
Pose optimized multiple camera systems for vehicle
surround-view vision

Puligandla, Venkata Anirudh

Doctoral thesis / Disertacija

2024

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of
Zagreb, Faculty of Electrical Engineering and Computing / Sveučilište u Zagrebu, Fakultet
elektrotehnike i računarstva

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:168:210870

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-03-21

Repository / Repozitorij:

FER Repository - University of Zagreb Faculty of
Electrical Engineering and Computing repozitory

https://urn.nsk.hr/urn:nbn:hr:168:210870
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.fer.unizg.hr
https://repozitorij.fer.unizg.hr
https://repozitorij.unizg.hr/islandora/object/fer:12042
https://dabar.srce.hr/islandora/object/fer:12042

University of Zagreb
Faculty of Electrical Engineering and Computing

Venkata Anirudh Puligandla

POSE OPTIMIZED MULTIPLE CAMERA SYSTEMS
FOR VEHICLE SURROUND-VIEW VISION

DOCTORAL THESIS

Zagreb, 2024

University of Zagreb
Faculty of Electrical Engineering and Computing

Venkata Anirudh Puligandla

POSE OPTIMIZED MULTIPLE CAMERA SYSTEMS
FOR VEHICLE SURROUND-VIEW VISION

DOCTORAL THESIS

Supervisor: Academician Sven Lončarić, F.C.A.

Zagreb, 2024

Sveučilište u Zagrebu
Fakultet Elektrotehnike i Računarstva

Venkata Anirudh Puligandla

Optimizacija Rasporeda Kamera u Sustavima za
Panoramsku Vizualizaciju Okoline Vozila

DOKTORSKI RAD

Mentor: Akademik prof. dr. sc. Sven Lončarić

Zagreb, 2024

The doctoral thesis was completed at the University of Zagreb, Faculty of Electrical Engi-

neering and Computing, Department of Electronic Systems and Information Processing.

Mentor: Academician Sven Lončarić, F.C.A.

The thesis has 97 pages.

Thesis number:

About the Supervisor

Sven Lončarić received Diploma of Engineering and Master of Science degrees in electrical

engineering from the Faculty of Electrical Engineering and Computing in 1985 and 1989, re-

spectively. He received Ph.D. degree in electrical engineering from University of Cincinnati,

USA, in 1994. Since 2011, he has been a tenured full professor in electrical engineering and

computer science at FER. He was a project leader on a number of research projects in the area of

image processing and computer vision. From 2001-2003, he was an assistant professor at New

Jersey Institute of Technology, USA. He founded the Image Processing Laboratory at FER and

the Center for Computer Vision at University of Zagreb. Prof. Lončarić has been a co-director

of the national Center of Research Excellence in Data Science and Cooperative Systems and the

director of the Center for Artificial Intelligence at FER. With his students and collaborators he

published more than 250 scientific papers. Prof. Lončarić is a Fellow of the Croatian Academy

of Sciences and Arts. According to recent Stanford University studies he was ranked in the top

2% of the most cited world scientists in the category artificial intelligence – image processing.

For his scientific work he received several awards including the National Science Award.

O mentoru

Sven Lončarić diplomirao je i magistrirao u polju elektrotehnike na Fakultetu elektrotehnike i

računarstva, 1985. i 1989. godine. Doktorirao je u polju elektrotehnike na Sveučilištu u Cincin-

natiju, SAD, 1994. godine. U zvanje redoviti profesor u trajnom zvanju u polju elektrotehnike

i polju računarstva na FER-u izabran je 2011. godine. Bio je suradnik ili voditelj na brojnim

istraživačkim i razvojnim projektima u području razvoja metoda za obradu slika i računalnog

vida. Od 2001. do 2003. bio je Assistant Professor na Sveučilištu New Jersey Institute of

Technology, SAD. Voditelj je istraživačkog laboratorija za obradu slike na FER-u. Osnivač je i

voditelj Centra izvrsnosti za računalni vid na Sveučilištu u Zagrebu. Suvoditelj je nacionalnog

Znanstvenog centra izvrsnosti za znanost o podatcima i kooperativne sustave i voditelj Centra

za umjetnu inteligenciju FER-a. Sa svojim studentima i suradnicima publicirao je više od 250

znanstvenih i stručnih radova. Prof. Lončarić redoviti je član Hrvatske akademije znanosti

i umjetnosti. Prema studijama Sveučilišta Stanford rangiran je u 2% najutjecajnijih svjetskih

znanstvenika u kategoriji umjetna inteligencija i obrada slike. Za svoj znanstveni i stručni rad

dobio je više nagrada uključujući Državnu nagradu za znanost.

Preface

This thesis summarizes the research work conducted during the time between 2019 - 2023 as

part of the ImmerSAFE research project funded under the European Union’s (EU’s) H2020-

MSCA-ITN-2017 call, part of the Marie Sklodowska-Curie Actions-Innovative Training Net-

works (ITN) funding scheme under project 764951, and supervised by Professor Sven Lončarić,

PhD.

I would like express my sincere gratitude to Prof. Sven Lončarić, PhD, the head of the Image

Processing Group at the Department of Electronic Systems and Information Processing at the

Faculty of Electrical Engineering and Computing, University of Zagreb, for offering me the

early-stage researcher position, and for his continuous support and encouragement throughout

the course of the PhD, and also for his valuable contribution, as a co-author, to the research

work published during this period. This work would not have been possible without his morale

support beyond the professional aspect of my life. I would also like to thank my father, P.V.V.S.

Murthy, my mother P.V. Rajyalakshmi, and, my brother, P.V. Kasyap for encouraging me to

pursue a doctoral degree and for their continual support in all of my decisions in life. Special

thanks to the rest of my family for their valuable support, motivation, and professional and

personal tips. I would like to extend my sincere gratitude to Valentina Topolovčan for her

support during my time at the University, and through a brief period of uncertainty during the

latter half of my doctoral research. Lastly, I would also like to thank my friends and, all the

colleagues at the Image Processing Group, FER, University of Zagreb, for livening up my time

at FER to make it fun and enjoyable.

Abstract

Advanced Driver Assistance Systems (ADAS) are ubiquitous in present day vehicles. Among

various ADAS systems, parking assistance systems offering novel views of the vehicle’s sur-

roundings, such as, 360o and bird’s-eye views are becoming a part of all modern vehicles.

Presenting novel views involves multiple steps of image processing including, image/video cap-

ture, image registration and visualization. Capturing surrounding view requires the placement

of multiple cameras on the vehicle as a first step. Precise placement and calibration of the cam-

eras is important as minor errors may lead to significant artefacts during the subsequent steps

of image registration and visualization.

Camera placement optimization (CPO) aims to optimize the poses of multiple cameras with

an objective to increase the overall coverage of the target area, and/or to reduce the cost of the

multiple-camera system. CPO can also eliminate the requirement for camera calibration, as

the precise pose of the cameras is already estimated during the optimization step. Although

CPO problems are well-studied for surveillance scenarios, there exists a dearth of literature in

the context of applications to vehicle surrounding view capture. Compared to surveillance sce-

narios, CPO problems for vehicle surround view capture need to address additional challenges

posed by the complex, non-convex structure of vehicles, and the requirement of a high degree

of accuracy in the estimated camera’s pose. CPO problems are simulated in discrete space by

sampling the continuous space. Although modelling in discrete space is the favoured approach

for their simplicity, few works use continuous space models or a mix of both for added accuracy.

The scope of this work includes CPO problem formulation for surround-view coverage for

vehicles, CPO problem definitions in discrete as well as continuous space domains, and propos-

ing a new heuristic algorithm to improve the performance of existing optimization algorithms.

Firstly, new contributions are made towards formulating the CPO problem for surround-view

coverage using a 3D discrete space model. A novel multi-resolution heuristic optimization al-

gorithm is proposed to significantly improve the performance of existing discrete optimization

algorithms. The CPO problem is then reformulated in the continuous space domain and com-

pared against the discrete-space variant to highlight improved accuracy. Lastly, a super-voxel

segmentation method, which was tailored for use in the multi-resolution optimization method,

is introduced and validated on well-known 3D point cloud datasets. Experiments and simulation

results on high-resolution 3D models of a variety of vehicles show that the proposed methods

are effective in optimizing camera poses of multiple cameras for vehicle surround-view, meeting

the demands of real-world scenarios in a reasonable amount of time.

Keywords: camera placement optimization, global optimization, image segmentation, com-

putational geometry, 3D visualization

Optimizacija Rasporeda Kamera u Sustavima za Panoramsku

Vizualizaciju Okoline Vozila

Razni napredni sustavi pomoći vozaču (ADAS) sve se više dodaju u sve vrste vozila. Sus-

tavi pomoći pri parkiranju neki su od najpopularnijih ADAS sustava koji se koriste u današnjim

vozilima. Sustavi pomoći pri parkiranju razvili su se iz jednostavnog ultrazvuka senzora dometa

postavljeni na donji stražnji kraj vozila za otkrivanje objekata u blizini i upozoravanje operatera,

do sustava s više kamera postavljenih oko vozila za snimanje okolnog pogleda i predstaviti nove

poglede operaterima vozila. Sustavi s više kamera obično se sastoje od četiri kamere s ribljim

okom postavljene na četiri strane vozila za snimanje pogleda od 360 stupnjeva na okruženje.

Snimljeni videozapisi spajaju se i prikazuju zajednički prostor iz kojeg se novi prikazi kao

što su pogled straga, pogled odozgo ili pogled iz ptičje perspektive, generiraju i prikazuju op-

erateru kao pomoć pri upravljanju vozilom. Dok za mala vozila (npr. automobile) raspored

kamere se sastoji od četiri kamere na četiri strane, za veća vozila (npr. kamion, teška vozila,

grad̄evinska oprema itd.) tako jednostavan raspored možda neće biti dovoljan za snimiti pogled

od 260 stupnjeva. Pronalaženje optimalnog položaja i orijentacije kamere za surround prikaz

s više kamera sustav snimanja za velika vozila može uključivati naporan proces od nekoliko

ponavljanja ispitivanja i greška. Optimizacija postavljanja kamere (CPO) je tema u kojoj je

cilj pronaći optimalni raspored za postavljanje više kamera u definirani prostor, s ciljem da se

minimaliziraju troškovi sustava s više kamera ili, kako bi se povećala pokrivenost definiranog

ciljnog područja ili, kako bi se postigla oba cilja istovremeno. CPO problemi su detaljno prouča-

vani za različite primjene uključujući nadzor, praćenje materijala, praćenje ljudskog kretanja,

snimanje ljudskog pokreta, 3D rekonstrukcija itd. u posljednja dva desetljeća. Unatoč svom kn-

jiževnom radu, CPO problemi još nisu proučavani u kontekstu snimanja vozila iz okruženja. S

povećanjem broj senzora integriranih u vozila, CPO za pokrivenost prostornim pogledom može

pomoći ADAS sustavima za poboljšanje kvalitete pokrivenosti i smanjenje troškova sustava s

više kamera. CPO problemi sastoje se od pojedinačnih koraka stvaranja simuliranog prostora s

regijama definiranim za postavljanje kamera i ciljne regije koje moraju biti pokrivene postavl-

jenim kamerama, prikupljanje varijabli odluke iz definiranog prostora za proces optimizacije

i definiranje objektivne funkcije koju je potrebno optimizirati kako bi se pronašle optimalne

pozicije kamere. Za npr. u tipičnom scenariju unutarnjeg nadzora, simulirani prostor je mod-

eliran kao tlocrt prostorije ili više soba. U najjednostavnijem slučaju, simulirani prostor sadrži

samo zidove za pregradu prostora i nema drugih prepreka. U tom prostoru unutarnje površine

zidova djeluju kao moguće lokacije za postavljanje kamera, dok je pod ciljno područje koje

treba pokriti sa postavljenim kamerama. Točke se uzorkuju iz odgovarajućih regija kako bi

predstavile diskretne skupove kandidatskih kamera i kontrolnih točaka, koje postaju dio prob-

lema optimizacije kao primarne varijable odluke. Primjer funkcije cilja za CPO problem može

biti definiran kao maksimiziranje broja kontrolnih točaka pokrivenih postavljenim kamerama.

Ostala ograničenja kao što je nedopuštanje postavljanja više od jedne kamere na jednu uzorak

sa zidova, maksimalno ograničenje ukupnog broja kamera koje se mogu postaviti itd., dodaju se

kako bi se dovršio CPO problem. Metode za optimizaciju funkcije cilja uključuju točni i heuris-

tički algoritmi. Uobičajen pristup rješavanju problema je korištenje binarnog programa formu-

lacija temeljenog na cjelobrojnom programiranju. Iako je ovu formulaciju NP-teško riješiti,

linearna funkcija cilja i linearna ograničenja omogućuju rješavanje problema unutar razumne

količine vremena. Problem i prostor za pretraživanje moraju biti mali da bi se koristili točni

optimizacijski algoritmi. Algoritmi točne optimizacije, kao što je algoritam grananja i vezanja,

teoretski je zajamčeno da će postići globalni optimum kada je osigurano dovoljno resursa i

vremena računanja. Med̄utim, složenost algoritma eksponencijalno raste s brojem the vari-

jabli odluke i ograničenja problema, što rezultira ozbiljnim ograničenjima veličine modeliranog

CPO problema. Ograničenje točnih algoritama u smislu resursa i vremenski ograničava njihovu

primjenu na modele malog prostora, obično u dvije dimenzije s niskom frekvencijom učestalost

uzorkovanja modeliranog prostora za prikupljanje mogućih položaja kamere i kontrole bodova.

Modeliranje problema iz stvarnog života u 2D nije točno zbog ograničenja ili aproksimacija

u smislu stvarnog ili efektivnog vidnog polja kamere. Efektivno vidno polje kamere reducira

se na jednostavne geometrijske oblike, poput trokuta ili sektora, što rezultira lošim približnim

slika modeliranog prostora. Dodatno, niska frekvencija uzorkovanja rezultira velikim pros-

tornim praznine izmed̄u mogućih lokacija kamera ili kontrolnih točaka, čime se nedovoljno

predstavljaju naseljeni prostor. Zbog ovih ograničenja točnih optimizacijskih algoritama, razvi-

jeni su mnogi približni ili heuristički algoritmi za rješavanje CPO problema. To uključuje

Greedy algoritme koji rade iterativnim odabirom kamera s najvećom pokrivenošću sve dok nije

postignut limit broja kamera, genetski algoritmi koji oponašaju biološki proces prirodne evolu-

cije odabirom brojnih mogućih rješenja i kombiniranjem kamera izmed̄u odabranih rješenja

za proizvodnju novih rješenja, algoritama roja čestica koji usklad̄uju istraživanje i iskorišta-

vanje prostora pretraživanja inicijaliziranjem odred̄enog broja čestica koje se kreću prostorom

pretraživanja i pokušati kolektivno postići optimalno, vjerojatno uzorkovanje algoritama koji

odlučuju koje odabrano rješenje kandidata treba obraditi procjenom, a vjerojatnost da je uzorak

dobro rješenje, algoritmi lokalnog pretraživanja koji naglašavaju stvaranje poremećaja u blizini

naišlih dobrih rješenja kandidata, itd.

U ovom radu prvo se bavimo nedovoljno proučavanim problemom optimizacije položaja

kamere za okružni pogled vozila. Kako je integracija ADAS sustava relativno nova i zahvalju-

jući činjenici da su sustavi kruznih kamera ograničeni na male automobile, problem CPO-a za

pogled iz okoline vozila nije dovoljno proučen. Med̄utim, zbog sve većeg broja kamera i kom-

binacija različitih tipova senzora koji ulaze u snimanje prostornog pogleda sustavima, problem

dobiva sve veću pozornost. Formulacija temeljena na BIP-u prvi put je predložena u 3D pomoću

vi

svemirskog modela koji se sastoji od 3D modela vozila. Za diskretni BIP problem, poligonalni

model vozila se vokselizira i prikuplja se skup mogućih lokacija kamere s vanjske površine

modela vozila. Cilindrični prostor definiran je sa 360 stupnjeva oko vozila iz kojeg se uzorkuju

kontrolne točke. Ograničenja u obliku ograničenja na broj kamera, vidljivost kamera, itd., do-

daju se problemu maksimizacije pokrivenosti uzorkovanih kontrolnih točaka. FoV fotoaparata

modeliran je pomoću 3D piramida opisano korištenjem pet ravnina, a pokrivenost se izračunava

pomoću proračuna točke u ravnini. Za kontrolnu točku se kaže da je pokrivena odred̄enom

kamerom ako se kontrolna točka nalazi unutar svih pet ravnine piramidalnog vidnog polja

kamere. Za kamere su definirane pozicije i kontrolne točke optimizacija pomoću binarnih vari-

jabli odlučivanja. Brojne orijentacije oko terena i smjerovi skretanja svake kamere definirani su

u koracima unaprijed definiranog kuta. CPO problem rješava se korištenjem algoritma grananja

i vezanja (BnB) i Greedy algoritma. Dobiveni rezultati naglašavaju ograničenja točnih algori-

tama optimizacije i daju motivaciju za daljnje istrazivanje heurističkih algoritama. Ograničenja

korištenja točnih algoritama leže u činjenici da se definirani CPO problem nije mogao riješiti

korištenjem BnB algoritma za većinu dospjelih slučajeva zbog ograničenja RAM-a. Samo djelić

minute definiranog skupa pozicije kamere i kontrolnih točaka morali su biti nasumično uzorko-

vani da bi se mogao riješiti CPO problem korištenjem BnB algoritma. Nasuprot tome, isti je

problem riješen u nekoliko sekundi korištenjem Greedy algoritma bez nailaska na pogreške ne-

dostatka memorije. Visok stupanj točnosti orijentacije kamera je potreban u ovim sustavima

kamera s više kamera za njihovu upotrebu u naknadnoj obradi slike (spajanje slika/videozapisa

npr.). Ovo zahtijeva visokofrekventno uzorkovanje modeliranog prostora, što rezultira velikim

brojem varijabli odlučivanja, čime je problem nepraktičan za rješavanje korištenjem točnih

optimizacijskih algoritama. Novi heuristički algoritam temeljen na optimizaciji za pozicije

kamere u više rezolucija predloženo je da se omogući prikupljanje uzoraka iz modeliranih na vi-

sokoj frekvenciji i rješavanje problema korištenja ograničenih resursa u ograničenom vremenu.

Metoda funkcionira tako da se opetovano klasterizira položaj kamere na temelju njihove pros-

torne lokacije i orijentacije te optimizaciju za poziciju kamere na skupinama točaka. U procesu

grupiranja, svaka kandidatska pozicija kamere dodijeljena je normala površine točke (procijen-

jena s obzirom na vokselizirani 3D model vozila) kao njegova primarna orijentacija, a metrika

udaljenosti koristi se za provjeru sličnosti točaka unutar susjedstva i dodijeljivanja unaprijed

definiranim centrima klastera.

Nakon što je korak dodjele za iteraciju je završen, težište svih točaka koje pripadaju klasteru

se koristi za predstavljanje prostornog položaja klastera dok je prosjek svih njihovih površina

normala se koristi za predstavljanje orijentacije klastera za optimizaciju. Broj klastera tijekom

svih iteracija održava se konstantnim, a metoda je nazvana multi-rezolucija jer, kako iteracije

prolaze, klasteri postaju sve manji dok ne dosegnu točku gdje nema daljnje potrebe za grupi-

ranjem, čime se površina vozila prikazuje u najvećoj razlučivosti. Metoda je testirana pomoću

vii

pet različitih optimizacijskih algoritama, a rezultati ispitivanja se usporeduju s rezultatima do-

bivenim rješavanjem istog problema, u jednom koraku, bez ikakvog grupiranja (naziva se jed-

nostruka razlučivost). Rezultati predložene metode više razlučivosti pokazuju da je smanjuje

vrijeme optimizacije do 160 puta za veće instance. Rezultati takoder pokazuju da ova metoda

omogućuje korištenje tocnih optimizacijskih algoritama na velikim problemima što je inače nije

moguće za odred̄eni broj uzoraka prikupljenih iz prostora. Metoda je bila ispitana pomoću toc-

nih i heurističkih algoritama optimizacije, a predložena metoda smanjuje vrijeme računanja i za

heurističke algoritme. Rezultati takod̄er pokazuju da predložena metoda neznatno poboljšava

pokrivenost za neke slučajeve zbog sub-voxel točnosti postignute kroz klasteriranje.

Predložena metoda klasteriranja prilagod̄ena je CPO primjeni s naglaskom na blizinu izmed̄u

orijentacije ili, normale površine, preko njihove prostorne udaljenosti. U usporedbi s drugim

metodama segmentacije supervoksela, naša predložena metoda klasteriranja ima drugaciju shemu

inicijalizacije sjemena klastera koja mu pomaže da ima više klastera u regijama s visokom

gustoćom točaka, što rezultira boljim pripanjanjem granica. Kada je sličnost teksture ili boje

točaka korišteno zajedno s orijentacijom i prostornom blizinom za grupiranje točaka, pred-

ložena metoda pokazala je bolju izvedbu u usporedbi s najsuvremenijim segmentima supervok-

sela segmentacijske metode. Metoda je testirana na RGBD skupu podataka otvorenog koda

od 1400 oblaka točaka u zatvorenom prostoru i u usporedbi s tri najsuvremenije metode seg-

mentacije supervoksela. Rezultati pokazuju da predložena metoda nadmašuje najsuvremeniju

u tri od četiri metrike. Proizvodi kompaktnije supervoksele u usporedbi s drugim metodama

zahvaljujući našim predlozenim shemama inicijalizacije, te je veća težina dana orijentaciji i

sličnosti teksture. Na kraju, novi CPO problem temeljen na mješovitom cjelobrojnom pro-

gramiranju takod̄er je predložen kao dio ovoga rada. Unatoč korištenju heurističkih metoda

optimizacije, dobiveno rješenje možda neće biti od željene kvalitete, prvenstveno zahvaljujući

uzorkovanju poziciji kamere. Poduzorkovanje možda neće odgovarati dobrom približavanju

površini vozila, dok se prikupljanjem velikog broja uzoraka povećava složenost problema.

Nekoliko relevantnih radova modelira varijable odluke u kontinuitetu prostora zbog jednos-

tavnosti formulacije problema temeljene na BIP-u i složenosti geometrijskih izračuna uključena

u izračun pokrivenosti kamerom.

Višestruki sustavi kamera za kruzni prikaz vozila koriste se za proizvodnju spojenih video

izlaza od 360 stupnjeva gdje pozicija kamere mora biti poznata s visokim stupnjem točnosti.

Za predloženi CPO problem u domeni kontinuiranog prostora, orijentacija i položaj kamere

se definiraju pomoću varijabli koje mogu poprimiti kontinuirane vrijednosti unutar odred̄enog

raspona dok su kontrolne točke definirane u diskretnom prostoru, kao uzorci prikupljeni iz rav-

nine tla oko modela vozila. Formulacija problema s mješavinom diskretnih i kontinuiranih

varijabli pomaže u izbjegavanju složenih geometrijskih izračuna za izračunavanje pokrivenosti

kamere i smanjenju vrijeme računanja zbog značajno manjeg broja varijabli odlučivanja. U

viii

ovom prikazu optimizacije mješovitog cijelog broja, definiranjem hemisfere u sfernim koordi-

natama oko 3D model vozila, kamera je predstavljena pomoću samo tri varijable. Med̄utim,

zbog korištenje diskretnih i kontinuiranih varijabli, CPO problem više nije linearan. Mapiranje

položaja kamere s hemisfere na površinu vozila čini CPO problem nelinearni. Stoga tocni al-

ogoritmi kao što je algoritam grananja i vezanja mogu se duže koristiti obzirom su definirane

samo za linearne ili kvadratne ciljne funkcije s linearnim ili ograničenjima. Naš problem je

riješen pomoću tehnika optimizacije crne kutije koje ne zahtijevaju sve informacije o funkciji

cilja (npr. gradijenti) za napredak prema cilju optimuma funkcije.

Predloženi kontinuirani CPO problem uspored̄en je s diskretnim CPO problemom koji ko-

risti algoritam optimizacije roja čestica na više od stotinu realističnih 3D modela vozila različi-

tih tipova, od automobila do teških strojeva ili grad̄evinske opreme. Kontinuirani CPO problem

testiran je korištenjem optimizacije roja čestica algoritam koji koristi neizrazitu logiku za proc-

jenu vrijednosti parametara algoritma i Bayesian algoritam optimizacije. Naša metoda koristi

matricu kamere za izračunavanje pokrivenosti koja nudi veću fleksibilnost u modeliranju ra-

zličitih tipova kamera i, takod̄er pomaže u izbjegavanju skupih geometrijskih proračuna (kao

što je točka u ravnini) za izračunavanje pokrivenosti. Različite vrste leća mogu se lako uklo-

piti u problem odred̄ivanjem parametara kao što su žarišna duljina, izobličenje itd., u matrici

kamere. Predložena shema procjene položaja kamere na površini modela vozila rezultira sa

samo pet varijabli za svaku kameru. Nasuprot tome, pozicija kamere definirane u diskretnoj

domeni rezultiralo bi tisućama varijabli odluka za optimizaciju problema. Rezultati pokazuju

da kontinuirani CPO problem postiže znatno bolju pokrivenost za isti broj kamera u usporedbi

s diskretnim CPO problemima.

Ključne riječi: optimizacija položaja kamere, globalna optimizacija, segmentacija slike,

računalna geometrija, 3D vizualizacija

ix

Contents

1. Introduction . 1

1.1. Problem Statement .3

1.2. Contributions .4

1.3. Thesis Structure .4

2. Overview of Computer Vision Principles and Visualization 5

2.1. 3D Computational Geometry .5

2.2. Supervoxel Segmentation .7

2.3. 3D Visualization & Parallel Computing .8

3. Overview of Camera Placement Optimization . 11

3.1. Modelling Space .11

3.1.1. CPO for vehicle surround-view .13

3.2. Modelling Camera FoV .14

3.3. Visibility Matrix .15

3.4. Variables and Problem Formulation .16

3.5. Optimization .18

3.5.1. Linear Programming .19

3.6. Greedy Heuristics .20

3.7. Particle Swarm Optimization .21

3.8. Sampling-based methods .22

3.8.1. Other Optimization Algorithms .23

3.9. Continuous CPO .24

4. Scientific Contributions . 27

4.1. BIP-based method for vehicle surround-view coverage27

4.2. CPO in Continuous Domain .28

5. Conclusion and Future Work . 30

6. List of publications . 32

7. Author’s contribution to the publications . 33

Literatura . 35

Publications . 45

Optimal Camera Placement To Visualize Surrounding View From Heavy Machinery .46

A multiresolution approach for large real-world camera placement optimization prob-

lems .55

A Supervoxel Segmentation Method With Adaptive Centroid Initialization for Point

Clouds .72

A Continuous Camera Placement Optimization Model For Surround View83

Biography . 95

List of Publications . 96

Životopis . 97

Chapter 1

Introduction

Modern vehicles are increasingly relying on several types of ADAS systems to reduce on-road

accidents, assist during parking, and to address driver fatigue among other uses. Parking assis-

tance systems such as, rear-view cameras are present in most modern vehicles. With increasing

demand for parking assistance, multi-camera systems such as surround-view camera systems

are garnering interest in the automotive industry, [1, 2]. Capturing surrounding-view with mul-

tiple cameras enables generating novel views such as, top-view, rear-view, etc. A common

approach to deploy vehicle surround-view camera systems is by placing 4 wide-angle/fish-eye

lens cameras on the 4 sides of the vehicle (see Figure 1.1), [3]. While this approach may work

well for small vehicles (e.g., cars) as they have a wide field-of-view (FoV) to also include suffi-

cient overlap between different FoVs, it may not be suitable for larger vehicles such as, trucks,

construction equipment, etc. Some other systems, in addition to four cameras, add range sensors

such as, lidar and ultrasound for additional accuracy and reliability, [4]. Apart from providing

assistance, surround-view capture can help in avoiding fatal accidents by ensuring visibility of

blind-spots, i.e., the region around the vehicle that are not directly visible to the vehicle operator.

Capturing and displaying of the surroundings of a vehicle can be divided into four stages: 1)

sensor placement planning, 2) multi-camera calibration, 3) image/video registration/stitching,

and 4) novel view generation and/or 360o display. Although the three stages of camera calibra-

tion, [5, 6, 7], image registration, [8, 9], and displaying, [10, 11] are well-studied, not enough

research has been conducted on the first stage of sensor placement planning. The primary rea-

son for this is that these systems are limited to cars where four cameras placed on the four

sides of the vehicle suffice. However, intuition may fail when multiple cameras need to be

placed on larger vehicles with complex, non-convex structure. Further, planned placement of

the cameras on the vehicle can result in full surrounding-view coverage with fewer cameras

thereby, reducing the cost of the multi-camera system. A well-defined algorithm designed to

optimize the placement of cameras can scale easily for vehicles of any size and may help to

avoid manually finding good locations through a lengthy trial-and-error process. Additionally,

1

Introduction

Figure 1.1: An example of a vehicle surround-view capture system with four fish-eye lens cameras on
the four sides of the vehicle, [2]. The four images around the center show the camera view from the four
fish-eye lens cameras placed on the vehicle.

it may also prove useful during the camera calibration stage by providing an accurate estimate

of the cameras’ poses in real-world.

Literature for the Camera Placement Optimization (CPO) problem dates back to over a

decade. While the general sensor placement optimization (SPO) problems are used in various

fields including but not limited to, identifying defects in structures, [12, 13], drone navigation,

[14], 3D reconstruction, [15], Internet of Things, [16], and video surveillance, [17], CPO prob-

lems, which are a subset of the SPO problem, also find applications in a diverse set of fields such

as, 3D object reconstruction, [18], human behaviour monitoring and motion capture systems,

[19, 20], multi-camera network design with VR interface, [21], etc., but their applications are

largely concentrated to video surveillance, [22, 23, 24]. Compared to CPO problems for surveil-

lance, a CPO problem for vehicle surround-view needs to address additional challenges such

as, more degrees of freedom (DoF) in camera pose, non-convex space models and placement

of cameras in such environments, and a requirement of high accuracy due to the dependence of

subsequent image processing steps (calibration, image registration, etc.) on the optimized cam-

era poses. Despite these challenges, only a few recent works, [25, 26, 27], address the camera

(or heterogeneous sensors) placement optimization problem for the specific use-case of vehicle

surround-view capture.

2

Introduction

1.1 Problem Statement

The problem of camera placement optimization relates it’s origins to the art gallery problem,

[28], where a combinatorial theorem is used to identify the positions of security guards from

where maximum area of an art gallery can be monitored. Modelling a CPO problem requires the

definition of a space where the cameras are allowed to be placed, a target space that needs to be

viewed by the placed cameras, and a model of the camera’s FoV along with a cost of the camera.

A common and an established practice is to model the CPO problem as a set-cover problem in

discrete space, where samples are collected from the space where cameras can be placed and the

target space, which are represented as sets of possible camera locations and target area points

for the set-cover problem. Consider that we are given a set, J, of samples form the target area

represented as points in 3D Cartesian coordinate system and a set of samples, I, representing

the points in 3D Cartesian Coordinates where cameras are allowed to be placed. Consider that

a visibility matrix, A, with elements a ji, which maps the two sets, J and I, is also given. Given

these considerations, a simple CPO problem can be formulated using binary decision variables,

xi, which decide whether a camera position is selected or not. Then, the uni-cost set cover

problem modelled using binary integer programming (BIP) to obtain full coverage of the points

in set J is then given as,

min
|I|
∑
i=1

xi

s.t.
|I|
∑
i=1

a jixi ≥ 1 ∀ j,1 ≤ j ≤ |J| .
(1.1)

If a unit cost is associated with each camera, the above problem tries to minimize the cost of

the multi-camera network while ensuring coverage of all of the target space samples in J. Al-

though this binary integer programming-based problem formulation is commonly found across

CPO problems and SPO problems, the modelling of the space and collection of discrete sam-

ples is dependent on the use-case and varies from problem to problem. While the discrete CPO

model is widely used due to it’s simplicity, few works also consider describing the decision

variables continuous space without any sampling of space, albeit at the cost of significantly

higher complexity. For the case of optimization in continuous space, the decision variables are

no longer binary or integer, but are allowed to take real values within a specified range (depend-

ing on the requirements of the use-case) which describe the position (and/or orientation) of the

camera in the modelled space.

3

Introduction

1.2 Contributions

There are two main contributions made by this thesis. Modelling the CPO problem for vehicle

surround-view forms the basis for the two contributions. For the first, contribution, a multi-

resolution optimization method is proposed which is a heuristic optimization algorithm that

addresses the concerns of complexity and high optimization times of the discrete binary integer

programming-based CPO problem. Given an input 3D voxel model of a vehicle, the multi-

resolution approach repeatedly groups the voxels into subsets based on the proximity of the

voxel centers and the surface normals of the voxels and optimizes camera poses on the subsets

or segments. The size of the segments becomes smaller with each iteration until camera poses

are optimized directly on the voxels of the vehicle’s 3D model. This approach helps in reducing

the number of decision variables for each optimization run, thereby reducing the complexity of

the problem.

The voxels are grouped together using a supervoxel segmentation method that is tailored

for this specific use-case. This segmentation method was compared against state-of-the-art

supervoxel segmentation methods and is discussed in this thesis as a separate contribution. For

the second contribution, a CPO problem is formulated as mixed-integer programming model

in continuous space. In such models, some decision variables are allowed to take continuous

values while the rest are modelled using discrete samples. For our problem, the target space that

needs to covered is modelled using discrete points while the cameras’ positions and orientations

are modelled as continuous decision variables. This problem is complex and non-linear, and is

optimized using global black-box optimization techniques. The main reason to formulate the

camera pose in continuous space is to preserve the accuracy of pose estimation, particularly of

the cameras’ orientation as even small variations of camera orientation may result in significant

artefacts while registering the images from multiple cameras.

1.3 Thesis Structure

The necessary principles for understanding camera placement optimization problems are briefly

described in Chapter 3 within the context of state-of-the-art methods. This chapter introduces

the concepts of space and camera modelling, CPO problem formulation, and deterministic and

heuristic optimization for discrete as-well-as continuous decision variables. Necessary concepts

related to 3D geometry, image segmentation and visualization are introduced in Chapter 2. The

scientific contributions made by this thesis are detailed in Chapter 4 and the conclusions are

presented in Chapter 5 along with future research directions.

4

Chapter 2

Overview of Computer Vision Principles
and Visualization

Apart from mathematical principles of combinatorial and global optimization, the work pre-

sented in this thesis relies on the principles of 3D geometry, computational photography, 3D

visualization, 3D image segmentation and machine learning. Defining cameras, their Field-of-

View (FoV), and calculating coverage of control points by a camera, requires the use of 3D

geometry and principles on camera-view projection. To verify the optimization results qualita-

tively, we developed a visualization tool to display the cameras at the optimized locations on

the vehicle’s 3D model along with the camera FoVs. To overcome the limitations of exact opti-

mization algorithms on large datasets, a new heuristic algorithm was proposed. The algorithm

uses image segmentation and machine learning principles to group together the vehicle’s model

into larger segments. Some optimization methods were implemented on the GPU to speedup

computation using parallel programming techniques. All these principles are briefly introduced

in the following sections.

2.1 3D Computational Geometry

Computational geometry is a broad field but, the work in this thesis is mostly focused on cam-

era’s field-of-view and camera projection matrices. Calculating camera coverage using the cam-

era projection matrix or simply the camera matrix, [29], is discussed in this section whereas,

the geometrical camera FoV models are introduced in Section 3.2. The camera matrix is a

3× 4 matrix that allows mapping of 3D points in Cartesian space into 2D image coordinates

(P3 → P2). A 3D point, pw, and it’s pixel coordinates, pc, in an image are related using the

camera matrix M as,

pc = sMpw , (2.1)

5

Overview of Computer Vision Principles and Visualization

where, s is a scalar value. The camera matrix M has 11 degrees of freedom as multiplication

of the matrix by any arbitrary scalar value s results in an equivalent camera matrix. The matrix

encompasses the translation and rotation transformations of the point in world to camera coor-

dinates, projection of the transformed point onto the image plane, and distortions (scale, skew,

etc.) resulting from the camera hardware, lenses, etc.

The matrix M is a combination of two individual matrices, the intrinsic parameter matrix

and the extrinsic parameter matrix. The intrinsic parameter matrix describes the properties of

the camera and it’s model. The intrinsic parameter matrix is an upper triangular matrix given

as,

K =

α −αcotθ cx

0 β

sinθ
cy

0 0 1

, (2.2)

where, cx and cy, describe the translation between the center of the image plane and the origin

of the image in pixel coordinates, α and β describe the projection using the focal length of the

lens f (for a simple pinhole model, α = β = f), and cotθ and sinθ describe the skew of the

sensor (a skewed camera coordinate system results when the angle between the two axes is not

equal to 90o) and the distortion from the lens, respectively. Skew parameter can be ignored in

most use cases as most sensors are not skewed. Distortion is present in wide-angled lenses and

can be ignored when modelling cameras with a standard lens.

The intrinsic parameter matrix maps the points from a 3D camera reference system to the

image whereas, another transformation is needed to map 3D points from an arbitrary world

coordinate system to the camera coordinate system. This transformation can be achieved by

using the rotation and translation matrices, R, a 3×3 matrix, and T , a 3×1 vector, respectively.

Collectively, the extrinsic parameter matrix is denoted is [RT]. Using the intrinsic and extrinsic

parameter matrices, a 3D point, pw =(x,y,z) can be represented in image coordinates pc =(u,v)

as,

u

v

= K[R T]

x

y

z

. (2.3)

The camera matrix can be used to calculate coverage of control points in CPO models. A

control point is covered by a camera if it’s image coordinates fall within the modelled image

dimensions, and it is not covered otherwise.

6

Overview of Computer Vision Principles and Visualization

Figure 2.1: An example of supervoxel segmentation of an RGBD image. The image on the left shows
ground truth edges overlayed on the RGB image.

2.2 Supervoxel Segmentation

Supervoxels are disjoint clusters of points in a point cloud which represent regions sharing com-

mon features such as, spatial location, surface normal orientation, and color. Image processing

for large point clouds is computationally expensive as some operations have to be repeatedly

applied on thousands or millions of points. Grouping regions into supervoxels allows to rep-

resent the set of points with shared attributes. Image processing operations can be applied on

the supervoxel and the changes can be propagated to the underlying points at a later stage, as

desired. Although, supervoxels are an approximation of a set of points, good supervoxels may

try to maximize similarity between the points and preserve minute details. The following prop-

erties are desirable in good supervoxels: 1) boundary adherence - object boundaries should be

preserved, 2) compactness - supervoxels should be regularly shaped, 3) efficiency - generating

supervoxels should be computationally inexpensive. An example of supervoxel segmentation

of an RGBD image is shown in Figure 2.1.

Supervoxels are a three-dimensional extension of superpixels, [30, 31, 32], which are over-

segmentation of 2D images. One of the first methods of supervoxel segmentation was applied on

videos, in which time is the third dimension. Moore et al., [33], proposed an over-segmentation

method for videos to iteratively divide pixels into clusters by cutting a 3D grid horizontally

and vertically. Achanta et al., [34] proposed an efficient k-means-based algorithm for over-

segmentation of 2D RGB images and video sequences. Their method works by intializing

seeds uniformly across an image and assigning pixels within a local radial neighbourhood to the

closest cluster seeds using a distance metric based on color and spatial similarity. The spatial

distance in the metric was extended to 3D distance for the case of segmentation of videos.

Another supervoxel segmentation method using graph cuts to solve an energy minimization

problem was proposed in, [35].

A method for supervoxel segmentation of RGBD videos to partition a graph constructed us-

7

Overview of Computer Vision Principles and Visualization

ing color and surface normals into a spatio-temporal segments using a spectral graph clustering

method, was proposed in [36]. Gao et al., [37], improved the segmentation results over existing

methods by using non-uniform cluster seed initialization to obtain relatively dense seeding at

salient regions. In [38], Papon et al., proposed one of the first supervoxel segmentation methods

for RGBD images which works simialr to the SLIC algorithm, [34]. Their method was efficient

and fast as they worked with voxelized point clouds and used voxel adjaceny graphs for fast ac-

cess of voxel neighbours for assignment to cluster seeds. Lin et al., [39], proposed a supervoxel

segmentation method where an energy function is optimized by formulating a subset selection

problem. The subset selection problem formulation allows for segmentation without an input

parameter for the number of supervoxels.

Newer methods came up with different strategies to improve boundary adherence of su-

pervoxel segmentation methods. A modification to the vccs algorithm, [38], was proposed in

[40], to work directly on point clouds without voxelizing. An algorithm absed on local allo-

cation, with a cost function focussed on preserving boundaries was proposed by Ni and Niu,

[41]. Some methods went a step further to use deep neural networks which learn geometrical

features of an image and output supervoxels, [42, 43]. For this thesis, a new supervoxel segmen-

tation method was proposed that is particularly suited for point clouds. The proposed methods

takes advantage of points’ orientation, color and spatial distance with an innovative cluster seed

initialization strategy and improves compactness of the supervoxels, when compared to other

methods. The method was developed with a focus on CPO problems for vehicle surround-view

to reduce the time and resource complexity of exact CPO optimization algorithms.

2.3 3D Visualization & Parallel Computing

3D visualization tools were developed to assist in qualitative analysis of the new CPO methods

proposed as part of this work. The tools were developed using open source software libraries

including, OpenGL, [44], a toolkit in C++ programming language for computer graphics appli-

cations, Visualization Toolkit (VTK), [45], a C++ programming library with a clean interface to

visualize 3D data, and Paraview, [46], a 3D visualization tool with parallel visualization capa-

bilities. Our visualization workflow consists mostly of the input data in the form of 3D polygon

mesh models, [47], which are processed to extract data from the vehicles’ models and add a

ground plane to the model to extract the control points. The optimized camera poses obtained

as the solution of the optimization problem is marked on the vehicle’s surface in the 3D model

and the cameras’ FoVs are drawn using lines to show the covered control points by the cameras

placed at the optimal locations.

Our work uses two different visualization models for the discrete and continuous CPO prob-

lems. For the discrete CPO problem, the polygon mesh models were first voxelized using VTK

8

Overview of Computer Vision Principles and Visualization

Figure 2.2: An example of the visualization of results for the discrete CPO problem.

to make collection of discrete samples from the vehicle’s surface easier. A bowl-shaped shaped

surface was defined around the vehicle to collect samples of control points from. An example

visualization used for qualitative analysis of the results for the discrete CPO problem can be

seen in Figure 2.2. In the figure, the region in red represents the vehicle’s model while, the

region in shades of blue shows the control points. The darkest part of the blue region indicates

that the region is not covered by any cameras. It can also be seen that cameras’ FoV are clearly

visualized using lines. The visualization helps to visually verify the optimization results as well

as to verify if the optimal camera poses are meaningful or if they lie at impossible locaitons on

the vehicle’s surface.

Similarly, another visualization model was developed for the continuous CPO problem. As

sampling of vehicle’s surface is not required for the continuous CPO problem, the polygon mesh

models were used with voxelizing. The processing of input data for this visualization involved

obtaining bounds of the vehicle’s model, placing a hemispherical surface around the model and

collecting samples from a defined ground plane around the vehicle’s model. For the visual-

ization model for the continuous CPO problem, the sampled control points were visualized as

small spheres surrounding the vehicle’s model. An example visualization of the results for the

continuous CPO problem is shown in Figure 2.3. Also for this visualization, the optimized

cameras’ FoVs are shown using lines. Visualizations for both the problems were created using

9

Overview of Computer Vision Principles and Visualization

Figure 2.3: An example of the visualization of results for the continuous CPO problem.

VTK and visualized on Paraview.

Parallel computation was used to speed up some optimization algorithms used for this work.

Parallel programming was done using the OpenCL, [48], library using C++ programming lan-

guage, and numba, [49], library using python programming language. A greedy algorithm used

for discrete CPO problem was programmed to run on the GPU using openCL library. The al-

gorithm required recomputing the visibility of all available candidate cameras at each iteration,

and calculating camera visibility parallelly provided a significant speedup. Similarly, a particle

swarm optimization algorithm for the continuous CPO problem was also programmed on the

GPU using numba library. As the particles in a particle swarm optimization algorithm, move

independently of each other, the fitness for each particle at each iteration can be calculated

parallelly, to provide a significant speedup.

10

Chapter 3

Overview of Camera Placement
Optimization

Before formulating the CPO problem, the simulation space needs to be defined, from where the

set of samples will be collected over which the decision variables will be defined. It is also nec-

essary to define the camera FoV models and compute the visibility matrix before CPO problem

formulation. The following sections describe these prerequisite steps. Before concluding this

chapter, continuous space model and associated decision variables are introduced at the end.

3.1 Modelling Space

As stated earlier, it is a common practice in CPO literature to use discrete space models. A

simple 2D space model may include a floor plan divided into regions where cameras can be

placed and target areas that need to be covered by the placed cameras. This space is sampled

using various sampling strategies to use them for generating the decision variables for the opti-

mization problem. Some example space models are shown in Figure 3.1. Figure 3.1(a) shows

a typical 2D space model used in CPO for surveillance applications. This space model was

introduced by Hörster et al., in [50], which is one of the pioneering works in CPO literature. In

the figure, the target area is shown in white and the region in black represents obstacles (e.g.,

walls). This space addresses a 2D CPO problem where a given number of cameras are to be

placed on the black region, in an optimal way, such that they cover as much area of the white

region as possible.

To model it as discrete CPO problem following a BIP-based model, it is first required to

gather the sets J and I. In this example, the target points that need to covered (commonly

known as control points in CPO literature) are sampled from the white region, whereas, sam-

ples collected on the edges of the black region would represent the points where cameras can

be placed. While this example is one of the simplest models, other works address additional

11

Overview of Camera Placement Optimization

Figure 3.1: Examples showing common method of modelling space using floor plans for applications
of CPO in surveillance scenarios. (a) A 2D indoor floor plan-based space model, [50], (b) A 3D space
model of a city, [51].

complexities in the space. In [52], the authors considered a similar 2D floor plan with uniform

weightage for all control points. David et al., [53] also considered a uniform 2D floor plan, but

divided them region into zones based on various properties to simplify the problem and to influ-

ence camera placement. All these works also consider static obstacles which are traced into the

camera’s FoV using ray-tracing techniques. In [54], Hörster and Lienhart used weighted sam-

pling to assign different levels of importance to different regions. In [55], Yabuta and Kisawa

divided the region into smaller rectangles to reduce the complexity of the problem. Each rect-

angle is represented by it’s center thereby eliminating the need for sampling. By changing the

size of the rectangles they could control the resolution as smaller rectangles represent smaller

part of the target region thereby implying higher accuracy of coverage. Zhao and Cheung, [56],

extended the discretization of space strategy to apply the CPO problem for object tracking, e.g.,

tracking of tags, face, etc. They also employed different sampling strategies such as, random

sampling, stratified sampling, and systematic sampling, to discretize the space.

Citing the limitations of modelling the problem space in 2D, Zhang et al., [57], proposed an

into 2.5D where they still preserved the floor plans, but allowed the cameras to be placed in two

dimensions instead of one by adding a height parameter. Owing to more computational power,

recent works started addressing the problem in three dimensions. Kritter et al., [51], modelled

city plans in 3D to achieve the goal of optimizing camera poses for effective surveillance of

the city. They used large space models and allowed the cameras to be placed on the buildings

while the streets were modelled as target areas (see Figure 3.1). However, they highlighted that

they had to use sparse sampling of the space due resource and time constraints for optimizing

the problem on datasets of such scale. SOme other works with 3D space models include, [58],

where Becker et al., proposed an algorithm based on voting scheme for SPO in a 3D volume,

12

Overview of Camera Placement Optimization

Figure 3.2: An example visualization of the space model used for the discrete CPO problem proposed
in this work.

and [59], where Malhotra et al., to optimize 6 degrees of freedom (DoF) camera poses in 3D

voxel volumes.

3.1.1 CPO for vehicle surround-view

Almost none of the above mentioned literature addressed the CPO problem for vehicle surround-

view capture, as this application has not been studied enough. Some of the only works address-

ing CPO problems for autonomous vehicles include, [25], where Indu et al., proposed a CPO

model in discrete space with weighted coverage function to emphasise critical areas in the ve-

hicle’s surrounding region, [26], where the authors optimized placement of distinct types of

sensors for more ADAS purposes than only surround-view coverage, and [60], where Kim et

al. proposed an approach similar to the previous one, but using only lidar sensors. The common

feature in all the mentioned CPO problems lies in the space model where the possible camera

locations are sampled on the vehicle which is placed at the center with the control points sam-

pled from the region 360o around the vehicle. For the work in this thesis, the space is modelled

in 3D with 3D polygonal models of vehicles placed at the center and control points sampled on

the ground around the vehicle until a certain distance from the center of the vehicle. An exam-

ple visualization of the space model used for the work done in this thesis is shown in Figure

3.2. In the figure, the vehicle model placed at the center of the simulated space is shown in red

and the control points sampled form the target area surrounding the vehicle’s model are shown

in blue. The target area is modelled to resemble a bowl surface to satisfy the requirements for

image registration method as they project images from fish-eye lens cameras on bowl shaped

surfaces for accurate image stitching.

13

Overview of Camera Placement Optimization

Figure 3.3: Some examples of camera FoV models. (a) triangular and sector FoV models in 2D, (b)
Cone FoV model in 3D, and (c) 3D pyramidal FoV model which commonly used for 3D OCP problems.

3.2 Modelling Camera FoV

The next step before formulating an OCP problem is to define the cameras and FoVs. Similar

to modelling space, these methods also vary from 2D to 3D. Camera FoV models are necessary

to calculate coverage of the control points by the placed cameras. The calculated coverage

value is plugged into the cost function to estimate the direction or the multi-camera placement

combination for the next iteration of the optimization process. Figure 3.3 shows some example

FoV models that are commonly used in OCP literature. Triangles and circular arcs were widely

used for OCP problems modelled in 2D, [50, 61, 62, 63]. While these geometrical shapes work

well for 2D camera models, the same shapes are extended into their 3D versions for 3D OCP

problems. Cones and pyramidal FoVs are the two 3D extensions that are commonly used in 3D

OCP problems, [51, 57, 64].

In our work, we use the pyramidal FoV. This FoV model is described using five to six

planes, four planes representing the four sides of the pyramid wiht the remaining two planes

representing the far plane (z f) and near plane (zn), Figure 3.3(c). The far plane defines the

depth of field of the camera model while the near plane models the focal length. The length and

14

Overview of Camera Placement Optimization

width of the far plane is related to the horizontal and vertical FoV angles, α and β , respectively,

which together define the field of view of the camera model. In the figure, the camera origins

are represented using a solid circle. In all cases, the view direction is defined by the line passing

from the camera origin through the center of the opposite end. For e.g., p̂ in Figure 3.3(c) is the

view-direction vector of the camera which is the line from p passing through the center of the

far plane z f . Camera orientations at any given position can be modelled by simply rotating p̂ at

steps of a predefined angle.

Calculating control point coverage, for the pyramidal FoV model for e.g., is done by check-

ing every control point against each of the planes of the FoV model. If a control point lies

inside all the planes for a given camera model, that control point is said to be covered by that

camera placed at position p with an orientation p̂. The FoV model can be more sophisticated to

model complex coverage criteria. For e.g., ray-tracing can be implemented in the FoV model

to identify obstacles lying in the way, in which case, all the control points falling behind the

obstacle can be marked as uncovered. Resolution can be implemented in the coverage model,

by assigning higher weights to control points that lie within a certain range of distance, i.e.,

points farther away from resolution thresholds can be given lower weights to represent lower

resolution. Additionally, the region within the FoV model can be assigned different real-valued

weights which change by the gradient, for cases where a subject need to be placed at the center

of the FoV. Some works also allow the cameras to pan and tilt, [65]. For a detailed survey on

camera FoV and coverage models, please see [66].

3.3 Visibility Matrix

All discrete OCP problems require a visibility matrix which maps every possible camera pose

with control points to describe coverage. An illustration of the visibility matrix is shown in

Figure 3.4. This matrix is created by calculating the coverage for every possible camera pose.

All the control points are checked against every camera pose and if a control point falls within

the FoV of a given camera model, then the corresponding entry in the matrix is marked with

one. Entries for control points that are not covered by a given camera, are marked with zeros.

To use this visibility matrix in the OCP problem, a new binary variable is created for each

entry of the visibility matrix. These variables can be incorporated into the OCP model visa

constraints which help to ensure that only cameras that cover control points are selected during

optimization.

Although constructing this matrix requires high amounts of computational time, it can be

precomputed and saved to access during optimization. At this stage of constructing the vis-

ibility matrix, some of the unnecessary data points can be filtered to exclude them from the

optimization process. The filtration step helps to reduce the size of the decision variables and

15

Overview of Camera Placement Optimization

Figure 3.4: An Illustration of the visibility matrix.

constraints and can reduce the computational cost of optimization significantly. These steps can

contain various general constraints and application specific constraints. Some common steps

include, removing camera poses that do not cover any control points or less control points than

a predefined threshold, removing camera poses whose orientations look away from the target

area or directly into obstacles, and removing camera poses that have significant overlap with

adjacent camera poses.

3.4 Variables and Problem Formulation

Camera placement is an offline optimization problem. It is often considered in two approaches:

1) maximize coverage while keeping the cost constant, and 2) minimize the cost while main-

taining satisfactory coverage. For the simplest case, the cost function is usually the number of

cases, but it can be the cost of the multi-camera network for advanced cases. Before formu-

lating the OCP problem, all the data gathered in the previous steps needs to be modelled in

terms of decision variables that can impact the cost function and the optimization process. For

simplicity, we discuss only a simple uni-cost set-cover OCP problem. For this problem, it is

assumed that the cameras are all of the same type and have the same cost. Considering that the

set of possible camera locations have already been sampled, if the orientation of the camera at

each sampled location is quantized into Φ rotations, the decision variables for a camera pose

are defined as,

xiφ =

1 if a camera is placed at location

i with orientation φ

0 otherwise

, (3.1)

16

Overview of Camera Placement Optimization

where, φ = 1, . . . ,Φ and i = 1, . . . , |I|. Similarly the control points sampled form the target area

are assigned binary decision variables as,

c j =

1 if control point j is covered

by at least one camera

0 otherwise

, (3.2)

where, j = 1, . . . , |J|. After visibility checks have been performed and the visibility matrix, A,

has been constructed, assuming that no camera poses were filtered when constructing A, every

entry of the visibility matrix is assigned a binary decision variable as,

aiφ j =

1 if control point j is

covered by a camera placed at

position i with orientation φ

0 otherwise

. (3.3)

The optimization process is influenced by the three sets of decision variables defined in

(3.1), (3.2) and (3.3). Considering that we want to place n cameras on the vehicle, we define a

simple objective or cost function as the maximization of coverage as,

max∑
j

c j. (3.4)

Some constraints need to be enforced to encourage coverage, place restrictions on the number

of cameras etc. Firstly, the constraints to map the possible camera poses and control points to

the visibility matrix are written as,

c j ·
(
∑
iφ

xiφ ·aiφ j −1
)
≥ 0 , (3.5)

(1− c j) · (1−∑
iφ

xiφ ·aiφ j) . (3.6)

The above inequalities, which are non-linear as they involve product of two binary variables,

can be linearized by replacing every occurrence of the product c j ·x jφ with a new binary variable

viφ j. Having introduced a new variable, the following constraints need to be added,

c j + xiφ ≥ 2 · viφ j , (3.7)

c j + xiφ −1 ≤ viφ j . (3.8)

17

Overview of Camera Placement Optimization

The inequalities (3.5) and (3.6) can be rewritten in terms of viφ j as,

∑
iφ

viφ j ·aiφ j − ci ≥ 0 , (3.9)

1−∑
iφ

xiφ ·aiφ j − ci +∑
iφ

viφ j ·giφ j ≥ 0 . (3.10)

To ensure that not more than n camera poses are optimized, the following constraint needs to

be introduced,

∑
iφ

xiφ = n . (3.11)

Lastly, the following constraint needs to be introduced to ensure that only one camera is placed

at a given sampled location,

∑
φ

xiφ ≤ 1 . (3.12)

Having defined the decision variables, the objective function, and the constraints, a simple BIP-

based CPO problem to maximize coverage given that n cameras are placed, is formulated as,

maximize ∑
j

c j

subject to: (3.7), (3.8), (3.9), (3.10), (3.11), (3.12), and,

1 ≤ j ≤ |J|, 1 ≤ i ≤ |I|, 1 ≤ φ ≤ Φ .

(3.13)

3.5 Optimization

The optimal camera placement problem is commonly modelled in Discrete space and is tack-

led using combinatorial optimization algorithms. In this context, combinatorial optimizations

work by selecting the best available combination of camera poses that represent the optimal

or near-optimal value of the cost function while satisfying the defined set of constraints, from

a preselected set of all possible camera poses. Discrete CPO problems are proven to be NP-

hard which means that the global optimum is hard to find in polynomial time. Optimization

algorithms used for CPO can be broadly classified into two categories: 1) deterministic algo-

rithms, which always provide the same solution for a given problem with proven bounds around

the optimal solution, and 2) heuristic algorithms, which provide an approximation of the opti-

mal solution and may or may not provide proven bounds around the optimal solution. Linear

programming-based methods, such as branch and bound algorithm, are capable of finding the

optimal solution, [67], but, they are limited only to small-scale problems as the resource re-

quirement for these category of optimization algorithms increases exponentially with increase

in problem size. In discrete space problem formulations, there is always a trade-off between

having a good approximation of the underlying space and limiting the size of the optimization

18

Overview of Camera Placement Optimization

problem. If accuracy is desired, sampling becomes refined to produce a larger sized problem

leading to impractical resource and time requirements for using linear programming-based op-

timization algorithms.

For this reason, heuristic algorithms find abundant mention in CPO literature. Heuris-

tic do not suffer from the problems of high resource and time requirements as their linear

programming-based counterparts but, only provide an approximate solution which may or may

not be close to the global optimal solution. Nevertheless, many heuristic algorithms, specific

to the CPO problem, have been proposed over the past decade that provide good quality or

near-optimal solutions in only a fraction of the time compared to linear programming-based

methods. In the next subsections we briefly introduce the linear programming (LP) method and

the greedy and particle swarm heuristic optimization algorithms. Only the optimization meth-

ods studied as part of this work are included in this thesis but, a wider range of deterministic and

heuristic algorithms can be found in literature, some of which are discussed in Section 3.8.1.

3.5.1 Linear Programming

Linear Programming is a mathematical formulation for a system of equations, i.e., the objective

function and the constraints. It is one of the simplest ways to solve an optimization problem.

The constraints expressed as inequalities define a feasible polyhedral set region in the search

space. It is expected that the one of the vertices of this region represents the optimum value,

thereby reducing the problem to one of finding the extreme points. Commonly used algorithms

to solve LP problems include the simplex method, [68], and the branch and bound algorithm,

[69]. Integer Linear Programming (ILP) is a type of LP which restricts some or all variables

to integer values. If not all of the variables are integer, the problem is known as Mixed-Integer

Linear Programming (MILP). MILP allows some variables to take integer values while the

others take continuous values. As shown in (1.1), an LP in canonical form is written as,

maximize cT x

s.t. Ax ≤ b,

x ≥ 0,

x ∈ Zn ,

(3.14)

where c ∈ Rn, b ∈ Rm, and A ∈ Rm×n.

In the context of CPO, the problem is formulated such that each entry in a set of possible

camera placements is assigned a decision variable that takes a value 0 or 1 indicating the se-

lection of the corresponding camera pose. As the decision variables take a value of either 1

or 0, the resulting problem becomes a special case of ILP, known as Binary Interger Program-

ming (BIP). The binary constraint, however, makes the problem NP-hard making it unsolvable

19

Overview of Camera Placement Optimization

in polynomial time. Nevertheless, the interest in LP relaxation has made the branch and bound

(BB) algorithm the first choice to solve this problem. The BB algorithm breaks the problem into

smaller sub-problems and uses bounding functions eliminate sub-problems that cannot possibly

contain the possible optimum. The BIP-based CPO problem formulation has been used in many

works across various applications of CPO, [50, 62, 70, 71, 72].

3.6 Greedy Heuristics

One of the simplest heuristics method to obtain a feasible solution. It is also one of the fastest of

all optimization methods for CPO problems. For the problem of maximizing coverage, greedy

algorithm works by arranging all the possible camera poses in the descending order by the value

of it’s coverage and selecting the camera at the top (with highest coverage of all) to include it

into the final solution. This process is repeated for iterations equal to the number of cameras that

need to be placed. Suppose, if the placement of n = 5 cameras is to be optimized, the greedy

algorithm will select the top 5 cameras with highest coverage. This implies that the algorithm

selects a locally optimal solution at each iteration. Due to it’s simplicity, this algorithm is

significantly faster than any other CPO optimization method.

However, the algorithm selects cameras deterministically meaning that the algorithm selects

the exact same cameras no matter how many times it is run. There is no provision in the

algorithm to reconsider the selection or to explore other combinations of cameras. Therefore,

the resulting solution, even though a feasible solution, is always a locally optimal solution.

Selecting one camera at a time also destroys the combinatorial aspect of the problem. In [54],

Hörster and Lienhart proposed a Greedy heuristic which preserves the combinatorial aspects

to some extent. Their algorithm works by removing all the control points that are covered by

an already placed camera. For the next iteration, the coverage for all possible camera poses is

recalculated on the remaining control points from the set. This step ensures that the algorithm

tries to cover a wider set of control points rather than clustering all the cameras at close-by

locations.

Due to their low computational complexity, greedy algorithms have found an interesting use

to estimate an initial feasible solution that can be passed as a starting point for more complex

and efficient optimization algorithms, [51]. it has also been shown that the greedy algorithm

is the best polynomial-time approximation for the set cover problem, [73]. The authors in [74,

75], proposed greedy algorithms for the partial set cover problem, in other words for the cost

minimization problem which sets a threshold on the minimum required coverage. In [56, 72],

the authors have proposed greedy algorithms suited for the coverage maximization problem for

placing a predefined number of cameras. A detailed review of greedy algorithms and also other

heuristics can be found in [76]. Zhao et al., in that article, have a also a proposed an adaptive

20

Overview of Camera Placement Optimization

greedy algorithm that can optimize multiple number of cameras together instead of one by one,

to better preserve the combinatorial aspect of the problem.

3.7 Particle Swarm Optimization

Particle swarm optimization (PSO) methods are a group of bioinspired algorithms that mimic

the movement of swarms of flies, a flock of birds or a school of fish, [77, 78]. The idea behind

these algorithms is that a group of particles are initialized in the search space with each particle

representing a feasible solution. The number of dimensions of each particle is equal to the

number of cameras that need to be placed. The particles iteratively move through the search

space with individual velocities. At each iteration, the fitness values local to each particle is

compared to the global best fitness value encountered so far by the swarm and the global best is

updated accordingly. The particles move through the search space with varying velocity that is

influenced by the particle’s current fitness value, best recorded fitness value and the global best

fitness value.

The primary idea behind PSO algorithm is to determine the velocity of each particle. The

velocity of the ith particle at a time-step or iteration t +1 is given as,

vi(t +1) = wvi(t)+ c1r1(pi − xi(t))+ c2r2(pg − xi(t)) , (3.15)

where, xi is the particle’s position and vi is the particle’s velocity, w is the inertia, pi is this

particle’s current best fitness values, pg, is the current best fitness value reached by the whole

population, c1 and c2 are constants that emphasise the effect of local and global optima on the

particle’s velocity, and r1 and r2 are random factors in (0,1) that perform similar function as c1

and c2 with randomness. The constants and random factors allow for dynamic control of the

balance between exploration and exploitation of the search space. The position of ith particle

for the next iteration is calculated using the velocity from (3.15) and it’s current position as,

xi(t +1) = xi(t)+ vi(t +1) . (3.16)

Every particle in the swarm has a memory to store the the best fitness value and the associated

position (or camera combination) encountered by the particle so far. The algorithm also has

a memory to store the global best fitness value encountered by the whole swarm. At each

iteration, if any of the particles encounter a better fitness than the current best global fitness

value, then the global is updated accordingly. The algorithm moves the particles according to

their local and global optima, while the random and constant factors ensure that the particles

also explore the search space without getting stuck at local optima.

The PSO algorithm is a metaheuristic and is well-suited for problems with large search

21

Overview of Camera Placement Optimization

spaces and non-linear objective functions. As a metaheuristic method, they cannot guarantee

optimality of the solution but, can certainly find feasible solutions very close to the optimal

solution by balancing exploitation and exploration of the search space. As the velocities of

the particles play a key role in maintaining this balance, several variants of the PSO algorithm

have been proposed, [61, 79, 80, 81, 82]. Some of the recently published variations of the PSO

algorithm, although not specifically applied to the CPO problem, have shown to be efficient on

large-scale real-world problems, [16, 83].

3.8 Sampling-based methods

Sampling-based methods work similar to greedy methods with an added randomness in search

space exploration, thereby avoiding local optima and making these methods non-deterministic.

The simplest of sampling-based methods is to randomly sample the search space for prede-

termined number of iterations or until a satisfactory solution is reached. Most problems are

however, complex with large search spaces thereby rendering random sampling insufficient to

find an acceptable solution. To overcome this limitation several other sampling strategies, such

as, metropolis sampling (MS), [84], Gibbs sampling (GS), [85], and simulated annealing (SA),

[86], were used for sampling based optimization problems. These methods work by sampling

from a probability distribution by constructing a Markov chain with a distribution matching the

equilibrium distribution. This is achieved by relating the fitness or the objective value of the

sampled point to it’s probability of sampling. This follows the idea that assigning a higher prob-

ability to sampled points with higher fitness values may lead to the sampling of points closer to

the optima.

MS and GS are two commonly used Markov Chain Monte Carlo (MCMC) algorithms.

These methods can be used in the context of optimization by modelling the objective func-

tion as a distribution from which samples are drawn repeatedly and storing the sample with

the best objective value. MS method works by making a small perturbation around the current

sample, calculating the gain of the perturbation and accepting the sample if the gain is higher

than a sampled random number. Assume that xi is a combination of cameras selected from the

set S of all possible cameras, i.e., xi = [x0,x1, . . . ,xn] ∈ S, then according to MS, the probability

of sampling xi can be given using the probability function as,

P(xi) =
exp log f (xi)

∑ j∈S f (x j)
, (3.17)

where, f (.) denotes the objective function. The gain of the perturbation according to MS is

given as, log f (x
′
i)− log f (xi), [76]. The GS method also works similar to MS but, instead

of making a small perturbation, the Gibbs sampler selects a sample based on the conditional

22

Overview of Camera Placement Optimization

probability,

P(xi = 1|x0, . . . ,xi−1,xi+1 . . . ,xm) =
exp log f ([x0, . . . ,xi−1,xi+1 . . . ,xm])

∑ j∈S f ([x0, . . . ,x j−1,x j+1 . . . ,xm])
. (3.18)

As the GS sampler admits samples based on the conditional probability, rather than based on a

random number, the GS sampler admits more samples than the MS sampler.

Simulated Annealing (SA), [86], is a technique that establishes a non-linear relationship in

how a point is sampled with respect to the objective value. SA algorithms work by sampling

only around the peaks of the objective function. A new variable, temperature (T), is intro-

duced in the probability function that controls the probability of a sample being accepted. Teh

probability function can be written as follows,

P(xi) =
explog f (xi) ·T

Z
, (3.19)

where, z is a normalization factor, [76]. The parameter T is usually set to high value at the

beginning and is gradually decreased. When T is high, a greater number of samples are accepted

resulting in exploration of the search space. As the temperature cools down, the acceptance

rate of a sample decreases thereby shifting the focus of the algorithm on to searching for the

optimum. When T is small, the density of samples is concentrated around the peaks. This

algorithm functions similar to MS when T is high. The rate of decrease of T is controlled

by the user through cooling function that is incorporated into the algorithm. This class of

sampling-based algorithms have found numerous applications in CPO due to their accuracy is

approximating the global optima and low computational complexity, [64, 87, 88, 89, 90].

3.8.1 Other Optimization Algorithms

Semidefinite Programming (SDP)

SDP is an alternative to LP that allows to solve nonlinear convex objective functions, and pro-

vides a tighter relaxation to the binary constraint, [65, 91]. An SDP problem can be defined

using quadratic programming, [92] as,

min cT x

s.t. : Y ⪰ 0 ,
(3.20)

where Y = Y0 +∑
N
i=1 xiYi and c ∈ RN , Y0, . . . ,YN ∈ RM×M are symmetric matrices. The sign ⪰

implies Y is positive semidefinite, i.e., zTY z ≥ 0 ∀ z ∈ Rn. One advantage of using SDP is that

they can be solved efficiently.

23

Overview of Camera Placement Optimization

Genetic Algorithms (GA)

GA are a category of commonly used metaheuristic optimization algorithms that mimic the

process of natural selection using techniques such as, mutation and crossover, [93]. GA are

versatile and suited for discrete combinatorial optimization as they do not make any assump-

tions on the objective function or the search space such as, requirement of derivatives. Similar

to some variants of PSO, they provide a balance between exploitation and exploration of the

search space by using random processes such as, crossover and mutation. GA tend to find

the best approximation to the optimal solution and they also list meaningful candidates. The

convergence of GA has been theoretically proven in [94]. For these advantages, this group of

algorithms has been well-studied in CPO literature, [53, 95, 96, 97, 98].

GA work by selecting a random initial solution from the list of candidate solutions in the

search space. Subsequently, in each iteration, a subset of solutions are selected which are ranked

based on their fitness values or cost. A crossover operation is applied to mix and match parents

the subset of solutions to create a new solution belonging to the new generation. The mutation

operation then changes one or more values in the current solution to create a new chromosome.

These steps of natural evolution are repeated until a convergence criteria, such as, maximum

number of iterations, minimum required coverage, etc., is achieved. In the context of CPO,

a chromosome can be referred to as a subset of cameras while, crossover can be described as

swapping this subset with a subset of same size from another set of cameras, [99].

3.9 Continuous CPO

As discretization of the simulation model provides an added advantage to linearize the model

to use BIP-based problem formulation, the use of continuous variables has been neglected.

Smith et al., [100], proposed a continuous optimization approach for view and path planning

of an UAV for multi-view stereo reconstruction of an urban scene. To tackle the complexity of

continuous optimization, they modelled the path planning problem as a view selection problem

by selecting the optimal path from a predefined set of paths. While such an approach relates the

problem to the CPO problem, it is a simple and application-specific approximation that cannot

be generalized for CPO problems. Optimizing a CPO problem all variables modelled in the

continuous space requires complex geometrical calculations (e.g., plane volume intersections)

to calculate the view of a camera. Problem formulation based on Mixed-Integer Programming

(MIP), where part of the variables are modelled in space while the rest are modelled in discrete

space, allows to circumvent this limitation.

Kirchof, [101], proposed a method where the orientation of the cameras was modelled in

the continuous space, while the control points and the camera positions are modelled in dis-

crete space. A quality function was introduced and related to the objective function through

24

Overview of Camera Placement Optimization

Figure 3.5: An illustration of the CPO problem simulation using continuous variables to represent cam-
era pose.

a non-linear relationship and the problem was solved using non-linear programming methods.

Similarly, Ismail et al., [102], proposed a sensor placement optimization problem to monitor

defects in composite structures by modelling the sensor positions in continuous space with the

rest of the decision variables modelled in the discrete domain. Sundeep and Geert, [103], ar-

gued about the limitations of sensor selection problem and proposed a method to represent the

discrete grid with a continuous function using Taylor interpolation. Other works using contin-

uous variables for SPO problems can be found in [12, 104, 105]. Although, CPO problems

modelled in discrete domain simplify the problem to use linear programming, representing the

camera pose using continuous variables may improve the solution in terms of coverage or cost,

as sub-sample accuracy can be achieved using continuous variables.

In this work, we also propose a partly continuous space model for the CPO problem for

vehicle surround-view by modelling the camera pose using continuous variables. To avoid

complicating the problem, control points are sampled from the ground plane around the vehi-

cle’s model. An illustration of the modelled space is shown in Figure 3.5. The space model

is defined with a 3D model of the vehicle placed at the center on the ground plane. Control

points are sampled on the ground plane around the vehicle’s model. A hemisphere, represented

in spherical coordinates is placed surrounding the vehicle model. During optimization, points

are sampled on this hemisphere which are then mapped onto the surface of the vehicle’s model

to represent a camera’s pose. An illustration of the mapping of sampled points from the hemi-

spherical surface to the surface of the vehicle’s 3D model is shown in Figure 3.6, where the

cameras in solid show invalid or rejected candidate camera poses while, the hollow cameras

show valid camera poses. The mapping works by projecting a ray in the direction of the line

passing through the ground plane and the center of the vehicle’s 3D model. The intersection

point between the projected ray and the 3D model denotes the position of the camera and the

reverse direction of the ray denotes the orientation of the candidate camera. For an n-camera

25

Overview of Camera Placement Optimization

Figure 3.6: An illustration of the mapping of points sampled on the hemispherical surface to camera
poses on the vehicle model’s surface for the continuous CPO problem.

network pose optimization, a camera configuration is accepted if all n cameras have valid poses

on the vehicle’s surface.

As the problem involves non-linear steps, it is optimized using global black-box optimiza-

tion methods. Black-box optimization methods work to achieve a balance between exploration

and exploitation of the search space of an unknown objective function. These methods do not

require computation of gradients, and therefore, are suitable for optimizing complex non-linear

objective functions. The optimization methods work by defining a search space for the fitness

function based on the bounds and constraints placed on the variables. At each iteration the

search space is sampled and the fitness of the sample is calculated. The optimization functions

use different strategies to go towards optima based on the fitness value at the current iteration

and the global best fitness value encountered across previous iterations. Our work used a particle

swarm optimization* method that uses fuzzy logic to balance exploration and exploitation, and

a Bayesian Optimization (BO)† method which is known to provide a fast approach to optimize

complex objective functions that are computationally expensive.

*https://github.com/aresio/fst-pso
†https://github.com/fmfn/BayesianOptimization

26

Chapter 4

Scientific Contributions

There two main scientific contributions made as part of this thesis. The first contribution is the

development of a Binary Integer Programming-based method for multiple camera pose opti-

mization using a multi-resolution approach with the cost function formulated at different reso-

lution levels to maximize surrounding view coverage from vehicles, [Pub1, Pub2]. The second

contribution is the development of a Mixed Integer Programming-based method for modelling

camera pose and a specifically designed cost function to span both discrete and continuous do-

mains with an aim to maximize overall coverage by the multiple camera system for realistic

vehicle models, [Pub4].

4.1 BIP-based method for vehicle surround-view coverage

Binary Integer Programming is the commonly used problem formulation for camera placement

optimization problems. The approach involves defining a space model for the problem and dis-

cretizing it by collecting samples from the space. The collected samples represent the sets of

candidate camera poses and points in space that need to be covered by the camera. While the In-

teger programming method introduces a linear relaxation to the problem, BIP formulation adds

a constraint requiring some variables to take a value of either one or zero. Despite the addition

of the binary constraint, the BIP-based formulation is widely used for CPO problems as there

exist exact and numerous heuristic optimization algorithms to solve the problem. Although,

CPO problems have been studied well over the past couple of decades, they are largely limited

to surveillance scenarios. Few works address the issue of optimal camera placement for vehicle

surround view.

Through this contribution, we first introduced a BIP-based formulation for the specific case

of CPO for vehicle surround-view coverage, [Pub1]. The challenge lies in the fact that firstly,

the problem formulation needs to be done in 3D, while most surveillance applications simplify

the problem to a projection into 2D space thereby, significantly reducing problem complexity.

27

Scientific Contributions

Secondly, the sensitivity of orientation of the placed cameras is important which increases the

sampling frequency in the dimension of camera orientation resulting in a larger optimization

problem. Exact BIP-based optimization algorithms have a severe limitation in terms of compu-

tational resources and time. Although, heuristic algorithms address this concern, the accuracy

may not always match with that of exact algorithms which are theoretically known to find the

optimal solution.

To simplify the resource and time requirements of exact optimization algorithms, we pro-

posed a novel heuristic algorithm, [Pub2], that works at multiple resolution levels by grouping

the candidate cameras into clusters. The term resolution is used in similarity with image res-

olution as when candidate cameras are clustered, each camera pose represents a larger area on

the vehicle’s surface representing a lower-resolution image. The set of camera positions are

clustered to represent the first (lowest) resolution and CPO is performed on the clusters. The

selected clusters are unwrapped to the original resolution following which, they are clustered

again or optimized without clustering depending on a predefined threshold that is system hard-

ware dependent and set to avoid memory run-out errors. When CPO is performed on a subset

of the original set of camera poses without any clustering, the solution obtained is the final so-

lution of the optimization problem. This approach helps to reduce the time complexity of any

optimization algorithm as at each resolution, the number of input decision variables is much

lower. Additionally, experimental results showed that the proposed method slightly improves

the coverage accuracy as well. The clustering method used for this heuristic algorithm has been

published in [Pub3] as it improves results over the state-of-the-art supervoxel segmentation

methods.

4.2 CPO in Continuous Domain

BIP-based problem is a subset selection problem as it requires all the variables to take only dis-

crete variables and a set of candidate cameras and their coverage to be precomputed. Whereas,

when part of the variables are allowed to take continuous values, the problem is known as Mixed

Integer Programming problem. MIP problems also allow linear relaxations and there exist al-

gorithms to solve the problems exactly to find the optimal solution. However, the complexity

of finding an optimal solution for these problems is also N P-hard and exact optimization al-

gorithms are limited only to small sized problems, similar to BIP problems. The motivation

to allow part of the variables to take continuous values lies in the fact that the quality of cov-

erage by the optimized multi-camera network is dependent on the sampling frequency. When

the sampling frequency is small, we get a poor approximation of the vehicle’s surface but, high

sampling frequency may result in a large number of variables thereby, increasing the complex-

ity of the optimization algorithm. Modelling a problem with continuous variables is not easy as

28

Scientific Contributions

defining coverage by the cameras requires complex geometrical calculations (surface volume

intersection, etc.).

We proposed a method where the camera pose is defined in continuous space while, the

control points are defined in discrete space by sampling the ground plane, [Pub4]. To model

the camera positions in continuous space, an innovative solution is developed that uses black-

box optimization techniques to solve the problem. These optimization methods do not require

computation of gradients of the cost function and can balance exploration and exploitation of the

search space. For the proposed method, during optimization, candidate cameras are sampled on

a hemispherical surface around the vehicle’s model which are mapped onto the vehicle’s surface

through ray-tracing. The direction of the ray defines the candidate camera’s orientation while,

the point of intersection of the ray with the vehicle’s model defines it’s position. A new camera

coverage model based on the camera projection matrix, was also introduced as part of this work.

This coverage model has the flexibility to model various types of cameras by simply changing

the camera intrinsic parameters. Results show that modelling camera pose in continuous space

achieves a significant improvement in total camera coverage in slightly higher time complexity

when compared against the BIP model.

29

Chapter 5

Conclusion and Future Work

A new problem formulation for camera placement optimization for the specific case of vehi-

cle surround-view was proposed. The problem was modelled as a Binary Integer Programming

model with the objective as maximization of coverage of the surrounding area. Exact and heuris-

tic algorithms were tested on the proposed camera placement optimization problem and the

challenges in using exact algorithms for large simulations was highlighted. To address resource

and time constraints from exact optimization algorithms, random sampling methods were used

to reduce the size of input variables for the initial camera placement optimization problem.

Highlighting the limitations of random sampling to reduce the number of decision variables

in the optimization process, a new clustering-based approach was proposed. The clustering

based approach works by grouping together candidate camera positions into sets of clusters de-

pending on the spatial, textural and orientation similarities between the points on the vehicle’s

surface (or the candidate camera poses). Compared to random sampling-based selection of a

subset of the candidate cameras, the clustering approach provides an improvement in overall

coverage by the multi-camera network as important candidate cameras may be missed during

random sampling while, they are preserved in the clustering-based approach. The proposed

multi-resolution optimization approach reduced computational times by up to 60 times. The re-

sults for this proposed heuristic optimization method show that the method can also marginally

improve coverage results as it can achieve sub-voxel accuracy for camera placement.

The clustering method used for the proposed multi-resolution optimization method was de-

signed to emphasise the similarity between the surface normals of the points or voxels. For

uniformly textured planar regions on a surface, the surface normals play an important role in

distinguishing regional boundaries. As a result, the method used for the multi-resolution op-

timization approach was an improvement over state-of-the-art supervoxel clustering methods.

The proposed method was tested on an open RGBD dataset with over 1400 point clouds and

the results show that it produced most compact supervoxels and outperformed other methods on

three of the four metrics. The proposed clustering method, however, requires longer computa-

30

Conclusion and Future Work

tional time due to the iterative process of removing isolated cluster seeds and adding new ones

in unclustered regions. A new CPO problem formulation using decision variables for camera

poses in continuous space was proposed. The method follows a mixed integer programming-

based approach where part of the decision variables are discrete while the rest are continuous.

The continuous CPO problem was non-linear due to the presence of ray-tracing and mapping

of coordinates from Cartesian to spherical coordinate space and vice versa. It was solved using

global black-box optimization algorithms which do not need information about gradients of the

objective function, including Bayesian Optimization and Particle Swarm Optimization. Results

of the continuous CPO on more than a hundred 3D models showed that it performs significantly

better than the discrete problem formulation at a marginally increased computational time.

The work presented in this thesis addresses some of the major challenges faced in CPO

for vehicle surround view coverage but, there exists potential for future work. The work done

continuous CPO can be extended to reduce the search space further. This can be achieved by

identifying important or useful regions on the vehicle model’s surface and limiting the range of

the decision variables to only those regions. A smaller search space can increase the chance of

finding camera placement solutions with higher quality. The camera models can be extended

to include commonly used lenses such as, fish-eye lens. This can be achieved by modifying

the intrinsic parameter matrix accordingly. The parameters can be modified to include lens dis-

tortion parameters for fish-eye or wide-angled lenses which may lead to realistic modelling of

the problem. Additional optimization algorithms may be tested for the continuous CPO prob-

lem to increase accuracy and efficiency. As the introduced discrete CPO problems are linear

and simple, it may benefit to model realistic cameras for that problem and compare the results

against continuous CPO problem in detail. The camera matrix-based coverage model can be

implemented for the discrete CPO problems for simplicity and generalizability of the problem

of camera modelling. Lastly, although, the proposed supervoxel segmentation method produces

compact supervoxels with better boundary adherence, it is of interest to decrease the computa-

tional time as high computational time requirement for supervoxels may be counter-productive

to their use case. A better cluster seed initialization scheme may be used to circumvent the

iterative process of cluster seeds’ creation and deletion to improve performance.

31

Chapter 6

List of publications

Pub 1 V.A. Puligandla, S. Lončarić, ”Optimal Camera Placement To Visualize Surround-

ing View From Heavy Machinery”, in 2020 2nd Asia Pacific Information Technol-

ogy Conference, 2020 Jan 17, pp. 52–59.

Pub 2 V.A. Puligandla, S. Lončarić, ”A multiresolution approach for large real-world cam-

era placement optimization problems”, IEEE Access, Vol. 10, 2022, pp. 61601-

61616.

Pub 3 V.A. Puligandla, S. Lončarić, ”A Supervoxel Segmentation Method With Adaptive

Centroid Initialization for Point Clouds”, IEEE Access, Vol. 10, 2022, pp. 98525-

98534.

Pub 4 V.A. Puligandla, S. Lončarić, ”A Continuous Camera Placement Optimization

Model For Surround View”, IEEE Transactions on Intelligent Vehicles, 2023, Jul

26, doi: 10.1109/TIV.2023.3299199

32

Chapter 7

Author’s contribution to the publications

The results presented in this thesis result from the research work carried out during the period of

2019-2023 at the University of Zagreb Faculty of Electrical Engineering and Computing, Unska

3, HR-10000 Zagreb, Croatia, mostly as part of the ImmerSAFE research project funded under

the European Union’s (EU’s) H2020-MSCA-ITN-2017 call, part of the Marie Sklodowska-

Curie Actions-Innovative Training Networks (ITN) funding scheme under project 764951.

The thesis includes four publications written in collaboration with the coauthor of the pub-

lished papers. The author’s contribution to each paper consists of the text writing, software

implementation, performing the required experiments, and results analysis and presentation.

[Pub1] In the paper titled ”Optimal Camera Placement To Visualize Surrounding View
From Heavy Machinery”, the author has proposed a problem formulation framework for cam-

era placement optimization with a goal to maximize surrounding view coverage by multiple

cameras placed a vehicle’s surface with goal of achieving surround-view coverage around the

vehicle. The problem od camera placement optimization was limited to surveillance scenarios,

and the presented paper introduces this problem for vehicle surround-view coverage, whose

challeneges require to be addressed due to the growing number of sensors being added to ve-

hicles to achieve autonomous driving. The proposed methodology proposes optimal camera

placement problem solving for the general case of any 3D models of vehicles.

[Pub2] In the paper titled A multiresolution approach for large real-world camera place-
ment optimization problems, the author has addressed the limitations of exact optimization

algorithms when applied to large simulated scenarios. Vehicle surround-view coverage requires

a high degree of precision in the orientation of cameras which results in a large number of de-

cision variables thereby, increasing the complexity of optimization algorithms. The proposed

heuristic optimization algorithm works to limit the number of decision variables without affect-

ing the coverage quality, and the method in-fact marginally improves the coverage quality.

[Pub3] In the paper titled, A Supervoxel Segmentation Method With Adaptive Centroid
Initialization for Point Clouds, the author has presented a novel supervoxel segmentation

33

Author’s contribution to the publications

algorithm that emphasises the importance of point orientations when oversegmenting 3D RGBD

point clouds. The method uses a novel cluster seed initialization scheme which results in the

method out-performing the state-of-the-art in three out of four metrics. The method produces

highly compact supervoxels with better boundary adherence which are desired qualities in a

supervoxel segmentation algorithm.

[Pub4] In the paper titled, A Continuous Camera Placement Optimization Model For
Surround View, the author has proposed a new problem formulation for camera placement

optimization for vehicle surround-view coverage which models decision variables in the con-

tinuous space. Variables modelled in continuous space allow the camera poses to take any val-

ues between a range and doesn’t require sampling of space to collect decision variables. This

approach brings down the number of decision variables from thousands to tens, depending on

the number of cameras whose poses need to be optimized. The method is modelled in a mixed

integer non-linear programming formulation and is optimized using global optimization meth-

ods that do not require gradient information of the objective function. The proposed method

also uses a novel camera coverage model based on the camera matrix.

34

Bibliography

[1]Buljeta, D., Vranješ, M., Mar četa, Z., Kovačević, J., “Surround view algorithm for park-

ing assist system”, in 2019 Zooming Innovation in Consumer Technologies Conference

(ZINC). IEEE, 2019, str. 21–26.

[2]Appia, V., Hariyani, H., Sivasankaran, S., Liu, S., Chitnis, K., Mueller, M., Batur, U.,

Agarwa, G., “Surround view camera system for adas on ti’s tdax socs”, Texas Instruments

Technical Note, Vol. 2, 2015.

[3]Hedi, A., Lon čarić, S., “A system for vehicle surround view”, IFAC Proceedings Vol-

umes, Vol. 45, No. 22, 2012, str. 120–125.

[4]Rosique, F., Navarro, P. J., Fernández, C., Padilla, A., “A systematic review of perception

system and simulators for autonomous vehicles research”, Sensors, Vol. 19, No. 3, 2019,

str. 648.

[5]Häne, C., Heng, L., Lee, G. H., Fraundorfer, F., Furgale, P., Sattler, T., Pollefeys, M.,

“3d visual perception for self-driving cars using a multi-camera system: Calibration,

mapping, localization, and obstacle detection”, Image and Vision Computing, Vol. 68,

2017, str. 14–27.

[6]Shao, X., Liu, X., Zhang, L., Zhao, S., Shen, Y., Yang, Y., “Revisit surround-view camera

system calibration”, in 2019 IEEE International Conference on Multimedia and Expo

(ICME). IEEE, 2019, str. 1486–1491.

[7]Chen, Y., Zhang, L., Shen, Y., Zhao, B. N., Zhou, Y., “Extrinsic self-calibration of the

surround-view system: A weakly supervised approach”, IEEE Transactions on Multime-

dia, 2022.

[8]Liang, Z., Chen, L., An, F., “3d vehicle surround view algorithm for embedded platform”,

in Journal of Physics: Conference Series, Vol. 2253, No. 1. IOP Publishing, 2022, str.

012026.

35

Bibliography

[9]Gasparyan, S., Vasilianov, G., “Real-time 3d surround view system for vehicle based on

panoramic stitching image”, in International School on Neural Networks, Initiated by

IIASS and EMFCSC. Springer, 2022, str. 85–93.

[10]Han, M. P., Monga, D., “Method and system for presenting panoramic surround view in

vehicle”, uS Patent App. 14/585,682. Jun. 30 2016.

[11]Nobori, K., Ukita, N., Hagita, N., “A surround view image generation method with low

distortion for vehicle camera systems using a composite projection”, in 2017 Fifteenth

IAPR International Conference on Machine Vision Applications (MVA). IEEE, 2017, str.

386–389.

[12]Ostachowicz, W., Soman, R., Malinowski, P., “Optimization of sensor placement for

structural health monitoring: A review”, Structural Health Monitoring, Vol. 18, No. 3,

2019, str. 963–988.

[13]An, H., Youn, B. D., Kim, H. S., “A methodology for sensor number and placement

optimization for vibration-based damage detection of composite structures under model

uncertainty”, Composite Structures, Vol. 279, 2022, str. 114863.

[14]Savkin, A. V., Huang, H., “Navigation of a uav network for optimal surveillance of a

group of ground targets moving along a road”, IEEE Transactions on Intelligent Trans-

portation Systems, Vol. 23, No. 7, 2021, str. 9281–9285.

[15]Koch, T., Körner, M., Fraundorfer, F., “Automatic and semantically-aware 3d uav flight

planning for image-based 3d reconstruction”, Remote Sensing, Vol. 11, No. 13, 2019,

str. 1550.

[16]Wang, X., Zhang, H., Fan, S., Gu, H., “Coverage control of sensor networks in iot based

on rpso”, IEEE internet of things journal, Vol. 5, No. 5, 2018, str. 3521–3532.

[17]Altahir, A. A., Asirvadam, V. S., Sebastian, P., Hamid, N. H. B., Ahmed, E. F., “Op-

timizing visual sensors placement with risk maps using dynamic programming”, IEEE

Sensors Journal, Vol. 22, No. 1, 2021, str. 393–404.

[18]Zhang, X., Chen, X., Alarcon-Herrera, J. L., Fang, Y., “3-d model-based multi-camera

deployment: A recursive convex optimization approach”, IEEE/ASME Transactions on

Mechatronics, Vol. 20, No. 6, 2015, str. 3157–3169.

[19]Mantini, P., Shah, S. K., “Camera placement optimization conditioned on human be-

havior and 3d geometry”, in International Conference on Computer Vision Theory and

Applications, Vol. 4. SCITEPRESS, 2016, str. 225–235.

36

Bibliography

[20]Rahimian, P., Kearney, J. K., “Optimal camera placement for motion capture systems”,

IEEE transactions on visualization and computer graphics, Vol. 23, No. 3, 2016, str.

1209–1221.

[21]Bogaerts, B., Sels, S., Vanlanduit, S., Penne, R., “Interactive camera network design

using a virtual reality interface”, Sensors, Vol. 19, No. 5, 2019, str. 1003.

[22]Suresh, M. S., Narayanan, A., Menon, V., “Maximizing camera coverage in multicamera

surveillance networks”, IEEE Sensors Journal, Vol. 20, No. 17, 2020, str. 10 170–10 178.

[23]Kim, J., Ham, Y., Chung, Y., Chi, S., “Systematic camera placement framework for

operation-level visual monitoring on construction jobsites”, Journal of Construction En-

gineering and Management, Vol. 145, No. 4, 2019, str. 04019019.

[24]Angella, F., Reithler, L., Gallesio, F., “Optimal deployment of cameras for video surveil-

lance systems”, in 2007 IEEE conference on advanced video and signal based surveil-

lance. IEEE, 2007, str. 388–392.

[25]Indu, S., Srivastava, S., Sharma, V., “Optimal camera placement and orientation of a

multi-camera system for self driving cars”, in Proceedings of the 2020 4th International

Conference on Vision, Image and Signal Processing, 2020, str. 1–5.

[26]Dey, J., Taylor, W., Pasricha, S., “Vespa: A framework for optimizing heterogeneous

sensor placement and orientation for autonomous vehicles”, IEEE Consumer Electronics

Magazine, Vol. 10, No. 2, 2020, str. 16–26.

[27]Puligandla, V. A., Lon čarić, S., “Optimal camera placement to visualize surrounding

view from heavy machinery”, in Proceedings of the 2020 2nd Asia Pacific Information

Technology Conference, 2020, str. 52–59.

[28]Chvátal, V., “A combinatorial theorem in plane geometry”, Journal of Combinatorial

Theory, Series B, Vol. 18, No. 1, 1975, str. 39–41.

[29]Hartley, R., Zisserman, A., Multiple View Geometry in Computer Vision, 2nd ed. Cam-

bridge University Press, 2004.

[30]Machairas, V., Faessel, M., Cárdenas-Peña, D., Chabardes, T., Walter, T., Decenciere,

E., “Waterpixels”, IEEE Transactions on Image Processing, Vol. 24, No. 11, 2015, str.

3707–3716.

[31]Levinshtein, A., Stere, A., Kutulakos, K. N., Fleet, D. J., Dickinson, S. J., Siddiqi, K.,

“Turbopixels: Fast superpixels using geometric flows”, IEEE transactions on pattern

analysis and machine intelligence, Vol. 31, No. 12, 2009, str. 2290–2297.

37

Bibliography

[32]Van den Bergh, M., Boix, X., Roig, G., De Capitani, B., Van Gool, L., “Seeds: Superpix-

els extracted via energy-driven sampling”, in Computer Vision–ECCV 2012: 12th Euro-

pean Conference on Computer Vision, Florence, Italy, October 7-13, 2012, Proceedings,

Part VII 12. Springer, 2012, str. 13–26.

[33]Moore, A. P., Prince, S. J., Warrell, J., Mohammed, U., Jones, G., “Superpixel lattices”,

in 2008 IEEE conference on computer vision and pattern recognition. IEEE, 2008, str.

1–8.

[34]Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S., “Slic superpixels

compared to state-of-the-art superpixel methods”, IEEE transactions on pattern analysis

and machine intelligence, Vol. 34, No. 11, 2012, str. 2274–2282.

[35]Veksler, O., Boykov, Y., Mehrani, P., “Superpixels and supervoxels in an energy opti-

mization framework”, in Computer Vision–ECCV 2010: 11th European Conference on

Computer Vision, Heraklion, Crete, Greece, September 5-11, 2010, Proceedings, Part V

11. Springer, 2010, str. 211–224.

[36]Weikersdorfer, D., Schick, A., Cremers, D., “Depth-adaptive supervoxels for rgb-d video

segmentation”, in 2013 IEEE International Conference on Image Processing. IEEE,

2013, str. 2708–2712.

[37]Gao, G., Lauri, M., Zhang, J., Frintrop, S., “Saliency-guided adaptive seeding for super-

voxel segmentation”, in 2017 IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS). IEEE, 2017, str. 4938–4943.

[38]Papon, J., Abramov, A., Schoeler, M., Worgotter, F., “Voxel cloud connectivity

segmentation-supervoxels for point clouds”, in Proceedings of the IEEE conference on

computer vision and pattern recognition, 2013, str. 2027–2034.

[39]Lin, Y., Wang, C., Zhai, D., Li, W., Li, J., “Toward better boundary preserved super-

voxel segmentation for 3d point clouds”, ISPRS journal of photogrammetry and remote

sensing, Vol. 143, 2018, str. 39–47.

[40]Sha, Z., Zhu, Q., Chen, Y., Wang, C., Nurunnabi, A., Li, J., “A boundary-enhanced

supervoxel method for 3d point clouds”, in IGARSS 2020-2020 IEEE International Geo-

science and Remote Sensing Symposium. IEEE, 2020, str. 2771–2774.

[41]Ni, H., Niu, X., “Svla: A compact supervoxel segmentation method based on local alloca-

tion”, Isprs journal of photogrammetry and remote sensing, Vol. 163, 2020, str. 300–311.

38

Bibliography

[42]Landrieu, L., Boussaha, M., “Point cloud oversegmentation with graph-structured deep

metric learning”, in Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, 2019, str. 7440–7449.

[43]Hui, L., Yuan, J., Cheng, M., Xie, J., Zhang, X., Yang, J., “Superpoint network for point

cloud oversegmentation”, in Proceedings of the IEEE/CVF International Conference on

Computer Vision, 2021, str. 5510–5519.

[44]Shreiner, D. et al., OpenGL programming guide: the official guide to learning OpenGL,

versions 3.0 and 3.1. Pearson Education, 2009.

[45]Schroeder, W. J., Avila, L. S., Hoffman, W., “Visualizing with vtk: a tutorial”, IEEE

Computer graphics and applications, Vol. 20, No. 5, 2000, str. 20–27.

[46]Squillacote, A. H., Ahrens, J., Law, C., Geveci, B., Moreland, K., King, B., The paraview

guide. Kitware Clifton Park, NY, 2007, Vol. 366.

[47]Tobler, R. F., Maierhofer, S., “A mesh data structure for rendering and subdivision”,

computer science, 2006.

[48]Munshi, A., “The opencl specification”, in 2009 IEEE Hot Chips 21 Symposium (HCS).

IEEE, 2009, str. 1–314.

[49]Lam, S. K., Pitrou, A., Seibert, S., “Numba: A llvm-based python jit compiler”, in

Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC,

2015, str. 1–6.

[50]Hörster, E., Lienhart, R., “On the optimal placement of multiple visual sensors”, in Pro-

ceedings of the 4th ACM international workshop on Video surveillance and sensor net-

works, 2006, str. 111–120.

[51]Kritter, J., Brévilliers, M., Lepagnot, J., Idoumghar, L., “On the real-world applicability

of state-of-the-art algorithms for the optimal camera placement problem”, in 2019 6th

International Conference on Control, Decision and Information Technologies (CoDIT).

IEEE, 2019, str. 1103–1108.

[52]Murray, A. T., Kim, K., Davis, J. W., Machiraju, R., Parent, R., “Coverage optimization

to support security monitoring”, Computers, environment and urban systems, Vol. 31,

No. 2, 2007, str. 133–147.

[53]David, P., Idasiak, V., Kratz, F., “A sensor placement approach for the monitoring of

indoor scenes”, in Smart Sensing and Context: Second European Conference, EuroSSC

39

Bibliography

2007, Kendal, England, October 23-25, 2007. Proceedings 2. Springer, 2007, str. 110–

125.

[54]Horster, E., Lienhart, R., “Multi-camera networks: Concepts and applications”, 2009.

[55]Yabuta, K., Kitazawa, H., “Optimum camera placement considering camera specifica-

tion for security monitoring”, in 2008 IEEE International Symposium on Circuits and

Systems (ISCAS). IEEE, 2008, str. 2114–2117.

[56]Zhao, J., Sen-ching, S. C., “Optimal visual sensor planning”, in 2009 IEEE International

Symposium on Circuits and Systems (ISCAS). IEEE, 2009, str. 165–168.

[57]Zhang, H., Xia, L., Tian, F., Wang, P., Cui, J., Tang, C., Deng, N., Ma, N., “An optimized

placement algorithm for collaborative information processing at a wireless camera net-

work”, in 2013 IEEE International Conference on Multimedia and Expo (ICME). IEEE,

2013, str. 1–6.

[58]Becker, E., Guerra-Filho, G., Makedon, F., “Automatic sensor placement in a 3d vol-

ume”, in Proceedings of the 2nd International Conference on PErvasive Technologies

Related to Assistive Environments, 2009, str. 1–8.

[59]Malhotra, A., Singh, D., Dadlani, T., Morales, L. Y., “Optimizing camera placements for

overlapped coverage with 3d camera projections”, in 2022 International Conference on

Robotics and Automation (ICRA). IEEE, 2022, str. 5002–5009.

[60]Kim, T.-H., Park, T.-H., “Placement optimization of multiple lidar sensors for au-

tonomous vehicles”, IEEE Transactions on Intelligent Transportation Systems, Vol. 21,

No. 5, 2019, str. 2139–2145.

[61]Morsly, Y., Aouf, N., Djouadi, M. S., Richardson, M., “Particle swarm optimization

inspired probability algorithm for optimal camera network placement”, IEEE Sensors

Journal, Vol. 12, No. 5, 2011, str. 1402–1412.

[62]Erdem, U. M., Sclaroff, S., “Automated camera layout to satisfy task-specific and floor

plan-specific coverage requirements”, Computer Vision and Image Understanding, Vol.

103, No. 3, 2006, str. 156–169.

[63]Gupta, A., Pati, K. A., Subramanian, V. K., “A nsga-ii based approach for camera place-

ment problem in large scale surveillance application”, in 2012 4th International Confer-

ence on Intelligent and Advanced Systems (ICIAS2012), Vol. 1. IEEE, 2012, str. 347–

352.

40

Bibliography

[64]Mittal, A., Davis, L. S., “A general method for sensor planning in multi-sensor systems:

Extension to random occlusion”, International journal of computer vision, Vol. 76, 2008,

str. 31–52.

[65]Liu, J., Sridharan, S., Fookes, C., “Recent advances in camera planning for large area

surveillance: A comprehensive review”, ACM Computing Surveys (CSUR), Vol. 49,

No. 1, 2016, str. 1–37.

[66]Mavrinac, A., Chen, X., “Modeling coverage in camera networks: A survey”, Interna-

tional journal of computer vision, Vol. 101, 2013, str. 205–226.

[67]Boyd, S., Mattingley, J., “Branch and bound methods”, Notes for EE364b, Stanford

University, 2007, str. 2006–07.

[68]Dantzig, G., Linear programming and extensions. Princeton university press, 1963.

[69]Land, A. H., Doig, A. G., An automatic method for solving discrete programming prob-

lems. Springer, 2010.

[70]Kritter, J., Brévilliers, M., Lepagnot, J., Idoumghar, L., “On the optimal placement of

cameras for surveillance and the underlying set cover problem”, Applied Soft Comput-

ing, Vol. 74, 2019, str. 133–153.

[71]Mostafavi, S. A., Dehghan, M., “Optimal visual sensor placement for coverage based on

target location profile”, Ad Hoc Networks, Vol. 9, No. 4, 2011, str. 528–541.

[72]Gonzalez-Barbosa, J.-J., Garcia-Ramirez, T., Salas, J., Hurtado-Ramos, J.-B. et al., “Op-

timal camera placement for total coverage”, in 2009 IEEE International Conference on

Robotics and Automation. IEEE, 2009, str. 844–848.

[73]Feige, U., “A threshold of ln n for approximating set cover”, Journal of the ACM (JACM),

Vol. 45, No. 4, 1998, str. 634–652.

[74]Gandhi, R., Khuller, S., Srinivasan, A., “Approximation algorithms for partial covering

problems”, Journal of Algorithms, Vol. 53, No. 1, 2004, str. 55–84.

[75]Slavík, P., “Improved performance of the greedy algorithm for partial cover”, Information

Processing Letters, Vol. 64, No. 5, 1997, str. 251–254.

[76]Zhao, J., Yoshida, R., Cheung, S.-c. S., Haws, D., “Approximate techniques in solving

optimal camera placement problems”, International Journal of Distributed Sensor Net-

works, Vol. 9, No. 11, 2013, str. 241913.

41

Bibliography

[77]Kennedy, J., Eberhart, R., “Particle swarm optimization”, in Proceedings of ICNN’95-

international conference on neural networks, Vol. 4. IEEE, 1995, str. 1942–1948.

[78]Kennedy, J., Eberhart, R. C., “A discrete binary version of the particle swarm algorithm”,

in 1997 IEEE International conference on systems, man, and cybernetics. Computational

cybernetics and simulation, Vol. 5. IEEE, 1997, str. 4104–4108.

[79]Conci, N., Lizzi, L., “Camera placement using particle swarm optimization in visual

surveillance applications”, in 2009 16th IEEE international conference on image pro-

cessing (ICIP). IEEE, 2009, str. 3485–3488.

[80]Konda, K. R., Conci, N. et al., “Global and local coverage maximization in multi-camera

networks by stochastic optimization”, Infocommunications Journal, Vol. 5, No. 1, 2013,

str. 1–8.

[81]Xu, Y.-C., Lei, B., Hendriks, E. A., “Camera network coverage improving by particle

swarm optimization”, EURASIP Journal on Image and Video Processing, Vol. 2011,

2011, str. 1–10.

[82]Xu, Y.-C., Lei, B., Hendriks, E. A., “Constrained particle swarm algorithms for opti-

mizing coverage of large-scale camera networks with mobile nodes”, Soft computing,

Vol. 17, 2013, str. 1047–1057.

[83]Wang, X., Zhang, H., Gu, H., “Solving optimal camera placement problems in iot using

lh-rpso”, IEEE Access, Vol. 8, 2019, str. 40 881–40 891.

[84]Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., Teller, E., “Equa-

tion of state calculations by fast computing machines”, The journal of chemical physics,

Vol. 21, No. 6, 1953, str. 1087–1092.

[85]Gelfand, A. E., Smith, A. F., “Sampling-based approaches to calculating marginal den-

sities”, Journal of the American statistical association, Vol. 85, No. 410, 1990, str. 398–

409.

[86]Kirkpatrick, S., “Optimization by simulated annealing: Quantitative studies”, Journal of

statistical physics, Vol. 34, 1984, str. 975–986.

[87]Debaque, B., Jedidi, R., Prevost, D., “Optimal video camera network deployment to sup-

port security monitoring”, in 2009 12th International Conference on Information Fusion.

IEEE, 2009, str. 1730–1736.

[88]Liu, J., Fookes, C., Wark, T., Sridharan, S., “On the statistical determination of optimal

camera configurations in large scale surveillance networks”, in Computer Vision–ECCV

42

Bibliography

2012: 12th European Conference on Computer Vision, Florence, Italy, October 7-13,

2012, Proceedings, Part I 12. Springer, 2012, str. 44–57.

[89]Liu, J., Sridharan, S., Fookes, C., Wark, T., “Optimal camera planning under versatile

user constraints in multi-camera image processing systems”, IEEE Transactions on Im-

age Processing, Vol. 23, No. 1, 2013, str. 171–184.

[90]Akbarzadeh, V., Gagne, C., Parizeau, M., Argany, M., Mostafavi, M. A., “Probabilistic

sensing model for sensor placement optimization based on line-of-sight coverage”, IEEE

transactions on instrumentation and measurement, Vol. 62, No. 2, 2012, str. 293–303.

[91]Laurent, M., “A comparison of the sherali-adams, lovász-schrijver, and lasserre relax-

ations for 0–1 programming”, Mathematics of Operations Research, Vol. 28, No. 3, 2003,

str. 470–496.

[92]Vandenberghe, L., Boyd, S., “Semidefinite programming”, SIAM review, Vol. 38, No. 1,

1996, str. 49–95.

[93]Galletly, J. E., “An overview of genetic algorithms”, Kybernetes, Vol. 21, No. 6, 1992,

str. 26–30.

[94]Holland, J. H., Adaptation in natural and artificial systems: an introductory analysis with

applications to biology, control, and artificial intelligence. MIT press, 1992.

[95]Feng, G., Liu, M., Wang, G., “Genetic algorithm based optimal placement of pir sensors

for human motion localization”, Optimization and Engineering, Vol. 15, 2014, str. 643–

656.

[96]Indu, S., Chaudhury, S., Mittal, N. R., Bhattacharyya, A., “Optimal sensor placement

for surveillance of large spaces”, in 2009 Third ACM/IEEE International Conference on

Distributed Smart Cameras (ICDSC). IEEE, 2009, str. 1–8.

[97]Yao, Y., Chen, C.-H., Abidi, B., Page, D., Koschan, A., Abidi, M., “Sensor planning for

automated and persistent object tracking with multiple cameras”, in 2008 IEEE confer-

ence on computer vision and pattern recognition. IEEE, 2008, str. 1–8.

[98]Yao, Y., Chen, C.-H., Abidi, B., Page, D., Koschan, A., Abidi, M., “Can you see me

now? sensor positioning for automated and persistent surveillance”, IEEE Transactions

on Systems, Man, and Cybernetics, Part B (Cybernetics), Vol. 40, No. 1, 2009, str. 101–

115.

43

Bibliography

[99]van den Hengel, A., Hill, R., Ward, B., Cichowski, A., Detmold, H., Madden, C., Dick,

A., Bastian, J., “Automatic camera placement for large scale surveillance networks”, in

2009 Workshop on Applications of Computer Vision (WACV). IEEE, 2009, str. 1–6.

[100]Smith, N., Moehrle, N., Goesele, M., Heidrich, W., “Aerial path planning for urban scene

reconstruction: A continuous optimization method and benchmark”, ACM Transactions

on Graphics (TOG), Vol. 37, 2018, str. 1 - 15.

[101]Kirchhof, N., “Optimal placement of multiple sensors for localization applications”, in

International Conference on Indoor Positioning and Indoor Navigation. IEEE, 2013, str.

1–10.

[102]Ismail, Z., Mustapha, S., Fakih, M. A., Tarhini, H., “Sensor placement optimization

on complex and large metallic and composite structures”, Structural Health Monitoring,

Vol. 19, No. 1, 2020, str. 262–280.

[103]Chepuri, S. P., Leus, G., “Continuous sensor placement”, IEEE signal processing letters,

Vol. 22, No. 5, 2014, str. 544–548.

[104]Bianco, S., Tisato, F., “Sensor placement optimization in buildings”, in Image Process-

ing: Machine Vision Applications V, Vol. 8300. SPIE, 2012, str. 9–21.

[105]Guratzsch, R. F., Mahadevan, S., “Structural health monitoring sensor placement opti-

mization under uncertainty”, AIAA journal, Vol. 48, No. 7, 2010, str. 1281–1289.

44

Publications

45

Publications

Publication 1

V.A. Puligandla, S. Lončarić, ”Optimal Camera Placement To Visualize Surrounding View

From Heavy Machinery”, in 2020 2nd Asia Pacific Information Technology Conference, 2020

Jan 17, pp. 52–59.

46

Optimal Camera Placement To Visualize Surrounding View
From Heavy Machinery

V. Anirudh Puligandla
apuligandla@fer.hr

University of Zagreb
Zagreb, Croatia

Sven Lončarić
sven.loncaric@fer.hr
University of Zagreb

Zagreb, Croatia

ABSTRACT
Computer vision-based advanced driver assistance systems (ADAS)
increase safety of operations involving heavy machinery. ADAS
systems using multiple cameras can be used for surround-view
visualization of complex vehicles with blind spots. Such systems are
also useful for autonomous vehicles. Multiple camera systems used
to capture surrounding view of heavy machinery require complex
design due to the complexity in size and shape of the vehicles. In
this paper, we present a novel method for determining the optimal
camera pose i.e. placement and orientation in three-dimensional
space, given the shape of the vehicle, in order to maximize
surrounding area coverage. The first method determines camera
poses using a fixed pre-determined number of cameras, while the
second method determines both camera poses and the number
of cameras. The problem is modelled and solved using three
different deterministic optimization algorithms: 1) single objective
binary integer programming approach; 2) single objective greedy
algorithm; and 3) bi-objective binary integer programming approach.
The methods are validated using a set of realistic 3-D vehicle
models. Experimental validation has been conducted to compare the
proposed methods with respect to coverage quality and computation
time metrics. The experimental results have demonstrated that the
proposed methods provide accurate solutions to the camera pose and
the number of camera optimization.

CCS CONCEPTS
• Theory of Computation → Mathematical Optimization; •
Computing Methodologies → Computer Vision; • Human Cen-
tered Computing → Visualization.

KEYWORDS
optimal camera placement, binary integer programming,
optimization, 3D visualization

1 INTRODUCTION
Increasing research interest in autonomous vehicles has led to
the rise of surround view camera system solutions to display

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
APIT 2020, January 17–19, 2020, Bali Island, Indonesia
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7685-3/20/01. . . $15.00
https://doi.org/10.1145/3379310.3379331

surrounding area of a vehicle to the driver with an aim to aid the
driver while maneuvering and parking the vehicle. Several leading
manufacturers have already launched products providing surround
view of commercial vehicles, [3, 9, 23]. Consequently, research
over the last few years focused on improving these vehicle surround
vision systems starting from the camera system calibration stage,
[18, 20, 35], to image/video processing, [18, 19, 44, 45], until
the final displaying stage, [10, 17, 22]. Taking advantage of the
large amounts of information generated by these surround vision
systems, research has also covered applications such as parking
lot detection, [16], and, pedestrian detection, [14]. Methods were
further developed for 3D surround view systems, [11], with depth
perception coming from stereo vision, [8], or, through the use of
multi-modal sensing, [39]. The most interesting point to note here
would be that all of the above mentioned methods are specific to
small vehicles (cars).

Figure 1: Example showing complex shape and structure of
various construction equipment. (source: Taycor Financial)

Recent research highlights the problems associated with the so called
blind spots present on heavy machinery or construction equipment
and the risk they pose to workers working nearby the equipment,
[6, 37]. Such concerns show that surround view systems are required
also for heavy machinery. However, designing a multi-camera
system for vehicles with such complex shapes and structures is not as
straightforward as for the case of cars (Figure 1). The motivation for
the work presented in this article lies on the fact that multi-camera
systems, to achieve surround vision for heavy machinery, can be

APIT 2020, January 17–19, 2020, Bali Island, Indonesia Anirudh and Sven

designed in a smart and cost efficient way by optimizing the number
and locations of the cameras that are to be placed on the vehicle.

1.1 Related Work
The Optimal Camera Placement (OCP) problem has been
thoroughly studied over the past decade, particularly for surveillance
applications, [24, 26]. Apart from surveillance, OCP problem has
found interest in various applications such as, wireless sensor
network deployment, [4, 46], industrial monitoring, [47], motion
capture systems, [38], human behaviour analysis, [28], agriculture,
[12], and even online gaming, [2], to name a few.
Some literature [41] classifies the OCP problem into categories
such as target-based, area-based and probing-based coverage models.
The mention of OCP problem, here, refers to both area and target
coverage models as a single category. Target coverage model can be
considered as a subset or special case of the area coverage model
because, although, both approach the problem with an objective to
maximize coverage of a specific target or area, former might have
additional constraints limiting the number of cameras or the total
cost of the multi-camera system.
The OCP problem is almost always related with the Art Gallery
Problem (AGP), [5]. Nevertheless, they also highlight the limitations
in field of view of a camera as compared to that of security guards in
the AGP. The first significant contribution towards exactly solving
the OCP problem can be attributed to Erdem and Sclaroff, [7],
and, Hörster and Lienhart, [21]. Hörster and Lienhart formulate the
problem in a 2D grid using binary decision variables representing
possible camera poses and target points that are to be covered.
Their problem formulation results in selecting the best combination
through an exhaustive search from a sufficiently large set. They
defined multiple problem statements to minimize the cost of the
multi-camera system or to maximize coverage of target points.
Their approach of using a linear model based on Binary Integer
Programming (BIP) formed the basis of many other approaches that
were later presented, [24].
In [15], Gupta et al. solved the OCP problem using a multi-objective
genetic algorithm. They use a BIP formulation to maximize
multi-sensor system coverage based on different qualitative aspects.
They mention the use of a search heuristic due to the computational
complexity of looking for an exact solution. However, their method is
limited to 2D. Citing the "blind-area" issue caused by 2D modelling
of the OCP problem, Zhang et al. presented an extension to the
BIP formulation into 3D, [46]. They model the surveillance scene
into small regions and categorize them based on essentiality. Such
modelling does not apply to the case of surround vision where
the surrounding area of a vehicle is to be covered uniformly.
Additionally, introduction of "balance scheme", along with essential
region and wireless connectivity constraints, further complicate the
model.
Becker et al. proposed a voting scheme based algorithm for
automatic sensor placement in a 3D volume, [4], but, this method
is limited to optimization of only one sensor and does not apply to
a multi-camera system. Kritter et al., [25], explored the accuracy
and applicability of deterministic approaches to solve the OCP
problem and compare it with heuristic methods. They tested the
methods on models of European cities for target surveillance and

highlight real-world applicability of the OCP problem. Rebai et
al., [41], studied the applicability of bi-objective formulation by
proposing three different exact optimization models. Ahn et al.,
[1], proposed a two-phase algorithm to reduce the complexity of
the problem. They divide the problem into low and high resolution
phases, resulting in many sub-problems that are then optimized
using a heuristic. The high computational complexity requirements
of the exact BIP-based OCP problem resulted in the development
of approximation algorithms that guarantee feasibility, but not,
optimality, [48]. There are also some methods, [43, 47], that deviate
from the usual 2D/3D grid based modelling by using continuous
modelling for problem formulation.
To the best of our knowledge, no methods or results are known for
multi-camera system deployment problem to achieve surround view
for vehicles. This contribution is the first to consider such a problem.
The OCP problem for surround vision differs from surveillance
scenarios in the way the problem is modelled. Surveillance scenarios
enforce certain restrictions on placement and orientation of cameras
(such as height, viewing direction, target coverage, etc.), while, in
the case of surround view, non-planar structure of the vehicles results
in poses across 6 Degrees Of Freedom (DOF).

1.2 Binary Integer Programming
Our proposed problem formulation builds over the BIP method as
mentioned in [21]. Our method is applied to 3D space, while, Hörster
and Lienhart’s problem is applied in 2D space. This implies that
the constraints that apply to the optimization problem need to be
extended to 3D space. Modelling the problem space by dividing it
into a 3D grid of samples results in a set of binary variables. Since,
the optimization method works on the set of binary variables, the
resulting problem model remains similar for both 2D and 3D cases.
However, binary variables in 3D space comprise of a larger set of
discrete samples representing complex geometry, when compared to
the case of 2D space. Constraints have to be enforced in additional
dimensions, and, coupled with 3D space modelling, the problem, on
the whole, is bigger in terms of computational complexity. Owing to
these similarities and differences, the problem description of single
objective BIP formulation has been omitted from this document, but,
modelling the space in 3D is elaborated.
We also tested the Greedy algorithm as mentioned in [21] on our
problem of surround view for heavy duty vehicles, while, extending
it to the 3D case. As discrete problem formulation results only in a
larger set of binary variables, the algorithm remains similar, and thus,
has been omitted from this document. However, to adopt the method
for our problem, the definition of rank has been slightly modified.

1.3 Contributions
Our interest in real-scenario applications will be communicated
by, first, describing any realistic 3D model of an industrial heavy
machine in a discrete volume (voxel grid) and extracting data points
from the 3D model. We use binary decision variables to model
possible camera locations and background points that need to be
covered, and, formulate the problem using BIP based model. Two
approaches are proposed; 1) single objective to maximize coverage,
and; 2) bi-objective to minimize the number of required cameras and
maximize coverage in a lexicographic fashion, [42]. The objectives

Optimal Camera Placement To Visualize Surrounding View From Heavy Machinery APIT 2020, January 17–19, 2020, Bali Island, Indonesia

are solved using exact deterministic optimization algorithms, while,
the single objective problem is also solved using a greedy algorithm.
A simulation tool to collect data and to visualize the results has also
been developed.
Our contribution differs from the approach presented in [21] w.r.t.
the dimensions of the modelled area. It differs from [46] in the
way the problem is modelled and formulated, and also, in the
targeted application area. Lastly, it differs from [24] in the way
the bi-objective problem formulation is approached.

1.4 Paper Organization
The rest of the document will guide the reader, firstly, through the
formulation of the problem in section 2. Section 3 describes the
three proposed methods in detail, while, experiments, evaluation and
discussion are presented in section 4. The document concludes in
section 5.

2 PROBLEM FORMULATION
The problem set or space comprises of a voxel grid. The distance
between two adjacent points comprises an edge of each voxel and is
of unit length. For the sake of simplicity, the corners of all the voxels
are considered as 3D points for modelling the problem without any
repetitive entries. These 3D points are then represented as binary
decision variables to formulate the OCP problem. The following
sub-sections will explain in detail, how problem space and the cam-
era’s Field-Of-View are defined.

2.1 Problem Statement
The OCP problem can be formulated in many ways, for e.g.,
maximizing coverage, minimizing multi-camera system cost,
minimizing number of cameras of a given type to achieve sufficient
coverage, etc.. The following two problems are studied:
• Problem 1: Given the number of cameras, optimize their

position and pose such that maximum coverage is achieved.
• Problem 2: Minimize the number of required cameras such

that minimal defined coverage is achieved and optimize the
positions and pose of these number of cameras so that coverage
is maximized.

2.2 Modelling Camera’s Field Of View
The camera’s Field Of View (FOV) is defined in a simple way using a
pyramidal structure. The camera position in 3D, p(x,y, z), defines the
origin or the top of the pyramid. A unit vector passing from camera’s
origin through the center of the pyramid’s base, θ̂ (x,y, z), defines the
orientation or camera’s look-at direction. Additionally, horizontal
and vertical FOV angles, αh,αv , define the length and breadth of
the pyramidal FOV. Lastly, the height of the pyramid, zf defines
the far depth limit of the FOV for achieving minimal resolution.
Together, these parameters form the five planes that describe the
pyramid (Figure 2). Readers can refer to [29] for details on camera
coverage modelling.
Unlike in surveillance scenarios, modelling a camera for the case
of surround vision of vehicles requires 6DOF. This is because, in
surveillance scenarios, the cameras are usually placed on walls
limiting the primary orientation to only two axes (for e.g., if we
consider the height of the wall along y-axis, then, one can be sure

that the camera will be facing along the x − z plane). However, in
the case of a vehicle the primary orientation could be along the x −z,
or, y − z, or, x − y planes. Hence, in such situations an additional
vector, ϕ̂(x,y, z), describing the camera’s up vector, is required to
prevent rotating the camera about a third axis, i.e., camera’s look-at
direction.

Figure 2: Camera’s Field Of View.

Visibility analysis of the background points (i.e. to check whether a
background point lies within the camera’s FOV; details in section
2.4.4) is done by checking the point against the five planes that
describe the camera. The 5 planes can be described with five points
on the pyramid (camera origin and the four corners of the base
of the FOV pyramid). As we already know the camera origin, the
remaining four points can be calculated using linear geometry.

2.3 Modelling Space
The problem is modelled using a 3D grid of points. 3D models
are, usually, represented as triangular meshes, [30], and saved in
convenient formats in wavefront object files. Modelling space in a
voxel grid has it’s advantages over polygonal representation, [13].
Voxel representation enables a straightforward use of standard image
processing algorithms. Firstly, a 3D model, openly available online in
wavefront object files can be displayed in a voxel grid representation
using any existing method that can convert a polygonal mesh into
a voxel grid representation. For this purpose, we use an openly
available tool developed by Patrick, [32, 36]. This object is then
placed at the center of the voxel environment (problem space) (see
Figure 3(a)).
Because, the aim of this work is to place cameras on the vehicle to
obtain a 360◦ view, we collect all the voxels that represent object
boundary and model them as binary decision variables. The bound-
ary voxels represent a set J ∈ R3, comprised of 3D points, j(x,y, z),
where, x,y, z ∈ Z. Each 3D point j further contains a set Φ ∈ R3,
representing possible orientations, ϕ(x̂, ŷ, ẑ), where, x̂, ŷ, ẑ ∈ R, the
camera at location j can assume. The binary variables representing
possible camera positions and poses can be defined as,

x j ,ϕ =

1 if a camera is placed at location

j with orientation ϕ

0 otherwise
(1)

Next step is to define a set B ∈ R3 consisting of 3D points i(x,y, z),
where, x,y, z ∈ Z, to represent a set of points, surrounding the

APIT 2020, January 17–19, 2020, Bali Island, Indonesia Anirudh and Sven

(a) (b)

Figure 3: An example from the visualization tool developed by us describing the collection of data points. (a) Heavy Machine placed
at the center of an empty voxel grid. (b) Background points representing a hollow spherical frustum around the dilated 3D model

vehicle, that are to be covered by the multi-camera system. These
background points can be modelled using binary variables as,

bi =

1 if background point i is covered

by at least one camera
0 otherwise

(2)

Having defined these binary variables we can now look into some
data pre-processing requirements.

2.4 Data Pre-Processing
There are certain pre-processing steps that need to be taken to collect
sets of points[42], x j ,ϕ and ci , in a meaningful way. This sub-section
will briefly explain some methods to collect and represent data before
it can be passed to the optimization environment.

2.4.1 Boundary Voxels.
As, each voxel corner is represented either by ’1’ or ’0’ stating
whether the point is occupied or not, simple binary-morphological
operations can be applied to the volume by considering the
8-neighbourhood of each point.
We perform a pre-processing step of morphological dilation on the
object to collect boundary voxels. Although, there exist efficient
data structures to store voxel data that enable easy access to object
boundaries, [31], implementing such data structures is out of the
scope of this work. The idea behind morphological dilation is simple.
Let us assume a set, O1 ∈ Z, containing all the voxels that define
the object. The dilation operation will grow the object boundary
by certain units of length depending on the size of the mask used
(we use a 3 × 3 × 3 grid as a mask for each of x,y, z dimensions),
resulting in a new super-set ofO1,O2 ∈ Z. Now, a simple subtraction
operation, O2 −O1, will represent the set, J , of boundary voxels.

2.4.2 Camera orientations.
The primary orientation, ϕ of the camera at each position j is
represented by the normal, n(x̂, ŷ, ẑ) of the uncovered face of the
voxel at j. Since, each boundary voxel is, ideally, surrounded on

five faces by adjacent voxels, the normal of the sixth face, facing
outwards the object, is used to represent the primary orientation of
the camera. The normals of all boundary voxels can be calculated
using the marching cubes algorithm, [27, 33].

Rotx =
©«
1 0 0
0 cosθ − sinθ
0 sinθ cosθ

ª®¬
Roty =

©«
cosθ 0 sinθ
0 1 0

− sinθ 0 cosθ

ª®¬
Rotz =

©«
cosθ − sinθ 0
sinθ cosθ 0
0 0 1

ª®¬
(3)

Camera modelling for the case of surround view has an added Degree
Of Freedom. This implies that the camera’s look-at direction is not
limited to two planes (x − z or y − z, for e.g.). As we do not want to
rotate the camera about its primary axis (camera’s look-at direction),
selection of two planes between the three available planes for rotating
the camera, differentiates the problem formulation from the case of
surveillance scenarios.
We select the axis with highest magnitude in the unit normal vector,
n, as the primary axis of the orientation ϕ. The camera is then rotated
about the other two axes at discrete steps of angles of rotation such
that, the camera’s FOV can cover 180◦ in both directions for all the
orientations combined. As, the generated boundary voxel normals
lie in the global plane, rotations about an axis are relatively simple
to perform. Equation 3 describes the rotation matrices for rotations
about the x,y, z axes. The unit normal vector n at each camera
position j is multiplied by any two of these three matrices to obtain
the possible orientations set, Φ, for that location j.

2.4.3 Background Points.
Following the standards defined by Ray et al., [40], we collect empty
voxels lying within a spherical cap of 12m radius from the center
of the object. However, since we do not consider any points lying

Optimal Camera Placement To Visualize Surrounding View From Heavy Machinery APIT 2020, January 17–19, 2020, Bali Island, Indonesia

below the ground plane, and, points lying above the height of the
object, the spatial arrangement of backдroundpoints represents a
hollow spherical segment or frustum (Figure 3(b)).

2.4.4 Visibility analysis.
A database of background points that are visible by a camera placed
at position j with an orientation ϕ is required for formulation of
optimization problem. It is constructed as a visibility matrix for the
combined set J ,Φ,B, with each entry in the matrix representing a
binary variable, дj ,ϕ ,i . It is defined as follows,

дj ,ϕ ,i =

1 if background point i is
covered by a camera placed at
position j with orientation ϕ

0 otherwise

(4)

Constructing visibility matrix is computationally expensive, as, it
involves a large number of geometrical calculations. It requires
comparing the distance of each background point with each of the
five planes that form the camera’s FOV for all the possible camera
pose combinations. This step is implemented on the GPU to achieve
significant improvement in calculation time. However, details of this
OpenCL, [34], implementation are omitted from this document due
to space constraints.

3 METHODOLOGY
We propose different methods to solve the OCP problem for surround
vision. The selection of objective function and optimization is,
primarily, based on the BIP model proposed in [21]. We adopt their
objective function and constraints, while, applying them on 3D
space instead of a 2D plane. The problem is explained along with
the optimization algorithms, for the sake of completeness.
We explore optimization of a single objective function, as well as, a
bi-objective problem formulation. Optimization of single objective
problem is studied using both, an exact algorithm, and, a search
heuristic. While, the bi-objective problem is optimized using an
exact algorithm. Although, Rebai et al., [41], proposed multiple
bi-objective optimization problems for surveillance scenarios, our
problem is solved in a lexicographic fashion.

3.1 Single Objective Approach
First, we need to recall the binary decision variables defined in
equations 1, 2 and 4. As our objective is to maximize coverage
for a given number of cameras, the objective can be defined as
maximization of sum of all background points,

max
∑
i
bi (5)

Points in 3D space are represented using binary decision variables
and enforced constraints largely remain the same as proposed in [21].
However, we noticed during experimental analysis that equations
6,7 and 8 enforce stricter constraints than the ones proposed in [21].
They result in reducing the overall computation time for solving the
model. The rest of the constraints are omitted from this document to
avoid repetition.

vϕ , j ,i ≤ x j ,ϕ (6)

vϕ , j ,i ≤ bi (7)

bi + x j ,ϕ ≤ vϕ , j ,i + 1 (8)

As, the maximization procedure has no bounds on the number of
cameras to be placed, it might end up placing cameras at all the
possible locations to cover all the available background points. Thus,
this approach of using a single objective function to maximize
surrounding area coverage requires a pre-defined number of cameras
that are to be placed on the vehicle that is provided by the user.

3.2 Single Objective Heuristic Approach
The greedy algorithm was implemented in this context, in the same
way it is described in [21]. However, we enforce different stopping
criteria. Since, the objective is to maximize coverage given a number
of cameras, the algorithm will be stopped when all N cameras are
placed. The greedy algorithm is a constructive heuristic. But, as it is
a deterministic algorithm, it has been included in this work.
The visibility matrix is required also for greedy algorithm. Once
we have the visibility matrix, we need to compute the rank for
each possible camera location and pose combination. The rank of a
camera placed at position, j, with an orientation, ϕ, is nothing but
the number of background points covered by it. So, if we define a
set ccov consisting of all the background points that are covered by
a camera, x j ,ϕ , then the rank, r , can be given as,

r j ,ϕ =
∑

ccov (9)

The greedy algorithm, at each iteration, selects the camera
position-pose combination, x j ,ϕ , with the highest rank. This
procedure is repeated sequentially for each camera until the required
number of, N , cameras are placed.

3.3 Bi-objective Approach
A bi-objective optimization approach is proposed in this section. The
idea behind the bi-objective formulation is that, user interference to
specify a number of required cameras is not required. The problem
will consist of the following two objective functions,

min
∑
ϕ , j

xϕ , j

max
∑
i
bi (10)

The first objective is to minimize the sum of all the binary variables
representing possible camera poses. While, the second objective is
to maximize coverage as in the case of single-objective formulation.
Constraints used for the single objective formulation are re-used for
the bi-objective problem formulation together with new constraints
to be able to solve both objective functions simultaneously. The
following equations will be discussed under this section for the sake
of completeness in explaining this novel approach.
Visibility of a background point by a camera placed at each
possible camera position for each given camera orientation can be
verified using the binary variable дϕ , j ,i in the form of the following
constraint,

bi ·
(∑
j ,ϕ

x j ,ϕ · дϕ , j ,i − 1
)
≥ 0 (11)

APIT 2020, January 17–19, 2020, Bali Island, Indonesia Anirudh and Sven

Constraint in equation 12 ensures that at most one camera orientation
is selected for a selected camera position j.∑

ϕ

x j ,ϕ ≤ 1 (12)

The minimization procedure in the first objective has no lower bound,
hence, if additional constraints are not enforced, it might end up
placing no camera at all. Therefore, a new constraint has to be added
to set a lower bound on the required number of cameras to be placed.
We can define a constraint based on the minimal required percentage
of coverage as follows, ∑

i
bi ≥ p (13)

Where, p is the minimal required points that need to be covered, and,
it can be expressed as a fraction of the total number of background
points that need to be covered (a required coverage of 95% would
translate as p = 0.95 · I , where, I , is the total number of background
points). Objective functions in 10 together with constraints 11, 12,
13, 6, 7 and 8 complete the bi-objective formulation for the general
case of camera pose optimization for heavy machinery surround
view.
The two objective functions are solved in a lexicographic fashion,
[42]. That means that the two objective functions are solved
sequentially based on a priority assigned to each of the objective
functions. We approach the problem by first optimizing the number
of required cameras, followed by, optimizing the coverage. the two
objectives are solved in the same environment which means that
all the constraints apply for both the problems, and, the solution
from the minimizing problem can be used as a starting point for
maximization problem. One advantage of approaching the problem
in a lexicographic fashion is that no additional parameter is required
to have a trade-off between the two objective functions. This method
guarantees that both the objectives are optimally solved.

4 EXPERIMENTAL ANALYSIS
Experiments were conducted on a simulation tool that was developed
using Qt creator and c++ programming language. The exact
algorithms were run on a cluster of CPUs together amounting to 24
cores and 125GB of RAM.
To run tests on realistic scenarios, a 3D model of the desired
industrial vehicle is fit into a 32×32×32 voxel grid. The dimensions
of a real vehicle of that type are then mapped to voxel grid by
comparing with the largest of three dimensions occupied in the cubic
voxel grid. This procedure roughly describes the length of one voxel
in metric units. The camera parameters are also defined in number of
voxels based on this mapping. This voxelized object is then placed at
the center of a 100 × 35 × 100 empty voxel grid with only the object
representing occupied voxels.
The camera parameters αv ,αh and zf are considered equal to
770, 770 and 40 voxels, respectively, for all cases. Camera at each
possible position is rotated horizontally and vertically at steps of
±25.750 such that these 9 orientations together cover a hemisphere,
facing outwards. One of the major drawbacks of not using search
heuristics lies in memory requirements. To be able to solve the
problem using reasonable amount of RAM, about 1% of the collected
background points and 5% of existing boundary voxels are randomly

selected during optimization. No other conditions are placed on
environment modelling to maintain generality of the problem.
The three proposed methods were tested on 3D models of multiple
heavy machinery that are primarily used at construction sites. The
algorithms were tested under criteria guaranteeing optimal solution,
as well as, with a trade-off between optimality and feasibility. To
ensure a feasible solution within reasonable computational times, a
gap of 5% from the best bound integer was allowed in the solutions,
for some tests. The methods were tested on simulated models of
heavy machinery, namely, bulldozer, excavator, lift truck, mining
truck and wheel tractor scraper. These particular machinery were
selected based on their size and shape complexity.

4.1 Results & Discussion
Random selection of Background points and boundary voxels results
in different number of variables for different tests for the same
model. This results in a different value of the objective for each
optimization. Hence, to maintain uniformity, the coverage value is
expressed in terms of percentages of the total area covered rather than
the exact objective value. However, some tests were performed with
a pseudo-random selection of the decision variables resulting in the
selection of the same set of background points and boundary voxels
for subsequent tests, so that, the three methods can be compared
against each other for a given 3D model of the heavy machine.
Table 1 shows the percentage of coverage achieved by the single
objective optimization for the considered simulations of heavy
machinery. The second column mentions computation time in
seconds amounting for the complete process of root node relaxation
and the branch and cut process. The single objective problems
were optimized for all the considered models for a fixed number of
cameras. The required number of cameras was set to five for all cases
for both BIP based approach, as well as, for the greedy approach.
The percentage of coverage matches with that in Table 3 only for the
case of bulldozer and tractor scraper models (Table 1). Although, the
methods are deterministic, the minor mismatch in resulting coverage
between the two cases of single and bi-objective formulations can
be attributed to the random selection of boundary voxels.

Table 1: Table showing surrounding area coverage and
associated computation time for different heavy machinery for
the case of single objective optimization

Heavy Machinery Coverage (%) Time (s)
bulldozer 95.60 4635
excavator 91.78 1654
lift crane 91.69 5009

mining truck 91.73 7334
tractor scraper 95.62 2874

There is significant increase in computation time for lift crane
model for the case of single objective problem (Tables 1 and 3).
Theoretically, bi-objective problem should require more computation
time as it optimizes two objective functions simultaneously. Since,
the optimal number of cameras for achieving at least 95% coverage
for the case of lift crane is six, it took longer to achieve maximum
coverage when optimized with only five cameras.

Optimal Camera Placement To Visualize Surrounding View From Heavy Machinery APIT 2020, January 17–19, 2020, Bali Island, Indonesia

Table 2: Table showing surrounding area coverage and
associated computation time for different heavy machinery for
the case of single objective optimization using greedy heuristic

Heavy Machinery Coverage (%) Time (s)
bulldozer 91.43 ∼3
excavator 85.70 ∼2
lift crane 84.03 ∼2

mining truck 83.34 ∼3
tractor scraper 84.65 ∼3

Table 3: Table showing number of cameras placed, surrounding
area coverage and associated computation time for different
heavy machinery for the case of bi-objective optimization

Heavy Machinery no. of cameras Coverage (%) Time (s)
bulldozer 5 96.78 15,035
excavator 6 95.52 12,331
lift crane 6 96.49 1,209

mining truck - - -
tractor scraper 5 94.94 2,314

Table 2 shows the percentage of coverage achieved by the single
objective optimization using greedy heuristic for 3D models of
different heavy machinery. Greedy method could provide a solution
in insignificant time when compared to the other methods. Greedy
method has two major time consuming steps; 1) calculation of
visibility matrix at each iteration; 2) sorting of the rank matrix.
Speed up achieved by the Greedy method can be attributed to GPU
acceleration implemented for calculating the visibility matrix. Thus,
resulting computational complexity depends on sorting the rank
matrix, which is trivial for the considered number of variables.
However, Greedy algorithm places the cameras one at a time by
picking the best available location and orientation combination at
each iteration without looking at the combinations of given number
of cameras. Hence, Greedy method provides sub-optimal solutions
when compared with the exact methods.
Table 3 shows the results for the bi-objective model. These results
represent feasible solutions that have a gap of about 6% from the
best possible integer value. Lift crane and tractor scraper have
comparatively smaller sizes, resulting in fewer boundary voxels.
Similarly, mining truck has much larger surface area with a complex
body structure resulting in a very high number of boundary voxels.
The bi-objective problem for the case of mining truck could not be
solved as the computer ran out of memory due to high number
of boundary voxels. Therefore, it can be stated that BIP based
optimization is affected by the number of considered variables.

Table 4: Table showing number of cameras placed, surrounding
area coverage and associated computation time for bulldozer
model with emphasis on optimality

Problem no. of cameras Coverage (%) Time (s)
Single Objective 5 97.61 5,554

Bi-objective 5 97.61 70,957

The single objective BIP based problem and the bi-objective problem
were solved with an emphasis on optimality for the bulldozer
model. No gap was allowed for these tests, thus, resulting in an
optimal solution for the given environment. The results are shown
in Table 4. It is evident from the results that emphasis on optimality
introduces large overhead on required computational time. Hence, it
can be argued that significant trade-off between solution quality and
computational time can be achieved by stopping the optimization
process as soon as a feasible solution within the permissible gap is
obtained.
Multiple tests were executed to check if random selection has
any effect on the quality of the resulting solution. Five tests with
different subsets of randomly selected variables were executed for
the bi-objective problem on the bulldozer and excavator models.
Table 5 shows these results with the last column mentioning the
best coverage value obtained in the five tests. It was observed in
these tests that there is not any significant standard deviation in the
coverage values.

Table 5: Table showing solution values averaged over 5 tests
for different heavy machinery using bi-objective optimization
problem

Problem Coverage (%) Time (s) Best (%)
bulldozer 96.18 12441 96.78
excavator 95.87 15139 96.15

5 CONCLUSION
Optimal Camera Placement has been, for the first time, implemented
in the context of heavy machinery. Multiple cameras were
successfully placed on the heavy machines to achieve surround
view vision, while, minimizing the required number of cameras.
Three novel methods were studied for optimally placing cameras on
five different heavy industrial vehicle (heavy machinery) models. A
complete solution including problem modelling and optimization
stages, has been proposed.
The three proposed approaches were compared on the basis
of surrounding area coverage quality and computational time,
while, specifying trade-offs between optimality and feasibility. A
visualization tool has also been developed to collect data and to
visualize optimized solutions.

5.1 Future Work
The motivation for this work lies in the fact that large blind spots exist
for such heavy machinery that can be a threat to human life in vicinity
of the machinery. Some weight can be given to the background points
lying in these blind spot regions so as to effectively cover those
particular points to minimize the risk associated with it. Set-cover
based optimization algorithms could also be tested for the case of
surround view visualization for heavy machinery.

6 ACKNOWLEDGEMENTS
This work is supported by the ImmerSAFE (Project number 764951)
project funded under the EU’s H2020-MSCA-ITN-2017 call and is

APIT 2020, January 17–19, 2020, Bali Island, Indonesia Anirudh and Sven

part of the Marie Sklodowska-Curie Actions - Innovative Training
Networks (ITN) funding scheme.

7 REFERENCES
[1] Jun-Woo Ahn, Tai-Woo Chang, Sung-Hee Lee, and Yong Won Seo. 2016. Two-

phase algorithm for optimal camera placement. Scientific Programming 2016
(2016).

[2] Ian F Akyildiz, Tommaso Melodia, and Kaushik R Chowdhury. 2007. A survey on
wireless multimedia sensor networks. Computer networks 51, 4 (2007), 921–960.

[3] Jon H Bechtel, Joseph S Stam, Eric R Fossum, and Sabrina E Kemeny. 2009.
Vehicle vision system. US Patent 7,567,291.

[4] Eric Becker, Gutemberg Guerra-Filho, and Fillia Makedon. 2009. Automatic sen-
sor placement in a 3D volume. In Proceedings of the 2nd International Conference
on PErvasive Technologies Related to Assistive Environments. ACM, 36.

[5] Vasek Chvatal. 1975. A combinatorial theorem in plane geometry. Journal of
Combinatorial Theory, Series B 18, 1 (1975), 39–41.

[6] Par Degerman, Joseph Ah-King, T Nystroem, Marc-Michael Meinecke, and Simon
Steinmeyer. 2012. Targeting lane-change accidents for heavy vehicles. VDI-
Berichte 2166 (2012).

[7] Uğur Murat Erdem and Stan Sclaroff. 2006. Automated camera layout to satisfy
task-specific and floor plan-specific coverage requirements. Computer Vision and
Image Understanding 103, 3 (2006), 156–169.

[8] Jose Esparza, Michael Helmle, and Bernd Jähne. 2014. Towards surround stereo vi-
sion: Analysis of a new surround view camera configuration for driving assistance
applications. In 17th International IEEE Conference on Intelligent Transportation
Systems (ITSC). IEEE, 1493–1495.

[9] Thomas Focke, Henning Von Zitzewitz, and Thomas Engelberg. 2014. Method
and device for determining processed image data about a surround field of a
vehicle. US Patent 8,712,103.

[10] Tarak Gandhi and Mohan M Trivedi. 2006. Vehicle surround capture: Survey
of techniques and a novel omni-video-based approach for dynamic panoramic
surround maps. (2006).

[11] Yi Gao, Chunyu Lin, Yao Zhao, Xin Wang, Shikui Wei, and Qi Huang. 2017. 3-D
surround view for advanced driver assistance systems. IEEE Transactions on
Intelligent Transportation Systems 19, 1 (2017), 320–328.

[12] Antonio-Javier Garcia-Sanchez, Felipe Garcia-Sanchez, and Joan Garcia-Haro.
2011. Wireless sensor network deployment for integrating video-surveillance and
data-monitoring in precision agriculture over distributed crops. Computers and
Electronics in Agriculture 75, 2 (2011), 288–303.

[13] Scott Gebhardt, Eliezer Payzer, Leo Salemann, A Fettinger, E Rotenberg, and C
Seher. 2009. Polygons, point-clouds and voxels: A comparison of high-fidelity
terrain representations. In Simulation Interoperability Workshop and Special Work-
shop on Reuse of Environmental Data for Simulation—Processes, Standards, and
Lessons Learned.

[14] Markus Gressmann, Günther Palm, and Otto Löhlein. 2011. Surround view
pedestrian detection using heterogeneous classifier cascades. In 2011 14th Inter-
national IEEE Conference on Intelligent Transportation Systems (ITSC). IEEE,
1317–1324.

[15] Ankit Gupta, Kumar Ashis Pati, and Venkatesh K Subramanian. 2012. A NSGA-
II based approach for camera placement problem in large scale surveillance
application. In 2012 4th International Conference on Intelligent and Advanced
Systems (ICIAS2012), Vol. 1. IEEE, 347–352.

[16] Kazukuni Hamada, Zhencheng Hu, Mengyang Fan, and Hui Chen. 2015. Surround
view based parking lot detection and tracking. In 2015 IEEE Intelligent Vehicles
Symposium (IV). IEEE, 1106–1111.

[17] Maung P Han and Dhruv Monga. 2016. Method and system for presenting
panoramic surround view in vehicle. US Patent App. 14/585,682.

[18] Christian Häne, Lionel Heng, Gim Hee Lee, Friedrich Fraundorfer, Paul Furgale,
Torsten Sattler, and Marc Pollefeys. 2017. 3D visual perception for self-driving
cars using a multi-camera system: Calibration, mapping, localization, and obstacle
detection. Image and Vision Computing 68 (2017), 14–27.

[19] Adam Hedi and Sven Lončarić. 2012. A system for vehicle surround view. IFAC
Proceedings Volumes 45, 22 (2012), 120–125.

[20] Lionel Heng, Gim Hee Lee, and Marc Pollefeys. 2015. Self-calibration and visual
slam with a multi-camera system on a micro aerial vehicle. Autonomous robots
39, 3 (2015), 259–277.

[21] Eva Hörster and Rainer Lienhart. 2006. On the optimal placement of multiple
visual sensors. In Proceedings of the 4th ACM international workshop on Video
surveillance and sensor networks. ACM, 111–120.

[22] Kohsia S Huang, Mohan M Trivedi, and Tarak Gandhi. 2003. Driver’s view
and vehicle surround estimation using omnidirectional video stream. In IEEE
IV2003 Intelligent Vehicles Symposium. Proceedings (Cat. No. 03TH8683). IEEE,
444–449.

[23] Klaus Huebner, Koba Natroshvili, Johannes Quast, and Kay-Ulrich Scholl. 2017.
Vehicle surround view system. US Patent 9,679,359.

[24] Julien Kritter, Mathieu Brévilliers, Julien Lepagnot, and Lhassane Idoumghar.
2019. On the optimal placement of cameras for surveillance and the underlying
set cover problem. Applied Soft Computing 74 (2019), 133–153.

[25] Julien Kritter, Mathieu Brévilliers, Julien Lepagnot, and Lhassane Idoumghar.
2019. On the real-world applicability of state-of-the-art algorithms for the optimal
camera placement problem. In 2019 6th International Conference on Control,
Decision and Information Technologies (CoDIT). IEEE, 1103–1108.

[26] Junbin Liu, Sridha Sridharan, and Clinton Fookes. 2016. Recent advances in
camera planning for large area surveillance: A comprehensive review. ACM
Computing Surveys (CSUR) 49, 1 (2016), 6.

[27] William E Lorensen and Harvey E Cline. 1987. Marching cubes: A high resolution
3D surface construction algorithm. In ACM siggraph computer graphics, Vol. 21.
ACM, 163–169.

[28] Pranav Mantini and Shishir K Shah. 2016. Camera Placement Optimization
Conditioned on Human Behavior and 3D Geometry.. In VISIGRAPP (3: VISAPP).
227–237.

[29] Aaron Mavrinac and Xiang Chen. 2013. Modeling coverage in camera networks:
A survey. International journal of computer vision 101, 1 (2013), 205–226.

[30] Kenton McHenry and Peter Bajcsy. 2008. An overview of 3d data content, file
formats and viewers. National Center for Supercomputing Applications 1205
(2008), 22.

[31] Donald Meagher. 1982. Geometric modeling using octree encoding. Computer
graphics and image processing 19, 2 (1982), 129–147.

[32] Patrick Min. 2004 - 2019. binvox. http://www.patrickmin.com/binvox
or https://www.google.com/search?q=binvox. Accessed: yyyy-
mm-dd.

[33] Claudio Montani, Riccardo Scateni, and Roberto Scopigno. 1994. Discretized
marching cubes. In Proceedings of the conference on Visualization’94. IEEE
Computer Society Press, 281–287.

[34] Aaftab Munshi. 2009. The opencl specification. In 2009 IEEE Hot Chips 21
Symposium (HCS). IEEE, 1–314.

[35] Koba Natroshvili and Bernd Gassmann. 2012. Surround view system camera
automatic calibration. US Patent App. 13/466,743.

[36] Fakir S. Nooruddin and Greg Turk. 2003. Simplification and Repair of Polygonal
Models Using Volumetric Techniques. IEEE Transactions on Visualization and
Computer Graphics 9, 2 (2003), 191–205.

[37] Petr Pokorny, Jerome Drescher, Kelly Pitera, and Thomas Jonsson. 2017. Acci-
dents between freight vehicles and bicycles, with a focus on urban areas. Trans-
portation research procedia 25 (2017), 999–1007.

[38] Pooya Rahimian and Joseph K Kearney. 2016. Optimal camera placement for mo-
tion capture systems. IEEE transactions on visualization and computer graphics
23, 3 (2016), 1209–1221.

[39] Akshay Rangesh, Kevan Yuen, Ravi Kumar Satzoda, Rakesh Nattoji Rajaram,
Pujitha Gunaratne, and Mohan M Trivedi. 2017. A multimodal, full-surround
vehicular testbed for naturalistic studies and benchmarking: Design, calibration
and deployment. arXiv preprint arXiv:1709.07502 (2017).

[40] Soumitry J Ray and Jochen Teizer. 2013. Computing 3D blind spots of construction
equipment: Implementation and evaluation of an automated measurement and
visualization method utilizing range point cloud data. Automation in Construction
36 (2013), 95–107.

[41] Maher Rebai, Matthieu le Berre, Faicel Hnaien, and Hichem Snoussi. 2016.
Exact biobjective optimization methods for camera coverage problem in three-
dimensional areas. IEEE Sensors Journal 16, 9 (2016), 3323–3331.

[42] Mark J Rentmeesters, Wei K Tsai, and Kwei-Jay Lin. 1996. A theory of lexi-
cographic multi-criteria optimization. In Proceedings of ICECCS’96: 2nd IEEE
International Conference on Engineering of Complex Computer Systems (held
jointly with 6th CSESAW and 4th IEEE RTAW). IEEE, 76–79.

[43] Avital Avigad Steinitz. 2012. Optimal camera placement. Ph.D. Dissertation.
Citeseer.

[44] Mengmeng Yu and Guanglin Ma. 2014. 360 surround view system with parking
guidance. SAE International Journal of Commercial Vehicles 7, 2014-01-0157
(2014), 19–24.

[45] Buyue Zhang, Vikram Appia, Ibrahim Pekkucuksen, Yucheng Liu, Aziz
Umit Batur, Pavan Shastry, Stanley Liu, Shiju Sivasankaran, and Kedar Chitnis.
2014. A surround view camera solution for embedded systems. In Proceedings
of the IEEE conference on computer vision and pattern recognition workshops.
662–667.

[46] Hongguang Zhang, Lingnan Xia, Fei Tian, Peng Wang, Jianzhu Cui, Chao Tang,
Nana Deng, and Na Ma. 2013. An optimized placement algorithm for collaborative
information processing at a wireless camera network. In 2013 IEEE International
Conference on Multimedia and Expo (ICME). IEEE, 1–6.

[47] Xuebo Zhang, Xiang Chen, Jose Luis Alarcon-Herrera, and Yongchun Fang. 2015.
3-D model-based multi-camera deployment: A recursive convex optimization
approach. IEEE/ASME Transactions on Mechatronics 20, 6 (2015), 3157–3169.

[48] Jian Zhao, Ruriko Yoshida, Sen-ching Samson Cheung, and David Haws. 2013.
Approximate techniques in solving optimal camera placement problems. Interna-
tional Journal of Distributed Sensor Networks 9, 11 (2013), 241913.

Publications

Publication 2

V.A. Puligandla, S. Lončarić, ”A multiresolution approach for large real-world camera place-

ment optimization problems”, IEEE Access, Vol. 10, 2022, pp. 61601-61616.

55

Received April 8, 2022, accepted May 12, 2022, date of publication May 23, 2022, date of current version June 15, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3176817

A Multiresolution Approach for Large Real-World
Camera Placement Optimization Problems
V. ANIRUDH PULIGANDLA , (Member, IEEE), AND SVEN LONČARIĆ , (Senior Member, IEEE)
Image Processing Group, Department of Electronic Systems and Information Processing, Faculty of Electrical Engineering and Computing, University of Zagreb,
10000 Zagreb, Croatia

Corresponding author: V. Anirudh Puligandla (apuligandla@fer.hr)

This work was supported by the ImmerSAFE Project under the European Union’s (EU’s) H2020-MSCA-ITN-2017 Call and is part of the
Marie Sklodowska-Curie Actions—Innovative Training Networks (ITN) Funding Scheme under Project 764951.

ABSTRACT There have been numerous attempts at solving the optimal camera placement problem across
multiple applications. Exact linear programming-based, as well as, heuristic combinatorial optimization
methodswere shown to be successful in providing optimal or near-optimal solutions to this problem.Working
over a discrete space model is the general practice when solving the camera placement problem. However,
discretized environments often limit the methods’ usage only to small-scale datasets due to resource and
time constraints that grow exponentially with the number of 3D points collected from the discrete space.
We propose a multi-resolution approach that enables the usage of existing optimization algorithms on large
real-world problems modelled using high resolution 3D grids. Our method works by grouping together the
given discrete set of possible camera locations into clusters of points, multiple times, resulting in multiple
resolution levels. Camera placement optimization is repeated for all resolution levels while propagating the
optimized solution from low to high resolutions. Our experiments on both simulated and real data with grids
of varying sizes show that using our multi-resolution approach, existing camera placement optimization
methods can be used even on high resolution grids consisting of hundreds of thousands of points. Our results
also show that the strategy of grouping points together by exploiting underlying 3D geometry to optimize
camera poses is not only significantly faster than optimizing on the entire set of samples but, it also provides
better camera coverage.

INDEX TERMS Image decomposition, integer linear programming, heuristic algorithms, pareto
optimization.

I. INTRODUCTION
Advanced Driver Assistance Systems (ADAS) that provide
surrounding view or top view from vehicles using multiple
in-vehicle cameras have recently found lot of interest
and applications in the vehicle industry, [1], [2]. Multiple
camera systems for vehicle surround-view generally use four
wide-angle or fish-eye lens cameras placed on the vehicle
to generate new perspectives from the obtained images.
For small vehicles, like cars, it is intuitive to place four
cameras on four sides of the vehicle. Assembling a multi-
camera surround-view system for larger vehicles, such as,
construction equipment, is complicated due to large sizes
and irregular shapes of these heavy machines. Calibration
of multiple cameras is a complex task. It is known that

The associate editor coordinating the review of this manuscript and

approving it for publication was Diego Oliva .

vehicle surround view systems rely on camera calibration,
[3], to estimate the cameras’ poses with high accuracy.
An optimal camera placement setup proposed using, high-
resolution, realistic 3D vehicle models can aid in camera
calibration by providing an initial accurate estimate of
cameras poses in real-world.

Camera placement optimization or optimal camera place-
ment (OCP) is a decades old problem. OCP problems have
been applied to a wide range of applications such as, video
surveillance, [4], 3D reconstruction of objects, [5], human
behaviour monitoring and motion capture systems, [6], [7],
OCP with VR interface, [8], and so on. Problem formulation
frameworks range from simple single objective, minimization
or maximization problems, [9], to more complex, multi-
objective or non-linear problems, [10]. Despite the variety,
one thing common to all of them is that the modelled
space is discretized. It is an established practice in OCP

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 61601

V. A. Puligandla, S. Lončarić: MR Approach for Large Real-World Camera Placement Optimization Problems

problems to discretize the space and use combinatorial
optimization algorithms to find the optimal locations for
placing cameras. For example, for surveillance applications,
points are sampled randomly or at equal intervals over a
floor plan. While it is true that continuous space model
would provide better accuracy, continuous models are not
used due to their complexity (e.g., estimating camera
coverage requires calculating intersection between polygons
or volumes). Using sets of points for optimization is not
an efficient process when compared with continuous space
model, but it has shown to be a successful approach for all the
existing OCP problems across various applications. A large
number of sampled points are required for an acceptable
approximation of the continuous space. However, a greater
number of input points imply a larger solution search space
for the optimization algorithms resulting in an increase in the
time required for finding the solution to the OCP problem.

This work focuses on the use-case scenario of finding
optimal locations and directions of multiple cameras that
need to be placed on a vehicle to achieve surround-
view vision. Vehicle surround-view camera systems produce
surround-view outputs by combining the video streams of
individual cameras. Slight variation in a camera’s orientation
may result in serious artefacts in the surround-view output.
Therefore, it is necessary to ensure that the OCP problem is
applied on high-resolution, realistic 3D models of vehicles
so that the resulting optimized camera poses precisely
adhere to the real vehicle’s structure and surface boundaries.
To show applicability in real-world scenarios, we use
high-detailed realistic 3D models of vehicles in a space
modelled using high-resolution 3D grids where each voxel
represents few millimeters on the real vehicle’s surface.
While OCP problems used in this work consist of tens of
thousands of decision variables, the widely used branch-
and-bound optimization algorithm (a method that guarantees
the global optimal solution), [11], cannot handle more than
a few hundred variables due to limitations on the amount
of required resources, rendering it impractical for most
real-world OCP problems.

To overcome the limitations on the amount of resources
and time required by the optimization process, we propose
a new multi-resolution (MR) approach that works on only a
small subset of the input points at one time, thus, reducing the
size of the solution search space for any given optimization
algorithm. Our method is an iterative process that works,
at each iteration, by grouping the input points into a given
number of clusters and optimizing camera poses on the
clusters of points. At the end of an iteration, only the selected
clusters of points (i.e., solution obtained from optimization)
are propagated as input points for optimization in the next
iteration, while the rest of the points are discarded. Our
proposed multi-resolution representation can be compared
to the image representations used in different ‘‘multi-scale’’
image processing methods. We choose the term ‘‘resolution’’
because, when a number, N , of camera positions are grouped
into a number,K , of clusters, whereK < N , the cluster center

points, computed as the mean of all the points belonging to
the cluster, are represented as the new set of camera positions
for an iteration. This implies that the vehicle’s surface is
represented by K number of points instead of N resulting in
a ‘‘low-resolution’’ description of the vehicle’s 3D surface.
But, as the algorithm progresses through iterations, fewer
number of points get grouped together into clusters, result-
ing in a ‘‘high-resolution’’ representation of the vehicle’s
surface.

Primary advantage of our proposed MR method comes
from low-resolution descriptions as they reduce the size of
the search space for any optimization method irrespective of
the choice of the algorithm. This quality enables us to use
branch and bound-optimization methods on large real-world
models without encountering the resource constraints that
are integral to those methods. While it may be assumed
that working with only a subset of the points may result in
lower coverage accuracy, our results show that, in fact, our
approach improves the coverage accuracy that is obtained
when camera poses are optimized on the complete set of
sampled points. We believe this improvement arises due to
two factors; 1) by clustering the sampled points based on
their 3D position and surface orientation, we can effectively
capture the geometrical features of the vehicle’s surface,
thereby identifying important regions on the vehicle for
camera placement; 2) by representing the clusters of points by
the mean position, we can achieve sub-voxel accuracy on the
vehicle’s model, thereby adding some degree of continuity to
an otherwise discrete optimization problem.

Camera placement optimization on the entire set of sam-
ples without clustering will be called as single resolution (SR)
optimization in the remainder of this document. The results
from SR optimization on the same data are used to establish
the efficacy of our proposed MR method. It is important to
note that all discrete optimization problems used in different
OCP applications require a ‘‘look-up’’ table describing the
coverage of every point in the dataset. This look-up table,
known as visibility matrix, is computed beforehand as a pre-
processing step. In fact, this step is expensive in terms of time
required as it involves millions of geometrical calculations.
Existing literature in this field overlooks this problem as it
considered to be a pre-processing step, where the visibility
matrix can be computed once per dataset and stored in a file,
for example. However, our experiments show that, for large
real-world data, computing this matrix is impractical as it
takes several hours when the number of sampled points range
in tens of thousands. Our results show that by reducing the
number of input camera points, the MR method significantly
reduces the time required for the overall optimization process
(including the time required for the pre-processing step of
visibility calculations) while improving the camera coverage
quality.

The rest of the document is organized as follows: Section II
provides an overview of prior relevant research, Section III
describes the optimal camera placement problem for vehicle
surround-view, Section IV describes the multi-resolution

61602 VOLUME 10, 2022

V. A. Puligandla, S. Lončarić: MR Approach for Large Real-World Camera Placement Optimization Problems

method and the results and conclusions are discussed in
SectionsVandVI, respectively.

II. BACKGROUND WORK
The origins of optimal camera placement trace back to
the art gallery problem, [12]. Work done by Hörster
and Lienhart, [9], and by Erdem and Sclaroff, [13], can
be considered pioneering in the field of optimal camera
placement for indoor surveillance scenarios. Given an indoor
setting with a floor plan, their work aims to optimally place
a certain number of cameras in designated regions to cover
as much of the floor as possible. They proposed multiple
problem statements, such as, to minimize the cost of the
multi-camera network, maximize coverage given a desired
number of cameras, etc. They use binary decision variables
to model possible camera locations and the points that are
to be covered by the placed cameras (named control points).
They use the branch-and-bound method which is classified
as non-heuristic as it can provide provable bounds around
the optimal solution, [11]. The proposed linear programming
framework is aptly named binary integer programming (BIP),
and has been proven, over the past decade, to be the most
accurate model, although, expensive in terms of time and
resource consumption.

Most BIP-based formulations are NP-complete. Branch-
and-bound algorithms, due to this reason, often require
impractical amounts of time and resources to find exact
optimal solutions for even small datasets. To circumvent
this limitation, numerous approximate optimization methods
have been proposed. Despite being prone to local optima,
approximate methods find widespread interest in research
and practical applications due to lower algorithmic complex-
ity. Hörster and Lienhart, [9], presented an adaptive greedy
algorithm that works by creating a rank-matrix for all the
possible camera locations. The rank is calculated as the total
number of control points covered by each camera pose. The
algorithm iteratively picks a camera pose with the highest
rank until the required number of cameras are placed. It is an
adaptive greedy heuristic because once a camera is selected,
that position and the covered control points are removed
and only the remaining points are considered for the next
camera. Such a feature, however, removes the combinatorial
aspect of the OCP problem, but enables it to provide a
feasible solution in significantly less time than branch-and-
bound-based optimization. Due to their lower complexity,
Greedy algorithms are often used for an upper bound on the
solution or as a solution initialization step in a more complex
algorithm, [14].

The authors in [15] proposed a search heuristic method
called particle swarm optimization (PSO). The method works
by initializing a number of particles spread randomly across
the search space. The particles are compared in terms of
the objective function value and the best one is picked
as the solution to the OCP problem. In the category of
genetic algorithms, Gupta et al., proposed an algorithm
that works in a similar fashion to the genes present in the

human body. It starts with an initial solution and makes
mutations and crossovers of the initialized solution while
keeping a record of the objective function values of each
candidate solution. The candidate with the best objective
function value is selected as the final solution after a
certain number of mutations. Evolutionary algorithms like
PSO have been extensively studied in camera placement
optimization problems. Wang et al. proposed two variants
of PSO algorithm in [16] and [17], respectively. While
the core algorithm remains same as the standard PSO,
in RPSO, they use a weighted particle re-sampling scheme to
maintain diversity in the particle population. Similarly, in LH-
RPSO, [17], they replace the re-sampling strategy of RPSO
with a new Latin Hypercube-based particle sampling strategy.
Both their methods are claimed to improve solutions obtained
by the standard PSO algorithm. Some other approximate
optimization techniques, including probabilistic search space
sampling techniques and evolutionary algorithms are detailed
in [18]–[20].

All the approximate optimization methods try to uniformly
search the solution space without having to go through
all the combinations. Due to this reason, they are faster
than exact BIP-based optimization. But, unlike BIP-based
method, they fail to find the global optimal solution and
often end up in local optima. In, [21], citing the difficulties
in solving real-world OCP problems due to its NP-hard
characteristic, Ahn et al. proposed a two-phase algorithm
as an approximate optimization algorithm. Their method is
similar to the method we propose in this work, as both
try to solve a simplified OCP problem at lower image
resolutions first. However, their method works only in two
resolutions and is proposed only for two-dimensional data.
Additionally, they use different optimization algorithms for
the two resolution levels. In contrast, we propose a general
method that is applicable to 3D data of any kind and
size. The only requirement for our method is that the dis-
cretized possible camera locations have an associated camera
view-direction vector.

Despite the vast amount of literature in this field, their
applicability to real world OCP problems is challenging.
One of the algorithms presented by Kritter et al. [14] is a
row weighting local search (RWLS) algorithm that was
originally proposed by Gao et al., [22], for the general
unicost set covering problem. The RWLS optimization
method was recently explored in the context of OCP in [23].
Kritter et al.mentioned in [24] that RWLSwas not yet studied
in OCP scenarios. They proved the method’s superiority
in [14] where they studied the OCP problem for large 3D
models of European cities. However, citing the method’s
complexity, they mention that their models were sampled
sparsely at large intervals to obtain a feasible solution
in reasonable amount of time. In contrast, we test our
method on models with tens of thousands of sampled points.
Apart from these application-specific methods, some surveys
give a comprehensive overview on various modelling and
optimization strategies for the OCP problem, [24], [25].

VOLUME 10, 2022 61603

V. A. Puligandla, S. Lončarić: MR Approach for Large Real-World Camera Placement Optimization Problems

There also exist some bi-objective methods that aim to
maximize coverage while simultaneously minimizing the
cost of the multi-camera system, [26]. Although, triangular
or pyramidal camera field-of-view models are prevalent,
there exist many other types of camera coverage models
in usage, [27]. Finally, it is to be noted that the choice of
coverage quality metric is also important to achieve reliable
results, [28].

III. OCP FOR VEHICLE SURROUND-VIEW
The optimal camera placement problem includes few steps
such as: discretizing the space, defining binary decision
variables, defining an objective function (e.g., maximizing
camera coverage), and finding the optimal value of the
objective function while enforcing certain constraints on
values taken by the variables. Our proposed formulation of
the problem of OCP for vehicle surround-view is detailed
in the following sub-sections. Our problem formulation
is like the BIP-based framework proposed in [9]. Some
modifications were made to the problem to allow greater
degrees of freedom for camera poses and extension to three-
dimensional space. Because the camera view directions have
an additional degree of freedom, these modifications only
increase the complexity of defining the variables, whereas,
the objective function, constraints and the optimization
procedure remain unchanged.

A. MODELLING SPACE
We model the space as a volume using a structured grid.
Structured grids are a collection of points forming a symmet-
ric 3D grid, [29]. These points usually represent the centroids
of encompassing voxels. Such a representation is discrete in
nature, hence, there is no further need to sample the space
for discrete data. The space for the optimization problem
is defined within the volume. To keep the simulations
realistic, we collected 3Dmodels of different heavymachines
used in the construction industry, that are freely available
on crowd-sourced internet platforms, such as, [30]. The
polygonal models were voxelized into a structured grid using
an open source tool called binvox, [31], [32].

The linear programming formulation for the optimal
camera placement problem requires definition of two discrete
sets of variables: (1) possible camera poses, and (b) points
that are viewed by the placed cameras (commonly known as
control points). In the problem of OCP for vehicle surround-
view, the voxelized vehicle model is placed at the center of
the volume, with the slice of voxels at y = 0 representing
the ground plane. The control points are defined around the
vehicle on a spherical cap surface, [33], with a radius of
12 meters from the center of the vehicle. This value of radius
was chosen as it gives a level of visibility that is required for
surround-view under safety critical conditions, [34]. Fig. 1
shows an example visualization of the modelled space with a
voxelized bulldozer vehicle model placed at the center of the
volume. The vehicle is shown in red and the control points
are shown in blue.

For simplicity, we consider voxels on the entire surface
of the vehicle as possible locations where cameras can be
placed. To extract the vehicle’s surface, first, a morphological
dilation operation is performed on the voxels representing
the vehicle to grow its boundaries by one unit. Then,
the original volume is subtracted from the dilated volume,
leaving behind a one-voxel thick boundary on the vehicle’s
surface. These boundary voxels are defined as possible
locations for camera placement, xi ∀i ∈ N , where N is the
number of boundary voxels. Each position xi is associated
with a camera view direction vector, x̂i, computed using the
marching cubes algorithm, [35], on the vehicle’s surface.
Each camera is rotated in the pitch and yaw directions about
the primary view direction, at equal steps up to 90o on either
side.

If there are a total of 8 rotations for each camera, then the
set of all possible camera poses can be written as,

xiφ =

1 if a camera is placed at location

i with orientation φ

0 otherwise,

(1)

where, φ = 1, . . . , 8. The spherical cap around the vehicle
is defined by three parameters: radii of the top and bottom
circular segments and the height of the spherical cap. As a
spherical cap is defined in continuous space, all the voxels
that lie within 0.5 units of the surface of the spherical
cap are set as control points. The control points are given
as,

cj =

1 if control point j is covered

by at least one camera
0 otherwise,

(2)

for all j = 1 : J , where J is the total number of voxels on
the spherical cap surface. The objective function to maximize
multi-camera coverage by optimally placing a pre-defined
number of cameras, n, is given as,

max
∑
j

cj. (3)

The poses for these n cameras are selected from the set of all
possible camera poses xiφ , such that they maximize the sum
of control points cj that are covered by the n cameras.

B. MODELLING CAMERA’s FoV
The camera’s field-of-view (FoV) has been previously
defined in numerous ways, in both two and three dimensions,
for various optimal camera placement problems. Depending
on the application, a camera’s FoV can have multiple
coverage criteria, such as, visibility/occlusion, resolution,
etc., [27]. Moreover, some applications define multiple
types of cameras (for e.g., wide-angle lens, fish-eye lens,
etc.). For simplicity, we define only one type of camera
for our optimization problem with only one criteria for
visibility/occlusion. Defining and handling multiple types of
cameras and criteria is a simple and scalable process, but

61604 VOLUME 10, 2022

V. A. Puligandla, S. Lončarić: MR Approach for Large Real-World Camera Placement Optimization Problems

FIGURE 1. Example visualization of modelled space with bulldozer vehicle model. The voxels in red represent the set of possible camera locations,
whereas, voxels in blue show the control points.

with a downside of increased complexity of the optimization
problem. For our problem, we adopt the commonly used
pyramidal FoV model in three dimensions. The pyramidal
FoV is described using three parameters, namely, depth of
the view frustum, zf , horizontal field of view angle, αh and
vertical field of view angle αv. Additionally, the origin p and
view direction vector θ̂ associate the FoV pyramid to possible
camera poses xiφ .

C. VISIBILITY CHECKS
It is necessary to define an additional variable giφj specifying
if a control point cj is covered by a camera pose xiφ or not.
It can be precomputed for all camera poses xiφ using simple
geometrical calculations and stored in a two-dimensional
visibility matrix. The variable is described as,

giφj =

1 if control point j is

covered by a camera placed at
position i with orientation φ

0 otherwise.

(4)

Visibility of a control point cj by a camera at xiφ is determined
by using point in plane calculations. If a control point lies
inside all the five planes of the camera’s FoV pyramid,
then the corresponding entry in the visibility matrix is
marked as 1. This pre-processing step can be expensive when
the set X consists of tens of thousands of points. For N
camera positions, J control points and 8 orientations for
each camera position, the time complexity of our visibility
algorithm is O(N8J). This complexity can be considered to
be simpler when compared to other state-of-the-art methods
as we do not consider any static or dynamic occlusions
(except for self-occlusion) in our model. However, without
parallel computations, the time required for these calculations
may be impractical for real-world OCP scenarios. As the
geometrical calculations are mutually independent, to speed

up the process of creating the visibility matrix, we perform
these calculations parallel on the GPU using OpenCL.

In our experiments, the largest model has over 14 million
points in the initial set xiφ , and over 1500 sampled control
points. As it is not possible to construct a matrix of this size,
we introduce two additional conditions to filter out camera
poses that do not make any significant contribution to the
solution. The first condition is used to remove cameras whose
FoV is occluded by the vehicle itself. A threshold value,
covself , defines a tolerance value on the number of vehicle
points that are allowed to fall within a camera’s FoV. All
camera poses with occlusion more than the threshold are not
included in the final visibility matrix. Additionally, camera
poses that do not cover any control points (e.g., cameras
pointing directly up) do not contribute to the solution.
Similarly, cameras covering too few control points also do
not contribute to the solution of a coverage maximization
problem with fixed pre-defined number of cameras. A pre-
set parameter covmin, defines a lower bound on the number
of control points a camera needs to cover. All cameras that
cover less than covmin control points are not included in the
final visibility matrix.

D. INTEGER PROGRAMMING MODEL
Having defined the binary variables and the objective func-
tion, we need to enforce certain constraints that describe cov-
erage or place some restrictions on camera placement. First,
a constraint that expresses coverage defining variable, giφj,
in terms of other variables defined in (1) and (2), is given as,

cj ·
(∑

iφ

xiφ · giφj − 1
)

≥ 0. (5)

The above inequality is non-linear as it involves the product
of two binary variables. It can be linearized by adding a
binary variable, viφj, representing the product, cj · xjφ , and

VOLUME 10, 2022 61605

V. A. Puligandla, S. Lončarić: MR Approach for Large Real-World Camera Placement Optimization Problems

the following two constraints,

cj + xiφ ≥ 2 · viφj (6)

cj + xiφ − 1 ≤ viφj. (7)

The following constraint is required to ensure that n camera
poses are selected, ∑

iφ

xiφ = n. (8)

Lastly, to ensure that one possible camera location does not
have more than one camera placed, the following constraint
needs to be added, ∑

φ

xiφ ≤ 1. (9)

The integer programming model for the optimal camera
placement problem for vehicle surround-view coverage is
defined as,

maximize
∑
j

cj

subject to (5), (6), (7), (8) & (9). (10)

IV. MULTI-RESOLUTION METHOD
All approximate optimization methods used for optimal cam-
era placement problems build on the core idea of effectively
exploring only a subset of the solution search space without
having to search all of it for the global optimal solution.
Our proposed multi-resolution method, on the other hand,
is built to explore only the important regions in the modelled
space, therefore, reducing the size of search space before
even the optimization procedure begins. In fact, with fewer
number of points in the set of possible camera positions,
xi, our method can exponentially decrease the number of
calculations required in the pre-processing step of visibility
checks. The idea behind the multi-resolution method is to
group the initial set of possible camera placement locations,
xi, into K clusters of points, and optimize for n camera poses
while considering the cluster centroids as the new set of
possible camera locations. The clustering step reduces the
size of xi from N to K , where K � N , therefore decreasing
the total number of combinations of possible solutions (i.e.,
the solution search space). The two steps of clustering and
optimization are repeated iteratively, while propagating the
solution from one iteration to the next. It means that only the
camera points comprising the n clusters of points, selected in
this iteration as the optimal camera poses, are passed onto
the next iteration, while the rest of the camera points are
discarded. The iterative process stops when the number of
camera points comprising the selected n clusters, in a certain
iteration, is less than a user-defined limit, l. At this stage,
camera poses are optimized, for one last time, without any
further clustering of the input set of points, xi. Figure 2
shows an illustration of the multi-resolution method, and, the
next paragraph explains, through an example, the iterative

FIGURE 2. An illustration of the multi-resolution optimization method
showing an example situation of placing two cameras on the data points.
At each resolution the selected camera points are highlighted in solid
color. Only the sets of points shown in solid color propagate to the
subsequent resolution level, with the rest being discarded.

process and the reasoning behind naming the method as
multi-resolution.

Consider a 3D model of a bulldozer vehicle. A standard
bulldozer vehicle would measure 4.5 meters in its longest
dimension (length). When it’s 3D model is voxelized into a
cube of length 128 voxels, the longest dimension is fit exactly
into 128 voxels. It implies that each voxel in the voxelized
3D model would measure 4.5

128 ≈ 35mm, i.e., r = 35mm
is the 3D image’s resolution. Assuming the bulldozer model
consists of N = 11, 000 voxels representing the surface
of the vehicle and that the voxel surface is uniformly one
voxel thick, the surface area can be calculated as N × r2.
Now, if the surface voxels are grouped together into K =

100 clusters, assuming that all the clusters are uniform in
shape and size, the resolution of the resulting clustered image

will be
√

N×r2
K ≈ 367mm. Because the vehicle’s surface is

represented by larger voxels than the original image, we call
the clustered data as low-resolution image. Say we want to
optimize poses of n = 5 cameras. Given that the approximate
size of each cluster in this case is 110 voxels, we will have
N = 550 points, belonging to the 5 clusters that were selected
as the solution in this iteration, that will be passed as input to
the next iteration. Assuming l = 200, the input points will
be clustered again into K = 100 clusters because 550 > l.
This results in a resolution of 82mm for this iteration. It is to
be noted that this resolution is higher than previous iteration
but it is still lower than the original resolution of 35mm. The
clustering and optimization steps are repeated until when N
becomes lower than l. When N < l, the input points are not
clustered any further and the set xi for optimization at this
stage is a small subset of the original set of points with the
resolution, r = 35mm. Because the resolution of the last
iteration is same as the resolution of the original voxelized

61606 VOLUME 10, 2022

V. A. Puligandla, S. Lončarić: MR Approach for Large Real-World Camera Placement Optimization Problems

model, we call it as the highest resolution, while, the first
iteration is called lowest resolution.

A. CLUSTERING BASED ON POINT ORIENTATION
3D image clustering is an extensively studied topic in the field
of computer vision. Well-known, unsupervised clustering
methods such as the K-means and the Gaussian mixture
model algorithms, [36], [37], are proven to be efficient on
general 2D/3D point data. There also exists a vast variety
of application specific clustering methods, such as, for 3D
point cloud data, [38], [39], 2D images, [40], 3D image
(RGB+D) data, [41], etc. The data we use here for OCP is
like 3D point clouds, i.e., each camera position is represented
using 3D spatial coordinates along with an associated 3D
vector representing the camera’s view direction. However,
to our knowledge, clustering methods tailored specifically for
OCP problems do not exist. We propose a new clustering
method adapted from the SLIC algorithm proposed by
Achanta et al., [42].

Our clustering algorithm is an iterative process, where all
the points are assigned to a set of cluster centers, while at
each iteration, new clusters centers are added or existing
ones are removed depending on the number of outlier points.
The input to the algorithm is a set of N 6D vectors, ai =

[xi yi zi ui vi wi]T , that are a merger of the set of possible
camera positions, Pi = (xi, yi, zi), and their associated
primary orientation vectors, P̂i = (ui, vi,wi). It is to be noted
that clustering is done based only on the primary orientations
of the camera points. At this stage, the rotations, 8, for the
camera positions do not yet come into play as those rotations
about the primary view direction vector are computed after
clustering, and before optimization, to form the set, xiφ ,
of possible camera poses. The input set of points are grouped
together into a set of K clusters, where the value of K is
chosen by the user and passed as input to the algorithm.
Initially, a set of clusters seeds, Ck = [xk yk zk uk vk wk]T

, k = 1, . . . ,K are selected from the input set of points, ai.
The output of the algorithm is a labels vector of values k for
each point ai indicating the cluster it belongs to, and a set of
cluster centers Ck that are estimated as the average of all the
points ai belonging to each cluster k . The clustering process
can be broadly categorized into three steps: 1) initialization
2) assignment and 3) update.

The initial seeds are selected through a strategy that
exploits the orientations associated with the camera positions.
Assuming that all the clusters are uniform in size, the
approximate size of each cluster is given as, csize =

N
K . Under

another assumption that the clusters are uniform in shape,

the length of each cluster can be given as, S =
3
√

N
K . The

input points ai are first voxelized using the voxel grid filter
provided as part of the Point Cloud Library API, [43], with
S as the length of the resulting voxels. The voxel grid filter
essentially downsamples the points using a 3D grid, where the
centers of each cell represent the mean of all the points that
fall within that cell. Selecting a length of S for the voxel grid
ensures that the resulting points are all spaced at least S units

apart. Downsampling with a voxel grid results in a number of
points that is usually larger than the number of clusters, K .
We randomly select K points, from the downsampled set of
points, to represent the initial set of clusters centers, Ck .

In the assignment step, the points ai are, each, assigned
a label k corresponding to the cluster center Ck that it
belongs to, based on a distance metric D. D is computed
as a combination of the Euclidean distances between the
position and the normal vectors of a point ai and a cluster
center Ck . If the Euclidean distance between the position
vectors of a camera point and a cluster center is given
as, ds =

√
(xi − xk)2 + (yi − yk)2 + (zi − zk)2, and the

Euclidean distance between their normal vectors is given
as, dn =

√
(ui − uk)2 + (vi − vk)2 + (wi − wk)2, then the

distance metric is written as,

D =

√
d2n +

m
S

· d2s ,Changes (11)

where, m, is a user-defined parameter that acts as a relative
weight between ds and dn. The spatial distance has to be
normalized by the search radius S because, dn is usually under
1 as it is computed using unit normal vectors, whereas, ds
varies from model to model. During assignment of points to
clusters, only the points lying within a radius of S units from
a cluster center are searched and compared using the distance
metric. It implies that the farthest point assigned to a cluster
center cannot be more than S units away from it, spatially.
Therefore, normalizing by S brings the value of ds similar to
that of dn.

We go through each cluster center sequentially, search a
spherical neighbourhood of radius S around it, and assign the
encountered points to the cluster center if it is the smallest
distance, D, the point has seen so far. There can be some
overlap between different clusters as the search radius around
a cluster center is same as the distance between two cluster
centers (recollect that both are equal to S). Due to the overlap,
it might happen that some points initially assigned to one
clustermay get reassigned to another. This, however, provides
some flexibility to the size of clusters, allowing some clusters
to be larger or smaller to better fit the vehicle’s 3D structure.
Once the neighbourhoods of all the initialized cluster centers
are checked, the outlying points that have not been assigned
to any of the cluster centers are collected (Let us call the
count of outlying points as Nol). At the same time, the size
of each cluster, i.e., the number of points assigned to each
cluster center are also counted. The number of unassigned
points together with sizes of exiting clusters give us an
estimate on howmany cluster centers to be added or removed.
This feature makes the clustering process dynamic in nature,
helping to accurately cover the vehicle’s entire surface.

In the update step, first the cluster centers that do not
have any assigned points are removed. If Kr cluster centers
are removed, the remaining K − Kr cluster centers, Ck ,
are updated as the mean of all the points, ai, assigned
to the each cluster center. An estimate of cluster centers
that need to be added is obtained by diving the number of

VOLUME 10, 2022 61607

V. A. Puligandla, S. Lončarić: MR Approach for Large Real-World Camera Placement Optimization Problems

outlying points by the, previously calculated, approximate
cluster size, csize, i.e., cadd =

Nol
csize

. The set of outlying
points is processed in the same way as the initialization
step, to initialize cadd number of new cluster centers. This
process of adding and/or removing cluster centers changes
the number of clusters (say, the final number of clusters after
completion is K ′) that was initially selected by the user.
The approximate cluster size, calculated previously from
the user-inputted number of clusters, K , however, remains
constant throughout the clustering, making csize (or S) as
the primary parameter that controls the clustering process.
Therefore, the two parameters, K and S, are interchangeable
as input to the clustering algorithm. We run the clustering
process with k as input.

The assignment and update steps are repeated iteratively
until, either the number of outlying points changes by less
than 10% from the previous iteration, or if there are no more
cluster centers required to be added. For example, when
Nol < csize, cadd , as an integer division, becomes zero,
implying that no additional cluster centers can be initialized.
Our experiments show that the algorithm usually runs until
there is no possibility of adding any more clusters. Hence,
when the stopping criteria is satisfied, the existing cluster
centers are updated as the mean of all the points assigned
to the cluster, and the outlier points (if any) are checked
against all the cluster centers using the distancemetric,D, and
assigned to the closest cluster center, as a last step. At the end,
the total number of clusters may be different than the value
of K initially chosen by the user, but the dynamic process
ensures that the surface of the vehicle is effectively captured
by uniform clusters. The complete algorithm is detailed in
Algorithm1. The clustering algorithm has a time complexity
of O(N).

B. ALGORITHM
The initially collected set of voxels representing the vehicle’s
surface, Pi, and their primary orientation vectors, P̂i (together
represented as a set of 6D points, ai), and the set of control
points, bj = [xj, yj, zj]T are passed as input to the multi-
resolution (MR) algorithm.Additionally, the required number
of cameras to be optimally placed, n, is also passed as
input to the algorithm. As illustrated at the beginning of this
section, the MR method involves two steps: 1) Clustering
of input points, and; 2) Optimizing for camera poses
considering the cluster centers as the new set of possible
camera locations. These two steps are repeated iteratively
until the total number of variables in the set ai is more
than the pre-defined limit, l. The algorithm starts with a
loop where the two steps of clustering and optimization are
repeated.

Initially, the set of points ai are clustered into K ′ clusters.
Following this step, the set ofK ′ cluster centers,Ck , represent
the new set of possible camera locations, ai, thus, decreasing
the size of input from N to K ′. These points are then rotated,
about the associated primary direction vector (remember that
Ck [xk yk zk uk vk wk]T is 6D vector representing both position

Algorithm 1: Clustering Based on Point Orientation

Input: K,ai = [xi yi zi ui vi wi]T ∀ i = 1 : N ;
Result: labelsi = k ∀ i = 1 : N , Ck ∀ k = 1 : K ′

S =
3
√

N
K ;

Initialize: Ck = [xk yk zk uk vk wk]T ∀ k = 1 : K ;
Di = inf, labelsi = −1 ∀ i = 1 : N ;
K ′

= K , t = 0, Nol(t) = N , csize =
N
K ;

while (1) do
for k = 1 to K ′ do

for ai in neighbourhood of radius S do
D = D(ai,Ck) as in equation 11;
if D < Di then

Di = D;
labelsi = k;

end
end

end
outliers = collect points with label == −1;
Nol(t + 1) = size(outliers);
remove all centers with size(Ck) < 1;
cadd =

Nol (t+1)
csize

;

if (Nol (t)−Nol (t+1)
Nol (t)

< 0.1) || (cadd < 1) then
break;

end
Re-estimate Ck as mean of all ai with labelsi == k;
Initialize cadd clusters and append to Ck ;
K ′

= K after adding and/or removing clusters;
t = t + 1;

end
Force assign outlying points to nearest cluster;
Re-estimate Ck as mean of all ai with labelsi == k;

and orientation) to form the set of variables xiφ . Together
with 8 rotations in the four directions, the resulting set of
possible camera poses consists of ((8 + 1) × K ′) number
of points (instead of (8 + 1) × N points when considered
without clustering). Followed by the rotation step, visibility
checks are performed on the sets of variables, xiφ and cj,
to create the visibility matrix, as detailed in SectionIII-C.
Post the visibility checks step, the accepted camera poses (the
exact number depends on parameters covself and covmin and
varies from model to model) comprise only a small subset
of the original set of points, as most of the possible camera
poses that do not fulfill visibility criteria are discarded. Binary
variables, xkφ and cj, are then initialized over the accepted
camera poses and the complete set of control points, and
passed as input to the user-chosen optimizationmethod, along
with the binary variables gkφj that represent the visibility
matrix.

This algorithm can work with any optimization method,
as all discrete combinatorial optimization methods take the
same input (integer decision variables, set of constraints and a
pre-computed visibility matrix) and produce the same output
(set of optimal camera poses). The optimization process

61608 VOLUME 10, 2022

V. A. Puligandla, S. Lončarić: MR Approach for Large Real-World Camera Placement Optimization Problems

then selects n (where n is a number chosen by the user
representing the number of cameras to be optimally placed)
optimal camera poses from the input set, by optimizing
the objective function while enforcing the constraints. After
completion of the optimization process, the obtained solution
is processed for the next iteration. The points belonging to
the n optimally selected clusters are extracted to represent the
new set of possible camera locations ai. The rest of the points
belonging to the remaining K ′

− n clusters are discarded.
If the number of points, N , in the new set ai are more
than l, then the steps of clustering, creating rotated direction
vectors, visibility checks, and optimization, are repeated.
Otherwise, the program exits the loop and optimization is
done on the remaining set of points ai, for one last time,
without clustering. As these points are not clustered any
further, this step of final optimization is called the highest
resolution level. It might sometimes happen that the solution
obtained at the highest resolution is worse than a solution
obtained in one of the previous iterations. Therefore, the
solution at each iteration is saved and the best of all solutions
is presented as the final result of the MR algorithm. The
output of the algorithm is a set of n 6D vectors, camSoln =

[xn yn zn un vn wn]T representing the poses of the optimally
placed cameras.

The multi-resolution optimization algorithm is detailed in
Algorithm2. Initialization of parameters m, l, 8, covmin and
covself is discussed later in Section V-A. In the algorithm, the
functions cluster(), rotate(), visibilityChecks() and optimize()
each perform a specific task as implied by their names, such
as; the function cluster() performs the clustering operation
as described in Algorithm 1; the rotate() function produces a
set of 8 rotated direction vectors about each camera pose’s
primary orientation, as described in Section III-A; visibility-
Checks() performs all the necessary calculations described in
Section III-C and sets up the visibility matrix, and; function
optimize passes all the variables and the parameter n to
the user-selected optimization method (such as, branch-and-
bound, greedy heuristic, etc.) to obtain the optimal camera
poses. In the rotate() function, the notation ‘‘·̂’’ refers to the
direction vector (P̂ = [u, v,w]T) part of the 6D variable.
Lastly, the optimize() function in the loop returns a vector of
labels, kn, of the n solution clusters. kn is shown in the while
loop, whereas it is omitted from the call to optimize() function
in the highest resolution because, the input points at this stage
correspond to points from the original voxel image without
any clustering. By saving the clusters’ labels, we can easily
track and retrieve all the camera points that belong to those
clusters.

The time complexity of our proposed MR algorithm
depends on three factors, i.e., the individual complexities
of clustering, visibility checks and optimization steps. Time
required for the clustering step, with a linear complexity
depending on the number of input points in set xi, varies
from one resolution level to another. It requires highest
computational time for the lowest resolution level when the
size xi is equal to N , whereas, the computational time for

Algorithm 2:Multi-Resolution Optimization

Input: ai = [xi yi zi ui vi wi]T ∀ i = 1 : N ,
cj = [xj, yj, zj]T ∀ j = 1 : J , K, n;
Result: camSoln = [xn yn zn un vn wn]T ∀ 1 : n
Initialize parameters m, l, 8, covmin and covself ;
covbest = 0;
/* lower resolutions */
while N > l do

[Ck , labelsi] = cluster(ai,K);
Ckφ = rotate(Ĉk);
xkφ = VisibilityChecks(Ckφ, cj);
[soln, kn, cov] = optimize(xkφ, cj, n);
if cov > covbest then

camSoln = soln;
covbest = cov;

end
ai = all points with labelsi = k ∀ k = kn;
N = size(ai);

end
/* higest resolution */
aiφ = rotate(âi);
xiφ = VisibilityChecks(aiφ, cj);
[soln, cov] = optimize(xiφ, cj, n);
if cov > covbest then

camSoln = soln;
covbest = cov;

end

subsequent resolution levels decreases with each level as
the number of points in input set xi at a resolution level
t + 1 is always less than the number of points in xi at
level t . The complexity of visibility checks step is given
as O(K ′8J), as after the clustering step, the MR method
works with only K ′ points. This is significantly lower than
the corresponding complexity for SR method (O(N8J))
as K ′

� N . The complexity of the optimization step
depends on the chosen optimization algorithm. For example,
the linear programming based-branch-and-bound algorithm
has an exponential complexity whereas the particle swarm
optimization method has a linear complexity in the number
of particles. The number of points passed as input to the
optimization algorithm, after visibility checks operation,
represent only a small subset of the points in xiφ . Consider
the number of input points after visibility checks for to be N ′

for SR method and N ′′ for MR method. Then for the simplest
of all cases, if we assume that all the chosen optimization
methods have linear time complexity, the complexity of MR
method can be given as, O(N ′′), which is again significantly
lower than the complexity for SR method (O(N ′)) because,
N ′′ is a subset of the set with K ′

× 8 points whereas, N ′

is a subset of the much larger set with N × 8 points. If the
values of parameters covmin and covself are kept same for
MR and SR methods, then N ′′ will always be much lesser
than N ′.

VOLUME 10, 2022 61609

V. A. Puligandla, S. Lončarić: MR Approach for Large Real-World Camera Placement Optimization Problems

V. RESULTS
Experiments were conducted on synthetic data as well as on
3D models of real vehicles used in the construction industry.
The need for synthetic data arises due to large sizes of
high detail 3D models of real construction equipment. The
main problem arises with the binary integer programming
formulation-based branch-and-bound optimization algorithm
that has high memory or time requirements. Due to this
shortcoming OCP environments with large sizes cannot be
handled using the available resources. Therefore, we created
simulated data using simple geometrical structures, roughly
resembling vehicles. As, this data has small number of
samples, we present a detailed comparison of all the
considered optimization methods. However, tests on real
data further validate the efficacy of our method. We created
four models resembling a car, a van, a truck and a bus in
four different sizes, S, M , L and H . All the models in the
four size categories have about, 75, 200, 650 and 1300 voxels,
respectively (or possible camera locations). The number of
control points remains same for the four vehicle models at
about 320, 530, 1650 and 3360, control points, for the four
sizes, respectively. In total, the simulated data consists of
16 instances. Similarly, there are 16 instances of real data, i.e,
four vehicle models, namely, bulldozer, JCB, mining truck
and tractor scraper, in four sizes labelled as 32, 64, 128,
and 256. The real data was obtained as 3D polygon models
which were voxelized into cubes of lengths 32, 64, 128 and
256 voxels. The JCB vehicle model, being the smallest of
the four has ∼ 2300 voxels on the surface of the model
(possible camera locations) when voxelized into a cube of
32 voxels, and ∼ 115000 camera locations when voxelized
into a cube of 256 voxels. Whereas, the mining truck vehicle
model, being the largest of the four has ∼ 6600 and ∼

360000 surface voxels when voxelized into cubes of 32 and
256 voxels, respectively. The tractor scraper and bulldozer
models have similar size with ∼ 170000 surface voxels at
size-256. It is to be noted that for every instance, the total
number of variables, for each model, before visibility checks
is given by the number of boundary voxels multiplied by8 =

97. This implies that for the largest model (Mining truck-
256), the total number of input variables before visibility
checks is ∼ 35 million. The polygon and voxelized models
of real vehicles have been made publicly available.1

On simulated data, for each of the 16 instances, we test five
optimization methods using the single resolution (SR) and
multi-resolution (MR) optimization strategies. To recollect,
SR is when we optimize for camera poses on all the camera
locations (voxels) that are part of the vehicle’s surface,
without any clustering or sub-sampling. Whereas MR is
when we cluster the sets of vehicle’s surface voxels multiple
times and optimize camera poses on the set of cluster
centers. To validate our proposed MR optimization strat-
egy, using C++ programming language, we implemented

1https://github.com/AnirudhPuligandla/multi-resolution-optimal-
camera-placement.git

the Greedy Heurisitc (GH) proposed in [9], Metropolis
Sampling (MS) proposed in [19], row weighting local
search heuristic (RWLS) algorithm proposed in [22] and
the LH-RPSO algorithm proposed in [17]. The LP-based
branch-and-bound algorithm (LP) provided by CPLEX, [44],
is the fifth optimization algorithm that we used for validation.
As the branch-and-bound algorithm is known to provide
provable bounds on the optimal solution, it is a good
choice to compare against the results from approximate
algorithms on the data that we used for this work. However,
on the 16 instances of real data, we chose to test only one
of the two evolutionary algorithms (MS and LH-RPSO).
In consequence, we dropped MS method as coverage results
on simulated data showed that LH-RPSO is better and
consistent than the MS method. Control point coverage for
simulated data and real data are shown in Table 1 and Table 3,
respectively. Whereas, the total optimization times for tests
on simulated and real data are presented in Tables 2 and 4,
respectively. Figure 3 shows an example visualization of the
bulldozer, JCB and mining truck vehicle models at size-
256. The second row in the figure shows visualizations of
three OCP solutions. The next two sub-sections detail the
values for all the parameters and somemodifications to SOTA
algorithms, respectively. Detailed analysis of the results is
presented in Section V-C.

A. PARAMETERS
The value of the limit is decided based on the system’s
hardware, i.e., the number of variables and constraints the
LP-based branch and bound algorithm can handle without
running into the out-of-memory error. All the experiments
were run on an Intel Core i7-8700K CPU with 12 processing
cores and 32GB of RAM. Parallel processing was done using
the 12 processing cores of the same CPU. Given our system’s
hardware, and through trial-and-error, we chose a value of
l = 200 for all our experiments. In all our experiments spatial
distance was given twice the importance as compared against
dn, therefore, we chose m = 2.0 for the clustering process.
The primary direction vector at each possible camera location
was rotated at steps of 3.75◦ in each direction, producing a
total of 96 rotations, i.e., for each possible camera position,
8 = 97, including the primary camera orientation. covself =

0, for all experiments ensured that camera poses occluded by
the vehicle were excluded from the visibility matrix. In all
cases, we optimized to place five cameras, i.e., n = 5 for all
experiments.

Choosing a uniform value for covmin is tricky as, a small
value may allow too many variables in the visibility matrix,
leading to a possible out-of-memory error when using the
branch-and-bound algorithm, whereas, a lager value may
lead to too few variables in the visibility matrix, thereby
removing the combinatorial aspect of the optimization
problem. To maintain uniformity across all the experiments,
we chose a value for covmin in such a way that an accepted
camera pose would cover at least 70% of an expected number
of control points for one camera, under ideal circumstances.

61610 VOLUME 10, 2022

V. A. Puligandla, S. Lončarić: MR Approach for Large Real-World Camera Placement Optimization Problems

FIGURE 3. Figure showing 3D models of (a) Bulldozer, (b) JCB, and, (c) Mining truck, heavy vehicles, voxelized into cube of length 256 voxels. The bottom
row shows visualizations of OCP results with five optimally placed cameras, obtained using (d) LP method at multiple resolutions for bulldozer model,
(e) GH method at single resolution for JCB model, and, (f) GH method at multiple resolutions for mining truck model.

For example, if a space model of a particular size category
contains J number of control points, the expected coverage
for one camera in the ideal scenario will be J

n . A value
covmin = 0.7 ×

J
5 was set which remains constant across

all vehicle models for one size category. The maximum time
limit for each test, i.e., the total time for the individual steps
of clustering, visibility checks and optimization, was set at
48 hours.

Considering the larger sizes of real data, the values
of parameters of individual optimization algorithms were
different for simulated and real data. Parameter l = 50was set
for simulated data as the smallest model has only 75 camera
poses. We set the same value of l for instances of simulated
data to maintain uniformity. The LP method provided by
CPLEX has multiple parameters that decide on optimality,
feasibility, choice of optimization algorithm, etc. For tests
on both real and simulated data, we chose to emphasise on
feasibility over optimality and allowed a tolerance of upto
6% in the gap of the feasible solution from the optimal
solution. The GH method does not have any parameters. The
MS algorithm was run until either all the available camera
poses were visited, or, until a number of iterations equal
to the available camera poses were completed. The RWLS
algorithm was run for 250 iterations on simulated data and
for 500 iterations on real data. The LH-RPSO algorithm was
run with 30 particles for both data, and, for 1000 iterations
on real data and 500 iterations on simulated data. These
values were chosen as a trade-off between coverage quality
and time required for optimization. All these values ensure
that optimization can be completed in reasonable amount of

time without noticeably compromising on coverage. As the
parameter values are kept same for bothMR and SRmethods,
it allows for a fair comparison between the two optimization
strategies.

B. IMPROVEMENTS TO SOTA METHODS
For the RWLS method, it is required to compute a matrix
describing neighbourhood relationships between all the
camera poses. A camera pose is considered a neighbour to
another if at least one control point is covered by both the
cameras. For an instance with α camera poses, the time
complexity for this step is given as, O(α2). Although this is
lower than the complexity of our visibility checks algorithm,
this step takes as much time, particularly for the SR method,
as in most cases the number of camera poses selected after
visibility checks is higher than the number of control points.
We perform these calculations parallel on our multi-core
CPU using OpenCL kernel code. Similarly, the GH method
requires re-computation of the visibility matrix after each
iteration. As we already perform parallel computations for
visibility checks, we re-use the same OpenCL kernel code
for the GH method to achieve an overall speedup.

C. ANALYSIS
In the presented tables, each row shows results for one
instance, with alternate columns presenting the results for SR
and MR methods, for the selected four or five optimization
methods. For each row in Tables 1 and 3, one entry is
highlighted in bold to represent the best obtained control
point coverage for that instance. Some entries in the tables

VOLUME 10, 2022 61611

V. A. Puligandla, S. Lončarić: MR Approach for Large Real-World Camera Placement Optimization Problems

TABLE 1. Table showing objective function value (in % of control points covered), obtained from the five optimization algorithms (LP, GH, MS, RWLS and
LH-RPSO) using both MR and SR methods for the four simulated vehicle models in four size categories (S,M,L,H) for each model.

TABLE 2. Table showing total optimization time (in seconds) taken by the five optimization algorithms (LP, GH, MS, RWLS and LH-RPSO) using both MR
and SR methods for the four simulated vehicle models in four size categories (S,M,L,H) for each model.

are marked as ‘–’ because, they could not be completed
either because of the out-of-memory error or because, the
entire optimization process could not be completed in under
48 hours. In the case of simulated data, experiments on any
of the four vehicle models for ‘L’ and ‘H’ sizes could not
be completed using LP method as the branch-and-bound
algorithm from CPLEX ran out of available RAM due to
high number of variables and constraints. From our trials,
we observed that with our available RAM the LP method
can be run till completion, only when the total number of
variables, i.e., the number of camera poses selected after
visibility checks plus the number of control points, is less than
∼ 3000. Similarly, for real data we omitted the entire column
for SR method using LP optimization because, none of those
tests were completed as all the sixteen instances had more
than 3000 variables. This shows that using the MR strategy
we can use LP optimization on large data where it was not
possible otherwise.

From Tables1and3, we can see that optimization process
using LP method was completed for only eight of the thirty
two instances when using SR method. Whereas, with MR
method, optimization using LP method was completed for
thirty one out of the thirty-two instances. The only exception
is the tractor scraper 256 model where the total number of
variables exceeded 3000. Although this optimization can be
completed by lowering the value of parameter l, we did not
do that to maintain uniformity in parameter values across all
tests. By lowering the value of l we can set an upper bound
on the number variables that are passed to LP optimization
to thereby, avoid the out-of-memory error. It is to be noted
that changing the value of l will also change the number
of resolution levels, i.e., the number of iterations of the
MR method. We believe that a lower or higher number of
iterations changes the solution at that iteration but, it does not
have any effect on the overall best solution obtained using the
MR method.

61612 VOLUME 10, 2022

V. A. Puligandla, S. Lončarić: MR Approach for Large Real-World Camera Placement Optimization Problems

From Table1, it can be seen that for simulated data,
MR strategy provides the best control point coverage for
twelve out of the sixteen instances. For three instances,
both MR and SR methods provided the same best coverage
while the SR method provided the best coverage in only one
instance. These results show that theMR strategy can provide
either the same or better coverage in 93% of the cases. Table 2
shows that, in fact, the MR method needs less computational
time than state-of-the-art methods to provide better control
point coverage. The same quality is re-iterated in the results
on real data (see Table 3) where, the MR method provides
the same or better control point coverage in 81% of the cases
(13 out of 16 instances). Overall, the best coverage was
obtained when using the LP optimization method in 18 out
of the 32 instances, i.e., in more than half of the cases.
This shows the importance of complex methods which
can guarantee global optimal solution or provide provable
bounds around the global optimum.Moreover, in some cases,
where other approximate optimization methods provide
better control point coverage, the LP method may also result
in a better solution if allowed to run until it finds the optimal
solution albeit at the cost of increased computational time.

If we observe on a case to case basis, including results for
all the instances from all the optimization methods, we can
see that the MR method provided better coverage accuracy
than the SR method in 55 out of the total 80 cases (68.75%)
on simulated data whereas, the SR method provides better
coverage accuracy in only 15 cases (18.75%)while the results
from both SR and MR methods are same in the remaining
10 cases (12.5%). In the cases where the result from MR
method is better than SR method (excluding the cases where
the SR method does not have a result), the average gap
between the two corresponding solutions is 1.86%. In cases,
where the SR method provided better coverage, the result
fromMRmethod is worse by an average of 0.56%. Similarly,
in results on real data, the MR method provided better
coverage than SR method in 54 out of a total 64 cases with
an average gap of 0.82% while it provided the same result
as SR method in one case, and, lower coverage in 9 cases
with an average gap of −0.86%. This implies that the MR
method provided either the same or better coverage than the
SR method in at least 80% of all the experiments on both
simulated and real data. Moreover, in some cases when it
provided lower coverage than SR method, the percentage
error between the two solutions is less than 1% in all cases.
On the whole, looking at these results, we can say that the
MR method provides a solution that is within −1% to +2%
of the solution from SR optimization in significantly less
computational time.

From Tables 1 and 3, it may be observed that camera
coverage decreases with the increasing number of voxels.
While it is intuitive to believe that camera coverage should
increase with the number of voxels, we would like to
emphasise that there are various parameters that influence
the overall coverage for OCP problems. When the size of the
vehicle model increases, the camera view frustum parameters

TABLE 3. Table showing objective function value (in % of control points
covered), obtained from the four optimization algorithms (LP, GH, RWLS
and LH-RPSO) using both MR and SR methods for the four real vehicle
models in four sizes (32, 64, 128, 256) for each vehicle model.

also change, so do the number of control points and their
sampling rates. Therefore, we emphasise that the coverage
values are to be compared per instance (per row in the tables)
and between different optimization methods but, not between
different sizes or vehicle models. Although the coverage
for the 32 size and 256 size for any model are similar, the
vehicle models at 32 size have severely distorted shapes
and low detail. At least the 128-size model is required for
a good approximation of the real-world vehicles. For the
32 and 64 sizes, we sample the set of control points at one
in every 20 points. This sampling frequency, however, results
in a substantial number of control points for the 128 and
256 sizes that is more than the limit of 3000. To test the LP
method, we decreased the control point sampling frequency
for 128 and 256 sizes down to one in a hundred points and
one in 250 points, respectively. As we can see from coverage
values for 128 and 256 sizes, sampling lesser number of
control points does not have any impact on the result if control
points are sampled uniformly from the original set.

As mentioned previously, the time complexity of MR
method is lower as, firstly, the size of input to the
pre-processing step of visibility checks is lower when
compared to SR method. The smaller input size to visibility
checks step implies that the size of input to optimization
algorithm is also, low. Therefore, even though we use
the same optimization methods, the overall computational
time required for pre-processing and optimization steps is
lower for MR method by several factors. the clustering
step has low complexity when compared against the steps
of visibility checks and optimization. For simulated data,
the time required for clustering varied from 1 − 10ms
for ‘S’ size category to ∼ 500ms for ‘H’ size category.
For the mining truck vehicle model in the highest size
category (256), computational time for the clustering step
was ∼ 10s. This is only a fraction of the total computational
time that includes times for clustering, visibility checks and
optimization (see the corresponding entry in Table 4). From

VOLUME 10, 2022 61613

V. A. Puligandla, S. Lončarić: MR Approach for Large Real-World Camera Placement Optimization Problems

TABLE 4. Table showing total optimization time (in seconds) taken by the four optimization algorithms (LP, GH, RWLS and LH-RPSO) using both MR and
SR methods for the four real vehicle models in four sizes (32, 64, 128, 256) for each vehicle model.

Tables2 and 4 we can see that the total computational time
for MR method is always less than the corresponding entry
for SR method. The only exceptions are the times shown
for LH-RPSO method for all size categories and all methods
for ‘S’ size in Table 2. For ‘S’ size category, for example,
the car model has 75 camera poses. By clustering them
into 20 clusters we do not gain any noticeable speedup.
In fact, when using MR method by optimizing twice (i.e.,
at two resolutions), computational time only increases as
the complexity of visibility checks step or optimization step
does not change noticeably when the number of variables
is so low. Computational time for most of our selected
optimization algorithms increases exponentially with an
increase in the number of input variables. Therefore the
gap between computational times, for SR and MR methods,
becomes visible with increasing size of the OCP instance.

Only the LH-RPSO method has constant complexity as it
depends on the number of particles rather than the number of
input variables. Therefore, in all cases for simulated data, the
times shown for LH-RPSO method using MR optimization
is higher than the corresponding entry for SR method,
primarily due to optimizing for camera poses multiple times.
The results for LH-RPSO method are however, different on
real data. From the last two columns in Table 4, we can
see that LH-RPSO (MR) method is 1.7 times (tractor
scraper-32) to 117 times (mining truck-128) faster than LH-
RPSO (SR). Despite doubling or tripling (depending on the
number of resolutions) the time required for optimization,
the MR method when using LH-RPSO takes overall less
time computational time on real data. This is because of the
significant amount of time saved during the visibility checks
step. High complexity of the pre-processing step, when
the size of input is large, overshadows the computational
complexity of the optimization step, particularly when using
GH or LH-RPSO optimization methods. LP and RWLS are
however, complex methods, and owing to this complexity,
they can produce better coverage when compared to GH

TABLE 5. Table showing computational time (in seconds) for the
individual steps of pre-processing and optimization for the tractor scraper
model using SR optimization and the bulldozer model using MR
optimization. The shown values are for the 32 and 128 size categories.

or LH-RPSO optimization methods. SR Optimization for
256 size category on real data could not be completed as
the visibility checks step took more than 48 hours for all the
vehicle models. Optimizations using RWLS method on real
data for 128 size category, also were not completed as the
total time for visibility checks and optimization took more
than 48 hours. Therefore, for the remaining 24 instances, i.e.,
all instances excluding ‘S’ size category in simulated data
and 256-size category on real data, the MR method is at
least 1.3 times (Truck-M (GH)) and up to 167 times (Mining
Truck-128 (GH)) faster than the SR method.

Table5 shows the time taken for the individual steps of
visibility checks and optimization. In the table, we show the
computational times for the tractor scraper-32 and tractor
scraper-128 instances using SR optimization strategy and
bulldozer-32 and bulldozer-128 instances using MR method,
only as an example to highlight the share of computational
times of the pre-processing and optimization steps in the
total time. These trends, however, apply across all instances
with minor variations in the actual times as per the size
category and the number of variables contained in themodels.
We did not present individual times for all instances and
methods to keep the results concise, and also because, our
aim is to highlight gain in total computational times, i.e., time
taken for all steps including pre-processing, optimization and
clustering steps. The time required for the pre-processing
step of visibility checks at 128 size category is over

61614 VOLUME 10, 2022

V. A. Puligandla, S. Lončarić: MR Approach for Large Real-World Camera Placement Optimization Problems

500 times more than that at 32 size category when using SR
optimization, whereas, it is only 185 times when using MR
optimization. Similarly, the required time for optimization
using RWLS method at 128 size category is 23.7 times more
than the time at 32 size category when using SR method,
whereas, the increase is only 4.9 times when using MR
method. Finally, it can be said that by optimizing for camera
poses on smaller subsets of data at multiple resolution levels,
the overall computational time can be reduced significantly.
Moreover, as the MR method produces coverage within an
average gap of [−1, 2]% of the coverage obtained with SR
method, it can be said that our proposed clustering method
provides a good approximation of the vehicle’s surface.

Although it might be interesting to run t-tests on the
computational times to see if the difference in times are
statistically different, we did not perform those tests as it is
evident from Tables2and4that the computational times for
MR method are significantly less than those of SR method.
With the help of MR method, optimization was completed
in reasonable time on large instances where the SR method
took more than 48 hours, or, where the LP method could not
be used due to a large number of input variables. However,
the MR method also has a limitation when using the LP
method. Optimization for tractor scraper-256 (MR) using
LP optimization was not completed because, at the last
resolution, the number of variables after visibility checks
was high, leading to the out-of-memory error. While the tests
on the tractor scraper model were run with K = 110, the
optimization on tractor scraper-256 (MR) using LP method
was run until completion when the parameters were altered
as, l = 100 and K = 85 to obtain a coverage of 88.5%.
Looking at the results from other optimization methods on
this instance, it can be said that a lower value of K degraded
the result. As this optimization could not be completed on this
instance, it may be that this is the limit beyond which the LP
optimization cannot be used even with MR strategy.

Moreover, this brings us to the importance of the role
played by parameter K in the MR method. For the
experiments on real data, we selected the optimal value of
K for each vehicle model by running the GH method for
K = 90, 95, . . . , 105, 110 and picking K that provided best
coverage. On simulated data, we set K = 30, for all size
categories of car, van and truck models and K = 50 for
the bus model. In the case of real data, K = 95 produced
the best coverage for bulldozer and JCB models while K =

110 produced best coverage for mining truck and tractor
scraper models. We run GH optimization using MR method
on the tractor scraper-64 instance with the values of K from
90 to 110 at steps of one. The mean control point coverage
obtained in these tests was 89.3 with a variance of 0.98.
In general, the optimal value K varies from model to model
and there does not exist a general strategy to select an optimal
value of K . The user must manually choose a value K that is
appropriate to the data. However, it is possible that a small
perturbation around the chosen value ofK may produce better
results.

VI. CONCLUSION AND FUTURE WORK
We proposed a new clustering-based multi-resolution opti-
mization method for the optimal camera placement problem
for vehicle surround-view. It was shown that with our
proposed method the OCP problem can be solved for
large real world vehicle models in significantly less time.
Moreover, with the MR method, linear programming-based
branch-and-bound method can be used for large data where
otherwise, SR optimization strategy does not work due to the
optimization method’s high resource requirements. Results
from experiments on eight simulated and real vehicle models
of various sizes show that MR method produces the same or
even better camera coverage than the SR method, in only a
fraction of the time. Results show that our proposed method
is over 150 times faster than state-of-the-art. The fact that
the coverage values obtained using MR method lie within
1 − 2% difference of the coverage values obtained with
SR method, shows that our proposed clustering method
effectively captures the 3D geometry of the vehicle’s surface.
With the help of clustering into different resolution levels,
we can decrease size of the input and the number of variables,
thereby, decreasing the computational times of the pre-
processing step, as well as, the optimization step by a big
factor.

While, the MR method extends the applicability of LP
optimization method to large data, it still faces limitations,
when the number of clusters is kept high. It will be interesting
to study other clustering strategies to see if this problem can
be circumvented. We test the method only for the use-case
scenario of OCP for vehicle surround-view. The method must
be studied on other types of data (floor plan surveillance,
for example) to examine the generality of MR optimization
strategy. Establishing a relationship between the number of
clusters, K , and the overall camera coverage may also help to
generalize the method for general applications.

REFERENCES
[1] D. Buljeta, M. Vranjes, Z. Marceta, and J. Kovacevic, ‘‘Surround view

algorithm for parking assist system,’’ in Proc. Zooming Innov. Consum.
Technol. Conf. (ZINC), May 2019, pp. 21–26.

[2] V. Appia, H. Hariyani, S. Sivasankaran, S. Liu, K. Chitnis, M. Mueller,
U. Batur, and G. Agarwa, ‘‘Surround view camera system for ADAS on
TI’s TDAx SoCs,’’ White Paper, 2015.

[3] A. Hedi and S. Lončarić, ‘‘A system for vehicle surround view,’’ IFACProc.
Volumes, vol. 45, no. 22, pp. 120–125, 2012.

[4] F. Angella, L. Reithler, and F. Gallesio, ‘‘Optimal deployment of cameras
for video surveillance systems,’’ in Proc. IEEE Conf. Adv. Video Signal
Based Surveill., Sep. 2007, pp. 388–392.

[5] X. Zhang, X. Chen, J. L. Alarcon-Herrera, and Y. Fang, ‘‘3-D model-based
multi-camera deployment: A recursive convex optimization approach,’’
IEEE/ASME Trans. Mechatronics, vol. 20, no. 6, pp. 3157–3169,
Dec. 2015.

[6] P. Mantini and S. K. Shah, ‘‘Camera placement optimization conditioned
on human behavior and 3D geometry,’’ in Proc. 11th Joint Conf. Comput.
Vis., Imag. Comput. Graph. Theory Appl., 2016, pp. 227–237.

[7] P. Rahimian and J. K. Kearney, ‘‘Optimal camera placement for motion
capture systems,’’ IEEE Trans. Vis. Comput. Graphics, vol. 23, no. 3,
pp. 1209–1221, Mar. 2016.

[8] B. Bogaerts, S. Sels, S. Vanlanduit, and R. Penne, ‘‘Interactive camera
network design using a virtual reality interface,’’ Sensors, vol. 19, no. 5,
p. 1003, Feb. 2019.

VOLUME 10, 2022 61615

V. A. Puligandla, S. Lončarić: MR Approach for Large Real-World Camera Placement Optimization Problems

[9] E. Hörster and R. Lienhart, ‘‘On the optimal placement of multiple visual
sensors,’’ in Proc. 4th ACM Int. Workshop Video Surveill. Sensor Netw.,
2006, pp. 111–120.

[10] N. Kirchhof, ‘‘Optimal placement of multiple sensors for localization
applications,’’ in Proc. Int. Conf. Indoor Positioning Indoor Navigat.,
Oct. 2013, pp. 1–10.

[11] S. Boyd and J. Mattingley, ‘‘Branch and bound methods,’’ Stanford Univ.,
Stanford, CA, USA, Tech. Rep., EE364b, 2007, pp. 2006–2007.

[12] F. Hoffmann, ‘‘On the rectilinear art gallery problem,’’ in Interna-
tional Colloquium on Automata, Languages, and Programming. Cham,
Switzerland: Springer, 1990, pp. 717–728.

[13] U. M. Erdem and S. Sclaroff, ‘‘Automated camera layout to satisfy task-
specific and floor plan-specific coverage requirements,’’ Comput. Vis.
Image Understand., vol. 103, no. 3, pp. 156–169, 2006.

[14] J. Kritter, M. Brevilliers, J. Lepagnot, and L. Idoumghar, ‘‘On the real-
world applicability of state-of-the-art algorithms for the optimal camera
placement problem,’’ in Proc. 6th Int. Conf. Control, Decis. Inf. Technol.
(CoDIT), Apr. 2019, pp. 1103–1108.

[15] Y. Morsly, N. Aouf, M. S. Djouadi, and M. Richardson, ‘‘Particle swarm
optimization inspired probability algorithm for optimal camera network
placement,’’ IEEE Sensors J., vol. 12, no. 5, pp. 1402–1412, May 2011.

[16] X. Wang, H. Zhang, S. Fan, and H. Gu, ‘‘Coverage control of sensor
networks in IoT based on RPSO,’’ IEEE Internet Things J., vol. 5, no. 5,
pp. 3521–3532, Apr. 2018.

[17] X. Wang, H. Zhang, and H. Gu, ‘‘Solving optimal camera placement
problems in IoT using LH-RPSO,’’ IEEE Access, vol. 8, pp. 40881–40891,
2019.

[18] P. Liu, Q. Hu, K. Jin, G. Yu, and Z. Tang, ‘‘Toward the energy-saving
optimization of WLAN deployment in real 3-D environment: A hybrid
swarm intelligent method,’’ IEEE Syst. J., early access, Apr. 5, 2021, doi:
10.1109/JSYST.2021.3065434.

[19] J. Zhao, R. Yoshida, S.-C.-S. Cheung, and D. Haws, ‘‘Approximate
techniques in solving optimal camera placement problems,’’ Int. J. Distrib.
Sensor Netw., vol. 9, no. 11, Nov. 2013, Art. no. 241913.

[20] M. Brévilliers, J. Lepagnot, L. Idoumghar, M. Rebai, and J. Kritter,
‘‘Hybrid differential evolution algorithms for the optimal camera place-
ment problem,’’ J. Syst. Inf. Technol., vol. 20, no. 4, pp. 446–467,
Nov. 2018.

[21] J.-W. Ahn, T.-W. Chang, S.-H. Lee, and Y. W. Seo, ‘‘Two-phase algorithm
for optimal camera placement,’’ Sci. Program., vol. 2016, pp. 1–16,
Sep. 2016.

[22] C. Gao, X. Yao, T. Weise, and J. Li, ‘‘An efficient local search heuristic
with row weighting for the unicost set covering problem,’’ Eur. J. Oper.
Res., vol. 246, no. 3, pp. 750–761, Nov. 2015.

[23] W. Lin, F.Ma, Z. Su, Q. Zhang, C. Li, and Z. Lü, ‘‘Weighting-based parallel
local search for optimal camera placement and unicost set covering,’’ in
Proc. Genetic Evol. Comput. Conf. Companion, Jul. 2020, pp. 3–4.

[24] J. Kritter, M. Brévilliers, J. Lepagnot, and L. Idoumghar, ‘‘On the optimal
placement of cameras for surveillance and the underlying set cover
problem,’’ Appl. Soft Comput., vol. 74, pp. 133–153, Jan. 2019.

[25] J. Liu, S. Sridharan, and C. Fookes, ‘‘Recent advances in camera planning
for large area surveillance: A comprehensive review,’’ ACM Comput.
Surveys, vol. 49, no. 1, pp. 1–37, Jul. 2016.

[26] M. Rebai, M. L. Berre, F. Hnaien, and H. Snoussi, ‘‘Exact biobjective
optimization methods for camera coverage problem in three-dimensional
areas,’’ IEEE Sensors J., vol. 16, no. 9, pp. 3323–3331, May 2016.

[27] A. Mavrinac and X. Chen, ‘‘Modeling coverage in camera networks:
A survey,’’ Int. J. Comput. Vis., vol. 101, no. 1, pp. 205–226, 2013.

[28] A. Mavrinac, X. Chen, and Y. Tan, ‘‘Coverage quality and smoothness
criteria for online view selection in a multi-camera network,’’ ACM Trans.
Sensor Netw., vol. 10, no. 2, pp. 1–19, Jan. 2014.

[29] J. F. Thompson, Z. U. Warsi, and C. W. Mastin, Numerical Grid
Generation: Foundations and Applications. Amsterdam, The Netherlands:
Elsevier, 1985.

[30] C. Trader. CGtrader. Accessed: Aug. 10, 2021. [Online]. Available:
https://www.cgtrader.com/

[31] F. S. Nooruddin and G. Turk, ‘‘Simplification and repair of polygonal
models using volumetric techniques,’’ IEEE Trans. Vis. Comput. Graph.,
vol. 9, no. 2, pp. 191–205, Apr./Jun. 2003.

[32] P. Min. BinVox. Accessed: Feb. 5, 2021. [Online]. Available: http://www.
patrickmin.com/binvox and https://www.google.com/search?q=binvox

[33] J. W. Harris and H. Stöcker,Handbook of Mathematics and Computational
Science. Cham, Switzerland: Springer, 1998.

[34] S. J. Ray and J. Teizer, ‘‘Computing 3D blind spots of construction
equipment: Implementation and evaluation of an automated measurement
and visualization method utilizing range point cloud data,’’ Autom.
Construct., vol. 36, pp. 95–107, Dec. 2013.

[35] W. E. Lorensen and H. E. Cline, ‘‘Marching cubes: A high resolution
3D surface construction algorithm,’’ ACM SIGGRAPH Comput. Graph.,
vol. 21, no. 4, pp. 163–169, Jul. 1987.

[36] A. Likas, N. Vlassis, and J. J. Verbeek, ‘‘The global k-means clustering
algorithm,’’ Pattern Recognit., vol. 36, no. 2, pp. 451–461, Feb. 2003.

[37] T. Hastie, R. Tibshirani, and J. Friedman, ‘‘The elements of statistical
learning: Data mining, inference, and prediction, 20 springer series in
statistics,’’.

[38] K. Klasing, D. Wollherr, and M. Buss, ‘‘A clustering method for efficient
segmentation of 3D laser data,’’ in Proc. IEEE Int. Conf. Robot. Autom.,
May 2008, pp. 4043–4048.

[39] H. Kisner and U. Thomas, ‘‘Segmentation of 3D point clouds using a new
spectral clustering algorithm without a-priori knowledge,’’ in Proc. 13th
Int. Joint Conf. Comput. Vis., Imag. Comput. Graph. Theory Appl., 2018,
pp. 315–322.

[40] P. Scheunders, ‘‘A comparison of clustering algorithms applied to
color image quantization,’’ Pattern Recognit. Lett., vol. 18, nos. 11–13,
pp. 1379–1384, Nov. 1997.

[41] J. Papon, A. Abramov, M. Schoeler, and F. Worgotter, ‘‘Voxel cloud
connectivity segmentation–supervoxels for point clouds,’’ in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Jun. 2013, pp. 2027–2034.

[42] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk, ‘‘SLIC
superpixels compared to state-of-the-art superpixel methods,’’ IEEE Trans.
Pattern Anal. Mach. Intell., vol. 34, no. 11, pp. 2274–2282, May 2012.

[43] R. B. Rusu and S. Cousins, ‘‘3D is here: Point cloud library (PCL),’’ in
Proc. IEEE Int. Conf. Robot. Autom., May 2011, pp. 1–4.

[44] C. U. Manual, ‘‘Ibm ilog cplex optimization studio,’’ Version, vol. 12,
pp. 1987–2018, May 1987.

V. ANIRUDH PULIGANDLA (Member, IEEE)
was born in Hyderabad, Telangana, India, in 1992.
He received the B.Tech. degree in electronics
and communications engineering from Amity
University, Jaipur, Rajasthan, India, in 2014, the
B.Sc. degree in computer vision and robotics from
the University of Burgundy, France, in 2016, and
the M.Sc. degree in computer vision and robotics
from the University of Burgundy, the University of
Girona, Spain, and Heriot Watt University, U.K.,

in 2018, as part of the ErasmusMundus JointMaster’s Degree Program. He is
currently pursuing the Ph.D. degree with the University of Zagreb, Zagreb,
Croatia, under the Marie-Curie Actions ITN Fellowship. His research
interests include discrete and continuous optimization, signal and image
processing, and 3D reconstruction from multiple camera systems using
multi-view stereo.

SVEN LONČARIĆ (Senior Member, IEEE)
received the Ph.D. degree in electrical engi-
neering from the University of Cincinnati,
OH, USA, in 1994, as a Fulbright Scholar.
From 2001 to 2003, he was an Assistant Professor
at the New Jersey Institute of Technology,
USA. He is currently a Professor of electrical
engineering and computer science at the Faculty of
Electrical Engineering and Computing, University
of Zagreb, Croatia. He is the Director of the Center

for Computer Vision, University of Zagreb; and the Head of the Image
Processing Group. He is the Co-Director of the Center of Excellence in
Data Science and Cooperative Systems. He was the principal investigator
on a number of research and development projects. He has coauthored more
than 250 publications in scientific journals and conferences. His research
interests include image processing and computer vision. He is a member of
the Croatian Academy of Technical Sciences. He has received several awards
for his scientific and professional work. Hewas the Chair of the IEEECroatia
Section.

61616 VOLUME 10, 2022

Publications

Publication 3

V.A. Puligandla, S. Lončarić, ”A Supervoxel Segmentation Method With Adaptive Centroid

Initialization for Point Clouds”, IEEE Access, Vol. 10, 2022, pp. 98525-98534.

72

Received 30 June 2022, accepted 6 September 2022, date of publication 12 September 2022, date of current version 22 September 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3206387

A Supervoxel Segmentation Method With
Adaptive Centroid Initialization for Point Clouds
V. ANIRUDH PULIGANDLA , (Member, IEEE), AND SVEN LONČARIĆ , (Senior Member, IEEE)
Image Processing Group, Department of Electronic Systems and Information Processing, Faculty of Electrical Engineering and Computing,
University of Zagreb, 10000 Zagreb, Croatia

Corresponding author: V. Anirudh Puligandla (apuligandla@fer.hr)

This work was supported in part by the Immersive Visualization for Safety Critical Environments (ImmerSAFE) Project funded through
the EU’s H2020-MSCA-ITN-2017 Call under Project 764951, and in part by the Marie Sklodowska-Curie Actions–Innovative Training
Networks (ITN) Funding Scheme.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

ABSTRACT Supervoxels find applications as a pre-processing step in many image processing problems
due to their ability to present a regional representation of points by correlating them into a set of clusters.
Besides reducing the overall computational time for subsequent algorithms, the desirable properties in
supervoxels are adherence to object boundaries and compactness. Existing supervoxel segmentationmethods
define the size of a supervoxel based on a user inputted resolution value. A fixed resolution results in poor
performance in point clouds with non-uniform density. Whereas, other methods, in their quest for better
boundary adherence, produce supervoxels with irregular shapes and elongated boundaries. In this article,
we propose a new supervoxel segmentation method, based on k-means algorithm, with dynamic cluster seed
initialization to ensure uniform distribution of cluster seeds in point clouds with variable densities. We also
propose a new cluster seed initialization strategy, based on histogram binning of surface normals, for better
boundary adherence. Our algorithm is parameter-free and gives equal importance to the color, spatial location
and orientation of the points resulting in compact supervoxels with tight boundaries. We test the efficacy
of our algorithm on a publicly available point cloud dataset consisting of 1449 pairs of indoor RGB-D
images, i.e., color (RGB) images coupledwith depth information (D)mapped per pixel. Results are compared
against three state-of-the-art algorithms based on four quality metrics. Results show that our method provides
significant improvement over other methods in the undersegmentation error and compactness metrics and,
performs equally well in the boundary recall and contour density metrics.

18 INDEX TERMS Clustering methods, supervoxels, over-segmentation, point clouds.

I. INTRODUCTION19

Like superpixels in 2D images, supervoxels are a collection of20

3D points or pixels of a 3D image that are grouped together21

based on closeness between their spatial location and other22

textural features. For this work, we define supervoxels as23

disjoint clusters of points in a point cloud. Supervoxels rep-24

resent regions in a point cloud that share common features,25

such as spatial location, color, and orientation. Subsequent26

computationally intensive image processing algorithms work27

on supervoxels instead of individual points or pixels to save28

computational time. Supervoxels find applications in vari-29

The associate editor coordinating the review of this manuscript and

approving it for publication was Joewono Widjaja .

ous fields, such as point cloud segmentation and classifica- 30

tion, [1], 3D semantic segmentation of point clouds, [2], [3], 31

medical imaging, [4], [5], object detection, [6] and saliency 32

detection, [7], to name a few. Despite so many applications, 33

there is few literature that deals with clustering methods 34

tailored for point clouds. 35

The desirable properties in a supervoxel include: 36

(1) boundary adherence, i.e., a supervoxel should preserve 37

object boundaries and should overlap with only one object 38

and not cross over the boundaries, (2) compactness, i.e., 39

supervoxels should have a regular shape and should not have 40

elongated and arbitrary boundaries, and (3) efficiency, i.e., 41

they should be computed fast enough not to decrease the 42

efficiency of subsequent algorithms that use supervoxels. 43

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 98525

V. A. Puligandla, S. Lončarić: Supervoxel Segmentation Method With Adaptive Centroid Initialization for Point Clouds

FIGURE 1. An example showing deficiencies in existing supervoxel segmentation methods and improvements in those aspects achieved by our proposed
method.

Existing supervoxel segmentation methods fall short on some44

of these desirable aspects, especially, compactness. Fig. 145

shows an example of some of the shortcomings of existing46

methods. Fig. 1 shows a point cloud of a complex scene47

with many objects and high depth of field. Methods that rely48

on a constant user-inputted supervoxel resolution value fail49

when the point cloud density or depth varies steeply (see50

Fig. 1(b)), while other methods that adapt well to variable51

point density and can provide good boundary adherence for52

general point clouds, produce irregularly shaped supervoxels53

(see Fig. 1(c)). Non-compact supervoxels introduce spatial54

discontinuity and are not a desirable property in good super-55

voxels. Moreover, the artificially elongated boundaries may56

influence the values of comparison metrics to show more57

accuracy but do not look visually appealing.58

In this work, we propose a new clustering method for59

colored point clouds. Our method is based on the k-means60

algorithm, like the Simple Linear Iterative Clustering (SLIC)61

algorithm by Achanta et al. [8]. The distance metric used in62

our method gives equal importance to color, points’ spatial63

position and their orientation and is thus, free from implicit64

parameters. This property produces compact clusters with65

regular shapes. To maintain sensitivity to varying point66

density, we introduce a cluster seed re-initialization strategy67

to dynamically remove cluster seeds with very few assigned68

points or to add additional cluster seeds in regions with69

considerable number of unlabeled points. For better bound-70

ary adherence, we introduce a new strategy to first create a71

histogram of all points based on their surface normals and72

initialize cluster seeds according to the histogram bins. This73

strategy allows us to create cluster seeds in small, isolated74

regions or objects that may be missed otherwise when clus-75

ter seeds are distributed uniformly across the spatial extent.76

We tested the efficacy of our method on the publicly available77

NYU Depth V2 dataset, [9], and compared it against three78

state-of-the-art supervoxel segmentation methods based on79

four evaluation metrics.80

Results show that our method performs best in terms of81

undersegmentation error and compactness metrics. While the82

performance of our method in the boundary recall metric is83

comparable to existing methods, we show that our method84

produces compact supervoxels with fine boundaries which85

make it look visually appealing than other methods. Although86

dynamic cluster seed initialization introduces additional com- 87

putational overhead, the gained accuracy in terms of bound- 88

ary adherence and compactness can be beneficial for algo- 89

rithms that are not seriously restricted in time. We previously 90

introduced thismethod in [10] wherewe used it to cluster a set 91

of 3D points with surface normals representing camera poses 92

on the surface of a vehicle’s 3D model. It was introduced as a 93

pre-processing step to reduce the input complexity of an opti- 94

mal camera placement (OCP) problem for vehicle surround 95

vision. The method showed promising results for the OCP 96

problem by significantly reducing the overall computational 97

time (up to 160 times). However, the supervoxel method 98

was not analyzed as it was used as a pre-processing step. 99

In this article, we present a detailed analysis of the method 100

on colored point clouds to compare its efficacy against state- 101

of-the-art supervoxel segmentation methods. The rest of the 102

document is organized as follows: Section II details relevant 103

literature, Section III details our proposed clustering method 104

and the results are discussed in Section IV. 105

II. BACKGROUND WORK 106

Superpixels are 2D versions of supervoxels. While 107

superpixels are extensively studied in the field of image 108

processing, [8], [11], [12], [13], [14], supervoxels have not 109

been studied enough despite their requirement due to recent 110

advances in 3D image analysis. In the beginning, video 111

sequences or stacks of 2D images collected over time were 112

considered as 3D images. Therefore, the first 3D extensions 113

of superpixel methods were tailored to deal with stacks of 114

images, with time being the third dimension. [8], [14], [15] 115

are some of the first supervoxels methods that extended 116

their work to video sequences. Moore et al. [14] produced 117

over-segmentation on videos by iteratively partitioning pixels 118

into clusters by horizontal and vertical cutting in 3D grid. 119

Achanta et al. [8] proposed an efficient andwidely successful 120

approach based on the k-means algorithm. In their method, 121

they distribute cluster seeds uniformly across a 2D or 3D 122

grid, search a local neighbourhood around each cluster seed 123

and assign points to the closest cluster center based on a 124

distance metric that relates pixels to a cluster center using 125

position and color information. The primary idea behind 126

the clustering method we propose here is based on this 127

method. 128

98526 VOLUME 10, 2022

V. A. Puligandla, S. Lončarić: Supervoxel Segmentation Method With Adaptive Centroid Initialization for Point Clouds

In [16], Veksler et al., proposed another supervoxel method129

for videos where they formulate it as an energy minimization130

problem and solve it using graph cuts. [17], [18], [19] are131

some of the pioneering works on supervoxel segmentation132

for RGB-D images. In [17], the authors extended their pre-133

vious work on depth-adaptive superpixels to RGB-D videos.134

They used color and point normal information to construct135

a graph of spatio-temporal supervoxels and used spectral136

graph clustering to partition the graph into spatio-temporal137

segments. Gao et al. [18], proposed a new cluster seed138

initialization scheme for dense cluster seed initialization in139

salient regions of the image. Their motivation for adaptive140

cluster seed initialization is like ours and such a strategy141

works well to improve overall accuracy by producing clusters142

with non-uniform sizes and densities. Zhou et al. [20], used143

hierarchical edge weighted Voronoi tessellation to propose144

a multi-scale supervoxel algorithm that gradually constructs145

supervoxels at higher levels based on the supervoxels con-146

structed at lower levels. The method that we propose here147

works on point clouds in 3D space. It is like other methods for148

RGB-D data only in the sense that we use mapped RGB-D to149

construct point clouds.150

Papon et al. [21] proposed one of the first supervoxel seg-151

mentation methods (vccs) tailored for point clouds. They first152

voxelate the point cloud and cluster them based on voxel153

adjacency. They initialize cluster seeds uniformly across the154

voxelated point cloud and use the same distance metric as155

SLIC, [8]. They use voxel adjacency graphs to iteratively add156

neighbors to cluster seeds until all the voxels are assigned a157

label. Their method is simple and fast but, the voxel resolution158

parameter fails to adapt well to point clouds with variable159

density. Also, voxelization produces an approximation of160

the underlying points, thereby decreasing the quality of the161

method’s boundary adherence. Our proposed method is like162

vccs in some aspects, but the primary difference is that our163

method works directly on the points. Lin et al. [22], more164

recently proposed a new supervoxel segmentation method165

for point clouds while citing the limitations of vccs. They166

formulate it as a subset selection problem based on an energy167

function that can be optimized to find optimal subsets. Their168

method does not require initialization of cluster seeds and is169

claimed to produce supervoxels with non-uniform resolution170

to better adapt to boundaries. Their method, however, pro-171

duces irregularly shaped supervoxels with arbitrarily elon-172

gated boundaries (see Fig. 1(c)).173

More recently, supervoxel methods for point clouds have174

garnered increased research interest. In [23], the authors pro-175

pose modified versions of the vccs algorithm that are better176

suited for point clouds. In the method, they gather point177

neighbours without voxelization and combine neighbours178

computed by different methods to create supervoxels directly179

on the point cloud. Dong et al. [24] proposed a method that is180

capable of GPU acceleration. They divide the algorithm into181

two stages, where they produce an initial segmentation based182

on energy functions in the first stage and improve the result183

by minimizing segmentation energy in the second stage.184

Ni and Niu [25], proposed a new supervoxel segmentation 185

method based on local allocation. They propose a novel 186

cost function for preserving boundaries which is claimed 187

to achieve satisfactory results through local minimization 188

enforcement. Lastly, [26], [27] use deep learning methods 189

for the learning geometrical features of point clouds and pro- 190

duce supervoxel segmentation. However, none of these recent 191

methods emphasise on the compactness of supervoxels. 192

III. SUPERVOXEL SEGMENTATION FOR POINT CLOUDS 193

Our clustering algorithm is an iterative process like k-means 194

algorithm. It is dynamic in nature as at each iteration, 195

we allow for new clusters centers to be added and/or existing 196

ones to be removed depending on the number of outlier points 197

and the clusters’ sizes. The algorithm works on a set of 198

N points, P = {p1, . . . , pN }, where each point is represented 199

by its position in 3D, (x, y, z), color in RGB space, (r, g, b), 200

and a unit surface normal vector, (u, v,w), as, 201

pi = [xi yi zi ri gi bi ui vi wi]T ∀i = 1 : N . (1) 202

The goal is to group them into K disjoint subsets S = 203

{S1, . . . , SK }, where each subset, Sk represents a supervoxel 204

with the label k . At the end of the clustering process, it is 205

expected that every point in P is assigned a label k ∈ 206

[0, . . . ,K], depending on which supervoxel the point belongs 207

to. Each supervoxel is represented by its centroid, Ck , that is 208

a 9D vector calculated as the mean of all points assigned to 209

it. The points are assigned to a supervoxel based on a similar- 210

ity metric, D, calculated as the Euclidean distance between 211

a point pi and a cluster center Ck . Supervoxel segmenta- 212

tion algorithms have individual strategies to tackle outlying 213

points. At the end of all iterations of our algorithm, we assign 214

a label k = 0 to the outlier points to mark them as unlabeled. 215

The algorithm requires one input parameter, i.e., the num- 216

ber of supervoxels, K . Our proposed algorithm differs from 217

VCCS, [21], in three aspects: (1) for cluster center initializa- 218

tion, instead of uniformly sampling the point cloud we exploit 219

the surface geometry to identify important regions in the point 220

cloud, (2) instead of projecting the points into lab color space, 221

we propose a method to use the similarity metric in the RGB 222

color space, and (3) we allow to add or remove supervoxels 223

dynamically to ensure that the entire point cloud is covered 224

by the over-segmentation. The following sub-sections detail 225

the individual steps of the algorithm, i.e., cluster center ini- 226

tialization in Section III-A and, assignment and update steps 227

in Section III-B. 228

A. INITIALIZATION 229

We propose a novel approach to select initial cluster seeds 230

based on points’ orientation while ensuring that they are not 231

initialized close to one another. Like the strategy used in [8], 232

we assume that supervoxels are regular in shape and estimate 233

the sidelength of each supervoxel as S =

√
N
K . Two cluster 234

centers placed close to one another will have a significant 235

overlap in their search spaces. This results in competition for 236

VOLUME 10, 2022 98527

V. A. Puligandla, S. Lončarić: Supervoxel Segmentation Method With Adaptive Centroid Initialization for Point Clouds

FIGURE 2. Fibonacci spiral bins on a unit sphere, [28].

the same set of points in every iteration and the algorithm237

may never converge. Therefore, we first voxelate the point238

cloud with a voxel sidelength of S and select K voxels as239

initial cluster seeds. In the process of voxelation, a uniform240

grid is placed over the point cloud and the value of each grid241

cell (voxel) is given as the average of all the points that lie242

within that cell. Points from cloud that are spatially closest to243

the K selected voxel centers are chosen as the initial cluster244

seeds. While methods like vccs, [21], select all the voxels in245

the voxelized point cloud as initial cluster seeds, we propose246

a new point orientation-based histogram binning to select247

only K important points as seeds from all the voxels. This248

strategy ensures that we do not overfit the data and create only249

K supervoxels as specified by the user.250

To identify geometrically important regions, we construct a251

histogram of the voxels’ surface normals using the Fibonacci252

spiral binning technique as described in [28]. Fibonacci spiral253

binning works by creating a Fibonacci spiral on the sphere254

from the north to the south pole with each bin location placed255

at equal increments along the spiral. Fig. 2(a) shows an illus-256

tration of bin centers initialized along the Fibonacci spiral257

on a sphere. An illustration of Fibonacci bins is shown in258

Fig. 2(b). Authors in [28] argue that Fibonacci spiral produces259

uniformly distributed bins around the sphere when compared260

with other binning techniques (e.g., equiangle grid). This261

binning technique requires that an odd number of bins must262

be created to have an equal number of bins in the two hemi-263

spheres. If we want to create bn = K number of bins, then264

the bin centers are given in spherical coordinates as,265

B[θ,φ](d) =

[
sin−1

(2d
bn

)
+

π

2
,
2π
τ
mod(d, τ)

]
, (2)266

where, θ and φ are the azimuthal and polar angles, respec-267

tively, τ =
1+

√
5

2 is the golden ratio, and d ∈
1−bn
2 , . . . , bn−1

2268

is an integer used to represent the bin centers. The unit surface269

normals of all the voxels from the voxelated point cloud are270

first projected into spherical coordinates and then assigned271

to closest bin center by either a brute force approach or272

by a faster implementation as proposed in [28]. We use the273

implementation proposed in [28] as it is faster than the brute274

force approach especially when K is large.275

For indoor scenes taken by one still camera (like the data 276

used here), the surface normals lie within only one hemi- 277

sphere as the normals point towards the camera. Therefore, 278

for better binning accuracy in indoor point clouds, we create 279

bn = 2K number of bins. After creating the histogram of 280

surface normals, all the bin centers without any assigned 281

normals are deleted and one voxel from each of the remaining 282

bins (say we have b′
n bins with at least one assigned normal) is 283

selected as a cluster seed. The remaining K−b′
n cluster seeds 284

are initialized at equal intervals in the remaining voxels across 285

all bins. Through this strategy, we give more importance to 286

the geometry of the scene than to the spatial distribution 287

of points. Identifying important regions through binning of 288

normals allows for greater representation of small distinct 289

objects, while at the same time, there is a higher chance that 290

large objects (e.g., walls) get multiple cluster seeds. 291

B. ALGORITHM 292

In the assignment step, the points pi are assigned to the 293

cluster center Ck , based on a distance metric D. D is com- 294

puted as a combination of the Euclidean distances between 295

the position, color, and normal vectors of a point pi and 296

a cluster center Ck . For a given point pi and a clus- 297

ter center Ck , ds =
√
(xi − xk)2 + (yi − yk)2 + (zi − zk)2 298

is the distance between position vectors and dn = 299√
(ui − uk)2 + (vi − vk)2 + (wi − wk)2 is the distance betw- 300

een normal vectors. In [29], the authors propose a novel 301

low-cost approximation for calculating the distance between 302

two colors in RGB space directly. They cite subjective exper- 303

iments to claim that their proposed formulation overcomes 304

limitations of LUV color space.Moreover, as general datasets 305

have color information given in RGB space, computations 306

to convert from RGB space to LUV space can be avoided 307

through this non-linear distance metric. We propose to calcu- 308

late the color distance between a point and a cluster center 309

as dc =

√
fr · (ri − rk)2 + fg · (gi − gk)2 + fb · (bi − bk)2, 310

where, fr = 2+
rm
256 , fg = 4, and fb = 2+

255−rm
256 are weights 311

for the respective colors, and rm =
ri+rk
2 is the mean of red 312

color. The distance metric for comparing two points is then 313

given as, 314

D =

√
d2n +

1
ns

· d2s +
1
nc

· d2c , (3) 315

where, ns and nc are normalization factors for spatial and 316

color distances, respectively. Only the points lying inside a 317

spherical neighbourhood of radius S are processed for each 318

cluster center. This implies that a point can be at the most 319

S units from its cluster center. Therefore, we set ns = S. 320

Similarly, as the range of color values range in [0, 256], we set 321

nc = 256. dn does not require normalization as a point’s 322

orientation is given by unit surface normals. 323

The algorithm starts by going through each cluster cen- 324

ter sequentially and searching a spherical neighbourhood of 325

radius S around it. The encountered points are assigned to 326

the cluster center if it is the smallest distance, D, the point 327

98528 VOLUME 10, 2022

V. A. Puligandla, S. Lončarić: Supervoxel Segmentation Method With Adaptive Centroid Initialization for Point Clouds

has seen so far. After this operation, the outlying points328

(unassigned points) are collected (Let us call the count of329

outlying points as Nol). As these point clouds are not dense330

enough to be considered as volumes, we can ignore the depth331

dimension of the points and assume that the approximate332

size of each supervoxel to be csize =
N
K . This estimated333

size of a supervoxel is used later in the update step of the334

algorithm to estimate the number of cluster centers to be335

added. By keeping csize constant throughout the algorithm,336

we can keep the final number of supervoxels close to the337

user-specified value K .338

In the update step all the cluster centers with the number339

of assigned points less than 10% of csize are removed. If Kr340

cluster centers are removed, the remaining K − Kr cluster341

centers are updated as the mean of all the points, pi, assigned342

to each. After updating the cluster centers, additional cluster343

centers are initialized in the set of unassigned points. A new344

point cloud is created from the set of unassigned points and345

new clusters are initialized in it following the same procedure346

as described in SectionIII-A. The number of cluster centers347

that need to be initialized from the unassigned points is given348

as cadd =
Nol
csize

. The process of dynamically adding and/or349

removing cluster centers results in different number of clus-350

ters (say K ′) from the user selected value K . The actual value351

of the difference K ′
− K depends on the spatial distribution352

of the points. However, the process of dynamic cluster seed353

initialization has two advantages: (1) small but geometrically354

distinct regions get their own cluster seeds, and (2) outlier355

points do not get incorrectly assigned to any clusters.356

The assignment and update steps are repeated iteratively357

until, either the number of outliying points changes by less358

than 10% from the previous iteration, or if there are no more359

cluster centers required to be added. For example, when360

Nol < csize, cadd , as an integer division, becomes zero,361

implying that no additional cluster centers can be initialized.362

Our experiments show that the algorithm usually runs until363

there is no possibility of adding any more clusters. Hence,364

when the stopping criteria is satisfied, it is only the outlier365

points that remain unassigned. As a last step, the K ′ cluster366

centers are updated as the mean of all points assigned to367

each of them. By leaving the outlier points as unassigned,368

our algorithm achieves better accuracy and object boundary369

adherence as most datasets consist of a category of unlabeled370

points. The complete algorithm is detailed in Algorithm 1.371

The clustering algorithm has a time complexity of O(N).372

IV. RESULTS373

A. PARAMETERS AND METRICS374

We test the proposed clustering method’s efficacy on the375

openly available NYU-V2 Depth dataset, [9]. The dataset376

consists of 1449 densely labelled pairs of aligned RGB and377

depth images. The aligned depth information was mapped378

to corresponding pixels to obtain 3D point clouds with379

color information in RGB space. The proposed method is380

compared against three state-of-the-art clustering algorithms:381

Algorithm 1 Clustering Based on Point Orientation

Input: K,pi = [xi yi zi ri gi bi ui vi wi]T ∀ i = 1 : N ;
Result: labelsi ∀ i = 1 : N , Ck ∀ k = 1 : K ′

S =

√
N
K ;

Initialize: Ck = [xk yk zk rk gk bk uk vk wk]T ∀

k = 1 : K ;
Di = inf, labelsi = −1 ∀ i = 1 : N ;
K ′

= K , t = 0, Nol(t) = N , csize =
N
K ;

while (1) do
for k = 1 to K ′ do

for pi in neighbourhood of radius S do
D = D(pi,Ck) as in equation 3;
if D < Di then

Di = D;
labelsi = k;

end
end

end
outliers = collect points with label == −1;
Nol(t + 1) = size(outliers);
remove all centers with size(Ck) < 0.1 × csize;
Re-estimate Ck as mean of all pi with labelsi == k;
cadd =

Nol (t+1)
csize

;

if (Nol (t)−Nol (t+1)
Nol (t)

< 0.1) || (cadd < 1) then
break;

end
Initialize cadd clusters and append to Ck ;
K ′

= K after adding and/or removing clusters;
t = t + 1;

end

(1) the original voxel cloud connectivity segmentation 382

(vccs) method that works on voxelated point clouds, [21], 383

(2) a supervoxel segmentation method framed as a subset 384

selection problem (ssp), [22], and (3) a K-nearest-neighbours 385

version of vccs method (vccs-knn) that works directly on 386

the point clouds without voxelation, provided by the authors 387

in [22]. The vccs method is available as part of PCL (Point 388

Cloud Library), [30], and it was tested using the default 389

parameter settings. Voxel resolution for VCCS method was 390

set at 0.1m for all experiments. The ssp and vccs-knnmethods 391

were tested using their openly available source code1 with 392

the parameters for both methods set to the values as proposed 393

in their article, [22]. As the methods are tested on the same 394

dataset, the default parameters must be set to produce the best 395

results. While the vccs, ssp and vccs-knn methods implic- 396

itly compute the surface normals for the point clouds, for 397

our method they were computed using the standard nearest- 398

neighbours-based method provided by PCL with number of 399

neighbours equal to 30. Our method requires only one input 400

parameter, i.e., the number of clusters K . All the experiments 401

1https://github.com/yblin/Supervoxel-for-3D-point-clouds.git

VOLUME 10, 2022 98529

V. A. Puligandla, S. Lončarić: Supervoxel Segmentation Method With Adaptive Centroid Initialization for Point Clouds

were run on a computer with an Intel Core i7-8700KCPU and402

16GB of RAM. Our method is coded in C++ programming403

language.404

We compare the performance of the algorithms using four405

evaluation metrics. For evaluations, we first represent the406

labelled point clouds as 2D labeled images and compare407

them against the labeled 2D ground truth images. Boundary408

recall (R) measures the fraction of ground truth boundaries409

that fall within a distance ε of at least one estimated super-410

voxel boundary. We follow the definition of boundary recall411

as proposed in [31]. Given a ground truth boundary image G412

and an estimated boundary image B, R is computed as the413

fraction of true positives (TP) and the sum of true positives414

and true negatives (TN), i.e., R =
TP

TP+TN , where TP are415

defined as the number of boundary pixels in G for whose416

exist a boundary pixel in B in range ε, and TN as the number417

of boundary pixels in G for whose do not exist a boundary418

pixel in B in range ε. In this article, we use ε = 2 pixels.419

An R value of 1 reflects best performance indicating the420

methods precision in identifying object boundaries whereas,421

a value of 0 reflects otherwise. The second metric we use422

is the undersegmentation error (UE). According to [31],423

UE measure to what extent estimated segmentation bound-424

aries cross-over the ground truth boundaries. Generally, the425

number of pixels of a segment that cross over the boundary426

are measured. However, this method imposes a high penalty427

on large supervoxels with only a small overlap with the428

ground truth segment. To avoid this, In [31], they propose429

a new method where the smaller value of either the region430

that crosses over the boundary or the region that lies within431

the segment is counted depending on whichever is smaller.432

It is defined as,433

UE =
1
N

[∑
S∈GT

(∑
P:P∩S 6=0

min(Pin,Pout)
)]

(4)434

where, S are the ground truth (GT) segments, P are the435

estimated segments, N is the total number of pixels, Pin is436

the part of the estimated segment that lies within S and Pout is437

the part of the estimated segment that crosses over the ground438

truth segment’s boundary. A UE value of 0 implies that the439

method has best adherence to object or segment boundaries440

whereas, UE = 1 indicates otherwise.441

The thirdmetric we use is the compactness (C) of the super-442

voxels. In mathematics, compactness of a shape is commonly443

measured through the isoperimetric quotient which compares444

the area of a shape to the area of a circle with the same445

perimeter as this shape, [32]. If AP is the area and LP is the446

perimeter of a superpixel (supervoxel projected in 2D), P,447

then the radius of a circle with the same perimeter as P is448

given as, r =
LP
2π . If AS is the area of the circle with radius r ,449

then the isoperimetric quotient is given as,450

QP =
AP
AS

=
4πAP
L2P

. (5)451

Therefore, if I is the set of all segments in a segmented image, 452

then the compactness measure is given as, 453

C =

∑
P∈I

QP ·
|P|

N
(6) 454

where, |P| is the size of the segment and N is the total 455

number of pixels in the image (or points in the point cloud). 456

C = 1 implies that the estimated segments are perfect circles 457

whereas, C = 0 implies that the segments have highly 458

irregular and non-convex shapes. Lastly, we also compare the 459

algorithms based on the contour density (CD) metric, [11]. 460

CDmeasures the fraction of boundary pixels in the segmenta- 461

tion image. Given a set of boundary pixels, B, of an estimated 462

segmentation contour density is defined as, CD=
|B|

2N , where 463

N is the total number of pixels. The fraction is divided by two 464

because computation of segment boundaries produces edges 465

that are two-pixels wide. The contour density metric also 466

indicates regularity of the boundaries as higher values of CD 467

mean that there exist more number of boundary pixels for the 468

same number of supervoxels. Higher values of CD indicate 469

that the object boundaries are irregular and elongated. 470

B. EVALUATION 471

All the above-mentioned algorithms were tested on the NYU 472

V2 Depth dataset and compared using the above-mentioned 473

metrics. While supervoxel resolution as a measure has geo- 474

metrical significance, we believe that the number of clusters 475

is easier to interpret for a general user. The complexities 476

of all algorithms is given in terms of the input size. As a 477

result, a user can have better control on estimating the com- 478

plexity of subsequent algorithms which would be used on 479

the segmented point cloud when there is a direct control 480

on the number of supervoxels that need to be produced in 481

a point cloud over-segmentation. Moreover, it is important 482

to note that each algorithm produces a different number 483

of supervoxels for a point cloud at any given supervoxel 484

resolution. In all cases, ssp method produces the highest 485

number of supervoxels between all the algorithms for any 486

given resolution. It is well known that as the number of 487

supervoxels increases the performance in terms of metrics 488

also increases. Due to this reason, as one method produces 489

more supervoxels than another for the same segmentation, 490

comparison by the supervoxel resolution becomes an unfair 491

comparison for methods that produce fewer number of super- 492

voxels. Therefore, we choose to compare results based on the 493

number of supervoxels produced. 494

We tested the vccs, ssp and vccs-knn algorithms at super- 495

voxel resolutions (in meters) 0.10, 0.11, 0.12, 0.13, 0.14, 496

0.16, 0.18, 0.20, 0.25 and 0.35. To keep the number of 497

supervoxels produced by our method in similar range as other 498

methods, we set the output number from vccs method as 499

the input number of clusters for our method. Although the 500

number of clusters produced by our method is dynamic, it is 501

usually within a range of ±100 clusters from the user-chosen 502

number K . To maintain uniformity in comparison, for each 503

experiment, we round the output number of clusters to the 504

98530 VOLUME 10, 2022

V. A. Puligandla, S. Lončarić: Supervoxel Segmentation Method With Adaptive Centroid Initialization for Point Clouds

FIGURE 3. Histogram distribution of number of point clouds for which
results were obtained, binned according to the number of clusters.

nearest 100 and order the results according to these multiples.505

We believe that this strategy allows for a fair comparison as506

results from some point clouds may get rounded to higher507

multiple of hundred while a similar number of point cloud508

results may get rounded to a lowermultiple of hundred. As the509

number of supervoxels found varies with the method, den-510

sity, or spatial spread of the point cloud, and the supervoxel511

resolution, it is not possible to have a control on how many512

point clouds produce results for a given number of clusters.513

A histogram of the number of point clouds, ordered by the514

cluster entries for which results were obtained, is shown in515

Fig.3. We present results only when there exist at least516

30 point clouds contributing to the results for a given number517

of clusters entry.518

Quantitative results of the four metrics obtained from test-519

ing the four methods on the entire 1449 image pairs of the520

dataset are shown in Fig.4. Overall, our proposed method521

performs best in the undersegmentation error and compact-522

ness metrics while the ssp and vccs methods perform best in523

the boundary recall and contour density metrics, respectively.524

The ssp method and our proposed clustering method perform525

similarly well in R and UE metrics. With a relative difference526

of 0.0086 between both the methods’ overall mean R for527

all the tests, the ssp method performs marginally better than528

our method in the boundary recall metric. Whereas, in the529

UE metric, our method is relatively 3.17% better than ssp530

method. Moreover, a student’s t-test on the results from our531

method and ssp shows that the means of UE of our method532

are significantly better than those of ssp, with a p− value =533

1.32e − 6 and a t − value = 6.38 in the confidence interval534

CI = [0.0070, 0.0136]. As evident from Fig. 4(a), both535

these methods show significantly better boundary adherence536

(significantly better performance in both R and UE metrics)537

than both the variants of vccs method. The major advantage538

of our method lies in the regularly shaped supervoxels that539

it produces. The plot in Fig. 4(c) shows that our method540

significantly outperforms the three other methods in terms of541

producing most regularly shaped and compact supervoxels.542

The ssp method performs worst in this metric as their method543

produces supervoxels with highly irregular boundaries. This 544

quality of ssp method is also reflected in the CD metric 545

(see Fig. 4), where ssp method performs worst out of all 546

the methods. Large values of CD for ssp method, or a large 547

number of boundary pixels for a given number of super- 548

voxels, reflects the irregularly shaped supervoxels produced 549

by it. 550

It is to be noted that a higher number of boundary pixels 551

may result in artificially inflated values of R as there is a 552

greater chance that a segmentation boundary lies in close 553

distance to a given ground truth boundary. Therefore, it is 554

possible that the ssp method may not produce results that 555

are visually as appealing as reflected by their quantitative 556

analysis values. The same can be verified from Fig. 5, where 557

it can be seen that although the supervoxels produced by ssp 558

method agree to object boundaries to an extent, the resulting 559

supervoxels are irregular in shape. Irregularly shaped super- 560

voxels are undesirable for subsequent applications as it intro- 561

duces spatial discontinuity within the segmentation. With the 562

least CD values of all methods, the vccs method can be 563

expected to produce the most compact supervoxels. Although 564

it produces more regular shaped supervoxels than ssp and 565

vccs-knn methods, our method outperforms it because the 566

vccs method fails on noisy point clouds or on point clouds 567

with low spatial density (or high variation in depth). The same 568

can be verified visually from the second row of Fig. 5(b), 569

where there exist empty regions (seen in white) and small 570

isolated supervoxels in the segmentation. While missing 571

regions or small and isolated supervoxels do not contribute 572

to the CD, they impose a serious penalty on the compact- 573

ness metric, thereby resulting in lower values of C for vccs 574

method. 575

Fig. 5 shows visualizations of segmentations from the 576

four methods on some example point clouds. In general, 577

our method produces visually appealing segmentations with 578

compact and regularly shaped supervoxels that addhere to 579

object boundaries well. An exception where our method 580

fails to produce compact supervoxels can be seen in the 581

second row of Fig. 5. The mesh doors at vicinity of the 582

viewpoint act as noise in that region of the point cloud as 583

they appear as scattered points at a different depth than the 584

background, resulting in irregular supervoxels. The supe- 585

rior compactness of supervoxels produced by our method is 586

visible in the fourth row of Fig. 5. The highlighted region 587

consists of planar regions with very few objects. Yet, all 588

methods except ours produced supervoxels with arbitrary 589

shapes in that region. The shown segmentations are for 500, 590

700, 2000 and 1100 supervoxels for the first to fourth rows, 591

respectively. The result for vccs-knn method in the third row 592

of the figure consists of only 800 supervoxels as the method 593

produced only those many at a resolution of 0.1m, while the 594

rest of themethods produced about 2000 supervoxels. Finally, 595

it can be said that this figure presents an accurate visual reit- 596

eration of the results shown as part of quantitative analysis. 597

Visualizations show that the vccs method fails in the case of 598

point clouds with complex scenes and when the point clouds 599

VOLUME 10, 2022 98531

V. A. Puligandla, S. Lončarić: Supervoxel Segmentation Method With Adaptive Centroid Initialization for Point Clouds

FIGURE 4. Quantitative analysis of the four methods on NYU Depth V2 dataset.

FIGURE 5. Visual representation of segmentation results on NYU Depth V2 dataset.

have varying depth and points density. The vccs-knn method600

produces supervoxels with irregular shapes, while the ssp601

method also produces irregularly shaped suypervoxels with602

elongated boundaries but with greater accuracy. Our method603

produces compact supervoxels with clear and tight bound-604

aries that addhere well to the scene, for a range of supervoxel605

resolutions (100 supervoxels to over 2000 supervoxels) with606

some exceptions as shown for the point cloud in the second607

row of 5.608

A comparison of the total running times by vccs, ssp and609

our method are shown in Fig. 6. In terms computational610

time, the vccs method proves its simplicity and robustness611

as it performs segmentation in about 1s. While all methods612

have constant complexity, our method, with a complexity 613

of O(N), requires significantly longer computational time 614

when compared against the other methods. This is expected 615

as our algorithm involves the assignment step for all the 616

points in every iteration. The step of collecting unassigned 617

points and initializing and/or removing cluster centers adds 618

additional computational overhead. However, our proposed 619

initialization procedure based on Fibonacci binning produces 620

accurate initial seeds. The algorithm typically converged in 621

6 − 8 iterations in all cases. While the overall complexity of 622

our algorithm seems big when compared to other methods, 623

the gained accuracy and quality of segmentation may be 624

beneficial to applications that do not have serious limitations 625

98532 VOLUME 10, 2022

V. A. Puligandla, S. Lončarić: Supervoxel Segmentation Method With Adaptive Centroid Initialization for Point Clouds

FIGURE 6. Time taken for segmentation by the vccs, ssp and our
proposed methods on NYU Depth V2 dataset.

on computational time but, which may benefit from accu-626

rate and compact supervoxel segmentation. Performing the627

assignment step only on the points at supervoxel boundaries628

or maintaining a database of initially unassigned points and629

working only on that set of points iteratively, may benefit the630

algorithm in terms of speed.631

V. CONCLUSION AND FUTURE WORK632

We proposed a new supervoxel segmentation method with633

dynamic cluster seed initialization. Our method inherits the634

advantages of the k-means algorithm. Coupled with a novel635

cluster seed initialization strategy based on Fibonacci binning636

of surface normals, the method achieves superior boundary637

adherence when compared against existing state-of-the-art638

methods. As the algorithm is parameter-free, it gives equal639

importance to the spatial location, color, and surface normals640

of all points to produce regularly shaped compact supervoxels641

with tight boundaries. Quantitative analysis using four met-642

rics on the publicly available NYU Depth V2 dataset shows643

that our method performs equally good as the ssp and vccs644

methods in the boundary recall and contour density metrics,645

respectively. Our proposed method shows significantly better646

performance than all other methods in the undersegmenta-647

tion error and compactness metrics. Visual representations648

of segmentation results on some of the point clouds show649

that ourmethod produces visually appealing supervoxels with650

a high degree of compactness that adhere well to object651

boundaries.652

However, the added accuracy of our proposed algorithm653

comes at the cost of increased complexity. For future work,654

we propose to explore the possibility of reducing the overall655

computational time of our algorithm. Calculating the distance656

metric in the assignment step for only the points at supervoxel657

boundaries and maintaining a database of unassigned points658

and working iteratively only on that set of points can be659

approaches to improve the time complexity of our algorithm.660

Another improvement to decrease the number of calcula-661

tions per iteration could be to stop the assignment step after662

meeting a certain criterion. An example criterion could be663

to track the change in cluster seeds based on the L1-norm 664

between cluster centers at current and previous iterations and 665

stop the assignment step when the norm becomes lower than 666

threshold. 667

REFERENCES 668

[1] Y. Xu, Z. Ye, W. Yao, R. Huang, X. Tong, L. Hoegner, and 669

U. Stilla, ‘‘Classification of LiDAR point clouds using supervoxel- 670

based detrended feature and perception-weighted graphical model,’’ IEEE 671

J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 13, pp. 72–88, 672

2020. 673

[2] H. Luo, K. Khoshelham, L. Fang, and C. Chen, ‘‘Unsupervised scene 674

adaptation for semantic segmentation of urban mobile laser scanning point 675

clouds,’’ ISPRS J. Photogramm. Remote Sens., vol. 169, pp. 253–267, 676

Nov. 2020. 677

[3] S.-S. Huang, Z.-Y. Ma, T.-J. Mu, H. Fu, and S.-M. Hu, ‘‘Supervoxel 678

convolution for online 3D semantic segmentation,’’ ACM Trans. Graph., 679

vol. 40, no. 3, pp. 1–15, Jun. 2021. 680

[4] J. Huo, J. Wu, J. Cao, and G. Wang, ‘‘Supervoxel based method for 681

multi-atlas segmentation of brain MR images,’’ NeuroImage, vol. 175, 682

pp. 201–214, Jul. 2018. 683

[5] S. Hansen, S. Kuttner, M. Kampffmeyer, T.-V. Markussen, R. Sundset, 684

S. K. Øen, L. Eikenes, and R. Jenssen, ‘‘Unsupervised supervoxel-based 685

lung tumor segmentation across patient scans in hybrid PET/MRI,’’ Expert 686

Syst. Appl., vol. 167, Apr. 2021, Art. no. 114244. 687

[6] H. Guan, Y. Yu, J. Li, and P. Liu, ‘‘Pole-like road object detection in mobile 688

LiDAR data via supervoxel and bag-of-contextual-visual-words represen- 689

tation,’’ IEEE Geosci. Remote Sens. Lett., vol. 13, no. 4, pp. 520–524, 690

Apr. 2016. 691

[7] J.-S. Yun and J.-Y. Sim, ‘‘Supervoxel-based saliency detection for large- 692

scale colored 3D point clouds,’’ in Proc. IEEE Int. Conf. Image Process. 693

(ICIP), Sep. 2016, pp. 4062–4066. 694

[8] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk, 695

‘‘SLIC superpixels compared to state-of-the-art superpixel methods,’’ 696

IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 11, pp. 2274–2282, 697

Nov. 2011. 698

[9] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus, ‘‘Indoor segmenta- 699

tion and support inference from RGBD images,’’ in Proc. ECCV, 2012, 700

pp. 746–760. 701

[10] V. A. Puligandla and S. Lončarić, ‘‘A multiresolution approach for 702

large real-world camera placement optimization problems,’’ IEEE Access, 703

vol. 10, pp. 61601–61616, 2022. 704

[11] V. Machairas, M. Faessel, D. Cárdenas-Peña, T. Chabardes, T. Walter, and 705

E. Decenciére, ‘‘Waterpixels,’’ IEEE Trans. Image Process., vol. 24, no. 11, 706

pp. 3707–3716, Nov. 2015. 707

[12] A. Levinshtein, A. Stere, K. N. Kutulakos, D. J. Fleet, S. J. Dickinson, 708

and K. Siddiqi, ‘‘TurboPixels: Fast superpixels using geometric flows,’’ 709

IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, no. 12, pp. 2290–2297, 710

Dec. 2009. 711

[13] M. Van den Bergh, X. Boix, G. Roig, B. D. Capitani, and L. Van Gool, 712

‘‘Seeds: Superpixels extracted via energy-driven sampling,’’ in Proc. Eur. 713

Conf. Comput. Vis. Berlin, Germany: Springer, 2012, pp. 13–26. 714

[14] A. P. Moore, S. J. D. Prince, J. Warrell, U. Mohammed, and G. Jones, 715

‘‘Superpixel lattices,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 716

Jun. 2008, pp. 1–8. 717

[15] C. Xu and J. J. Corso, ‘‘Evaluation of super-voxel methods for early 718

video processing,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 719

Jun. 2012, pp. 1202–1209. 720

[16] O. Veksler, Y. Boykov, and P. Mehrani, ‘‘Superpixels and supervoxels in an 721

energy optimization framework,’’ in Proc. Eur. Conf. Comput. Vis. Berlin, 722

Germany: Springer, 2010, pp. 211–224. 723

[17] D. Weikersdorfer, A. Schick, and D. Cremers, ‘‘Depth-adaptive super- 724

voxels for RGB-D video segmentation,’’ in Proc. IEEE Int. Conf. Image 725

Process., Sep. 2013, pp. 2708–2712. 726

[18] G. Gao, M. Lauri, J. Zhang, and S. Frintrop, ‘‘Saliency-guided adaptive 727

seeding for supervoxel segmentation,’’ in Proc. IEEE/RSJ Int. Conf. Intell. 728

Robots Syst. (IROS), Sep. 2017, pp. 4938–4943. 729

[19] P. Xu, J. Li, J. Yue, and X. Yuan, ‘‘Scale adaptive supervoxel segmentation 730

of RGB-D image,’’ in Proc. IEEE Int. Conf. Robot. Biomimetics (ROBIO), 731

Dec. 2016, pp. 1303–1308. 732

VOLUME 10, 2022 98533

V. A. Puligandla, S. Lončarić: Supervoxel Segmentation Method With Adaptive Centroid Initialization for Point Clouds

[20] Y. Zhou, L. Ju, and S. Wang, ‘‘Multiscale superpixels and supervox-733

els based on hierarchical edge-weighted centroidal Voronoi tessella-734

tion,’’ IEEE Trans. Image Process., vol. 24, no. 11, pp. 3834–3845,735

Nov. 2015.736

[21] J. Papon, A. Abramov, M. Schoeler, and F. Worgotter, ‘‘Voxel737

cloud connectivity segmentation—Supervoxels for point clouds,’’738

in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2013,739

pp. 2027–2034.740

[22] Y. Lin, W. Cheng, D. Zhai, L. Wei, and J. Li, ‘‘Toward better boundary741

preserved supervoxel segmentation for 3D point clouds,’’ ISPRS J. Pho-742

togramm. Remote Sens., vol. 143, pp. 39–47, Sep. 2018.743

[23] Z. Sha, Q. Zhu, Y. Chen, C. Wang, A. Nurunnabi, and J. Li,744

‘‘A boundary-enhanced supervoxel method for 3D point clouds,’’ in745

Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS), Sep. 2020,746

pp. 2771–2774.747

[24] X. Dong, Y. Xiao, Z. Chen, J. Yao, and X. Guo, ‘‘GPU-based super-748

voxel segmentation for 3D point clouds,’’ Comput. Aided Geometric Des.,749

vol. 93, Feb. 2022, Art. no. 102080.750

[25] H. Ni and X. Niu, ‘‘SVLA: A compact supervoxel segmentation method751

based on local allocation,’’ ISPRS J. Photogramm. Remote Sens., vol. 163,752

pp. 300–311, May 2020.753

[26] L. Landrieu and M. Boussaha, ‘‘Point cloud oversegmentation with graph-754

structured deep metric learning,’’ in Proc. IEEE/CVF Conf. Comput. Vis.755

Pattern Recognit. (CVPR), Jun. 2019, pp. 7440–7449.756

[27] L. Hui, J. Yuan, M. Cheng, J. Xie, X. Zhang, and J. Yang, ‘‘Superpoint757

network for point cloud oversegmentation,’’ in Proc. IEEE/CVF Int. Conf.758

Comput. Vis. (ICCV), Oct. 2021, pp. 5510–5519.759

[28] R. L. Larkins, M. J. Cree, and A. A. Dorrington, ‘‘Analysis of binning of760

normals for spherical harmonic cross-correlation,’’ Proc. SPIE, vol. 8290,761

Jan. 2012, Art. no. 82900L.762

[29] T. Riemersma. (2019). Color Metric. [Online]. Available: https://763

www.compuphase.com/cmetric.htm764

[30] R. B. Rusu and S. Cousins, ‘‘3D is here: Point cloud library (PCL),’’ in765

Proc. IEEE Int. Conf. Robot. Autom., May 2011, pp. 1–4.766

[31] F. P. León, Forum Bildverarbeitung 2012. Karlsruhe, Germany: KIT Sci-767

entific Publishing, 2012.768

[32] A. Schick, M. Fischer, and R. Stiefelhagen, ‘‘Measuring and evaluating769

the compactness of superpixels,’’ in Proc. 21st Int. Conf. Pattern Recognit.770

(ICPR), 2012, pp. 930–934.771

V. ANIRUDH PULIGANDLA (Member, IEEE) 772

was born in Hyderabad, Telangana, India, in 1992. 773

He received the B.Tech. degree in electronics and 774

communications engineering from Amity Univer- 775

sity, Jaipur, Rajasthan, India, in 2014, the B.Sc. 776

degree in computer vision and robotics from the 777

University of Burgundy, France, in 2016, and the 778

M.Sc. degree in computer vision and robotics from 779

the University of Burgundy, France; University of 780

Girona, Spain; and Heriot Watt University, U.K., 781

in 2018, as part of an Erasmus Mundus Joint Master’s Degree Program. 782

He is currently pursuing the Ph.D. degree with the University of Zagreb, 783

Zagreb, Croatia, under a Marie-Curie Actions ITN Fellowship. His research 784

interests include discrete and continuous optimization, signal and image 785

processing, and 3D reconstruction from multiple camera systems using 786

multi-view stereo. 787

SVEN LONČARIĆ (Senior Member, IEEE) 788

received the Ph.D. degree in electrical engineering 789

from the University of Cincinnati, Cincinnati, OH, 790

USA, in 1994. From 2001 to 2003, he was an 791

Assistant Professor at the New Jersey Institute of 792

Technology, USA. He was a Fulbright Scholar. 793

He is currently a Professor of electrical engi- 794

neering and computer science at the Faculty of 795

Electrical Engineering and Computing, University 796

of Zagreb, Croatia. He is also the Director of the 797

Center for Computer Vision, University of Zagreb, and the Head of the Image 798

Processing Laboratory. He is the Co-Director of the Center of Excellence in 799

Data Science and Cooperative Systems. He was the principal investigator 800

on a number of research and development projects. He coauthored more 801

than 250 publications in scientific journals and conferences. His research 802

interests include image processing and computer vision. He is a member of 803

the Croatian Academy of Sciences and Arts. He received several awards for 804

his scientific and professional work. 805

806

98534 VOLUME 10, 2022

Publications

Publication 4

V.A. Puligandla, S. Lončarić, ”A Continuous Camera Placement Optimization Model For Sur-

round View”, IEEE Transactions on Intelligent Vehicles, 2023, Jul 26, doi: 10.1109/TIV.2023.3299199

83

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 1

A Continuous Camera Placement Optimization
Model For Surround View

V. Anirudh Puligandla, Member, IEEE, Sven Lončarić, Senior Member, IEEE

Abstract—Increasing use of Advanced Driver Assistance Sys-
tems (ADAS) in autonomous vehicles is rising the demand for
advanced perception systems. With more sensors being placed
on the vehicle than ever, a need arises to optimize the placement
of the sensors on the vehicle’s body to maximize coverage at
minimal cost. Camera Placement Optimization (CPO) methods
tailored for multi-camera networks to maximize a vehicle’s sur-
rounding view coverage are limited. While existing CPO methods
tend to sample the simulation space to work in the discrete
domain using integer programming-based problem formulation,
this article proposes a novel approach to optimize for camera
poses for vehicle surround-view in the continuous domain using
gradient-free blackbox optimization techniques by defining a non-
linear objective function. Experimental results on more than
100 instances of real world 3D models of vehicles of various
shapes and sizes show that the proposed method is effective in
maximizing coverage for vehicle surround-view by a multiple
camera network in a reasonable amount of time. Comparisons
against a discrete CPO formulation show that the proposed
method significantly improves coverage accuracy by optimizing
poses of multiple cameras for vehicle surround-view.

Index Terms—Optimal camera placement, global optimization,
black-box optimization, surround-view vision, autonomous driv-
ing

I. INTRODUCTION

SENSOR placement optimization (SPO) finds applications
in a variety of industries such as identifying defects in

structures, [1], [2], drone navigation, [3], 3D reconstruction,
[4], IoT and wireless networks, [5], and surveillance, [6]. Cam-
era placement optimization (CPO) is a sub-category of this vast
field that deals with placement optimization of visual sensors.
Most CPO methods focus on surveillance applications, [7],
[8]. Few works address the problem of optimizing sensor
poses on vehicles for applications in autonomous driving, [9],
[10]. Advanced Driver Assistance Systems (ADAS) to provide
surrounding-view/top-view/rear-view visualization are finding
uses in vehicles, [11]. Besides providing new perspectives of
the surrounding environment to the vehicle operators, ADAS
systems are capable of eliminating fatal accident-causing blind
spots, particularly for larger and heavier vehicles. A typical
surround-view system consists of at least four fish-eye lens

This work is supported by the ImmerSAFE (Project number 764951) project
funded under the EU’s H2020-MSCA-ITN-2017 call and is part of the Marie
Sklodowska-Curie Actions - Innovative Training Networks (ITN) funding
scheme.

V. Anirudh Puligandla and Sven Lončarić are with Image Processing Group,
Department of Electronic Systems and Information Processing, Faculty of
Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia
(e-mail: apuligandla@fer.hr; sven.loncaric@fer.hr)

Manuscript received April 19, 2021; revised August 16, 2021.

cameras with additional lidar/ultrasonic sensors, [12]. As the
cost increases with the increasing number of sensors for
larger vehicles, sensor placement optimization is necessary to
increase efficiency of the multi-camera network and to keep
the costs low.

Our work to estimate camera poses in 3D may aid in by-
passing the camera calibration step as camera pose estimation
forms the basis of camera calibration, [13]. A common and
widely used approach to model CPO problems is the use of
Binary Integer Programming (BIP) formulation in a discretized
space model. The simulation space for the problem is sampled
to collect sets of points that approximate the underlying
surface (floor plans for e.g.). These samples are modelled as
the set of possible locations for placing cameras and the set of
points that need to be covered by the optimally placed cameras.
Continuous space models are avoided due to the complexity of
computing camera coverage through geometrical intersections
(surface-surface, surface-volume) in a reasonable amount of
time. However, discrete space models have limitations in terms
of approximation accuracy and scalability of the problem.
To accurately approximate the underlying surface, sampling
more points is required which increases the complexity of the
optimization algorithm. Sampling accuracy is important for
surround-view CPO problems where a small deviation in the
camera’s orientation may result in artefacts during 360o video
stitching and 3D reconstruction.

We propose a new method to optimize camera poses directly
on the vehicle’s surface in the continuous space. Optimization
in the continuous space achieves sub-sample accuracy and
ensures that crucial intermediate values between samples are
not missed when searching for the poses of the optimal
multi-camera network. Our proposed method approximates
the non-convex surface of 3D vehicle models by fitting a
hollow hemisphere around the 3D model and optimizing for
camera poses on the surface of the hemisphere. By using
spherical coordinates, a camera’s position on the hemisphere
can be represented using only two variables, i.e., the polar
and azimuthal angles. The camera’s orientation is represented
using a unit view-direction (or look-at direction) vector which
is estimated using only one variable in our work. By using our
proposed method, a camera’s pose can be optimized using only
3 variables instead of thousands as in the case of discrete CPO
problem formulations. Camera coverage is modelled using
discrete points sampled from the ground plane around the
vehicle’s 3D model and a user-defined number of cameras’
poses are optimized to maximize overall coverage.

For calculating coverage, we propose a non-linear objective
function that can be solved using gradient-free and blackbox0000–0000/00$00.00 © 2021 IEEE

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 2

optimization methods, [14]. As it is desired to place cameras
on the surface of the vehicle, we propose a ray-tracing-based
approach to project a camera’s location from the surface
of hemisphere to the vehicle’s 3D model. While existing
methods use camera Field of View (FoV) models based on
geometrical shapes such as, circular sectors, pyramids, etc.,
we propose a novel method to use the camera projection
matrix to estimate coverage of the surrounding points. We
test the proposed continuous CPO problem on 3D models of
vehicles with varying shapes and sizes using two approximate
optimization algorithms namely, particle swarm optimization
(PSO) and Bayesian optimization (BO). Comparison of our
proposed continuous space model against a discrete CPO
problem formulation shows that our proposed method per-
forms significantly better in terms of coverage without any
significant overhead in computational complexity. The rest
of the article is organized as follows: Section II introduces
relevant CPO problems and optimization methods; Section III
introduces the proposed continuous CPO problem formulation;
and Section IV presents an analysis of the proposed method
and a comparison against a similar discrete CPO model.

II. BACKGROUND WORK

Pioneering works in CPO can be attributed to [15], [16].
Numerous CPO methods have been proposed for various use-
cases, in the past two decades, with most of them focusing on
multiple-camera networks for surveillance, [17]. Despite the
availability of a vast amount of literature on CPO problems,
few address the problem of camera placement optimization
for vehicle surround-view vision. In [9], Indu et al. proposed
a multi-camera optimization model designed specifically for
driver-less cars. Their model works in discrete space with a
weighted coverage function to differentiate between critical
and non-critical areas in the vehicle’s surrounding region. They
use the camera’s intrinsic and extrinsic parameter matrices
like our method but, they construct a view frustum from the
parameters and use the geometrical frustum model to construct
visibility and coverage matrices as part of a standard Mixed In-
teger Programming (MIP)-based discrete optimization model.
They solved the optimization problem using heuristic algo-
rithms such as PSO and grey wolf optimization.

The authors in [10], proposed an optimization framework
to place a combination of distinct types of sensors (not only
visual sensors) as part of an ADAS system. They also model
the problem in discrete space by first identifying 10 zones
around the model of a car. A particular type of sensor’s
pose is optimized in only its designated zones. This approach
of dividing the search space into zones simplifies the SPO
problem, but the use of discretized space model limits its
accuracy. As the orientation changes in steps of 1o, important
poses might be missed between two steps. A similar problem
of SPO for autonomous vehicles using only lidar sensors is
proposed in [18]. They place a set of vertical lidar occupancy
boards around the vehicle and measure coverage by placing a
grid on the board and counting the number of cells covered
by the lidar’s FoV. Their optimization problem is formulated
in discrete space and suffers from the same limitations as the
other discrete optimization models.

As BIP-based CPO models are NP-complete, many heuris-
tic algorithms were proposed to solve large real-world CPO
problems in reasonable time given a reasonable amount of
resources. Most prominently used categories of approximate
algorithms, [19], include, greedy heuristics, [20], differential
evolution algorithms, [21], local search algorithms, [22], [23],
genetic algorithms, [24], [25], and particle swarm optimiza-
tion, [26], [27]. In [28], the authors propose a continuous
objective function for a CPO problem by modelling a contin-
uous observation measure function over camera poses which
are modelled using discrete variables. In contrast our method
proposes to use continuous variables for camera poses to
improve coverage. In [29], Smith et al. proposed a continuous
optimization approach for path planning of UAV positions to
achieve multi-view 3D reconstruction. The optimal paths for
the UAV are selected from a predefined set of navigable paths.
Such a simple approximation is, however, not suitable for our
CPO problem as it is not possible to approximate the non-
convex structure of a vehicle’s surface. Some CPO models
use application-specific relaxations to allow some variables
to take values in the continuous domain. In [30] the author
proposed a MIP-based CPO problem that uses continuous
variables only for the camera’s orientation while the camera’s
position and surrounding points are discrete. [31] proposes
an approximation to define sensor locations using continuous
variables. Their approximation is not generalizable to other
use cases and cannot be used for vehicle surround-view.

We model the CPO problem for vehicle surround-view using
3D polygon mesh models of vehicles, [32]. Although one way
of discretizing the CPO problem is by voxelizing the vehicle’s
3D model, [33], another approach may be to use the vertices
present in the 3D mesh model as possible camera positions.
This however, may degrade the coverage results compared to
voxelization as the vertices are irregularly distributed in space
and thus, do not represent the vehicle’s surface uniformly.
Moreover, some faces in the 3D mesh model may be large and,
as a result, crucial camera poses between those vertices may
be missed during optimization. To avoid under representation
of the vehicle’s surface in the optimization problem, we
propose to model the camera poses using variables in the
continuous domain. We test our optimization problem using a
PSO algorithm and a Bayesian Optimization (BO) algorithm.
According to our knowledge, BO has not yet been studied
in the context of CPO problems. BO is a method that is
increasingly finding interest in machine learning applications
including in neural network training, [34], [35]. It appears
suitable for our CPO model as it falls under the category of
black-box or surrogate methods, where a surrogate function
is developed to model the objective function. While PSO
methods have been studied extensively in the context of CPO
or combinatorial optimization, [36], [37], BO methods are not
studied as much in this context.

III. CAMERA PLACEMENT OPTIMIZATION FOR VEHICLE
SURROUND VIEW

Any camera placement optimization (CPO) model requires
the definition of 1) A space model, 2) Decision Variables, 3)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 3

Camera Model, and 4) Objective function. In this article, we
present a novel method where we model part of the variables
in the continuous domain. Our space model consists of a
3D polygon mesh model of a vehicle placed at the center,
surrounded by 3D points (commonly known as control points
in OCP literature). The goal of the optimization problem is to
identify locations and orientations of multiple cameras such
that they are placed on the outer surface of the 3D mesh to
maximize coverage of the control points. Camera poses are
optimized using global, gradient-free, black-box optimization
methods. We use a flexible camera projection matrix-based
camera model that can be easily extended for distinct types of
real-world cameras, camera lenses and visibility models. The
following sub-sections describe these aspects of the camera
placement optimization problem for vehicle surround-view in
detail.

A. Continuous Space model

The simulation environment consists of a vehicle’s 3D
model placed at the center/origin, O, where the xy-plane
describes the ground plane with z-axis pointing towards the
height of the vehicle. The size of the vehicle’s 3D model is
given by the size of the smallest cubical bounding box that
encompasses the polygon mesh model, as B = (bx, by, bz)
units. A set of J points, Cj = (xc, yc, zc)∀j = 1 : J , are
sampled on the ground plane around the vehicle model at
equal intervals in a square region, between a distance, cb, of√
2 · max{bx, by} ≤ cb ≤ 2 ·

√
2 · max{bx, by} units. The

reasoning behind choosing these limits for cb is explained in
Section III-B. Depending on the size of the bounding box
of a 3D model, the sampling interval varies between the
range [2, 20]. Control points are decision variables for the
optimization problem as the quality of the optimization model
is evaluated based on the number of control points viewed
by the optimized multi-camera network. For our optimization
problem, control points are modelled as discrete binary deci-
sion variables. Each point Cj is represented using a binary
variable and can be defined as,

cj =

1 if control point j is covered
by at least one camera

0 otherwise.
(1)

A visualization of the simulated environment is shown in
Figure 1. The visualization shows a model of a JCB machine
placed at the center. For visualization purpose, the control
points are shown as spheres on the ground plane around the
3D model.

B. Camera and Coverage Models

The position and orientation of a camera in 3D space
together describe the pose of a camera, [38]. In the fields
of computational geometry and computer vision, a camera’s
pose is described using a 3 × 4 transformation matrix, M ,
[39], which describes transformations of a rigid body in 3D
space. The transformation matrix can be decomposed as,
M = K[R T], where, K is a 3 × 3 matrix known as

Fig. 1. Visualization of the simulation environment.

the intrinsic parameter matrix which encompasses hardware-
related properties of the camera such as, focal length of the
lens, sensor dimensions, etc. The 3×4 matrix [R T] describes
the pose of the camera in three dimensional space, where R is
a 3×3 rotation matrix describing a composition of the rotations
of a camera’s local coordinate axes about the three axes of a
common referenced coordinate system, and T is a 3×1 vector
describing a camera’s translation w.r.t. a referenced origin. The
actual position of the camera, P = (x, y, z), in the referenced
coordinate system is computed as P = −RTT . The rotation
angles (Euler angles) about the coordinate axes are computed
from the rotation matrix, and vice-versa, using Euler’s rotation
theorem, [40].

The matrix R can be further decomposed into three 3 × 1
vectors which form an orthogonal basis. In computer graphics,
the three vectors are commonly referred to as the camera’s
view, up, and right direction vectors which represent the
z, y, and x axes of the camera’s local coordinate system,
respectively. The camera’s z-axis is same as the direction in
which the camera looks at in 3D space. Our CPO problem
estimates a camera pose in terms of the camera transformation
matrix, M . Estimating M implies estimation of the translation
vector, T , and the three rotation vectors for R. To simplify
the estimation of R, two assumptions are commonly made in
computer graphics: 1) The camera is placed upright, i.e., the
camera’s y-axis is always oriented towards the positive z-axis
of the simulated environment; 2) The camera cannot rotate
about itself. If the simulated environment’s z-axis is given as,
zw = [0.0, 0.0, 1.0] then, with the above two assumptions, a
camera’s up and right direction vectors can be calculated given
its view vector, as,

right = view × zw

up = right× view
(2)

where ’×’ represents vector cross product. Thus, we need
to estimate only a camera’s view vector (referred to as, P̂)
to construct it’s R matrix. Therefore, only a camera’s 3D
position, P , and it’s view direction vector are required to be
estimated to construct it’s camera matrix, M , which is used to
compute coverage of control points, as will be described later.

A polygon mesh model is a composition of predefined ver-
tices, edges and faces that describe the structure of an object.
Popular file formats for polygon meshes support triangles,

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 4

quadrilaterals and general n-sided convex/concave polygons
as faces. For this work, we assume that the vehicle’s 3D
model is a polygon mesh consisting of only triangles. Every
triangle in the model is described by it’s three vertices and
three edges but, the positions of the vertices do not follow
any specific structure, making it impossible to model the
vehicle’s surface using continuous functions. To simplify the
problem, we model a hemispherical surface, S, around the
vehicle’s polygon mesh with a radius, r =

√
2max{bx, by},

with it’s center placed at O. Figure 1 shows a translucent
visualization of S encompassing the vehicle’s polygon mesh
model. Position of a camera is first estimated on S and then
mapped to the vehicle’s 3D model. In spherical coordinates,
S can be described using it’s radius, and polar and azimuthal
angles, θ and ϕ respectively, as (r,θ, ϕ). To aid in camera pose
estimation, we introduce a new variable, h, which represents
the height of a point from the ground plane on the line passing
through O along the z-axis of the simulated environment. This
variable can take values only within a certain range, defined
as, 0 ≤ h ≤ r.

An illustration of the process of mapping a point from S
to the surface of the vehicle’s polygon mesh model is shown
in Figure 2. As r is a constant for a given 3D model, we
require three variables, θ, ϕ, h to estimate a camera’s pose. A
point A(r, θ, ϕ) on S is converted into Cartesian coordinates
as, A′(x′, y′, z′). B(0, 0, h) describes a point on the line
passing through the world z-axis and the origin O. The line−−→
A′B is checked for intersection with all the triangles of the
vehicle’s polygon mesh model using a simple ray tracing
algorithm1. The closest point of intersection of

−−→
A′B with any

of the triangles of the 3D model gives the required camera’s
position, P , on the surface of the vehicle’s model. The view
direction vector of the camera placed at P is defined as
P̂ = −−−→

A′B = A′ − B. P̂ is normalized to make it a unit
normal vector. Although this method simplifies camera pose
estimation, it introduces challenges in covering the control
points close to the vehicle.

This limitation is illustrated in Figure 2 in red. The red
camera on the left presents a valid camera position, but due to
limited vertical FoV it cannot cover the control points located
close to the vehicle. The red camera on the right in Figure 2
can potentially cover the control points close to the vehicle, but
it is an invalid camera pose as the value of h for this camera is
beyond it’s limits. To circumvent these limitations, we simply
chose to not sample control points inside S. However, given
the importance of covering the region close to the vehicle,
innovative solutions such as, using camera models with larger
FoV, increasing the limits of h and ϕ, etc., may be considered
for future work.

Coverage of a control point is verified by projecting it into
the camera’s image plane. A control point is said to be covered
by a given camera if it’s projection lies within the camera’s
image dimensions, and the corresponding variable cj is set
to 1. Using homogeneous coordinates (see [39] for details on

1https://www.scratchapixel.com/lessons/3d-basic-rendering/ray-tracing-
rendering-a-triangle/ray-triangle-intersection-geometric-solution.html

Fig. 2. Illustration of obtaining the camera pose on vehicle’s surface.

projection of a point using the camera matrix), a control point
is projected into the camera’s image plane as,

u
v
w

 = K[R T]

xc

yc
zc
1

 , (3)

where, u, v are the pixel coordinates of the projected control
point in the estimated camera’s image plane and w is the
distance of the point from the camera’s origin along it’s z-
axis in the camera’s local coordinate frame. In this work, for
simplicity, we consider only the model of a pinhole camera
for which the intrinsic parameter matrix K becomes a 3 × 3
identity matrix. A control point lies in the FoV of the camera
if the pixel coordinates computed using equation (3) are within
the size of the image. When K = I , the image plane becomes
the same as the camera’s projection plane and u, v are divided
by w for the point’s coordinates in the camera plane. For this
special case, the point is said to lie within the camera’s FoV
if −1 ≤ u/w, v/w ≤ 1. Therefore, a variable cj takes a value
of 1 if | uw | ≤ 1 and | vw | ≤ 1 for at least one camera. The total
coverage of the optimization model is given as,

∑
cj .

The presented camera coverage model using the camera pro-
jection matrix, to our knowledge, has not been used previously
in any CPO problems. Discrete CPO models use geometric
coverage models such as, disk sectors, pyramids, cones, etc., to
model a camera’s FoV, [41], [42]. Coverage is estimated using
point in plane calculations. For e.g., in the case of a pyramidal
FoV, each control point is checked against five planes of the
pyramid and if it falls inside all five planes, the point is marked
as covered by that particular camera. Coverage models based
on CPM have certain advantages over geometrical shape based
coverage models: 1) they do not need to define near and far
planes explicitly as focal length parameter does it implicitly;
2) defining different types of lenses is easier as changing the
geometrical shape is not required; and 3) visibility parameters
such as, resolution, distortion, etc. can be defined easily using
the camera intrinsic parameter matrix.

C. Black-Box Optimization

The problem is formulated as a constrained optimization
problem. It means that the decision variables are constrained
to only take values within a specified range. The optimization

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 5

problem handles both continuous and discrete variables. The
control points are modelled as binary variables whereas, θ, ϕ
and h are modelled as continuous variables. The problem of
optimizing cameras poses of a multi-camera network consist-
ing of N cameras to maximize surround-view coverage is
formulated as,

max
∑

j

cj ∀j ∈ J (4)

subject to: 0 ≤ θn < 2π,

0 ≤ ϕn <
π

2
,

0 ≤ hn ≤ r,

where, n = 1 : N . The objective function is a simple
maximization of the sum of binary variables cj but, estimating
a camera’s pose and computing coverage of the estimated
camera involve non-linear calculations. This problem is op-
timized using black-box optimization techniques where, the
optimization methods are designed to find a balance between
exploration and exploitation of the search space while moving
towards maxima/minima of any given unknown function.
Black-box optimization methods define a search space for
the provided unknown fitness functions based on the bounds
and constraints placed on the values that can be taken by the
variables. The optimization method works by sampling a set of
values for the variables from the search space at each iteration.
The fitness of the sampled values to the defined objective
function is calculated. The fitness function is required to take
the sample as an input at each iteration and output the sample’s
fitness as a real value which is used to adapt the exploration
strategy for the next iteration.

Our proposed algorithm for fitness evaluations requires that
the number of cameras, N , constituting the multi-camera
network is defined by the user. The parameters, B and r
for the given polygon mesh model are pre-calculated and
control points, Cj are sampled as described in Section III-A.
Intrinsic parameter matrix, K, is initialized as a 3×3 identity
matrix, I . For representation in homogeneous coordinates, a
value 1 is appended to the control points to represent them as
4 × 1 vectors. After the optimization starts, the variables are
sampled from the search space within their bounds and passed
to our defined fitness function. The algorithm starts by looping
over the number of cameras N . The points A(rn, θn, ϕn) and
B(0, 0, hn) are created from the N samples (θn, ϕn, hn) for
a particular iteration. Estimating camera poses and calculating
total coverage follows the steps mentioned in III-B. Sequen-
tially, for each camera, the point A is converted into Cartesian
coordinates as A′ and the line

−−→
A′B is computed. A′ is mapped

to the surface of the vehicle using line-triangle intersections
and the closest point of intersection on the vehicle’s polygon
mesh model is given as P . In the case, for any of the cameras,
an intersection between

−−→
A′B and any of the vehicle model’s

triangles is not found, the coverage/fitness value is returned
as 0 and the algorithm skips to the next iteration with new
samples.

Once P is found, the orientation for the camera n is set
as P̂ = −−−→

A′B and the rotation vectors are found as given in

2 and the matrix R is constructed. The translation vector is
calculated and the matrix M is constructed by concatenating
R and T . Here we introduce a step to check if the camera n
is occluded by the vehicle. Occlusion checking is done in the
same way as coverage of control points is calculated. Consider
the set of all vertices of the polygon mesh model, Vi ∀i = 1 : I
where, I is the number of vertices the polygon mesh model is
comprised of. Similar to control point coverage calculations,
every vertex Vi is projected into the camera’s image plane
using (3). If any Vi falls within the FoV, then the camera
n is considered as occluded and the algorithm immediately
proceeds to the next iteration by returning a fitness value of
0. While complex occlusion checking strategies present an
accurate simulated representation of the problem, we consider
only occlusion by the vehicle in individual cameras to keep
the model simple and concise.

Our model sequentially computes occlusion of individual
cameras by the vehicle, but it can be easily extended to com-
pensate occluded views by comparing with adjacent cameras,
or other complex occlusion checking methods by exploiting
our camera projection matrix-based coverage model. If the
camera n is not occluded, the algorithm loops over all J
control points to calculate coverage. Each control point is
projected into the camera’s image plane and the corresponding
variable cj is marked as 1 if the control point falls within the
camera’s FoV. After computing coverage by N cameras, the
fitness value or the overall coverage value by N cameras is
returned as the sum of all variables cj . The pseudo-code for
the fitness function is presented in Algorithm 1.

Depending on the optimization algorithm and it’s con-
vergence criteria, the poses of N cameras corresponding to
the best obtained fitness value are saved as the solution to
the optimization problem. The complexity of the algorithm
depends on the number of vertices and faces (or triangles) that
a vehicle’s polygon mesh model is composed of. In all cases,
the number of triangles of a model is much higher than the
number of control points. Hence, the line-triangle intersection
checking and occlusion checking parts of the algorithm require
the highest computational time as those functions are executed
over all the vertices or faces of the polygon mesh model, for
every iteration. The worst-case complexity of the algorithm
can be given as O(nt) where, nt is the number of triangles
(or faces) present in the vehicle’s 3D model. The actual
complexity, however, varies on a case-to-case basis due to
the presence of break statements. In case an invalid camera
pose is encountered, the algorithm may skip a majority of
the calculations for that iteration, resulting in lower overall
computational times.

IV. RESULTS

We test the proposed continuous CPO model on over
100 simulation instances. These instances mainly consist of
3D polygonal models of vehicles, which are all downloaded
from open-source websites that host free 3D models. The
models represent various types of vehicles, including cars,
buses and heavy vehicles used in the construction industry.
The experiments are conducted in two parts. The experiments

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 6

Algorithm 1: Fitness function
Input: N , r, θn, ϕn, hn ∀n = 1 : N , Cj ∀j = 1 : J ,
Vi ∀i = 1 : I , zw = [0, 0, 1]T ;

Result:
∑

j cj
Initialize: cj = 0 ∀j = 1 : J , K = I3×3;
for n = 1 to N do

(x, y, z) = (r, θn, ϕn) from Spherical to Cartesian
coordinates;
A′ = [x, y, z]T ;−−→
A′B = [−x,−y, hn − z]T ;
P = point of intersection between a line from A′

in the direction
−−→
A′B and the 3D polygon mesh;

if intersection not found then
cj = 0 ∀j = 1 : J ;
break;

end
P̂ = −−−→

A′B = [x, y, z − hn]
T ;

right = P̂ × zw, up = right× zw;
R = concatenate column vectors P̂ ,up,right into
3× 3 matrix;

T = -(R×P), M = [R T];
∀i check for occlusion by Vi using M;
if camera is occluded then

cj = 0 ∀j = 1 : J ;
break;

end
for j=1 to J do

[u v 1]T =K ×M × CT
j ;

if |u/w| ≤ 1 then
if |v/w| ≤ 1 then

cj = 1;
end

end
end

end

in the first part are conducted on 50 instances to validate
the working of our proposed model. For the first part, the
camera poses are optimized using two open-source black-box
optimization methods. We use a particle swarm optimization
(PSO) heuristic method called Fuzzy Self Tuning PSO (FST-
PSO) that uses fuzzy logic to estimate appropriate values for
the involved parameters without any user intervention, [43].
We used the openly available source code2 of this PSO-variant
with the default parameters. For the second method, we chose
an open-source Bayesian Optimization library3 built in python
programming language. This library has a simple interface,
specifically designed for black-box functions. In the second
part, experiments are conducted on the remaining 54 instances
using the FST-PSO algorithm and the percentage coverage for
all instances is compared against the coverage from a discrete
optimization model. For the discrete problem, we use a PSO
variant, LH-RPSO [26], that is designed to handle discrete

2https://github.com/aresio/fst-pso
3https://github.com/fmfn/BayesianOptimization

problem formulations.
All tests are run on an Intel i5 1235u processor with 16GB

of RAM. The ray-tracing and occlusion functions are run on
an Nvidia MX570 GPU in python using numba library. The
geometry computations required to build a visibility matrix for
the discrete optimization problem were run on the same GPU
using the OpenCL library in C++ programming language. The
interface for loading, processing, and visualizing the data is
programmed in Qt in C++ and the optimization algorithms
were run in python using their python interfaces. For the first
part of the experiments, the number of cameras were set to
N = 4, with each camera having a horizontal FoV of 90o.
For the second part, we set N = 5 with each camera having
a horizontal FoV of 67.5o. FST-PSO algorithm was run for
100 iterations with 30 particles for all cases. BO algorithm
was run for 300 steps of Bayesian optimization and 50 steps
of random exploration (total of 350 iterations). The FST-PSO
method was run for 10 times and the best result of the 10 runs
is presented. The BO method is a deterministic method, and
hence, was run only one time. The BO method requires one
parameter called window size, [44] to be set by the user. The
authors claim that the BO algorithm is relatively unaffected
by this parameter. Through our experiments, we observed that
this parameter has high influence on the coverage result. We
set it to a value in the range [0.1, 100.0], depending on the size
of the bounding box of the model, B, through trial and error,
changing it for every vehicle model. The total coverage and
the optimization times obtained using both the optimization
methods on 50 instances (first part of the experiments) are
presented in Table I.

The proposed CPO model in continuous space is tested on
50 instances of different types of vehicle’s 3D polygon mesh
models, ranging from small cars to heavy vehicles such as,
mining truck, JCB machine, etc. In the table, entries marked
with a ∗ next to the instance number show results on mesh
models of heavy vehicles. The small cars group includes
models of small geometric shapes resembling a car, van, truck
and bus, and 3D models of real-life cars, such as, camaro,
dodge, compact and mini cars, BMW, tesla truck, and a truck
in 2-4 sizes (varying number of triangles). The other group
of heavy vehicles includes polygon mesh models of a JCB
machine, digger, mining truck, dumper, lift truck, forklift, tank,
tractor-scraper, bulldoser, school bus, and tour bus, in 2-4 sizes
of each model. The instances are categorized into four groups
for better readability, based on the number of triangles the
polygon mesh models are composed of. In the table, the better
coverage values and the shorter computation times between the
two methods are marked in bold font. The number of cameras
were set equal to four because, each camera has an FoV angle
of 90o. Hence, in the ideal case, four cameras should provide
a 360o coverage when the cameras are placed adjacent.

It can be seen from the table that coverage values for some
instances using the PSO method have indeed reached the ideal
expected case of 100% coverage. 100% coverage was achieved
for instances 9, 14, 19, 35, 37, 41 and 50, which are mesh
models of a mini car, a JCB machine, a tesla truck, a lift
truck, a dumper, a digger machine, and a truck, respectively.
These models are diverse with varying shapes and irregularity

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 7

TABLE I
TEST RESULTS OF THE CONTINUOUS CPO MODEL ON 50 INSTANCES OF

VEHICLE MODELS USING PSO AND BO METHODS.

Instance # # of △s Coverage (%) Time (s)

FST-PSO BO FST-PSO BO

1 382 98.1 90.8 18 205
2 416 96.6 88.0 12 96
3 427 90.4 95.2 19 201
4 552 86.5 87.5 22 182
5 668 93.9 90.0 29 149
6 760 90.7 91.7 24 204
7 840 87.0 88.2 35 263
8 972 85.1 86.3 26 115
9 2,548 100.0 95.0 58 181
10 2,188 91.9 67.2 54 75
11 2,340 93.3 91.2 94 75
12 2,844 92.7 85.7 71 189

13 3,180 84.3 85.0 78 119
14* 3,343 100.0 92.3 51 232
15* 3,382 95.4 58.5 30 110
16* 3,759 96.9 81.5 68 167
17 4,134 93.5 79.6 63 111
18 4,326 93.5 91.7 82 175
19 4,926 100.0 87.1 303 210
20 5,256 89.8 89.9 83 244
21 5,268 95.8 91.7 50 144
22* 6,078 97.9 93.2 74 411
23 6,644 86.1 87.0 250 197
24* 7,434 95.3 90.0 108 268
25* 8,986 84.3 85.2 138 168

26* 12,839 87.2 72.0 206 89
27* 13,140 95.1 93.0 240 133
28* 15,286 90.5 66.7 332 207
29 15,568 97.5 88.1 180 409
30* 26,851 96.2 51.4 972 180
31* 35,120 79.6 79.9 650 121
32 36,952 95.0 80.8 260 320
33* 40,065 97.5 61.4 439 220
34* 44,753 86.5 45.0 438 142
35* 48,636 100.0 67.6 1082 295
36* 48,734 99.2 73.2 704 144
37* 53,380 100.0 88.2 1539 309
38 82,930 98.0 68.0 1046 172

39* 112,080 87.4 58.8 2308 737
40* 132,977 81.3 73.2 3968 310
41* 133,082 100.0 62.41 2008 348
42 159,060 93.7 86.9 2881 783
43* 162,016 89.6 62.3 2094 255
44* 165,088 88.6 78.4 3220 499
45* 171,004 93.8 63.8 2047 232
46* 274,694 93.9 64.4 4371 713
47* 282,636 99.6 88.4 3408 669
48 299,640 96.9 62.5 2504 520
49 353,172 94.4 57.1 1957 392
50* 513,612 100.0 69.6 3732 623

of the outer surface of the vehicle models which shows that
the proposed continuous model based CPO problem can be
used for the general case of camera poses optimization to
achieve surround-view coverage for any types of vehicles.
A coverage value of more than 80% was obtained for 49
instances using the FST-PSO method, and for 29 instances
using the BO optimization method. The one instance (#31) for
which a coverage of less than 80% was obtianed using the PSO
method is of a mining truck. The mining truck model is the
largest of all vehicle models, in the measure of volume filled
within S or in terms of surface area of the vehicle’s model.

As a consequence, the search space of this model is relatively
large, posing a challenge for the optimization methods to
find an acceptable solution within 100 iterations. Over all the
instances, the PSO method has performed better than the BO
method with an average coverage of 93.2%, against the BO
method with an average coverage of 78.6%.

Across the four groups categorized according the number of
triangles present in the model, the average coverage obtained
by the PSO method is 92.2%, 93.3%, 94.0%, and 93.3%,
whereas, the coverage obtained by the BO method is 88.1%,
85.6%, 71.9%, and 69.0%, for the first to the fourth groups,
respectively. These average coverage values show that the
PSO method has performed well on all instances irrespective
of the vehicle’s size in terms of the number of triangles it
is composed of or the structure and shape of the vehicle.
Whereas, the BO method has found acceptable camera poses
for the first two groups of vehicle models but, the obtained
coverage values for the last two groups highlight the poor per-
formance of the BO method on larger 3D models of vehicles.
The BO method’s performance, however, did not show any
dependability on the type or structure of the vehicle, as high
and low coverage values were obtained by the BO method for
models of both small vehicles and heavy vehicles. It is natural
to expect a method’s performance or accuracy to decrease as
the size of the search space increases. While this behaviour
is evident in BO method, the PSO method’s consistency over
vehicle models of all sizes shows the versatility of PSO-based
methods.

The computational times results for the two methods show
an increasing trend as the number of triangles in polygon mesh
models increases. This increasing trend is more evident for the
results from PSO method than the results from BO method.
The BO method’s complexity does not directly depend on
the number of triangles in the model. it rather depends on
the estimation of posterior probability from the prior which
is constructed from the sampled points during the random
exploration stage. For this reason, the computationally inten-
sive steps of ray-triangle intersection calculation and occlusion
checking are not executed for all the iterations, resulting in
lower overall computational times. On the other hand, particles
in the PSO method sample the search space and their fitness
is calculated in every iteration. This increases the time for
optimization as the geometric calculations need to be done
for all the triangles in every iteration. The break statements in
the algorithm however, may help in skipping the calculations
for some iterations depending on whether the sampled point
represents valid poses for all the cameras or not. In the N
estimated camera poses, when any one of them has an invalid
pose, then the remaining computations are skipped for that
iteration, resulting in comparatively shorter computation times.

This behaviour is evident for the PSO method where, the
computational times are relatively higher for similarly sized
models (for e.g., instances 19 and 20, 33 and 34, 35 and 36,
etc.). This behaviour by PSO method is entirely dependent on
the structure of the vehicle as vehicle models with a greater
surface area inside the hemisphere S have a higher chance
that an estimated camera pose on S can intersect with any
of the model’s triangles. As the intersection results in a valid

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 8

position, all the computations need to be performed for the
iteration, resulting in higher computational time. Overall, the
PSO method was faster than the BO method for 22 out of
the 25 instances in the first two groups. However, in the last
two groups, the BO method is faster than the PSO method
for 23 out of the 25 instances. On an average, the required
computational time using the PSO method is 888.5s whereas,
it is 266.3s using the BO method. The average computational
times using the PSO method are 38s, 106s, 622s, and 2, 875s,
for the first to the fourth groups, respectively. From these
averages it can be seen that the computational complexity
increases w.r.t. the number of triangles present in the vehicle’s
polygon mesh model. Whereas, the required computational
times of 161s, 196s, 211, and 506s for the first to the fourth
groups, respectively, using the BO method show that the
complexity of the BO method is relatively constant to the
number of triangles in the vehicle’s mesh model.

A. Comparison against discrete model

To further evaluate the performance of the proposed method
for optimization of camera poses in continuous space, we
compare it against a similar CPO problem modelled in discrete
space, [33]. The two methods are tested on 54 instances of
different categories of 3D models of vehicles. To test the
discrete method on the same simulated environments, the
polygon mesh models were voxelized to convert them into
a 3D volume. Voxelization discretises the vehicle model from
irregular vertices and faces into a structured grid with equal
spacing between consecutive voxel centers. Each grid point
on the voxelized vehicle model’s surface represents a camera
position. Each point is associated with a surface normal which
becomes the camera’s orientation (view direction vector) for
that camera position. Each orientation is then rotated about
it’s up and right directions at equal steps of ∼ 14o. Further
details about the discrete space model can be seen in, [33].
The only difference between the simulated environments for
both the methods is that the camera poses for the discrete
space model are modelled using discrete binary variables. For
the discrete method, coverage for all possible camera poses is
pre-computed and stored in a lookup table which is used by
the optimization algorithm. This pre-computation step filters
out part of the camera poses on the basis of occlusion and
minimum required coverage by an individual camera. The
complexity of the algorithm for the discrete model depends
on the number of entries present in the lookup table. For a
fair comparison between the continuous and discrete models,
we adjust the parameters during this filtering step so that the
number of entries in the lookup table roughly matches with the
number of triangles in the polygon mesh model. The discrete
space model is tested using the LH-RPSO method with 30
particles and run for 100 iterations. All tests were run with
N = 5 cameras with a horizontal FoV of 75o and a vertical
FoV of 56.25o.

Table II presents a comparison between the coverage values
and computational times for the continuous and discrete mod-
els on 54 instances of different types of vehicle models. The
instances are arranged in the table in ascending order of the

TABLE II
COMPARISON OF COVERAGE AND OPTIMIZATION TIMES OF CONTINUOUS

MODEL AND THE DISCRETE MODEL.

Instance # # of △s Coverage (%) Time (s)

C D C D

1 1 468 100.0 82.7 15 3
2 472 100.0 83.6 16 3
3 560 100.0 84.6 23 5
4 592 99.0 85.1 17 5
5 686 100.0 80.0 17 8
6 812 100.0 83.6 26 5
7 904 100.0 80.2 28 5
8 1080 99.5 83.6 30 6
9 1104 98.8 77.5 31 8
10 1213 100.0 82.5 62 10
11 1367 100.0 84.4 24 7
12 1543 100.0 88.2 38 11
13 1805 100.0 80.0 35 11

14 2078 93.8 84.6 20 10
15 2122 100.0 81.5 95 18
16 2240 99.7 87.1 277 38
17 2612 100.0 79.7 163 23
18 2688 100.0 86.7 276 43
19 2776 100.0 83.9 94 22
20 3309 100.0 86.9 43 27
21 3520 100.0 78.7 177 28
22 3600 99.2 83.8 113 30
23 3753 100.0 87.0 51 18
24 4910 97.2 80.6 77 21
25 5468 100.0 83.3 149 25
26 5704 100.0 80.6 277 32

27 6160 100.0 82.3 94 29
28 6799 100.0 86.8 119 47
29 6800 100.0 86.1 136 40
30 6924 98.7 82.7 62 42
31 7282 99.9 80.8 628 237
32 7536 100.0 82.4 385 53
33 10164 100.0 89.0 182 162
34 11607 100.0 82.2 246 70
35 12496 98.7 82.5 260 67
36 13861 100.0 82.8 333 66
37 14191 100.0 81.9 226 57
38 16204 100.0 88.4 130 112
39 16565 100.0 83.1 511 133
40 17570 92.8 84.8 267 182

41 22127 97.6 87.5 403 144
42 22962 99.3 86.8 340 115
43 23201 100.0 86.4 200 124
44 26119 100.0 88.0 441 140
45 30840 98.7 85.0 563 139
46 31084 99.9 86.7 976 403
47 31328 96.1 81.6 360 410
48 31817 97.1 78.6 1118 248
49 34666 100.0 85.6 410 195
50 36694 100.0 86.2 510 176
51 38313 100.0 83.4 694 281
52 52110 98.6 86.5 724 259
53 64165 78.8 83.9 421 755
54 64834 95.4 81.3 534 1083

number of triangles, nt, present in the corresponding vehicle’s
polygon mesh models. Of these, 27 instances (11-15,18,24,27-
28,30,33-41,45-48 and 51-54) are of models of heavy vehicles
used in the construction industry such as, bulldozer, dumper,
lift truck, tractor, etc. The remaining instances are models of
smaller vehicles such as, different types of cars and vans.
Although care was taken to ensure that the number of variables
present in the discrete model matches the number of triangles

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 9

in the continuous model, it is impossible to match them exactly
as we do not have direct control over how many variables get
selected after the visibility checking step in the discrete model.
During optimization, on an average across all the instances,
the discrete model has 900 variables more than the number of
triangles in the continuous model. From the coverage results
it can be observed that the continuous model clearly performs
better than the discrete model. The instances are divided into
four groups based on a threshold on nt. On an average, the
percentage of control points covered by the continuous model
is better than the discrete model by 17.0, 15.8, 15.3, and 12.4
percentage points for the four groups of instances, respectively.

Looking at near 100% coverage for most cases, it may
seem that N is redundant. Considering the horizontal FoV
of the cameras, the ideal number of cameras for full coverage
is 360

75 = 4.8. This justifies our choice of selecting N = 5
cameras as N = 4 cameras may not produce 100% coverage
for any of the cases. As the discrete model collects samples
at equal intervals, the values between two samples are missed
during optimization. There is a chance that a camera placed at
one of the intermediate values between two sampled positions
may provide better coverage. Additionally, there is a gap of
14o between two consecutive camera orientations. This gap
is significant as small variation in the orientation angle may
severely effect coverage by the camera. While accuracy may be
improved by reducing the step size between two consecutive
rotations of the camera view but doing so results in a higher
number of possible camera poses in the lookup table. The
continuous model does not have any such limitations as the
camera poses can be precisely located on the vehicle’s surface
with floating point accuracy. The continuous model can also
estimate camera orientations to an accuracy of less than 1o.
Due to these limitations in the placement of cameras in the
discrete model, the placed cameras may have a relatively
higher overlap between adjacent cameras. Whereas, cameras
in the continuous model can be precisely placed to minimize
overlap and increase overall coverage.

In only one case, instance 53, the discrete model performed
better than the continuous model in terms of coverage of
control points. This instance is a model of a tractor scraper.
The vehicle has an irregular structure with many holes through
the structure and perturbations covering over the holes only
on some sides. Due to the presence of holes, the traced rays
from the outer hemisphere on to the vehicle model’s surface
may end up in the holes. As a result, the camera pose gets
obstructed by the other surface which may be covering the hole
partly making the camera pose invalid. As fewer valid camera
poses were found during the given number of iterations of the
optimization algorithm, the coverage was relatively lower for
this particular vehicle model. On the other hand, the possible
camera poses in the discrete model are collected directly
form the outermost surfaces. Due to this reason, camera poses
present inside the holes on the vehicle surface’s structure do
not end up in the look-up table, leaving only valid camera
poses for the optimization algorithm to choose from. As a
result, the discrete model performed better for this instance.

In Table II, the shorter computation times between the
continuous and discrete models are highlighted in bold. The

discrete model has shorter computation times for all instances
except for instances 47,53, and 54. Instances 47 and 54 are
models of a mining truck in two different sizes and instance
53 is a polygon mesh model of a tractor scraper. Both these
models have relatively large surface area, resulting in a greater
number of discrete samples. This increases the computational
time for the visibility checking part and the optimization
part for the discrete model. Whereas, the continuous model
must have encountered a greater number of invalid camera
poses resulting in fewer calculations and lower computational
times. Although the computational times show an increasing
trend with increasing number of triangles in the polygon
mesh model, it is not so evident for the continuous model
as the time varies greatly for models with similar size, in
some cases. The reasoning for this behaviour is same as
stated previously that computational times are higher when
a majority of the estimated camera poses turn out to be valid
as all the computations are performed.

Whereas, most of the computations are skipped when a
camera pose is found to be invalid in any of the iterations.
Whereas, computational times for the discrete method show a
more stable increase with increasing size of the models. There
are stray cases of high computational times for some models
compared to other models of similar size such as, instances
31,33,46, etc. 31, 33, and 46 are models of a humvee, a
digger machine, and a tour bus, respectively. The outer surface
of these vehicles have a box-like structure with large planar
body on all sides, resulting in more camera poses that pass
through the visibility checking steps when compared to other
similarly sized vehicle models. As the number of variables
increases, number of computations also increase resulting in
higher computational times. On an average the discrete model
is faster than the continuous model by 14s, 113s, 141s, and
233s in the four groups, respectively. Over all the 54 instances,
the discrete optimization model is faster than the continuous
optimization model by 128 seconds.

To evaluate the performance of the proposed continuous
CPO model, we show visualizations of the simulated environ-
ment with the N = 5 cameras placed at the optimized poses.
The visualizations for four instances are presented in Figure
3. The visualizations show results of both the continuous and
discrete methods for each instance. From the visualizations we
can see that optimized camera poses for the continuous model
are placed such that the overlap between them is minimized.
Whereas, camera poses for the discrete model have relatively
more overlap between them, resulting in more gaps between
camera FoVs and lower overall coverage. Another limitation of
the discrete model is also evident from the visualizations. The
FoV of a camera in the discrete is described by five planes one
of which is the far plane. The distance of this plane form the
camera position needs to be carefully specified as points lying
beyond this plane may not be counted as covered even though
an extended version of the same camera’s FoV may cover
them. These points do not get counted into the overall coverage
resulting in lower coverage percentage for the discrete model.

Another downside of the discrete model can be seen in
Figure 3 (d), where there is a large gap between camera FoVs
at the rear of the vehicle. Additional sampling of camera

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 10

Fig. 3. Comparison of visualizations of the optimal solutions from the continuous CPO model and the corresponding discrete CPO model. The labels in the
middle show the instance number and the name of the vehicle present in the model. The image above the label refers to the result from continuous CPO
problem, and the one below the label refers to the result from discrete CPO problem, for that instance.

poses and decreasing the step size between orientations of
cameras may have helped in reducing this gap. While the con-
tinuous method provides better coverage, the discrete model
is faster by at least two times. The discrete model is faster
primarily because the geometric calculations are done only
once whereas, for the continuous model, coverage must be
calculated in every iteration. However, the additional coverage
obtained by the continuous method outweighs the advantage
of faster computational speed of the discrete model.

V. CONCLUSION AND FUTURE WORK

This article presented a new camera placement optimization
formulation in continuous space domain for optimizing poses
of a multi-camera network on the surface of 3D polygon
mesh models of vehicles for capturing surrounding view. The
camera poses are defined in the continuous domain and a non-
linear objective function, suitable for gradient-free balckbox
optimization methods is modelled as the sum of discrete binary
variables representing coverage of the vehicle’s surrounding
area. The method was tested on 50 instances of 3D mesh
models of vehicles using two approximate optimization al-
gorithms in the first part. Experiments from the first part
show that the proposed model can be used for 3D mesh
models of vehicles of any shape and size. In the second part
of experiments, it is compared against a discrete problem
formulation on another 54 instances using a continuous and a
discrete variant of particle swarm optimization. Results show
that the problem formulation in the continuous domain is more
effective than optimization in the discrete domain in terms
achieving maximum coverage of the vehicle’s surrounding
area and in terms of computational time required. Visual-
izations of the results show that the proposed approach can
effectively tackle the combinatorial aspect of the problem
with only a few exceptions of vehicle models with irregular
surfaces. For future work, more optimization methods need

to be tested which can better exploit the combinatorial aspect
of the problem. Different types of cameras can be tested by
exploiting camera matrix-based coverage model to further test
the versatility of the proposed method. Advanced ray tracing
algorithms may be used to decrease the computational time
for the PSO optimization method.

REFERENCES

[1] W. Ostachowicz, R. Soman, and P. Malinowski, “Optimization of sensor
placement for structural health monitoring: A review,” Structural Health
Monitoring, vol. 18, no. 3, pp. 963–988, 2019.

[2] H. An, B. D. Youn, and H. S. Kim, “A methodology for sensor number
and placement optimization for vibration-based damage detection of
composite structures under model uncertainty,” Composite Structures,
vol. 279, p. 114863, 2022.

[3] A. V. Savkin and H. Huang, “Navigation of a uav network for optimal
surveillance of a group of ground targets moving along a road,” IEEE
Transactions on Intelligent Transportation Systems, vol. 23, no. 7, pp.
9281–9285, 2021.

[4] T. Koch, M. Körner, and F. Fraundorfer, “Automatic and semantically-
aware 3d uav flight planning for image-based 3d reconstruction,” Remote
Sensing, vol. 11, no. 13, p. 1550, 2019.

[5] X. Wang, H. Zhang, S. Fan, and H. Gu, “Coverage control of sensor
networks in iot based on rpso,” IEEE internet of things journal, vol. 5,
no. 5, pp. 3521–3532, 2018.

[6] A. A. Altahir, V. S. Asirvadam, P. Sebastian, N. H. B. Hamid, and
E. F. Ahmed, “Optimizing visual sensors placement with risk maps using
dynamic programming,” IEEE Sensors Journal, vol. 22, no. 1, pp. 393–
404, 2021.

[7] M. S. Suresh, A. Narayanan, and V. Menon, “Maximizing camera
coverage in multicamera surveillance networks,” IEEE Sensors Journal,
vol. 20, no. 17, pp. 10 170–10 178, 2020.

[8] J. Kim, Y. Ham, Y. Chung, and S. Chi, “Systematic camera placement
framework for operation-level visual monitoring on construction job-
sites,” Journal of Construction Engineering and Management, vol. 145,
no. 4, p. 04019019, 2019.

[9] S. Indu, S. Srivastava, and V. Sharma, “Optimal camera placement
and orientation of a multi-camera system for self driving cars,” in
Proceedings of the 2020 4th International Conference on Vision, Image
and Signal Processing, 2020, pp. 1–5.

[10] J. Dey, W. Taylor, and S. Pasricha, “Vespa: A framework for optimizing
heterogeneous sensor placement and orientation for autonomous vehi-
cles,” IEEE Consumer Electronics Magazine, vol. 10, no. 2, pp. 16–26,
2020.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 11

[11] D. Buljeta, M. Vranješ, Z. Marčeta, and J. Kovačević, “Surround view
algorithm for parking assist system,” in 2019 Zooming Innovation in
Consumer Technologies Conference (ZINC). IEEE, 2019, pp. 21–26.

[12] F. Rosique, P. J. Navarro, C. Fernández, and A. Padilla, “A systematic
review of perception system and simulators for autonomous vehicles
research,” Sensors, vol. 19, no. 3, p. 648, 2019.

[13] Z. Zhang, “A flexible new technique for camera calibration,” IEEE
Transactions on pattern analysis and machine intelligence, vol. 22,
no. 11, pp. 1330–1334, 2000.

[14] C. Audet and W. Hare, Derivative-free and blackbox optimization.
Springer, 2017.

[15] E. Hörster and R. Lienhart, “On the optimal placement of multiple visual
sensors,” in Proceedings of the 4th ACM international workshop on
Video surveillance and sensor networks, 2006, pp. 111–120.

[16] U. M. Erdem and S. Sclaroff, “Automated camera layout to satisfy task-
specific and floor plan-specific coverage requirements,” Computer Vision
and Image Understanding, vol. 103, no. 3, pp. 156–169, 2006.

[17] J. Kritter, M. Brévilliers, J. Lepagnot, and L. Idoumghar, “On the optimal
placement of cameras for surveillance and the underlying set cover
problem,” Applied Soft Computing, vol. 74, pp. 133–153, 2019.

[18] T.-H. Kim and T.-H. Park, “Placement optimization of multiple lidar
sensors for autonomous vehicles,” IEEE Transactions on Intelligent
Transportation Systems, vol. 21, no. 5, pp. 2139–2145, 2019.

[19] J. Zhao, R. Yoshida, S.-c. S. Cheung, and D. Haws, “Approximate tech-
niques in solving optimal camera placement problems,” International
Journal of Distributed Sensor Networks, vol. 9, no. 11, p. 241913, 2013.

[20] K. Veenstra and K. Obraczka, “Grid partition: an efficient greedy
approach for outdoor camera iot deployments in 2.5 d terrain,” in
2020 29th International Conference on Computer Communications and
Networks (ICCCN). IEEE, 2020, pp. 1–9.

[21] M. Brévilliers, J. Lepagnot, L. Idoumghar, M. Rebai, and J. Kritter,
“Hybrid differential evolution algorithms for the optimal camera place-
ment problem,” Journal of Systems and Information Technology, vol. 20,
no. 4, pp. 446–467, 2018.

[22] C. Gao, X. Yao, T. Weise, and J. Li, “An efficient local search heuristic
with row weighting for the unicost set covering problem,” European
Journal of Operational Research, vol. 246, no. 3, pp. 750–761, 2015.

[23] W. Lin, F. Ma, Z. Su, Q. Zhang, C. Li, and Z. Lü, “Weighting-
based parallel local search for optimal camera placement and unicost
set covering,” in Proceedings of the 2020 Genetic and Evolutionary
Computation Conference Companion, 2020, pp. 3–4.

[24] B. Cao, M. Li, X. Liu, J. Zhao, W. Cao, and Z. Lv, “Many-objective
deployment optimization for a drone-assisted camera network,” IEEE
transactions on network science and engineering, vol. 8, no. 4, pp. 2756–
2764, 2021.

[25] Y. Zhang, H. Luo, M. Skitmore, Q. Li, and B. Zhong, “Optimal camera
placement for monitoring safety in metro station construction work,”
Journal of construction engineering and management, vol. 145, no. 1,
p. 04018118, 2019.

[26] X. Wang, H. Zhang, and H. Gu, “Solving optimal camera placement
problems in iot using lh-rpso,” IEEE Access, vol. 8, pp. 40 881–40 891,
2019.

[27] Y. Morsly, N. Aouf, M. S. Djouadi, and M. Richardson, “Particle swarm
optimization inspired probability algorithm for optimal camera network
placement,” IEEE Sensors Journal, vol. 12, no. 5, pp. 1402–1412, 2011.

[28] C.-H. Chen, Y. Yao, W.-W. Hsu, A. Koschan, and M. Abidi, “Continuous
camera placement using multiple objective optimisation process,” IET
Computer Vision, vol. 9, no. 3, pp. 340–353, 2015.

[29] N. Smith, N. Moehrle, M. Goesele, and W. Heidrich, “Aerial path
planning for urban scene reconstruction: A continuous optimization
method and benchmark,” ACM Transactions on Graphics, vol. 37, no. 6,
pp. 1–15, 2018.

[30] N. Kirchhof, “Optimal placement of multiple sensors for localization
applications,” in International Conference on Indoor Positioning and
Indoor Navigation. IEEE, 2013, pp. 1–10.

[31] Z. Ismail, S. Mustapha, M. A. Fakih, and H. Tarhini, “Sensor placement
optimization on complex and large metallic and composite structures,”
Structural Health Monitoring, vol. 19, no. 1, pp. 262–280, 2020.

[32] R. F. Tobler and S. Maierhofer, “A mesh data structure for rendering
and subdivision,” WSCG’2006, 2006.

[33] V. A. Puligandla and S. Lončarić, “A multiresolution approach for large
real-world camera placement optimization problems,” IEEE Access,
vol. 10, pp. 61 601–61 616, 2022.

[34] A. H. Victoria and G. Maragatham, “Automatic tuning of hyperparam-
eters using bayesian optimization,” Evolving Systems, vol. 12, pp. 217–
223, 2021.

[35] J. Wu, X.-Y. Chen, H. Zhang, L.-D. Xiong, H. Lei, and S.-H. Deng,
“Hyperparameter optimization for machine learning models based on
bayesian optimization,” Journal of Electronic Science and Technology,
vol. 17, no. 1, pp. 26–40, 2019.

[36] C. Hocine and A. Benaissa, “New binary particle swarm optimization
algorithm for surveillance and camera situation assessments,” Journal
of Electrical Engineering & Technology, pp. 1–11, 2021.

[37] X. Wang, H. Zhang, S. Bai, and Y. Yue, “Design of agile satellite
constellation based on hybrid-resampling particle swarm optimization
method,” Acta Astronautica, vol. 178, pp. 595–605, 2021.

[38] W. A. Hoff, K. Nguyen, and T. Lyon, “Computer-vision-based registra-
tion techniques for augmented reality,” in Intelligent Robots and Com-
puter Vision XV: Algorithms, Techniques, Active Vision, and Materials
Handling, vol. 2904. SPIE, 1996, pp. 538–548.

[39] R. Hartley and A. Zisserman, Multiple view geometry in computer vision.
Cambridge university press, 2003.

[40] E. W. Weisstein, “Rotation matrix,” https://mathworld. wolfram. com/,
2003.

[41] A. Mavrinac and X. Chen, “Modeling coverage in camera networks: A
survey,” International journal of computer vision, vol. 101, pp. 205–226,
2013.

[42] C. Qian and H. Qi, “Coverage estimation in the presence of occlu-
sions for visual sensor networks,” in Distributed Computing in Sensor
Systems: 4th IEEE International Conference, DCOSS 2008 Santorini
Island, Greece, June 11-14, 2008 Proceedings 4. Springer, 2008, pp.
346–356.

[43] M. S. Nobile, P. Cazzaniga, D. Besozzi, R. Colombo, G. Mauri, and
G. Pasi, “Fuzzy self-tuning pso: A settings-free algorithm for global
optimization,” Swarm and evolutionary computation, vol. 39, pp. 70–
85, 2018.

[44] N. Stander and K. Craig, “On the robustness of a simple domain
reduction scheme for simulation-based optimization,” Engineering Com-
putations, vol. 19, no. 4, pp. 431–450, 2002.

V. Anirudh Puligandla was born in Hyderabad,
Telangana, India in 1992. He received B.Tech degree
in electronics and communications engineering from
Amity University, Jaipur, Rajasthan, India in 2014
and B.Sc. degree in computer vision and robotics
from University of Burgundy, France in 2016. He re-
ceived M.Sc. degree in computer vision and robotics
from University of Burgundy, France, University of
Girona, Spain and Heriot Watt university, Scotland
in 2018 as part of an Erasmus Mundus Joint Masters
degree program. He is currently pursuing a Ph.D.

degree program at University of Zagreb, Zagreb, Croatia under a Marie-Curie
Actions ITN fellowship. His research interests include discrete and continuous
optimization, signal and image processing, 3D reconstruction from multiple
camera systems using multi-view stereo.

Dr. Sven Lončarić is a professor of electrical
engineering and computer science at the Faculty of
Electrical Engineering and Computing, University of
Zagreb, Croatia. As a Fulbright scholar, he received
a Ph.D. degree in electrical engineering from the
University of Cincinnati, OH in 1994. From 2001-
2003, he was an assistant professor at the New Jersey
Institute of Technology, USA. His areas of research
interest are image processing and computer vision.
He was the principal investigator on a number of
R&D projects. Prof. Lončarić co-authored more than

250 publications in scientific journals and conferences. He is the director of
the Center for Computer Vision at the University of Zagreb and the head
of the Image Processing Laboratory. He is a co-director of the Center of
Excellence in Data Science and Cooperative Systems. He is a fellow of the
Croatian Academy of Sciences and Arts and a senior member of IEEE. Prof.
Lončarić received several awards for his scientific and professional work.

Biography

Venkata Anirudh Puligandla was born in Hyderabad, Telangana, India in 1992. He received

B.Tech degree in electronics and communications engineering from Amity University, Jaipur,

Rajasthan, India in 2014 and B.Sc. degree in computer vision and robotics from University of

Burgundy, France in 2016. He received M.Sc. degree in computer vision and robotics from

University of Burgundy, France, University of Girona, Spain and Heriot Watt university, Scot-

land in 2018 as part of an Erasmus Mundus Joint Master’s degree program. He obtained his

Ph.D. degree in computer science, in April 2024, from the Department of Electronic Systems

and Information Processing, Faculty of Electrical Engineering and Computing, University of

Zagreb, Croatia under a Marie-Curie Actions ITN fellowship from 2019. From May 2023, he

is working as an Application Engineer at dSPACE d.o.o.. His research interests include linear,

non-linear and inverse programming, optimization, image reconstruction, compressed sensing,

3D reconstruction, and image segmentation.

95

List of Publications

Journal Publications
•Puligandla VA, Lon čarić S. A Continuous Camera Placement Optimization Model For

Surround View. IEEE Transactions on Intelligent Vehicles. 2023 Jul 26.

•Puligandla VA, Lon čarić S. A Supervoxel Segmentation Method With Adaptive Centroid

Initialization for Point Clouds. IEEE Access. 2022 Sep 12;10:98525-34.

•Puligandla VA, Lon čarić S. A multiresolution approach for large real-world camera place-

ment optimization problems. IEEE Access. 2022 May 23;10:61601-16.

Conference Publications
•Puligandla VA, Lon čarić S. Optimal Camera Placement To Visualize Surrounding View

From Heavy Machinery. InProceedings of the 2020 2nd Asia Pacific Information Tech-

nology Conference 2020 Jan 17 (pp. 52-59).

96

Životopis

Venkata Anirudh Puligandla rod̄en je 1992. godine u Hyderabadu; Telengana, Indija.. Stekao

je diplomu B.Tech. iz elektronike i komunikacijskog inženjerstva na Sveučilištu Amity, Jaipur,

Rajasthan, Indija 2014. godine te 2018. godine stječe B.Sc. diplomu iz područja računalnog

vida i robotike na Sveučilištu Burgundija, Francuska; Sveučilištu Girona, Španjolska i Sveučil-

ištu Heriot Watt, Škotska u sklopu zajedničkog magistarskog programa Erasmus Mundus. Od

2019. godine pohad̄a doktorski studij na Zavodu za elektroničke sustave i obradbu informacija u

sklopu Marie-Curie Actions ITN stipendije na Fakultetu elektronike i računarstva, Sveučilište u

Zagrebu. Od svibnja 2023. radi kao Application Engineer u dSpace d.o.o. Njegovi istraživački

interesi uključuju linearno, nelinearno i inverzno programiranje, optimizaciju, rekonstrukciju

slike, komprimirani senzor, 3D rekonstrukciju i segmentaciju slike.

97

	Introduction
	Problem Statement
	Contributions
	Thesis Structure

	Overview of Computer Vision Principles and Visualization
	3D Computational Geometry
	Supervoxel Segmentation
	3D Visualization & Parallel Computing

	Overview of Camera Placement Optimization
	Modelling Space
	CPO for vehicle surround-view

	Modelling Camera FoV
	Visibility Matrix
	Variables and Problem Formulation
	Optimization
	Linear Programming

	Greedy Heuristics
	Particle Swarm Optimization
	Sampling-based methods
	Other Optimization Algorithms

	Continuous CPO

	Scientific Contributions
	BIP-based method for vehicle surround-view coverage
	CPO in Continuous Domain

	Conclusion and Future Work
	List of publications
	Author's contribution to the publications
	Literatura
	Publications
	Optimal Camera Placement To Visualize Surrounding View From Heavy Machinery
	A multiresolution approach for large real-world camera placement optimization problems
	A Supervoxel Segmentation Method With Adaptive Centroid Initialization for Point Clouds
	A Continuous Camera Placement Optimization Model For Surround View

	Biography
	List of Publications
	Životopis

