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1. Introduction

In today’s world people are more and more interested in efficiency. One of the

topics that is present today is optimally spreading information. That means

the fastest and least costly methods for the propagation of information. This

concept has applications in various disciplines such as connecting people in social

networks or in multi-robot systems for spreading information about the system.

In mathematical formulation, this concept belongs to graph theory problems. In

connected graphs, there is a way to select nodes that can spread information to

all other nodes in a graph. The optimal solution for such a graph is a minimum

independent dominating set (MIDS).

MIDS is one of the problems in the field of graph theory which is an NP-hard

problem. That means it can only be solved in exponential time (not in polynomial

time). That is why most researchers today are trying to find new ways to determine

which set in a graph could be MIDS. While it is a complex problem to find a

solution, once there is a solution it is not complex to find whether it is a correct

solution or not. NP-hard problems with that property are defined as NP-complete.

Recently the broader population was made familiar with neural networks by

the introduction of Chat-GPT. A unique type of neural network is called Graph

Neural Network (GNN) which has applications in vast areas of recent research

such as physics simulations (Sanchez-Gonzalez et al., 2020), detecting fake news

on social media (Monti et al., 2019) and systems for recommending a large number

of items to lots of users (Eksombatchai et al., 2017). According to a paper by

Pontoizeau et al. (2021) it is also possible to solve combinatorial graph problems

using Graph Neural Networks (GNN). They used a GNN structure to determine

the solution to the maximum independent set problems which is a problem similar

to MIDS. They achieved scores above 800 and even up to 968 on a graph with

2004 nodes. This means they found a set of 968 independent nodes. The success

of their results motivated us to apply GNNs to solving MIDS and explore how

different parameters affect the feasibility of the solution.
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In this thesis, we will first take a look at the theoretical background of MIDS

and its applications in the real world by also mentioning different approaches

to solving MIDS. Secondly, we will explain what GNNs are and which problems

can be solved by the implementation of a GNN. Furthermore, we will provide an

approach in which we attempt to solve the MIDS problem using GNN. Lastly,

we will show results by comparing different structures and parameters and make

some comments about further possibilities and improvements.
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2. Minimum independent dominating

set

A lot of things in today’s world can be represented as graphs such as social media

or maps. Graphs consist of nodes that are connected by edges. Egdes can be

either directed or undirected. A directed edge has a direction from one node to

another, while an undirected edge suggests a bilateral connection. If all edges

of a graph are undirected then we are talking about an undirected graph. The

neighborhood of a node in a graph consists of all nodes to which that node has

an edge. Additionally, a graph can be weighted or unweighted. If all edges of a

graph are treated the same then the graph is unweighted. In weighted graphs,

edges have weights that can be comprehended as costs or the importance of each

connection. A graph whose nodes are connected in a way that there is a path

from each node to every other node is defined as a connected graph.

Having an undirected and connected graph G with a set of vertices V and edges

E we can define a dominating set D ⊆V where for every vertex in set V \D there

is at least one adjacent vertex from set D. Independent set I is a subset of vertices

V where each pair of vertices does not contain the same edge. In other words,

an independent set is the one in which no two vertices are adjacent. Combining

two previous statements about dominating and independent sets we can define an

independent dominating set (IDS) as a dominating set D with a constraint that it

is also independent.

For every IDS in a graph, there is a set that contains the smallest number of

vertices. That set is called the minimum independent dominating set (MIDS).

Figure 2.1 shows the visual representation of dominating set and independent

set. By combining those properties we get an independent dominating set. All

independent dominating sets of this graph are shown in Figure 2.2. It can be seen

that the minimum number of nodes needed to form the IDS is 2. Because of that,

it can be concluded that the first two graphs in Figure 2.2 are the solution to the

3



(a) Dominating set (b) Independent set

Figure 2.1: Dominating vs independent set

MIDS problem, while the third graph has more nodes in solution and consequently

is not MIDS.

2.1. MIDS applications

Finding a solution to the MIDS problem can be useful in many areas. By identifying

nodes that make the MIDS, the information can be spread to all nodes in the

graph in the most efficient way. That is because every node in the graph that is

not in MIDS is connected to at least one node that is in MIDS. For example, in a

Figure 2.2: Independent dominating set
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large multi-robot system, information about the object of interest can be spread

by identifying MIDS. Every robot can be viewed as a node and the whole system

can be represented as a graph. Edges in the graph symbolize communication

between robots. The master of the whole system (a central computer) only needs

to spread information to robots which make the MIDS and those robots will

spread information to all other robots in a single communication step. Similar

to multi-robot systems are sensor networks which consist of sensor nodes that

communicate the measured values among themselves. To spread information to

all nodes or retrieve sensor data at the least expense, it is useful to know the

MIDS of a given network. Another and more recent application of MIDS is related

to suppressing the COVID-19 epidemic. Wang et al. (2021) have introduced

minimum dominating set as observer nodes to stop the epidemic spreading in the

most cost-efficient way. Shen and Li (2010) have shown that MIDS can be used for

multi-document summarizing as an alternative to more used approaches. Every

social network can be represented as a huge graph where every node is one account

whereas edges are connections between them. Having a solution to the MIDS of

that network can be used for the swift and efficient spread of information.

2.2. MIDS approaches

In recent times there have been a lot of different approaches for finding the solution

for MIDS in the shortest time. This problem is challenging because it is an NP-

hard problem. To phrase it differently, the solution to the MIDS problem can

only be found in exponential time not in polynomial time as it was noted in the

article by Grandoni (2006). That means that for larger graphs, time complexity

rises exponentially which can lead to massive problems when handling near real-

time systems. Because of that, there have been a lot of different approaches to

solving this problem in the fastest possible time. While some researchers chose

the approach that includes greedy algorithms such as GRASP (Wang et al., 2017),

others came up with different methods such as the local search algorithm in the

k-neighborhood (Haraguchi, 2018) and the branch-and-reduce algorithm used by

Gaspers and Liedloff (2012). Another alternative technique was done in a master

thesis by Domislović (2022) who used a non-exact genetic algorithm to calculate

MIDS. His solution worked perfectly on graphs up to 10 nodes, but with larger

graphs, the accuracy was lower.

As there are a lot of combinatorial problems in graphs similar to MIDS, there
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have been a lot of attempts to solve them. One similar problem is the maximum

independent set. Blum et al. (2015) approached solving this problem by using

bio-inspired algorithms called FrogCOL and FrogMIS. Maximum independent set

was also the topic of an article by Pontoizeau et al. (2021) in which they used a

graph neural network to solve this problem. They used a combination of GIN and

Conv1D layers in their GNN while this thesis uses GAT and Linear layers.
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3. Graph neural networks

3.1. Neural networks

Nowadays, more than ever, neural networks are being studied and utilized in a

wide range of applications like image recognition for autonomous driving and

pattern recognition on social media sites. Neural networks are a bio-inspired

concept that was formed around the mid-20th century to formulate an artificial

structure based on the structure of the human brain. The structure of a neural

network includes the input layer, hidden layers, and the output layer as shown in

Figure 3.1. Connections between them are trained to determine the weight of each

neuron in one layer to each neuron in the following layer. The weight is a term

that describes the importance of a connection and by training a neural network

the weights are adjusted to give the best possible result on the output. The input

Figure 3.1: Neural Network - taken from https://www.geeksforgeeks.org/artificial-neural-

networks-and-its-applications
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layer contains features that are used to describe an object of interest. For example,

when talking about image processing, features can be color or gradient between

pixels. Every neural network has multiple features as inputs to help it to make

correct predictions. The output layer of a neural network contains predictions.

When talking about supervised learning, those predictions are compared to the

data’s true label. By comparing prediction and labels through the loss function, the

neural network trains to minimize the loss and produce more accurate predictions.

To train a neural network it is needed to collect a lot of data on which the model

is trained.

3.2. GNN

Figure 3.2: Graph Neural Network - taken from

https://www.datacamp.com/tutorial/comprehensive-introduction-graph-neural-

networks-gnns-tutorial

Graph neural networks are a type of neural networks which are specialized for

working with graphs. They can take a graph as an input and give it as an output.

The structure of a GNN is shown in Figure 3.2. A lot of points of interest can be

represented as graphs. For example, a picture is a graph in which every pixel is a
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node and adjacent nodes compose edges, a molecule can be described as a graph

with atoms being nodes and bonds being edges.

Every graph can be defined with a square matrix that has a size of n, where n

is the number of nodes in a graph. Every row and every column represents one

node. That matrix is called the adjacency matrix. Each field in the adjacency

matrix is either one or zero depending on whether there is an edge between those

nodes. When looking at the graph in Figure 3.3, the adjacency matrix looks like

this:

A =



















0 1 0 1 0

1 0 1 0 1

0 1 0 0 0

1 0 0 0 1

0 1 0 1 0



















. (3.1)

For undirected graphs, the adjacency matrix will always be symmetric and if there

are no loops in a graph (if no node is connected to itself), the diagonal of an

adjacency matrix will contain all zeros. Representing graphs with an adjacency

matrix can be quite inefficient. As the size of the graph increases, the associated

adjacency matrix size increases with a square of the number of vertices. An

adjacency matrix is usually a sparse matrix which means it mostly has a lot of

fields that contain zero. Because of that, there are other ways to depict a graph.

One such way is called the adjacency list. It is a list that contains a list for every

node that contains all nodes connected to that node. On the graph in Figure 3.3

the adjacency list looks like shown in table 3.1. This way graphs can be stored in

memory more efficiently.

Table 3.1: Adjacency List corresponding to the graph in Figure 3.3

Vertex Adjacent Vertices

1 2, 4

2 1, 3, 5

3 2

4 1, 5

5 2, 4

3 types of classification tasks can be performed on graphs: node, edge, and

graph classification. When talking about node classification we are talking about

the property of each individual node in the whole graph. An example of this classi-

9



Figure 3.3: Graph with 5 nodes

fication would be categorizing different words in a document. Edge classification’s

task is to determine to which class each connection belongs. For example, if an

edge is a part of the shortest path from one node to another. Graph classification

is used for classifying a whole graph such as in chemistry for determining whether

a molecule is toxic or not.

Every graph can be described with certain features. Features can be associated

with nodes, edges, or the graph as a whole. For example, one node feature could

be the number of adjacent nodes. Edge feature could be if an edge is directed

or undirected and for a whole graph a feature can be the number of nodes in a

graph. Depending on which problem needs to be solved, different features are

used. Those features are passed to the first hidden layer and the feature vector is

transformed into an embedding vector.

When talking about learning in graphs there has to be a way to spread

information throughout the graph. GNNs are specific in a way that the information

spreads between nodes not just depending on the layers of the network but also

depending on the input graph. The term for that is a message passing by which

every node gets information from all its adjacent nodes. The most common type

of information gathering is called aggregation. Aggregation sums up embeddings

of all adjacent nodes and stores them for the next iteration after passing them

through an update function. That update function is different depending on which

type of GNN layer is used. Other types of information gathering include average

calculation or determining the maximum value.

There are many types of GNN layers. According to Daigavane et al. (2021)
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these are the most popular layer types:

• GAT - Graph Attention Network (Veličković et al., 2018)

• GCN - Graph Convolutional Network (Kipf and Welling, 2017)

• GraphSAGE - Graph Sample and Aggregate (Hamilton et al., 2017)

• GIN - Graph Isomorphism Network (Xu et al., 2019)

Each of these layers has a different update function which calculates the embedding

for the next step.
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4. Approach

4.1. Environment

In every thesis, it is important to choose the right working environment. For

training a neural network it is essential to have a high-performance graphic

processing unit (GPU) as it increases the efficiency of training a model by reducing

the time needed to make required computations. Training a neural network can

be brought down to linear algebra because it uses matrix multiplication. GPU is

most commonly used for loading and processing graphics on a computer display.

Processing computer graphics is also a linear algebra problem as it uses matrices

of pixels to produce a picture on the screen. Oh and Jung (2004) were one of the

first who used a GPU for training a neural network and concluded its superiority

against CPU (Central Processing Unit) computation. In this work, we used the

Jupyter Notebook on SRCE (cro. Sveučilǐsni računski centar) server for advanced

computing1 as the working environment. Advanced computing provides computing

infrastructure for solving computational resource-demanding problems. Working

on their server, users have access to a powerful GPU NVIDIA A100 with 40 GB

memory capable of solving demanding calculations in a faster time.

Jupyter Notebook is a platform for segmented coding with an interactive user

interface. The whole process from dataset generation to training and testing was

done using Python programming language. One of the most popular libraries for

working with neural networks in Python is called PyTorch. This library enables

users to perform tensor computations on GPU. In machine, learning tensors are

a data structure similar to arrays but specialized for usage in training machine

learning models as they can store multiple dimensions of data.

For testing purposes we used the Weights & Biases platform (Biewald, 2020).

This platform allows developers of neural network models to perform multiple

1https://www.srce.unizg.hr/en/advanced-computing

12



tests intuitively and gives them the ability to view and customize results.

4.2. Node and graph classification

As mentioned in Section 3.2, there are three types of classifications in graph

neural networks: node, edge, and graph classification. The task in this thesis

is to find MIDS by using GNN. Each node can be classified either correctly or

incorrectly, as a part of MIDS or not. Because of that, this is mainly a node type

of classification. Globally, on the graph level, each set in a graph can either be

MIDS or not. Because of that, there is also an argument to say this problem is

also a (sub-)graph classification.

4.3. The challenge of multiple solutions

MIDS is a complex problem to solve in graph theory. For any graph, there is

at least one, but mostly there is more than one MIDS. If we take all undirected

graphs up to 8 nodes we get just over 12000 graphs of which around 3100 have

a unique solution to the MIDS problem. With that in mind, the dataset can be

segregated to include only those graphs. By having a dataset formulated like that

and split into train and test datasets we later show that it is possible to train

a GNN to have a 95% accuracy on the test set. With that in mind, it can be

concluded that it is possible to train a GNN to find the MIDS on graphs. The main

problem with this approach is that a model trained in this way cannot consistently

find a correct solution on graphs with multiple possible MIDS solutions.

To overcome that challenge it is necessary to approach a problem differently.

As it is not trivial to train a neural network with multiple correct solutions here

are a few examples to undertake this challenge. One way is to expand the dataset

so that for every possible solution we have a graph. This means that if for one

graph there are 3 solutions to the MIDS problem, the dataset will have 3 instances

of that graph but every with a different solution. Expanding the dataset in this

way increases the number of graphs in the dataset from 12000 to 40000. Training

a model in this fashion is a bit confusing to the neural network. When the GNN

encounters the identical graph as before, the given correct solution will be different,

which leads to contradiction and inability of GNN training. By approaching this

problem using only one solution for every graph it is possible to train the neural

network without contradiction. For each graph, a single correct solution must be

13



selected for training. The drawback of this approach is that while the network

can be trained to find a solution to the problem it will find a specific one and will

not be able to find other solutions. To overcome this, we needed to formulate a

dataset differently.

4.4. Dataset generation

One of the most important steps in neural network training is to choose an

adequate dataset. As the number of graphs increases exponentially with a larger

number of nodes, for training the number of graphs has to be limited. In this thesis,

it was chosen that the limit is around 40000 graphs. Chosen dataset contains all

graphs up to 8 nodes including another 30000 graphs of size 9. That means the

size of the dataset is just above 42000 or to be precise 42111 graphs.

4.4.1. Features

For every dataset, it is important to choose the right features that represent each

piece of data. Features need to be chosen to represent data uniquely so that the

model can be trained as adequately as possible. Features can be assigned to nodes,

edges or graphs. As this is mainly a node classification all features are associated

with nodes:

• degree

• degree centrality

• betweenness centrality

• disjunction value

• average neighbor degree

• closeness centrality

• 2 random features.

Each of these features describes each node in each graph in a certain way. The

degree of every node is a number that represents the number of edges connected

to that node. This feature is important because a node that has a higher degree is

more likely to be a part of the MIDS. Degree centrality is similar to a degree but

normalized in the range of 0 to 1 in a way that 1 is the value of most connections

to any node in a graph. As mentioned before for a degree, it is valuable in a way

14



that higher values have a higher probability of formulating the MIDS. Betweenness

centrality describes how central each node is when looking at the whole graph.

It is a normalized value that represents how many shortest paths pass through

each node. The shortest path is the one that needs a minimum number of hops

between nodes to get from one node to another. Disjunction value is a more

complex feature that can help a graph neural network find a correct solution.

It utilizes properties of the adjacency matrix (A) and support vector. Support

vector d is a vector in which i-th value is 1 if vertex i is included in the potential

MIDS, otherwise 0. It can be shown that if (A+ I) ·d = 1 the set corresponding

to d is certainly MIDS. Even though the opposite does not hold, by finding a d

that optimizes the given relation, we can get a heuristic for a probability that

the vertex is included in MIDS. The average neighbor degree is a feature that

describes the neighborhood of each node. It is a number that provides the average

degree for every node in the node’s immediate neighborhood. This value when

combined with values like degree also shows how likely the node is to be a part

of the MIDS. Closeness centrality is a feature whose value is the reciprocal value

of the average shortest path from a node to every other node. It is given with a

formula: C(u) = n−1

∑
n−1

v=1
d(v,u)

, where n is number of nodes, u is the current node, and

d(v,u) is the shortest path between two nodes.

Random features were added as a random position in 2D space such that one

random feature is the abscissa coordinate and the other is the ordinate coordinate.

According to Sato et al. (2021), this helps in strengthening a GNN by giving every

node a distinct value. The easiest way to visualize this is in a symmetrical graph

such as the one shown in Figure 4.1. This graph is symmetrical and cyclical which

means that every node in the graph will have the exact same feature values for any

deterministic feature such as degree or centrality. Furthermore, this graph has 3

correct solutions to the MIDS problem. The solution can be any one of the nodes.

When talking solely about symmetries, Figure 4.2 shows one symmetrical graph

with 2 correct solutions. A solution can be either node 2 or node 3. Without

having a random feature, nodes 2 and 3 would have the exact same feature values

as would nodes 1 and 4. With that in mind, random features can steer the GNN

in a certain direction to find a solution.

Table 4.1 shows the relative time needed for the calculation of each of the

features. According to that, the most complex feature to calculate is betweenness

centrality. Disjunction value takes the second most time of chosen features. This

was anticipated as to calculate this value it is needed to apply matrix multiplication
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Figure 4.1: Triangle graph

Table 4.1: ”Relative time required to calculate the features

Feature Time [%]

degree 1.0

degree centrality 2.0

betweenness centrality 46.7

disjunction value 25.6

random features 2.8

average neighbor degree 6.1

closeness centrality 15.5

which for larger matrices can take a lot of time.

Figure 4.3 shows tests conducted on the test dataset with various used features.

As expected, the best-performing model is the one that contains all features.

When looking at the model without betweenness centrality, a feature that is the

most complex in terms of time, it can be noted that the model still performs

well. The same applies to a model trained on data without the disjunction
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Figure 4.2: Symmetrical graph

Figure 4.3: Test accuracy with different features

value feature. Comparing this model to the one without disjunctive value and

random, it’s evident that the random feature provides significant advantages for

17



(a) One solution (b) Other solution

Figure 4.4: MIDS solutions for symmetrical graph

this application. Looking at the simplest models, it can be noted that they perform

well even though they are much simpler.

4.4.2. Multiple solutions

As mentioned in Section 4.3, there needs to be an alternative approach for graphs

with multiple solutions to the MIDS problem. In this subsection two equally good

methods will be presented.

When training a neural network in a supervised manner it is essential to have

correct labels which represent true classifications of a certain subject. In this

case, we need to distinguish which nodes are a part of MIDS and which are not.

Nodes that are part of MIDS are labeled as 1 and those that are not are labeled

as 0. If looking at the graph in Figure 4.2, as mentioned there are two possible

solutions. One solution is node 2 and the other solution is node 3. These solutions

are labeled for use in GNN in the following way:

Figure 4.4a: [0, 1, 0, 0]

Figure 4.4b: [0, 0, 1, 0]

Each field in an array represents one node and the value represents whether it is

a part of the MIDS or not.

One method is to code all the solutions into one array with a size equal to the

number of nodes. The coding method could vary but the easiest is binary coding.

All solutions are arranged in a matrix where rows represent each node in a graph

and each column is a solution. The coded solution is then the decimal value of
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Table 4.2: Binary coding

Node Solution 1 Solution 2 Coded solutions

1 0 0 0

2 1 0 2

3 0 1 1

4 0 0 0

such arranged all possible MIDS solutions. Solutions for the graph in Figure 4.2

are listed in Table 4.2 alongside the corresponding coded decimal value. This way,

the dataset can be loaded in memory as a batch which makes it more memory

efficient. While this approach is usually superior to not using batches, it does

not work in this case because of multiple possible solutions to the MIDS problem.

Even if the labels are loaded as a batch, during training they would need to be

decoded back to binary values. This way the training would be as slow as without

using batches.

The other method which is used in this work is to concatenate all the solutions

in a row vector. This way it is possible to access all the possible MIDS solutions

for a certain graph. If looking at the graph in Figure 4.2, the labels for it would

in this case be: [0,1,0,0,0,0,1,0]. Knowing the number of nodes in a graph it

is easy to split this vector and access each solution individually while training a

model. Same as for the previous method, this does not work with batches.

Batch in neural network terms is a hyperparameter that defines the number of

examples used in each training iteration (Developers, 2024). In graph problems,

each batch includes multiple graphs and their corresponding labels which are

interpreted as one bigger graph. Figure 4.5 shows what a batch containing two

graphs would look like. A1 and A2 are adjacency matrices of two graphs while X1

Figure 4.5: Batch of graphs - taken from

https://pytorch-geometric.readthedocs.io/en/latest/get started/colabs.html

and X2 are their corresponding features. X ′
1
and X ′

2
are outputs of a graph neural
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network that contain predictions for each node. The reason why this is a faster

way of training a GNN model is, as mentioned in Section 4.1, that GPUs are great

at computing linear algebra of huge matrices. Because of that it is much more

efficient to load one big matrix into the GPU instead of loading each graph as a

separate matrix one at a time.

4.5. GNN structure

One of the most important parts of training a neural network model is to choose

the adequate architecture. This is not a trivial choice as there are a lot of things

to consider. Firstly, the layer types have to be selected. As mentioned in Section

3.2, there are a few popular GNN layers that are most used today. The structure

in this work was inspired by Fey and Lenssen (2019) and their example of GNN

usage on the PPI dataset2. PPI (Protein-Protein Interactions) is a dataset of

different protein molecules which are represented as graphs. Considering that

the dataset used in this work also consists of multiple graphs, choosing a similar

type of structure was implied. The structure utilizes GAT architecture which is

somewhat more complex than the others mentioned in Section 3.2. In addition to

GAT architecture, each layer contains a simple linear layer that is combined with

GAT.

Another parameter crucial for better performance of a neural network model

is the number of layers. While in general, each layer of a neural network can

contain different architecture, in this work it was constrained that every layer was

the same, for simplicity of testing possible architectures. Initially, the number of

layers for this task was set to 3 as was in the PPI example, however, while testing

having an additional layer endorsed better results. This can be seen in Figure

4.6 where performance for models with different numbers of layers was tested.

Additionally, Figure 4.7 shows the time taken throughout training for each of the

models. While having 2 layers is the fastest, its performance is substantially worse

than others. When looking at all plots on Figure 4.6, the architecture with 4 layers

stands out as better than all others. While it is comparable with architecture with

3 layers it still performs better. The only limitation is that it is slower to train so

the decision is to be made whether time or accuracy is more important. As seen

in Figure 4.7, the time for training an epoch grows linearly with the addition of

2htt ps : //github.com/pyg− team/pytorchgeometric/blob/master/examples/ppi.py
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Figure 4.6: Test accuracy for different numbers of GNN layers

Figure 4.7: Epoch time for different numbers of GNN layers

layers.

Other important parameters to consider are the learning rate and the number

of hidden channels. Learning rate, as the name suggests, is a parameter that

defines how fast the model trains. In machine learning terms it is a parameter

responsible for the rate at which weights of a model change during gradient descent.

A bigger learning rate implies more rapid and oscillatory learning while having a

smaller learning rate leads to slower but smoother learning. Usually, the learning

rate has to be small enough to approach a minimum but large enough so it can

escape local minimums and perform faster. The number of channels in each hidden

layer defines the dimension of an embedding vector. Having more neurons in

theory leads to better performance of a model but that doesn’t always have to
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Figure 4.8: Test accuracy with regards to learning rate and number of hidden channels

be true. That is because as model complexity increases it has more weights to

train. This can complicate model training and increase the time needed to reach

a desired result. Additionally, increasing the number of hidden channels increases

training time for each epoch while the learning rate doesn’t have much impact on

training time. Figure 4.8 shows conducted tests with varying values for learning

rate and number of hidden channels. While all models performed in a similar

range (88% to 90%), one stood out as the best of all tested configurations. The

only model that gave results above 90% on the test set is the one with 256 hidden

channels and a learning rate of 0.0001. In Figure 4.8 that model is shown as a

yellow line.

Figure 4.9: Epoch time with regards to learning rate and number of hidden channels
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Figure 4.9 shows the time taken for one epoch for each of the models shown in

Figure 4.8. As previously said, a higher number of hidden channels increases epoch

time while the learning rate doesn’t have much impact. In the figure, there are 3

separate groups of models. In each of 3 groups learning rate values are 0.00002,

0.00004, and 0.0001. The group of models that have 128 hidden channels is the one

around 320 seconds, models containing 256 hidden channels have an epoch time

of around 340 seconds and the others (which are around 450 seconds) are the ones

with 512 hidden channels. When looking at the plots there is a clear separation

between models containing 512 hidden channels and others. From this experiment,

it can be concluded that having 512 hidden channels is too time-consuming.

4.6. Training and testing

4.6.1. Training

Training is the core of every successful neural network model. Training a model

is a term that is used for describing a process of adjusting weights based on the

current model output and current weights of a system. As mentioned in Section

4.4, it is important to have a large number of examples in a training dataset.

Those examples are crucial as by comparing model output and each example,

the measure is formed which tells a model how wrong its prediction is. This is

done in every iteration and that measure is called training loss. Having a training

loss is just a part of the training process. For adjusting the weights of a model

an optimizer is needed. Optimizer is a specialized function for calculating the

gradient descent.

In this work, optimizer Adam was used which is one of the most popular

optimizers nowadays. This optimizer is an extension of a stochastic gradient

descent which was introduced by Kingma and Ba (2017). As for the loss function,

none of the existing ones could be implemented for this problem. As mentioned

in Section 4.4.2, this dataset contains labels configured in a peculiar way. For

that reason, it was necessary to formulate a custom loss function that can handle

data formulated in such a way. The loss function is based on the function

BCEWithLogitsLoss. This function is a combination of BCELoss and a sigmoid

function. BCELoss (Binary Cross Entropy Loss) is a cross-entropy loss function

that is specialized for working with binary classification (Ansel et al., 2024). To

implement and reconfigure this function it is needed to override its f orward()
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function. The function is shown on Listing 4.1. The function is constructed in a

way to iterate over all possible correct MIDS solutions and preserve the loss which

is the smallest. In this way, it is not limited to one solution and for one training

iteration, it considers just the one that is the closest to any MIDS solution. In the

function, variable input represents a tensor that contains a prediction and target

is an array that contains all solutions in one row array. Because of the chosen

way in which the dataset labels are formulated, this array of solutions needs to be

split into multiple arrays that have the same size as the number of nodes in the

graph. After this is done it is possible to perform the algorithm which returns the

minimum loss for a given graph.

Listing 4.1: Custom Loss Function in PyTorch

1 class CustomLossFunction(torch.nn.BCEWithLogitsLoss):

2 """ Custom loss function based on BCEWithLogitsLoss """

3 def forward(self , input: Tensor , target: Tensor) -> Tensor:

4 tens = torch.split(target , input.size(dim =0))[0]

5 loss = F.binary_cross_entropy_with_logits(input , tens , self.weight ,

pos_weight=self.pos_weight , reduction=self.reduction)

6

7 for tens in torch.split(target , input.size(dim =0)):

8 new = F.binary_cross_entropy_with_logits(input , tens , self.weight ,

pos_weight=self.pos_weight , reduction=self.reduction)

9 if new.item() < loss.item():

10 loss = new

11 return loss

4.6.2. Testing

To know if a model is trained correctly it needs to be tested. Testing can be

performed in different ways and is used to evaluate the performance of a model.

The dataset is usually divided into one for training and the other for testing. A

training dataset is used for training a model while a test dataset is composed of

data that the model does not use for training. Having a test dataset is essential

for determining whether the model performs well on just training data or all

data as wanted. In other words, does the model have the ability to generalize on

previously unseen data? The most common testing measure is loss, calculated

during training for each example. This value is the average loss across all examples

in a dataset. This value is expected to approach zero at infinity for the training

dataset, but for the testing dataset, it should have a minimum value, which is the

optimal solution. Figure (4.10) shows one such example when training a GNN

model. The testing loss value (blue) is higher than the training one (red), as
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expected. Another and more interesting testing measure is the testing accuracy.

Figure 4.10: Loss function plot

Figure 4.11: Accuracy plot

That is a value that shows how correct the model is. To explain it differently, it

tells how accurately the model makes the correct prediction. This is usually a

value that is given as a percentage across a dataset. While the training accuracy

is also important, the testing accuracy is the one that is used for the correctness

of a model. Figure 4.11 shows a plot of accuracy throughout the training of one

of the models. The training accuracy (red) reaches higher accuracy levels than

the testing one (blue). This is expected because the model hasn’t seen examples

from the testing dataset during the model training. To test the accuracy of each

prediction it is necessary to check whether it is MIDS or not. This can be done in
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various ways, but certain criteria need to be met for a set of nodes to be MIDS.

The method implemented in this work is shown in Listing 4.2. Firstly, the set

of predicted nodes has to be the same size as the MIDS size. Secondly, the set

must be independent and dominating. If those criteria are met then the function

returns True, if any condition is not met it returns False.
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Listing 4.2: Function for checking if set of nodes is MIDS

1 def check_MIDS(A, candidate , target_value):

2 n = len(candidate)

3

4 # Candidate set is larger than MIDS size

5 if sum(candidate) > target_value:

6 return False

7

8 # Candidate set is not dominating

9 if not all((A + np.eye(n)) @ candidate >= 1):

10 return False

11

12 # Candidate set is not independent

13 for i in range(n):

14 for j in range(i+1, n):

15 if candidate[i] and candidate[j] and A[i,j]:

16 return False

17

18 #This case should never happen

19 if sum(candidate) < target_value:

20 print(f"Somehow we found an even smaller MIDS: {sum(candidate)}, {

target_value}")

21

22 return True
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5. Results

To determine if a model is successful it has to be tested on data it hasn’t seen

before. In training, the dataset is split into train and test datasets. In those

datasets, the examples are similar. In this case, they contain graphs of the same

sizes. The accuracy of a testing set is a great measure of the model’s performance.

Figure 5.1: Test accuracy plot

Figure 5.1 shows the best-performing model’s accuracy. This model has the

following structure:

Architecture - GAT + Linear

Number of layers - 4

Features - all

Number of hidden channels - 256

Learning rate - 0.0001

Number of graphs - 42,111
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The peak accuracy of this model on the testing dataset is 93.28%. That means

the model correctly determines the MIDS solution on 93.28% of selected graphs.

This accuracy was determined only by knowing the model output. If for a certain

node, the value of an output is positive that node is classified as a part of the

MIDS. However, there is an improvement to this measure. The output of the

model gives the certainty that a node is a part of the MIDS or it isn’t. This can

help other methods find the correct solution faster. Knowing the MIDS size of a

selected graph, the model’s output can be interpreted differently. By combining

those values, the prediction can be made by selecting the largest values from the

output. Let’s look at the example where the model output is [-0.9, -0.1, -0.4, 0.5,

-0.2]. The first measure which looks at just the model output would conclude

that the MIDS is [0, 0, 0, 1, 0]. However, knowing that the MIDS size must be

2, the second measure would determine the MIDS is [0, 1, 0, 1, 0]. Having that

knowledge the predictions become even more accurate.

5.1. Generalization

To test if a model can generalize even more, it is necessary to perform tests on

larger graphs. Generalization is a property of a model to make correct predictions

on data it has never seen before. As mentioned before, the model can generalize

on data from the testing dataset, but it is also important to test its performance

on graphs with more nodes. The model was trained on data up to 9 nodes and

Figure 5.2: Test accuracy plot
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has never seen larger graphs. Figure 5.2 shows the accuracy of the model on

graphs from 10 to 15 nodes. For each size, 10000 random graphs were used and

both interpretations of the model output are shown. As expected, the larger the

graphs get the less accurate the prediction is. However, when looking at output

interpretations, it is clear that the second interpretation works better. On larger

graphs, the difference is even clearer. When looking at the accuracy of graphs

with 15 nodes, the model output prediction accuracy is 26.27% while the accuracy

with knowledge of the MIDS size is 46.34%. That is almost twice as good as just

the model output.
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6. Conclusion

To conclude, in this thesis, the task was to train a GNN model to be able to

determine the solution to the MIDS problem. MIDS is a complex combinatorial

problem that has deterministic solutions in exponential time. Neural networks, and

specifically graph neural networks can help solve combinatorial problems in graphs.

The GNN model was trained on graphs up to 9 nodes. We showed that MIDS can

be found with great accuracy on graphs of up to 10 nodes. Increasing the number

of nodes in testing graphs results in less accurate results. The complexity of the

model can be decreased by excluding the most complex features. This comes at a

cost of accuracy but the dataset generation and model training would be faster.

The results shown in this thesis are promising and could possibly be improved by

implementing different GNN architectures or utilizing different features.
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Odred̄ivanje minimalnog nezavisnog dominantnog skupa primjenom grafovskih

neuronskih mreža

Sažetak

U ovome diplomskom radu razvijena je metoda za odred̄ivanje minimalnog

nezavisnog dominantnog skupa (MIDS) u općenitim grafovima zasnovana na

grafovskim neuronskim mrežama (GNN). Generiran je skup grafova s pripada-

jućim MIDS rješenjima koji je služio za treniranje modela GNN-a. Skupu grafova

pridružene su i odabrane pripadajuće značajke za svaki čvor koje mogu na jedin-

stven način opisati graf. GNN model treniran je na s različitim konfiguracijama

kako bi se pronašla ona s najboljim rezultatima. Na najboljem modelu zapaženi

su izvrsni rezultati na testnim podatcima s točnošću od preko 93%. Iako je model

treniran na grafovima s do 9 čvorova, može i generalizirati na većim grafovima.

Povećanjem broja čvorova na grafu točnost pronalaženja rješenja MIDS problema

pada. Ovim radom pokazana je mogućnost rješavanja MIDS problema primjenom

GNN modela.

Ključne riječi: MIDS, GNN, grafovi, neuronske mreže



Minimum independent dominating set calculation based on graph neural

networks

Abstract

In this thesis, a method for determining the minimum independent dominant set

(MIDS) in general graphs based on graph neural networks (GNN) was developed.

A dataset of graphs with associated MIDS solutions was generated and used to

train the GNN model. Each node in generated graphs was associated with a set

of features that together uniquely described each graph. The GNN model was

trained on different configurations to find the one with the best results. The best

model demonstrated excellent results on the test dataset with an accuracy of over

93%. Although the model is trained on graphs with up to 9 nodes, it can also

generalize on larger graphs. By increasing the number of nodes on the graph,

the accuracy of finding a solution to the MIDS problem decreases. This work

demonstrated the possibility of solving the MIDS problem using the GNN model.

Keywords: MIDS, GNN, graphs, neural networks
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