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1 Introduction

Recently, the widespread adoption of Large Language Models (LLMs) has revolution-

ized natural language processing, primarily with the emergence of large language mod-

els such as GPT models, PaLM, Llama, and others. For instance, ChatGPT, a tool based

on GPT models, has managed to attract over a hundred million monthly users in less

than a year [1]. By leveraging a massive number of parameters, ranging from tens of

millions to several billion, these models have demonstrated exceptional capabilities in

solving a wide range of natural language processing tasks. Despite their remarkable

abilities, LLMs come with certain limitations. One inherent issue is their reliance on

the knowledge they are trained on; once the model training is completed, the set of data

the model can use to generate responses to queries becomes fixed. Without continuous

retraining on "fresh" data, such models can quickly become outdated. Additionally, they

are often trained on a broad and publicly available set of "general" data, which may be

inadequate for queries from a specific domain. In situations where there is a gap in their

knowledge for any reason, LLMs extrapolate, producing incorrect but convincing state-

ments—a phenomenon now known as hallucination. In business domains, the limita-

tions of language models are particularly pronounced due to the nature of the data they

must use. Businesses and technology companies store critical information within inter-

nal documents, which constitute the foundational knowledge of the organization. Un-

like publicly available information, such internal data is excluded from the training pro-

cess of public LLMs, leading to a significant performance gap when it comes to queries

specific to a particular domain.

As one solution to these limitations, model fine-tuning can be applied. Model fine-

tuning involves using a previously trained language model and further training it on

a smaller dataset specific to a particular domain. This allows the model to adapt to spe-

cific business needs, reducing challenges arising from outdated or missing data. How-
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ever, this method is often time and resource-intensive, making the entire process costly.

Moreover, continuously fine-tuning themodel with the latest data is impractical (and of-

ten infeasible), especially for models with a substantial number of parameters working

with a large set of variable data. Consequently, there is a growing interest in a differ-

ent approach, based on information retrieval—Retrieval Augmented Generation (RAG).

First proposed by Lewis et al. in [2], this approach involves using external data stores in

real-time— at the moment of generating a response to a query—to finally obtain an an-

swer enriched with a combination of context and recent knowledge. Based on the user’s

query, relevant contextual information is retrieved, which is then merged with the user

input to create a richer query containing contextual information not otherwise available

to the LLM.

In business environments, where accessing internal information is often challenging, es-

peciallywhenworkingwith a knowledge database of substantial size, traditional keyword-

based search methods often fall short when it comes to retrieving specific and complex

information crucial for business processes. The keyword search can result in imprecise

or overly generalized results, slowing down access to necessary information. Managing a

large database of internal information requires more than a simple keyword search, and

advanced retrieval methods are often needed to identify and extract relevant informa-

tion from the abundance of data quickly. By combining the RAGmethod with the use of

LLMs, the integration of external sources of knowledge at the point of inference enables

more precise, faster, and more efficient access to information. Although the use of the

RAG method to enrich LLM models is still in development, available research suggests

that retrieval-based models can outperform traditional parameter-based models without

retrieval by using fewer parameters [3], can update their knowledge by swapping their

corpora for retrieval [4], and can provide citations to users to easily verify and assess

predictions [5, 6].
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2 Theoretical Overview

2.1 TheRetrieval AugmentedGeneration (RAG)Method

The method of Retrieval-Augmented Generation (RAG), originally proposed by Face-

book AI Research (FAIR) in [2], introduced a new way to enhance pre-trained language

models, especially for tasks that are specific to particular fields and domains. Although

RAG is a relatively new approach in the field of Natural Language Processing (NLP),

its impact is already evident through its integration into services like Bing Search [7],

highlighting not only its theoretical but also its practical capabilities.

Figure 2.1: RAG flow

The RAG method is based on the principle of in-context learning: the ability of a large

language model to leverage context within the prompt to create a better output [8]. In

contrast to classic LLM querying, where the input query is ingested directly by the lan-

guage model, RAG combines LLMwith a non-parametric data source that contains spe-

cific and up-to-date information. On a high level, this process involves several steps,

presented in 2.1 The user initially inputs a query into the question-answer (Q/A) sys-

tem, which then searches for relevant documents by sending the query to an external

data repository that serves as a contextual knowledge base that the LLM has not been
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previously trained on. The retrieved contextual information is then combined with the

initial user query to construct a new, enriched query for the large language model.

Figure 2.2: RAG architecture presented in [2]

In [2], the proposed RAGmodel consists of a parametric memory - a pre-trained seq2seq

transformer, and the non-parametric memory - a dense vector index accessed with a pre-

trained neural retriever. The RAG architecture, as depicted in 2.2, is built out of two

main components: the retriever and the generator. The retriever component plays a cru-

cial role in transforming the user’s text into vector forms, as well as the text of contextual

documents, effectively creating a searchable index. The retrieval process includes vec-

torizing the input text, searching for related and similar documents in the index, and

converting the vectors of retrieved documents back into textual form. The second com-

ponent, the generator, takes the user’s input query and the retrieved document text to

generate a new "prompt" for the large language model. Formally, RAG considers an in-

put sequence 𝐱 (the prompt) and uses this input to retrieve documents 𝐳 (text chunks),

which are used as context when generating a target sequence 𝐲. For retrieval, authors

in [2] use the dense passage retrieval (DPR) model, a pre-trained bi-encoder that uses

separate BERT models to encode queries (query encoder) and documents (document

encoder). DPR model follows a bi-encoder architecture:

𝑝𝜂(𝑧|𝑥) ∝ exp
(
𝐝(𝑧)⊤𝐪(𝑥)

)

𝐝(𝑧) = BERT𝑑(𝑧)

𝐪(𝑥) = BERT𝑞(𝑥)

6



where 𝐝(𝑧) is a dense representation of a document produced by a BERTBASE document

encoder, and 𝐪(𝑥), a query representation produced by a query encoder, also based on

BERTBASE. The retrieved document probability is proportional to the inner product of

query and document embeddings. The generator component 𝑝𝜃(𝑦𝑖 ∣ 𝑥, 𝑧, 𝑦1∶𝑖−1) is mod-

elled by a pre-trained BART model. Parametrized by 𝜃, the generator component gen-

erates a current token based on a context of the previous 𝑖 − 1 tokens 𝑦1∶𝑖−1, the original

input 𝑥 and a retrieved passage 𝑧.

In practice, implementations of theRAGmethod leverage advancements in vector databases

and LLMs such as GPTmodels. The retriever component ismost often a vector database,

which can store vector embeddings and perform similarity search. Advanced LLMs such

as GPT models are used as the generative component. These models are pre-trained on

a large amount of data, providing superior generation capabilities.

2.2 Vector Embeddings

Vector embeddings are central to the field of natural language processing (NLP) and the

development of large language models. They represent words, sentences, or documents

as high-dimensional vectors within a continuous vector space. Each dimension in the

vector space captures different aspects of themeaning or context of the text. These vector

representations make it possible to translate semantic similarity to proximity in a vector

space [9]. This is crucial for RAG systems; given a query, the system can quickly find and

retrieve passageswith similar semantic content by comparing the vector representations.

Embedding methods for textual data have greatly improved over the last decade, from

Figure 2.3: Simplified visualization of semantic similarity of vectors generated by word2vec [10]
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Google’s word2vec to transformer models. Word2vec model introduced the idea of dense

vectors, in which values are non-zero. Initially trained by Google on 100 billion words, it

used a neural network model to learn word associations from a large text corpus. Vector

representations created by the model encapsulate semantic similarities between words,

so words appearing in similar contexts have vectors that are close in the vector space, as

depicted in 2.3. Word2vec focuses on word-level representations and cannot indepen-

dently generate vectors for longer texts such as sentences, paragraphs, or documents. To

represent longer texts, the vectors of individual words can be aggregated, often by ap-

plying weightings to emphasize certain words over others. Current state-of-the-art em-

bedding models are based on transformer architecture introduced in [11]. Transformer

models like BERT and its successors enhance search accuracy, precision, and recall by

considering the context of each word to generate fully contextual embeddings. Unlike

word2vec embeddings, which do not account for context, transformer-generated embed-

dings incorporate the entire input text. This means that each instance of a word has a

unique embedding influenced by its surrounding text. These contextual embeddings

more accurately represent the multiple meanings of words, which can only be clarified

when viewed in their specific context.

2.3 Vector Databases

The rise of large language models has directly influenced the rise of vector databases.

This can best be observed through the star history on Github for several vector database

solutions; the graph in 2.4 shows significant growth following the initial release of Chat-

GPT in November 2022. The spike in interest emphasizes the increasing reliance on vec-

tor databases for handling thehigh-dimensional data required byLLMs. Vector databases

are a specialized category of database systems designed to handle high-dimensional fea-

ture vectors generated by embedding models. One of the main differences between vec-

tor databases and traditional Online Transaction Processing (OLTP) and Online Ana-

lytical Processing (OLAP) databases lies in the nature of the data they handle. OLTP

databases are designed for managing transactional data; they store the data in a row-

based formatwhere each row corresponds to a single record, and each columnwithin the

row represents an attribute of the record. This row-oriented storage architecture enables

fast access and per-record manipulation, making OLTP databases best suited for a high
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Figure 2.4: GitHub star history for popular vector databases

volume of short, atomic transactions (insertions, updates, and deletions). On the other

hand, OLAP databases are designed for analytical processing and data warehousing ap-

plications; they store the data in columnar format, where each column holds data for

a specific attribute across many rows. The column-oriented storage structure primarily

enhances read performance, enabling large-scale analytical queries with complex aggre-

gations and joins. Both OLTP and OLAP systems are not inherently designed to manage

high-dimensional vector data. In vector databases, each vector generally corresponds to

an item or an entity and is associated with an identifier and a payload containing addi-

tional information. Vector queries differ from traditional relational queries, as they are

based on the concept of similarity. Computing similarity between high-dimensional vec-

tors is computationally expensive and involves different, specialized techniques that are

generally not supported by conventional database systems. These techniques often in-

clude approximate nearest neighbor (ANN) search algorithms and specialized indexing

methods likeHierarchical Navigable SmallWorld (HNSW) graphs, which are specifically

optimized for similarity search.

9



Figure 2.5: Comparison between OLTP, OLAP, and Vector Databases [12]

Query Processing

Asmentioned, in vector databases, query processing revolves around the concept of sim-

ilarity search. The core idea is to identify vectors in a database that are most similar to a

given query vector, using various distance metrics to measure this similarity. The most

common distance metrics employed in similarity search include Euclidean distance, co-

sine similarity, and dot product. Euclidean distance measures the straight-line distance

between two vectors in the vector space. It is calculated by taking the square root of the

sum of the squared differences between corresponding elements of the two vectors. This

metric is intuitive and widely used because it directly correlates with our geometric un-

derstanding of distance; vectors that are closer together in space have smaller Euclidean

distances, indicating higher similarity. Cosine similarity, on the other hand, measures

the cosine of the angle between two vectors. This metric evaluates how aligned the vec-

tors are, regardless of their magnitude. It is calculated as the dot product of the vectors

divided by the product of their magnitudes. Cosine similarity ranges from -1 to 1, where

1 indicates that the vectors are perfectly aligned (pointing in the same direction), 0 in-

dicates orthogonality (no similarity), and -1 indicates that the vectors are diametrically

opposed. Thismetric is particularly useful in high-dimensional spaces where themagni-

tude of the vectors might not be as important as their orientation. Lastly, the dot product

measures the similarity by directly computing the sum of the products of corresponding

elements of the vectors. This metric is effective in scenarios where the magnitude and

direction of the vectors both contribute to their similarity. The larger the dot product,

10



Figure 2.6: Cosine Similarity

the more similar the vectors are. Unlike cosine similarity, the dot product is not normal-

ized, meaning that it can grow with the magnitude of the vectors, which can be useful

in certain applications where larger magnitudes imply greater significance.

Indexing

Avector index is a data structure for storing and retrieving high-dimensional vector data,

enabling fast similarity searches and nearest-neighbor queries. In traditional databases,

we generally query the index for exactmatches; but, since vector embeddings capture the

semantic meaning of data, the vector index can be searched for approximate matches.

The class of algorithms that are used to create and search vector indexing is called Ap-

proximate Nearest Neighbor (ANN) search.

The simplest and most straightforward indexing method is flat indexing, where the vec-

tors are simply stored without modifications. The biggest downside of this approach is

its speed; since the similarity between the query vectors and every other vector in the

index is calculated, the process of retrieval is quite slow. Instead of this “brute force”

approach, Locality Sensitive Hashing (LSH) indexes can be constructed. This strategy

builds an index using a hashing function; vector embeddings that are near each other

(defined by some similarity metric) are hashed to the same bucket. When a query vector

is provided, its hash code is matched to a hash code of one of the buckets. A similarity

search is then performed on all of the vectors within that bucket. This results in a smaller

search space, increasing the speed. Inverted file (IVF) indexes are based on a similar idea

as LSH indexes; the query vector is mapped to a smaller subset of the vector space and
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a similarity search is performed only on that subset. The difference lies in the method

used to create the smaller vector space; in IVF, the original vector space is first clustered,

with a centroid for each cluster. For a query vector, the closest centroid is found, and

vectors from that cluster are searched. Currently, one of the best ANN algorithms is the

Hierarchical Navigable Small World (HNSW) index. It is constructed as a multi-layered

graph. At the lowest level, every vector in the vector space is captured. Moving up the

layers, points are grouped together based on a similaritymetric. Data points in each layer

are also connected to data points in the next layer. The highest layer of the graph is the

starting point of the search; the closest match from the graph on this layer is taken to the

next layer, and this process is continued all the way to the lowest layer.

(a) Layers of HNSW graph (b) Search process on HNSW graph

Figure 2.7: Architecture of HNSW index

2.4 Large Language Models

Simply put, large language models are sophisticated AI systems designed to model and

process human language at an advanced level. The “large” attribute refers to the num-

ber of parameters that define these models; often ranging from hundreds of millions to

billions. Their development has been driven by the transformer architecture, a neural

network design introduced by Google in the paper "Attention Is All YouNeed" [11]. Even

though transformers are based on encoder-decoder architecture, the transformer archi-

tecture fundamentally differs from traditional recurrent neural networks (RNNs) and

convolutional neural networks (CNNs) in its approach to embedding and processing se-
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quences of data. Traditional RNNs and CNNs are unidirectional; they make predictions

based only on previous words in a sequence. This limitation can restrict their ability to

capture the full context of a sentence. Transformers, on the other hand, utilize an atten-

tionmechanism that allows them to consider both previous and followingwords,making

them bidirectional. This bidirectional capability is crucial for understanding context and

generatingmore accurate language representations. Therefore, the transformer architec-

ture consists of an encoder-decoder structure, but with a key innovation: the embedding

process is parallelized. In traditional RNNs andCNNs, sequential processing can be slow

and computationally intensive because each wordmust be processed one after the other.

Transformers avoid this problem by processing all words in the input sequence simulta-

neously, greatly enhancing efficiency. The self-attention mechanism enables the model

to weigh the importance of different words in a sentence relative to each other. This is

achieved through the calculation of attention scores, which determine how much focus

each word should receive when generating embeddings. The self-attention process cap-

tures the relationships between words, allowing the model to understand context more

effectively than traditional models. Research has shown that the initial layers of a trans-

former focus on understanding the syntax of sentences, such as grammatical structure

and word order, while the deeper layers develop amore abstract understanding of the in-

put, capturing semantic meaning and context. The attention mechanism works by first

generating three vectors for each word in the input sequence: the query vector, the key

vector, and the value vector. These vectors are used to compute the attention scores. The

query vector represents the word for which we are seeking context, the key vector repre-

sents the words that might contain relevant context, and the value vector represents the

actual contextual information. The attention score is calculated as the dot product of the

query and key vectors, normalized using a softmax function to ensure the scores sum to

one. The resulting attention scores are then used to weigh the value vectors, producing

a weighted sum that represents the context-aware embedding of the word. This process

is performed in multiple "heads," known as multi-head attention, allowing the model

to capture different types of relationships between words simultaneously. The outputs

from these heads are then concatenated and passed through a feed-forward neural net-

work, which transforms the attention-weighted embeddings into a format expected by

the next layer of the transformer. In the decoder, used during the training phase, there
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Figure 2.8: Architecture of the Transformer Model [11]

are additional layers ofmaskedmulti-head attention, multi-head attention, and position-

wise feed-forward networks. The decoder receives two main inputs: the attention vec-

tors from the encoder and the target sentence to be translated. The masked multi-head

attention ensures that the decoder can only attend to previous positions, preventing in-

formation leakage from future words in the target sentence.
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3 System Design

3.1 Architecture

The proposed architecture of the RAG system, depicted in 3.1, builds upon the foun-

dational principles of the RAG method explained in 2.1. The system integrates multi-

ple components, creating a user-oriented framework for leveraging external knowledge

sources and a large language model to enhance business information retrieval. At the

Figure 3.1: High-level view of the system architecture

core of this architecture is the vector database, which acts as a non-parametric memory,

storing high-dimensional vector embeddings derived from proprietary data. This data

is initially processed by an embedding model that transforms it into vectors suitable for

indexing. When a user inputs a query into the system, the query is first processed by

an embedding model identical to the one used for indexing the proprietary data. This
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model converts the query into a vector, which is then used to search the vector database.

The search process utilizes an ANN algorithm to efficiently find vectors in the database

that are most similar to the query vector. The retrieved vectors, representing the most

relevant contextual information, are then converted back into textual form. This contex-

tual information is combined with the original user query to create an enriched query,

which provides a more comprehensive context for the LLM. The augmentation step, il-

lustrated in the system architecture, involves integrating this enriched context into the

LLM’s input. The LLMproceeds to generate a response, with both the original query and

the additional context.

3.2 System Requirements

3.2.1 Vector Database

The rise of LLMs has driven the development of vector databases and vector database

management systems (VDBMSs). As of now, there are over 20 commercial solutions, all

produced within the past several years [13]. This explosion of options has led to a kind

of a "choice overload", making it difficult to compare various vector databases and select

the "right" one. Since trying out multiple databases to find the best fit is a labor-intensive

and time-consuming process, it is generally not a viable option. Standardized bench-

marks such as [14] and [15] make this process easier, allowing for efficient assessment of

different factors of vector databases. There is a large number of factors to consider when

choosing a vector database; for this system, the following aspects were considered.

Openess

One of the first decisions to make is whether to choose an open-source or a proprietary

solution. For this project, an open-source database was essential due to its transparency,

flexibility, and cost-effectiveness.

Language Support

The vector database should support the programming language used for the develop-

ment of the system, in this case, Python. Python integrationwas crucial to ensure smooth

and efficient development processes. Most modern vector databases support a variety of
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languages, including Python, Java, and Go.

License

Since the type of license under which the database is distributed can have significant

implications for its use in a project, an open-source license, such as Apache 2.0 or MIT,

was essential. This type of license provides freedom to use, modify, and distribute the

software with minimal restrictions.

Maturity and Community

The maturity of the database and the strength of its community were important consid-

erations. A mature, well-established database tends to be more stable and feature-rich.

Additionally, a strong community offers support and knowledge through forums, docu-

mentation, and third-party integrations.

Sparse Vectors and Hybrid Search

While sparse vectors are common in many real-world applications, and hybrid search

capabilities can enhance retrieval performance by combining vector-based and keyword-

based search, this was not a necessary system requirement. Given the nature of source

data, hybrid search is not prioritized.

Cost

Open-source solutions generally have lower initial costs compared to proprietary ones,

whichwas a key consideration. However, the total cost of ownershipmust also be consid-

ered, including deployment, maintenance, and scaling. It is important that the chosen

database is not only affordable initially but also cost-effective in the long run.

3.2.2 Large Language Model (LLM)

Large language models are evolving at a remarkable rate, with new and improved mod-

els frequently released. This pace of development presents both various opportunities

and challenges for leveraging them in RAG systems. With numerous solutions avail-

able, just as with vector databases, choosing the right LLM is not a straightforward task.

Whilemore parameters generally correlatewith better performance andhigher accuracy,
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research shows that the size of the LLM is not a crucial factor. RAG systems provide sig-

nificantly better results, regardless of the model’s size. Therefore, the primary aim is to

choose a cost-effective model that still delivers good performance. For the development

of this system, the following aspects were considered.

Self-Hosting Capability

Given the private and sensitive nature of the source data, it was crucial that the large

language model could be self-hosted. This requirement is critical to ensure data privacy

and security, as it avoids the use of online LLM services like ChatGPT, which involve

sending data to remote servers.

Model Size

Given the private and sensitive nature of the source data, it was crucial that the large

language model could be self-hosted. This requirement is critical to ensure data privacy

and security, as it avoids the use of online LLM services like ChatGPT, which involve

sending data to remote servers.

Cost

The cost of deploying and maintaining the LLM is a significant factor in building RAG

systems. This consideration generally includes hardware requirements, energy consump-

tion, and any potential licensing fees associated with the LLM.

GDPR Compliance and Licensing

While not immediately critical, compliance with GDPR and appropriate licensing are

important considerations for future scalability and legal compliance. The chosen LLM

must have clear and permissible licensing terms that would not interfere with its use in

commercial applications and should ideally support GDPR compliance to protect user

data privacy.

3.2.3 Embedding Model

As mentioned, the embedding model’s primary responsibility is to transform input text

data into a high-dimensional vector space where semantically similar items are located

18



near each other. In contrast to the solid requirements for the vector database and the

large language model, the specifications for the embedding model can be considered

more flexible. First, different applications may prioritize different aspects of embedding

performance. For instance, some applications may prioritize precision and recall, while

others may emphasize computational efficiency or memory usage. This diversity in re-

quirements means that there is no one-size-fits-all approach to choosing an embedding

model. Second, embedding models can be tailored to specific types of data. The choice

of themodel varies based on the nature of the input data and the domain. Measuring the

performance of an embedding model is challenging "in advance" due to its dependence

on the specific context and application; the effectiveness of an embedding model is of-

ten assessed through its impact on the overall system performance in real-world tasks.

Key performancemetrics for embeddingmodels include semantic similarity, retrieval ac-

curacy, computational efficiency, and scalability. One useful resource for evaluating and

selecting embeddingmodels is theMassive Text Embedding Benchmark (MTEB) leader-

board [16]. This benchmark provides a comprehensive evaluation of various embedding

models across multiple tasks and datasets, offering insights into their performance in

different scenarios. In the context of RAG systems, the ’Retrieval’ aspect of MTEB is par-

ticularly important. The retrieval score onMTEB assesses howwell an embeddingmodel

can fetch relevant documents from a large corpus, which directly correlates to the em-

bedding model’s utility in a RAG system. Models with high retrieval scores are typically

better suited for applications where the accuracy and relevance of retrieved information

are critical.

3.3 Components

3.3.1 Qdrant

Taking all of the vector database requirements into consideration, Qdrant [17] was iden-

tified as the best candidate to be used as the vector database for the RAG system. Firstly,

Qdrant is an open-source solution that provides flexibility and security. Its licensing,

Apache 2.0, enables customization and adjustments to meet the specific requirements

of the project. In addition, choosing to self-host gives control over security measures,

which is important when dealing with sensitive data in the RAG framework. When it
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comes to compatibility, Qdrant integrates with Python, enabling effective deployment.

Despite being a relatively new database, it has rapidly established itself as a reliable and

stable option with an active community providing valuable resources like thorough doc-

umentation and blogs. Cost efficiency was also a crucial factor, and Qdrant offers the

best-estimated pricing.

By its owndefinition, Qdrant is “a vector similarity search engine that provides a production-

ready service with a convenient API to store, search, and manage points (i.e. vectors)

with an additional payload” [18]. At a high level, Qdrant’s architecture consists of several

Figure 3.2: Qdrant Architecture [18]

key components. The core entities that Qdrant operates with are points. Each point rep-

resents a vector with optional payload, which can store any additional information about

the vector in a JSON format. This allows for adding filters during the search, enabling

the implementation of custom logic on top of semantic similarity. Points are organized

into collections. A collection is a named set of points, where the vector of each point

within the collection must have the same dimensionality and be compared by a single

metric [19]. Collections allow users to manage and query related vectors efficiently by

providing away to segment data based on different criteria, such as different datasets, ap-

plication contexts, or user-defined categories. As mentioned, points must be compared

by a distance metric to measure similarities between them. Qdrant supports four types

of metrics: dot product, cosine similarity, euclidean distance, and Manhattan distance.

In terms of similarity search and vector indexing, Qdrant currently only uses HNSW as a
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dense vector index. Several factors contribute to the selection of HNSW. Firstly, HNSW

works well with the modification which enables Qdrant to apply filters while searching.

Secondly, it ranks high in accuracy and speed when compared to public benchmarks

[20, 21]. Depending on the requirements of the application, Qdrant offers flexible data

storage options, allowing users to choose between maximizing search speed and mini-

mizing RAM usage. Qdrant provides two primary storage methods: in-memory storage

and memory-mapped (memmap) storage. In-memory storage keeps all vectors directly

in RAM, ensuring the highest possible search speed since accessing data from RAM is

significantly faster than reading from disk. This method is ideal for applications that

require ultra-fast retrieval times and can allocate sufficient RAM to accommodate the

entire dataset. By minimizing disk access, in-memory storage ensures that query op-

erations are executed with minimal latency, making it suitable for performance-critical

applications. On the other hand, memmap storage creates a virtual address space asso-

ciated with a file on disk. Unlike traditional disk storage, mmapped files are not fully

loaded into RAM; instead, they utilize the operating system’s page cache to access file

contents on demand. This approach provides a flexible use of available memory, offer-

ing a balance between speed and memory efficiency. This makes it a good option for

handling large datasets where it is impractical to fit all data in memory but still requires

relatively fast access times.

3.3.2 Mistral 7B

Considering the key requirements for selecting an LLM, the Mistral AI 7B model was

chosen for the RAG system. As mentioned, the ability to self-host the model was crucial

due to the sensitive and proprietary nature of the knowledge base; Mistral AI offers a self-

hosted solution, ensuring that no data needs to be sent to external servers, maintaining

privacy and security. In terms of model size, the Mistral AI 7B model seemed to offer a

good balance between complexity and resource efficiency; with 7 billion parameters, it

is sophisticated enough to generate high-quality responses while still being manageable

in terms of computational requirements.

In the rapidly evolving domain of Natural Language Processing (NLP), the pursuit of

higher model performance often necessitates an increase in model size [22]. However,

this scaling tends to raise computational costs and inference latency, thereby creating sig-

21



nificant barriers to deployment in practical, real-world scenarios. Designed with this in

mind,Mistral 7Bmodel delivers high performancewhile still maintaining efficient infer-

ence [22]. Mistral 7B outperforms the previous best, Llama 2 13B, across all tested bench-

Figure 3.3: Performance of Mistral 7B and different Llama models on a wide range of bench-
marks. [22]

marks. This can mostly be attributed to its architecture, which incorporates grouped-

query attention (GQA) and sliding window attention (SWA). GQA significantly acceler-

ates inference speed and reduces memory requirements during decoding, allowing for

bigger batch sizes and consequently a greater throughput. Additionally, SWA is designed

to handle longer sequences more effectively at a reduced computational cost. Mistral 7B

is available under the Apache 2.0 license, which allows for wide-ranging use and modi-

fication. Furthermore, its integration with HuggingFace facilitates ease of deployment,

enabling the implementation of the model both locally and on any cloud platform.

3.3.3 Sentence-transformers model: all-mpnet-base-v2

The selection of the embeddingmodel was guided primarily by themodel’s performance

on the Massive Text Embedding Benchmark, along with the consideration of computa-

tional efficiency and systemcompatibility. The all-mpnet-base-v2, part of the Sentence-

transformersmodel family, is specifically designed formapping sentences andparagraphs

to a 768-dimensional dense vector space and is best used for tasks such as clustering and

semantic search [23]. The model is based on the MPNet architecture, which combines

the advantages of BERT and XLNet while avoiding their limitations [24]. Specifically,

the pre-trained Microsoft/mpnet-base model was utilized and fine-tuned on a dataset

comprising 1 billion sentence pairs. The approach employs a contrastive learning objec-

tive, where the model learns to distinguish between true sentence pairs and randomly
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sampled unrelated sentences [23]. Considering all that, it showed high performance in

retrieval tasks (on the MTEB), which are critical for the RAG system. It is important to

note that while theMTEBwas an important guide in the selection of themodel, the rank-

ing of models on this benchmark can change as newmodels are introduced and existing

models are updated. Another factor in selecting the embedding model was computa-

tional efficiency. The all-mpnet-base-v2model is designed to be lightweight and fast,

making it suitable for the system’s deployment environment, while stillmaintaining high

accuracy and quality of the embeddings.
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4 Implementation

Following the proposed architecture in 3.1, the figure 4.8 illustrates the final implemen-

tation which integrates multiple components and services deployed on Google Cloud

Platform (GCP). The process begins with the Confluence data, which is loaded and pro-

Figure 4.1: System Architecture

cessed by the system. This initial step (Step 1) involves the Confluence Loader, a compo-

nent responsible for extracting data from the Confluence knowledge base. The extracted
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data is then fed into an embedding model, which transforms the text data into high-

dimensional vectors. In Step 2, the embeddings generated from the Confluence data are

stored in the Qdrant vector database. When a user submits a query through the LLMUI

(Step 1 for user query input), it triggers the Question API (Step 2). The Question API is

a service that processes the incoming query. The query is then passed to the VectorDB

Service (Step 3), where the same embeddingmodel converts the query into a vector. This

query vector is used to search Qdrant (Step 4) for relevant documents. Qdrant retrieves

the closest matching embeddings based on semantic similarity (Step 5). The relevant

embeddings retrieved from Qdrant are then sent back to the Question API (Step 6). In

Step 7, the context-enriched query is forwarded to the LLM, which in this case is imple-

mented using Mistral AI’s large language model. The LLM processes the query along

with the context provided by the retrieved embeddings to generate a comprehensive re-

sponse (Step 8). The generated response is then sent back to the Question API (Step 9),

which formats it appropriately before sending it to the LLM UI (Step 10). Finally, the

user receives the response, completing the pipeline.

4.1 Indexing Phase

The indexing phase is crucial for preparing documents for efficient retrieval and genera-

tion. Firstly, documents are fetched fromConfluence using a custom ConfluenceLoader

object, created for loading and formatting the pages. Once fetched and processed, docu-

ments are chunked with the help of a DocumentChunker object, using specific chunking

methods. This process ensures that documents are divided into smaller parts, improving

the retrieval performance in the database. Finally, the chunked documents are inserted

into the vector database using a custom Qdrant object.

4.1.1 Document Loading

To create a knowledge base, the relevant proprietary data must first be fetched. As men-

tioned, all of the data to be extracted is stored on Confluence, in the form of Confluence

pages. The general architecture of Confluence revolves around the concept of spaces,

which serve as high-level containers for organizing content. Within each space, pages

are structured hierarchically, allowing users to create parent and child pages to organize
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information logically. Each page within Confluence can contain a variety of content

types, including text, images, tables, attachments, and macros.

For the purpose of loading data fromConfluence pages, a Document Loader component,

specifically Langchain’s ConfluenceLoader is used. Acting as an interface to the Con-

fluence API, it uses the URL, username, and api_key parameters to connect to the right

Confluence instance. The keep_markdown_format parameter is determined based on

the specified chunking strategy. If the chunking strategy is set to "markdown," this pa-

rameter is set to True, indicating that the content should retain itsMarkdown formatting

during extraction. This is needed in the next step if a special markdown chunker is used.

If the chunking strategy is not "markdown," this parameter is set to False, and the con-

tent is extracted in a plain text format. The load() method of the ConfluenceLoader

Figure 4.2: Diagram of a ConfluenceLoader class

class offers several parameters to configure the retrieval process. Firstly, the limit pa-

rameter determines the number of pages fetched per request, with a default value of

50. It is important to note that the Confluence API, which is internally used by the

load()method, caps the responses to 100 pages per request, so even if a higher num-

ber is set, 100 pages will be loaded per request. Additionally, the max_pages parame-

ter in the same method sets the maximum total pages to retrieve, defaulting to 1000.

Furthermore, the include_attachments parameter, a boolean value, dictates whether

attachments associated with Confluence pages should also be loaded. When enabled
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(True), all supported attachment types, including PDFs, images (PNG, JPEG/JPG, SVG),

and document files (Word, Excel), are downloaded. ConfluenceReader then extracts

text from these attachments and appends it to the corresponding Document object.

Originally designed to load pages froma singleConfluence space, the ConfluenceLoader

has been augmented with custom logic to extend its functionality, enabling the loading

of pages from multiple spaces. Along with the page content, ConfluenceLoader loads

additional metadata for each document. The metadata consists of the page title, page

ID, and the address of the Confluence page. Since Confluence offers the functionality

of labels - metadata tags that users can assign to pages to serve as keywords for easier

categorization and enhancement of content navigation and discoverability, we wanted

to store the page labels as metadata. As a result, custom methods were created: the first

method retrieves labels associated with Confluence pages; it takes a list of documents

as input, extracts their unique identifiers, and then queries the Confluence API to fetch

the labels for each document. The retrieved labels are stored in a dictionary where the

keys correspond to the document IDs. The second method incorporates the retrieved

labels into a new field label to the metadata of each Document object. Another custom

Figure 4.3: Diagram of a ConfluenceLoader class

functionality that was implemented was the filtering of Confluence pages in languages

other than English (Croatian in this case). The choice to have only English documents

in the knowledge base is based on multiple factors. The Large Language Model (LLM)

used does not have a natural proficiency in Croatian, resulting in limited or nonexis-

tent capability to understand and produce Croatian text. With this restriction in place,

adding Croatian documents may result in errors or misunderstandings in the database,

impacting the accuracy and dependability of the information produced or obtained by

the system. Furthermore, in the context of similarity search, it is important for pages in

Croatian to be searched in Croatian in order to achieve the best search results. However,

the predominant language of the proprietary knowledge base is English. As a result, to
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maintain consistency in language and ensure optimal search results, the pages in Croa-

tian are filtered out and not stored in the vector database.

4.1.2 Text Chunking

Once documents are loaded from the corpus, it is essential to split them into smaller parts

- chunks. The primary goal of chunking is to improve the relevance of the information

retrieved from the similarity search in the vector database. Implementing a successful

chunking method guarantees that the search results capture the meaning and context of

a user’s query.

Choosing an optimal chunking strategy is not a straightforward task, as several factors

within the RAG pipeline must be considered. The first factor to consider is the structure

of the indexed content; documents with clear structure may benefit from specialized

chunking approaches. Another component to consider is the embedding model used;

factors like the model’s context input length influence the chunking process, with cer-

tain models exhibiting better performance on chunks of specific lengths. As LLM stands

at the end of the RAG pipeline, it is important to consider token limits. Since LLMs have

limited context windows, the size of the chunk impacts the amount of context that can

be input into the LLM, with larger chunks imposing constraints on the top-k retrieval

mechanism.

Chunking strategies can be broadly categorized into twomain types: token-based and se-

mantic. The first category, token-based chunking, encompasses several approaches such

as character chunking, sentence splitting, and specialized chunking. They involve break-

ing down text into smaller segments based on predefined tokens or units of meaning,

such as words or characters. Generally, token-based splitters have two fundamental pa-

rameters: chunk_size and chunk_overlap. The chunk_size parameter sets a limit on

the maximum size allowed for each chunk, guaranteeing that the resulting segments are

a manageable length, while the chunk_overlap parameter helps maintain the seman-

tic context between consecutive chunks by determining the amount of overlap between

them.

The second category, semantic chunking, focuses on the meaning of chunks within the

document rather than adhering to a globally set chunk size. This approach involves creat-

ing embeddings for each sentence, comparing similarities, and grouping themost similar

28



ones together. While semantic chunking captures the semantic meaning and context of

documents, it comes with a trade-off of increased computational complexity compared

to token-based methods.

Character Splitter

Character text splitters represent the most straightforward approach to chunking text

data. Unlike more complex methods relying on Natural Language Processing (NLP) li-

braries, character splitters work by directly segmenting text based solely on characters.

However, Langchain’s CharacterTextSplitter also has a separator parameter which

specifies the separator chunks are split on, while the chunk_size parameter determines

the maximum number of characters allowed in each chunk.

Sentence Splitter

Sentence splitters, as opposed to character splitters, take a more linguistically informed

approach by focusing on dividing text into meaningful linguistic units - sentences. Sen-

tence splitters use NLP methods to find sentence boundaries using grammar, punctua-

tion, and context clues. There are several sentence splitter implementations inLangchain,

including the NLTKTextSplitter and SpacyTextSplitter. The NLTKTextSplitter

utilizes the NLTK package, specifically its sent_tokenize function [25], to tokenize the

text into a list of sentences, which are later merged into chunks. Upon initialization, it

allows customization of parameters such as the separator between chunks and the lan-

guage for tokenization. On the other hand, SpacyTextSplitter leverages the Spacy

package to split text. The initialization parameters include the pipeline (defaulting to

"en_core_web_sm") [26] and the maximum length of characters the Spacy model can

handle. During the split_text method, SpacyTextSplitter tokenizes the text using

the chosen Spacy pipeline and iterates over the generated sentences, collecting them into

chunks and merging them.

Recursive Splitter

Recursive chunking is amethod of dividing input text into smaller chunks in a hierarchi-

cal and iterative manner. This approach uses a specified list of separators to determine

where to split the text. Initially, the text is divided using the first separator in the list.
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If the resulting chunks are not of the desired size, the method recursively calls itself on

these smaller chunks using a different separator from the list. This process continues

until the final chunk size is achieved. While the resulting chunks may not be exactly

the same size, they strive to be of a similar size, maintaining a balance between granu-

larity and coherence. For Langchain’s RecursiveCharacterTextSplitter, the default

list of separators is ["\n\n", "\n", " ", ""]; this attempts to ensure that paragraphs,

sentences, and words remain together as much as possible since they generally have the

strongest semantic relation [27].

Document Specific Splitter

Document-based splitters take the inherent structure of the document into account. Rather

than using a set number of characters or a recursive process, a document-based splitter

creates chunks that align with the logical sections of the document, like paragraphs or

subsections [28]. This approach proves particularly beneficial when dealing with Mark-

down files containing hierarchical information, code snippets, or enumerated lists, as it

ensures that each chunk retains the semantic coherence and formatting integrity of the

original Markdown content. Langchain offers a MarkdownHeaderTextSplitter) which

splits the markdown document on headers.

To have flexibility in splitting the documents, a custom DocumentChunker class was im-

plemented. At initialization, the class accepts a strategy parameter, indicating the cho-

sen text-splitting approach, along with optional keyword arguments for chunk size and

the overlap between them. The core functionality of the DocumentChunker class lies

in the chunk_documents() method, which takes a list of documents as input and ap-

plies the specified text-splitting strategy to partition each document into smaller chunks.

Based on the chosen strategy, the method instantiates an appropriate text splitter object,

such as RecursiveCharacterTextSplitter, SpacyTextSplitter, NLTKTextSplitter,

or MarkdownTextSplitter, passing any relevant keyword arguments to configure the

splitter’s behavior. In cases where the input documents are inMarkdown format ("mark-

down" strategy), themethod employs a two-step approach. First, MarkdownTextSplitter

is used to segment the Markdown documents based on set headers. Subsequently, the

RecursiveCharacterTextSplitter is applied to further divide the resulting chunks

into smaller units based on character boundaries.
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4.1.3 Embedding and Storing

After completing the chunking step, the generated document chunks need to be embed-

ded for efficient storage and retrieval within the system. The initial step in this process

involves selecting an appropriate embedding model. A good source for comparing and

choosing suchmodels is theMTEB Leaderboard onHuggingFace [16] since it is themost

up-to-date list of proprietary and open-source text embedding models, accompanied by

statistics on how each model performs on various embedding tasks such as retrieval,

summarization, etc. The “retrieval” benchmark is particularly important for our system

since it evaluates the ability of the embeddingmodel to retrieve relevant content in asym-

metric search scenarios – specifically, matching short queries with longer texts [29].

For the process of embedding and storing data chunks, the Qdrant class is implemented.

The embedding process begins with initializing the embedding model that will con-

vert text documents into vector representations. In the Qdrant class, this is handled

by the get_embedding_model() method. This method takes the name of the desired

model, specified by the embedding_model_name parameter, and initializes it using the

HuggingFaceEmbeddings class. The name of the model corresponds to a pre-trained

model available on HuggingFace’s Model Hub. When initialized, it triggers the down-

load of the specified model from HuggingFace’s servers. Once the embedding model is

initialized, it runs locally on the specified device. In the Qdrant class example, themodel

is configured to run on a CPU. This configuration is determined by the model_kwargs

parameter passed during initialization.

The embedding and storing is encapsulated inside the insert_documents_into_collection

method. Here, the key component is Langchain’s from_documents()method, which es-

tablishes a connection to the Qdrant server using the provided URL and port, and it cre-

ates or updates the specified collectionwith the new embeddings. The collection_name

parameter specifies the target collection, and the force_recreate parameter determines

whether the collection should be recreated if it already exists.

4.2 Generative Phase

After the indexing phase, where all relevant data is processed and stored in a vector

knowledge base, the generative phase can begin. This phase bridges the gap between
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the retrieved information and the final output presented to the user. It begins by embed-

ding the user’s input query and performing a similarity search, identifying content that

can provide context for the user’s question. At its most basic level, the retrieval process

involves a top-k vector retrieval, which typically returns the 3-10most similarmatches to

the user’s query. Ideally, the systemwould find a single passage that directly answers the

query. However, because information often overlaps and is rich in context, it is neces-

sary to sample multiple text segments. This ensures that the LLM has sufficient context

to generate an answer [29]. The retrieved context is then fed into the LLM along with the

initial question. The generative phase is designed around three core services: the user

interface (UI), the VectorDB Service, and Question API Service.

Figure 4.4: System Architecture

4.2.1 Retrieval

In the retrieval phase of the system, the user’s query is processed to retrieve relevant in-

formation from the vector database. This process begins with an HTTP POST request

being sent from the UI component to the /ask endpoint of the Question API service,
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facilitated by Python’s requests library. The payload of this request consists of a JSON

object constructed by the generate_question() method, which takes the user’s input

message and a boolean flag indicating whether context from the RAG model should be

utilized in the generation phase and creates a AskQuestionRequest object.

So, the Question API service’s /ask endpoint expects an AskQuestionRequest object in

the request body, encapsulating the user’s question and a flag indicating if context from

the knowledge base should be used for the generation by LLM. If the use_context flag

is set to True, the service generates a SearchRecord object based on the user’s ques-

tion. This search record is subsequently sent to the Qdrant Service, specified by the

qdrant_service_endpoint, to retrieve similar records that may provide context for the

question. In the case the use_context flag is False, the retrieval phase is bypassed, and

the user’s query is directly forwarded to the LLM.

The Qdrant Service features a route at /collection/record/search, which handles

requests to search for records based on a provided SearchRecord object. Upon receiv-

ing a search request, the service invokes the query_similarity_search method of the

Qdrant instance, passing the input query and limit as parameters. This method executes

a similarity search in the database, leveraging the provided query, and returns a list of

PydanticDocument objects representing the search results.

Data Models

For communication between the services, several Pydanticmodels are created. Pydantic,

a data validation library in Python that enforces type hints at runtime and provides seri-

alization and deserialization capabilities, ensures correct and consistent data exchange

between FastAPI services. The following models are used:

SearchRecord

The SearchRecord model defines the structure of a request for similarity search in the

vector database based on the user’s input query, an optional limit on the number of re-

sults, and optional filters for refining the search.
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Figure 4.5: SearchRecord Data Model

AskQuestionRequest

The AskQuestionRequestmodel specifies the format of requests to ask questions, com-

prising the user’s input query and a boolean flag indicating whether context from the

RAG model should be utilized.

Figure 4.6: AskQuestionRequest Data Model

AskQuestionResponse

The AskQuestionResponse model outlines the structure of responses to question re-

quests, containing the answer to the question and an optional list of sources - Confluence

pages which were used as context to generate the answer.

Figure 4.7: AskQuestionResponse Data Model

PydanticDocument

The PydanticDocument model describes the format of documents retrieved from the

vector database, including the page content and optional metadata associated with the

document.
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Figure 4.8: PydanticDocument Data Model

4.2.2 Generation

After retrieving similar top k (specified by the limit parameter of the SearchRecord ob-

ject) similar records from theQdrant Service, the documents are passed to the ask_llm()

method, which serves as an interface to interact with the LLM. Themethod takes two pa-

rameters: questionwhich is a string representing the user’s query, and similar_records

which is a list of PydanticDocument objects, representing the retrieved documents. These

documents serve as a context for generating a response. Inside themethod, the get_selected_llm()

method is responsible for retrieving the appropriate LLM, set as an environment variable.

This function takes two parameters: the llm_type indicating which LLM is used, and

the llm_url, representing the endpoint URL of the deployed language model. Based on

the provided LLM type, the function returns an instance of the corresponding LLM class.

Upon instantiation of the correct LLM class instance, the ask()method is invoked. This

abstract method is responsible for constructing a prompt for the LLM model based on

the input question and context documents.

The method starts by initializing an empty string variable prompt. If context documents

are provided, it iterates over a list of PydatnicDocument objects to extract the title and

page content from the document’s metadata and append it to a context_str string, en-

suring each document’s content is separated by double newlines. After constructing the

context string, it combines this context with the user’s question to form a prompt. The

context and question are enclosed within a special instruction format:

[ INST] Context: < context_str> Given the above context and your general

knowledge, answer the question:<question>[/INST]

Large Language Model Parameters

The ask()method is an abstract method of a LLM class, providing a blueprint that should

be implemented by any subclasses.
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The Mistral7B class extends the LLM class and provides a specific implementation of

the ask method, mainly by setting specific parameters for the language model. The

Parameter Description Value Used
max_new_tokens Maximum number of tokens that the

model can generate in response to the
prompt.

1000

top_k Restricts the sampling pool to the top-k
highest probability tokens at each step.

50

temperature Controls the randomness of the model’s
predictions.

0.001

top_p Sets a cumulative probability threshold
for nucleus sampling.

0.95

num_return_sequences Specifies the number of response se-
quences to generate.

1

Table 4.1: LLM Parameters

max_new_tokens parameter sets the maximum number of tokens that the model can

generate in response to the prompt. By limiting the number of new tokens, the length of

the generated output is controlled, preventing overly long responses. In this implemen-

tation, max_new_tokens is set to 1000, allowing for detailed and comprehensive answers

while maintaining a reasonable response length. The top_k parameter restricts the sam-

pling pool to the top-k highest probability tokens at each step in the text generation pro-

cess. This approachmakes the outputmore deterministic by narrowing themodel’s focus

to the most likely tokens. A top_k value of 50 means that out of all possible tokens, only

the 50 tokens with the highest probabilities are considered. The temperature parameter

controls the randomness of the model’s predictions. A lower temperature results in less

random and more deterministic outputs, while a higher temperature increases random-

ness and creativity. In this case, the temperature is set to 0.001, making the responses

very deterministic and focused on high-probability tokens, making themodel rely almost

solely on the context provided by the knowledge base. The top_p parameter, also known

as nucleus sampling, sets a cumulative probability threshold. Instead of considering a

fixed number of top tokens (as in top_k), it includes the smallest set of tokens whose

cumulative probability exceeds top-p. For example, with top_p set to 0.95, the model

considers tokens until their cumulative probability is at least 95%. This allows for dy-

namic adjustment of the sampling pool size, providing a balance between diversity and

coherence. Using both parameters helps the model introduce some creativity while still
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focusing on the most probable tokens. Finally, the num_return_sequences parameter

specifies the number of response sequences to generate. Setting it to 1 means that only

a single response is generated for each input prompt. This is appropriate for scenarios

where a single, best response is desired rather than multiple alternative responses.

4.3 User Interface

For the development of the system’s user interface, the Streamlit Python library was

used. Streamlit offers several Chat elements [30], providing a simple and straightfor-

ward method for creating UIs for chatbots. The st.text_input component is used to

Figure 4.9: User Interface for the RAG-based LLM system

capture user input text. Additionally, a sidebar widget, created with st.sidebar, in-

cludes a toggle switch (st.toggle) that allows users to decide whether to use context

from Confluence in their queries. The main interface is set up with st.title to display

the chatbot’s title, and a session state is maintained to store messages exchanged during

the chat. The message flow is handled by iterating over st.session_state.messages,

displaying each message using st.chat_message. When a user inputs a query through

st.chat_input, the system updates the session state, sends the query to the Question

API using an HTTP POST request via the requests library, and processes the response.

The response, including any referenced sources, is then displayed back to the user.
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4.4 Deployment

The deployment process of theRAG system involves buildingDocker images for each ser-

vice and pushing them to the Google Artifact Registry. The core services are deployed on

a GKE cluster, while the user interface is deployed using Google Cloud Run. Terraform

scripts automate the provisioning andmanagement of the infrastructure, ensuring a con-

sistent and scalable deployment.

Figure 4.10: High-level overview of the deployment process

4.4.1 Google Cloud Platform

Google Kubernetes Engine (GKE)

Google Kubernetes Engine (GKE) is a managed Kubernetes service provided by Google

Cloud Platform. It simplifies the deployment, management, and scaling of container-

ized applications using Kubernetes. In this project, GKE is used to host the main ser-

vices of the RAG system, providing a resilient and scalable environment. The process

begins with defining the Kubernetes cluster specifications, such as the number of nodes

and their machine types, using Terraform scripts. These scripts automate the creation

and configuration of the GKE cluster, ensuring consistency and repeatability. Once the

cluster is provisioned, the next step involves deploying the containerized services onto

GKE.
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Google Cloud Run

Google Cloud Run is a fully managed compute platform that automatically scales state-

less containers. In this project, Cloud Run is utilized to deploy the user interface (UI) of

the RAG system. The choice of Cloud Run for the UI deployment is driven by its abil-

ity to handle HTTP requests efficiently and its seamless integration with other Google

Cloud services. The deployment process for the UI involves building a Docker image of

the UI application and pushing it to the Google Artifact Registry. Terraform scripts then

configure Cloud Run to pull the image from the registry and deploy it as a service.

4.4.2 Deploying the System

Docker Images

Docker images are crucial for packaging the RAG system’s services into portable and

consistent units. Each service, including the retrieval component, the language model,

and the UI, is containerized using Docker. The Dockerfile for each service defines the

environment and dependencies required to run the service, ensuring that it behaves the

same way in any environment. Once the Docker images are built, they are pushed to

the Google Artifact Registry, a secure and scalable repository for storing and managing

container images. This centralized repository allows for easy access and deployment of

the images across the GKE cluster and Cloud Run.

Terraform

Terraform is an open-source infrastructure-as-code (IaC) tool that allows for the declar-

ative configuration of cloud resources. In this project, Terraform scripts are used to au-

tomate the provisioning and management of the entire infrastructure, including GKE,

Cloud Run, and the Google Artifact Registry. The Terraform scripts define the desired

state of the infrastructure, including the Kubernetes cluster configuration, service de-

ployments, and networking setup. When the scripts are executed, Terraform interacts

with the Google Cloud API to create and configure the resources as specified. This ap-

proach ensures consistency, reduces the risk of manual errors, and enables version con-

trol of the infrastructure configuration.
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5 Results

5.1 RAG Evaluation

Evaluating the quality of text generated by RAG systems presents significant challenges,

largely due to the absence of standardized industry benchmarks. Often, these systems

are assessed through human labeling, which involves creating a "gold standard dataset"

[31, 32]. This dataset includes a set of questions, expected answers, and the expected con-

text retrieved from the knowledge base. The RAG-based language model is then queried

with these questions, and its responses are evaluated against the expected answers. How-

ever, this manual process is expensive, time-consuming, and inherently biased due to

human subjectivity.

To achieve amore systematic evaluation, traditional benchmarks andmetrics for question-

answering (QA) systems, such as ROUGEandBLEU, are often employed. Unfortunately,

these metrics have shown poor correlation with human judgment [33]. Consequently,

the use of LLMs for evaluation is gaining traction. LLM-based evaluation leverages the

capabilities of language models to simulate human judgment, assessing the relevance,

accuracy, and overall quality of responses generated by RAG systems. However, using

LLMs as evaluators is also not without challenges. It has been shown that LLMs exhibit

systematic biases similar to humans. For instance, they tend to prefer their own outputs,

are sensitive to the relative position of outputs, and score longer responses higher [34].

To address these limitations, frameworks like RAGAS have emerged. RAGAS primar-

ily uses Zero-Shot LLM Evaluations, where a large language model is prompted with a

template to rate the relevance of search results to a query on a scale of 1 to 10. Transi-

tioning from Zero-Shot to Few-Shot LLMEvaluation involves adding a few labeled exam-

ples to the prompt, illustrating the desired output format and quality. This enhances the

LLM’s ability to understand evaluation criteria more effectively. Tomitigate the problem
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of manually creating QA datasets, RAGAS generates synthetic test datasets by creating

synthetic queries from a document corpus. It ensures their quality through the roundtrip

consistency principle, which checks if the original document can be retrieved using the

synthetic query.

While this approach holds promise, implementing it for proprietary systems introduces

several challenges. RAGAS uses OpenAI for synthetic dataset generation as well as for

evaluating the RAG pipeline. However, when dealing with proprietary data, sending

the corpus to RAGAS is not feasible due to confidentiality concerns. Although RAGAS

offers a "bring your own" option for LLMs and embeddings, configuring this option to

work correctly has proven difficult, as evidenced by community feedback [35] and test-

ing. One major issue is that RAGAS does not currently support different templates for

custom models. If the prompt is not in the correct format, the output of the LLM can

vary and may not be parsed correctly. This limitation complicates the use of RAGAS

with proprietary data, highlighting the need for further development and customization

capabilities in such frameworks.

5.1.1 System Testing

The evaluation of RAG systems, as discussed in the previous section, is full of challenges.

Traditional metrics are poorly correlated with human judgment; while emerging frame-

works offer promising approaches for systematic evaluation, they pose difficulties when

dealing with proprietary data due to confidentiality concerns and technical limitations.

For the purpose of testing out this RAG system, a more flexible human evaluation ap-

proach was chosen. This was done for several reasons. Human labeling is inherently

resource-intensive; creating a detailed gold standard dataset, where each query is paired

with an expected answer and context, is time-consuming. Instead of sticking strictly to

specific metrics, judgment was used to evaluate the overall relevance and utility of the

responses. Since the knowledge base consisted of internal company information, this

approach allowed for a more natural and comprehensive assessment. The evaluation

focused on practical, real-world scenarios rather than theoretical benchmarks. The em-

phasis was on situations that directly mattered to the intended users of the system.
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Question-Answer Examples

The RAG system was first tested on information specific to the company and its knowl-

edge base. In Figure 5.1, the system provides step-by-step instructions for setting up a

company VPN connection, along with some considerations such as ensuring the laptop

is free of pirated software. These steps correlate with the Confluence pages with detailed

instructions for VPN.

Figure 5.1: Question about VPN setup with context

In Figure 5.2, the system provides information on the focus and structure of the com-

pany’s Summer School project. It mentions the specific technologies involved, such as

Azure Cloud, Cloud Computing, DevOps, Containerization, Message Brokers, and Data

Governance. It also outlines the activities involved, like creating and deploying Azure

resources, following Git Flow for code development, and delivering presentations. Ad-

ditionally, it includes information about the project’s schedule and pauses between lec-

tures.

Figure 5.2: Question about 2023 Summer School Project

Figure 5.3 outlines the process for taking vacation days. It includes specific guidelines,
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such as booking vacations in advance, using the company’s time-tracking system (Bam-

boo), and ensuring that critical projects are managed.

Figure 5.3: Question about company’s vacation policy

Besides the company-specific information, the systemwas tested on "general knowledge"

data. Even though the model can answer these questions without the provided context,

answers with context are more relevant and can provide more important and specific

information. In the example shown on 5.4 and 5.5, the system provides a correct answer

without the context. However, the contextual answer provides more depth and men-

tions more specific information (such as the Kafka version and relevant configuration

parameters). Since internal knowledge materials often include findings from conducted

research or detailed documentation thatmay not bewidely available, contextual answers

can prioritize information that is considered important within the organization.

Figure 5.4: Question about Kafka’s rebalancing protocol with context
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Figure 5.5: Question about Kafka’s rebalancing protocol without context

Testing showed that the system sometimes fails to answer certain questions, even though

the information is present in the knowledge base. In Figure 5.6, the question about the

budget for buying headphones is not answered, with the explanation that the context

does not provide the requested information. The likely issue here is the formatting of

the benefits page, which uses a large table to present the data. Semantic parsing of the

data in tabular format seems to be challenging for the system.

Figure 5.6: Question about the benefits budget

Another example is presented in Figure 5.7, which involves a question about the team

lead for a specific Summer School team. The system was unable to provide the name,

stating that the context does not mention it. Again, this information exists in the knowl-

edge base, but the page with information about teams and their members is formatted

in bullet points, showing that the sentence chunker used by the systemmight not be the

most effective tool for parsing such formats.
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Figure 5.7: Question about Summer School team leads
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6 Discussion

6.1 Implications

The design and implementation of this system serve as a proof-of-concept for incorporat-

ing RAG-based LLM systems in business environments. The implementation of the RAG

system in an internal knowledge base showedmultiple benefits, includingmore relevant

search results with references to original Confluence pages, and minimized risks of hal-

lucinations. The system could improve search efficiency within large business knowl-

edge bases; by combining LLM models with a retrieval mechanism, the RAG approach

can offer more relevant search results faster than traditional key-word search methods.

Additionally, every answer includes references to the original Confluence pages in the

form of links, allowing users to verify the information and gain quick access to related

content. In cases where the system cannot provide an answer, it still provides links to

related pages thatmight contain the necessary details, enabling users to explore the topic

further. The LLM used is configured to minimize the risk of hallucinations; when the

system lacks sufficient context to provide a reliable answer, it avoids fabricating infor-

mation and instead clearly states the limitations of the provided context.

6.2 Future Direction

One potential area for future improvement of the RAG system is the implementation

of hybrid search (instead of just vector search). Hybrid search (most commonly) refers

to the combination of traditional keyword-based search and modern semantic search.

By combining keyword-based search which excels in exact keyword-matching scenar-

ios but struggles with synonyms and contextual details, and vector search which offers

semantic context awareness but may miss essential keywords and depend on the qual-
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ity of generated embeddings, the hybrid search could offer “the best of both worlds”, at

least in theory. Although the concept of hybrid search presents a promising approach

to optimizing search and retrieval, its practical implementation faces challenges, par-

ticularly concerning compatibility and usability issues with existing vector databases.

Qdrant, the vector database used, does not support hybrid search out-of-the-box. This

limitation meant that integrating hybrid search would require manual implementation,

significantly increasing the complexity of the system. Moreover, hybrid search is most

beneficial in domains and scenarios where many rare keywords or specialized terms are

present. For example, in the medical domain, numerous rare terms and specialized vo-

cabulary are not typically found in general language models. In such contexts, hybrid

search can ensure that these specific terms are accurately matched while still benefiting

from the contextual understanding provided by semantic search. Given that the current

implementation of the RAG system is not focused on such specialized domains, the need

for hybrid search was less critical. However, a possible future direction is to implement

hybrid search, either by using a different vector database that has native hybrid search

or by implementing it manually.

Another possible improvement of the quality and relevance of the retrieved chunks could

be facilitated by the application of reranking methods, which involves reordering re-

trieved results based on some criteria. The main reasoning for incorporating rerank-

ing methods is that by considering only the top k responses from the knowledge base

retrieval, we might miss out on potential valuable context; since Confluence pages are

chunked for embeddings, it could happen that the context is lost across the smaller parts,

or the relevant information is contained in more than k chunks.

As previouslymentioned, one significant benefit of the RAGmethod is its ability to avoid

the issue of stale and outdated data, ensuring that the answers remain relevant and cor-

rect. Although the current implementation does not include automated retrieval of up-

to-date information from Confluence, this is surely an important step for future devel-

opment. Automating this process would ensure that the RAG system always has access

to the latest information, without manually reloading the knowledge database.

To make the system more user-friendly, it could be improved with conversational mem-

ory capabilities. This would let the system remember the context from previous interac-

tions, providing more coherent and relevant responses. This feature would be especially
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helpful for users with long or complex queries, as it would allow the system to maintain

a continuous and logical flow of information, enhancing user satisfaction and engage-

ment. For a RAG system in a production environment, implementing multi-tenancy is a

crucial step. Multi-tenancy enables a single instance of the RAG system to servemultiple

users, each with its own isolated data and history.

6.3 Future of RAG

As LLMs continue to develop, they are becoming more powerful, with newer models

having longer input contexts and improved capabilities. A recent breakthrough is the

release of Google’s Gemini 1.5, a multimodal LLM with an impressive context window

of up to 1 million tokens in production and up to 10 million tokens in research. This

means Gemini 1.5 can process huge amounts of data, such as one hour of video, eleven

hours of audio, a codebasewith over 30,000 lines of code, or texts containing over 700,000

words [36]. In evaluations, Gemini 1.5 has outperformed other RAG-powered LLMs in

answering questions about large collections of text across various context sizes [37].

Despite these advancements, the growing context window size in LLMs doesn’tmean the

end of RAG. Even though itmight look like LLMswith larger contextwindows could take

over, there are still many challenges and limitations with these large context LLMs. This

shows that RAG is still relevant and necessary. Firstly, even the largest models strug-

gle to achieve sub-second response times when dealing with long contexts. The volume

of data that these models must handle can slow down their response times, which is

a critical issue in applications that require quick responses. Furthermore, generating

high-quality answers within long contexts is very computationally expensive. For in-

stance, retrieving 1 million tokens of data at a rate of $0.0015 per 1,000 tokens can lead

to substantial expenses, potentially amounting to $1.50 for a single request. This cost

factor can quickly escalate, making the deployment of large context LLMs economically

unfeasible for many applications [38]. Additionally, just increasing the context size does

not address the issue of using sensitive proprietary data as a knowledge base. As a result,

RAG methods continue to play a crucial role in the development and deployment of AI

systems. The future of RAG is closely connected to current advancements in LLMs. As

LLMs evolve, RAG methods are also developing to leverage these improvements.
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7 Conclusion

The integration of Large Language Models and the RAG method represents a novel ap-

proach to enhancing business systems. While the emergence of LLMs like GPT models,

PaLM, and Llama has revolutionized the field of NLP with their capabilities, their limi-

tations in handling dynamic and domain-specific queries have led to the exploration of

more sophisticated approaches. TheRAGmethod, by integrating external data sources at

the point of inference, addresses these limitations effectively, offering a promising solu-

tion for enhancing business applications. This thesis has demonstrated that while LLMs

possess great potential, their reliance on static, pre-trained data renders them less ef-

fective for tasks requiring up-to-date or highly specific information. This limitation is

particularly notable in business environments, where the critical information often re-

sides in internal documents that are not included in the public datasets used to train

these models. The implementation of a RAG-based system within a business context

has shown multiple benefits, including improved search efficiency and more relevant

results. Traditional keyword-based searches often fall short in extracting precise infor-

mation from large, complex knowledge bases. In contrast, the RAG approach leverages

both the power of LLMs and the specificity of real-time data retrieval, significantly en-

hancing the quality of the information retrieved. Additionally, the inclusion of references

to original sources within responses not only adds a layer of verifiability but also allows

users to explore further, enabling a deeper understanding of the queried information.

This thesis has demonstrated the benefits of this approach while outlining a roadmap

for future research and improvements. This paves the way for even smarter andmore ef-

fective use of LLM technology in business. As these systems keep evolving, they have the

exciting potential to increase efficiency and insight, changing the way businesses handle

and utilize their internal knowledge.
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Abstract

Transformation of Business Systems using Large Language

Models and the RAG Method

Dora Horvat

This thesis presents the design and implementation of a Retrieval-Augmented Genera-

tion (RAG) based Large Language Model (LLM) system. By integrating retrieval mech-

anisms with generative capabilities, an innovative concept in the world of natural lan-

guage processing and artificial intelligence is explored and tailored for business systems.

The proposed solution aims to bridge the gap in business document search; knowledge

sharing and collaboration tools mainly rely on keyword-based search, without the ability

to semantically process user queries and understand the context of the questions. The

RAG-based systememploys semantic searchmethods to retrieve relevant documents and

augment the generative model’s responses, enhancing the accuracy and relevance of in-

formation provided to users. The implemented system showcases the potential of RAG

systems in transforming business processes while also providing a framework for future

research and development.

Keywords: Retrieval-augmented generation (RAG); Large language models (LLMs);

Semantic search; Vector databases; Business document search
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Sažetak

Transformacija poslovnih sustava pomoću velikih jezičnih

modela i metodi RAG

Dora Horvat

U ovom radu predložen je dizajn i prikazana je implementacija sustava koji proširuje

sposobnosti velikih jezičnih modela metodom generiranja potpomognutog pretraživa-

njem (RAG). Integracijom mehanizma dohvaćanja s generativnim sposobnostima jezič-

nih modela istražuje se inovativan koncept u svijetu obrade prirodnog jezika i umjetne

inteligencije, te se prilagođava poslovnim sustavima. Predloženo rješenje nastoji pre-

mostiti postojeći jaz u pretraživanju poslovnih dokumenata; alati za dijeljenje znanja i

suradnju uglavnom se oslanjanju na pretraživanje temeljeno na ključnim riječima, bez

mogućnosti semantičke obrade korisničkih upita i razumijevanja konteksta pitanja. Sus-

tav temeljen na RAG metodi koristi sematičke metode pretraživanja kako bi pronašao

relevantne dokumente i poboljšao odgovore generativnog modela, povećavajući točnost

i relevantnost informacija koje se pružaju korisnicima. Implementirani sustav prikazuje

potencijal RAG sustava u transformaciji poslovnih procesa, istovremeno pružajući okvir

za buduća istraživanja i razvoj.

Ključne riječi: Generiranje potpomognuto pretraživanjem (RAG); Veliki jezični mo-

deli (LLM); Semantičko pretraživanje; Vektorske baze podataka; Pretraživanje poslovnih

dokumenata
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