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ABSTRACT10

The current procedures for measuring underwater radiated noise (URN) are designed for cooperating vessels in controlled
areas. As such, not a lot of data is available for the URN of unidentified vessels of opportunity (VOO), especially for small
vessels that do not carry an automatic identification systems (AIS). To this end, we assembled a database of 1148 VOO’s URN
from acoustic and visual recordings of ferries, fishing boats, yachts, and small speed boats made within Šibenik canal, Croatia.
The database comprises source pressure levels at the closest point of approach, picture and video of the vessel, and the
vessel’s speed, size, and type. A shared webpage allows filtering and comparing vessel types and charactaristics. To the best
of our knowledge, this is one of the largest databases of vessel URN in general and the most extensive database for small
coastal vessels. In this paper, we share the structure of our database, the analysis methodology. We conclude that the URN of
small vessels is significant and comparible to large vessels.

11

Background & Summary12

Underwater radiated noise (URN) from shipping activity has been identified as a significant component of ocean ambient13

noise1–3, with recent studies indicating that URN doubles in intensity every decade. The effects of URN on various components14

of the marine ecosystem, from mussels to marine mammals, have been extensively studied across disciplines4. Several reports15

(e.g.,5, 6) suggest that blunt tissue trauma comparable to blast injuries and behavioral changes reflected in social stability16

and foraging ability have the potential to affect aquatic animals residing in close proximity to a vessel emitting high sound17

intensities from its propellers or onboard engines. Research has shown that URN from vessel activity leads to a myriad of18

adverse effects on fish, crustaceans, and especially on cetaceans4, 7–10. In particular, the responses of a given aquatic animal to19

anthropogenic noise can be divided into five main categories11: (I) audibility; (II) behavioral responses reflected in changes in20

the intensity, frequency and intervals of the animal’s vocalizations as well as stress behavior; (III) masking of sounds required21

for communication, localization and foraging; (IV) physiological auditory threshold shifts due to inner ear hair cell fatigue; and22

(V) physical damage (injury) to the auditory system. In addition, there are direct risks associated with physical disturbance, as23

in the cases where sea turtles12 and large baleen whales13 colliding with vessels, partly because the low-frequency sounds from24

ships interfere with their navigation. Because of these effects, URNs generated by ships are considered a source of pollution25

and should be monitored regularly by measuring ship noise.26

Shipping URN includes high-power impulsive transient waves generated during ignition14, narrow-band noises generated27

from thrusters, engines as well pumps and generators15, and cavitation noises. The latter is caused by the fast enough turn of28

the propeller to allow low-pressure areas of the propeller to drop below the vapor pressure and the seawater to boil at ambient29

temperature. When the bubbles reach ambient pressure behind the propeller, they implode, yielding broadband stationary noise.30

The results are: (1) low-frequency noise (around 50 Hz, distributed over a huge area, which impacts the communication of large31

marine mammals like baleen whales and dolphins); (2) noise from 4-stroke engines (around 200-800 Hz, independent of speed,32

medium distribution, which likely impacts toothed whales); and (3) high-frequency noise with higher harmonics due to the33

Lloyd’s mirror effect16 (1 kHz-10 kHz, speed-dependent, which can bear a significant amount of acoustic energy, and likely34

effects small mammals and fish).35

Standards have been established to limit the transmitted acoustic power per exposure time17, and regulatory organizations36

such as the European Union, the Convention on the Conservation of Migratory Species (CMS), and the Convention on Biological37

Diversity (CBD), have adopted resolutions aimed at reducing underwater noise from ships and other man-made noise sources.38

There have even been recent efforts by the shipping industry to reduce URN by creating specialized notations for ships that39



meet certain noise criteria18. Although there are standards for quantifying the URN of vessels19, these require the cooperation40

of the ship: sailing on a fixed route and at nominal speed. The measurement is carried out at deep sea and under low-noise41

conditions. These conditions do not apply to the URN measurement of a vessel of opportunity (VOO). Specifically, vessels that42

are not obliged or avoid carrying an automatic identification system (AIS). As a result, the magnitude of noise from such vessels43

remains under-explored, and a quantitative study examining the extent of shipping URN has yet to be thoroughly conducted.44

The main barrier to such studies is the establishment of a proper approach to match the size and type of a vessel to its URN.45

In this paper, we have addressed the challenge of quantifying the URN of VOO by integrating acoustic measurements with46

video footage processed using machine learning to estimate the vessel’s type, speed, and size. This negated the need to detect47

the vessel’s URN in the acoustic data, and the closest point of access (CPA) could be readily analyzed by time synchronization48

of the optical and acoustic data. The results of our work is an openly shared dictionary for URN of VOO. The data was collected49

at the entrance to St. Anthony’s Channel near Šibenik, Croatia. Through this channel, a daily traffic of hundreds of vessels50

exists. Most of these vessels do not carry an AIS but are easy to observe visually as they enter or exit the channel. In total, 114851

vessels were assessed over a period of 23 days. Our data comprises pictures and videos of the vessels, the spectrum of their52

URN at the CPA, and meta-data in the form of the vessel’s type, size, height, and speed. In the following, we outline our data53

collection method, the details of the database and its front-end tool that allows comparison of shipping URN.54

Current Approaches in Shipping Noise Measurement55

The literature regarding URN measurement focuses on assessing the noise levels and spectral characteristics of various vessel56

types under different operating conditions (e.g., speed, cargo load, draft, length, and machinery load). There are currently two57

main approaches for assessing URN from vessels; the first is a "full-control" approach where specific vessels are chartered to58

conduct measurements under specified operating conditions20–22. This approach requires near full control over the measurement59

and operating conditions (e.g., speed of the vessel, CPA range), thereby enabling highly accurate measurements as well60

as the ability to conduct repetitive measurements of the same vessel under different operating conditions. However, the61

cost-effectiveness of this approach also implies that usually, only a small number of vessels is assessed. The second and more62

prominent approach is the "opportunistic" or in situ approach, where sensors and data collecting units are placed near main63

waterways, and measurements of VOOs are acquired as they transit the area23–25. While the in situ approach lacks the ability to64

control the measurement or operating conditions, it does enable the collection of a larger sample number over longer periods of65

time.66

The most common methodology utilized in both the full-control and the in situ approaches is cross-referencing acoustic67

data collected by hydrophones with vessel data. In this aspect, the introduction of the Automatic Identification System (AIS)68

in the early 2000s has created an accessible and convenient venue for collecting vessel data. The bulk of current research69

frameworks have primarily depended on AIS for retrieving vessel data23, 26–28. While the widespread use of AIS creates more70

opportunities for full-control and opportunistic URN assessments, it is also important to point out its inherent limitations - as71

noted in the SOLAS regulation V/19.229, AIS transponders are a legal requirement only for large commercial vessels, e.g.,72

cargo vessels, tankers, passenger ships. This implies that smaller commercial and recreational vessels that are abundant in73

coastal areas are mostly absent from the current research agenda. The importance of this absence is further emphasized by74

two aspects. Firstly, the numerical comparison between the number of large commercial vessels and the number of small75

recreational vessels - the world’s total fleet of large commercial vessels is comprised of nearly 109,000 ships30, while there are76

nearly 12 million recreational vessels in the US alone31. Secondly, the scarce research that has addressed URN from small77

recreational vessels suggests that under certain conditions, URN from such vessels may be as high or even exceed those of78

large commercial vessels26, 32, 33. Accordingly, it would seem imperative that a novel approach for assessing URN from smaller79

vessels is required to fill this gap.80

The main challenge for conducting wide-scale assessments of small vessels not equipped with AIS is the retrieval of vessel81

data in order to collect information on the vessel’s type, speed, size, and CPA range. This is available through sensors such as82

radar and HD cameras. Cope et al.32, for example, utilized a multi-sensor system (Marine Monitor - M2) comprised of AIS,83

Radar, and an HD camera for assessing URN levels of vessels. While this approach enables retrieving essential vessel data such84

as vessel speed, course, and CPA range, other important parameters, such as vessel size, cannot be accurately assessed. To85

account for the need to collect acoustic data as well as detailed vessel information accurately, we propose a novel approach86

based on the integration of acoustic and optical sensors.87

Current Approaches in Vessel Detection from Optical Cameras88

The methods for detecting ships using cameras are designed to cope with motion and observation noise. The vessel detection89

approach in34 performs background subtraction to detect primary motion in the scene while avoiding interference from wave90

motion using saliency detection. Similarly, in35, the authors propose a video-based port surveillance that combines context91

and motion detection. The context part of the algorithm involves graph-based segmentation to identify the ship within the92

water region, while the motion saliency algorithm utilizes the faster motion of the ship relative to its surroundings. A different93
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approach is proposed in36, where eigenvalues of region covariance are computed to distinguish man-made objects from the94

natural background. Another type of scene separation using optical flow is proposed in37 to estimate the moving region in95

the image, and a Gabor filter is implemented for extracting texture features indicating where the ships are located. However,96

different possible vessel types make it difficult to achieve robust detection and classification.97

Due to changing visibility conditions and different shapes of vessels, solutions have recently been developed to identify98

ships with optical cameras using machine learning methods. These require training with large data sets. For example, the99

dataset provided in38 contains 5,500 ship images of 109 different classes taken in the Porto Cesareo Marine Protected Area.100

Results of ship identification using a discriminatively learned CNN are presented. Another dataset is available in39, comprising101

70,513 vessels, which were recorded in 48,966 images from 10 camera perspectives. As a basis for vessel identification, the102

authors propose the Single Shot Detector (SSD) algorithm, which supports significant variations in vessel size and aspect ratios.103

Current approaches to vessel identification are based on transfer learning from already trained models. In40, the YOLOv3-104

tiny network is used to recognize vessels and distinguish between six vessel types. For the detection of large vessels, which105

are easily disturbed by surrounding buildings, waves and lights on the water surface, the Convolutional Block Attention106

Module (CBAM) is used to focus the model on the target vessel. In41, the YOLOv5XL model is used to fuse camera data107

with AIS information. Through transfer learning, only the last layer was trained with annotated data, which contributes to the108

generalization of the model. Another application of the YOLOv5 network is presented in42 to classify between vessel types.109

What distinguishes our work from previous work in vessel detection from optical cameras is the use of the YOLOv5110

network to detect different types of vessels traveling through narrow canals, and to estimate their size and speed. This system111

provides more information about the vessel than a bounding box within the image and can manage multiple vessels within a112

single image. This additional information is used to establish a better link between the vessel’s URN and its characteristics and113

to monitor maritime traffic in narrow areas such as canals, channels, and entrances to marinas with high shipping activity.114

Methods115

Visual Analysis116

Using shore-fixed camera, we attempt to estimate the size, type and speed of any VOO passing through the Šibenik channel. To117

this end, we develop a machine learning based model for vessel detection, tracking and classification from video footage. The118

model provides a bounding box around the vessel. The algorithm then estimates the meter/pixel ratio and determines the size119

of the boat in meters from the width of the bounding box. In turn, the tracking procedure follows the bounding box through120

consecutive frames to estimate the vessel’s velocity.121

Vessel Detection and Classification122

For detection, we used the YOLOv5-based trained model which is a fast training model. The details of this implementation123

are presented in 43 and are given here in brief for completion. The YOLOv5s model is the second smallest of the YOLOv5124

family44. The model includes a backbone based on Darknet53 with Cross Stage Partial (CSP)45, namely 2 BottleNeckCSP125

modules and one Spatial Pyramid Pooling (SPP)46 block (SPPF) with max pooling (kernel pool size = 5) and a neck based on126

the Path Aggregation Network (PANet). All convolutional layers used a Sigmoid Linear Unit (SiLU) activation function and127

batch normalization except the three layers that form the head of the network (Sigmoid function).128

The model detects and classifies vessels into 9 classes: sailboat, catamaran, small boat, yacht, big yacht, tour boat, passenger129

boat, trawler, medium boat. For vessel detection and classification, the model was trained using 2100 manually labeled images,130

observed in 4 different days, and was validated and tested with 100 and 300 images, respectively, captured on days unrelated to131

the training dataset. Tuned hyper parameters yielded 100 epochs and a batch size of 8. Challenges occur in edge cases when132

a boat exits the frame, causing the bounding box to start shrinking. Avoiding this, we define a region of interest (ROI) that133

isolates edge positions.134

Vessel Size Estimation135

To determine the meter/pixel conversion rates, we used as ground truth 10 vessels from the collected visual data for which the136

size is known by factory specifications. This small dataset included speedboats, catamarans and tourist boats for which the size137

can be easily found online. For each boat, up to 3 images were identified showing the vessel in the beginning, middle, and end138

of the frame. The meter/pixel ratio was calculated for each of the 10 vessels as the relation between real vessel length and139

detection bounding box width. A list of all occurrences for the explored 10 vessels is given in Table 1, and examples of the140

used frames are given in the Fig. 1.141
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Table 1. Boat Dimensions and Pixel Coefficients

Model Length [m] Pixel Width Average Pix. Width Coefficient Err to average

Galeon 640 fly 19.81 0.467, 0.467, 0.47, 0.462 0.466 42.438 0.427
Exess 15 14.63 0.366, 0.355 0.361 40.504 2.361
Lagoon 42 12.8 0.295, 0.301, 0.296 0.298 42.940 -0.0745
Antares 650 6.3 0.145, 0.142, 0.144 0.144 43.667 -0.802
Exess 15 14.63 0.359, 0.360, 0.354 0.358 40.827 2.037
Merry F. 1095 10.5 0.248, 0.242 0.245 42.711 0.153
Mali princ 20 0.659, 0.648 0.653 30.585 12.280
Aloha yacht 32.56 0.736 0.736 44.1803 -1.314
Marex 375 12.05 0.280, 0.275, 0.255 0.270 44.549 -1.683
Greenline 40 12.0 0.280, 0.265 0.272 43.969 -1.104

Average coefficient 42.8655
Standard deviation 1.3485

Figure 1. Image detections of the boats used for the estimation of meter/pixel coefficient).

Velocity estimation142

For estimating the vessel’s speed, we applied the SORT (Simple Online and Realtime Tracking) approach47, which is based on143

Kalman filtering. For vessel dynamics, we consider a constant velocity model. We choose SORT due to its ability to maintain144

track albeit loos of detection for a few frames. This is a typical scenario in our database due to occlusion events where vessels145

cross each other entering or existing the canal. The speed of the vessel is calculated by the distance between the bounding146

boxes at consecutive frames, while accounting for the estimated pixel/meter ratio.147

Vessel Noise Estimation148

Quality Control149

Vessel transits were subjected to quality control on three levels: 1) cross-referencing the data with the HD camera, 2) manually150

reviewing acoustic samples by an expert analyst, and 3) monitoring real-time weather information. Samples were discarded151

from the post-analysis under the following criteria.152

1. A vessel transit occurred between recording segments;153

2. Transit occurred in a time frame where wind speed or sea state exceeded ANSI and ISO standards;154

3. If a vessel was employing an active acoustic system (e.g., echo-sounder/Fish-Finder);155
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4. If a vessel abruptly changed its course or speed;156

5. If a vessel conducted a north/south transit and did not enter or exit the channel;157

6. If another vessel transited the area within the same time frame;158

7. If a marine fauna noise was detected during the vessels transit.159

To calculate the vessel’s source level, SL, we reverse-propagate the received acoustic signal, accounting for the transmission160

loss, TL, to an idealized monopole @ 1m from the source according to ISO standards48, such that161

SL = SPL+TL . (1)

This requires the calculation of the SPL and the transmission loss as follows.162

Received Noise Levels163

Received noise levels (RL) measurements were conducted for the full spectrum of 0.023–24 kHz. The upper-frequency limit is164

set by the sampling rate, while the lower limit accounts for the cutoff frequency resulting from the water depth according to49,165

f0 =
c

4D
√

1− (c/cb)
2
, (2)

where c is the sound speed in water, cb is the sound speed in the seabed, and D is the water depth.166

The time window length used for URN evaluation, which is an essential aspect of the measurement, varies across different167

research frameworks. The approach applied in Pine et al.50 and Zhang et al.27, for instance, utilized a constant time window168

length with no dependence on the length, speed, or range of the vessel. Other approaches chose to apply a variable time window169

depending on the vessel’s physical characteristics. For example, in Bahtiarian et al.51 and McKenna et al.23, the selected time170

window was dependent on the time it takes for a vessel to travel its length. Unfortunately, neither of these options is suitable for171

our setup. In particular, as the results in Figs. 8, 9 show, our database includes significant variances in vessel transit speeds and172

lengths. Instead, we chose to follow the ISO48 standard, which sets a variable time window dependent on the aspect of each173

vessel (60–120 deg of the bow aspect). Here, the time window length was calculated based on the vessel’s speed, as reported by174

the visual algorithm.175

To measure the SPL, we applied (3); the variable time window used for the measurement of each vessel transit was processed176

in the frequency domain by a fast-Fourier transform (2048 FFT points, Hanning window with a 50% overlap)1.177

SPL = 20log10

(
PRMS

Pref

)
, (3)

Where Pref = 1 µPa and PRMS is the root mean square of the sound pressure level measured within the variable time window.178

For the measurement of third-octave bands, we applied the same parameters, albeit with a higher frequency resolution (32,768179

FFT points), in order to comply with standard one-third octave bands according to the ANSI Standard S1.11-2014/Part 154.180

Transmission Loss181

The acoustic transmission loss depends on the range of the vessel, geometric spreading characteristics, and the seabed and water182

column properties55. Referring to the vessel’s range, while the entrance to the inlet is measured at 135.7 m, our observations183

showed that nearly all marine traffic passes through a ∼90 m lateral area in the middle of the channel inlet. These observations184

coincide with known hazards to safe navigation and official maritime routes described in maritime charts. Based on this185

information, we calculate the maximum potential CPA range as the slant between the hydrophone and the described lateral186

area (49 m) and the minimum potential CPA range as 29 m (water depth to hydrophone). For the geometric transmission loss187

calculations, we applied the mean CPA range (39 m). This ±10 m ambiguity in the vessel’s location can be compared with the188

location error of URN databases relying on AIS information, which is known to present a mean discrepancy of up to 97.72 m56.189

In the aspect of absorption losses, applying Ainslie and McColm’s57 equation for absorption in seawater for the mean190

CPA range under different scenarios of temperature and salinity found in the tested area, we reach a maximum loss of roughly191

0.15 dB at the mean CPA range. We, therefore, consider absorption losses as negligible. 2. As the type of sediment in the test192

1The 2048 FFT resolution was chosen to allow comparability with other research frameworks52, 53.
2Similar conclusions about the negligibly of absorption losses in URN levels of vessels at close ranges have been made in Hermann et al.58 and McKenna

et al.23.
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bed area consists primarily of fine gravel59, which possesses a high reflective coefficient22, we chose to apply the simplified193

equation described by Erbe60, which has also been used in similar research frameworks61,194

TL = 20log10(D)+10log10(R/D) , (4)

where R is the horizontal range between the mean CPA and the receiver and we recall that D is the water depth.195

Data Records196

The collected data was arranged in a front-end called ”Hear My Ship”, that is available in62. The web tool allows separation197

by vessel’s type, speed, length and noise, visualization of the data (both optics and acoustics, data download and comparison198

between the URNs of different vessels. In this section we describe the functionality of this front-end.199

Arrangement of Data files200

Visual Information201

The optical dataset is organized into 12 folders, each named according to the starting time of the recording in the format202

yyyymmdd_hhmmss. Each folder contains pairs of 1-hour video files and corresponding .csv files. In total, there are 324 .csv203

files. Each .csv file contains detection information with the following columns:204

• time_of_detection: The time at which the detection occurred.205

• boat_class: The class of the detected boat.206

• size: The size of the detected boat.207

• velocity: The velocity of the detected boat.208

An example for the visual data architecture is shown in Fig. 2.

Figure 2. Organisation of the visual data.
209

Acoustic Information and Online Database210

The acoustic dataset and processed acoustic information include the time and date of transit, the type of vessel, the sub-type of211

the vessel, the length and speed of the vessel (according to the visual algorithm), the calculated SL–SPL, and one-third octave212

spectrogram, and, where applicable, the full name and IMO number.213
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Description of the Hear My Ship Front-end214

Figure 3. Landing page of the ”Hear My Ship” Database Website

The landing page of the front end is shown in Fig. 3, and the web page is available in62. The link to "How we collect the215

data" refers to this manuscript. Four selection tabs allow the user to filter the data by the desired vessel type (e.g., ferry or216

motorboat), vessel speed (in m/s), vessel length (in m), and SPL (in dB). Several selections are possible in each category. A217

click on the search field on the right displays all vessels that match the search criteria. Clicking on each of these entries will218

open a window similar to Fig. 4a, showing the details of the selected vessel as well as the option to listen to and download the219

recording URN and video. The window also shows the calculated SPL and the 3rd-octave spectrum level.220

(a) Example of a vessel entry window. (b) Example of a vessel comparison page.

Figure 4. Examples from the ”Hear My Ship” front-end.

Another functionality is the comparison between different vessels with the option ”Compare vessels” on the landing page.221
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Clicking this option allows the user to select up to five vessels from the filtered list. After selecting and clicking again on the222

”Compare vessels” option, another window is displayed, similar to the example in Fig. 4b. This window shows the details of the223

selected vessels and a diagram comparing the spectrum of the vessels’ URNs. Finally, clicking the ”download data” option224

in the landing page, downloads a .json file with all the details of the filtered vessels. For each entry in this file, the user will225

receive the details of the vessel, its analyzed SPL and spectrum, a link to download the .wav file with the URN recordings and a226

link to download the 10 s video recordings of the vessel.227

Technical Validation228

Description of the Testbed229

Our testbed resides in the area of St. Anthony’s Channel (Sv. Ante in local dialect) Inlet near Šibenik, Croatia. During the230

summertime, the area is characterized by high-density shipping, which includes various classes of vessels, ranging from coastal231

commercial ferries to smaller recreational vessels, e.g., yachts, motorboats, and sailboats. These conditions make the area232

an ideal testbed for analyzing underwater radiated noise from vessels that are not obligated to carry AIS transponders. An233

illustration of the testbed is shown in Fig. 5a.

(a) Illustration of the acoustic-optic testbed for quantifying the URN
of VOO by using syncronized optical measurements from a shore
based camera and an acoustic recorder positioned at the seabed.

(b) Picture of the underwater acoustic recorder at the deployment site.

Figure 5. The "Tour boat" category.
234

Figure 6. A satellite image of the deployment site. The recorder location is marked in red (right next to the vessel in the
image).

On August 2023, an AMAR G3 JASCO acoustic recorder with a single M36-V35-900 Geospectrum omnidirectional235

hydrophone was placed near the eastern entrance to the Channel Inlet at coordinates 43.728400◦, 15.879271◦ (see map in236

Fig. 6). The hydrophone had a flat with max 0.5 dB ripple response between 0.01-100 kHz and sensitivity of -164.9 dB237
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re:1V/µPa. At the point of deployment, the channel is 130.3 m wide and most vessels pass in the middle of the channel. The238

recorder was mounted vertically to an anchor one meter above the seabed at a depth of 29 m. The hydrophone’s cage was239

covered by a dense yellow net to reduce flow noise and assist in locating the recorder after three months of deployment, as240

shown in Fig. 5b. The recorder was set to record continuously for 12 hours a day between 7:00 to 19:00 (UTC+2) to account241

for daylight hours for the specified region at the time of deployment. The recording was made at a sampling rate of 48 kbps, in242

a resolution of 3 Bytes per sample. In total, 661 GB were recorded over a period of 113 consecutive days.243

A DAHUA SD-59230U-HNI (30x optical zoom) video camera was placed roughly 800 m from the entrance to the canal244

at coordinates 43.736305◦, 15.876754◦. The camera was set to continuous recording at a rate of 30 fps with a resolution of245

1920×1080 pixels. The camera recorded continuously, however, only recordings during daylight were useful due to the lack of246

infra-red recording capability. The video files were stored locally at the camera. In total 340.5 GB were recorded over a period247

of 26 days. Example image with two vessels is shown in Fig. 7. For size estimation, the length and height of two landmarks248

were measured. These are the cretaceous limestone layer, both visible in Fig. 7.

Figure 7. Examples of an image with two vessels obtained from the video camera.
249

Vessel Detection Results by Optical Camera250

Summary of Detected Vessels251

Figure 8. Histogram of vessel classes the final vessel detection result.

Our dataset contains 3,799,505 camera detections of various types of vessels, along with their corresponding detection252

times, estimated sizes, and velocities. The histogram in Fig. 8 indicates that the "small boat" class is by far the most common253
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in this dataset, representing around 65% of all detected vessels. Additionally, sailboats are frequently observed, likely due254

to the presence of charter marinas in the area. A distribution of vessel sizes is presented in Fig. 9. The data reveals maxima255

at around 5-8 meters, which is a common size for vessels classified as small boats, and at 12-15 meters, which is typical for256

regular sailboats.

Figure 9. Histogram of vessels size in the final vessel detection result.

257

The histogram in Fig. 10 shows the density of vessels’ velocities. We determine positive speed for vessels exiting the258

channel towards the port and vise versa for vessels entering the channel. Results show that vessels moving towards the port259

move slower compared to those heading towards open sea. Most vessels travel at an absolute speeds of 2.5–4.0 ms−1 (4.85–7.7260

knots). This is expected, considering that the most frequently detected class was small boats.

Figure 10. Histogram of vessels velocity in the final vessel detection result. Positive speed reflects vessels exiting the channel,
and vice versa for vessels entering the channel.

261

Results of Vessel Size and Speed Estimations262

To examine the algorithm’s performance in estimating vessel size and velocity, a small dataset was created with the vessels of263

known size and speed. The picture in Fig. 11 is of a small research vessel belonging to the Institute Rud̄er Bošković, with a264
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measured waterline length of 8 m and a total length of 9.3 m. To evaluate the size estimation error, the boat performed two265

transactions on both the left and right sides of the channel. The images collected from 4 such passages are shown in Fig. 11.

Figure 11. Detections on the vessel with known size for the purpose of algorithm performance evaluation.

266

Successful detection and classification occur in all frames. However, due to the angle of the vessel, the final part of the stern267

is included in the bounding box of only some of the frames. Size estimation results of the test vessel for 6 corresponding frames268

are given in Table 2. The average length of 8.495 m is close to the waterline length, and a standard deviation of 0.2187 m269

represents roughly 3% of the average value. We deem this error acceptable considering the use of a single monocular camera.

Table 2. Test results for the Rud̄er Bošković Research Vessel (waterline length of 8 m and total length of 9.3 m)

Video Frame Bounding Box Estimated Length
1 (0.357, 0.745, 0.214, 0.130) 9.15 m
2 (0.622, 0.743, 0.199, 0.126) 8.53 m
3 (0.794, 0.697, 0.178, 0.113) 7.64 m
4 (0.357, 0.745, 0.214, 0.130) 9.15 m
5 (0.611, 0.727, 0.194, 0.111) 8.33 m
6 (0.508, 0.724, 0.191, 0.111) 8.17 m

Average Length 8.495 m
Standard Deviation 0.2187 m

270

Table 3. Test results for length and speed estimations for 9 vessels identified by both camera and AIS

Boat Index Length [m] Estimated Length [m] Velocity
[
ms−1

]
Estimated Velocity

[
ms−1

]
1 12.0 14.48696 6.1 6.99
2 12.0 12.97377 5.1 4.47
3 15.0 16.89319 6.4 6.61
4 15.0 15.37999 5.6 5.25
5 14.0 14.2389 5.0 5.25
6 14.0 14.53657 5.0 5.05
7 17.0 19.39864 6.2 5.44
8 17.0 18.65444 6.4 5.83
9 13.0 13.34587 5.2 5.05

Average error 7.707% 7.395%
Error Std. Dev 5.368% 4.855%

11/22



Another validation of the size and velocity measurements was performed over incidences involving vessels carrying AIS.271

To this end, we filtered a large dataset of 65,000 AIS recorded at a low frame rate of 5 min within the channel. That resulted in272

only 9 recordings that aligned with the camera frame allowing us to match the AIS data with the camera data accurately. This273

low number of vessels emphasizes the low rate of detection available for shipping URN measurements using AIS data only.274

The true and estimated size and speed of these 9 vessels are listed in Table 3. An average error of roughly 7% in both length275

and speed is observed. Part of this error is due to the rounding operation of the AIS.276

Results of Shipping Noise Estimation277

Of the thousands of vessel transits recorded by the visual algorithm, 1148 passed quality control (see Section below) and278

were processed to extract their acoustic characteristics, i.e., sound pressure level and 1/3 octave spectrum. Each vessel transit279

was labeled according to its type, the time and date of the transit, as well as the vessel hull name and IMO number, where280

applicable3. The length and speed of each transit were associated according to the calculations made by the visual algorithm.281

Table 4 presents an overview of the analyzed vessels’ characteristics, i.e., class, number of observations, speed, length, and282

the calculated sound pressure levels at the source (SL-SPL). The largest vessel observed was a 54-meter mega-yacht named283

"Premier" (IMO 9949132), while the smallest is a 3.3-meter motorboat. The fastest vessel analyzed is a motorboat sailing at284

15.9 meters per second (m/sec), i.e., 31 knots. The slowest vessel is a sailboat sailing at 1.1 m/sec.

Table 4. Characteristics of the vessel dataset

Class Number of Observations Speed [m/sec] Length [m] SL–SPL [dB]
Ferry 50 5.66 ± 0.63 41.95 ± 6.43 178.16 ± 5.79

Auxiliary Vessel 1 3.5 35.77 176
Cargo Vessel 2 3.1 ± 0.28 44 179.45 ± 1.916

Fishing Vessel 2 3.60 ± 0.28 13.48 ± 6.31 167.35 ± 0.50
Tour Boat 63 3.44 ± 0.61 21.01 ± 2.43 167.11 ± 4.77

Diving Boat 1 2.80 15.33 172.22
Yacht 124 4.27 ± 0.96 25.65 ± 10.96 172.12 ± 5.64

Sailboat 192 3.22 ± 0.63 15.38 ± 4.12 162.46 ± 5.35
Motor Boat 713 5.15 ± 2.00 7.88 ± 2.14 170.96 ± 4.49
Full Dataset 1148 4.65 ± 1.82 13.38 ± 9.86 169.79 ± 6.12

285

Fig 12 presents a scatter-gram of SL–SPL for each vessel category. Among the large sample categories including "ferries",286

"motorboats", "sailboats", "tour boats" and "yachts"; the "ferry" category presented the highest SL–SPL levels, followed by the287

"yacht" and "motorboat" categories. The lowest mean and median SL–SPL were associated with the "sailboat" category. The288

loudest vessel observed was the Postira ferry (IMO 6283202) sailing at 6.5 m/sec, which presented a calculated source level289

of 188.26 dB; the other top 5 in terms of SL–SPL was a high-speed motorboat, other transits of Postira ferry and megayacht290

"Adriatica" (IMO 9852303). The quietest vessel was a sailboat (under motor operation) sailing at 2.4 m/sec, which presented a291

calculated source level of 151.91 dB; the other bottom 5 in terms of SL–SPL were also various sailboats.292

Fig. 13 presents the one-third octave bands4 for the top 5 highest-scoring SL–SPL in each major category in the dataset.293

We observe that the categories "ferry", "tour boat", "motorboat", and "yacht" share a similar characteristic, with most of the294

acoustic energy centering around the 80–400 Hz bands. The "motorboat" category was also characterized by sharp peaks in295

specific high-frequency bands. This is likely attributed to narrow-band energy generated by the high RPM engine components296

of motorboats. We also observe that the "motorboat" and "yacht" categories present significant variances between different297

vessels with similar lengths and speeds within each category; the most plausible cause of this are the differences in engine298

types running at different RPMs with unique transmissions. The "ferry" category5 presented additional notable peaks in the 50,299

630, and 1600 Hz bands. The "tour boat" category presented an additional peak in the 630 Hz band as well. The top 5 scoring300

SL–SPL in the "sailboat" category also share the 80–400 Hz characteristic similar to the other categories. However, an irregular301

and unique one-third octave spectrum was observed for a 15.6 m catamaran sailboat sailing at 4.1 m/sec.This specific sailboat302

displays rather low one-third octave band levels overall, albeit with very high-peak narrow-band levels at the 80, 160, 1250 and303

2500 Hz bands. A further audio examination by an acoustic expert attributed these high-level narrow-band noises to a possible304

mechanical fault stemming from abnormal friction of the vessel’s propeller shaft against the shaft bearings and sealing. This305

type of noise is commonly associated with mechanical fatigue or poor maintenance and was explored in depth in the work of306

Lin et al.63.307

3The hull name and IMO no. were associated to a vessel transit in cases where the hull name was visible via the camera footage
4We neglected the frequency bands >31.5 Hz due to cut-off frequency effects.
5The top 5 highest SL–SPL were all associated with Postira" ferry, hence the similarities in one-third octave graphs.
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Figure 12. A scatter-gram of SL–SPL for all analyzed vessel categories.

In order to compare the one-third octave band levels in our dataset to common standards found in the shipping industry,308

in Fig. 13 we compare our measured URN levels with the limit curves of Lloyd’s Register "Transit" and "Silent" Notations6.309

We observe that in all categories the top 5 SL–SPL scoring vessels exceed the limit curves, which were designed for much310

larger vessels in most frequency bands. The following subsections delve into the statistical analysis of the impact of vessel311

characteristics, such as type, length, and speed, on SL–SPL.312

Noise Estimation for Ferries313

A total of 50 ferry transits by 4 different ferries were evaluated: Postira (IMO 6283202), Lošinjanka (IMO 7038513), Lara314

(IMO 8846369) and Mali Princ (IMO 9553189). See images in Fig. 14. A scatter plot of the relation between the calculated315

SL–SPL to the speed of the vessel for each transit is given in Fig. 15a. It is apparent that for most transit speeds, the Lošinjanka316

is the loudest ferry observed in our research; however, for transit speeds exceeding 6 m/sec, Postira presented the highest317

SL–SPL’s. Lara displayed the single lowest SL–SPL in the ferry category (165.63 dB); however, this measurement was also318

associated with the lowest transit speed in the category (4.3 m/sec). Overall, Mali Princ presented the lowest SL–SPLs when319

compared to the other ferries under similar transit speeds. Specifically, at around 6 m/sec, Mali Princ had similar SL-SPL to320

that of Lara when operating at 5 m/sec and 5–8 dB lower than those calculated for Lošinjanka and Postira. All ferries display a321

positive relation between the speed of transit and SL–SPL, albeit to a varying degree: Lara displays the highest regression322

coefficient of speed on SL–SPL (β=8.34), followed by Postira (β=7.14) and Mali Princ (β=3.41). Lošinjanka displays the323

lowest regression coefficient of speed on SL–SPL (β=0.49).324

To test for statistical significance of the effect of speed on SL–SPL in the "ferry" category, in Fig. 15b we show a linear325

regression model of all ferry transits7. The regression model was found to be positive and statistically significant (R2 = 0.393),326

F(1,48) = 31.478, p < 0.0001.327

Noise Estimation for Tour Boats328

Some of the medium-sized vessels observed in the testbed conducted regular transits at similar hours on a nearly daily basis.329

These vessels were observed carrying a large number of people on the deck, see example in Fig. 16. We, therefore, classified330

these vessels as "Tour Boats". Our dataset includes a total of 64 transits by 9 distinct tour boats8. Fig. 17a provides a scatter331

plot of speed to SL–SPL for the various tour boats, and Fig. 17b shows a linear regression model for all tour boats observed.332

The regression model was found to be positive and statistically significant (R2 = 0.55), F(1,61) = 75.902, p < 0.0001. Most333

6Lloyd’s Register is one of the largest shipping classification societies in the world. In 2018, Lloyd’s introduced two URN mitigation notations that can be
applied to vessels that comply with specific URN requirements, i.e., a one-third octave noise spectrum not exceeding specified limit curves18.

7Speed of transit was the only independent variable chosen in the "ferry" category due to the repetitive nature of the length variable.
8By reviewing the camera footage, it is possible to differentiate between the different types of tour boats; however, as there are no visible hull names, we

chose to name them in a random order from A to J
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(a) Ferries. (b) Tour boats.

(c) Motor boats. (d) Yachts.

(e) Sail boats.

Figure 13. One-third octave bands compared to Lloyd’s Register URN limit curves for "Transit" and "Silent" Notations.

tour boats share similar regression coefficients for speed on SL–SPL (β ≈ 4.5). A visual comparison of tour boats reveals that334

most of them share many similarities in hull design and length, which may also indicate a similarity in their propulsion systems;335

this offers a plausible explanation for the similarities in their speed regression coefficients. A prominent exception can be seen336

for Tour boat A, which has a unique hull design (and the highest number of observations); its regression coefficient was found337

to be higher (β = 12.17).338

Noise Estimation for Yachts339

A total of 124 yacht transits were evaluated as part of the research. As there is no clear and acceptable standard for classifying a340

recreational vessel as a "Yacht," we chose to classify any recreational motor vessel longer than 15 m as a "Yacht"9. See example341

in Fig. 18.342

To assess the effect of yacht speed and size on SL–SPL, a multivariate linear regression model is given in Fig. 19. The343

regression was found to be positive and statistically significant (R2 = 0.29), F(2,121) = 25.25, p < 0.0001. Additionally, it344

was found that speed has a more prominent effect on SL–SPL (β = 2.33) than the length of the vessel (β = 0.23).345

Noise Estimation for Sailboats346

A total of 192 sailboats that were observed under motor operation were assessed. Most of the analyzed sailboats (n=180) can be347

categorized as modern mono-hull and catamaran sloops ranging from 7–20 m in length, which are regularly found near coastal348

marinas, the other type of sailboats were larger (>30 m) with multiple masts and more elaborate rigging, e.g., Schooners and349

9The 15 m consideration was taken from online sources engaged in the recreational vessel business64.
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Figure 14. The different ferries encountered in the testbed - from upper-left clockwise - "Mali Princ","Lošinjanka", "Lara"
and "Postira"

(a) Scatter plot of SL-SPL to speed. (b) Linear regression model for the effect of speed on SL–SPL.

Figure 15. Scatter plot and Linear regression model of the ferry category.

Cutters. See examples in Fig. 20.350

A multivariate linear regression model for the relation between the sailboats’ SL–SPL and their speed and length is given351

in Fig. 21. The regression was found to be positive and statistically significant (R2 = 0.40), F(2,189) = 63.45, p < 0.0001.352

Additionally, it was found that speed has a more larger regression coefficient (i.e., a more prominent effect on SL–SPL)353

(β = 4.86) than the length of the vessel (β = 0.58).354

The "Sailboat" category scored the lowest SL–SPL mean among all vessel categories. This coincides with the fact that the355

engine system on sailboats are usually not the main source of propulsion but rather acts primarily as a support propulsion for356

entering and exiting the harbor or in cases where wind conditions are unfavorable. Regarding the differences between hull357

designs (mono hull vs. catamaran), a meta-analysis conducted by Parson et al.65 showed that catamaran hulls tended to display358
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Figure 16. An example of tour boats observed in the testbed: Tour boat A (left) and Tour boat E (right)

(a) Scatter plot of SL–SPL to speed. (b) Linear regression model for the effect of speed on SL–SPL.

Figure 17. The "Tour boat" category.

Figure 18. An example of yachts observed in the testbed: From left to right, a 15 m mono hull cruiser and the Zeus megayacht
(IMO 9878187).

higher SL–SPL than mono hulls. In order to statistically test the mean differences of mono hull vs. catamaran SL–SPL’s while359

controlling for length and speed, we performed an analysis of covariance (ANCOVA) test between mono hull and catamaran360

sailboats. The results indicate that the speed has a statistically significant effect on SL–SPL, F(3,176) = 62.38, p < 0.0001,361
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Figure 19. Multivariate linear regression model for the effect of speed (left) and length (right) on SL–SPL in the "Yacht"
category.

Figure 20. An example of sailboats observed in the test bed - a 33m Schooner (left) and a 15m monohull modern sloop (right)
.

Figure 21. Multivariate linear regression model for the effect of speed (left) and length (right) on SL–SPL in the "Sailboat"
category

which coincides with the above linear regression model. As expected, due to the minute differences between the mean length of362
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catamaran and mono hull sailboats, the length had no significant effect on SL–SPL, F(1,176) = 0.068, p < 0.795. Regarding363

the hull design, the ANCOVA test has shown that it does not have any significant effect on SL–SPL when controlling for speed364

and length, F(1,176) = 0.018, p < 0.895.365

Noise Estimation for Motorboats366

The "Motorboat" category is the largest in our dataset, with 713 transits. We classified motorboats as all types of engine-propelled367

vessels under 15 m with no alternative propulsion methods (e.g., sails). See examples in Fig. 22.

Figure 22. An example of motorboats observed in the testbed: a 5.4 m outboard engine motorboat at 9.8 m/sec (left) and an
8.9 m inboard engine motorboat at 4.7 m/sec (right)

368

It is important to note that the second highest SL–SPL calculated in the entire dataset was an outboard engine motorboat369

cruising at 11.5 m/sec (22.35 knots) with an SL–SPL of 185.55 dB. This infers that motorboats cruising at high speeds may370

display SL–SPL’s comparable or even higher than those of much larger vessels at their nominal transit speeds.371

A multivariate linear regression for the effect of speed and length on SL–SPL in the "Motorboat" category is given in372

Fig. 23. The model was found to be positive and statistically significant (R2 = 0.18), F(2,710) = 76.881, p < 0.0001. To373

further explore any other variables that may affect SL–SPL, we performed another sub-categorization of the motorboat dataset374

into two sub-groups: outboard engine-powered and inboard engine-powered. An ANCOVA test for the effect of the engine type375

on SL–SPL’s while controlling for length and speed showed that there is no statistically significant effect of the type of engine376

(inboard/outboard) on SL–SPL, F(3,709) = 1.562, p < 0.212.

Figure 23. Multivariate linear regression for Motorboats
377

Usage Notes378

Overall, 1148 vessel transits were evaluated. As mentioned in Sec., URN calculations for small vessels in the coastal area379

have been mostly absent from the current research agenda, primarily due to the lack of any open-source information systems380
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that broadcast vessel data (e.g., AIS found on larger commercial vessels). This, in turn, creates inherent difficulties in381

collecting vessel parameters, e.g., length and speed, which are crucial parameters for URN calculations. In this sense, the novel382

methodology implemented in this research framework enabled the formation of what can be considered the most comprehensive383

dataset to date, specifically focused on small to medium vessels.384

The dataset leads to several significant insights. Firstly, SL–SPLs are highly dependent on the vessel characteristics. As385

expected, speed was found to have a statistically significant and strong effect on SL–SPL for all vessel types. The vessel’s386

length was also shown to have a statistically significant effect on SL–SPL, albeit to a lesser degree. This can be explained by387

the larger propellers required for these vessels and to the the greater displacement of water by large vessels. However, the388

relatively moderate R2 values, especially in the "Motorboat" category (R2 = 0.18), may reflect a dependency on other unknown389

independent variables such as variations in the engine design and output power rating. Secondly, comparing the SL–SPLs of390

different types of vessels has shown that small recreational boats may emit SL–SPLs as high as much larger ships. For instance,391

we observed a 8.3 m motorboat sailing at 11.5 m/s with SL–SPL comparable to that of a 45 m ferry sailing at 6.4 m/s. These392

findings coincide with previous findings26, 32, 50. However, the result of the ANCOVA test for subgroups of vessels of the same393

type revealed no statistical significance on SL–SPL. Thirdly, observing one-third octave spectrum levels, most of the URN394

energy were primarily centered around the 80–400 Hz band. Still, unique characteristics were found for some categories, e.g.395

motorboats that presented high-frequency narrow-band peaks. A specifically intriguing spectrum was found in the "Sailboat"396

category, with a catamaran sailboat with a possible mechanical fault (i.e., abnormal friction in propeller shaft) that caused it397

to generate higher SL–SPL compared to other sailboats with a similar design (catamaran) with similar lengths and speeds.398

Comparing our finding against the Lloyd’s "Transit" and "Silent" notations, we found that the small vessels in our dataset399

display levels exceeding the standards designed for much larger vessels. These conclusions point on the critical need to expand400

the URN research agenda to include small vessels. This is not only because such vessels are increasingly prevalent in coastal401

waters, but also because they may contribute more noise pollution to the water than the large cargo vessels that have been the402

primary focus of the current URN research agenda.403

In making our database of URN of VOO, our biggest concern was the averaging window around the CPA for URN404

estimation. The size of this window should be long enough to suppress noise but also short enough to avoid differences in the405

received power due to the changing distances between the receiver and the moving vessel. In our database, we have followed the406

method recommended in ISO 1720848 that manages this trade-off by setting the observation window as the time-frame in which407

the vessel passes the ±30◦ aspect tangent to the hydrophone. However, for some of the fast motorboats sailing at >10 m/sec,408

this resulted in relatively short time-window lengths (∼4 s). A possible way to address this challenge is a statistical measure to409

test the stability of the acoustic intensity around the CPA and to determine the size of the observation time accordingly.410

Another challenge encountered is the extensive traffic of vessels within the channel where the recordings took place. To411

avoid any mutual interference caused by vessels transiting the channel in close proximity, we placed a strict quality control412

process (see Section below) and dismissed cases identified by the video footage or acoustics of vessels transiting the channel in413

close proximity. As a result, roughly 90% of the vessel transits did not pass quality control. The case of too close vessels also414

poses a challenge for monitoring the URN of VOO in realistic conditions of near port measurements. Future work will address415

this challenge by incorporating noise cancellation techniques such as the method in66.416

Code availability417

Processing code can be available upon request.418
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