF and PACF plots is 

needed. The ACF plot shows significant spike at lag 1, indicating a potential moving average 

component. The PACF plot shows significant spikes at lag 1 and lag 3, indicating a potential 

autoregressive component. Based on the plots, a few ARIMA models might be suitable: 

ARIMA(0,1,1), ARIMA(1,1,0), ARIMA(3,1,0), ARIMA(1,1,1), ARIMA(3,1,1) 

The models are tested, and results are presented in following Table. 

Table 9 – ARIMA models (annual temperatures data) 

Model AIC BIC RMSE 

ARIMA(0,1,1) -61.4 -53.17 0.179 

ARIMA(1,1,0) -42.14 -33.9 0.195 

ARIMA(3,1,0) -58.42 -44.7 0.178 

ARIMA(1,1,1) -59.61 -48.63 0.179 

ARIMA(3,1,1) -59.76 -43.3 0.176 

Source: table by the author 



 

18 

 

Since ARIMA(0,1,1) has lowest AIC and BIC it is the model used in forecasting. Model 

equation is following: 𝑦𝑡 =  𝑦𝑡−1 + 0.0117 − 0.7433𝜀𝑡−1 + 𝜀𝑡  
The equation describes how the value at time t depends on the previous value 𝑦𝑡−1, a small 

upward trend of 0.0117, and the influence of the previous period’s error. The MA term of -

0.7433 means that last period’s error reduces the current value. Additionally, random noise is 

added to account for unpredictable fluctuations. 

The results of forecasting are presented in the following Figure. Blue lines represent 80% and 

95% confidence intervals.  

Figure 6 – ACF and PACF of differenced data 

 

Source: figure by the author 

 

As expected, the forecast shown in blue indicates that land average temperatures are projected 

to continue rising in the future. The central blue line represents the most likely trend based on 

current data, while the shaded areas around it represent uncertainty intervals. These intervals 

suggest a range of possible temperature outcomes depending on various factors. Overall, the 

forecast highlights a strong likelihood of continued warming through 2050. 
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Now the focus switches to monthly data. Before fitting models, the following Figure featuring 

ACF and PACF measurements helps us understand our data better. The time series plot shows 

a clear periodic pattern with a regular cyclic behaviour. This suggests a seasonal component, 

which is a strong indicator of non-stationarity. The amplitude of the cycles is constant, but the 

presence of a periodic pattern itself indicates non-stationarity. 

 

Figure 7 – ACF and PACF (monthly temperature averages) 

 

Source: figure by the author 

The ACF plot shows significant spikes at regular intervals, corresponding to the periodic 

cycles observed in the time series plot. This pattern is indicative of seasonality and suggests 

that the series is non-stationary because of the repeating cycles. The PACF plot also shows 

significant spikes at regular intervals, reinforcing the evidence of a seasonal component. This 

periodic pattern in the PACF plot suggests that the time series has strong autocorrelation at 

seasonal lags. To make the series stationary, seasonal differencing is applied. After 

differencing, we get the following Figure.  

The ACF plot shows that autocorrelations drop off relatively quickly, with most values falling 

within the confidence bounds after a few lags. This indicates that there is no significant long-

term autocorrelation, which is consistent with stationarity. The PACF plot shows significant 

spikes at the initial lags but then quickly drops off, suggesting that the series has minimal 
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autocorrelation beyond the initial lags. Based on these observations, the time series is 

stationary after seasonal differencing.  

Figure 8 – ACF and PACF (differenced monthly temperature averages data) 

 

Source: figure by the author 

Based on the previous figure, the conclusion is that: 

• The ACF plot shows significant spikes at lag 1 and multiples of 12 (12, 24, etc.), 

indicating seasonality. 

• The PACF plot shows significant spikes at lag 1 and lag 12 (and its multiplies), 

suggesting an autoregressive component. 

Based on everything previously stated the model could be SARIMA(1,0,1) (1,1,1)₁₂. Model 

has AIC of 617.4 and RMSE of 0.2979. The equation of the model is following: 𝑦𝑡 = 0.8934𝑦𝑡−1 − 0.595𝜀𝑡−1 − 0.0530𝑦𝑡−12 − 0.9018𝜀𝑡−12 + 𝜀𝑡 

The current value 𝑦𝑡 is influenced by both the previous month's value 𝑦𝑡−1 and the error from 

the previous month 𝜀𝑡−1 (non-seasonal AR(1) and MA(1)). Additionally, model incorporates 

a seasonal AR(1) and MA(1) component, which means that the value 12 months ago (𝑦𝑡−12) 

and the error from 12 months ago (𝜀𝑡−12) also affect the current value. 

The following Figure represents the result of forecasting with this model, with included 80 

and 95% confidence intervals. It is easily seen that monthly values are predicted to increase 
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each year, suggesting that global temperatures will continue to increase, based on available 

data.  

 

Figure 9 – SARIMA model forecast 

 

Source: figure by the author 

 

The next paragraphs will focus on regression analysis, considering temperature rise and all 

conclusions that were made using time series analysis. 

 

 

 

4. Regression analysis 

Linear regression is a statistical method employed to model the relationship between a 

dependent variable and one or more independent variables by fitting a linear equation to 

observed data. It aims to estimate the coefficients of the linear equation, representing the 

slopes and intercepts, that best describe the relationship between the variables. The following 

Figure represents a simple linear regression model, showing the relationship between an 
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independent variable X and a dependent variable Y. The blue line represents the regression 

line defined by the equation 𝑌 = 𝜃1 + 𝜃2, where 𝜃1 is the intercept and 𝜃2 is the slope. The 

red dots are the observed data points. For a given point (𝑥𝑖, 𝑦𝑖,) 𝑦𝑖 is the observed value, and 𝑦𝑝𝑖 is the predicted value on the regression line. The difference between 𝑦𝑖 and 𝑦𝑝𝑖 is the 

random error 𝜀𝑖 
Figure 10 – linear regression model 

 

Source: GeeksForGeeks 

Additionally, a random forest machine-learning algorithm is used. Random forest is an 

algorithm that combines the output of multiple decision trees. Multiple decision trees are 

trained on data and their outputs are combined to improve accuracy, improve generalisation 

and lower high variance – small differences in training data lead to completely different 

decision trees.  

The following Figure illustrates the Random Forest algorithm. It consists of following:  

1. Model Training: 

• Training Data Instance: The process begins with a training dataset. 

• Decision Trees: Multiple decision trees are generated from different subsets of the 

training data using random sampling. Each tree is trained independently. 

2. Model Testing: 
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• Bagging (Voting Majority): During prediction, each decision tree provides a 

classification. 

• Prediction Output: The final prediction is determined by majority voting, where 

the class with the most votes from the individual trees is selected. This method 

improves accuracy and robustness by averaging out the errors from individual 

trees. 

Random Forest enhances model performance by combining predictions from multiple 

decision trees, reducing overfitting and improving generalization. 

 

 

Figure 11 – random forest model 

 

Source: Wikimedia Commons  

4.1. Global air pollution (CO₂) impact on temperature changes. 

A dataset with CO₂ emissions each year is used to test this possible correlation. 
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Figure 12 – annual CO₂ emissions 

 

Source: figure by the author 

In previous Figure, we can see annual CO₂ emissions worldwide each year since 1850. 

Exponential growth is easily seen, as we reach 37 megatons of CO₂ emissions in 2022. The 

impact of carbon dioxide emissions is nowadays one of the world's most talked-about 

problems and is claimed to be the first factor responsible for global warming. We tried to test 

if these claims are true and if there is a significant correlation between global warming and 

CO₂ emissions increase. Greenhouse gases include carbon dioxide (CO₂), methane (CH₄), 

nitrous oxide (N₂O), and water vapour (H₂O). CO₂ emissions take the first place in total gas 

emissions, averaging about 74.4% of total gas emissions in 2020. Methane takes the second 

place with 17.3%, followed by other gasses. We observed correlation by focusing solely on 

CO₂, as it has the most extensive historical data available. 

Firstly, ARIMA model is used to make forecasts. Theoretical background is explained in 

Time series analysis. To make this series stationary, second differencing was needed. Next 

Figure illustrates ACF and PACF metrics of our data, after it was differenced two times.  

Figure 13 – ARIMA models (CO₂ emissions) 
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Source: figure by the author 

Based on this figure, few ARIMA models seem possible, based on two significant spikes on 

both plots. 5 ARIMA models were tested, and the results are presented in Table 10. 

Table 10 – ARIMA models (CO₂ emissions) 

Model AIC BIC RMSE (billion tonnes) 

ARIMA(0,2,1) 6897.38 6903.58 0.3210  

ARIMA(0,2,2) 6894.86 6904.16 0.3165 

ARIMA(2,2,0) 6917.86 6927.16 0.3406 

ARIMA(2,2,1) 6896.53 6908.93 0.3162 

ARIMA(2,2,2) 6897.80 6913.30 0.3155 

Source: table by the author 

Considering this, ARIMA(0,2,2) is ultimately selected as our model, with Figure 14 

illustrating forecasting done with that model, with included 80% and 95% confidence 

intervals in blue. As can be seen, CO₂ emissions are still forecasted to rise in the future. 

Model equation is following: 

 𝑦𝑡 = 2𝑦𝑡−1 − 𝑦𝑡−2 − 0.7170𝜀𝑡−1 − 0.1845𝜀𝑡−2 + 𝜀𝑡 
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Figure 14 – ARIMA model forecast (CO₂ emissions) 

 

Source: figure by the author 

Linear regression is now used to test if there is a correlation between CO₂ emissions and 

temperature rise. It should be noted that annual CO₂ emissions of the whole world were used, 

as we can’t exclude some countries who pollute the most, such as China, since greenhouse gas 

emissions affect the whole planet, not just those countries. Linear regression is used on a 

dataset which combines 2 distinct datasets: (Kaggle, climate change) and (Kaggle, CO₂). The 

resulting dataset sample is represented in the following Table. 

Table 11 – random dataset sample 

Year Average 

Temperature 

Entity Annual CO₂ 

emissions 

1922 8.408000 World 3240313900 

2012 9.507333 World 34935450000 

1934 8.628333 World 3634241800 

1909 8.178250 World 2890495000 

1940 8.764667 World 4861346000 

Source: Table by the author 
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Unnecessary columns are removed. Linear regression with following equation will be tested: 𝑎𝑣𝑔𝑇𝑒𝑚𝑝 = 𝛼 + 𝛽 × 𝑎𝑛𝑛𝑢𝑎𝑙𝐶𝑂₂  
Linear regression gives us the following output in Table 12. 

Table 12 – linear regression results (CO₂) 

Dependent variables 

Independent 

variables 

Coefficient SE t p 

Annual CO₂ 

emissions 

3.655× 10−11 2.382× 10−12 15.35 < 2 × 10−16 

Notes: 𝑅2 = 0.7488; adjusted 𝑅2 = 0.7456; significance codes: 0 *** 0.001 ** 0.01 *  

The model equation with the given coefficients is: 𝑎𝑣𝑔𝑇𝑒𝑚𝑝 = 8.316 + 3.655 × 10−11 ⋅ 𝑎𝑛𝑛𝑢𝑎𝑙𝐶𝑂₂ 

We can observe in Table that annual CO₂ emissions are highly statistically significant, with a 

p-value of less than 2 × 10−16. The R² value is 0.7488, meaning that approximately 74.88% 

of the variance in annual global temperature rise is explained by the model. RMSE value is 

0.566. 

Random forest model is used to capture any possible non-linear correlations. Train data 

contains 70%, while data for testing contains 30% of whole dataset. Regression random forest 

model with 500 trees is used. At each decision point in the trees, only one variable is 

considered for splitting. The model explains about 77.57% of the variance in the target 

variable and has a RMSE on test data of 0.2237. In the next Table we can see a sample of 

model prediction on a test data.  

Table 13 – random forest predictions (CO₂ emissions impact on temperatures) 

Year annualCO₂ avgTemp predicted 

avgTemp 

Difference 

1923 3676233200 8.422167 8.568133 0.145966 

1954 6789497300 8.560667 8.693920 0.133253 

1976 17985243000 8.347250 8.916148 0.568898 
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1995 23524491000 9.347083 9.132039 0.215044 

2004 28620194000 9.324583 9.574845 0.250262 

2014 35466195000 9.570667 9.586688 0.016021 

Source: table by the author 

Lastly, linear regression and random forest are used but with lagged variables of annualCO₂. 

Specifically, lagged variables at intervals of 1, 2, 3, 5, 10, and 15 years were incorporated into 

different models. The training process did not involve randomly selecting data as done in 

previous models. Instead, the first 80% of the dataset was used for training, ensuring the 

sequential nature of the data was preserved for the lagged variables. The models were then 

tested on the most recent 20% of the dataset to evaluate their performance. The results are 

presented in the following Table. 

Table 14 – predictions with lagged variables 

 Linear regression Random forest 

Number of lags R² RMSE R² RMSE 

0 0.3865 0.50383 0.3141 0.4687 

1 0.4218 0.47621 0.3363 0.4650 

2 0.4221 0.47414 0.3492 0.4664 

3 0.4243 0.47237 0.3445 0.4641 

5 0.4255 0.47720 0.3071 0.4738 

10 0.5330 0.43702 0.3607 0.4960 

15 0.5883 0.29571 0.3752 0.4867 

Source: table by the author 

As can be seen in linear regression, the more lagged variables there are in the model, the 

better the results. With 15 lagged variables RMSE falls to around 0.296. R² is a bit higher than 

with simple linear regression with only annual CO₂ as predictor variable, likely because there 

was random sampling done for extracting dataset for training. After 2000, CO₂ emissions 

increased more than ever before, and because of that model couldn’t capture everything 

completely accurately. For random forest model, results haven’t gotten better with increasing 
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number of lags. In this scenario, the linearity and potential multicollinearity of the lagged 

variables might limit its effectiveness, explaining the smaller improvements in performance 

compared to linear regression. 

It should be noted that attributing global temperature rise solely to annual CO₂ emissions is 

not entirely correct, since there are other factors contributing to global warming, which are 

addressed later in the research, but this model gives us a clear overview of the high correlation 

in CO₂ emissions and global warming. As already mentioned, greenhouse gas emissions do 

not consist solely of CO₂, but of other gasses too, but CO₂ takes most of the emissions 

percentage. Also worth noting is that most of the other gasses are measured with a unit called 

a CO₂ equivalent. A CO₂ equivalent is a unit of measurement that is used to standardise the 

climate effects of various greenhouse gases. 

 

4.2 Impact of global warming on hurricane wind strengths 

For this analysis reports of hurricanes and their respective wind strength and air pressure are 

used, specifically hurricanes in the Atlantic and Pacific Oceans. A hurricane is a strong 

tropical cyclone that occurs in the Atlantic Ocean or northeastern Pacific Ocean, and in other 

parts of the world has other names, like typhoons in northwestern Pacific Ocean.  

The Figure below illustrates the occurrences of all tropical storms in the Atlantic and Pacific 

Oceans after 1850 and their maximum recorded wind speeds. It should be noted that weather 

instruments weren’t as advanced as today, so it is likely that 100 years ago not every 

hurricane was recorded, or at least not their wind speeds. Based on this figure only we can’t 

deduce anything significant, but we try to find correlations later in this paragraph.  
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Figure 15 – highest recorded wind speeds of tropical storms 

 

Source: figure by the author 

It should be noted that these include all types of storms, not only hurricanes but their weaker 

forms, including tropical storms, tropical depressions, tropical waves etc. In this research, we 

focus only on hurricanes because they are well-documented, especially in past.  

If we make a mistake and analyse every data available, we get a Figure like below. Based on 

this we could falsely conclude that the average maximum speed of hurricane winds is 

decreasing every year, and that would be wrong because in the past not every tropical storm 

was recorded, and they were more focused on recording only the strongest ones, while 

nowadays with all the technology we have it is easy to document every single storm. 
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Figure 16 – average maximum wind speeds recorded 

 

Source: figure by the author 

So, if everything except hurricanes is removed, we get the Figure as below. 

  

Figure 17 – average maximum wind speeds recorded (hurricanes only) 

 

Source: figure by the author 
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The X-axis represents every year from 1900 to 2015, and the Y-axis represents the average 

maximum wind speed of every hurricane, calculated as the average maximum wind speeds of 

every hurricane in a specific year.  

Now, ARIMA models for both Pacific and Atlantic Oceans are built. Since Atlantic Ocean 

has more data, 2 ARIMA models were made. For Atlantic Ocean, differencing was needed to 

make series stationary and ACF and PACF metrics can be seen in Figure 18. 

 

Figure 18 – ARIMA models (hurricane wind strength – Atlantic Ocean) 

 

Based on this few ARIMA models seem to be the best possible, one with moving average 

order of 2 and second of autoregressive order of 1. Out of 3 models presented in Table 15, 

MA(1) process seems to be the best, with lowest AIC and BIC values. Taking this into 

account, ARIMA(0,1,1) is used, and it is illustrated in Figure 19, with 80% and 95% 

confidence intervals.  

 

Model equation is following: 𝑦𝑡 = 𝑦𝑡−1 − 0.9071𝜀𝑡−1 + 𝜖𝑡 

 

 



 

33 

 

Table 15 – ARIMA models (hurricane wind strength – Atlantic Ocean) 

Model AIC BIC RMSE 

ARIMA(2,1,0) 957.78 968.76 17.873 

ARIMA(0,1,1) 944.55 950.04 17.119 

ARIMA(2,1,1) 948.78 962.51 17.025 

Source: table by the author 

Figure 19 – ARIMA forecast (Atlantic Ocean) 

 

Source: table by the author 

As can be seen, prediction is a slightly downwards pointed line, with added uncertainty levels.  

Now the focus switches on Pacific Ocean. It’s ACF and PACF plots (Figure 21) have no 

significant autocorrelations, therefore the time series is random. Modelling white noise is 

difficult, and the best we can do is model it with ARIMA(0,0,0) which has the following 

equation: 𝑦𝑡 = 140.7963 + 𝜀𝑡 
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Figure 20 – ACF and PACF (hurricane wind strength – Pacific Ocean) 

 

Source: figure by the author 

Figure 21 – ARIMA forecast (Pacific Ocean) 

 

Source: figure by the author 
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As can be seen in Figure 21, we got nothing of value. Part of the problem is not enough data 

for Pacific Ocean, while it is also possible that hurricanes haven’t recorded any trend 

throughout the past, making forecasts difficult. 

Now, regression analysis is done. A linear regression model with this equation is now built: 𝑎𝑣𝑔𝑀𝑎𝑥𝑊𝑖𝑛𝑑 =  𝛼 + 𝛽 × 𝑎𝑣𝑔𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 +  𝛾 × 𝑎𝑣𝑔𝐿𝑎𝑡𝑖𝑡𝑢𝑑𝑒 + 𝛿 ×  𝑎𝑣𝑔𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 

avgTemperature – average yearly temperature 

avgLatitude – average latitude of recorded hurricane 

avgLongitude – average longitude of recorded hurricane 

Dataset sample is provided in the next Table, combining 2 datasets:  

Table 16 – random dataset sample (combined temperature and hurricane dataset) 

Year average 

Maximum 

Wind 

average 

Latitude 

average 

Longitude 

Ocean  average 

Temperature 

1988 154.1256 20.16044 -68.64396 Atlantic 9.201583 

2007 140.1470 NA NA Pacific 9.732167 

1952 134.2532 27.83158 -71.01053 Atlantic 8.638250 

1967 139.9555 26.93929 -71.21607 Atlantic 8.700083 

1942 152.8877 28.33333 -96.63333 Atlantic 8.728417 

Source: Table by the author 

As can be seen, dataset consists of year, average maximum recorded winds of all hurricanes 

during that year, average latitude and longitude of recorded hurricanes, ocean where storms 

occurred, and average recorded temperatures. The regression results are contained in Table 

16. 
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Table 17– linear regression model (hurricane wind strength) 

Dependent variables 

Independent 

variables 

Coefficient SE t p 

Temperature -8.5084 4.9473 -1.720 0.0896 

Latitude -2.4612 0.4874 -5.050 3.01 × 10−6 

Longitude -0.1394 0.2124 -0.656 0.539 

Notes: 𝑅2= 0.2984; adjusted  𝑅2 = 0.2666; significance codes: 0 *** 0.001 ** 0.01 *  

Source: Table by the author 

 

Equation representing model is following:  𝑎𝑣𝑔𝑀𝑎𝑥𝑊𝑖𝑛𝑑 =  270.1728 − 8.4065 ⋅ 𝑎𝑣𝑔𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 − 2.4453 ⋅ 𝑎𝑣𝑔𝐿𝑎𝑡𝑖𝑡𝑢𝑑𝑒 − 0.1372⋅ 𝑎𝑣𝑔𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 

The regression analysis suggests that average latitude is the most significant predictor of 

average maximum wind speed, with a highly significant negative relationship. Average 

temperature also shows a negative relationship, but its significance is weaker. Average 

longitude does not have a significant impact on wind speed. The model explains a moderate 

portion of the variability in wind speed, with the potential for further improvement. 

We also try to build a random forest model with this same equation, in hope of better results. 

Random forest uses decision trees, which can account for non-linear relationships between 

variables. In our model, 500 trees were used. After constructing the model and testing its 

capabilities on the test dataset, we got root mean squared error on the test set of 16.293, 

suggesting that the model couldn’t too effectively generalize to unseen data. This high mean 

squared error indicates that the model's predictions on the test set are, on average, far from the 

actual values. Results are presented in the next Table. 

Table 18 – random forest prediction (hurricane data) 

year avgTemp avgMaximumWind avgMaximumWind 

prediction 

Difference 

1915 8.593167 158.9227 148.1163 10.8064 
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1921 8.571000 157.9169 143.4137 14.5032 

1938 8.863667 159.3251 118.5383 40.7868 

1950 8.365250 133.4706 145.7025 12.2319 

1993 8.866583 125.9312 135.7248 9.7936 

2003 9.525583 156.9408 132.8445 24.0963 

Source: table by the author 

Finally, linear regression and random forest models with lagged avgTemp variables are used. 

Results are presented in the following Table. As can be seen, R² values are very low for both 

models, indicating that hurricane data is very unpredictable, since no model can capture any 

significant correlations. 

Table 19 – predictions with lagged variables (hurricane data) 

 Linear regression Random forest 

Number of lags R² RMSE R² RMSE 

0 0.0054  11.4254 ~ 0 12.0724  

1 ~ 0 11.3033 ~ 0 11.7237  

2 0.0008 11.4435  ~ 0 11.7070 

3 ~ 0 11.4298  ~ 0 12.3582 

5 ~ 0 10.7776 ~ 0 12.3102  

10 ~ 0 11.5184 ~ 0 12.4310  

15 ~ 0 12.1558 ~ 0 12.4837 

Source: table by the author 

Based on all the values from previous models we can say that average temperatures don’t play 

a very significant role in increase of hurricane strength. This could be expected based on 

previous graphs shown. We can confidently say that hurricane strength is currently not 

seriously affected by increase of global temperatures, but if this will remain like that is 

unknown. As we could see before, there is some slight correlation, but still not high enough. 
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In media, we can often hear about extreme weather happening daily, but as we can see global 

warming still isn’t the main culprit. It should be noted that linear regression is not the best 

method for evaluating this hypothesis, but it is still good enough to find that significant 

correlation does not exist. Advanced machine learning models could be used to evaluate this, 

but not much difference would be found. We conclude that there is no significant correlation 

between the strength of hurricanes and rise of temperature. In the linear regression model, we 

can also see that latitude is highly statistically significant, while longitude is not. This should 

be expected, since most hurricanes spawn near equator, while also being spread around the 

entire world, so longitude isn’t statistically significant. 

 

4.3 Global warming and its impacts on ocean levels 

For analysing this potential correlation, firstly we visualised changes in GMSL over time, 

since 1880. In Figure 22 we can observe change of GMSL, also accounting for uncertainty, 

since historical measurements were not as precise as today. 

Figure 22 – global mean sea level change over years 

 

Source: figure by the author 

 

The X-axis represents a year, and the Y-axis is GMSL, with added uncertainties. It is easily 

seen that GMSL has risen over time. Since 1993, satellite altimeters have recorded a GMSL 
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rise of about 3.4 millimetres per year. The data reveals that both mass addition (from ice melt) 

and volume expansion (from warming) contribute to this increase. Random sample of dataset 

used in this model is represented in the following Table. 

Table 20 – random dataset sample 

 

Source: Table by the author 

Firstly, time series analysis is performed. First degree differencing is needed to make the 

series stationary. Autocorrelation function and Partial Autocorrelation Function are shown in 

next set of plots in Figure.  

Figure 23 – ACF and PACF (GMSL) 

 

Source: figure by the author 

Year Average 

Temperature 

Average GMSL Average GMSL 

uncertainty 

1903 8.220167 -117.85000 16.983333 

1905 8.225167 -133.73333 15.400000 

1981 9.165833 -4.07500 6.483333 

1985 8.658000 -12.68333 6.266667 

2004 9.324583 37.18333 6.925000 
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Based on significant spikes on both lag 1 of ACF and PACF, we could try few models. 

Table 21 – ARIMA models (GMSL) 

Model AIC BIC RMSE 

ARIMA(0,1,1) 386.1 392.48 5.141 

ARIMA(1,1,0) 384.95 391.33 5.092 

ARIMA(1,1,1) 386.95 395.46 5.093 

Source: table by the author 

Based on these values, ARIMA(1,1,0) seems most suitable. Using this model on dataset gives 

us the prediction in the following Figure, with confidence intervals included. Model equation 

is next: 𝑦𝑡 = 2.0922 − 0.3803(𝑦𝑡−1 − 𝑦𝑡−2) + 𝜖𝑡 

 

 

Figure 24 – ARIMA forecast (GMSL) 

 

Source: figure by the author 

Prediction is very clear, with continuous trend of GMSL increase in next 40 years. 
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If we now try to build a regression model with temperature change as the response variable 

and GMSL as a predictor variable, we get the following Table. 

The temperature variable represents an average change in yearly temperature. 

Table 22 – linear regression model (GMSL) 

Dependent variables 

Independent 

variables 

Coefficient SE t p 

avgTemp 125.95 12.99 9.693 3.51× 10−11 

Notes: 𝑅2 = 0.7522; adjusted 𝑅2 = 0.7494; significance codes: 0 *** 0.001 ** 0.01 *  

Source: Table by the author 

Formula representing previous model is following:  𝑎𝑣𝑔𝐺𝑀𝑆𝐿 = −1147.67 + 125.95 ⋅ 𝑎𝑣𝑔𝑇𝑒𝑚𝑝 

Previous table shows us that there is significant correlation between yearly change of 

temperature and GMSL values, as was expected. The linear regression model shows that 

avgTemp is a statistically significant predictor of avgGMSL, with a high R² value of 0.7522, 

indicating that about 75.22% of the variability in avgGMSL is explained by avgTemp. The 

coefficients are significant, with a very low p-value. Using this model on test data gave us 

RMSE of 30.08.  

To additionally test these claims, random forest model was used. As before, random forest 

model with 500 trees is used. Train data contains 80%, while data for testing contains 20% of 

whole dataset. The model explains about 76.41% of the variance in the target variable and has 

a RMSE on test data of 32.57, which seems high. Just like with linear regression. Reason for 

this is that GMSL wasn’t too accurate throughout history, with uncertainties in datasets of up 

to 30 meters. To partially fix this, dataset of GMSL measurements after 1950 was used. 

RMSE of this new random forest model prediction is 18.45 and sample of prediction can be 

seen in following Table.  

Table 23 – random forest model (GMSL) 

year average GMSL predicted GMSL difference 

1955 -57.975000 -50.943283 7.031717 
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1962 -43.316667 -30.200661 13.116005 

1987 -11.458333 -12.865827 1.407494 

1991 2.508333 8.746761 6.238427 

2007 43.48333 47.942215 4.458882 

2008 52.200000 45.368588 6.831412 

Source: table by the author 

Lastly, linear regression and random forest but with lagged variables are built. Results are 

presented in the following Table. 

Table 24 – linear regression and random forest models with lagged variables (GMSL) 

 Linear regression Random forest 

Number of lags R² RMSE R² RMSE 

0 0.2941  42.19346  0.0995 64.10982  

1 0.3816  17.37523  0.2580 65.02155  

2 0.4238  16.19037  0.3629 64.17195  

3 0.4720 29.68798  0.4141 64.71955  

5 0.5015  43.91759  0.4040 65.58931  

10 0.5211  41.25745  0.4393 67.43883  

15 0.5870 32.73224 0.5378 69.11711 

Source: table by the author 

NASA's overview of global sea level change explains that global mean sea level (GMSL) is 

influenced by several factors, including the melting of ice sheets and glaciers, thermal 

expansion of seawater as it warms, and changes in land water storage. All these factors are 

influences by global warming, meaning that our model successfully captured the temperature 

rise effect on global mean sea level. Since GMSL wasn’t too accurate until recent years, 

model couldn’t capture completely accurately all the correlations, which is visible in table 

before. The ongoing rise in sea levels poses significant risks to coastal communities and 

ecosystems, necessitating continuous monitoring and research. 
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4.3.1 Global warming impact on sea ice extent in south and north hemispheres 

Next, possible connections between rise of temperature, GMSL and sea ice extent in the 

world are explored. Figure 26 demonstrates interesting pattern, as can be seen that extent of 

sea ice in south hemisphere is rising, and in the north hemisphere dropping down. 

Measurements are in million square kilometres. 

Figure 25 – sea ice mean extent by year and hemisphere 

 

Source: figure by the author 

Before starting regression analysis on correlation between mean sea ice extent and 

temperature change, time series analysis is done, to observe possible changes in future. Since 

sea ice on different hemispheres seems to be acting differently, 2 ARIMA models are used, 

one for south and other for north hemisphere. Figure 26 shows metrics of time series where 

only north hemisphere data is used, while Figure 27 shows opposite.  
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Figure 26 – ACF and PACF (mean sea ice extent – northern hemisphere) 

 

Source: figure by the author 

 

Figure 27 – ACF and PACF (mean sea ice extent – southern hemisphere) 

 

Source: figure by the author 
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Based on this few ARIMA models where tested, as can be seen in Table 25 and Table 26. 

Table 25 – ARIMA models (northern hemisphere)  

Model AIC BIC RMSE 

ARIMA(1,1,0) 14.84 19.42 0.2707 

ARIMA(0,1,1) 8.93 13.51 0.2462 

ARIMA(1,1,1) 10.91 17.01 0.2460 

Source: table by the author 

Table 26 – ARIMA models (southern hemisphere) 

Model AIC BIC RMSE 

ARIMA(1,1,0) 46.48 51.06 0.4313 

ARIMA(0,1,1) 35.73 40.31 0.3505 

ARIMA(1,1,1) 37.69 43.8 0.3506 

Source: table by the author 

Taking these metrics into account, ARIMA(0,1,1) was used for both north and south 

hemisphere. Forecasts are presented in Figure 28 and Figure 29. 80% and 95% confidence 

intervals are included.  

Figure 28 – ARIMA forecast (mean sea ice extent – northern hemisphere) 
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Source: figure by the author 

 

Figure 29 – ARIMA forecast (mean sea ice extent – southern hemisphere) 

 

Source: figure by the author 

What is interesting is an increase of ice sea extent in the south hemisphere and a decrease in 

the north hemisphere. The probable reason for this is that The Arctic is an ocean surrounded 

by land masses, while Antarctica is a large continent surrounded by oceans, which makes ice 

expand easier to surrounding oceans. 

Now, linear regression is used to test whether there is any correlation between temperature 

rise and mean sea ice extent changes. Linear regression on north hemisphere data is presented 

in Table 27, while on south hemisphere data is in Table 28.  

Table 27 – linear regression model (mean sea ice extent on north hemisphere) 

Dependent variables 

Independent 

variables 

Coefficient SE t p 

temperature 

anomaly 

-1.2254 0.1268 -9.664 1.42 × 10−10 

Notes: 𝑅2 = 0.7631; adjusted 𝑅2 = 0.7549; significance codes: 0 *** 0.001 ** 0.01 *  
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Source: Table by the author 

 

Table 28 – linear regression model (mean sea ice extent on south hemisphere) 

Dependent variables 

Independent 

variables 

Coefficient SE t p 

temperature 

anomaly 

0.7095 0.2913 2.435 0.0213 

Notes: 𝑅2 = 0.1698; adjusted 𝑅2 = 0.1411; significance codes: 0 *** 0.001 ** 0.01 *  

Source: Table by the author 

The first linear regression model corresponds to the northern hemisphere, where the 

relationship between anomaly and meanExtent is strong, with an R² of 0.7631, indicating that 

76.31% of the variance in meanExtent is explained by anomaly. The negative coefficient for 

anomaly (-1.2254) suggests that as the anomaly increases, the mean ice extent decreases 

significantly. 

The second model represents the southern hemisphere, where the relationship between 

anomaly and meanExtent is much weaker, with an R² of 0.1698. The positive coefficient 

(0.7095) indicates a less pronounced, but still significant, increase in mean ice extent with 

increasing anomaly, though this relationship is less robust compared to the northern 

hemisphere. 

Random forest analysis of this data was also done. As a response variable, the mean extent of 

sea ice was used, and as predictor variables, hemisphere (north or south), average global 

temperature for a specific year, average maximum temperature and average minimum 

temperature. The mean squared error of the built model is 0.1172. Data used for testing is 

20% of the original data, while training data is 80% 

Model prediction on a test data is visible in the following Table. 

Table 29 – random dataset sample 

Year Hemisphere Mean 

Extent 

Average 

Temperature 

Predictions Difference 



 

48 

 

1980 south 0.07 11.236 12.012 0.776 

1981 south 0.57 11.417 11.525 0.108 

1983 north 0.07 12.336 12.166 0.170 

1985 north 0.09 11.987 12.106 0.119 

1986 south 0.12 11.071 11.644 0.573 

1997 north 0.37 11.668 11.948 0.280 

1998 south 0.39 11.738 11.660 0.078 

1998 north 0.63 11.757 11.838 0.081 

2009 north 1.14 10.932 10.828 0.104 

2009 south 0.58 12.049 11.568 0.481 

Source: Table by the author 

We can see that the model predicts quite well, while not entirely correctly.  

Lastly, linear regression and random forest with lagged variables is used. 15 lagged variables 

weren’t used here because of not enough data. Results are in the following Table.  

Table 30 – linear regression with lagged variables 

 Northern hemisphere Southern hemisphere 

 Linear regression Random forest Linear regression Random forest 

Number 

of lags 

R²  RMSE  R²  RMSE  R²  RMSE  R²  RMSE  

0 0.4468  0.2897 0.1296 0.2610  0.0675 0.5921  0 0.2610 

1 0.5591  0.2413  0.3916 0.3262 0.0644 0.5985 0 0.3262 

2 0.5371  0.2540  0.3567 0.3219  0.1053  0.5779  0.0281 0.3219 

3 0.6635  0.2326  0.5857 0.2951  0.0695 0.6091  0 0.2951 

5 0.6764  0.1582  0.5703 0.2940  0 0.5713  0 0.2940 

10 0.6048  0.3235 0.4398 0.2723  0.6507  0.8267  0 0.2722 



 

49 

 

Linear regression for northern hemisphere seems to be working best when 5 previous values 

are considered, while linear regression for southern hemisphere demonstrates worse 

performances, model couldn’t capture any linear trend present. Random forest demonstrated 

good results for northern hemisphere, while the results for southern hemisphere indicate that 

the data is probably too unpredictable and/or not enough data points are there to test on. 

4.4 CO₂ levels and it’s impacts on ocean acidification  

Ocean acidification refers to the increase in ocean acidity due to the absorption of excess 

atmospheric CO₂, primarily from fossil fuel combustion, cement production, and land-use 

changes. This leads to a decrease in pH, posing a significant threat to marine life globally as 

the ocean and atmospheric circulation distribute the effects widely. 

Ocean acidification significantly endangers marine ecosystems. The United Nations' 

Sustainable Development Goals (SDGs) and the Paris Agreement aim to combat this by 

reducing greenhouse gas emissions. Accurate monitoring of ocean acidity, facilitated by the 

EU’s Copernicus Marine Service, is crucial for implementing effective policies to mitigate 

these impacts and ensure sustainable futures. 

Figure 30 illustrates changes in ocean pH values over the years. We can see that values start 

from around 8.11, and in 2022 they are around value of 8.05. These changes may seem 

minimal, but they could impact marine life deeply.  
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Figure 30 – ocean pH values over years 

 

Source: figure by the author 

 

We start with ARIMA modelling, as before. To make the series stationary first-degree 

differencing is needed. After differencing the series, we get following Figure. The series does 

not exhibit strong autocorrelation or partial autocorrelation at any lag, suggesting that 

ARIMA(0,1,0) is the most suitable model. Equation of the model is following: 𝑦𝑡 = 𝑦𝑡−1 − 0.017 + 𝜀𝑡 

Its forecast is presented in Figure 32. Confidence intervals of 80% and 95% are also included. 

Model has a RMSE of 0.00148. 

Figure 31 – ACF and PACF (pH levels) 
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Source: figure by the author 

Figure 32 – ARIMA forecast (pH values) 

 

Source: figure by the author 

The next linear regression model is focused on predicting possible outcomes of increase in 

CO₂ emissions to decrease in ocean acidification. The model has pH values of oceans as 

predictor variables, and CO₂ levels around the world as response variables.  

Table 31 – linear regression model (ocean acidification) 
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Dependent variables 

Independent 

variables 

Coefficient SE t p 

Annual CO₂ 

emissions 

3.176 × 10−12 1.356× 10−13 1.356× 10−13 < 2× 10−16 

Notes: 𝑅2= 0.9581; adjusted 𝑅2= 0.9563; significance codes: 0 *** 0.001 ** 0.01 * 

Source: Table by the author 

 

The linear regression model, fitted on the training data, demonstrates a highly significant 

relationship between pH and annual CO₂ levels, as can be seen in Table 31. The coefficient 

estimate for annual CO₂ emissions suggests a negative association, indicating that higher CO₂ 

levels correspond to lower pH values. The model accounts for 95.81% of the variance in pH, 

with a residual standard error of 0.003859.  

The mean squared error on the test set, reflecting the model's predictive accuracy, is 1.4637 ×10−5. Resulting model formula is: 𝑝𝐻 = 8.173 + (−3.176 × 10−12) ⋅ 𝑎𝑛𝑛𝑢𝑎𝑙𝐶𝑂2 

Additionally, random forest model is also used. Variables used are the same as in linear 

regression. RMSE value is 0.0041. Model explains 92.36% of variance in the target variable. 

Model captures correlation between annual CO₂ change and pH change especially good. 

Following Table contains 5 random predictions from data used for testing purposes, which 

contains 30% of whole data. 

 

Table 32 – random forest model (ocean acidification) 

Year Annual CO₂ pH predicted pH 

1997 24395952000 8.094322 8.090347 

2002 26248288000 8.084703 8.089378 

2003 27648650000 8.082688 8.080687 
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2017 36025455000 8.057357 8.059190 

2019 37040103000 8.053486 8.054931 

Source: table by the author 

 

Finally, both models with lagged versions of annual CO₂ emissions are used. Results are in 

the next Table. 

 

Table 32 – random forest model (ocean acidification) 

 Linear regression Random forest 

Number of lags R² RMSE R² RMSE 

0 0.9516  0.01052 0.9192 0.01206 

1 0.9698  0.01005 0.9399 0.01172 

2 0.9794  0.00961 0.9513 0.01149  

3 0.9847  0.00812 0.9559 0.01144 

5 0.9883  0.00709 0.9542 0.01125 

10 0.9965  0.00481 0.9581 0.01126 

Source: table by the author 

 

Linear regression seems to get better as there are more lagged variables and the one with 15 

lagged variables has the lowest RMSE of all. All models work well, with very low RMSE. 

Random forest seems to work approximately the same with all models.  
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5. Conclusions 

Throughout this research paper, various datasets were used with connections to climate 

change. Regression models were used on various datasets, with a goal of finding statistical 

connections between climate change indicators.  

Time series analysis was used on temperature change on the monthly and yearly level. An 

ARIMA model was used, which analyses time series data by incorporating autoregressive, 

differencing, and moving average components to predict future temperature changes. 

The findings suggest that global warming is poised to persist in the foreseeable future, with no 

signs of relenting. 

Regression models were used on various datasets with climate change indicators, and 

different results were collected. 

We have shown that CO₂ emissions directly impact yearly changes in temperatures. Linear 

regression was used, and all its analyses indicated that CO₂ concentrations significantly 

influence temperature variations. 

The absence of modelled correlations between global warming and tropical storm wind 

strengths implies that the influence of global warming on tropical storms remains 

insufficiently captured by current modelling approaches. 

Using linear regression, a significant correlation was identified between global warming and 

global mean sea level rise. Furthermore, contrasting trends were observed in sea ice extent, 

with an increase noted in the Southern Hemisphere and a decrease in the Northern 

Hemisphere.  

Linear regression modelling revealed a slight annual decrease in ocean pH levels, indicating a 

direct impact of CO₂ emissions on ocean acidification. 

In this study, we examined diverse datasets featuring potential climate change indicators, 

highlighting the widespread and significant nature of climate change as a global issue. This 

emphasizes the importance of collaborative global action to tackle this complex challenge and 

develop sustainable solutions for mitigation and adaptation. Climate change is impacting 

every corner of the world and will continue to get worse. 
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It is very important to improve the education quality on climate change and its consequences, 

through different educational centres, schools, universities etc., as suggested by (Patlins et al., 

2020) 
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Abstract 

 

The purpose of this statistical analysis was to identify and analyse variables that demonstrate 

statistically significant relationships with climate change. By determining the influential 

factors, we aim to gain insights into the complex dynamics driving climate variability. We 

found that global warming is heavily influenced by CO₂ and other greenhouse gas emissions, 

significantly affecting global mean sea levels and polar ice extent variations across 

hemispheres. While the relationship between global warming and tropical storm intensity 

remains inconclusive, CO₂ emissions notably drive ocean acidification. Understanding these 

relationships helps clarify the primary drivers of climate change. 

Keywords – statistical analysis, climate change, linear regression, random forest, time series 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Sažetak 

Svrha ove statističke analize bila je identificirati i analizirati varijable koje pokazuju statistički 

značajne veze s klimatskim promjenama. Određivanjem utjecajnih čimbenika, cilj nam je 

dobiti uvid u složenu dinamiku koja pokreće klimatske varijabilnosti te informirati učinkovite 

strategije ublažavanja i prilagodbe. Otkrili smo da je globalno zagrijavanje uvelike pod 

utjecajem emisija CO₂ i drugih stakleničkih plinova, što značajno utječe na prosječne globalne 

razine mora i promjene u opsegu polarnih ledenih pokrova između hemisfera. Iako je odnos 

između globalnog zagrijavanja i intenziteta tropskih oluja i dalje neuvjerljiv, emisije CO₂ 

značajno utječu na smanjenje pH oceana. Razumijevanje ovih odnosa pomaže razjasniti 

glavne pokretače klimatskih promjena. 

Ključne riječi – statistička analiza, klimatske promjene, linearna regresija, slučajna šuma, 

vremenski niz 


