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elektrotehnike na Sveučilǐstu u Zagrebu Fakultetu elektrotehnike i računarstva (FER),
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godinu, Godǐsnja državna nagrada znanstvenim novacima u području tehničkih znanosti
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Abstract

Stochastic model predictive control of a set of electric vehicle charging stations for

demand response service provision

Charging electric vehicles (EVs), whose number is increasing, is a great challenge for

the power grid due to the charging load variability. Coordinated charging and schedule

optimisation with seized demand response opportunities are well-known conceptual so-

lutions to that. Still, there are two challenges for the implementation. The first is to

adequately predict availability and parameters of electric vehicles which is crucial for de-

termining the charging schedule and the demand response potential. The second challenge

is charging schedule optimisation that addresses the uncertainty ensuring the feasibility

and economic benefits.

This thesis proposes a method to represent a population of electric vehicles that on the

one hand enables prediction via machine learning and on the other it enables an accurate

optimisation of the charging schedule and demand response ability. The method essence

is to use five discrete-time signals spanned over a prediction horizon period which are

related to envelopes of feasible charging power and charging states for the EV population

on that horizon. A robust conversion of any sequence of these signals into individual EVs

data is also introduced. It enables to pose and solve the optimisation problem of charging

scheduling with included demand response for a predicted population in the introduced

representation.

The aggregated representation is a foundation of the proposed charging scheduling

framework that includes day-ahead flexibility analysis based on historical data, short-term

forecasting of EV arrivals and finally stochastic model predictive control of EV charging.

The historical dataset is transformed to the aggregated representation, and it is analysed

and used for training of two gradient boosting models for the short-term prediction. Day-

ahead flexibility analysis based on chance-constraints enables the aggregator to influence

the certainty of fulfilling contracted flexibility.

Keywords: electric vehicles, EV aggregator, demand response, tertiary frequency reg-

ulation, stochastic model predictive control, linear optimisation, chance-constraints, ag-

gregated EV representation, Light gradient boosting machine, Extreme gradient boosting
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Sažetak

Stohastičko modelsko prediktivno upravljanje skupom punionica električnih vozila za

pružanje usluge odziva potrošnje

Izvorno, proizvodna strana elektroenergetske mreže uglavnom je bila upravljiva i igrala

je ključnu ulogu u održavanju ravnoteže sustava. No, s elektrifikacijom naših života i

promjenama u navikama, raste potrošnja sustava i povećava se njena varijabilnost. Prim-

jer toga su brzi punjači elektičnih vozila snage od 50 ili 100 kW koji se koriste za vozila

u vrlo kratkom vremenskom roku. S druge strane, proizvodnja postaje neupravljiva i sve

varijabilnija zbog upotrebe solarne energije i energije vjetra, koje su snažno ovisne o vre-

menskim uvjetima. Svi ovi trendovi predstavljaju značajan izazov za elektroenergetsku

mrežu.

Rastući broj električnih vozila (EV) bez koordiniranog rasporeda punjenja predstavlja

prijetnju elektroenergetskim mrežama, uzrokujući nagle promjene opterećenja i dodatne

troškove balansiranja sustava. Koordinirano punjenje EV-a ne samo da rješava ove prob-

leme, već donosi dodatnu vrijednost elektroenergetskoj mreži putem pomoćnih usluga

implementirajući odziv potrošnje (OP). Analiza podataka pokazuje da je prosječno vri-

jeme mirovanja EV-a (kada je priključeno, ali se ne puni) na javnoj punionici oko 4 sata,

dok je u slučaju privatne punionice čak i duže. Ova činjenica nudi priliku za pružanje

pomoćnih usluga, poput tercijarne regulacije frekvencije, bez ikakvog utjecaja na vlasnike

EV-a. Naravno, nužno je prikupiti informacije o preferencijama vlasnika EV-a kako bi

se izbjeglo njihovo nezadovoljstvo. Na temelju ovih informacija, agregator koji upravlja

parkiralǐstem opremljenim punjačima EV-a može optimizirati raspored punjenja, što je

ključno za učinkovit OP.

Fleksibilnost električnih vozila i njihov potencijalni doprinos različitim aspektima OP

teško je kvantificirati. Autori istražuju fleksibilnost električnih vozila u smislu prijenosa

opterećenja iz jednog intervala u drugi. Fleksibilnost se takod̄er izražava kao snaga koja

se može smanjiti u odred̄enom vremenskom razdoblju. Takod̄er se predlaže kvantitativna

mjera, ali samo za izravnavanje opterećenja. Za potpunu implementaciju OP putem

rasporeda punjenja potrebna je i analiza potencijala i metode odred̄ivanja rasporeda u

stvarnom vremenu.

U ovom radu pretpostavlja se da agregator posjeduje informacije o svakom EV-u spo-

jenom na punjač, uključujući relativni kapacitet baterije (koliko energije nedostaje do pot-

pune napunjenosti), traženo konačno stanje napunjenosti, nominalnu maksimalnu snagu

punjenja i predvid̄eno vrijeme odlaska EV-a. Ovi podaci mogu se prikupiti putem unosa

vlasnika EV-a na parkirnom automatu, putem mobilne aplikacije ili putem buduće ko-

munikacijske infrastrukture izmed̄u vozila i mreže (punjača). S obzirom na pretpostavku
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da će vlasnici vozila prilikom priključivanja na punjač dati ove informacije, jedino što

nedostaje agregatoru su podaci za buduća vozila koja će doći na parkiralǐste kako bi imao

potpuni opis zadataka punjenja i time definirani optimizacijski problem za odred̄ivanje

rasporeda punjenja. Dva su ključna izazova za implementaciju koordiniranog punjenja

električnih vozila koje je preduvjet za OP. Prvo je potrebno predvidjeti dolaske električnih

vozila kako bi se optimizacijski problem mogao definirati. Drugi izazov je definirati sam

problem optimizacije i riješiti ga.

Kao rješenje navedenih izazova, u ovome se radu predlaže cjeloviti koncept. Koncept

se sastoji od tri koraka. Prvi korak je pronaći optimalni kapacitet regulacije frekvencije za

ugovor s operatorom elektroenergetske mreže jedan dan unaprijed, a dobiva se rješavan-

jem optimizacijskog problema za prosječnu populaciju električnih vozila za odred̄eni dan

u tjednu, na temelju povijesnih podataka. Drugi i treći korak su dio modelskog predik-

tivnog upravljanja rasporedom punjenja u stvarnom vremenu. Drugi korak je predvid̄anje

dolazaka električnih vozila, a treći korak je dobivanje optimalne energije punjenja za svako

električno vozilo, priključeno na punjač, za naredni diskretni period.

Ključni element u ovim koracima je novouvedena agregirana reprezentacija populacija

EV-a koja se sastoji od dva algoritma. Prvi transformira pojedinačne podatke o EV-

ima u agregirani prikaz, a drugi čini suprotno, transformira agregirani prikaz natrag u

pojedinačne podatke o EV-ima. Pojedinačni podaci koriste se za prikupljanje povijesnih

podataka i za definiranje zadataka punjenja svakog EV-a, koji su dio optimizacijskog prob-

lema. Format agregiranog prikaza populacije električnih vozila koristi se za odred̄ivanje

prosječne populacije u analizi dan unaprijed i za predvid̄anje budućih dolazaka električnih

vozila.

Predloženi cjeloviti koncept upravljanja rasporedom punjenja skupom punjača pos-

tupno se definira kroz četiri poglavlja u ovoj doktorskoj disertaciji. Njima prethodi prvo,

uvodno poglavlje u kojem se izlaže motivacija i kratki pregled trenutnog stanja područja

istraživanja.

U Poglavlju 2. Dan-unaprijed analiza fleksibilnosti (Day-ahead flexibility analysis)

uvode se funkcija cilja i ograničenja za optimizacijski problem pružanja usluge tercijarne

regulacije frekvencije, te se ovaj optimizacijski problem definira u determinističkom i sto-

hastičkom okruženju. Temelj optimizacijskog problema je jednostavan model agregatora

koji se koristi i u Poglavlju 3. za modelsko prediktivno upravljanje u stvarnom vremenu.

S dostupnim pojedinačnim podacima o dolascima i karakteristikama EV-a, svaki zadatak

punjenja duž optimizacijskog horizonta je u potpunosti opisan i može se vizualizirati s

envelopom punjenja. Granice enevelope sastoje se od trajektorija punjenja u načinu što

je prije moguće i u načinu što je kasnije moguće. Svaki punjač s priključenim EV-om

modeliran je s pripadajućim stanjem energije kao varijablom stanja te energijama pun-
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jenja i pražnjenja kao upravljačkim varijablama. Sve tri varijable su naravno ograničene

fizičkim ograničenjima koja proizlaze iz pojedinačnih podataka o EV-ima.

Funkcija troška, koju se minimizira u optimizacijskom problemu, sastoji se od neko-

liko dijelova koji se odnose na različite dimenzije OP. Glavna varijabla funkcije troška

je ukupna razmjena energije s mrežom koja je jednaka zbroju svih energija punjenja

umanjenom za zbroj svih energija pražnjenja. Jedan dan unaprijed agregator sudjeluje

na tržǐstu električne energije gdje kupuje energiju prema planiranom profilu potrošnje za

sljedeći dan. Sljedeći dan agregator koristi kupljenu energiju i na kraju dana biva kažnjen

za odstupanja od planiranog profila potrošnje. Agregator takod̄er daje ponude opera-

toru prijenosnog sustava na tržǐstu kapaciteta za regulaciju frekvencije za dan unaprijed.

Ako je ponuda prihvaćena, agregator biva financijski nagrad̄en i mora biti u mogućnosti

ispuniti ugovoreni kapacitet sljedeći dan u slučaju da bude aktiviran. U slučaju akti-

vacije, agregator je dodatno nagrad̄en za isporučenu regulacijsku energiju. Regulacijska

snaga (kapacitet) ugovara se za svaki sat zasebno. Minimalna vremenska razlika izmed̄u

dvije uzastopne aktivacije je 8 h. Optimizacijski problem sadrži zaseban profil - zasebne

varijable upravljanja i stanja, za svaki mogući slučaj aktivacije. Budući da su vrijeme i

iznos aktivacije poznati agregatoru samo 15 minuta unaprijed, svi “alternativni” profili

ili scenariji za različite slučajeve aktivacija moraju biti jednaki scenariju bez aktivacije

do tog diskretnog vremenskog intervala. Taj tzv.
”
nominalni“ profil potrošnje bit će

deklariran mreži kao planirani profil za sljedeći dan. Nominalni profil tada je referenca za

mjerenje smanjenja potrošnje u slučaju aktivacije. Optimizacijski problem spada u klasu

minimizacije najgoreg troška što znači da konačnoj funkciji troška doprinosi samo onaj

scenarij s najvǐsim operacijskim troškom. Osim OP, funkcija troška pokriva i penalizaciju

degradacije baterije. Samo se pražnjenje kažnjava, i to troškom cijelog ciklusa punjenja,

što uključuje i degradaciju baterije uzrokovanu dodatnim punjenjem.

Tržǐste kapaciteta regulacije frekvencije funkcionira po principu dražbe stoga je neizv-

jesno hoće li ponud̄eni kapacitet biti ugovoren. Optimizacijski problem minimizira konačni

trošak koji uključuje nagradu za ugovoreni kapacitet fleksibilnosti što može rezultirati time

da nominalni scenarij bez aktivacije ne puni električna vozila u potpunosti u intervalima

niže cijene električne energije, a sve kako bi se prilagodio i omogućio veću fleksibilnost

agregatora. Budući da financijska nagrada za prilagodbu nije zajamčena, izlazak nom-

inalnog scenarija iz vlastite financijski optimalne točke mogući je financijski gubitak za

agregatora. Kako bi se taj potencijalni gubitak stavio pod kontrolu, prvi korak anal-

ize fleksibilnosti jest izračun optimalnog troška nominalnog scenarija bez razmatranog

ugovoranja fleksibilnosti. Drugi korak je odred̄ivanje optimalnog rasporeda punjenja uz

financijski optimalno ugovaranje fleksibilnosti pod uvjetom da ukupni trošak scenarija bez

aktivacije ne smije biti veći od nominalnog scenarija iz prvog koraka, uvećanog za odred̄eni
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iznos koji je agregator spreman riskirati u slučaju da ponuda ne bude prihvaćena.

Za slučaj stohastičkog okruženja izvedena su šansna ograničenja (engl. chance con-

straints) iz ograničenja za klasični agregirani prikaz skupine vozila pomoću modela agre-

girane baterije. Uvedena je efektna mjera za nesigurnosti procesa punjenja vozila u agre-

giranom modelu s jednim spremnikom putem razlika envelopa najranijeg i najkasnijeg

punjenja vozila te se takva ograničenja uvode u preostali problem planiranja rada sustava

većeg broja punionica.

Poglavlje 3. Stohastičko modelsko prediktivno upravljanje punjenja električnih vozila

(Stochastic model predictive control of EV charging) pokazuje način implementacije predik-

tivnog upravljanja odnosno principa pomičnog horizonta uz osiguranje da sustav punionica

ostvaruje fleksibilnost na poziv iz elektroenergetskog sustava na optimalan način. Pritom

se opet prikazuje način rada i u determinističkom problemu prediktivnog upravljanja,

kako bi se mogla napraviti odgovarajuća usporedba pristupa. Optimizacijski problem

modelskog prediktivnog upravljanja temeljen je na problemu definiranom u sklopu anal-

ize fleksibilnosti dan unaprijed, uz manje izmjene. Funkcija troška vǐse ne sadrži dijelove i

odgovarajuća ograničenja vezana uz dan-unaprijed cijenu električne energije te uz nagradu

za ugovoreni kapacitet regulacije frekvencije. Nadalje, kao referentni profil potrošnje i ref-

erenca za odred̄ivanje isporučene regulacijske energije koristi se već poznati profil koji je

mreži deklariran dan prije.

Budući da optimizacijski problem uključuje i prognozirane dolaske EV-a, dan je algo-

ritam koji raspored̄uje dobivene optimalne energije punjena i pražnjenja na EV-a koja su

došla u posljednjem diskretnom vremenskom intervalu za vrijeme kojeg se optimizacijski

problem rješavao. Za kumulativnu distribuciju vjerojatnosti nužnu za šansna ograničenja

koristi se kumulativna distribucija greške prediktivnog modela. Šansna ograničenja prim-

jenjuju se samo na prognozirana EV-a budući da su podaci o već priključenim EV-ima

deterministički.

Poglavlje 4. Agregirana reprezentacija populacije električnih vozila (Aggregated rep-

resentation of electric vehicles population) uvodi ključan element za uspješnu imple-

mentaciju planiranog sustava, a to je ovom disertacijom uvedeni postupak putem kojeg se

način zauzimanja i korǐstenja punjača na blisko ekvivalentan način transformira i prikazuje

u agregiranom obliku kao pet vremenski diskretnih signala. Uvedena je i inverzna trans-

formacija kojom se iz agregiranog prikaza pomoću 5 navedenih diskretnih signala dobije

natrag originalna populacija vozila ili populacija sa svojstvima bliska originalnoj, pose-

bice u smislu pružanja usluge OP. Prednosti metode agregirane reprezentacije u odnosu

na ostale načine prikaza skupine EV-a su sljedeće:

• obuhvaća sposobnost populacije električnih vozila da sudjeluje u OP;

• može opisati bilo koju populaciju EV i univerzalna je;
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• svako električno vozilo u populaciji može imati različitu nominalnu snagu punjenja,

relativni kapacitet i vrijeme priključenosti na punjač.

Agregirana reprezentacija sastoji se od pet vremenski diskretnih vektora. Prva dva

vektora daju informacije o promjenama svih maksimalnih snaga punjenja povezanih s

dolaskom i odlaskom električnih vozila u odred̄enom diskretnom vremenskom intervalu.

Treći vektor sadrži informaciju o hipotetskom smanjenju snage punjenja zbog dostizanja

kapaciteta baterije u slučaju što ranijeg (as soon as possible, eng.) načina punjenja i stoga

implicitno sadrži informaciju o kapacitetu električnih vozila koja su dio populacije. Na

sličan način, u slučaju što kasnijeg načina punjenja (as late as possible, eng.), punjenje bi se

uključilo u točno odred̄enom trenutku kako bi baterija bila napunjena točno prije odlaska

vozila. Upravo ta uvećanja snaga punjenja zabilježena su u četvrtom vektoru. Posljednji

vektor predstavlja kumulativnu snagu punjenja populacije EV-a u načinu kontinuiranog

punjenja gdje se EV puni konstantnom snagom od prvog diskretnog vremenskog intervala

nakon njegova dolaska pa sve do posljednjeg prije odlaska vozila. Za dokaz dobrog čuvanja

informacije iz originalne populacije provedena je iscrpna studija slučaja nad dostupnim

podatcima s dvaju parkiralǐsta električnih vozila s punionicama u SAD-u. Pokazano je da

uvedena metoda predstavljanja populacije električnih vozila vremenskim signalima vrlo

vjerno čuva ponašanje modela s obzirom na fleksibilnost.

Konačno, Poglavlje 5. Predvid̄anje agregirane reprezentacije električnih vozila ko-

rǐstenjem XGBoost i LightGBM (Prediction of aggregated EV representation using XG-

Boost and LightGBM ) uvodi načine podešavanja i strukture generičkih modela pomoću

kojih je moguće predvid̄ati uvedene vremenski diskretne signale za reprezentaciju pop-

ulacije električnih vozila. Prikazano je pouzdano predvid̄anje do 2 sata unaprijed što

se pokazalo već dovoljnim za implementaciju prediktivnog upravljanja skupom punjača

električnih vozila na parkiralǐstu po principu pomičnog horizonta.

Predvid̄anja budućih dolazaka EV-a nužna su za primjenu MPC-a. Većina istraži-

vanja usmjerena je na predvid̄anje agregiranog profila opterećenja. Za koordinirano plani-

ranje punjena EV-a potrebno je imati zahtjeve za punjenje, a spomenuta predvid̄anja

opterećenja korisna su samo za mrežnog operatera za planiranje uravnoteženja sustava i

nisu prikladni za uvedeni MPC. Čest pristup koji jest prikladan za planiranje punjenja

EV-a je predvid̄anje budućih količina odred̄enih tipova EV-a koji se razlikuju prema stanju

napunjenosti pri dolasku, kao i prema vremenu dolaska i odlaska. Loša strana tog pris-

tupa je ograničenje na konačan broj tipova. Kako bi se izbjeglo tu prepreku, u ovome se

poglavlju predvid̄a agregirana reprezentacija budućih električnih vozila.

Modeli strojnog učenja, poput Extreme Gradient Boosting (XGBoost) i Light Gradient

Boosting Machine (LightGBM), trenutno su med̄u najpopularnijim i najperspektivnijim

alatima u području strojnog učenja. Ovi nadzirani algoritmi široko se primjenjuju u in-
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dustriji i istraživanju. Oba algoritma temelje se na konceptu gradijentnog pojačanja, gdje

je ključna ideja učenje niza slabih modela, poput logičkih stabala, te njihovo postupno

pobolǰsavanje kako bi se formirao snažan i robustan model. Dobiveni rezultati uspored̄eni

su s dvije jednostavne metode predvid̄anja. Prva je prosjek radnih dana, a druga je kon-

stantnost koja pretpostavlja da se predvid̄ana vrijednost neće mijenjati. Kao metrika za

učenje modela korǐsten je korijen srednje kvadratne pogreške, dok su za analizu takod̄er

izračunate srednja prosječna pogreška i simetrična srednja apsolutna postotna pogreška.

Općenito, oba modela strojnog učenja nadmašuju spomenute jednostavne metode. Izn-

imka je u usporedbi pomoću simetrične srednje apsolutne postotne pogreške, gdje je teško

interpretirati metriku zbog velikog broja nul elemenata u vektorima koji se predvid̄aju.

U usporedbi izmed̄u XGBoost i LightGbm, LightGBM je nešto bolji.

Svaki dio predloženog koncepta upravljanja rasporedom punjenja je zasebno testiran

na dostupnim podacima s Kalifornijskog tehnološkog instituta, SAD. Podaci sadrže infor-

macija o punjenju električnih vozila na 50 punjača instaliranih na parkiralǐstu fakultetske

zgrade te su i na taj način dimenzionirane studije slučaja u ovome radu. Unatoč tome,

sve metode i analize primjenjive su i na veće sustave, sve do granica računalnih kapaciteta

računala na kojima se rješavaju optimizacijski modeli.

Ključne riječi: električna vozila, agregator EV-a, odziv potrošnje, tercijarna regulacija

frekvencije, stohastičko modelsko prediktivno upravljanje, linearna optimizacija, šansna

ograničenja, agregirana reprezentacija EV-a, Extreme Gradient Boosting, Light Gradient

Boosting Machine
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Chapter 1

Introduction

Growing number of electrical vehicles (EVs) without coordinated charging scheduling is

going to threat power grids through load and operation cost spikes [1], [2]. Coordinated

EV charging does not only solve the mentioned problem [3], but it brings added value to

the power grid via ancillary services through demand response (DR) [4]. Data analysis [5]

shows that average idle time of an EV (EV connected and not being charged) connected

to a public charging point is 4 h, and even more when connected to a private one. These

facts bring an opportunity for offering demand response through ancillary services such as

tertiary frequency regulation, without any disruption for the EV owner. Some information

about EV owner’s preferences is necessary to avoid his dissatisfaction. An aggregator that

operates a parking lot equipped with EV charging points can use a data set that is valuable

in prediction of EVs behaviour and energy demand which is crucial for effective DR [6].

Flexibility of EVs and potential contribution to any aspect of demand response is hard

to quantify. Authors in [7] quantify EVs flexibility in terms of load shifting. Flexibility

is expressed as a power that can be reduced at a certain time for a certain time interval.

The same authors propose a quantifying measure in [8] but only for load flattening and

load balancing. To fully implement DR through charging scheduling, both the analysis of

DR potential [9] and real-time scheduling method are needed.

In this thesis the assumption is that the aggregator has information on relative battery

capacity (how much energy till full battery) that is also the requested energy to deliver

to the EV, and then further on maximal charging power and EV departure time of every

connected parked EV. These data could be gathered via EV owner’s input through park-

ing machine, mobile application directly or through future vehicle-to-grid communication

infrastructure. Considering such a setup, with the known on-arrival commitment [10] of

both present and future EVs, the aggregator has the data which gives the full description

of the EV charging sessions.

Machine learning models are commonly used for prediction of EVs load in the aspect
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Introduction

of uncoordinated charging [11], [12], but such information cannot be used for charging

scheduling, only for the production side management of the power grid. Access to on-

arrival data, and the prediction of it, allows the aggregator to optimally schedule EV

charging and to participate in demand response including ancillary service to the grid.

Charging scheduling is insofar limited to present EVs’ data. Prediction of the EVs data

that are yet to come increases the aggregator’s scheduling capacity. The general idea

in this thesis is to use machine learning for the prediction of the future availability of

EVs and then to apply model predictive control to determine control signals i.e., charging

powers for individual EVs.

The state-of-the-art misses a method to describe a population of heterogeneous EVs

connected to charging stations that is suitable both for population prediction based on

machine learning and for charging scheduling with demand response ability assessment.

As a solution to the aforementioned challenges, this thesis proposes a complete concept

of charging scheduling of EVs that are operated by the aggregator. Its main usage steps

are shown in Fig. 1.1.
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Figure 1.1: The proposed concept of charging scheduling of EVs that are operated by the aggregator [13].

The key element in these steps is the newly introduced aggregated representation of

EV populations, which consists of two algorithms. The first transforms individual EV data

into an aggregated view, and the second does the opposite, transforming the aggregated

view back into individual EV data. The individual data is used to collect historical data

and to define the charging tasks of each EV, which are part of the optimisation problem.

The format of the aggregate representation of the population of electric vehicles is used to

determine the average population in a day-ahead analysis and to predict future arrivals

of electric vehicles.
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Since parameters of future EVs are stochastic, it is reasonable to apply stochastic

programming. Certainly, stochastic programming has conservatism and requires stronger

computing resources thus it is a trade-off between these negative impacts and more reli-

able solutions. Most of the works dealing with it are based on stochastic programming

described in [14] and some applied Sample Average Approximation Method [15] to re-

duce the number of possible scenarios. Choice of the appropriate approach is a trade-off

between optimality and computing time. In this thesis, the approach with chance con-

straints is applied. Chance constraints were derived from the constraints for the classic

aggregated battery model of a group of vehicles. An effective measure for the uncertainty

of the vehicle charging process in the aggregated model with the aggregated state of en-

ergy is introduced by means of the difference of the upper and the lower bounds of the

aggregated envelope, and such restrictions are introduced into the remaining problem of

planning the operation of the system of a large number of filling stations

1.1 Contributions

The proposed research can be divided into four main parts that constitute the original

scientific contribution. They are named and explained in the sequel.

(i) A method for aggregated representation of electric vehicles that generates discrete-

time signals of powers related to vehicles charging envelopes which are suitable for

demand response provision

An EV charging scheduling problem is defined with battery capacity, energy request,

power of a battery converter, arrival time and departure time. To apply machine learning

models for prediction, the data needs to be transformed in a time-series format. It is

reasonable to focus on aggregated prediction of EVs since the aggregator is interested in

total energy exchange with the power grid. At the same time individual constraints on

EVs’ batteries must not be neglected. The proposed method aggregatedly represents a

population of EVs using a group of time-series data. Such representation can be pre-

dicted using machine learning model and transformed back to individual description to

be used for charging schedule optimisation. Such approach captures flexibility of the EV

population and gives credible information for demand response planning.

(ii) Artificial neural networks for stochastic prediction of the discrete-time signals of

aggregated powers related to vehicles charging envelopes

ANNs and other machine learning models are a logical choice for predicting the mentioned

set of time series data. Current trending models include light gradient boosting machine
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(LightGBM) and extreme gradient boosting machine (XGBoost). Besides historical time

series data realisation, presumed inputs to the model are time of day, day of week, day

of year and weather. All these data should affect EVs owners’ behaviour and directly

influence the arrival pattern. One piece of the future time series are contributions of the

already present EVs based of their on-arrival data. These contributions are also model

inputs of interest. The machine learning models are trained and tested using a presently

available real-world dataset [16].

(iii) A stochastic optimisation method for determining optimal day-ahead load and

flexibility power profiles of a set of electric vehicles charging stations

Participating in demand response requires sending planned energy exchange profile to

the power or distribution grid operator one day ahead. The sent profile is a reference

next day for determining the aggregator’s realisation of contracted amount of explicit

demand response. Depending on the demand response scheme, the aggregator contracts

flexibility power reserve with the grid one day ahead or on a weekly basis. The analysis

is based on the average historical EV population for a certain weekday. Stochastic nature

of the realisation of daily EV population is incorporated to optimisation problem using

chance constraints. Such optimisation problem both maximises the expected aggregator’s

profit and guarantees fulfilling demand response according to the contract between the

aggregator and the grid.

(iv) A stochastic model predictive control algorithm for real-time charging management

of individual electric vehicles

The aggregator’s real-time EV charging management is taking care about fulfilling all

EVs’ energy requests and the agreed obligations of the aggregate to the grid. The charging

management is based on stochastic model predictive control (SMPC) in receding horizon

manner. Since the optimisation problem also includes predicted arrivals of EVs, an al-

gorithm is given that distributes the obtained optimal charging and discharging energies

to the EVs that arrived in the last discrete time interval during which the optimisation

problem was being solved.

1.2 Outline

The rest of the thesis is organised into five chapters. The day-ahead analysis of the EV

population’s flexibility capacity in Chapter 2 exploits the aggregated representation to

obtain expected EV population used for the stochastic optimisation. The analysis provides

the optimal flexibility capacity and the day-ahead energy consumption profile for the EV
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aggregator which is required for the stochastic MPC algorithm given in Chapter 3 to

enable real-time operation of the aggregator. The proposed aggregated representation of

EV population is introduced in Chapter 4, including both algorithms for the construction

of the aggregated representation and the reconstruction of the individual EV data. The

proposed method is empirically proved to capture population’s flexibility to offer demand

response. Chapter 5 covers prediction of aggregated representation using machine learning

models, necessary for model predictive control (MPC). Finally, general conclusions and

future research opportunities are given in Chapter 6.
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Chapter 2

Day-ahead flexibility analysis

There are two key challenges for the participation of the EV aggregator in frequency

regulation - to ensure feasibility of contracted flexibility and to optimise long-term profit.

In this chapter, the proposed day-ahead analysis is introduced, as one part of the

complete framework shown in Fig. 2.1. Feasibility is ensured using chance constraints

that give measure of probability that some constraint will not be satisfied. Maximal

long-term profit is obtained using statistical characteristics of the historical data which is

described in Section 2.3. Furthermore, it must be assured that every scheduling scenario

- without contracted flexibility and with contracted flexibility either with or without

flexibility activation - is economically beneficial. The whole analysis algorithm is defined

in the Section 2.4. The analysis of the results and discussion are given Section 2.5.
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Figure 2.1: The proposed concept of EV charging scheduling exploiting historical data and aggregated
representation.

The day-ahead flexibility analysis is carried out by solving linear optimisation problem

which results in the optimal frequency regulation capacity to contract per every hour in
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a day and the optimal overall energy consumption profile to declare to the power grid

operator. Expected daily EV population is be obtained by summing all EV populations

in the data sample from the historical data and then dividing by the number of days in the

sample. This approach results in a big number of EVs in the average population which

significantly increases the size of the optimisation problem. Solution to this problem is

in the aggregated representation from Chapter 4 that enables us to reconstruct average

individual population containing the acceptable number of EVs.

2.1 Aggregator and demand response model

The optimisation problem is an extension of the previous work introduced in [17] where

a microgrid is replaced with 𝑛 CPs, where 𝑛 is always big enough to serve the whole

population. Optimisation horizon is one day, from midnight to midnight, and starts and

ends with the empty parking lot. The problem is solved one day-ahead to obtain optimal

frequency regulation reserve power to contract with the transmission system operator.

The purpose of the optimisation problem is to determine the frequency regulation power

to contract with the power grid operator.

2.1.1 Charging point model

The 24-hours ahead scheduling problem engages 𝑛 CPs, where 𝑛 is equal to the maximum

concurrent number of EVs in the population. In accordance with the elaboration in

Section 3.2, number 𝑛 could be even higher than the physically available number of CPs

on the parking lot. Individual EV data necessary for the CP model consists of a set of

parameters shown in Table 2.1, similar to [10].

Table 2.1: Set of parameters describing an individual EV (EV charging session)

𝑃nom Maximum charging power of a charger or a battery

𝐶
Relative energy capacity of the battery defined as the difference of
the battery’s nominal capacity and the state of energy at the arrival

𝑘a
The first discrete-time instant when EV charging is possible - the one
after the arrival of the EV

𝑘d Discrete-time instant of departure

A CP is modeled as a system with one state 𝑆𝑜𝐸𝑐𝑝 that is equal to zero when CP

is not occupied. Otherwise, it is equal to the relative SoE of a connected EV, which is

described as:

7
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𝑆𝑜𝐸𝑐𝑝(𝑘 + 1) = 𝑆𝑜𝐸𝑐𝑝(𝑘) + 𝜂ch𝑢ch,𝑐𝑝(𝑘)− 𝑢dch,𝑐𝑝(𝑘)/𝜂dch,

∀𝑘|𝑘 + 1 ∈ 𝒪𝑐𝑝,

𝑆𝑜𝐸𝑐𝑝(𝑘) = 0, ∀𝑘|

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
𝑘 ∈ 𝒪𝑐𝑝, 𝑘 − 1 ∈ ℐ𝑐𝑝

or

𝑘 ∈ ℐ𝑐𝑝

,

(2.1)

where 𝑘 is discretisation 15-min interval, the index 𝑐𝑝 denotes a CP, 𝑢ch,𝑐𝑝 and 𝑢dch,𝑐𝑝 are

charging and discharging energies of the CP, respectively, 𝜂ch = 0.9 and 𝜂dch = 0.9 are

charging and discharging efficiency, respectively, 𝒪𝑐𝑝 is the set of time intervals in which

the CP indexed with 𝑐𝑝 is occupied with an EV connected to the CP and ℐ𝑐𝑝 is the set

of time intervals when the CP is not occupied. It can be also seen that relative SoE is

automatically initialised to zero at the arrival when the EV is connected to a CP. The

value of the efficiency coefficients 𝜂ch and 𝜂dch are equal for all EVs since the predicted

vehicle in the population is not made concrete (or personalised) and only represents a

forthcoming generic charging task for the aggregator of the charging stations.

In the absence of an EV 𝑢ch,𝑐𝑝(𝑘) and 𝑢dch,𝑐𝑝(𝑘) must be zero. During an EV presence,

the EV’s battery charger defines power constraints:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑢ch,𝑐𝑝(𝑘) + 𝑢dch,𝑐𝑝(𝑘) ≤ 𝑃nom,𝑖𝑇,

0 ≤ 𝑢ch,𝑐𝑝(𝑘) ≤ 𝑃nom,𝑖𝑇,

0 ≤ 𝑢dch,𝑐𝑝(𝑘) ≤

⎧⎪⎪⎨⎪⎪⎩
0, vehicle-to-grid disabled

𝑃nom,𝑖𝑇, vehicle-to-grid enabled

,

(2.2)

where 𝑖 denotes the corresponding EV connected to the charging point 𝑐𝑝 at the 𝑘th

discrete-time interval and 𝑇 is discretisation time. EV relative battery capacity 𝐶𝑖 con-

strains the CP state as follows:

0 ≤ 𝑆𝑜𝐸𝑐𝑝(𝑘) ≤ 𝐶𝑖, 𝑘a,𝑖 ≤ 𝑘 < 𝑘d,𝑖, (2.3)

𝑆𝑜𝐸𝑐𝑝(𝑘d,𝑖 − 1) + 𝜂ch𝑢ch,𝑐𝑝(𝑘d,𝑖 − 1)− 𝑢ch,𝑐𝑝(𝑘d,𝑖 − 1)/𝜂dch =

⎧⎪⎪⎨⎪⎪⎩
𝐶𝑖, 𝑘d,𝑖 ≤ 𝑁,

𝐶𝑖
𝑁−𝑘a,𝑖
𝑘d,𝑖−𝑘a,𝑖

𝑘d,𝑖 > 𝑁.

(2.4)

Constraint (2.4) ensures that 𝐸𝑉𝑖 leaves the parking lot with the battery charged to the

8
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required level if the EV departs on the optimisation horizon. In the other case, when

the EV departs outside of the horizon, the charging request is scaled proportionally to

the ratio of the EV’s staying time part on the horizon and the total staying time. Such

approach ’fairly’ allocates the charging task between the current optimisation horizon and

the rest of the EV’s staying time.

2.1.2 Explicit demand response scheme

Commercial rules for flexibility provision by the Croatian Transmission System Operator

(TSO) are used as a setup for our case study. Unlike in [17], the aggregator contracts with

the TSO frequency regulation reserve power 𝑃res(𝑓) separately per every 15 min interval

𝑓 ∈ F in a day, one-day-ahead. Set F is the set of all discrete-time instants when the

activation can occur. Since the parking lots in the datasets we use for verification belong

to faculty buildings, the set F contains only discrete-time intervals in period between

8:00 and 13:15 h to reduce the computational requirements due to lack of EVs outside of

that period. According to the contract, the TSO can request consumption reduction 𝑃act

during a time interval that starts at discrete-time interval 𝑓 which is not longer than 1

h. Request 𝑃act is constant for the whole time interval and must be lower than 𝑃res(𝑓).

Minimum time 𝑇r between starts of two consecutive activations is defined by the TSO.

The aggregator is notified about the activation 15 min ahead of it.

2.1.3 Cost variables

In this subsection components of the cost function for energy exchange between the aggre-

gator and the grid including DR functionality are introduced. These components include

day-ahead energy cost, intra-day balancing penalties, peak power penalisation, frequency

regulation reserve power revenue, activation energy revenue and battery degradation cost.

The charging behaviour is indifferent to charging fee since the final amount of the energy

given to the EVs is constant due to constraint (2.4) and thus the charging fee is not taken

into account. The charging fee and payment streams for EV charging depend on the

aggregator’s business model and are not further discussed here.

The energy exchange with the grid in time interval [𝑘𝑇, (𝑘 + 1)𝑇 ) is defined with:

𝐸g(𝑘) =
𝑛∑︁

𝑐𝑝=1

(𝑢ch,𝑐𝑝(𝑘)− 𝑢dch,𝑐𝑝(𝑘)) . (2.5)

9
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Day-ahead energy cost

The exchanged electrical energy cost 𝐽da is calculated in the following way:

𝐽da(𝐸g) =
𝑁∑︁
𝑘=1

𝑐da(𝑘)𝐸g(𝑘), (2.6)

where 𝑐da ∈ R𝑁 is a vector of day-ahead prices for every 15-min discretisation interval,

obtained from the market.

Intra-day balancing penalties

At the end of a day, deviation of the exhibited energy exchange profile 𝐸g from the day-

ahead predicted/declared reference energy profile 𝐸g,ref is penalised with the cost function:

𝐽id(𝐸g,𝐸g,ref) =
∑︁
𝑘=1

1.2 𝑐da(𝑘) |𝐸g(𝑘)− 𝐸g,ref(𝑘)| , (2.7)

∀𝑘 s.t.

⎧⎪⎪⎨⎪⎪⎩
1 ≤ 𝑘 ≤ 𝑁

𝑘 /∈ {𝑘act, ..., 𝑘act+3}
(2.8)

where | · | denotes the absolute value. It can be seen that in the interval of activation

deviation is not penalised.

Peak power penalisation

The aggregator contracts peak power 𝑃pp,c to the grid on a monthly basis. Peak power

cost considered in this paper is derived based on peak power billing in Croatia [18],[19]

(Fig. 2.2) and is defined with:

𝐽pp(𝐸g) = 𝑐pp𝜀pp, (2.9)

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜀pp ≥ 𝜀pp,past,

𝜀pp ≥ 0.85𝑃pp,c,

𝜀pp ≥ 𝐸g(𝑘)/𝑇, ∀𝑘 ∈ {1, 2, ..., 𝑁},

𝜀pp ≥ 3𝐸g(𝑘)/𝑇 − 2.1𝑃pp,c, ∀𝑘 ∈ {1, 2, ..., 𝑁},

(2.10)

where 𝜀pp is an auxiliary variable, 𝑐pp is the price of peak power obtained from the grid and

𝜀pp,past is the maximum value of 𝜀pp since the beginning of the month until the optimisation

is started.

10
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Figure 2.2: Peak power cost tariff.

Frequency regulation reserve power cost

The aggregator contracts unique reserve power 𝑃res(𝑓) for every 15-minute interval the

next day and it is rewarded with:

𝐽res(𝑃res) =
∑︁
𝑓

𝑐ressgn(𝑃res(𝑓))𝑃res(𝑓), ∀𝑓 ∈ F, (2.11)

where 𝑐res is the reservation power price and sgn(𝑃res) is obtained from the TSO, where

negative and positive values denote reduction and increase of power, respectively.

Frequency regulation energy cost

When the grid activates a part of or the whole agreed flexibility reserve, the aggregator

is rewarded for the exhibited difference in electrical energy consumption compared to the

declared consumption:

𝐽act(𝐸g,𝐸g,ref, 𝑃act, 𝑓) =
∑︁
𝑘

𝑐act(𝑘)𝜀act(𝑘), 𝑓 ≤ 𝑘 < 𝑓 + 4, (2.12)

s.t.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
𝜀act(𝑘) ≤ sgn(𝑃act)(𝐸g(𝑘)− 𝛾(𝑓)𝐸g,ref(𝑘)),

𝜀act(𝑘) ≤ sgn(𝑃act)𝑃act𝑇,

𝜀act(𝑘) ≥ sgn(𝑃act)(1− 𝛼)𝑃act𝑇,

(2.13)

where 𝑃act is a regulation power request of the grid that must be of the same sign and

in absolute value lower than 𝑃res(𝑓), 𝜀act is an auxiliary variable, 𝑐act is the price of

regulation energy and α = 0.25 is a tolerance factor. A correction factor 𝛾 compensates the

aggregator’s deviation from the reference profile 𝐸g,ref prior to the moment of activation

and corrects the reference. Coefficient 𝛾 is calculated as follows:

𝛾(𝑓) =

∑︀−1
𝑗=−4 𝐸g(𝑓 + 𝑗)∑︀−1

𝑗=−4 𝐸g,ref(𝑓 + 𝑗)
. (2.14)
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The definition in (2.14) introduces a nonlinearity in the optimisation problem in which

𝐸g,ref is also optimised and linear approximations are explained later in section 2.2.

EV battery degradation

Battery capacity is degraded by every charging and discharging action. Since the EV

owner expects the battery is charged to the target state, battery charging is not penalised.

In the case the EV owner agrees with discharging of the battery it is penalised with double

degradation price since the battery must be charged again after the discharging:

𝐽bd(𝑢dch) = 2𝑐bd

𝑁∑︁
𝑘=1

𝑛∑︁
𝑐𝑝=1

𝑢dch,𝑐𝑝(𝑘), (2.15)

where 𝑐bd is the battery degradation cost [20]. Expression (2.15) is formally correct both

for the cases when the EV is owned by a person that needs to be reimbursed for the

vehicle-to-grid service and when the aggregator owns the EV and it should take (2.15)

into account for its long-term profit.

2.1.4 Worst-case problem

The considered optimisation problem consists of one scenario 𝑆𝑓 for the activation at every

time instant 𝑓 ∈ F and of a scenario 𝑆n without activation. Further on, indices 𝑓 and n

used for different variables denote a scenario to which a particular variable belongs. The

information about the activation at the moment 𝑓 becomes available between the time

instants 𝑓 − 1 and 𝑓 which means that all optimisation variables of the scenario 𝑆𝑓 must

be equal to the ones of the scenario 𝑆n until the activation occurs. Such an optimisation

problem can be qualified as the worst-case multi-stage recourse problem according to [21].

Constraints that connect scenarios 𝑆n and 𝑆𝑓 assure that all decision variables are

calculated using only information available at the corresponding moment:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
𝑆𝑜𝐸𝑐𝑝,𝑓 (𝑘) = 𝑆𝑜𝐸𝑐𝑝,n(𝑘) ∀𝑘|1 ≤ 𝑘 ≤ 𝑓,

𝑢ch,𝑐𝑝,𝑓 (𝑘) = 𝑢ch,𝑐𝑝,n(𝑘) ∀𝑘|1 ≤ 𝑘 < 𝑓,

𝑢dch,𝑐𝑝,𝑓 (𝑘) = 𝑢dch,𝑐𝑝,n(𝑘) ∀𝑘|1 ≤ 𝑘 < 𝑓,

∀𝑓 ∈ F,

∀𝑐𝑝 ∈ {1, 2, ..., 𝑛}.

(2.16)

When an activation occurs, it is certain that the next activation can occur at 𝑓 +𝑇r/𝑇
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at earliest, because of the recuperation period respected by the grid operator that utilises

the flexibility. After the recuperation period has passed, i.e. for 𝑘 ≥ 𝑓 +𝑇r/𝑇 , constraints

are added as follows:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
𝑆𝑜𝐸𝑐𝑝,𝑓 (𝑘) = 𝑆𝑜𝐸𝑐𝑝,n(𝑘) ∀𝑘|𝑓 + 𝑇r/𝑇 ≤ 𝑘 ≤ 𝑁,

𝑢ch,𝑐𝑝,𝑓 (𝑘) = 𝑢ch,𝑐𝑝,n(𝑘) ∀𝑘|𝑓 + 𝑇r/𝑇 ≤ 𝑘 ≤ 𝑁,

𝑢dch,𝑐𝑝,𝑓 (𝑘) = 𝑢dch,𝑐𝑝,n(𝑘) ∀𝑘|𝑓 + 𝑇r/𝑇 ≤ 𝑘 ≤ 𝑁,

∀𝑓 ∈ F,

∀𝑐𝑝 ∈ {1, 2, ..., 𝑛}.

(2.17)

Constraints (2.17) ensure that the aggregator is ready for the next activations that may

occur after the recuperation period. Scenario 𝑆𝑓 can be seen as a branch in a scenario

tree which is then connected back to the scenario 𝑆n.

2.2 Deterministic optimisation problem

It is assumed that the aggregator every day declares nominal energy exchange profile 𝐸g,n

to the grid entity that utilises the flexibility so 𝐸g,n is used as a reference profile to calculate

𝐽id and 𝐽act. That causes a nonlinearity in calculating 𝛾 in (2.14). The nonlinearity is

bypassed by adding constraints:⎧⎪⎪⎨⎪⎪⎩
sgn(𝑃res(𝑓))𝐸g,n(𝑘) ≥ sgn(𝑃res(𝑓))𝐸g,𝑓 (𝑘)

𝑓 − 4 + 𝑇r/𝑇 ≤ 𝑘 < 𝑓 + 𝑇r/𝑇, ∀𝑓 ∈ F
, (2.18)

that limits 𝛾 to be equal to 1 in the worst case and allows us to use 𝛾 = 1 instead of

(2.14).

Total costs 𝐽n of the scenario without activation and 𝐽𝑓 of the scenarios with activation

at interval 𝑓 are defined as:

𝐽n = 𝐽da(𝐸g,n) + 𝐽pp(𝐸g,n) + 𝐽bd(𝑢dch,n), (2.19)

𝐽𝑓 =𝐽da(𝐸g,n) + 𝐽pp(𝐸g,𝑓 ) + 𝐽bd(𝑢dch,𝑓 )

+ 𝐽act(𝐸g,𝑓 ,𝐸g,n, 𝑃res(𝑓), 𝑓) + 𝐽id(𝐸g,𝑓 ,𝐸g,n, 𝑓).
(2.20)

It can be seen from (2.20) that every scenario assumes the grid will activate the whole

contracted reserve power 𝑃res.

13



Day-ahead flexibility analysis

The optimisation variables of the offline problem are 𝑢ch and 𝑢dch of all scenarios

and the vector of contracted 15 min regulation power reserve 𝑃res while the cost being

minimised is:

𝐽 = min
𝑢ch,𝑢dch,𝑃res

𝐽res(𝑃res) + 𝐽worst,

s.t.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
𝐽worst ≥ 𝐽n + β

∑︀
∀𝑓 𝐽𝑓 ,

𝐽worst ≥ 𝐽𝑓 + β𝐽n + β
∑︀

∀𝑗≠𝑓 𝐽𝑗 , ∀𝑓,

(2.1)− (2.20)

(2.21)

where β is empirically chosen equal to 0.001 and is used to prevent certain scenarios not

being optimised, which would be a consequence of that only the worst scenario contributes

to 𝐽worst (case where β = 0).

2.3 Chance-constraints

Uncertainty of EV arrivals must be included in day-ahead analysis. Statistical trans-

formation from the aggregated representation to individual EV data is a complicated

task that remains for the future work. Because of that, the approach with aggregated

chance-constrains is applied.

The method of chance-constraints in optimisation programming involves managing un-

certain parameters in a problem with the assurance of a particular level of performance.

Dealing with variables that are uncertain within a control system raises concerns about

reliability and potential risks, creating complexities in predicting the most probable out-

come. In stochastic optimisation, anticipated or nominal values are utilised for addressing

these uncertainties. Although there is a degree of risk associated with these stochastic op-

timisation choices, they are generally considered conventional as they have been previously

incorporated – a recognised ”trade-off.” However, in practical scenarios, these trade-offs

are not always clearly defined, such as in the case of extreme weather occurrences. In

such instances of uncertainty, it remains crucial to prepare for these events and formulate

decisions around them. A prevalent approach in such cases is to accommodate unexpected

events that might breach specific constraints, as long as the overall constraint satisfaction

is upheld within a specified probability threshold. This implies ensuring particular levels

of feasibility, which are termed as chance-constraints.

In the case of the EV charging scheduling, all individual EV data are uncertain pa-

rameters influencing EVs’ state of energy and charging and discharging power. Thus, the
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aggregated chance-constraints are superimposed to the individual constraints (2.2) - (2.4)

and they are derived from the aggregated constraints (4.32),(4.35) and (4.36):

prob(𝑃agg,ch(𝑘) + 𝑃agg,dch(𝑘) <= 𝑃max(𝑘)) > 1− 𝛼, (2.22)

prob(𝑆𝑜𝐸agg(𝑘) ≤ 𝐶agg(𝑘)) > 1− 𝛼, (2.23)

prob(𝑆𝑜𝐸agg(𝑘) ≥ 𝑅agg(𝑘)) > 1− 𝛼, (2.24)

where 𝑅agg ∈ R𝑁 and 𝐶agg ∈ R𝑁 are lower and upper bound of the aggregated charging

envelope of the EV population, respectively and vector 𝑃max ∈ R𝑁 denotes total nominal

charging power connected to the charging points.Their statistical analysis is given in the

next section. Parameter 𝛼 is a user-defined probability that constraint will be violated.

Vectors 𝑃agg,ch ∈ R𝑁 , 𝑃agg,dch ∈ R𝑁 are total charging and discharging power, respectively,

defined as:

𝑃agg,ch(𝑘) =
𝑛∑︁
𝑐𝑝

𝑢ch,𝑐𝑝(𝑘), (2.25)

𝑃agg,dch(𝑘) =
𝑛∑︁
𝑐𝑝

𝑢dch,𝑐𝑝(𝑘), (2.26)

where 𝑛 is the number of charging points. Vector 𝑆𝑜𝐸agg ∈ R𝑁 represents aggregated

state of energy:

𝑆𝑜𝐸agg(𝑘) = (
∑︁
𝑐𝑝

𝑆𝑜𝐸𝑐𝑝(𝑘), ∀𝑐𝑝 | 𝑘 /∈ ℐ𝑐𝑝) + (
∑︁
𝑖

𝐶𝑖, |𝑘d,𝑖 < 𝑘). (2.27)

In this way the aggregator can have control over the risk that follows from uncertainty

of EVs presence. With known cumulative density function (CDF) Φ for every element

of the random vectors for every weekday, chance constraints can be rewritten to a linear

constraints:

𝑃agg,ch(𝑘) + 𝑃agg,dch(𝑘) ≤ Φ−1
P,𝑑,𝑘(1− 𝛼), (2.28)

𝑆𝑜𝐸agg(𝑘) ≤ Φ−1
C,𝑑,𝑘(1− 𝛼), (2.29)

𝑆𝑜𝐸agg(𝑘) ≥ Φ−1
R,𝑑,𝑘(𝛼), (2.30)

where Φ−1 is inverse of CDF, indices P, C and R denote vectors while indices 𝑑 and 𝑘 day

of week and discrete time interval, respectively.
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2.3.1 Statistical analysis of daily aggregated EV data

For statistical analysis is used historical aggregated representation of every day. Due to

obvious weekly pattern, seen in Fig. 5.4, analysis is done separately per every weekday. For

Friday two separated analyses were conducted since in JPL every second Friday is free for

the most of employees. By observing the histograms of the 8𝑡ℎ and 50𝑡ℎ elements random

variable 𝑃max, corresponding to 15-min discrete time intervals at 7:00 and 12:30, shown

in Fig. 5.3, it can be seen that random variables cannot be easily described with some

common probability distribution. Furthermore it can be seen that unique probability

density function (PDF) should be determined for every discrete-time interval in a day

separately. For the estimation of probability density function (PDF) of every element in

𝑃max a kernel density estimator (KDE) [22] is used:
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Figure 2.3: Histograms and cumulative density functions of all working Mondays’ 𝑃max(28) and 𝑃max(50)
that corresponds to 7:15 and 12:45 respectively.

𝑓ℎ(𝑥) =
1

𝑚ℎ

𝑚∑︁
𝑖=1

𝐾ℎ

(︂
𝑥− 𝑥𝑖

ℎ

)︂
, (2.31)

where 𝑓ℎ(𝑥) is the estimate of PDF 𝑓(𝑥) at 𝑥 considering 𝑚 observations 𝑥𝑖 ∈ 𝑋, and

𝐾ℎ(·) is some kernel function for which ℎ denotes the kernel smoothing parameter. A

common choice for 𝐾ℎ(·) is the Gaussian kernel defined as follows:

𝐾(𝑥) =
1√
2𝜋𝜎

𝑒−
𝑥2

2𝜎2 , (2.32)

where 𝜎 is standard deviation. As for smoothing parameter h, the Gaussian reference

bandwidth is chosen according to Scott’s rule [23]:

ℎ =

(︂
1

𝑛

)︂(𝑑+4)

, (2.33)
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where 𝑑 is number of dimensions which is equal to 1 since the KDE is determined for

every element of 𝑃max, 𝐶agg and 𝑅agg separately.

Since 𝐶agg(𝑘) and 𝑅agg(𝑘) are highly correlated, as seen in Fig. 2.4., separate analysis

would lead to contradicted and unfeasible constraints (2.23) and (2.24) which can be seen

in Fig. 2.5 where histograms overlaps.
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Figure 2.4: Correlation between vectors 𝐶agg and 𝑅agg.
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Figure 2.5: Histograms and cumulative density functions of all working Mondays’ 𝐶agg(56) and 𝑅agg(56)
that corresponds to 13:45.

The foundation of flexibility capacity is the area of the aggregated envelope between

time vectors 𝐶agg and 𝑅agg as visualised in Fig. 2.6. More precisely, its distribution

through the horizon. Thus vector Δagg ∈ R𝑁 is defined as:

∆agg(𝑘) = 𝐶agg(𝑘)−𝑅agg(𝑘). (2.34)

It is vector Δagg that implicitly quantifies EV populations’ capability to participate in

frequency regulation. Average EV population used in the analyses contains information for

the expectation of the aggregator’s nominal overall consumption profile while Δagg limits
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Figure 2.6: Example of vectors 𝐶agg and 𝑅agg with denoted Δagg .

deviations from it, i.e. moving EVs charging outside the activation intervals. Chance

constraints (2.29) and (2.30) are adapted to:

𝑆𝑜𝐸agg(𝑘) ≤
𝐶agg,𝑑,𝑘 +𝑅agg,𝑑,𝑘

2
− Φ−1

Δ,𝑑,𝑘(1− 𝛼), (2.35)

𝑆𝑜𝐸agg(𝑘) ≥
𝐶agg,𝑑,𝑘 +𝑅agg,𝑑,𝑘

2
+ Φ−1

Δ,𝑑,𝑘(1− 𝛼), (2.36)

where 𝐶agg,𝑑,𝑘 and 𝑅agg,𝑑,𝑘 are the mean value of the 𝑘th elements of vectors 𝐶agg and 𝑅agg,

respectively, for weekday 𝑑. Function Φ−1
Δ,𝑑,𝑘(·) is analogue CDF of element of vector Δ.

With the applied statistic analysis, final aggregated charging envelopes are shown in

Fig. 2.7 while maximal total charging power is shown in Fig 2.8.
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Figure 2.7: Aggregated charging envelope for different values of 𝛼
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Figure 2.8: Maximal total charging power for different values of 𝛼.

2.4 Stochastic day-ahead analysis algorithm

The optimisation problem (2.21) used in Chapter 4 for the comparison of flexibility ca-

pacity of populations is now modified to enable cost-benefit analysis. The frequency

regulation capacity market operates as an auction so it is uncertain if the offered capac-

ity is going to be contracted. The optimisation problem (2.21) minimises the final cost

that includes reward for contracted flexibility capacity 𝐽res(𝑃res) which can bring out that

the nominal scenario without any activation does not entirely charge the EVs in the low

electrical energy price intervals in order to adapt in service of flexibility. Since the reward

for adapting is not guaranteed, that is a possible financial loss for the aggregator. In

order to put that loss under control, the first step of the flexibility analysis is to calculate

optimal cost of the nominal scenario without contracted flexibility. The second step is to

determine the optimal charging schedules for contracting flexibility under condition that

total cost of the scenario without flexibility activation must not be be higher than the

nominal scenario from the first step.

2.4.1 Stochastic optimisation problem without flexibility

The aggregated chance-constraints (2.28) in superposition with the individual constraints

(2.2) - (2.4) can cause infeasible solution in the optimisation problem. To determine the

optimal EV charging schedule that minimally breaks aggregated chance-constraints, the

part of the linear optimisation problem from Chapter 4 that refers to scenario ’n’ without
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flexibility activation is upgraded with soft-constraint variant of (2.28):

𝐽soft = 𝑐soft *
∑︀𝑁

𝑘=1 𝜀P(𝑘)

s.t.

⎧⎪⎪⎨⎪⎪⎩
𝑃agg,ch(𝑘) + 𝑃agg,dch(𝑘)− 𝜀P(𝑘) ≤ Φ−1

P,𝑑,𝑘(1− 𝛼),

𝜀P(𝑘) ≥ 0,

(2.37)

where 𝐽soft denotes penal for breaching of soft-constraints, 𝜀P(𝑘) is auxiliary variable and

𝑐soft is big enough penalty price to enforce maximal constraints satisfaction. Chance

constraints (2.35) and (2.36) do not need to be implemented as soft constraint because

they make aggregated charging envelope around
𝐶agg,𝑑,𝑘+𝑅agg,𝑑,𝑘

2
which is by the definition

charging trajectory for charging all EVs continuously through their whole staying time.

Because of that, there is always at least one feasible charging trajectory, even when

probability parameter 𝛼 is equal to zero.

The complete optimisation problem for the scenario without contracted flexibility is

defined as:

𝐽wcf = ( min
𝑢h,𝑢dch

𝐽n + 𝐽soft),

s.t. (2.1)− (2.6), (2.9), (2.10), (2.15), (2.19)(2.35)− (2.37),

(2.38)

where 𝐽wcf is the total optimisation cost of the aggregator without contracted flexibility

(wcf) that includes 𝐽soft. For the economical analysis optimal daily operational cost of

aggregator is calculated as 𝐽*
wcf = 𝐽wcf − 𝐽soft and as such is used for the optimisation

problem with flexibility in the next subsection.

2.4.2 Stochastic optimisation problem with flexibility

After obtaining the EV charging schedule that minimally breaks aggregated chance-

constraints, soft chance-constraint (2.37) can be replaced with:

𝑃agg,ch(𝑘) + 𝑃agg,dch(𝑘) ≤ 𝑃max,wcf(𝑘), (2.39)

where 𝑃max,wcf is found using:

𝑃max,wcf(𝑘) = max
(︀
Φ−1

P,𝑑,𝑘(1− 𝛼), |𝑢ch,wcf(𝑘) + 𝑢dch,wcf(𝑘)|
)︀
. (2.40)

Vectors 𝑢ch,wcf and 𝑢dch,wcf are the optimal arguments for optimisation problem without

contracted flexibility (2.38), max(·) is max operator and | · | is first norm of vector. The

conducted correction for probability parameter 𝛼 = 0.05 for Monday is shown in Fig. 2.9.
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Figure 2.9: Vector 𝑃max,wcf for Monday and 𝛼 = 0.05 after correction using (2.40).

With determined 𝐽*
wcf from the optimisation problem (2.38) the aggregator can choose

the value at risk 𝑉ar that can be lost if the offer for frequency regulation capacity is not

accepted from the power grid operator. Using the obtained 𝐽*
wcf the former optimisation

problem (2.21) is modified as follows:

𝐽 = min
𝑢ch,𝑢dch,𝑃res

𝐽res(𝑃res) + 𝐽worst,

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐽worst ≥ 𝐽n + β
∑︀

∀𝑓 𝐽𝑓 ,

𝐽worst ≥ 𝐽𝑓 + β𝐽n + β
∑︀

∀𝑗≠𝑓 𝐽𝑗 , ∀𝑓,

𝐽n ≤ 𝐽*
wcf + 𝑉ar

(2.1)− (2.20), (2.35), (2.36), (2.39)

(2.41)

2.4.3 Final day-ahead algorithm

To conclude and as an abstract of the whole procedure, all steps are summarised in the

Algorithm 1.
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Algorithm 1 Day-ahead flexibility analysis

Require: Historical daily EV populations, 𝛼,𝑉ar 𝑐da, 𝑐act, 𝑐res
Ensure: 𝑃res, 𝑢ch, 𝑢dch

From historical daily EV populations generate mean aggregated representation using
Algorithm 6
Find CDF for vectors 𝑃agg,max, 𝐶agg and 𝑅agg (2.31)-(2.36)
Solve (2.38) to find 𝐽*

wcf

Find 𝑃max,wcf using (2.40)
Solve (2.41)

2.5 Results and discussion

In this section an extensive analysis of the results is given for the weekday Monday and

with probability parameter 𝛼 = 0.05. Value at risk 𝑉ar is arbitrarily chosen to enable the

EV population to show a significant part of its flexibility capacity. The rest of the prices

and parameters is the same as in Section 4.3.

Difference in total present nominal charging power 𝑃max and total charged energy 𝑅agg

varies between same weekday. Thus analysis of the optimal contracted peak power ought

to be separated. For the flexibility analysis the critical parameters are those that limit

frequency regulation capacity - 𝑃max and Δagg, while for the peak power analysis the

distribution and the upper values of 𝑃max and 𝑅agg should be examined, which is left for

the future work. In spite of that, both results with and without peak-power optimisation

are given in this section to give valuable insight in critical costs and revenues.

Values of the electrical prices used in the optimisation problem (2.21) are as follows:

𝑐pp = 0.116 =C/kW, 𝑐res = −0.0162 =C/kW, 𝑐act = 0.065 =C/kWh, 𝑐batt = 0.226 =C/kWh

[20]. Vector of day-ahead prices 𝑐da is shown in Fig. 2.10. Discretisation time is 𝑇 = 15

min and recuperation period is 𝑇r = 24 h.
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Figure 2.10: Day-ahead electrical energy price profile. [13]

2.5.1 Neglected peak power optimisation

In this subsection are presented optimisation results obtained using optimisation problems

(2.38) and (2.41) with excluded 𝐽pp and constraints (2.9) and (2.10) that define it. It is
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visible in Fig. 2.11. that constraint 𝐽n ≤ 𝐽*
wcf + 𝑉ar is satisfied. Indeed, there was no

no need to exploit the whole amount of 𝑉ar = 5=C, the daily operation cost of scenario

without flexibility activation (with excluded reservation reward 𝐽res) is only 1.16 =C higher

than the cost without contracted flexibility 𝐽*
wcf.
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Figure 2.11: Results of day-ahead flexibility analysis for Monday and 𝛼 = 0.05

Figure 2.12. clearly shows the cause why the scenario without flexibility activation

𝐸g,n is removed from the optimal point and charges the EVs in more expensive hours.

More precisely, a part of charging between 12:00 and 16:00 was shifted outside the interval,

where energy prices are higher, especially at 9:00. It is also visible how scenarios with

activation 𝐸g,34 and 𝐸g,57, that correspond to 8:15 and 14:00, charge EVs, from two

possible hours during recuperation period, in the one hour with the lower prices. During

morning the scenario 𝐸g,n charges the EVs to be as higher from the activation scenarios

as possible. Furthermore, it is interesting to see that chosen flexibility activation price
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Figure 2.12: Comparison for scenario costs for Monday and 𝛼 = 0.05
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(frequency regulation energy price) is just high enough to cover all extra costs that are a

consequence of the activation. Only couple of activation scenarios obtained extra profit

in comparison to the scenario without activation. The first extra cost of the activation

is intra-day balancing penalties for the deviation from the nominal total electrical energy

exchange with the grid during the recuperation period. As it can be seen in an example

in Fig.2.12. where the scenario with activation at 14:00 compensates missed charging

two hours later when the day-ahead energy price is higher. Not to mention the extra

cost of battery degradation and the additional losses on battery power converters if EV

batteries are discharged as shown With the converter efficiency 𝜂 = 0.9, for the 1 kWh

discharged another 1 kWh/0.92 = 1.23 kWh must be charged to meet starting state of the

energy. The optimal regulation capacity depending on the probability variable 𝛼 is given

in Fig. 2.13. In the main part of a day, saturation is visible already above 𝛼 = 0.1. It is

interesting how capacity at the edges of a day rises at he expense of the capacity at noon.

The last significant contracted regulation capacity is at 16:00. The explanation can be

seen in Fig. 2.12. To contract capacity at 17:00 it means that the last possible activation

interval is 17:45-18:45 but already at 18:30 there is no manoeuvring space, especially to

recuperate, because 𝑃max,wcf overlaps with both 𝐸g,wcf and 𝐸g,n.
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Figure 2.13: Optimal frequency regulation capacity for Monday.

Cost analysis of the obtained results is given in Table 2.2. Scenarios with contracted

flexibility are compared with standard as-soon-as-possible (ASAP) charging and the charg-

ing profile that is result of the optimisation problem (2.38) without considered flexibility.

Significant savings are mostly result of the contracted flexibility while most of the reward

for the activation of flexibility is used to cover additional intra-day balancing penalties

emerged from the EV charging after the activation. In Table 2.2 are also shown result for

the best and the worst case of flexibility activation.

24



Day-ahead flexibility analysis

Table 2.2: Offline analysis results without peak power shaving.

𝐽da 𝐽id 𝐽res 𝐽act Total Savings Savings /%

ASAP charging 74.22 / / / 74.22 / /

Without contracted
flexibility

71.28 / / / 71.28 -2.94 -3.96

Without activation 72.70 / -14.42 / 57.98 -16.24 -21.88

With activation - worst 72.30 1.94 -14.42 -1.81 58.02 -16.2 -21.83

With activation - best 72.30 5.65 -14.42 -6.48 57.07 -17.15 -23.11

2.5.2 Included peak power optimisation

Results obtained using optimisation problems (2.38) and (2.41), including peak power

optimisation show even bigger savings in comparison with optimisation with neglected

peak power.A consequence of the included peak power optimisation is clearly seen in

Fig. 2.14. Energy consumption 𝐸g,wcf is cut off in the middle of a day, reducing it’s

maximal value which corresponds to the lowest peak power cost of the scenario WCF in

Table 2.3. Similarly, scenarios with activation give priority to peak power minimisation

at the expense of the higher energy prices. The scenario with the highest peak power cost

compensates it with reward for fulfilled activation.
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Figure 2.14: Results of day-ahead flexibility analysis for Monday and 𝛼 = 0.05

Similar as in analyses without included peak power optimisation, the operational cost

of the scenario without activation is only 0.97 =C higher than scenario without contracted

flexibility. It can be seen in Fig. 2.15 that costs of most scenarios are the same as the

highest one which is justified with worst case optimisation where scenarios adapt to reduce

the cost of the critical scenario at the expense of increasing their cost.
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Table 2.3: Offline analysis results.

Scenario 𝐽da + 𝐽bd 𝐽pp 𝐽id 𝐽act 𝐽res Total Savings Savings /%

ASAP charging 74.22 17.64 / / / 91.86 / /

Without contracted
flexibility

72.72 11.67 / / / 84.39 -7.47 -10.06

Without activation 72.70 12.67 / / -14.44 70.92 -20.94 -28.21

With activation - worst 74.86 12.67 1.23 -1.23 -14.44 73.10 -18.76 -25.28

With activation - best 72.73 12.67 2.46 -2.72 -14.44 70.70 -21.16 -28.51

Max peak power 72.60 15.73 5.17 -5.97 -14.44 73.10 -18.76 -25.28
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Figure 2.15: Comparison for scenario costs for Monday and 𝛼 = 0.05

2.6 Conclusion

This chapter proposed day-ahead analysis of the EV aggregator’s demand response ca-

pacity based on stochastic worst-case optimisation. The analysis offers control over the

possible financial loss if the flexibility is not contracted with the power grid operator on

day-ahead frequency regulation market. By applying chance-constraints and statistical

analysis of real-world historical data, the aggregator can influence the certainty of fulfill-

ing contracted flexibility. Conducted analysis showed flexibility capacity of 80 kW for a

parking lot equipped with 52 EV charging points.
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Chapter 3

Stochastic model predictive control of

EV charging

In this chapter the optimisation problem is modified to enable model predictive control

(MPC) in a way that it is solved every 15 minutes, within one discretisation interval, and

only control variables of the first interval are applied to the system - charging points of

the aggregator. In this situation, the individual data of the present EVs is known while

the future EVs are predicted and aggregated constraints are applied only on them. The

MPC, marked orange, is the final part of the EV charging scheduling concept proposed

in this thesis, shown in Fig. 3.1.
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Figure 3.1: The proposed concept of EV charging scheduling exploiting historical data and aggregated
representation.

The optimisation problem is slightly different than the problem (2.41) from the pre-

vious chapter and it is defined in section 3.1. The first discretisation interval includes

charging of EVs that arrived in the previous interval. Since that EVs are not known prior
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to the start of solving the optimisation problem, they are part of the future EV popula-

tion. Because of that, there is a need for the algorithm to allocate the predicted optimal

charging power to the new arrived EVs. The algorithm is given in Section 3.2 while the

conducted simulations and discussion are given in Section 3.3. The conclusion is given in

Section 3.4

3.1 Optimisation problem

After the declared daily energy consumption profile and the optimal regulation capacity

are obtained using day-ahead analysis, they are offered and potentially contracted on the

day-ahead energy and regulation capacity market. Costs of scenarios with and without

activation are defined, respectively, as:

𝐽n =𝐽pp(𝐸g,n) + 𝐽bd(𝑢ch,n, 𝑢dch,n)

+ 𝐽id(𝐸g,n,𝐸
*
g) + 𝐽act(𝐸g,n,𝐸

*
g ,P

*
act, 𝑖last)

. (3.1)

𝐽𝑓 =𝐽pp(𝐸g,𝑓 ) + 𝐽bd(𝑢ch,𝑓 , 𝑢dch,𝑓 )

+ 𝐽id(𝐸g,𝑓 ,𝐸
*
g) + 𝐽act(𝐸g,f,𝐸

*
g ,Pres,d, 𝑓)

(3.2)

It can be seen that 𝐽id and 𝐽act take declared 𝐸*
g as a reference for calculation of the

deviation.

Correction coefficient 𝛾 used in 𝐽act to adapt reference according to historical energy

consumption is determined using scenario without activation and the declared energy

consumption profile 𝐸*
g :

𝛾(𝑓) =

∑︀−1
𝑗=−4 𝐸g,𝑛(𝑓 + 𝑗)∑︀−1
𝑗=−4 𝐸

*
g(𝑓 + 𝑗)

. (3.3)

Of course, for the first four discrete time intervals, historical data supplements intervals

that precede start of optimisation horizon. In the case of consecutive activations, the

scenario with the first activation will be realised and it will determine 𝛾 for the scenario

with next activation. To ensure that 𝛾 will not be worse (lower) than the planned one

obtained using the scenario without activation, additional constraint is added as follows:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
sgn(𝑃res(𝑓))𝐸g,n(𝑘) ≥ sgn(𝑃res(𝑓))𝐸g,𝑓 (𝑘),

𝑘 ≤ 𝑁,

𝑓 − 4 + 𝑇r/𝑇 ≤ 𝑘 < 𝑓 + 𝑇r/𝑇, ∀𝑓 ∈ F

. (3.4)

As it can be seen, the constraint ensures that 𝛾 for the next possible scenarios is at least
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the same as one obtained using the scenario without activation. For the MPC, care must

be taken for 𝛾 after the horizon so that feasibility and economical gain are not jeopardised.

In the day-ahead analysis it was ensured 𝛾 ≥ 1 which must be then guaranteed in the

future as far as possible and the last variables influencing future 𝛾 must be constrained

using soft constraint:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐽𝛾 = 𝑐soft *
∑︀𝑁

𝑘=1 𝜀𝛾(𝑘),

sgn(𝑃res(𝑓))𝐸
*
g(𝑘) ≥ sgn(𝑃res(𝑓))𝐸g,𝑛(𝑘)− 𝜀𝛾(𝑘),

𝑁 − 7 < 𝑘 ≤ 𝑁,

𝜀𝛾(𝑘) ≥ 0.

(3.5)

3.1.1 Deterministic optimisation problem

The deterministic optimisation problem is omniscient about all the future EVs. Because

of that, there is no need for the aggregated soft constraints as in the previous chapter.

The final optimisation problem is defined as:

𝐽 = min
𝑢ch,𝑢dch

𝐽worst + 𝐽𝛾,

s.t.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
𝐽worst ≥ 𝐽n + β

∑︀
∀𝑓 𝐽𝑓 ,

𝐽worst ≥ 𝐽𝑓 + β𝐽n + β
∑︀

∀𝑗≠𝑓 𝐽𝑗 , ∀𝑓,

(2.1)− (2.10), (2.12)− (2.20), (3.1)− (3.5)

(3.6)

3.1.2 Stochastic optimisation problem

The unfulfilled requested flexibility activation includes penalties for the aggregator and

if it occurs more often than allowed by the power grid operator, the aggregator will be

disqualified from the regulation market. To guarantee the feasibility of all the possible

scenarios with activation, more conservative approach is needed because of the uncer-

tainty of the predicted EV population. Unlike the deterministic optimisation problem,

the stochastic version distinguishes already present and predicted EVs. Because of that

the aggregated chance-constraints (2.37) are applied only to predicted EVs.
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𝐽 = min
𝑢ch,𝑢dch

𝐽worst + 𝐽𝛾,

s.t.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
𝐽worst ≥ 𝐽n + β

∑︀
∀𝑓 𝐽𝑓 + 𝐽soft(𝑢ch,n, 𝑢dch,n),

𝐽worst ≥ 𝐽𝑓 + β𝐽n + β
∑︀

∀𝑗≠𝑓 𝐽𝑗 + 𝐽soft(𝑢ch,𝑓 , 𝑢dch,𝑓 ) , ∀𝑓,

(2.1)− (2.10), (2.12)− (2.20), (2.37), (3.1)− (3.5)

(3.7)

3.2 Implementation of model predictive control

Model predictive control solves the optimisation problem where the first control variables

𝑢ch(1) and 𝑢dch(1) correspond to the next 15-minute interval. Thus, the charging of

predicted EVs are optimised and included in planned total energy exchange 𝐸g(1). For

the realisation of the planned 𝐸g(1) planned charging energies of the predicted EVs must

be allocated to the newly arrived EVs. Algorithm 2 defines the mentioned charging energy

allocation procedure.

The first priority is to ensure newly arrived EVs will be fully charged at departure.

Afterwards the remaining energy, if there is any, is divided between the newly arrived EVs.

In the case when charging energy for ensuring the newly arrived EVs will be fully charged

exceeds the planned energy, charging of already present EVs is reduced. Of course, there

is possibility that planned 𝐸g(1) is not feasible, i.e. ∆𝑃 ≠ 0 at the end of Algorithm

2, due to significant error of the predicted EV population. Such situation did not occur

during testing, despite the prediction error in simulation of stochastic MPC.

The important consequence of Algorithm 2 is the absence of the limitation on the

predicted EVs in the first discrete-time interval and the rest of the optimisation horizon,

regardless the number of free physical charging point operated by the EV aggregator.

3.2.1 Computational requirements

Linear optimisation problem (3.7) was set up in Python [24] using Numpy [25] and Scipy

[26] modules and as a solver IBM Cplex [27] was used. Computations were run on a Win-

dows10 personal computer with processor Intel Core i7-3770K CPU @ 3.50 GHz (4 cores)

and 16 GB RAM. Computational time significantly varies. For a certain optimisation

horizon computational time depends on the size of EV population since the number of

charging point, i.e. state and control variables, is equal to the maximal number of present

EVs. Both deterministic and stochastic MPC were tested with the same dataset where

the maximal number of present EVs is 52. Size of the linear program changes through
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Algorithm 2 Algorithm for applying the solution of (3.7) to the physical charging points.

𝑃p = sum of the optimal charging powers for the predicted EVs 𝑢ch,𝑝(0) for the first interval
Charge the newly arrived EVs if needed to ensure feasibility of 𝑆𝑜𝐸𝑖(𝑘d,𝑖) = 𝐶𝑖, sum those
charging powers to 𝑃f

Calculate Δ𝑃 = 𝑃p − 𝑃f

if Δ𝑃 > 0 then
Divide available charging power Δ𝑃 to the rest of the newly arrived EVs, by maximising

𝑢ch,𝑖 under constraints:

• 𝑢ch,𝑖 ≤ 𝑃nom,𝑖

• 𝑢ch,𝑖𝑇 ≤ 𝐶𝑖

• 𝑢ch,𝑖 ≤
𝐶𝑖/𝑇 (𝑃 (𝑘d,𝑖−𝑘a,𝑖−1))∑︀

𝑗 𝐶𝑗/(𝑃𝑗𝑇 (𝑘d,𝑗−𝑘a,𝑗−1)), ∀ newly arrived 𝐸𝑉𝑗
Δ𝑃

Update Δ𝑃 = 𝑃𝑝 − 𝑃𝑓 −
∑︀

𝑖 𝑢ch,𝑖
while Δ𝑃 > 0 and there are more newly arrived EVs do

Maximise charging power of arrived EVs, if possible, with constraints:

• 𝑢ch,𝑖 ≤ 𝑃nom,𝑖

• 𝑢ch,𝑖𝑇 ≤ 𝐶𝑖

• 𝑢ch,𝑖 ≤ Δ𝑃

Update Δ𝑃 = 𝑃p − 𝑃f −
∑︀

𝑖 𝑢ch,𝑖
end while
while Δ𝑃 > 0 and there are more already present EVs do

Maximise charging power 𝑢ch,𝑗 to 𝑢+ch,𝑗 of the already present EVs, with constraints:

• 𝑢+ch,𝑗 ≤ 𝑃nom,𝑗

• 𝑢+ch,𝑗𝑇 ≤ 𝐶𝑗

• 𝑢+ch,𝑗 − 𝑢ch,𝑗 ≤ Δ𝑃

Update Δ𝑃 = 𝑃p − 𝑃f −
∑︀

𝑖 𝑢ch,𝑖 −
∑︀

𝑗(𝑢
+
ch,𝑗 − 𝑢ch,𝑗)

end while
else

while Δ𝑃 < 0 and there are more already present EVs do
Reduce charging power 𝑢ch,𝑗 to 𝑢+ch,𝑗 of the already present EVs, with constraints:

• 𝑢+ch,𝑗 ≥ 0

• 𝑆𝑜𝐸𝑗(𝑘d,𝑗) = 𝐶𝑗

• 𝑢+ch,𝑗 − 𝑢ch,𝑗 ≥ Δ𝑃

Update Δ𝑃 = 𝑃p − 𝑃f +
∑︀

𝑗(𝑢ch,𝑗 − 𝑢+ch,𝑗)
end while

end if

day since there are no scenarios with activation during night and during the recuperation

period after the occurred activation. Only for horizon of 12 h computational time is close

to limiting 15 minutes while the rest of the considered horizon lengths have adequate

computational time. The optimisation problem with the shortest horizon of 2 h is solved

under 15 seconds.
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3.3 Simulation and results

Simulations are run for two Mondays, of which the first is ”under-EV-populated” and the

other is ”over-EV-populated”. Under- and over-EV-populated denote that the total EV

population energy request is lower and higher than the average, respectively. The first

Monday is 24/09/2018 and the second is 21/10/2019. Characteristic of the two daily EV

populations are given in Fig. 3.2. and 3.3. It is worth mentioning that during initial

simulations without the constraint on final SoE for EV departing after the horizon in

(2.4), MPC could not have enable feasible activations near the end of day.
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Figure 3.2: Total nominal charging power of present EVs for simulation days.
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Figure 3.3: Values of Δagg for simulation days.

3.3.1 Deterministic MPC

In Fig. 3.4 it can be seen that the energy consumption in several activations is reduced

more than requested. The reason is to reduce intra-day balancing penalties, since the
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deviation from declared consumption profile 𝐸*
g is not penalised during the activation.

By over-reduction during the activation, EVs can be charged later when the deviation is

penalised.
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Figure 3.4: Comparison of deterministic MPC with horizons of 2 h and 6 h, with two activations occurred,
for Monday with under-average population.

Benefits of longer optimisation horizon can be seen in Fig. 3.5. where longer horizon

recognise the need for earlier charging in order to prevent surpassing the contracted peak

power.
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Figure 3.5: Comparison of deterministic MPC with horizons of 2 h and 8 h, with three activations
occurred, for Monday with above-average population

MPC with horizon of 8 h (32 steps ahead) at 10:00 can see total charging request until

18:00 and thus starts charging with the contracted peak power already at 10:15. Both Fig.
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3.4 and Fig. 3.5 show how correction coefficient 𝛾 influence flexibility reference according

to the total energy exchange one hour prior to activation. It is shown in Table 3.1

how intra-day balancing penalties significantly reduces with the number of activations in

under-average day, which is not the case for above average day. Due to additional charging

during recuperation period after activation, intra-day penalties increases with the number

of activation but the reward for fulfilled activation surpasses it and the aggregator makes

a profit at the end.

Table 3.1: Cost analysis of deterministic MPC with the horizon of 6 h.

Monday with under-average population

Scenario Δ𝐽pp 𝐽id 𝐽bd 𝐽res 𝐽act Total Savings Savings /%

ASAP charging 0.00 37.74 0.00 / / 37.74 / /

Without contracted
flexibility

0.00 33.60 0.00 0.00 0.00 33.60 -4.14 -16.75

Without activation 0.00 33.76 0.00 -14.44 0.00 19.32 -18.42 -48.81

With activation: 47 0.00 26.67 0.04 -14.44 -7.63 4.64 -33.10 -87.71

With activations: 37, 53 0.00 19.55 0.00 -14.44 -13.70 -8.58 -46.32 -122.73

With activations:
33, 45, 58

0.00 15.32 4.94 -14.44 -15.77 -8.45 -46.19 -122.39

Monday with above-average population

Scenario Δ𝐽pp 𝐽id 𝐽bd 𝐽res 𝐽act Total Savings Savings /%

ASAP charging 1.41 12.43 0.00 / / 13.84 / /

Without contracted
flexibility

0.00 13.37 0.00 0.00 0.00 13.37 -0.47 -3.40

Without activation 0.00 13.57 0.00 -14.44 0.00 -0.87 -14.71 -106.29

With activation: 47 0.00 18.06 0.00 -14.44 -6.26 -2.65 -16.49 -119.15

With activations: 37, 53 0.40 19.40 0.00 -14.44 -11.60 -6.24 -20.08 -145.09

With activations:
33, 45, 58

0.03 20.78 0.00 -14.44 -16.67 -10.31 -24.15 -174.49

How realised total cost depends on the length of the optimisation horizon is shown

in Table 3.2. The total cost for one realisation of activation does not drop continuously.

The reason might be in the nature of the worst-case analysis. On the longer horizon, the

optimisation problem minimises the worst scenario that is not certain to happen at all,

causing adoption at the expense of the near future scenario.
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Table 3.2: Deterministic MPC results for different horizons

Monday with under-average population

/=C 2 h 4 h 6 h 8 h 10

ASAP charging 37.74 37.74 37.74 37.74 37.74

Without contracted flexibility 33.58 33.64 33.60 33.58 33.58

Without activation 33.85 33.93 33.72 33.75 33.75

With activation: 47, 23.60 18.97 18.77 18.86 18.84

With activation: 37, 53 9.57 6.30 5.11 5.14 5.14

With activation 33, 45, 57 5.71 -1.61 -0.91 -0.83 -0.81

Monday with above-average population

/=C 2 h 4 h 6 h 8 h 10 h

ASAP charging 13.84 13.84 13.84 13.84 13.84

Without contracted flexibility 13.50 13.40 13.37 13.40 13.39

Without activation 14.07 13.73 13.57 13.86 13.89

With activation: 47, 13.81 12.27 11.79 10.54 10.74

With activation: 37, 53 8.25 7.79 8.20 8.38 8.26

With activation 33, 45, 57 3.68 1.99 4.13 2.11 -0.76

3.3.2 Stochastic MPC

For the validation of the stochastic MPC the prediction error is simulated by randomly

changing parameters of the original futures EVs using following equations:

𝑃nom,𝑝 = 𝑃nom,𝑖 * 𝒩 (1, 0.32), (3.8)

𝐶nom,𝑝 = 𝐶nom,𝑖 * 𝒩 (1, 0.32), (3.9)

𝑘a,𝑝 = max(0, 𝑘a,𝑖 + round(𝒩 (0, 0.32))), (3.10)

𝑘d,𝑝 = max(3, 𝑘d,𝑖 + round(𝒩 (0, 0.32))), (3.11)

where index 𝑖 and 𝑃 denote the original future EV and predicted EV, respectively. 𝒩 (𝜇, 𝜎)

is a normally distributed random variable with mean 𝜇 and variance 𝜎2. The used value of

variance 𝜎2 = 0.32 is chosen as the value that represents quite significant prediction error.

After applying (3.8)-(3.11) some predicted EVs can be unfeasible so the full procedure of

generating predicted EV population that ensures the EV feasibility is given in Algorithm

3. Seed for random number generator at the beginning of every iteration of Algorithm

3 is the same for every simulation with different horizon to ensure that all horizons are

validated with same prediction on the shared part of the horizon.

Several iterations of stochastic MPC with longer horizon could not have fulfil activa-
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Algorithm 3 Generating noised EVs prediction

Require: 𝑚 real future EVs on the horizon, indexed with 𝑖
Ensure: 𝑚 predicted future EVs, indexed with 𝑝
𝑚 = 0
while 𝑖 ≤ 𝑚 do

Apply noise using (3.8)-(3.11)
if (𝑘d,𝑝 − 𝑘a,𝑝 − 1)𝑃nom,𝑝𝑇 < 𝐶nom,𝑝 then

∆C = 𝐶nom,𝑝 − (𝑘d,𝑝 − 𝑘a,𝑝 − 1)𝑃nom,𝑝𝑇
𝑃nom,𝑝 = 𝑃nom,𝑝(1 +

ΔC

2(𝑘d,𝑝−𝑘a,𝑝−1)𝑃nom,𝑝𝑇
)

𝐶nom,𝑝 = 𝐶nom,𝑝 −∆C

end if
𝑚 = 𝑚+ 1
Add 𝐸𝑉𝑝 to the predicted population

end while

tions close to the end of the horizon, but the later iterations that have had updated in-

formation of the present EV population successfully planed all possible activations. That

is reasonable because the share of the flawed predicted EVs in population population

increases along the optimisation horizon.

Simulation results in Table 3.3 show expected descending trend of total operational

cost with the number of activations. Total cost of the stochastic MPC for the above-

average population is higher than the ASAP-charging baseline, but when the savings from

flexibility reward and day-ahead energy market are taken into account, the aggregator

makes profit at the end.

The performance of deterministic and stochastic MPC is compared in Fig. 3.6 and

Fig. 3.7. Stochastic MPC has higher cost in most simulations. Simulations with lower

cost of stochastic MPC can be justified with the worst case scenario minimisation. A

charging schedule based on a flawed prediction may be more favourable for a non-critical

activation scenario in a worst-case optimisation than the schedule obtained from perfect

prediction

3.4 Conclusion

In this chapter the optimisation problems for deterministic and stochastic MPC are de-

fined to enable the EV aggregator to participate in tertiary frequency regulation. Both

MPCs are validated for different horizon lengths on two days, one with under-average and

one with above-average EV populations. Simulations showed that the MPC can ensure

feasibility of all flexibility activation and economical benefits for the EV aggregator.
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Table 3.3: Stochastic MPC results for different horizons

Monday with under-average population

/=C 2 h 4 h 6 h 8 h 10 h

ASAP charging 37.74 37.74 37.74 37.74 37.74

Without contracted flexibility 33.78 33.63 33.61 32.59 33.90

Without activation 33.90 34.50 34.90 33.21 35.19

With activation: 47, 25.25 22.82 23.70 19.46 24.67

With activation: 37, 53 9.69 7.90 5.67 4.21 5.77

With activation 33, 45, 57 5.55 -0.69 -0.50 -2.95 -0.30

Monday with above-average population

/=C 2 h 4 h 6 h 8 h 10 h

ASAP charging 13.84 13.84 13.84 13.84 13.84

Without contracted flexibility 13.50 13.41 13.37 13.49 13.50

Without activation 14.06 13.54 14.30 15.49 15.59

With activation: 47, 12.16 12.72 12.97 13.87 14.32

With activation: 37, 53 8.04 9.55 9.18 9.52 9.26

With activation 33, 45, 57 2.82 1.11 2.93 4.05 3.18
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Figure 3.6: Deterministic and stochastic MPC results comparison for under-average population
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Figure 3.7: Deterministic and stochastic MPC results comparison for above-average population
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Chapter 4

Aggregated representation of electric

vehicles population

4.1 Introduction

4.1.1 Motivation and hypothesis

The state-of-the-art misses a method to describe a population of heterogeneous EVs con-

nected to charging stations that is suitable both for population prediction based on ma-

chine learning and for charging scheduling with demand response ability assessment. The

method to fill the mentioned gap is in this chapter. Its main usage steps are shown in

Fig. 4.1.
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Figure 4.1: The proposed concept with the chapter focus marked with orange [13].

The proposed method transforms historical individual on-arrival commitment data

39



Aggregated representation of electric vehicles population

[10] to five discrete-time vectors related to envelopes of feasible charging powers and

charging states for the EV population whereas these signals are suitable for quantification

of demand response ability. The method has the following features:

• it captures population’s flexibility to offer demand response;

• it can describe any EV population represented in discrete-time;

• it allows that every EV has a different nominal charging power, relative capacity

and connection time.

From the first and the most important feature follows the main hypothesis of this chapter:

the proposed aggregated representation of an EV population has small enough loss of

information so it can be used for charging scheduling and DR of an EV aggregator.

The aggregated representation and the corresponding reconstructed individual EV

data can be input to any optimisation problem or demand response scheme that is com-

patible with individual EV description in Table 4.1.

4.1.2 EV aggregator context

This thesis is focused on a parking lot equipped with charging points (CPs) that are con-

trolled by an aggregator. The aggregator is an entity that achieves a profit by demand

response in excess to selling electrical energy to the EVs. Charging schedule and power

of all CPs is optimised by the aggregator to maximise its profit while respecting charging

needs of the EVs. Its corresponding optimisation problems for day-ahead analysis and

MPC control are given in the later chapters. On its arrival to the parking lot and con-

nection to the CP, the EV owner provides the data about the planned departure time, its

charging target and allowed power. With this data an EV becomes a charging task for

the aggregator.

An EV population is made of all EVs connected to the aggregator’s CPs during any

time interval of interest. The number of the CPs is finite and is not important for the pro-

posed method. The aggregator optimises the charging schedule for the whole population

at once. The concept of the aggregator control that utilises the proposed representation

method for the population of charging EVs is shown in Fig. 4.1.

4.1.3 Outline

The remainder of the chapter is organised as follows. Section 4.2 describes the proposed

representation method. The charging optimisation problem used to exploit the introduced

representation is briefly introduced in Section 4.3 and the validation of the main hypothesis

is given in Section 4.4. The conclusion is given in Section 4.5.
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Table 4.1: Set of parameters describing an individual EV (EV charging session)

𝑃nom Maximum charging power of a charger or a battery

𝐶
Relative energy capacity of the battery defined as the difference of
the battery’s nominal capacity and the state of energy at the arrival

𝑘a
The first discrete-time instant when EV charging is possible - the one
after the arrival of the EV

𝑘d Discrete-time instant of departure

4.2 Individual Vehicle Data and Aggregated Representa-

tion

Individual EV data consists of a set of parameters shown in Table 4.1, similar to [10]. From

the optimisation perspective, an EV charging task consists of constraints on relative state

of energy 𝑆𝑜𝐸𝑖, charging 𝑢ch,𝑖 and discharging energies 𝑢dch,𝑖, where index ’i’ denotes

different EVs. Relative 𝑆𝑜𝐸𝑖 is always zero at the moment of the arrival and equal to

relative capacity 𝐶𝑖 at the moment of departure. These constraints can be visualised

with Fig. 4.2, similar to approaches in [28, 29, 30]. Full blue line is the upper constraint

on EV’s state of energy based on as-soon-as-possible (ASAP) charging and derived from

the EV’s nominal maximum charging power 𝑃nom,𝑖, relative capacity 𝐶𝑖 and discretisation

time 𝑇 . Full red line is the lower constraint based on as-late-as-possible (ALAP) charging

and taking care about the EV being fully charged at the departure time instant. In Fig.

4.2. it can be seen that full blue and red lines are not completely straight which is a

consequence of time discretisation and that 𝐶 is not a multiple of 𝑃nom𝜂ch𝑇 , where 𝜂ch

denotes the charging efficiency of the battery and its corresponding power converter that

is assumed to be the same for all EVs. This assumption is justified considering that

the historical EV data comes only from the side of CPs as charging tasks, as described

in subsection 4.4.1, and so no data from the vehicle is needed. Namely, effectively the

relative capacity in the representation of the EV could be also regarded as 𝐶/𝜂ch, i.e. as

already with included efficiency.

Dashed blue line is explicitly defined with 𝐶 while dashed red line is a consequence of

a decision that in any case the EV should not leave the parking lot with less energy than

it has arrived with, no matter if the owner approved possible discharging of the battery or

not. Both in Fig. 4.2. and further in this thesis, 𝑘 ∈ {1, 2, ..., 𝑁} denotes a discrete-time

instant where 𝑁 ∈ N is the length ofobserving horizon on which the EV population is

analysed. The observing horizon matches optimisation or prediction horizon, depending

on the application of the aggregated representation.
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Figure 4.2: Visualisation of envelope of feasible charging powers and charging states for a vehicle con-
nected to the charging point, where 𝑘c and 𝑘r are auxiliary characteristic discrete-time instants defined
in subsection 4.2.1. [13]

The proposed method represents an EV population with five discrete-time signals

related to envelopes of feasible charging powers and charging states whereas one such

envelope is shown in Fig. 4.2. The method consists of two algorithms, marked with orange

dashed line in Fig. 4.1. The first, Algorithm 4, constructs the five discrete-time signals

from the individual data while the other, Algorithm 5, reconstructs the individual EV data

of the population back from the discrete-time signals. Algorithm 4 is used to transform

historical individual EV data to obtain data that can be input to a machine learning

model. The output of the model is the predicted population described with aggregated

representation and needs to be transformed to individual EV data using Algorithm 5 to

be used for the optimisation problem construction.

The feasible solution in Algorithm 5 cannot be guaranteed. Algorithm 5 is thus up-

graded to Algorithm 6 that can always return an EV population described with individual

EV data. Algorithm 6 was used to experimentally validate the main hypothesis about

near-equivalence of the optimisation results obtained with the original and the recon-

structed EV population.

4.2.1 Aggregated representation

Input in Algorithm 4 is an EV population described with individual data and length 𝑁 of

the observing horizon of interest. The outputs of the algorithm are discrete-time signals

𝑃a, 𝑃c, 𝑃d, 𝑃r and 𝑃const that together describe the original EV population.

Two characteristic discrete-time instants, 𝑘c,𝑖 and 𝑘r,𝑖, are determined for every EV in

the population to calculate the EV’s contribution to the time vectors of the population.

Time instants 𝑘c,𝑖 and 𝑘r,𝑖 are shown in Fig. 4.2 and it can be seen that 𝑘c,𝑖 is the last

time instant of ASAP charging while 𝑘r,𝑖 is the first time instant of charging with the
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maximum power in ALAP case. The time instants are derived as follows:

𝑘c,𝑖 = 𝑘a,𝑖 +

⌊︂
𝐶𝑖

𝑃nom,𝑖𝑇𝜂ch

⌋︂
, (4.1)

𝑘r,𝑖 = 𝑘d,𝑖 −
⌊︂

𝐶𝑖

𝑃nom,𝑖𝑇𝜂ch

⌋︂
, (4.2)

where 𝑖 denotes a specific EV.

The first time vector 𝑃c ∈ R𝑁 carries information about the charging power decrement

in case of ASAP charging due to reaching battery capacity and thus implicitly contains

information about the capacity of EVs that are part of the population. It is constructed

using the characteristic time instant 𝑘c,𝑖 and can be defined as:

𝑃c(𝑘) =
∑︁
𝑖

𝑃nom,𝑖, ∀𝑖|𝑘c,𝑖 = 𝑘. (4.3)

Equation (4.3) is only valid under the assumption that 𝑃nom,𝑖𝜂ch𝑇 (𝑘c,𝑖 − 𝑘a,𝑖) = 𝐶𝑖. The

assumption can be avoided if it is defined that in ASAP charging mode the EV charging

will be turned off gradually through two steps, as shown in Fig. 4.2. The initial maximal

charging power 𝑃nom,𝑖 is first reduced at the time instant 𝑘c,𝑖 to 𝑃rem,𝑖 so that the EV will

be fully charged right at the next time instant. Power 𝑃rem,𝑖 is determined with:

𝑃rem,𝑖 =
mod(𝐶𝑖, 𝑃nom,𝑖𝜂ch𝑇 )

𝜂ch𝑇
, (4.4)

where mod(·, ·) is the remainder (modulo) operator. Then, at time instant 𝑘c,𝑖+1 charging

is completely turned off. Using (4.4) vector 𝑃c is finally defined with:

𝑃c(𝑘) =
∑︁
𝑖

(𝑃nom,𝑖 − 𝑃rem,𝑖) +
∑︁
𝑗

𝑃rem,𝑗,

∀𝑖 | 𝑘c,𝑖 = 𝑘, ∀𝑗 | 𝑘c,𝑗 = 𝑘 − 1.

(4.5)

It can be seen that the first and the second sum correspond to power decrements from

the first and the second step, respectively, represented with full blue lines in Fig. 4.2.

Similarly, in the case of ALAP charging mode, EV charging is gradually turned on

just on time so that EV is fully charged at 𝑘d,𝑖. Vector 𝑃r ∈ R𝑁 carries information about

the mentioned charging power increments in ALAP charging mode, marked with full red

lines in Fig. 4.2. and it is defined as:

𝑃r(𝑘) =
∑︁
𝑖

𝑃rem,𝑖 +
∑︁
𝑗

(𝑃nom,𝑗 − 𝑃rem,𝑗),

∀𝑖 | 𝑘r,𝑖 = 𝑘 + 1, ∀𝑗 | 𝑘r,𝑗 = 𝑘.

(4.6)
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The subsequent two vectors are quite intuitive – 𝑃a(𝑘) ∈ R𝑁 and 𝑃d(𝑘) ∈ R𝑁 give

information about power of all maximum charging powers related to EVs arriving and

departing at time interval 𝑘, respectively:

𝑃a(𝑘) =
∑︁
𝑖

𝑃nom,𝑖 ∀𝑖|𝑘a,𝑖 = 𝑘, (4.7)

𝑃d(𝑘) =
∑︁
𝑖

𝑃nom,𝑖 ∀𝑖|𝑘d,𝑖 = 𝑘. (4.8)

The last vector 𝑃const ∈ R𝑁 is the cumulative EV population charging power in the

constant charging mode where an EV is being charged with constant power from the first

time instant after its arrival 𝑘a,𝑖 until the last time instant before departure 𝑘d,𝑖. Of course,

constant charging power for every EV is determined so that the EV is fully charged at

departure. Vector 𝑃const is defined as:

𝑃const(𝑘) =
∑︁
𝑖

𝐶𝑖

𝑇 (𝑘d,𝑖 − 𝑘a,𝑖)𝜂ch
,

∀𝑖 | 𝑘a,𝑖 ≤ 𝑘 < 𝑘d,𝑖.

(4.9)

Finally, the construction procedure of 𝑃a,𝑃c,𝑃r,𝑃d and 𝑃const is described with Al-

gorithm 4.

Algorithm 4 Construction of population describing vectors

Require: ℰ𝒱1 described with tuples (𝑃nom, 𝐶, 𝑘a, 𝑘d)
Ensure: ℰ𝒱2 described with 𝑃a,𝑃c,𝑃r,𝑃d,𝑃const

initialise 𝑃a,𝑃c,𝑃r,𝑃d,𝑃const = 0 ∈ R𝑁

for all 𝐸𝑉𝑖 ∈ ℰ𝒱1 do
calculate 𝑘c and 𝑘r ◁ (4.1), (4.2)
add contribution of 𝐸𝑉𝑖 to 𝑃a,𝑃c,𝑃r,𝑃d,𝑃const ◁ (4.4)-(4.9)

end for

An example of a population represented with these vectors and time discretisation

𝑇 = 15 min can be seen in Fig. 4.3. Every colour represents a contribution of one EV.

4.2.2 Reconstruction of individual EV data

In this subsection it is shown how individual EVs descriptions can be reconstructed from

the aggregated representation introduced in the previous section.

Lemma 4.2.1 allows to describe any EV population with a population ℰ𝒱2 that con-

tains only EVs with ratio 𝐶
𝑃nom𝑇𝜂ch

∈ N which enables reversible transformation between

individual data tuple (𝑃nom, 𝐶, 𝑘a, 𝑘d) and the tuple (𝑃nom, 𝑘a, 𝑘c, 𝑘r, 𝑘d). Discrete-time in-

stants 𝑘c and 𝑘r are derived from individual data by using (4.1) and (4.2) while in opposite
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Figure 4.3: Example of a population containing all EVs from one day, represented using vectors 𝑃a,𝑃c,𝑃r,
𝑃d and 𝑃const. The last EV (orange) departed at 𝑘 = 64 and the rest of the day is not shown for brevity.
[13]

direction 𝑃nom is calculated from:

𝐶𝑖 = 𝑃nom,𝑖(𝑘c,𝑖 − 𝑘a,𝑖)𝑇𝜂ch. (4.10)

Lemma 4.2.1. Electric vehicle 𝐸𝑉1 with 𝐶1

𝑃nom,1𝑇𝜂ch
∈ R can be rewritten as 𝐸𝑉2 and 𝐸𝑉3

defined with attributes obtained from equations:⌊︂
𝐶1

𝑃nom,1𝑇𝜂ch

⌋︂
=

𝐶2

𝑃nom,2𝑇𝜂ch
=

𝐶3

𝑃nom,3𝑇𝜂ch
− 1 , (4.11)

𝑃nom,2 = 𝑃nom,1 − 𝑃rem,1, (4.12)

𝑃nom,3 = 𝑃rem,1, (4.13)

𝐶1 = 𝐶2 + 𝐶3, (4.14)

where 𝐶2

𝑃nom,2𝑇𝜂ch
∈ N, 𝐶3

𝑃nom,3𝑇𝜂ch
∈ N, time instants 𝑘a and 𝑘d are the same for all three

EVs.

Thus, the set 𝒦𝑁 of all possible unique tuples (𝑘a,𝑖, 𝑘c,𝑖, 𝑘r,𝑖, 𝑘d,𝑖) is defined:

𝒦𝑁 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(𝑘a, 𝑘c, 𝑘r, 𝑘d)

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒

1 < 𝑘d ≤ 𝑁,

1 ≤ 𝑘a < 𝑘c ≤ 𝑘d,

1 ≤ 𝑘a ≤ 𝑘r < 𝑘d,

𝑘d − 𝑘r = 𝑘c − 𝑘a

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (4.15)
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Constraints on 𝑘a, 𝑘c, 𝑘r and 𝑘d in (4.15) assure that all EVs are feasible meaning that

they depart after they arrive and respect the assumption that they will be fully charged.

It is possible that two or more EVs have the same parameters (𝑘a, 𝑘c, 𝑘r, 𝑘d) ∈ 𝒦𝑁 .

Lemma 4.2.2 allows to represent them with only one EV and population ℰ𝒱2 can consist

of only one EV for every element in 𝒦𝑁 with associated power 𝑃sol,𝑖 ≥ 0 in order to

describe any original population. Dimension 𝑀N of vector 𝑃sol ∈ R𝑀N is equal to the

cardinal number of the set 𝒦𝑁 .

Lemma 4.2.2. All electric vehicles with the same arrival 𝑘a, departure 𝑘d and the same

ratio 𝐶𝑖

𝑃nom,𝑖𝑇𝜂ch
∈ N can be represented as one electric vehicle with 𝐶 =

∑︀
𝑖 𝐶𝑖 and 𝑃 =∑︀

𝑖 𝑃nom,𝑖.

For easier following, proofs of Lemma 4.2.1 and Lemma 4.2.2 are given at the end of

this subsection.

For a population ℰ𝒱2 to have the same aggregated representation as the original

population ℰ𝒱1, 𝑃sol must be a solution of the following underdetermined equation system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑︀
𝑖 𝑃sol,𝑖 = 𝑃a(𝑘), ∀𝑖 ∈ {1, 2, ...,𝑀N | 𝑘a,𝑖 = 𝑘},∑︀
𝑖 𝑃sol,𝑖 = 𝑃c(𝑘), ∀𝑖 ∈ {1, 2, ...,𝑀N | 𝑘c,𝑖 = 𝑘},∑︀
𝑖 𝑃sol,𝑖 = 𝑃d(𝑘), ∀𝑖 ∈ {1, 2, ...,𝑀N | 𝑘d,𝑖 = 𝑘},∑︀
𝑖 𝑃sol,𝑖 = 𝑃r(𝑘), ∀𝑖 ∈ {1, 2, ...,𝑀N | 𝑘r,𝑖 = 𝑘},∑︀

𝑖 𝑃sol,𝑖
𝑘c,𝑖−𝑘a,𝑖
𝑘d,𝑖−𝑘a,𝑖

= 𝑃const(𝑘),

∀𝑖 ∈ {1, 2, ...,𝑀N | 𝑘a,𝑖 ≤ 𝑘 < 𝑘d,𝑖},

𝑃sol,𝑖 ≥ 0, , ∀𝑖 ∈ {1, 2, ...,𝑀N, }

∀𝑘 ∈ {1, 2, ..., 𝑁}.

(4.16)

Of course, the case when element 𝑃sol,𝑖 = 0 is understood as there is no EV with

parameters {𝑘a,𝑖, 𝑘c,𝑖, 𝑘r,𝑖, 𝑘d,𝑖} in the population ℰ𝒱2. On the other hand, if 𝑃sol,𝑖 > 0,

an EV with nominal charging power 𝑃sol,𝑖, capacity 𝐶𝑖 calculated by using (4.10), arrival

and departure at time instants 𝑘a,𝑖 and 𝑘d,𝑖, respectively, is added to the reconstructed

population ℰ𝒱2.

For a more compact representation, the relations (4.16) can be rewritten as:

𝐴𝑁𝑃sol = 𝜃,

𝐼𝑃sol ≥ 0,
(4.17)
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where 𝜃 = [𝑃⊤
a ,𝑃⊤

c ,𝑃⊤
r ,𝑃⊤

d ,𝑃⊤
const]

⊤ and matrix 𝐴N follows from (4.16).

Finally, the individual EV data reconstruction procedure is defined with the Algorithm

5.

Algorithm 5 Reconstruction of individual EV descriptions

Require: ℰ𝒱1 described with 𝜃 = [𝑃⊤
a ,𝑃⊤

c ,𝑃⊤
r ,𝑃⊤

d ,𝑃⊤
const]

⊤

Ensure: ℰ𝒱2 described with tuples (𝑃,𝐶, 𝑘a, 𝑘d)
initialise ℰ𝒱2 = ∅
find 𝑃sol as a solution of (4.17)
for all 𝑃sol,𝑖 > 0 do

add 𝐸𝑉𝑖 = (𝑃sol,𝑖, 𝐶𝑖, 𝑘a,𝑖, 𝑘d,𝑖) to ℰ𝒱2 ◁ (4.10)
end for

Proof of Lemma 4.2.1

Proof. If a realistic 𝐸𝑉1 is taken for an example with attributes {𝐶1, 𝑃nom,1, 𝑘a,1, 𝑘d,1} the

corresponding 𝑘c,1, 𝑘r,1 and 𝑃rem,1 can be calculated using (4.1), (4.2) and (4.4). Since only

one EV - 𝐸𝑉1 is observed, the aggregated representation vectors consist only of several

non-zero elements according to (4.5)-(4.9):

𝑃a(𝑘a,1) = 𝑃nom,1, (4.18)

𝑃c(𝑘c,1) = 𝑃nom,1 − 𝑃rem,1, 𝑃c(𝑘c,1 + 1) = 𝑃rem,1, (4.19)

𝑃r(𝑘r,1) = 𝑃rem,1, 𝑃r(𝑘r,1 − 1) = 𝑃nom,1 − 𝑃rem,1, (4.20)

𝑃d(𝑘d,1) = 𝑃nom,1, (4.21)

𝑃const(𝑘) =
𝐶1

𝑇 (𝑘d,1 − 𝑘a,1)𝜂ch
, ∀𝑘|𝑘a,1 ≤ 𝑘 < 𝑘d,1. (4.22)

By solving relations (4.17) with vectors values from (4.22), two reconstructed EVs are

obtained with attributes shown in Table 4.2. If capacities 𝐶2 and 𝐶3 are summed, it can

be seen in (4.23) that together they are equal to the initial 𝐶1 according to (4.4). In the

second expression of (4.23) the first and the second member can be recognised as parts of

the capacity 𝐶1 which are the multiplier of 𝑃nom,1*𝑇 and the remaining part, respectively.

𝐶2 + 𝐶3 =(𝑃nom,1 − 𝑃rem,1)𝑇 (𝑘c,1 − 𝑘a,1)𝜂ch+

𝑃rem,1𝑇 (𝑘c,1 − 𝑘a,1 + 1)𝜂ch

=𝑃nom,1𝑇 (𝑘c,1 − 𝑘a,1)𝜂ch + 𝑃rem,1𝑇𝜂ch

=𝐶1

(4.23)

It can be seen in Table 4.2. that 𝑃nom,1 = 𝑃nom,2 + 𝑃nom,3, 𝑘a,1 = 𝑘a,2 = 𝑘a,3 and 𝑘d,1 =

𝑘d,2 = 𝑘d,3 which proves that the population consisting of only 𝐸𝑉1 is for optimisation
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Table 4.2: Explicitly given parameters of the reconstructed 𝐸𝑉2 and 𝐸𝑉3

𝑃nom,2 𝑃nom,1 − 𝑃rem,1 𝑃nom,3 𝑃rem,1

𝑘a,2 𝑘a,1 𝑘a,3 𝑘a,1

𝑘c,2 𝑘c,1 𝑘c,3 𝑘c,1 + 1

𝑘r,2 𝑘r,1 𝑘r,3 𝑘r,1 − 1

𝐶2
(𝑃nom,1 − 𝑃rem,1) · 𝑇

·(𝑘c,1 − 𝑘a,1)
𝐶3

𝑃rem,1 · 𝑇
·(𝑘c,1 − 𝑘a,1 + 1)

𝑘d,2 𝑘d,1 𝑘d,3 𝑘d,1

problem (2.21) analogous to the population consisting of 𝐸𝑉2 and 𝐸𝑉3.

Proof of Lemma 4.2.2

Proof. Aggregation in Lemma 4.2.2 is valid since all the batteries are present during the

intervals [𝑘a,1, 𝑘d,1). The following ratios ensure that all the batteries are empty or full

at the same moment to prevent that the aggregator relies on a power contributions of

already full batteries.

𝑃nom,𝑖

𝑃nom,1

=
𝐶𝑖

𝐶1

=
𝑢ch,𝑖(𝑘)

𝑢ch,1(𝑘)
=

𝑢dch,𝑖(𝑘)

𝑢dch,1(𝑘)
=

𝑆𝑜𝐸𝑖(𝑘)

𝑆𝑜𝐸1(𝑘)
,

∀𝑘 ∈ {1, 2, ..., 𝑁}.
(4.24)

Since both control signals 𝑢ch,𝑖 and 𝑢dch,𝑖 and battery relative state of energy 𝑆𝑜𝐸𝑖

of 𝐸𝑉1 and their constraints can be explicitly expressed, there is no information loss and

every charging trajectory of 𝐸𝑉1 can be realised with 𝑢ch,𝑖 and 𝑢dch,𝑖 without any other

hidden costs or energy losses.

From (4.24) follows that result of floor operator in (4.1) and (4.2) is the same for 𝐸𝑉1

and 𝐸𝑉𝑖. Since 𝑘a,1 = 𝑘a,𝑖 and 𝑘d,1 = 𝑘d,𝑖 it is also 𝑘c,1 = 𝑘c,𝑖 and 𝑘r,1 = 𝑘r,𝑖.

4.2.3 Robust reconstruction of individual EV data

Constrained equation system (4.17) is underdetermined and matrix 𝐴𝑁 is rank-deficient.

Dimensions of matrix 𝐴𝑁 are 5𝑁 x 𝑀𝑁 and rank(𝐴𝑁) = 4𝑁 − 3. The sum of every 𝑁

rows that belong to the one of the first four equations in (4.16) is equal to a vector of

ones 𝐼𝑀𝑁
[1, 1, ..., 1] ∈ R𝑀𝑁 . Last 𝑁 rows that belong to equation related to 𝑃const are
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linear combinations of other rows. Consequently, due to existing linear dependencies of

rows in 𝐴𝑁 as well as due to the requirement that all 𝑃sol must be non-negative, there is

a possibility that (17) has no solution.

To generalise the method and make it applicable to the proposed concept in Fig. 4.1,

Algorithm 6 was designed as the robust version of Algorithm 5. Solution feasibility in

Algorithm 6 is guaranteed by optimisation problem (4.25) that is derived from (4.17),

with equation constraints implemented as soft constraints:

𝑃 *
sol = arg min

𝑃sol,𝜃
|𝜃 − 𝜃|,

s.t.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
[𝐴N − 𝐼]

⎡⎢⎢⎣𝑃sol

𝜃

⎤⎥⎥⎦ = 0

𝑃sol ≥ 0

, (4.25)

where | · | denotes vector norm 1 and vector 𝜃 is the closest one to the input vector theta,

in the norm-1 sense, for which it is possible to find 𝑃sol.

Finally, the robust individual EV data reconstruction procedure is defined with the

Algorithm 6.

Algorithm 6 Robust reconstruction of individual EV descriptions

Require: ℰ𝒱1 described with 𝜃 = [𝑃⊤
a ,𝑃⊤

c ,𝑃⊤
r ,𝑃⊤

d ,𝑃⊤
const]

⊤

Ensure: ℰ𝒱2 described with tuples (𝑃,𝐶, 𝑘a, 𝑘d)
initialise ℰ𝒱2 = ∅
find 𝑃 *

sol by solving minimisation problem (4.25)
for all 𝑃 *

sol,𝑖 > 0 do
add 𝐸𝑉𝑖 = (𝑃 *

sol,𝑖, 𝐶𝑖, 𝑘a,𝑖, 𝑘d,𝑖) to ℰ𝒱2 ◁ (4.10)
end for

Algorithm 6 was used to validate the proposed aggregated representation in a way

that it is applied directly to the outputs of Algorithm 4 so there is at least one possible

solution 𝑃 *
sol with 𝜃 = 𝜃 - the population that was the input to Algorithm 4.

4.2.4 Adaptation of Algorithm 6 for EVs that depart outside the ob-

serving horizon

For the full application of the aggregated representation the EVs that depart outside of

the observing horizon must be included. Such EVs can have:

• only contribution to 𝑃a on the horizon,
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• contribution to either 𝑃c or 𝑃r on the horizon,

• both contribution to 𝑃c and 𝑃r on the horizon.

The rhombus of EV charging envelope in Fig. 4.2 is fully defined by minimally three

corners. The three corners are found with respective characteristic intervals 𝑘a, 𝑘c, 𝑘d or

𝑘r and the nominal charging power 𝑃nom. The essence of the reconstruction algorithm is to

find 𝑃nom for all possible unique tuples of the characteristic intervals. There is indefinite

number of rhombuses that have one or two corners on the observing horizon, i.e. the

respective one or two characteristic intervals are ≤ 𝑁 . To keep extended set 𝒦𝑁e of all

possible tuples of the characteristic intervals finite, all unknown characteristic intervals

outside the observing horizon are set as close to the end of the horizon as possible.

For the first group of EVs with only contribution to 𝑃a on the horizon (green in

Fig. 4.4), missing 𝑘c and 𝑘r are set to 𝑁 + 1, which is the closest possible to the end of

the observing horizon. For the second group (blue and purple), missing 𝑘c or 𝑘r is also

set to 𝑁 + 1. For all three groups, including the last on (orange), missing 𝑘d is then

explicitly calculated from 𝑘d − 𝑘r = 𝑘c − 𝑘a. The finite set 𝒦𝑁e of all possible tuples of

the characteristic intervals is then defined as:

𝒦𝑁e = 𝒦𝑁 ∪

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(𝑘a, 𝑘c, 𝑘r, 𝑘d)

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒

𝑁 < 𝑘d,

1 < 𝑘c ≤ 𝑁 + 1,

1 < 𝑘r ≤ 𝑁 + 1,

1 ≤ 𝑘a < 𝑘c ≤ 𝑘d,

1 ≤ 𝑘a ≤ 𝑘r < 𝑘d,

𝑘d − 𝑘r = 𝑘c − 𝑘a

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (4.26)

Such approach allows to determine a charging envelope for any EV with at least one

contribution on the observing horizon, as visualised in Fig. 4.4. Theoretically, in the case

of two or three missing contributions, there is infinite number of possible envelopes but

that does not influence the charging schedule optimisation since the part of the charging

envelopes on the horizon stays the same in the introduced approach, as shown in Fig. 4.4.

Dotted line denotes envelopes obtained using the introduced approach while dashed line

denotes some examples of infinite possible envelopes.

The equations (4.16) and (4.25) for the robust algorithm are unchanged. Values of

the vectors 𝑃a,𝑃c,𝑃r,𝑃d and 𝑃const behind the horizon 𝑁 are free to take values that

support the reconstructed EVs based on the known - predicted values of the vectors on

the horizon.
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Figure 4.4: Visualisation of the explicitly missing contributions: green - only contribution to 𝑃a, blue -
contribution to 𝑃a and 𝑃c, purple - contribution to 𝑃a and 𝑃c, orange - contribution to 𝑃a, 𝑃c and 𝑃r.

4.2.5 Number of EVs in the reconstructed population

As a consequence of Lemma 4.2.1 and the way of the capacity C reconstruction in (4.10),

one original EV will be reconstructed as two EVs. From the day-ahead scheduling perspec-

tive only cumulative electric energy consumption of the aggregator and its DR capacity

are of interest for the aggregator. This fact allows the number of reconstructed EVs to

be bigger than the number of CPs on the aggregator’s parking lot. During the operation

of MPC (real-time operation), the aggregator explicitly schedules the charging only of

the known present and connected EVs. Future EVs, the ones to arrive to the parking

lot along the prediction horizon, are reconstructed from the prediction in the form of the

proposed five vectors. Such predicted EVs do not need to be allocated to specific physical

CPs but they require a part of cumulative charging power to be scheduled and assigned

to them.

4.3 Validation through optimisation for demand response

In order to validate the introduced EVs representation, worst-case optimisation is applied

to schedule charging of EVs connected to the CPs of an EV aggregator that offers an

active power reserve. The full optimisation problem is defined in Section 2.2 for the more

convenient reading. In this section only charging point model and aggregated battery

model are introduced to emphasise their key differences in capturing the demand response

capacity of the EV population. The rest of the constraints concerning demand response

costs are given in Section 2.1.
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4.3.1 Charging point model

The 24-hours ahead scheduling problem engages 𝑛 CPs, where 𝑛 is equal to the maximum

concurrent number of EVs in the population. In accordance with the elaboration in II.D,

number 𝑛 could be even higher than the physically available number of CPs on the parking

lot.

A CP is modeled as a system with one state 𝑆𝑜𝐸𝑐𝑝 that is equal to zero when CP

is not occupied. Otherwise, it is equal to the relative SoE of a connected EV, which is

described as:

𝑆𝑜𝐸𝑐𝑝(𝑘 + 1) = 𝑆𝑜𝐸𝑐𝑝(𝑘) + 𝜂ch𝑢ch,𝑐𝑝(𝑘)− 𝑢dch,𝑐𝑝(𝑘)/𝜂dch,

∀𝑘|𝑘 + 1 ∈ 𝒪𝑐𝑝,

𝑆𝑜𝐸𝑐𝑝(𝑘) = 0, ∀𝑘|

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
𝑘 ∈ 𝒪𝑐𝑝, 𝑘 − 1 ∈ ℐ𝑐𝑝

or

𝑘 ∈ ℐ𝑐𝑝

,

(4.27)

where the index 𝑐𝑝 denotes a CP, 𝑢ch,𝑐𝑝 and 𝑢dch,𝑐𝑝 are charging and discharging energies

of the CP, respectively, 𝜂ch = 0.9 and 𝜂dch = 0.9 are charging and discharging efficiency,

respectively, 𝒪𝑐𝑝 is the set of time intervals in which the CP indexed with 𝑐𝑝 is occupied

with an EV connected to the CP and ℐ𝑐𝑝 is the set of time intervals when the CP is

not occupied. It can be also seen that relative SoE is automatically initialised to zero at

the arrival when the EV is connected to a CP. The value of the efficiency coefficients 𝜂ch

and 𝜂dch are equal for all EVs since the predicted vehicle in the population is not made

concrete (or personalised) and only represents a forthcoming generic charging task for the

aggregator of the charging stations.

In the absence of an EV 𝑢ch,𝑐𝑝(𝑘) and 𝑢dch,𝑐𝑝(𝑘) must be zero. During an EV presence,

the EV’s battery charger defines power constraints:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑢ch,𝑐𝑝(𝑘) + 𝑢dch,𝑐𝑝(𝑘) ≤ 𝑃nom,𝑖𝑇,

0 ≤ 𝑢ch,𝑐𝑝(𝑘) ≤ 𝑃nom,𝑖𝑇,

0 ≤ 𝑢dch,𝑐𝑝(𝑘) ≤

⎧⎪⎪⎨⎪⎪⎩
0, vehicle-to-grid disabled

𝑃nom,𝑖𝑇, vehicle-to-grid enabled

,

(4.28)

where 𝑖 denotes the corresponding EV connected to the charging point 𝑐𝑝 at the 𝑘th
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discrete-time interval and 𝑇 is discretisation time. EV relative battery capacity 𝐶𝑖 con-

strains the CP state as follows:

0 ≤ 𝑆𝑜𝐸𝑐𝑝(𝑘) ≤ 𝐶𝑖, 𝑘a,𝑖 ≤ 𝑘 < 𝑘d,𝑖, (4.29)

𝑆𝑜𝐸𝑐𝑝(𝑘d,𝑖 − 1) + 𝜂ch𝑢ch,𝑐𝑝(𝑘d,𝑖 − 1)− 𝑢ch,𝑐𝑝(𝑘d,𝑖 − 1)/𝜂dch = 𝐶𝑖. (4.30)

Constraint (4.30) ensures that 𝐸𝑉𝑖 leaves the parking lot with the battery charged to the

required level.

4.3.2 Aggregated battery model

To emphasise the necessity for the introduced EV population representation method and

its corresponding conversion algorithms, the optimisation was also carried out with using

an aggregated battery model similar to [28, 29, 30].

Instead with (4.27)-(4.30), the dynamics of all EVs’ batteries is modeled with only one

state and one pair of control signals:

𝑆𝑜𝐸agg(𝑘 + 1) =𝑆𝑜𝐸agg(𝑘) + 𝜂ch𝑢ch,agg(𝑘)

− 𝑢dch,agg(𝑘)/𝜂dch,

𝑆𝑜𝐸agg(0) =0.

(4.31)

Aggregated relative state of energy is constrained with:

𝑅agg(𝑘) ≤ 𝑆𝑜𝐸agg(𝑘) ≤ 𝐶agg(𝑘), (4.32)

where 𝑅agg ∈ R𝑁 is a vector of aggregated energy requests and it is derived from 𝑃r and

𝑃d. Visually, it is the sum of all constraints on individual EVs, marked red in Fig. 4.2.

Similarly, 𝐶agg ∈ R𝑁 is derived from 𝑃a and 𝑃c:

𝑅agg(𝑘) = 𝑇

𝑘∑︁
𝑗=1

𝑗∑︁
𝑙=1

(𝑃r(𝑙)− 𝑃d(𝑙)) , (4.33)

𝐶agg(𝑘) = 𝑇

𝑘∑︁
𝑗=1

𝑗∑︁
𝑙=1

(𝑃a(𝑙)− 𝑃c(𝑙)) . (4.34)

Aggregated battery charging energy is constrained with:

0 ≤ 𝑢ch,agg(𝑘) ≤ 𝑃max(𝑘)𝑇, (4.35)

0 ≤ 𝑢dch,agg(𝑘) ≤ 𝑃min(𝑘)𝑇, (4.36)
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𝑃max(𝑘) =
𝑘∑︁

𝑗=1

(𝑃a(𝑗)− 𝑃d(𝑗)) , (4.37)

𝑃min(𝑘) =

⎧⎪⎪⎨⎪⎪⎩
0, vehicle-to-grid disabled

𝑃max, vehicle-to-grid enabled

. (4.38)

Vector 𝑃max ∈ R𝑁 can also be defined as a sum of nominal powers of all EVs power

converters connected to CPs at a specific moment.

At first sight constraint (4.32) guarantees that every EV will be fully charged but that

is not the case as will be shown in Section 4.4.3 by a counter-example.

4.4 Experimental validation

The proposed method was validated by optimising the charging schedule for an EV popula-

tion using first the original data and then using reconstructed population data obtained by

reconstruction of the proposed aggregated representation of the same original population

(Fig. 4.5). Two measures are used for comparison of the two populations: the reserved

frequency regulation power and the calculated total optimisation cost. Results were also

compared with optimisation results based on the aggregated EV battery model of the

original population, to emphasise the ability of the proposed aggregated representation to

capture a correct demand response capacity of the population. For the optimisation with

the original and with the reconstructed data was used optimisation problem (2.21) defined

in Section 2.2, while for the optimisation with aggregated EV battery model equations

(4.27)-(4.30) were replaced with (4.31)-(4.38).

ALGORITHM 1

ALGORITHM 3

AGGREGATED 
BATTERY MODEL 
OPTIMIZATION

INDIVIDUAL 
BATTERY MODEL 
OPTIMIZATION

INDIVIDUAL 
BATTERY MODEL 
OPTIMIZATION

ORIGINAL 
INDIVIDUAL 

DATA

Figure 4.5: Validation procedure of the proposed representation method.[13]
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4.4.1 Experimental data

The method is tested on real historical data provided by ACN-Data [16] that include two

datasets from parking lots of the California Institute of Technology (CalTech) and the Jet

Propulsion Laboratory (JPL). The datasets contain 1057 and 928 days, respectively. The

original data consist of:

• Connection time when an EV was plugged in (𝑡con);

• Done-charging time when the last non-zero current draw recorded (𝑡full);

• Departure time when the EV was disconnected (𝑡d);

• Delivered energy to the EV (𝐸delivered).

In order to represent an EV charging session as shown in Fig. 4.2 and Table 4.1., the data

is preprocessed to obtain EV power 𝑃 and capacity 𝐶 that are not contained in the data.

Power is determined using conservative assumption that EV was being charged full time

between the connection time 𝑡con and the done-charging time 𝑡full:

𝑃 =
𝐸delivered

𝑡full − 𝑡con
. (4.39)

After discretisation of 𝑡con and 𝑡d into 𝑘a and 𝑘d, it is possible that charging session becomes

infeasible. For that reason, with the assumption that the EV was fully charged or was

being charged during the whole connection period, the relative capacity 𝐶 is determined

by using:

𝐶 = min (𝑃 * 𝑇 (𝑘d − 𝑘a − 1)𝜂ch, 𝐸delivered𝜂ch) . (4.40)

Since the data is gathered from the CPs side there is no information about EVs that

left without being charged due to no available CP. Such information is however irrelevant

from the microgrid and DR point of view.

Values of the electrical prices used in the optimisation problem (2.21) are as follows:

𝑐pp = 0.116 =C/kW, 𝑐res = −0.0162 =C/kW, 𝑐act = 0.065 =C/kWh, 𝑐batt = 0.226 =C/kWh.

Vector of day-ahead prices 𝑐da is shown in Fig. 4.6. Discretisation time is 𝑇 = 15 min

and recuperation period is 𝑇r = 24 h.

4.4.2 Computational requirements

Linear optimisation problem (LP) (4.25) was set up in Python [24] using Numpy [25] and

Scipy [26] modules and as a solver IBM Cplex [27] was used. The construction of the

matrix 𝐴𝑁 in (4.17) lasts for 5 minutes for 𝑁 = 96 while loading the prepared matrix

from the memory lasts for 20 s. LP solving times are given in Table 4.3. The size and
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Figure 4.6: Day-ahead electrical energy price profile. [13]

the computational time of the optimisation problem (2.21) depend on the number of EVs

in the population, as shown in Fig. 4.7. For every point on the 𝑥 axis a single EV

population was used such that it is possible that for a specific case larger number of EVs

gives a smaller computation time, but still the growing trend is visible. The bigger number

of EVs in the reconstructed population is discussed in Subsection 4.2.5. Computations

were run on a Linux server with processor AMD Epyc 7351 CPU @ 2.4 GHz (16 cores)

and 64 GB RAM.

Table 4.3: Computational times of the reconstruction algorithm

mean 10.82 s

standard deviation 0.89 s

minimum value 8.92 s

maximum value 15.56 s
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Figure 4.7: Computational times of the optimisation problem (2.21) for the original and the reconstructed
EV population. [13]

4.4.3 Analysis of results

Simulation results are compared by using the optimised daily cost and reserved regulation

power. Those values are used as deviation measures between the populations since they

are the data of interest for the aggregator’s cost analysis and DR contracting with the

power grid. Cost deviation can be seen in Fig. 4.8. A small deviation was expected
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since the reconstructed EV population is generally not identical to the original one due

to the underdetermined reconstruction problem (4.17) that has multiple solutions. Daily

operation costs of the reconstructed populations are mostly higher than the ones of the

original populations which corresponds with mostly lower flexibility power shown in Fig.

4.9.

-140 -120 -100 -80 -60 -40 -20 0 20 40 60 80
-140

-120

-100

-80

-60

-40

-20

0

20

40

60

80

Agregated battery model
Reconstructed population

(a)

-100 -50 0 50 100 150 200

-100

-50

0

50

100

150

200 Agregated battery model
Reconstructed population

(b)

Figure 4.8: Comparison of optimal daily operation cost for one-day populations from datasets a) CalTech,
b) JPL. [13]

Figure 4.9: Reserved regulation power for the considered time intervals per day in one week. [13]
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An example explaining too optimistic results of the aggregated battery model is given

in Fig. 4.10. Two different populations (Fig. 4.10a and 4.10b) with the same aggregated

battery model (Fig. 4.10c) are compared. An aggregated charging trajectory is given

for the case of higher energy prices between intervals 𝑘 = 5 and 𝑘 = 9 when charging is

avoided. If the original population consists of 𝐸𝑉1 and 𝐸𝑉2 then both of EVs are fully

charged and the aggregated charging trajectory corresponds to the sum of their individual

trajectories. For the mentioned case of energy prices, 𝐸𝑉1 will be charged as soon as

possible, while 𝐸𝑉2 will be charged as late as possible. In the case of population in Fig.

4.10b 𝐸𝑉3 can be charged only during the mentioned period with high prices. To satisfy

the chosen aggregated charging trajectory 𝐸𝑉4 must be discharged at the same time and

of course pre-charged before and charged again after the high price period. Such case does

not take into account battery degradation cost and energy losses due to 𝐸𝑉4 charging,

discharging and charging again. Consequently the aggregated battery model operational

cost is seemingly lower than the real operational cost. This effect is even more emphasised

when the aggregator participates in DR when in the specific intervals all charging must be

reduced to obtain reward from the power grid. The proposed aggregated representation

method distinguishes the two populations with vector 𝑃const, as shown in Fig. 4.10d.

Applying the reconstruction Algorithm 5 to the discrete-time signals in Fig. 4.10d will

result with populations identical to the original ones.
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Figure 4.10: A qualitative example of two populations (a), (b), with the same representation using the
aggregated battery model (c) and the proposed method with vectors 𝑃a,𝑃c,𝑃r, 𝑃d and 𝑃const (d). [13]
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Empirical results showed that for big enough EV populations in which more EVs are

present at the same time, the reconstructed number of EVs is up to five times bigger than

the original number of EVs. To better explore this effect, the proposed reconstruction

algorithm was iteratively applied on the population which was stacked with one EV every

iteration. The EVs which were stacked belonged to the original population of one working

day from the dataset. The order of the EVs stacking was according to their arrivals. The

results of the experiment are shown in Fig. 4.11. It can be seen that for the initial

small number of EVs, the number of the reconstructed EVs is two times bigger than the

original number, which matches the effect mentioned in 4.2.5 and that is a consequence

of Lemma 4.2.1. For the larger number of EVs, the ratio can even be five to one. That

is a consequence of underdetermination of the system (4.17). The influence of a larger

number of the reconstructed EVs to the error of the optimal daily cost is acceptable, as

evidenced in Fig. 4.11.
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Figure 4.11: Comparison of the original and the reconstructed population sizes. [13]

Since the charging fee is not included in the daily optimisation cost 𝐽 , negative values

in Fig. 4.8. and Table 4.4a denote that the aggregator can obtain profit already by

participating in DR. The DR participation and profit possibilities obviously rise with the

number of EVs in the population. With some tolerance chosen using statistical data from

Table 4.4a and 4.4b, reconstructed results could be used to contract day-ahead frequency

regulation power. Finally, the experimental proof of the main hypothesis can be seen in

Fig. 4.8., Fig 4.9. and Table 4.4 altogether.
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Table 4.4: Statistical comparison of the reconstructed and the original population, where · and 𝜎(·) denote
mean value and standard deviation: a) the reconstructed 𝐽 and the original 𝐽 ′ and b) the reconstructed
𝑃res and the original 𝑃 ′

res. [13]

(a)

dataset CalTech JPL

[e] [e]

max(𝐽) 76.40 204.20

min(𝐽) -103.80 -53.57

|𝐽 − 𝐽 ′| 0.91 2.22

𝐽 − 𝐽 ′ 0.77 2.04

𝜎(𝐽 − 𝐽 ′) 2.41 3.22

min(𝐽 − 𝐽 ′) -4.72 -8.01

max(𝐽 − 𝐽 ′) 23.24 20.54√
(𝐽−𝐽 ′)2

𝐽 ′ 0.16 0.07

(b)

dataset CalTech JPL

[kW] [kW]

max(𝑃res) 210.11 257.81

min(𝑃res) 0 0

|𝑃res − 𝑃 ′
res| 0.76 1.42

𝑃res − 𝑃 ′
res -0.55 -1.10

𝜎(𝑃res − 𝑃 ′
res) 2.55 2.69

min(𝑃res − 𝑃 ′
res) -26.18 -23.67

max(𝑃res − 𝑃 ′
res) 6.45 15.65√

𝑃res−𝑃 ′
res)

2

𝑃 ′
res

0.09 0.07

4.5 Conclusion

This chapter introduced a method of representing an EV population connected to a set of

charging points that are managed by an aggregator. The method preserves the information

valuable for EV charging scheduling in order for the aggregator to participate in tertiary

frequency regulation, peak power shaving and volatile prices market. It consists of creating

five vectors from which an equivalent population can be reconstructed. The simulation

was run using real world data and charging scheduling was optimised for both the original

population and the reconstructed one. The daily cost and the optimal reserved power of

the reconstructed population matches to the optimisation result of the original population

with acceptable deviation. The proposed method for EV population representation can

be used in prediction of the EV population using machine learning.
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Chapter 5

Prediction of aggregated EV

representation using XGBoost and

LightGBM

5.1 Introduction

Most research focuses on prediction of the aggregated load profile [11, 12, 31, 32, 33, 34,

35, 36, 37, 38]. For the coordinated EV scheduling it is necessary to have charging requests

and the mentioned load predictions are useful only for the grid operator to plan system

balancing. Approach suitable for EV charging scheduling is to predict future quantities of

certain EVs types [39, 40, 41, 42, 43]. The EV types are distinguished by state of charge

at the arrival as well as by arrival and departure times. The downside of the approach is

limitation to finite number of types. To avoid that obstacle, in this chapter the goal is to

predict the aggregated representation of future EVs, introduced in the previous chapter.

The aggregated representation of future EVs captures demand response capacity and

allows every EV to have a unique charging task [13]. The new approach is proven to very

well capture the demand response potential of a group of EV charging points, and here is

introduced the prediction procedure for the aggregated representation.

For EV load profile prediction different methods are used such as linear regression,

decision trees, support vector machine, k-nearest neighbours and several deep learning

methods [43]. Several researches have shown that extreme gradient boosting ensembles

(XGBoost) outperform other compared models in different similar applications connected

to EVs [33, 36, 44]. Furthermore, together with XGBoost other gradient boosting models,

like light gradient boosting machine (LightGBM), are chosen as the most promising [45].

In this chapter Adaptive Charging Network (ACN) dataset [16] is transformed to the

aggregated representation using Algorithm 4. The obtained data is the focus of time-
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series feature engineering procedure and is used to train two gradient boosting models

XGBoost and LightGBM. The models are validated by comparing their accuracy with

two baselines.

The Chapter is organised as follows. Forecasting problem and extensive data analysis

are introduced in Section 5.2. Evaluation of the obtained forecasting models is given in

Section 5.3 and conclusion is given in Section 5.4.

5.2 Forecasting problem definition and dataset

The final goal is to predict future EV charging tasks in order to apply individual battery

optimisation scheduling algorithm such as [10, 13, 46] or the ones proposed in Chapters

2 and 3. The forecasting problem, marked dashed orange, described in this chapter is

only one part of the concept proposed in this thesis. The full pipeline of optimisation

for EVs charging and demand response is again given in Fig. 5.1. The proposed method

does forecasting in aggregated representation domain that consists of five discrete-time

vectors related to envelopes of feasible charging powers and charging states for the EV

population. Collecting historical data and EV charging schedule optimisation are done in

individual EV data domain. Transformation between two domains is reversible without

almost any information loss [13].

Machine 
Learning

HISTORICAL EV 
POPULATIONS DEFINED 

WITH INDIVIDUAL EV 
ATTRIBUTES

HISTORICAL POPULATIONS 
DESCRIBED WITH TIME 

VECTORS

Model 
Predictive 

Control

PREDICTED POPULATION 
DESCRIBED WITH TIME 

VECTORS

RECONSTRUCTED PREDICTED 
EV POPULATION DEFINED 

WITH INDIVIDUAL EV 
ATTRIBUTES

CHARGING 
SCHEDULE AND 

DEMAND 
RESPONSE

Day-ahead 
flexibility 
analysis

EXPECTED POPULATION 
DESCRIBED WITH TIME 

VECTORS

EXPECTED EV 
POPULATION DEFINED 
WITH INDIVIDUAL EV 

ATTRIBUTES

WEATHER, 
WEEKDAY, ETC.

Figure 5.1: The proposed concept of aggregated population prediction using machine learning and charg-
ing scheduling of individual electric vehicles [13].

ACN dataset [16] is well used in various EV load prediction papers [34, 35, 36, 47].

It includes two datasets from parking lots of California Institute of Technology and the

Jet Propulsion Laboratory. In this article only the first one is used. The dataset contains
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charging sessions of 54 charging points through 1057 days (2018/04/25 - 2020/08/29).

All available historical data of EV arrivals, transformed to 𝑃a, 𝑃c, 𝑃d, 𝑃r and 𝑃con using

Algorithm 4, is used for model training. Based on the current and recent past signal

values, obtained model is used to predict values of these signals on the horizon of 2 hours

to enable EV charging scheduling.

5.2.1 Aggregated representation data analysis

An exploratory data analysis of the available historical data is conducted to appropriately

choose adequate inputs to model. Historical aggregated data signals 𝑃a, 𝑃c, 𝑃d, 𝑃r and

𝑃con are analyzed to find patterns and correlation. Daily mean values, sigma and 3-sigma

limits for all five signals, separated for working and non-working days are given in Fig.

5.2. Visualisation in Fig. 5.2. gives insight in peak values of 𝑃a during morning and of 𝑃d

Figure 5.2: Daily mean values and 3-sigma limits for time-vectors 𝑃a, 𝑃d, 𝑃c, 𝑃r and 𝑃con, separated for
working and non-working days.[48]
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during afternoon and evening which is quite expected since 𝑃a and 𝑃d are sum of arrived

and departed nominal EV charging powers, respectively. It can be seen in Fig. 5.2 and

especially in Fig. 5.3 that 𝑃a is significant amount of time close or equal to zero, as it is the

case with 𝑃c, 𝑃d, 𝑃r. The nature of the signals derives from (4.1)-(4.9) where the signals

are built from zero vector by adding contributions of EVs that are temporally scattered.

Every EV contribution is a discrete impulse and the signals are superposition of them.

That is not the case with 𝑃con where an EV contributes to the signal through all time

intervals while being connected to a specific charging point. Qualitative comparison of

𝑃a, 𝑃d and 𝑃con in Fig. 5.2 and signals definition (4.1)-(4.9) show dynamic characteristic

between the signals: 𝑃con(𝑘) ≈
∑︀𝑘

𝑗=0 𝑃a(𝑗)− 𝑃d(𝑗).
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Figure 5.3: Histogram of 𝑃a, 𝑃d, 𝑃c, 𝑃r and 𝑃con

At first sight to a selected week period in Fig. 5.4. one can spot that there is an

obvious daily and weekly pattern which is further confirmed with autocorrelation analysis

shown in Fig 5.5. Smaller amplitude is expectedly seen during Saturday and Sunday.

Through visual analyses of data plotted on weekly interval it was easy to notice smaller

amplitude on national holidays.

5.2.2 Model inputs

Values of 𝑃a are input to all five models since contribution of an EV to the 𝑃a precedes

contributions to the other four signals as it can be seen combining Fig. 4.2 and (4.1)-

(4.9). In a similar way, contributions of 𝑃c and 𝑃r precede to contribution to 𝑃d which is

the last ”trace” of an EV in the aggregated representation. Furthermore, every EV must

contribute to 𝑃d, 𝑃c and 𝑃r after it arrived and thus three inputs are derived. The first

input 𝑃d,to =
∑︀𝑘

𝑗=0 𝑃a(𝑗)−𝑃d(𝑗) represents the cumulative power of present EVs at time

instant 𝑘 that are about to depart. Analogly the inputs 𝑃c,to and 𝑃r,to are derived as still

expecting contributions to signals 𝑃c and 𝑃r, respectively.
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Figure 5.4: Time series 𝑃a, 𝑃c, 𝑃d, 𝑃r and 𝑃con for a selected week period.

As mentioned before, the observed parking lot can be seen as a dynamic system where

its state consists of all present EVs with their current phase in charging cycle visualised in

Fig. 4.2. It is then reasonable to look for integrative characteristics of all the five signals.

The integration interval should not be longer than about 8 hours because it would include

EVs that maybe already departed. Integration (summing) intervals of the last 3, 6, 10

and 20 steps (45, 90, 150, 300 min) are proposed to capture different ”system dynamics”.

Furthermore, probability of a departure of any EV and thus capturing it in 𝑃d depends on

the number of present EVs. Both number of the present EVs and number of free charging

points are used as inputs.

Harmonic and categorical time indices are chosen as inputs for all five models because

of noticed daily and weekly patterns as can be seen in Fig. 5.2. The spikes in autocorre-

lation function in Fig. 5.5. makes justified to include values of certain signal delayed for
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Figure 5.5: Autocorrelation analysis of 𝑃a, 𝑃f, 𝑃c, 𝑃r and 𝑃con

one, two and three weeks, as follows:

𝑦(𝑘 − 𝑑), 𝑑 ∈

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
670, ... , 674,

1342, ... , 1346,

2014, ... , 2018

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
, (5.1)

where 𝑦 is value of one of the five signals, 𝑘 is current discrete time instant and 𝑑 denotes

the number of 15 minute time instants used for lagging. Working day indicator is used to

more strongly distinguish Saturday and Sunday and to distinguish national holidays at

the same time.

Model inputs chosen according to conducted exploratory analysis of the historical data

set are shown in Table 5.1.

5.2.3 Baseline

Nature of signal 𝑃con is significantly different than the rest of the signals. It lacks sudden

changes and spikes which are frequent in other signals. Two basic statistical methods are

chosen as baseline because of the mentioned different natures of the signals. The first

baseline is simple persistence that shows better results for 𝑃con. The second baseline is

time-of-day average of the respective day of week. Under the assumption that EV owners

have mostly stable routines for certain days of week and that deviations of arrival and

departure times are white noise, the proposed average represents the expectation of the

signals.
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Table 5.1: List of all model inputs

Input name Description 𝑃a 𝑃c 𝑃d 𝑃r 𝑃con

Current values
of all five
signals

✓ ✓ ✓ ✓ ✓

Values of 𝑃a

for the last day
✓ ✓ ✓ ✓ ✓

Values of 𝑃c

for the last day
✓ ✓

Values of 𝑃d

for the last day
✓

Values of 𝑃r

for the last day
✓ ✓

Values of 𝑃con

for the last day
✓

𝑃d,to, 𝑃c,to, 𝑃r,to Derived from historical data ✓ ✓ ✓ ✓

Rolling travel
time statistics

Maximum, minimum,
median and average value
of the last 2, 4 and 8
steps. Average of the last
10 working/not-working days

✓ ✓ ✓ ✓ ✓

Rolling sum
Sum of the last 3,
6, 10 and 20 values

✓ ✓ ✓ ✓ ✓

Delayed values
Values of
the same day-of-week and
time-of-day for last 3 weeks.

✓ ✓ ✓ ✓ ✓

Parking lot
status

Number of present EVs and
free charging points

✓ ✓ ✓ ✓ ✓

Harmonic time
indices

Sine and cosine functions
of time-of-day, day-of-week,
day-of-year

✓ ✓ ✓ ✓ ✓

Categorical time
indices

Integer variables denoting
time-of-day, day-of-week
and day-of-year

✓ ✓ ✓ ✓ ✓

Working day
indicator

Boolean variable
denoting if day is
weekend or national
holiday

✓ ✓ ✓ ✓ ✓

5.2.4 Machine learning approaches

Training of models was implemented in Python using the XGBoost [49] and LightGBM

libraries [50]. The historical dataset was divided into three parts of which 80% was used

as a training set, 10% for hyperparameters validation and 10% as a test set for final pre-

diction performance metrics calculation. Tuning of hyperparameters was conducted using

Optuna framework [51]. Optuna is based on Tree-Structured Parzen Estimator (TPE)

algorithm [52] that is an iterative process that uses history of evaluated hyperparameters

to create probabilistic model, which is used to suggest next set of hyperparameters to

evaluate. In comparison with grid search TPE is less time-consuming and is better in

finding minimum than randomised search since TPE searches in informed manner. All
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considered hyperparameters are shown in Table 5.2. while the rest was left at default

values.

Table 5.2: Hyperparameter searching space of the XGBoost and LightGBM models.

Range Range

Hyperparameter XGBoost LightGBM Hyperparameter XGBoost LightGBM

𝛾 [0, 10] / Column sample by level [0.5, 1] /

Max depth [5, 15] [0, ∞] Column sample by node [0.5, 1] /

Estimator number [50, 5000] [10, *104] Regularisation 𝜆 [0.5, 1] [0, 10]

Min. child weight [0, 10000] [10−3, 50] Max number of bins / 128

Subsample [0.7, 1] [0.6, 1] Column sample by tree [0.5, 1] [0.6, 1]

Max. 𝛿 step [0, 1] / Number of leaves / [2, 32768]

𝜂 [0, 0.3] / Min child samples / [5, 50]

𝛼 [0, 0.5] [0, 10]

As a first step of hyperparameters tuning for the XGBoost, max depth, minimal child

weight and 𝜂, as the three parameters with strongest influence on model performance

[49], were tuned by using simple iterative grid search and intuition. In every iteration grid

search had defined 5 different values per parameter. Between two performance dependency

on parameters was examined and new 5 values for every parameter were chosen. Per one

signal there were between three to five iterations until the parameters were evaluated as

final. Then Optuna framework was used to run 100 trials per signal to tune 12 parameters

in Table 5.2 with cold start. It is interesting that Optuna’s best performances for all the

five signals were about 1-2% worse than what eventually was found as final performance.

On the other hand, the hyperparameter space with 12 dimensions requires far more than

100 trials. Finally another 50 trials were ran warm started with the parameters values

previously found. Optuna then found the final best result, which was expected since it

continued to very fine tune all 12 parameters around the new point found. Ten LightGBM

hyperparameters were tuned only using Optuna with 100 trials. At first, the upper limit

for parameter number of leaves was set to maximum 65536 but it was reduced to a half

due to too large memory consumption (16 GB of RAM installed).

Models for prediction on horizons up to 8 steps (2 hours) were also tuned and trained,

separate model per every signal and prediction step on the horizon. The inputs of the

models are the same for all horizon lengths. The horizon of 2 hours is chosen as appropriate

one for the mid-term EV charging schedule optimisation.

Similar utilisation of inputs-features for both models can be seen in Fig. 5.6.
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(a) (b)

Figure 5.6: Feature importance of models for 𝑃a one step ahead a) XGBoost, b) LightGBM . [48]

5.3 Evaluation of the obtained forecasting models

5.3.1 Metrics and validation environment

Baseline and forecasting models are compared using mean absolute error (MAE) and root

mean square error (RMSE) as the two most commonly used metrics:

𝑀𝐴𝐸 =
1

𝑁

𝑁∑︁
𝑘=1

|𝑦𝑘 − 𝑦𝑘|, (5.2)

𝑅𝑀𝑆𝐸 =

⎯⎸⎸⎷ 1

𝑁

𝑁∑︁
𝑘=1

(𝑦𝑘 − 𝑦𝑘)2, (5.3)

where 𝑦𝑘 and 𝑦𝑘 are true and forecasted values, respectively and N is the number of samples

for which the metric is calculated. Mean absolute percentage error (MAPE) cannot be

used due to big number of zero elements in the true data which would lead to big relative
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errors that would be hard to interpret. Instead a symmetric mean absolute percentage

error (SMPAE) is used as follows:

𝑆𝑀𝐴𝑃𝐸 =
1

𝑁

𝑁∑︁
𝑘=1

⎧⎪⎪⎨⎪⎪⎩
|𝑦𝑘−𝑦𝑘|

(|𝑦𝑘|+|𝑦𝑘|)/2
, 𝑖𝑓 |𝑦𝑘|+ |𝑦|𝑘 > 0,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(5.4)

RMSE was used for fitting of all prediction models, with intention to focus on forecasting

peak values.

5.3.2 Forecasting results

Final metrics were calculated on predictions made on the test dataset. One step ahead

models are compared with both baseline methods in Table 5.3. The worst performance

for 𝑃a is expected since it is ”truly independent” variable while other signals follow it.

Different values of MAE and RMSE of both baselines indicate specific nature of 𝑃con.

For very short prediction, which is the case in Table 5.3., it is reasonable that persistence

performs better than weekday average. Errors of weekday average for 𝑃con are extremely

high since the signal is static between arrivals and departures of EVs. The other four

signals are ”event-based” and thus some error is present around that specific time instant,

while one day with more EVs with empty batteries cause grater deviations of 𝑃con from

weekday average than from persistence along the whole day.

The performance of 𝑃con significantly decreases along the horizon (Fig. 5.7.), which

means it is also focused on persisting the current value of the signal. On the other hand,

the performance of the other four signals is quite stable indicating it uses lagged values.

In Table 5.3. it can be seen that LightGBM generally outperforms XGBoost.

Figure 5.7: RMSE of all LightGBM models.[48]
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Table 5.3: 15 minutes (one step) ahead forecast model metric calculated on test dataset.[48]

Weekday average Persistence XGBoost LightGBM

𝑃a

MAE 1.375 1.120 1.021 0.976

RMSE 2.197 2.785 1.983 1.88

SMAPE 0.426 0.104 0.454 0.455

𝑃d

MAE 1.336 1.160 0.723 0.975

RMSE 2.113 2.774 1.613 1.551

SMAPE 0.435 0.113 0.428 0.269

𝑃c

MAE 1.318 1.021 0.765 0.721

RMSE 1.955 2.365 1.586 1.578

SMAPE 0.426 0.117 0.419 0.281

𝑃r

MAE 1.334 1.063 0.917 0.879

RMSE 1.912 2.316 1.648 1.547

SMAPE 0.418 0.136 0.421 0.284

𝑃con

MAE 6.503 0.809 0.807 0.756

RMSE 8.983 1.953 1.557 1.420

SMAPE 0.267 0.031 0.163 0.273

5.4 Conclusion

This chapter outlines the application of two state-of-the-art machine learning models,

light gradient boosting machine (LightGBM) and extreme gradient boosting machine

(XGBoost), for forecasting time-series providing a recently introduced aggregate repre-

sentation of electrical vehicles present on a parking lot. Prediction horizon is 2 hours

with a 15 minute time step. Obtained predictions are compared with week-of-day average

and persistence with three different metrics. Both models outperformed the baselines and

LightGBM has slightly better results than XGBoost. The introduced predictions are a

necessary precondition for application of model predictive control to charging scheduling

and demand response for a group of EV chargers on a parking lot.
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Chapter 6

General conclusions and future research

opportunities

Optimisation of EV charging schedule is a must for the power system today. With volatile

production of renewable sources, the demand side of the system should take part in system

regulation. Although participation of EVs in demand response is already well explored,

this thesis proposed the concept of charging scheduling of an EV population, connected to

a set of charging points that are managed by an aggregator, based on innovative aggregated

representation of EV population (set). Aggregated representation allows to represent a set

of vehicles using five discrete-time vectors that are suitable for prediction using machine

learning models for time series prediction. Also, the aggregated representation allows the

EV population with a large number of vehicles to be reduced to a smaller one, exactly

as it was used for the day-ahead flexibility analysis. The key feature of the aggregated

representation is that it preserves information about the flexibility capacity of the pop-

ulation, which was empirically proven in the Chapter 4, showing the daily cost and the

optimal reserved power of the reconstructed population match to the optimisation result

of the original population with acceptable deviation. Furthermore, the EV population can

consist of EVs with any nominal charging power, relative capacity, discrete-time arrival

and departure intervals.

Due to a weekly pattern of EV arrivals in the used dataset, the day-ahead analysis of

the EV aggregator’s demand response capacity was conducted separately for every week-

day. Large number of EVs in the expected daily EV population, obtained by summing all

EVs in a certain weekday and dividing them with the number of days in data sample, is

avoided by applying the aggregated representation to the population which resulted in the

reconstructed expected EV population of only 150 EVs. The reasonable number of EVs in

the expected daily population is crucial due to computational and memory requirements

of the optimisation problem used. The conducted day-ahead flexibility analysis is based
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on stochastic worst-case optimisation and offers control over the possible financial loss

if the flexibility is not contracted with the power grid operator on day-ahead frequency

regulation market. To enable the aggregator can influence the certainty of fulfilling con-

tracted flexibility, chance-constraints and statistical analysis of real-world historical data

are applied. The performed analysis showed flexibility capacity of 80 kW for the expected

EV population on Monday on a parking lot equipped with 52 EV charging points. During

validation of MPC, in which the obtained results were used as the contracted flexibility,

it is shown that the aggregator can fulfil flexibility without jeopardising the flexibility

contract with the power grid operator.

As the future works remains to transform uncertainty of the aggregated representation

of EV population to the uncertainty of the individual EV data. Such transformation would

enable the application of the stochastic optimisation methods directly to the individual

constraints on EV’s state of energy and charging power.

The introduced model predictive control for the charging scheduling of EVs, that are

operated by an aggregator, relies on the contracted flexibility from the day-ahead analysis

and on individual EV data of the already present EVs and of the predicted ones. The

proposed MPC is based on linear stochastic optimisation. Validation conducted both for

deterministic and stochastic MPC showed that even with the optimisation horizon of 2

hours the aggregator succeeds to fulfil the contracted flexibility, thus obtaining economical

benefits. MPC handles predicted EVs as virtual - without the assigned charging points.

After MPC is solved, at the beginning of the next discrete-time interval total charging

energy of the predicted EVs is assigned to the EVs arrived during the current interval in

which MPC is being solved.

That feature enables usage of predicted EV population reconstructed from predicted

aggregated representation that can contain of more EVs than there are free charging

points. The prediction of the future EV population in domain of the aggregated repre-

sentation is obtained using two state-of-the-art machine learning models, light gradient

boosting machine (LightGBM) and extreme gradient boosting machine (XGBoost), in-

troduced in Chapter 5. Prediction horizon is 2 hours with a 15 minute time step which

correspond to the shortest optimisation horizon of the proposed MPC. Obtained predic-

tions are compared with week-of-day average and persistence with three different metrics.

Both models outperformed the baselines and thus can contribute to mitigate uncertainty

of the stochastic MPC. In comparison of the two analysed machine learning models, Light-

GBM has slightly better results than XGBoost.

Every step of the proposed charging scheduling concept is validated on real-world ACN

dataset [16] and as the future work it remains to reach further in testing the proposed

scheduling concept on other datasets, especially the datasets with other charging point
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configurations. Including private household charging points could prolong the interval

in which the aggregator offers flexibility. While the used ACN dataset is consistent and

EV arrivals are aligned with working hours of the faculty building, different dataset will

require further analysis and upgrade of the machine learning models since there are other

possible data that influence EV arrivals, such as weather or traffic.
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4.Kovačević, M., Brkić, B., Vašak, M., ”Worst-case optimal scheduling and real-time

control of a microgrid offering active power reserve”, Proceedings of the 23rd IEEE

International Conference on Process Control (PC), 2021., pp. 66-71,

doi:10.1109/PC52310.2021.9447502
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