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1 Introduction

Semantic segmentation is a computer vision task in which each pixel of an image is as-

signed into one of the predefined classes. Examples of a real-world application are au-

tonomous driving systems where semantic segmentation is an important component for

visual perception of a driving environment [1, 2, 3].

Deep neural networks (DNNs) are a contemporary solution to the semantic segmen-

tation task. They are usually trained to operate on a predefined closed set of classes.

However, this is in a contradiction with the nature of an environment in which afore-

mentioned autonomous driving systems are deployed. Such systems operate in so-called

open-set environments where DNNs can encounter anomalies, i.e., objects that do not

belong to any class from the predefined closed set of classes used during training [4].

Scenes, i.e., images that contain anomalies are commonly referred to as out-of-distribution

(OoD) samples while anomalies are also known as OoD objects [5]. From a safety stand-

point, it is of the utmost importance to ensure that when DNN encounters an anomaly,

it is able to classify its pixels as anomalous. A presence of anomaly indicates that DNN

is operating outside of its learned domain and further action should be taken, e.g., there

is an unknown object on the road, emergency braking procedure is initiated.

In this thesis, we explore the method for detecting, i.e., segmenting anomalies called

entropymaximization. Suchmethod is combinedwith a post-processing step calledmeta-

classification in order to further improve the reliability of detecting anomalies. We pro-

pose amodification to themeta classificationwhich significantly improves the reliability

of detecting anomalies in comparison to the baseline as shown by our experimental re-

sults. Furthermore, we provide additional analysis of the entropy maximization which

shows that caution must be taken when using it in practice in order to ensure its effec-

tiveness.
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2 Semantic Segmentation

Artificial neural networks (ANNs) are computational systems inspired by biological neu-

ral networks. On a fundamental level, ANNs are constructed from units of computa-

tion called neurons which perform nonlinear transformation of a weighted sum of their

inputs. Neurons are organized into layers such that the output of one layer serves as

the input to the next layer. Deep neural networks (DNNs) consist of a large number of

such layers which enables them to solve complex problems. From a strictly mathemat-

ical standpoint, neural networks can be interpreted as universal function approximators

which can approximate a nonlinear input-output mapping of a general nature [6]. This

interpretation could explain why neural networks can be used as a solution to many

problems from various domains. State-of-the-art semantic segmentation solutions rely

on neural networks and their ability to learn complex features from input data during

training. Learned knowledge is then used to extrapolate features from a new previously

unseen data during inference [6].

Let 𝐱 ∈ [0, 1]𝐻×𝑊×3 denote a normalized color image of spatial dimensions 𝐻 ×𝑊,

where 𝐻 ∈ ℕ and 𝑊 ∈ ℕ. Let ℐ = ı1, 2, ..., 𝐻# × ı1, 2, ...,𝑊# denote the set of pixel

locations. Let 𝒞 = ı1, 2, ..., 𝐶# denote the set of 𝐶 ∈ ℕ predefined classes.

For each image x and for a given𝒞, there exists 𝐠 = (𝑔𝑖)𝑖∈ℐ ∈ 𝒞𝐻×𝑊, called an inherent

segmentation mask. Let 𝐆 ∶ [0, 1]𝐻×𝑊×3 → 𝒞𝐻×𝑊 denote mapping such that 𝐠 = 𝐆(𝐱).

In practice, for each image x used to train a neural network for semantic segmentation

and for a given 𝒞, there exists𝐦 = (𝑚𝑖)𝑖∈ℐ ∈ 𝒞𝐻×𝑊, often referred to as the ground truth

segmentation mask, obtained through an image labeling process where a human, i.e., an

expert, manually labels semantic segments in x. Let𝐌 ∶ [0, 1]𝐻×𝑊×3 → 𝒞𝐻×𝑊 denote

image labeling process such that𝐦 =𝐌(𝐱).
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Letℰ denote the set of pixel locations of incorrectly labeled pixels of an image x during

M, i.e., ℰ =
{
𝑖 ∣ 𝑚𝑖 ≠ 𝑔𝑖, 𝑚𝑖 ∈ 𝐌(𝐱), 𝑔𝑖 ∈ 𝐆(𝐱), 𝑖 ∈ ℐ

}
. It should be apparent that for

a given image x, 𝐌(𝐱) ≈ 𝐆(𝐱) in the sense that ℰ ≠ ∅. Incorrectly labeled pixels are

mostly present at the boundaries of semantic segments. This can be attributed to the fact

that labeling interior pixels is easier than labeling boundary pixels. Obviously, the goal

of an image labeling process is to reduce the number of incorrectly labeled pixels, i.e., it

is desirable that |ℰ| → 0, because it tends to positively impact network’s generalization

ability [7].

We define the set of training data used to train a neural network in a supervisedman-

ner as

𝒟𝑡𝑟𝑎𝑖𝑛
𝑖𝑛 =

{
(𝐱𝑗,𝐦𝑗) ∣𝐦𝑗 =𝐌(𝐱𝑗)

}𝑁𝑡𝑟𝑎𝑖𝑛
𝑖𝑛

𝑗=1
(2.1)

where 𝑁𝑡𝑟𝑎𝑖𝑛
𝑖𝑛 denotes the total number of training samples. They are often referred to as

in-distribution training samples.

Let 𝐅 ∶ [0, 1]𝐻×𝑊×3 → ℝ𝐻×𝑊×|𝒞| be a neural network for semantic segmentation with
learnable parameters Θ, i.e., weights that produces pixel-wise class scores 𝐲 = 𝐅(𝐱; Θ)

such that 𝐲 = (𝑦𝑖,𝑐)𝑖∈ℐ,𝑐∈𝒞 ∈ ℝ𝐻×𝑊×|𝒞|. Usually, a pixel-wise softmax function defined as

𝜎(𝐲)𝑖,𝑐 =
𝑒𝑦𝑖,𝑐∑|𝒞|
𝑘=1

𝑒𝑦𝑖,𝑘
, ∀𝑖 ∈ ℐ,∀𝑐 ∈ 𝒞 (2.2)

is applied on y to map pixel-wise class scores to pixel-wise class probabilities so that the

final result can be used as an input to a loss function such as a commonly used cross-

entropy loss [8]. Furthermore, so-called softmax probabilities often serve as a basis for

the state-of-the-art anomaly segmentation methods [9].

The predicted segmentation mask is given by �̃� = (𝑚𝑖̃ )𝑖∈ℐ ∈ 𝒞𝐻×𝑊, where 𝑚𝑖̃ =

argmax
𝑐∈𝒞 𝑦𝑖,𝑐,∀𝑖 ∈ ℐ, which is also equivalent to 𝑚𝑖̃ = argmax

𝑐∈𝒞 𝜎(𝐲)𝑖,𝑐,∀𝑖 ∈ ℐ. The

equivalence comes from the monotonicity of the softmax function [10].

When training a neural network for semantic segmentationwith samples from𝒟𝑡𝑟𝑎𝑖𝑛
𝑖𝑛 ,

the main objective is that the network learns parameters Θ such that the predicted seg-

mentationmask �̃�𝑗 closely matches the ground truth segmentationmask𝐦𝑗 for a given

in-distribution training sample (𝐱𝑗,𝐦𝑗) ∈ 𝒟𝑡𝑟𝑎𝑖𝑛
𝑖𝑛 . Moreover, we want to train the net-
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work in such manner that after the training process finishes, learned parameters Θ pro-

vide the network with a satisfactory amount of generalization ability, i.e., during infer-

ence, the network should be able to perform well on (𝐱∗,𝐦∗) ∉ 𝒟𝑡𝑟𝑎𝑖𝑛
𝑖𝑛 . Let 𝒟𝑡𝑒𝑠𝑡

𝑖𝑛 de-

note the set of an in-distribution test samples such that 𝒟𝑡𝑟𝑎𝑖𝑛
𝑖𝑛 ∩ 𝒟𝑡𝑒𝑠𝑡

𝑖𝑛 = ∅. If the net-

work’s generalization ability is being evaluated on (𝐱∗,𝐦∗) ∈ 𝒟𝑡𝑒𝑠𝑡
𝑖𝑛 then𝐦∗ =𝐌(𝐱*). If

(𝐱∗,𝐦∗) ∉ 𝒟𝑡𝑟𝑎𝑖𝑛
𝑖𝑛 ∪ 𝒟𝑡𝑒𝑠𝑡

𝑖𝑛 then it is assumed that the sample comes from the real-world

environment in which the network is deployed, therefore, m* is undefined due to the

absence of an image labeling processM. Regardless, since the network is not learning

parameters Θ during inference, 𝐦∗ is irrelevant from the network’s perspective. It is

assumed that the 𝒟𝑡𝑟𝑎𝑖𝑛
𝑖𝑛 contains enough representative samples so that even if neural

network is presented with an input image that has not been seen during training, it can

still correctly classify each pixel with an acceptable amount of accuracy [8].

Standard closed-set neural networks for semantic segmentation assume that samples

(𝐱∗,𝐦∗) ∉ 𝒟𝑡𝑟𝑎𝑖𝑛
𝑖𝑛 seen during inference come froman in-distribution, i.e., (𝐱∗,𝐦∗) ∈ 𝒟𝑖𝑛.

It should be noted that𝒟𝑡𝑟𝑎𝑖𝑛
𝑖𝑛 ⊂ 𝒟𝑖𝑛 and𝒟

𝑡𝑒𝑠𝑡
𝑖𝑛 ⊂ 𝒟𝑖𝑛, where⊂ represents a proper subset.

This assumption usually means that the network expects objects in the input image to

belong to one of the classes contained exclusively in 𝒞.

However, the assumption that the samples during inference come exclusively from

𝒟𝑖𝑛 is too strong for real-world applications such as autonomous driving. Methods that

relax this assumption are needed in order tomake neural networks for semantic segmen-

tation applicable to the real-world environments.
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3 Anomaly Segmentation

In the context of semantic segmentation, anomalies or out-of-distribution (OoD) objects

are image segments, or even entire images, whose pixels lie at a location of extreme low

density of 𝐩(𝐱), the underlying probability distribution over images in 𝒟𝑖𝑛, or even out-

side of it [5]. Let 𝒟𝑜𝑢𝑡 denote a set of images containing such OoD objects. The task of

identifying semantically anomalous regions in an image is called anomaly segmentation

or in the more general context, OoD detection.

3.1 Methods for Anomaly Segmentation

Regardless of a specific method used for anomaly segmentation, the main objective is

to obtain an anomaly segmentation score map 𝐚 = (𝑎𝑖)𝑖∈ℐ ∈ ℝ𝐻×𝑊 which indicates the

presence of an anomaly at each pixel location of a given imagewhere the higher the score

the more likely is that there is anomaly at that pixel location [5]. The methods differ in

the ways they obtain such a map.

The first type of methods utilize thresholding on the maximum softmax probability

(MSP) obtained from the output of a neural network on every pixel location. The rea-

soning behind this method is that the OoD objects and their corresponding pixels tend to

have lower MSP than in-distribution pixels, allowing for their detection [9, 11]. Another

example of the utilization of the softmax probabilities for detecting OoD pixels are meth-

ods based on the information theory standpoint, i.e., a desirable property of a semantic

segmentation network would be the attachment of a high prediction uncertainty to the

OoD objects which can in turn be quantified with a per-pixel prediction entropy [5, 12].

Another approach is utilization of negative datasets as a proxy for OoD objects and train-

ing a separate model prediction head to directly predict the probability of a pixel being

OoD [13, 14, 15].
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The second type of methods for anomaly segmentation are based on uncertainty esti-

mation through the usage of Bayesian methods such as Monte-Carlo dropout [16, 17] or

the usage of an ensemble of models [18] which capture the model uncertainty by averag-

ing predictions over multiple models. Another type of methods are based on obtaining

an anomaly segmentation score map by the means of computing some sort of a statisti-

cal distance such as Mahalanobis distance [19, 20]. There are also methods which use

Radial Basis Function Networks (RBFNs) in order to learn a feature space using RBF-

kernels so that the feature distance to the nearest center quantifies the uncertainty of a

prediction, i.e., OoD object [21, 22].

Finally, some methods use generative models for the purpose of anomaly segmenta-

tion. The main idea is that the generative model trained exclusively on in-distribution

training samples will have less accurate performance on OoD regions in images, conse-

quently, the detection of OoD objects is based on the reconstruction quality of an input

image [2, 23, 24].

3.2 Anomaly Segmentation via Entropy Maximization

In this thesis, the focus is on the method that utilizes the per-pixel prediction entropy in

order to compute an anomaly segmentation score map a. The methods described in this

and the following section are introduced and thoroughly described in [5, 12, 25, 26, 27].

Let 𝐩𝑖(𝐱) =
(
𝑝𝑖(𝑐|𝐱))𝑖∈ℐ,𝑐∈𝒞 ∈ [0, 1]|𝒞| denote a vector of probabilities such that the

𝑝𝑖(𝑐|𝐱) is a probability of a pixel location 𝑖 ∈ ℐ of a given image 𝐱 ∈ 𝒟𝑖𝑛 being a pixel

that belongs to the class 𝑐 ∈ 𝒞. For the sake of clarity, it should be noted that if 𝐲 = 𝐅(𝐱)

represents an output of a semantic segmentation network F, then 𝑝𝑖(𝑐|𝐱) = 𝜎(𝐲)𝑖,𝑐, cf.

Eq. (2.2). We define 𝐩(𝐱) =
(
𝐩𝑖(𝐱)

)
𝑖∈ℐ

∈ [0, 1]𝐻×𝑊×|𝒞|, the probability distribution over
images in 𝒟𝑖𝑛. When using 𝒟𝑡𝑟𝑎𝑖𝑛

𝑖𝑛 to train a semantic segmentation network F, one can

interpret that the network is being trained to estimate 𝐩(𝐱), denoted by �̂�(𝐱).

For a given image 𝐱 ∈ [0, 1]𝐻×𝑊×3 and a pixel location 𝑖 ∈ ℐ, the per-pixel prediction

entropy is defined as
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𝐸𝑖
(
�̂�𝑖(𝐱)

)
= −

∑
𝑐∈𝒞

�̂�𝑖(𝑐|𝐱) log (�̂�𝑖(𝑐|𝐱)), (3.1)

where �̂�𝑖(𝐱) =
(
�̂�𝑖(𝑐|𝐱))𝑖∈ℐ,𝑐∈𝒞 ∈ [0, 1]|𝒞| denotes a vector of estimated probabilities by a

semantic segmentation network F such that the �̂�𝑖(𝑐|𝐱) is a probability of a pixel location
𝑖 of a given image 𝐱 being a pixel that belongs to the class 𝑐 ∈ 𝒞.

As previously mentioned, for a semantic segmentation network in the context of

anomaly segmentation, it would be a desirable property if such network could output a

high prediction uncertainty forOoDpixelswhich can in turn be quantifiedwith Eq. (3.1).

Note that 𝐸𝑖
(
�̂�𝑖(𝐱)

)
is maximized by the uniform (non-informative) probability distribu-

tion �̂�𝑖(𝐱) which makes it an intuitive uncertainty measure.

Let𝒟𝑡𝑟𝑎𝑖𝑛
𝑜𝑢𝑡 denote a set of out-of-distribution training samples defined as

𝒟𝑡𝑟𝑎𝑖𝑛
𝑜𝑢𝑡 =

{
(𝐱𝑗,𝐦𝑗) ∣𝐦𝑗 =𝐌(𝐱𝑗)

}𝑁𝑡𝑟𝑎𝑖𝑛
𝑜𝑢𝑡

𝑗=1
, (3.2)

where𝑁𝑡𝑟𝑎𝑖𝑛
𝑜𝑢𝑡 denotes the total number of such training samples andM an image labeling

process that produced the ground truth segmentation mask𝐦𝑗 for a given OoD image

𝐱𝑗. Note that𝒟
𝑡𝑟𝑎𝑖𝑛
𝑜𝑢𝑡 ⊂ 𝒟𝑜𝑢𝑡, where ⊂ represents a proper subset.

The set of OoD training samples which is also called known unknowns serves as a

proxy for OoD images. In practice, 𝒟𝑡𝑟𝑎𝑖𝑛
𝑜𝑢𝑡 is a general-purpose dataset such as COCO

dataset [28] that contains diverse taxonomyexceeding the one found in the chosendomain-

specific dataset which represents𝒟𝑡𝑟𝑎𝑖𝑛
𝑖𝑛 , e.g., Cityscapes [29], which is a dataset used for

the domain of road driving.

It has been shown [12] that one can make the output of a semantic segmentation

network 𝐅 have a high entropy on OoD pixel locations by modifying a standard closed-

set neural network training by employing a multi-criteria training objective defined as

ℒ = (1 − 𝜆)𝔼(𝐱,𝐦)∈𝒟𝑡𝑟𝑎𝑖𝑛
𝑖𝑛

[
𝑙𝑖𝑛
(
𝐅(𝐱),𝐦

)]
+ 𝜆𝔼(𝐱,𝐦)∈𝒟𝑡𝑟𝑎𝑖𝑛

𝑜𝑢𝑡

[
𝑙𝑜𝑢𝑡

(
𝐅(𝐱),𝐦

)]
, (3.3)

where 𝒟𝑡𝑟𝑎𝑖𝑛
𝑖𝑛 is defined by Eq. (2.1), 𝒟𝑡𝑟𝑎𝑖𝑛

𝑜𝑢𝑡 is defined by Eq. (3.2) and F is a semantic

segmentation network. In order to control the impact of each part of the overall objective,
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a hyperparameter 𝜆 ∈ [0, 1] is used for creating a convex combination.

When minimizing the overall objective defined by Eq. (3.3), a commonly used cross-

entropy loss is applied for in-distribution training samples defined as

𝑙𝑖𝑛
(
𝐅(𝐱),𝐦

)
= −

1

𝐻 ⋅𝑊

∑
𝑖∈ℐ

∑
𝑐∈𝒞

1𝑚𝑖=𝑐
⋅ log

(
�̂�𝑖(𝑐|𝐱)), (𝐱,𝐦) ∈ 𝒟𝑡𝑟𝑎𝑖𝑛

𝑖𝑛 , (3.4)

where 1𝑐=𝑚𝑖
∈ ı0, 1# is the indicator function being equal to one if the class index 𝑐 ∈ 𝒞

is, for a given pixel location 𝑖 ∈ ℐ, equal to the class index𝑚𝑖 defined by the ground truth

segmentation maskm and zero otherwise.

For OoD training samples, a slightly modified cross-entropy loss is applied

𝑙𝑜𝑢𝑡
(
𝐅(𝐱),𝐦

)
= −

1

𝐻 ⋅𝑊

∑
𝑖∈ℐ

1|𝒞| ∑
𝑐∈𝒞

1𝑚𝑖=𝑂𝑜𝐷(𝑖)
⋅ log

(
�̂�𝑖(𝑐|𝐱)), (𝐱,𝐦) ∈ 𝒟𝑡𝑟𝑎𝑖𝑛

𝑜𝑢𝑡 , (3.5)

where 1𝑚𝑖=𝑂𝑜𝐷(𝑖)
∈ ı0, 1# is the indicator function being equal to one if the pixel location

𝑖 ∈ ℐ is labeled as OoD and zero otherwise.

It can be shown thatminimizing 𝑙𝑜𝑢𝑡 defined by Eq. (3.5) is equivalent tomaximizing

per-pixel prediction entropy 𝐸𝑖
(
�̂�𝑖(𝐱)

)
defined by Eq. (3.1), hence the name entropy max-

imization. Since
∑

𝑐∈𝒞
�̂�𝑖(𝑐|𝐱) = 1, if we apply Jensen’s inequality [30] to the inner sum

of the Eq. (3.5) and omit the indicator function for clarity, then we obtain

−
∑
𝑐∈𝒞

1|𝒞| log (�̂�𝑖(𝑐|𝐱)) ≥ − log (∑
𝑐∈𝒞

1|𝒞| �̂�𝑖(𝑐|𝐱)) ≥ − log ( 1|𝒞|) = log (|𝒞|) (3.6)

Since 𝐸𝑖
(
�̂�𝑖(𝐱)

)
≤ log (|𝒞|), the equality between Eqs. (3.1) and (3.6) holds when the

probability distribution �̂�𝑖(𝐱) is uniform.

The anomaly segmentation score map a can then be obtained by normalizing per-

pixel prediction entropy, i.e.,

𝐚 = (𝑎𝑖)𝑖∈ℐ ∈ [0, 1]𝐻×𝑊, 𝑎𝑖 =
𝐸𝑖
(
�̂�𝑖(𝐱)

)
log (|𝒞|) (3.7)
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3.3 Meta Classification

Meta classification is the task of discriminating between a false positive prediction and

a true positive prediction. In the context of anomaly segmentation, pixels of OoD ob-

jects are considered to be the members of the positive class. Training a network with

a modified entropy maximization training objective increases the network’s sensitivity

towards predicting OoD objects and can result in a substantial number of false positive

predictions. Applying meta classification in order to post-process the network’s predic-

tion has been shown to significantly improve the network’s ability to reliably detect OoD

objects. Note that even though we apply meta classification as a post-processing step of

the entropy maximization training, the following definition of meta classification could

potentially be applied to the other anomaly segmentation methods described in Sec. 3.1.

Let𝒟𝑡𝑒𝑠𝑡
𝑜𝑢𝑡 denote the set of out-of-distribution test samples such that𝒟

𝑡𝑟𝑎𝑖𝑛
𝑜𝑢𝑡 ∩𝒟𝑡𝑒𝑠𝑡

𝑜𝑢𝑡 = ∅

and 𝒟𝑡𝑒𝑠𝑡
𝑜𝑢𝑡 ⊂ 𝒟𝑜𝑢𝑡, where ⊂ represents a proper subset. By introducing the notion of

𝒟𝑡𝑒𝑠𝑡
𝑜𝑢𝑡 we emphasize the fact that the meta classification is employed after the entropy

maximization training for which samples from𝒟𝑡𝑟𝑎𝑖𝑛
𝑜𝑢𝑡 were used.

A set of pixel locations being predicted as OoD for a given image 𝐱 ∈ 𝒟𝑡𝑒𝑠𝑡
𝑜𝑢𝑡 and an

anomaly segmentation score map a computed with Eq. (3.7) is defined as

ℐ̂ 𝑜𝑢𝑡(𝐱, 𝐚) =
{
𝑖 ∈ ℐ ∣ 𝑎𝑖 ≥ 𝑡, 𝑡 ∈ [0, 1]

}
, (3.8)

where 𝑡 represents a fixed threshold.

Based on ℐ̂ 𝑜𝑢𝑡(𝐱, 𝐚), a set of connected components representing OoD object predic-

tions is defined as

�̂�(𝐱, 𝐚) ⊆ 𝒫
(
ℐ̂ 𝑜𝑢𝑡(𝐱, 𝐚)

)
, (3.9)

where 𝒫
(
ℐ̂ 𝑜𝑢𝑡(𝐱, 𝐚)

)
denotes the power set of ℐ̂ 𝑜𝑢𝑡(𝐱, 𝐚).

The following discussion is based on [5, 12, 25, 26, 27]. Meta classifier is a lightweight

model added on top of a semantic segmentation network F. After training F for entropy

maximization on the pixels of OoD objects, a structured dataset of hand-crafted metrics

is constructed. For every OoD object prediction �̂� ∈ �̂�(𝐱, 𝐚), different pixel-wise un-

certainty measures are derived solely from �̂�(𝐱) such as normalized per-pixel prediction
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entropy in Eq. (3.1), MSP, etc. In addition to metrics derived from �̂�(𝐱), metrics based

on the OoD object prediction geometry features are also included such as the number of

pixels contained in �̂�, various ratios regarding interior and boundary pixels, geometric

center, geometric features regarding the neighborhood of �̂�, etc. [12, 25]

After a datasetwith thehand-craftedmetrics is constructed, ameta classifier is trained

to classify OoD object predictions in one of the following two sets,

𝐶𝑇𝑃(𝐱, 𝐚) =
{
�̂� ∈ �̂�(𝐱, 𝐚) ∣ 𝐼𝑜𝑈(�̂�,𝐦) > 0, (𝐱,𝐦) ∈ 𝒟𝑡𝑒𝑠𝑡

𝑜𝑢𝑡

}
, and (3.10)

𝐶𝐹𝑃(𝐱, 𝐚) =
{
�̂� ∈ �̂�(𝐱, 𝐚) ∣ 𝐼𝑜𝑈(�̂�,𝐦) = 0, (𝐱,𝐦) ∈ 𝒟𝑡𝑒𝑠𝑡

𝑜𝑢𝑡

}
, (3.11)

where 𝐶𝑇𝑃 represents a set of true positive OoD object predictions and 𝐶𝐹𝑃 a set of false

positive OoD object predictions [12]. In the Eqs. (3.10) and (3.11), 𝐼𝑜𝑈 represents the

intersection over union [31] of a OoD object prediction �̂� with the corresponding ground

truth segmentation mask𝐦. Clearly, OoD object prediction is considered a true positive

if 𝐼𝑜𝑈 is greater than zero, which can equivalently be stated that the OoD object predic-

tion is a true positive if at least one pixel location is correctly classified as OoD. This may

seem as too rigorous for some applications, however, in the safety-critical scenarios such

as autonomous driving, this condition can be considered reasonable.

During inference, meta classifier predicts whether an OoD object predictions ob-

tained from F are false positive, i.e., have 𝐼𝑜𝑈 equal to zero. Certainly, the prediction

is done without the access tom and is based on learned statistical and geometrical prop-

erties of the OoD object predictions obtained from the known unknowns. OoD object

predictions classified as false positive are then removed and the final prediction is ob-

tained.

3.4 Neural Network Meta Classifier

In [12], authors use logistic regression for the purpose of meta classifying predicted OoD

objects. Their main argument for the use of logistic regression is that since it is a linear

model, it is possible to analyze the impact of each hand-craftedmetric used as an input to

the model with an algorithm such as Least Angle Regression (LARS) [32]. However, we

argue that even though it is desirable to have an interpretable model in order to analyze
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the relevance and the impact of its input, it is possible to achieve a significantly better

performance by employing a more expressive type of model such as neural network.

Let �̂� be a set containing OoD object predictions for every 𝐱 ∈ 𝒟𝑡𝑒𝑠𝑡
𝑜𝑢𝑡 defined as

�̂� =
⋃

(𝐱,𝐦)∈𝒟𝑡𝑒𝑠𝑡
𝑜𝑢𝑡

�̂�(𝐱, 𝐚), (3.12)

where �̂�(𝐱, 𝐚) representsOoDobject predictions defined byEq. (3.9) and a is an anomaly

segmentation score map defined by Eq. (3.7).

We formally define the aforementioned hand-crafted metrics dataset as 𝜇 ⊂ ℝ|�̂�|×𝑁𝑚 ,

where |�̂�| represents the total number of OoD object predictions obtained from the se-

mantic segmentation network F across all OoD test samples in 𝒟𝑡𝑒𝑠𝑡
𝑜𝑢𝑡 and where 𝑁𝑚 is

the total number of hand-crafted metrics derived from each OoD object prediction. It

should be clear from the definition that 𝜇 is a matrix in which each row corresponds

to OoD object prediction and contains hand-crafted metrics derived from the respective

OoD object prediction.

We propose that instead of logistic regression as a meta classifier, a lightweight fully-

connected neural network is employed. Let 𝐅𝑚𝑒𝑡𝑎 ∶ 𝜇 → [0, 1] denote such neural net-

work. We can interpret that𝐅𝑚𝑒𝑡𝑎 outputs the probability of a givenOoDobject prediction

being false positive based on the corresponding derived hand-crafted metrics according

to Eqs. (3.10) and (3.11). Let 𝑝𝐹𝑃 denote such probability. Since 𝐅𝑚𝑒𝑡𝑎 is essentially a

binary classifier, we can train it using a special case of the cross-entropy loss, the binary

cross-entropy loss defined as

ℒ𝑚𝑒𝑡𝑎 = −
1

𝑁

𝑁∑
𝑖=1

𝑦𝑖 log
(
𝑝𝐹𝑃𝑖

)
+ (1 − 𝑦𝑖) log

(
1 − 𝑝𝐹𝑃𝑖

)
, (3.13)

where𝑁 represents the number of OoD object predictions included in a mini-batch and

𝑦𝑖 represents the ground truth label of a given OoD object prediction and is equal to one

if given OoD object prediction is a false positive according to Eq. (3.11) and zero if it is a

true positive according to Eq. (3.10).
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4 Experiments

In this chapter, as a baseline, we use the method [12] based on entropy maximization

training supplemented with a meta classifier. First, we describe the experimental setup.

Next, we provide further evaluation of the entropy maximization training. Finally, we

describe a modification of the baseline and show that the proposed modification is an

improvement in comparison to the baseline. The code is publicly available at https:

//github.com/JuricaRuntas/meta-ood.

4.1 Experimental Setup

We use DeepLabv3+ semantic segmentationmodel [33] with aWideResNet38 backbone

[34] trained by Nvidia [35]. The model has 137,103,936 parameters and is pretrained on

Cityscapes dataset [29] containing images of urban street scenes.

The pretrained model is fine-tuned according to the Eq. (3.3). We use Cityscapes

dataset [29] as𝒟𝑡𝑟𝑎𝑖𝑛
𝑖𝑛 containing 2,975 images while for𝒟𝑡𝑟𝑎𝑖𝑛

𝑜𝑢𝑡 we use COCO dataset [28],

a general-purpose dataset that contains images of everyday scenes. For the purpose of

𝒟𝑡𝑟𝑎𝑖𝑛
𝑜𝑢𝑡 , we exclude images containing class instances (“person”, “bicycle”, “car”, “motor-

cycle”, “bus”, “truck”, “traffic light” and “stop sign” ) that are also found in Cityscapes

dataset. After filtering, 46,751 images remain.

The model is trained for 4 epochs on random square crops of height and width of

480 pixels. Images that have height or width smaller than 480 pixels are resized. Before

each epoch, we randomly shuffle 2,975 images from Cityscapes dataset with 297 images

randomly sampled from the remaining 46,751 COCO images. Hyperparamters are set

according to the baseline [12]: loss weight 𝜆 = 0.9, entropy threshold 𝑡 = 0.7. Adam

optimizer [36] is used with the learning rate 𝜂 = 1 × 10−5.
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In order to evaluate the anomaly segmentation performance, we utilize two datasets

used for the purpose of benchmarking anomaly segmentation performance. Both datasets

share the same setup as the Cityscapes dataset [29], i.e., they contain images of road-

driving and urban street scenes. The first one is the LostAndFound dataset [37] and its

test split named LostAndFound Test consisting of 1,203 images and their correspond-

ing pixel level annotations of small obstacles placed in front of the ego vehicle such as

cones, various plastic boxes and car parts. The second one is a part of the Fishyscapes

dataset [38] named Fishyscapes Static consisting of 30 images and their corresponding

pixel level annotations of anomalous objects such as various animals extracted from the

Pascal VOC dataset [31] and blended in the images from the Cityscapes validation split.

4.2 Metrics

As already mentioned, in the context of anomaly segmentation, OoD pixels are consid-

ered to be the members of the positive class and in-distribution pixels are considered

to be the members of the negative class, i.e., anomaly segmentation is in fact a binary

classification task since the network has to distinguish between in-distribution and OoD

pixels in a given image. Consequently, we can use the usual metrics for evaluation of the

binary classification performance.

We are mostly interested in the receiver operating characteristic (ROC) and preci-

sion recall (PR) curves [39, 40]. The area under ROC (AUROC) and the area under PR

(AUPRC) summarize the respective curves into a single number whose values are in the

range between zero and one. Area under the curve (AUC)measures the degree of separa-

bility between distributions of a positive and a negative class achieved by a given binary

classifier. ROCcurve does not placemore emphasis on one class over the other in the case

of class imbalance. In our case, the class imbalance is indeed present since the number

of OoD pixels in the images is clearly much smaller than the number of in-distribution

pixels. On the other hand, PR curve places more emphasis on the members of the pos-

itive class, i.e., OoD pixels [39]. Nevertheless, we use both metrics in order to evaluate

the binary classification performance. We additionally evaluate the false positive rate at

95% true positive rate (FPR95) [41].

In order to evaluate the impact of the entropy maximization training on the origi-
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nal semantic segmentation task of the in-distribution images, we compute intersection-

over-union (IoU) [31] of the model predictions on the Cityscapes validation set. More

precisely, IoU is computed for the 19 evaluation classes in the Cityscapes dataset and

averaged to produce the mean IoU (mIoU) score.

4.3 Evaluation of the Entropy Maximization Training

Figure 4.1: Histograms of the obtained metric scores after repeating the entropy maximization
training 50 times. The left and the middle histogram show FPR95 and AUPRC scores for the
anomaly segmentation of the LostAndFound Test. The right histogram shows mIoU score for
the semantic segmentation of the Cityscapes validation set obtained after each run. Gray areas
represent fitted Gaussian distributions, dashed orange lines represent estimated means and the
histograms are represented with a blue color.

In addition to the results and analysis reported in [12], we perform further evalu-

ation of the entropy maximization training. This is motivated by the fact that when

performing entropy maximization training, a certain amount of proxy OoD images are

randomly sampled from 𝒟𝑡𝑟𝑎𝑖𝑛
𝑜𝑢𝑡 . It is reasonable to assume that such training procedure

could be positively or negatively impacted depending on which exact proxy OoD images

are included in the random sample. We are interested in the average case when the en-

tropymaximization training is repeated numerous times. The results are illustrated with

Fig. 4.1 while Table 4.1 summarizes and compares them to the results reported in [12].

4.4 Evaluation of Neural Network Meta Classifier

As proposed in Sec. 3.4, we substitute the logistic regression with a lightweight fully-

connected neural network whose architecture is shown in Table 4.2. The network is
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Metric FPR95 AUPRC mIoU mFPR95 mAUPRC mmIoU

Source Baseline Reproduced Baseline Reproduced Baseline Reproduced Reproduced Reproduced Reproduced

LostAndFound Test 0.09 0.15 0.76 0.75 - - 0.35 0.64 -
Fishyscapes Static 0.09 0.17 0.87 0.64 - - 0.36 0.42 -
Cityscapes Val. - - - - 0.89 0.87 - - 0.86

Table 4.1: Evaluation results of the entropy maximization training. For the columns FPR95,
AUPRC and mIoU, Baseline contains scores reported in [12] while Reproduced contains our
(best) results obtained while performing 50 runs of the entropy maximization training. While
the columns FPR95, AUPRC and mIoU contain results obtained from a single best model, the
columns mFPR95, mAUPRC, mmIoU contain metrics averaged over 50 obtained models.

trained on the hand-crafted metrics derived from OoD object predictions of the images

in LostAndFound Test. The OoD object predictions are obtained from the semantic

segmentation model that was beforehand fine-tuned for anomaly segmentation using

the entropy maximization training. Derived hand-crafted metrics, i.e., corresponding

OoD object predictions are leave-one-out cross validated according to the Eqs. (3.10) and

(3.11). The network is trained using Adam optimizer with learning rate 𝜂 = 1×10−3 and

weight decay 𝛾 = 5 × 10−3 for 50 epochs with a mini-batch size 𝑁 = 128. Note that in

our case, the total number of hand-crafted metrics is 𝑁𝑚 = 75.

Table 4.2 shows the architecture of the proposed neural network meta classifier. For

the sake of comparison, logistic regression meta classifier has 76 parameters (75 param-

eters for the 75 used hand-crafted metrics and one for the intercept).

# Layer type # of input features # of output features # of parameters

1. FC 75 75 5,700
ReLU 75 75 0

2. FC 75 75 5,700
ReLU 75 75 0

3. FC 75 75 5,700
ReLU 75 75 0

4. FC 75 1 76
Sigmoid 1 1 0

Total 17,176

Table 4.2: Architecture of the neural networkmeta classifier. FC stands for fully-connected layer.
For the sake of completeness, we also include the used activation function (ReLU) and a sigmoid
function (Sigmoid) used for mapping the output on [0, 1] interval.

Performance comparison ofmeta classifiers is given in Table 4.3which shows that the

proposed neural network meta classifier outperforms logistic regression. For the sake of
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Model type Logistic Regression Neural Network

Source Baseline Reproduced Ours

AUROC 0.9444 0.9342 0.9680
AUPRC 0.7185 0.6819 0.8418

Table 4.3: Performance comparison of meta classifiers. Note that the given results are based on
the meta classifiers trained on OoD object predictions obtained with entropy threshold 𝑡 = 0.7.
Performance of the logistic regression (Reproduced) and the neural network meta classifier is
further examined in Fig. 4.2.

Figure 4.2: ROC and PRmeta classifier curves for OoD object predictions of LostAndFound Test
images. Note that the AUROC can be seen as the probability that the meta classifier will allocate
a higher score to a randomly chosen OoD object than it will to a randomly and independently
chosen in-distribution object [40], hence random guessing is represented with a dashed red line
whose AUROC is 0.5. On the PR curve, random guessing is represented as a constant dashed
red line whose value is equal to the ratio of the number of OoD objects and the total number of
predicted OoD objects.

comparison, we provide the results reported in [12]. ROC and PR curves are displayed

in Fig. 4.2 where we plot the performance of our neural network meta classifier and of

the reproduced logistic regression meta classifier.

4.5 Neural Network Meta Classifier Architectures

In this section, we further examine potential neural network meta classifier architec-

tures. In our attempt to stay unbiased, another run of the entropymaximization training

is performed that yields a different semantic segmentation model than the one used in

the previous section. Clearly, different model generates different OoD object predictions
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and their respective hand-crafted metrics than the ones used to train meta classifiers

whose performance is reported in Table 4.3 and Fig. 4.2. Note that for the rest of this sec-

tion, we fix hyperparameters regarding neural networkmeta classifier to the values used

in the previous section. Also note that in all the following experiments, we are trying

to keep neural network meta classifier as lightweight as possible. We arbitrarily set an

upper limit on the number of learnable parameters to be around 30,000, although one

could try to go even higher.

First, we experiment with the usage of different number of fully-connected layers,

i.e., we explore how depth affects the performance of a neural network meta classifier.

We keep the total number of neurons per layer fixed and equal to 75. The results are

shown in Table 4.4.

Architecture AUROC AUPRC # of parameters

Logistic Regression 0.9444 0.7176 76
NN-L-0 0.9276 0.5820 76
NN-L-1 0.9600 0.8098 5,776
NN-L-2 0.9673 0.8560 11,476
NN-L-3 0.9708 0.8639 17,176
NN-L-4 0.9662 0.8383 22,876
NN-L-5 0.9667 0.8374 28,576
NN-L-6 0.9700 0.8378 34,276

Table 4.4: Performance comparison of neural network meta classifier architectures differing in
the number of fully-connected layers while the total number of neurons per layer is fixed and
equal to 75. Note that the NN-L-0 is a neural network with a single neuron that has the same
number of parameters as logistic regression. It is outperformed by logistic regression most likely
because of the set training hyperparameters. NN-L-3 is the architecture shown in Table 4.2. If the
goal is to keep neural networkmeta classifier as lightweight as possible, one could also argue that
NN-L-2 seems reasonable since its AUROC differs less than 1% (0.35%) in comparison to AUROC
achieved by NN-L-3 while their respective AUPRC scores also differ less than 1% (0.8%).

We continue our experiments with analysis of the usage of different number of neu-

rons per fully-connected, i.e., we explore how width affects the performance of a neural

network meta classifier. From the results in Table 4.4, we conclude that NN-L-3 offers

significantly better performance in comparison to logistic regression meta classifier and

choose to fix the number of layers to be equal to three. Table 4.5 shows the performance

of a neural network meta classifier consisting of three fully-connected layers with a dif-

ferent number of neurons per layer. Note that a given number of neurons is the same in

every layer.
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Architecture AUROC AUPRC # of parameters

Logistic Regression 0.9444 0.7176 76
NN-L-3-N-15 0.9604 0.7829 1,636
NN-L-3-N-25 0.9666 0.8206 3,226
NN-L-3-N-35 0.9639 0.8349 5,216
NN-L-3-N-45 0.9659 0.8412 7,606
NN-L-3-N-55 0.9661 0.8435 10,396
NN-L-3-N-65 0.9671 0.8297 13,586
NN-L-3-N-75 0.9708 0.8639 17,176
NN-L-3-N-85 0.9650 0.8415 21,166
NN-L-3-N-95 0.9705 0.8645 25,556
NN-L-3-N-110 0.9693 0.8605 32,891

Table 4.5: Performance comparison of neural network meta classifier architectures differing in
the number of neurons per layer. Note that a given number of neurons is the same in all three
layers. The results suggest that increasing layer width can improve the performance. However,
we again choose NN-L-3-N-75 as the best option due to the smaller number of parameters in
comparison toNN-L-3-N-95 andNN-L-3-N-110. One could also argue that choosing even smaller
models such as NN-L-3-N-55 or NN-L-3-N-45 is reasonable due to the significant reduction of the
number of parameters. Note that NN-L-3-N-75 is the same architecture as NN-L-3 in Table 4.4.

Inspired by the success of NN-L-3 in Table 4.4 and NN-L-3-N-75 in Table 4.5, we fur-

ther investigate how asymmetrical architecture affects the performance of neural net-

work meta classifier. For this purpose, we fix the number of layers to be equal to three

and the total number of neurons to be equal to 225 (as in NN-L-3) while also keeping the

total number of parameters to be around 17,176. Results are shown in Table 4.6.

Architecture AUROC AUPRC # of parameters

Logistic Regression 0.9444 0.7176 76
NN-L1-130-L2-45-L3-30 0.9674 0.8596 17,186
NN-L1-60-L2-140-L3-30 0.9722 0.8552 17,361
NN-L1-40-L2-80-L3-135 0.9670 0.8516 17,391

Table 4.6: Performance comparison of asymmetrical neural networkmeta classifier architectures
consisting of three layers and having the total number of neurons equal to 225.

Wealso tried to substituteReLUactivation functionwith amore traditional activation

functions such as sigmoid and tanh which resulted in a worse performance than the one

reported in Tables 4.4, 4.5, 4.6 and for that reason, we omit those results.
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5 Discussion

In this chapter, first we discuss the noticed variability of the entropymaximization train-

ing and attempt to give an explanation of its cause. Then, we provide further discussion

of our proposed neural network meta classifier and show its advantages and drawbacks

when using it instead of logistic regression meta classifier.

5.1 Variability of the Entropy Maximization Training

For the rest of this section, we assume that 𝒟𝑡𝑟𝑎𝑖𝑛
𝑖𝑛 defined by Eq. (2.1) is a dataset used

for the domain of road driving such as the Cityscapes dataset that we used in our ex-

periments. This implies that the in-distribution images contained in 𝒟𝑖𝑛 are in fact the

images of road driving scenes. While we focus on a road driving, we believe that the

following discussion can be easily generalized and applied to the other domains.

In Fig. 4.1, the presence of a significant variance is clearly visible for FPR95 and

AUPRC metrics. It should be obvious that the entropy maximization training formally

described with Eq. (3.3) and more practically described in Sec. 4.1 contains a certain de-

gree of randomness due to the utilization of random samples of proxy OoD images from

𝒟𝑡𝑟𝑎𝑖𝑛
𝑜𝑢𝑡 defined by Eq. (3.2). In our experiments, we used a subset of COCO dataset for the

purpose of 𝒟𝑡𝑟𝑎𝑖𝑛
𝑜𝑢𝑡 which contains OoD images containing objects that are not instances

of any class found in the Cityscapes dataset.

The exact proxy OoD images included in a random sample of 𝒟𝑡𝑟𝑎𝑖𝑛
𝑜𝑢𝑡 during entropy

maximization training are unknown and not further examined. However, in our attempt

to give an explanation for the cause of variability of the entropy maximization training,

we argue that such blind sampling procedure is in fact the cause of variability.

We introduce the notion of high informative and low informative proxy OoD images.
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What we mean by high and low informative is illustrated with Fig. 5.1. We have noticed

empirically that the high informative proxy OoD images have two important character-

istics that differentiate them from the low informative proxy OoD images: spatially clear

separation between objects and clear object boundaries.

(a) Examples ofhigh informative proxyOoD images. (b) Examples of low informative proxy OoD images.

Figure 5.1: Examples of high and low informative proxy OoD images. The first row contains the
proxy OoD images while the second row contains ground truth segmentation masks such that
the white regions represent pixels labeled as OoD according to the indicator function in Eq. (3.5).
The black regions are considered as background and are ignored during training.

The hypothesis is that the low informative proxy OoD images have little to no impact

on the entropy maximization training or can even negatively impact the training proce-

dure. On the other hand, high informative proxy OoD images are the ones from which

the semantic segmentation network can learn to reliably output a high entropy score on

OoD pixels of images seen during inference, denoted by𝒟𝑜𝑢𝑡 ⧵𝒟
𝑡𝑟𝑎𝑖𝑛
𝑜𝑢𝑡 , where ⧵ represents

a set difference.

In attempt to prove our hypothesis, we perform the entropy maximization training

on the subsets of the generated COCO OoD proxy. We consider it difficult to universally

quantify the mentioned characteristics of the high informative proxy OoD images, how-

ever, we notice a significant correlation between the percentage of the labeledOoDpixels

and the desirable properties found in the high informative OoD proxy images. We use

the generated COCO OoD proxy which we denote as 𝒟𝑡𝑟𝑎𝑖𝑛
𝑜𝑢𝑡 for the creation of the two

disjoint sets such that the first contains images from𝒟𝑡𝑟𝑎𝑖𝑛
𝑜𝑢𝑡 that have atmost 20% of pixels

labeled as OoD (denoted as L-20%-OoD) and the second that contains images from𝒟𝑡𝑟𝑎𝑖𝑛
𝑜𝑢𝑡

that have at least 80% of pixels labeled as OoD (denoted as M-80%-OoD). The results are

displayed in Tables 5.1 and 5.2. Table 5.1 shows that performing the entropy maximiza-
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tion training using M-80%-OoD results in a little to no improvement in comparison to

the model trained exclusively on the in-distribution images. On the other hand, using

L-20%-OoD produced even better results than the ones obtainedwith the usage of COCO

OoD proxy.

(a) COCO OoD proxy (b) L-20%-OoD (c) M-80%-OoD

Figure 5.2: Relative number of pixels per supercategory for used OoD proxies.

Metric FPR95 AUPRC

Source DLV3+W38 Reproduced L-20%-OoD M-80%-OoD DLV3+W38 Reproduced L-20%-OoD M-80%-OoD

LostAndFound Test 0.35 0.15 0.09 0.13 0.46 0.75 0.78 0.48
Fishyscapes Static 0.19 0.17 0.12 0.31 0.25 0.64 0.73 0.25

Table 5.1: Results for the entropy maximization training using COCO OoD proxy subsets. The
displayed results are generated from the best model obtained while performing 10 runs of the
entropy maximization training (columns L-20%-OoD and M-80%-OoD). For the sake of compar-
ison, we also include the best results from Table 4.1 in column Reproduced and the results from
the model used for fine-tuning [35] in column DLV3+W38. mIoU for Cityscapes validation set
is equal to 0.87 regardless of which OoD proxy was used.

Metric mFPR95 mAUPRC

Source L-20%-OoD M-80%-OoD L-20%-OoD M-80%-OoD

LostAndFound Test 0.25 0.44 0.74 0.44
Fishyscapes Static 0.23 0.65 0.68 0.20

Table 5.2: Averaged results for the entropy maximization training using COCO OoD proxy sub-
sets, Fig. 5.2(b) and Fig. 5.2(c). The results are averaged over 10 runs. Using L-20%OoD as a OoD
proxy clearly results in better anomaly segmentation performance. Note that the numbers in this
table cannot be compared to the ones in Table 4.1 due to the different number of runs. How-
ever, it is worth mentioning that we had not been able to achieve 10 consecutive runs that would
match the numbers reported in this table when performing 50 runs of the entropy maximization
training using COCOOoD proxy in Fig. 5.2(a). mIoU for Cityscapes validation set is equal to 0.87
regardless of which OoD proxy was used.

Fig. 5.2 shows the relative number of pixels per supercategory in each of the three

used OoD proxies. One could question whether our additional splitting of the COCO

OoD proxy resulted in the loss of the class diversity and consequently resulted in bet-

ter performing models due to the specialization in a supercategory such as animals in

23



Fig. 5.2(b). This may be the case for Fisyscapes Static since the majority of the images

contain extracted animals from the Pascal VOC dataset [31], although they are limited

in the visual diversity, e.g., the same dog is blended in the multiple images, however, it

is unlikely that is the case for the LostAndFound Test since only 10% of the images have

animals in them and they are exclusively dogs. We also argue that the specialization in

the furniture supercategory in Fig. 5.2(c) is irrelevant since the images in M-80%-OoD

containing furniture and objects from the other supercategories have most of the pixels

labeled as OoD like the examples in Fig. 5.1(b) or even more. However, if the special-

ization is indeed a factor that affects the entropy maximization training, then that could

potentionally have a far-reaching implications mentioned at the end of this section. Fi-

nally, the reason behind splitting COCO OoD proxy in L-20%-OoD and M-80%-OoD is

to clearly show that our hypothesis is in fact reasonable. However, further analysis is

needed for the images not contained in either of the subsets.

The main drawback of the entropy maximization training in comparison with other

anomaly segmentationmethodsmentioned in Sec. 3.1 is the inevitable impairment of the

original task performance, i.e., the semantic segmentation of the in-distribution images.

This comes from the fact that the model is being trained or fine-tuned on the mixture of

OoD proxy images and in-distribution images as defined by Eq. (3.3). The impairment

is illustrated with mIoU histogram of the Cityscapes Validation in Fig. 4.1. For the sake

of comparison, the model used for fine-tuning [35] trained exclusively on in-distribution

images of Cityscapes dataset has mIoU equal to 0.90. The models obtained while per-

forming our experiments have mIoU 0.87 regardless of which OoD proxy was used.

To summarize this discussion, we showed that the variability of the entropy max-

imization training is related to which exact OoD images are randomly sampled from

𝒟𝑡𝑟𝑎𝑖𝑛
𝑜𝑢𝑡 . In order to decrease the variability, a naive approach would be to increase the

number of OoD images that are randomly sampled before each epoch of the training

or even increase the number of training epochs. However, one must take caution with

such approaches due to the catastrophic forgetting [42]. We argue that the more careful

selection of the images included in 𝒟𝑡𝑟𝑎𝑖𝑛
𝑜𝑢𝑡 could be beneficial to the entropy maximiza-

tion training as shown in this section. One could also go even further and questionwhich

classes of the images should be included in𝒟𝑡𝑟𝑎𝑖𝑛
𝑜𝑢𝑡 if we consider𝒟𝑖𝑛 fixed. This approach
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would be very similar to the usual fine-tuning procedure where we deliberately choose

the training examples on which we want our starting model to be additionally trained.

For example, are the images of vehicles such as airplanes or various dishes, e.g, the first

column in Fig. 5.1(b), relevant OoD images in the context of road driving. This kind of

reasoning entails the question of what is the semantic segmentation network actually

learning during the entropy maximization training. Further analysis that goes beyond

the scope of this thesis is needed in order to gain a better insight and is left for the poten-

tial future work.

5.2 Neural Network vs. Logistic Regression

In this section, we further examine and analyze the proposed neural network meta clas-

sifier in comparison to the logistic regression used in [12].

We start our analysis with a concept that, in this context, we callmeta overfitting. We

consider this as the main drawback of applying meta classification in order to remove

false positive predictions regardless of the chosenmeta classifier. What wemean bymeta

overfitting is illustrated with Fig. 5.3. Meta classifier, regardless of the type (logistic re-

gression, neural network or something else), is a model that has to learn to remove false

positive OoD object predictions based on the various statistical and geometrical prop-

erties of the known OoD objects as described in Sec. 3.3. Clearly, one can immediately

notice that this entails a similar problem as the one encountered while performing en-

tropy maximization training where the generalization ability of the model depends on

the used OoD proxy as discussed in the previous section. Fig. 5.3 shows that the seman-

tic segmentation network after the entropymaximization training successfully segments

OoD objects, however, neural network and logistic regression meta classifiers attempt to

remove them. Formally, from the perspective of Eqs. (3.10) and (3.11), meta classifiers

correctly mark and remove them because those OoD object predictions are not marked

as OoD in the respective ground truth segmentation masks. However, we argue that

such overfitting behavior is not desirable. Note that the neural network meta classifier,

however, shows a greater generalization ability in the examples in Figs. 5.3 and 5.5.

Fig. 5.4 contains examples of neural network meta classifier outperforming logistic

regression. Note that these examples are meant to illustrate how neural network meta
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Figure 5.3: Examples of meta overfitting. In the first row, after the entropy maximization train-
ing, a semantic segmentation network predicted that the white traffic sign located at the leftmost
part of the region of interest (markedwith green color) isOoDobject. Both neural network and lo-
gistic regressionmeta classifiersmarked that OoD object prediction as false positive and removed
it, although, neural network meta classifier kept a few barely visible pixels marked as OoD (and
hence kept the OoD object prediction). In the second row, semantic segmentation network pre-
dicted that the wooden beam is OoD object. Both classifiers marked a part of the OoD prediction
as false positive and removed it. Note that neither the white traffic sign nor the wooden beam are
marked as OoD in the respective ground truth segmentation masks.

classifier is more successful in removing false positive OoD object predictions. However,

we find that the neural networkmeta classifier especially outperforms logistic regression

when OoD object predictions consist of a very small number of pixels which is harder to

visually notice. Removal of such small OoD object predictions is the biggest advantage

over using logistic regression as a meta classifier. Fig. 5.5 illustrates examples where the

logistic regression outperforms neural network meta classifier.

5.3 Interpretability of Neural Network Meta Classifier

In general, we can consider a neural network as a black box for which we have no ex-

act knowledge of its inner workings. On the other hand, linear models such as logistic

regression can be analyzed with methods such as Least Angle Regression (LARS) [32].

The main idea is to analyze the impact of each hand-crafted metric on the performance

of logistic regression using LARS and evaluate its performance using the hand-crafted

metrics most correlated with the response. We can then observe how neural network

meta classifier responds to them. Fig. 5.6 shows LARS paths for ten hand-crafted met-

rics most correlated with the response of logistic regression, i.e., the ones which con-
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Figure 5.4: Examples of neural network meta classifier outperforming logistic regression. In
the first row, false positive OoD object prediction in the middle of the ROI is removed by neural
network meta classifier, however logistic regression meta classifier does not remove it. In the
second row, semantic segmentation network predicted OoD object near the blue car, most likely
due to the contours drawn by the shadow being mistaken as object boundaries. Neural network
meta classifier successfully removes it.

Figure 5.5: Examples of logistic regression outperforming neural network meta classifier. In
the first row, logistic regression meta classifier successfully removes OoD object predictions not
marked as OoD according to the ground truth segmentation mask (papers on the left and a plas-
tic bag on the right) while neural network meta classifier does not remove the plastic bag. We
find this interesting because in this example, neural network meta classifier shows a better gen-
eralization ability. In the second row, segmentation network marks part of the road as OoD. It
is successfully removed by logistic regression while the neural network meta classifier does not
remove it.

tribute themost in classifying OoD object predictions according to Eqs. (3.10) and (3.11).

Fig. 5.6(a) shows LARS path for the hand-crafted metrics constructed from the output of

semantic segmentation network using the entropy threshold 𝑡 = 0.3 for which authors

in [12] showed that it yields the best meta classification performance. However, the en-
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(a) LARS path for the entropy threshold 𝑡 = 0.3 (b) LARS path for the entropy threshold 𝑡 = 0.7

Figure 5.6: LARS paths for the hand-crafted metrics constructed from the output of a semantic
segmentation network. Note that we apply LARS on the hand-crafted metrics obtained with the
entropy threshold 𝑡 = 0.3 and 𝑡 = 0.7 and display the top ten hand-craftedmetricsmost correlated
with the response of logistic regression. A detailed description of the hand-crafted metrics can
be found in [12].

tropy threshold 𝑡 = 0.7 results in the best overall anomaly segmentation performance

and Fig 5.6(b) shows LARS path for the hand-crafted metrics obtained while using such

threshold.

One can certainly interpret LARS as a way of sorting the hand-crafted metrics based

on the impact on the response of logistic regression. We are interested in the values of

AUROC and AUPRC metrics when we train meta classifiers on the subsets of the hand-

craftedmetrics dataset𝜇. First, we take a subset of𝜇 that contains only values of themost

correlated hand-craftedmetric according to LARS, i.e., �̂�(road|�̂�) in Fig. 5.6(b). Then, we
add the second most correlated hand-crafted metric according to LARS to the previous

subset and so on. We accumulate the hand-crafted metrics in order in which they are

given by LARS and evaluate AUROC and AUPRC. We perform the same process with

neural network meta classifier. Fig. 5.7 shows the resulting graphs regarding AUROC

and AUPRC metrics.

One can immediately notice that in Fig. 5.7, the neural network meta classifier be-

haves in the similar manner as the logistic regression meta classifier. For the logistic

regressionmeta classifier, after we take a subset of 𝜇 containing 21most correlated hand-

crafted metrics according to LARS, adding remaining hand-crafted metrics results in lit-

tle to no improvement in performance. We can see that the neural network meta classi-

fier exhibits a similar behavior, although in more unstable manner. The obvious differ-
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Figure 5.7: Performance comparison of logistic regression meta classifier and neural network
meta classifier when trained on subsets of the hand-crafted metrics dataset 𝜇. Note that the total
number of hand-craftedmetrics is equal to 75. For each value𝑁𝑚 on the x-axis, we train themeta
classifiers on the subset of 𝜇 such that we take the first𝑁𝑚 metrics showing the most correlation
with the response according to LARS.

ence in performance can be most likely attributed to the fact that neural network meta

classifier is more expressive and better aggregates the hand-crafted metrics. We argue,

at least from what can be seen in Fig. 5.7, that the hand-crafted metrics having the most

impact on the performance of logistic regression meta classifier also do so in the case of

neural networkmeta classifier. However, it is questionable if our observation depends on

the used hand-crafted metrics dataset 𝜇. Further evaluation is needed in order to show

that such claim holds, e.g., performing the entropy maximization training and crafting

𝜇 numerous times followed by the evaluation shown in Fig. 5.7.

Finally, the reasonwhy using a neural network instead of logistic regression results in

a significantly better performance as shown in Table 4.3 and Fig. 4.2 is based on the fact

that neural network is a nonlinear model and it is more expressive due to the increased

number of parameters as shown in Table 4.2 which means it can better approximate

an arbitrary function. The main drawback is the loss of interpretability as mentioned in

Sec. 3.4. It is questionable if the loss of interpretability is in fact a drawback. For exam-

ple, in the safety critical environments such as road driving where autonomous driving

systems are employed, one could argue that it is more important that the meta classifier

performs as accurately as possible than to be as interpretable as possible. This kind of

opinion is clearly present in the current state-of-the-art solutions for many other tasks

where neural networks are employed. The only difference in our case is that this is a rare

occasion were we have ability to choose between a model that is interpretable and has a

solid performance and a model that is not interpretable and offers a significantly better
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performance than the interpretable one. In complex tasks such as semantic segmenta-

tion, we do not have that kind of a choice due to the fact that traditional interpretable

methods are not of a great use in the complex scenarios such as road driving. Neverthe-

less, it is up to the system designer to decide what option is more favorable in a given

scenario.
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6 Conclusion

In this thesis, we explored the anomaly segmentation method called entropy maximiza-

tion. Using such method can increase the network’s sensitivity towards predicting OoD

objects and can result in a substantial number of false positive predictions [12], hence the

meta classification post-processing step is applied in order to improve network’s ability to

reliably detect OoD objects. We proposed a modification of the original meta classifica-

tion procedure described in [12] where we substitute a logistic regression meta classifier

with a neural network meta classifier. Our experimental results show that employing a

neural network meta classifier results in a significantly better performance in compar-

ison to logistic regression meta classifier. We presented additional analysis of our pro-

posed modification which examined the potential model architectures and compared it

to the logistic regression.

The main advantages of using a neural network meta classifier is significantly im-

proved ability of detecting false positive OoD object predictions, especially the ones con-

sisting of a very small number of pixels. Also, a neural network meta classifier exhibits

a greater generalization ability in comparison to the logistic regression meta classifier.

A potential drawback of using a neural network as a meta classifier is the loss of inter-

pretability. Whether interpretability or performance ismore favorable in a given scenario

is up to the system designer to decide.

Furthermore, we provided additional analysis of the entropy maximization training

which showed that such method heavily relies on the used OoD proxy containing OoD

images and in order to ensure its effectiveness, cautionmust be takenwhen choosing im-

ages that are going to be included in such proxy. Our experimental results demonstrated

that certain OoD proxy images can be more or less beneficial to the entropy maximiza-

tion training in terms of how well can a semantic segmentation neural network detect
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OoD objects. Even though we provided additional analysis of the entropy maximization

training, amore comprehensive analysis is needed in order to gain a better insight in how

OoD proxy should be constructed in order to ensure a reasonable OoD detection perfor-

mance. Also, it would be interesting to see how meta classification can be applied as a

post-processing step of the other anomaly segmentationmethods. We leave this ideas for

the potential future work.
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Abstract

Uncertainty of image segmentation regarding

out-of-distribution samples

Jurica Runtas

Semantic segmentation is a computer vision task in which each pixel of an image is

assigned into one of the predefined classes. Deep neural networks (DNNs) are a contem-

porary solution for such task and are usually trained to operate on a predefined closed

set of classes. In open-set environments, it is possible to encounter anomalies, i.e., se-

mantically unknown objects. Road driving is an example of such environment in which,

from a safety standpoint, it is important to ensure that a DNN is able to indicate when

it is operating outside of its learned semantic domain. One of the methods used for that

purpose is entropy maximization paired with a post-processing step called meta classifi-

cation which increases the reliability of anomaly detection. We propose a meta classifi-

cation approach that significantly improves the reliability of anomaly detection in com-

parison to the original approach by substituting logistic regression meta classifier with

a lightweight neural network meta classifier. We analyze its performance and examine

potential model architectures, advantages and drawbacks of using it instead of logistic

regression. Furthermore, we additionally evaluate the entropy maximization and show

that caution must be taken when using it in practice in order to ensure its effectiveness.

Keywords: computer vision, semantic segmentation, anomaly segmentation, entropy

maximization, meta classification, autonomous driving systems, open-set environments
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Sažetak

Nesigurnost segmentacije slike s obzirom na uzorke izvan

distribucije

Jurica Runtas

Semantička segmentacija je zadatak računalnog vida u kojem se svaki piksel slike

dodjeljuje u jednu od unaprijed definiranih klasa. Duboke neuronske mreže (DNM) su

suvremeno rješenje tog zadatka i obično su trenirane tako da rade na zatvorenom skupu

unaprijed definiranih klasa. U okruženjima otvorenog skupa, moguće je susresti ano-

malije, tj., semantički nepoznate objekte. Cestovna vožnja je primjer takvog okruženja u

kojem je, sa stajališta sigurnosti, bitno osigurati da DNMmože indicirati da operira izvan

svoje naučene semantičke domene. Jedna metoda koja se koristi za tu svrhu je maksi-

mizacija entropije uparena s korakom postprocesiranja zvanim meta klasifikacija koji

povećava pouzdanost detekcije anomalija. U ovom radu, predlažemo pristup meta kla-

sifikaciji koji značajno povećava pouzdanost detekcije anomalija u odnosu na originalni

pristup tako što zamjenjuje logističku regresiju s jednostavnom neuronskom mrežom

kaometa klasifikatorom. Analiziramonjegovu performansu i dajemopregled potencijal-

nih arhitektura, prednosti i nedostataka korištenja neuronske mreže umjesto logističke

regresije. Nadalje, dodatno evaluiramo metodu maksimizacije entropije i ukazujemo na

to da je potreban oprez prilikom korištenja te metode u praksi kako bi se osigurala njena

učinkovitost.

Ključne riječi: računalni vid, semantička segmentacija, segmentacija anomalija,mak-

simizacija entropije, meta klasifikacija, sustavi autonomne vožnje, okruženja otvorenog

skupa
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