
Localization, motion planning and control of mobile
robots in intelligent spaces

Brezak, Mišel

Doctoral thesis / Disertacija

2010

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of
Zagreb, Faculty of Electrical Engineering and Computing / Sveučilište u Zagrebu, Fakultet
elektrotehnike i računarstva

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:168:150149

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-05-19

Repository / Repozitorij:

FER Repository - University of Zagreb Faculty of
Electrical Engineering and Computing repozitory

https://urn.nsk.hr/urn:nbn:hr:168:150149
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.fer.unizg.hr
https://repozitorij.fer.unizg.hr
https://repozitorij.unizg.hr/islandora/object/fer:11806
https://dabar.srce.hr/islandora/object/fer:11806

UNIVERSITY OF ZAGREB
FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

SVEUČILIŠTE U ZAGREBU
FAKULTET ELEKTROTEHNIKE I RA ČUNARSTVA

Mišel Brezak

LOCALIZATION, MOTION PLANNING AND
CONTROL OF MOBILE ROBOTS IN

INTELLIGENT SPACES

LOKALIZACIJA, PLANIRANJE GIBANJA I
UPRAVLJANJE MOBILNIM ROBOTIMA U

INTELIGENTNIM PROSTORIMA

DOCTORAL THESIS

DOKTORSKA DISERTACIJA

Zagreb, 2010

DOCTORAL THESIS is written at the Department of Control and Computer En-
gineering, Faculty of Electrical Engineering and Computing, University of Zagreb

Supervisor: Professor Ivan Petrović

DOCTORAL THESIS has 229 pages. Dissertation No.

The dissertation evaluation committee:

1. Professor Sven Lončarić, University of Zagreb, Faculty of Electrical Engi-
neering and Computing

2. Professor Ivan Petrović, University of Zagreb, Faculty of Electrical Engine-
ering and Computing

3. Professor Bojan Jerbić, University of Zagreb, Faculty of Mechanical Engi-
neering and Naval Architecture

The dissertation defense committee:

1. Professor Sven Lončarić, University of Zagreb, Faculty of Electrical Engi-
neering and Computing

2. Professor Ivan Petrović, University of Zagreb, Faculty of Electrical Engine-
ering and Computing

3. Professor Joško Deur, University of Zagreb, Faculty of Mechanical Engine-
ering and Naval Architecture

4. Professor Nedjeljko Perić, University of Zagreb, Faculty of Electrical Engi-
neering and Computing

5. Professor Vesna Županović, University of Zagreb, Faculty of Electrical En-
gineering and Computing

Date of dissertation defense: 26th March, 2010

Predgovor i zahvala

Kako bih došao do cilja, a to je izrada ove disertacije, moji roboti i ja morali smo
zaobići mnoge prepreke, kako one geometrijske u radnom prostoru robota, tako i
one u stvarnom životu, mnogo teže savladive. Ponekad su se prepreke činile toliko
visoke da je cilj izgledao nedostižan. Strah od nepoznatog davao mi je osjećaj da
ako i uspijem zaobići brdo ispred sebe, možda me iza čeka još veća planina.

Iako sam se u disertaciji odlučio za determinističku metodu planiranja gi-
banja do cilja, pisanje ove disertacije bilo je mnogo manje determinističko i u
mnogočemu sličnije planiranju gibanja jednom mnogo manje determinističkom
metodom – metodom polja potencijala. Pritom sam upadao u “klopke” lokalnog
minimuma svojstvene upravo toj metodi, često se iz njih izvlačivši upravo kao što
je spomenuto u odlomku o poljima potencijala: slučajnim hodom – pristupom
koji ne garantira mnogo vǐse nego da ćete se u nekom konačnom vremenu možda
izvući iz klopke. Pritom zahvaljujem svim svojim “atraktivnim potencijalima”
koji su me vukli ka cilju, a ponajvǐse svojem mentoru prof. Ivanu Petroviću koji
mi je dao mnogo korisnih savjeta. No, po svemu sudeći, najteži lokalni minimum
kojeg je trebalo svladati bio je upravo u meni samom.

Posebno zahvaljujem svojoj obitelji na potpori. Takoder zahvaljujem svojim
kolegama na mnogo lijepih trenutaka provedenih zajedno. Zahvaljujem studenti-
ma koji su implementirali neke od algoritama u disertaciji i svima ostalima za koje
nemam mjesta da ih pojedinačno navedem, a koji su na bilo koji način doprinijeli
nastanku ove disertacije.

Potrebno je još spomenuti da se čitajući ovu disertaciju ne stječe pravi dojam
kako je sve to nastajalo. A sve je inspirirano robotskim nogometom te je gotovo
svaki algoritam opisan u disertaciji testiran na platformi za robotski nogomet.
Pritom mi cilj nije bio izgraditi sustav koji će raditi samo za robotski nogomet,
već za čim širi spektar aplikacija. Tako se došlo na ideju da bi razvijeni algoritmi
bili idealni za primjenu u inteligentnim prostorima, koji svojom mrežom raspo-
dijeljenih senzora pružaju infrastrukturu sličnu onoj koja se koristi u robotskom
nogometu. Kako se u praksi uvijek mora načiniti kompromis izmedu općenitosti i

i

usmjerenosti ka specifičnoj primjeni, nastojanje da se algoritme učini fleksibilnim
i univerzalnijim, kao i čitav niz različitih znanstvenih područja u koja je treba-
lo savladati kako bi se dobio funkcionalan sustav, značajno je produljilo razvoj
cijelog sustava.

Mǐsel Brezak,

Pregrada, 9. lipnja 2010.

ii

Contents

1 Introduction 1

1.1 Motivation and Scope . 1

1.2 Thesis Overview . 3

2 Mobile Robots in Intelligent Spaces 5

2.1 Intelligent Spaces . 5

2.2 Introducing Mobile Robots . 8

2.3 Sensing in Intelligent Spaces . 8

2.3.1 Mobile Robot Localization 13

2.3.2 Human Tracking . 13

2.4 Mapping in Intelligent Spaces . 14

2.5 Motion Planning in Intelligent Spaces 15

2.6 High-level Applications . 15

3 Robot Localization Using Global Vision 17

3.1 Introduction . 17

3.2 Physical System Design . 19

3.2.1 Camera Selection and Calibration 20

3.2.2 Design of Robot Marks . 20

3.3 Vision Algorithm . 24

3.3.1 Robot Detection . 25

3.3.2 Robot Pose Measuring Procedure 31

3.3.3 Robot Identification . 37

3.4 Experimental Results . 38

3.4.1 Analysis of Vision System Precision and Accuracy 40

3.4.2 Analysis of Robustness to Light Intensity Changes 47

3.4.3 Ability to Track Large Number of Robots 48

3.4.4 Analysis of Real Time Operation Requirement 49

3.5 Summary . 51

iii

4 Mobile Robot Motion Planning 53
4.1 Introduction . 53
4.2 Common Approaches to Motion Planning 56

4.2.1 Direct Motion Planning 57
4.2.2 Decoupled Motion Planning 58

4.3 Motivation . 59
4.4 Choosing an Adequate Planning Method 60

5 Path Planning 63
5.1 General Notions . 63
5.2 Free Configuration Space Construction 65
5.3 Artificial Potential Fields . 67
5.4 Cell Decompositions . 69
5.5 Sampling-Based Algorithms . 70
5.6 Roadmap Methods . 72

5.6.1 Visibility Graph . 74
5.6.2 Voronoi Diagram . 77
5.6.3 Other Roadmap Methods 80

5.7 Proposed Path-Planner . 81
5.7.1 Map Representation . 81
5.7.2 Path-Planning Algorithm 82
5.7.3 Collision Detection . 87
5.7.4 Implementation Aspects 89

5.8 Experimental Results . 89
5.9 Summary . 96

6 Path Smoothing 99
6.1 Introduction . 99
6.2 Literature Review . 101
6.3 Clothoid Steering Model . 102
6.4 Clothoid Curve Properties . 105

6.4.1 Traversing the Clothoid at Different Velocities 107
6.5 Parametrization of a Clothoid . 108
6.6 Approximation to a Clothoid . 109

6.6.1 Interpolation Issues . 117
6.6.2 Determining a Required Set of Clothoids 119
6.6.3 Determination of Lookup Table Parameters 124
6.6.4 Example for the Pioneer 3DX Robot 126
6.6.5 Computation of Clothoid Coordinates 127
6.6.6 Querying the Clothoid Coordinates 129

6.7 Finding Intersections between a Clothoid and a Line 130
6.8 Smoothing Sharp Turn by a Clothoid Pair 132
6.9 Connecting Circle and Line by Two Clothoids 137

iv

6.10 Connecting Circle and Line by a Single Clothoid 143
6.11 Connecting Circle and Line by Three Clothoids 146
6.12 Emergency Stop . 149
6.13 Smoothing at Goal Side . 150
6.14 Putting It All Together . 151
6.15 Experimental Results . 153
6.16 Summary . 154

7 Trajectory Planning 157
7.1 Introduction . 157
7.2 Decoupled Trajectory Planning 159
7.3 Trajectory Planning for Soccer Robot 164

7.3.1 Intrinsic Constraints . 165
7.3.2 Extrinsic Constraints . 168
7.3.3 Computing the Velocity Limit Curve 174
7.3.4 Implementation Aspects 175
7.3.5 Experimental Results . 175

7.4 Trajectory Planning for Pioneer 3DX Robot 179
7.4.1 Implementation Aspects 180
7.4.2 Experimental Results . 180

7.5 Moving Obstacles . 182
7.6 Multiple Robots . 183
7.7 Summary . 184

8 Trajectory Tracking 187
8.1 Introduction . 187
8.2 Robot Model . 189
8.3 Trajectory Tracking Controllers 190

8.3.1 Linear-Design Controller 191
8.3.2 Nonlinear Controller . 193
8.3.3 Model Predictive Controller 194

8.4 Experimental Results . 196
8.4.1 Trajectory Tracking Controllers Comparison 196
8.4.2 Complete Motion Planner 202

8.5 Summary . 203

9 Conclusion 205
9.1 Contributions . 206
9.2 Future Work . 207

Bibliography 209

Abstract 223

v

Sažetak 225

Curriculum Vitae 227

Životopis 229

vi

Chapter 1

Introduction

1.1 Motivation and Scope

Recent advances in field of sensor networks, mobile robotics and artificial intel-
ligence enable us to realize today what previously could be seen only in science
fiction (SF) movies: Spaces do not interact with the humans only passively, but
can also support humans in a true physical way. The possibilities are numer-
ous, e.g. load delivery, visitor guidance etc. Such a space is called an Intelligent
Space (iSpace). To enable advanced services, iSpace must be capable of monitor-
ing events in it, communicating with objects in it, making decisions in order to
provide services, and act based on these decisions.

In general case an iSpace consists of sensors, processors (computers), actuators
and communication devices. The sensors (e.g. cameras, microphones, ultrasound
or laser beacons) have the role of identification and tracking the objects in the
space and taking orders from space users. The iSpace interacts with objects in
it using actuators (e.g. mobile robots) that provide various advanced services
to the space users. The processors act as the brain of the system, controlling
the actuators with the purpose of performing various tasks, using information
obtained from sensors as a feedback. Actuators, processors and sensors, connected
with communication devices, together make a distributed system, which is the
core of the intelligent space.

As the whole space is intelligent, it is able to provide various services to its
clients (i.e. users), where clients are primarily humans. However, any other device
can be a client of the intelligent space. For example, robots are utilized to provide
physical services to humans as physical agents, but the robot as well as the human
is supported by Intelligent Space if necessary. E.g. if a robot is lacking necessary
sensors to be able to navigate in the space, it is treated as a client, and the
required information is provided to the robot by the intelligent space.

Making a space intelligent is especially useful when multiple mobile robots
navigate within the same structured space (e.g. a flat, warehouse, airport, super-

1

2 Chapter 1. Introduction

market, etc.). In this case it may be reasonable to install sensors and computers,
that are commonly installed in the robot, to the space instead. In this way the
system price can be significantly reduced, because robots are enabled to contain
only cheap sensors for basic collision avoidance (e.g. bumpers and sonars). The
system performances can be increased, too, because more powerful computer sys-
tems can be used resulting in possible higher sampling rate and thus lower delay
and reaction time and higher speeds of the robots.

Moreover, this approach can have multiple advantages regarding three most
common problems that arise in mobile robots navigation: robot localization,
map building and robot motion planning. First, robot localization gets simpler
because sensors can determine robot pose directly in global coordinate frame.
Consequently, the environment map is no more required for robot localization.
Second, the map building process gets also simpler because the robot location
is always known and there is no problem of simultaneous localization and map
building. Besides, distributed sensors, as well as robot onboard sensors, enable
easy and continuous inclusion of new objects in the environment map, so the map
is always up-to-date. Third, robot motion planning is also much easier and more
reliable, since the actual picture of the whole space and all obstacles in it is always
available. Moreover, it is possible to predict the changes in the space and crate a
predictive map, which can then be used for robot optimal path planning in spite
of moving obstacles. The most appropriate sensors to be installed in iSpace and
used for navigation of multiple mobile robots in it are cameras. Such systems are
known as global vision systems.

The research of intelligent spaces is prevalently multidisciplinary—it borrows
many ideas from other research fields, e.g. sensor fields, computer vision, mobile
robotics. Under so broad scale of possible research directions, the focus of this
thesis is set to developing the capability of the space to fully utilize mobile robots,
with the emphasis on development of low-level algorithms that can benefit by
using intelligent space advantages, such as precise localization and mapping and
increased computational power.

To actually provide useful services using mobile robots as agents, apart from
other tasks, intelligent space must be able to locate the robots, plan their motion,
and control them in order to execute the planned motion. Consequently, a re-
search is conducted in two directions. First, a method for fast and precise mobile
robot localization using distributed cameras is developed. Second, a fast and flex-
ible robot motion planning method appropriate for intelligent space application is
developed. Here the idea was to maximally utilize intelligent space’s potential of
accurate robot localization in order to achieve precise and deterministic planning
or robot motion. Besides, the developed algorithms are organized and designed
with maximum modularity in mind, which is the reason why the developed mo-
tion planning algorithms do not explicitly rely on distributed architecture of the
iSpace, but can be used generally for navigation of autonomous mobile robots.

1.2. Thesis Overview 3

1.2 Thesis Overview

The rest of the thesis is organized into 7 chapters and a conclusion as follows.

Chapter 2

An overview of the Intelligent Space concept is given. The most important exam-
ples of the similar researches are given, followed by description of how to utilize
mobile robots as agents of the intelligent space. A description of sensors appro-
priate for the intended application is given, as well as some applications in the
intelligent spaces.

Chapter 3

A novel algorithm that enables precise and accurate robot localization within
intelligent spaces using global vision is described. An overview of the physical
system design used to build global vision system is given. Vision algorithms
for robot detection and tracking are presented. Finally, a detailed experimental
analysis of the developed algorithms is conducted.

Chapter 4

In this chapter a general motion planning problem is defined, so that it serves
as an introduction to later chapters which provide more details about the topic.
The direct and decoupled approaches to motion planning are introduced. Finally,
selection of the methods used in this thesis is discussed.

Chapter 5

Path planning while avoiding obstacles has long time been the main goal within
motion planning research community, while in this thesis it is part of the first stage
of the overall motion planning algorithm. Therefore, this chapter is concerned
with methods used to plan obstacle-free paths between two robot configurations.
A novel path-planning algorithm is introduced that enables fast path-replanning.

Chapter 6

Common path-planning algorithms usually give obstacles-free path, but with no
or very little concern about path feasibility or optimality. Thus, it is described
how to transform a path so that the robot can track it faster. Smoothing algo-
rithm is given that can transform a path that consists of straight line segments to
continuous curvature path, which is essential for fast robot motion. The algorithm
is intended for differential drive robots and uses clothoid curves as primitives for
path smoothing, which have inherent property that their curvature changes pro-
portionally with distance traveled along the curve.

4 Chapter 1. Introduction

Chapter 7

This chapter is concerned with problem of finding an optimal velocity profile
along the planned path so that the path is traversed in shortest time. A dynamic
model of the differential drive robot is developed and used to derive actuator
limits model that is required by time-optimal trajectory planning.

Chapter 8

Control algorithms for generating commands that force the robot to track the
planned trajectory are described. Three types of trajectory tracking controllers
are described and experimentally compared.

Chapter 9

This chapter brings conclusions and summary of the scientific contributions. Some
ideas for future work are given as well.

Chapter 2

Mobile Robots in Intelligent Spaces

This chapter brings an overview of the Intelligent Space concept. The most
important examples of the similar researches are given, followed by description of
how to utilize mobile robots as agents of the intelligent space. A description of
sensors appropriate for the intended application is given, as well as description of
some applications in the intelligent spaces.

2.1 Intelligent Spaces

Although the idea of making spaces intelligent in order to better suit human users
is very old, systematic researches are relatively new and can be tracked back to
1990’s. The concept was initially called ubiquitous computing described by Weiser
[155], where people should be able to use computational resources everywhere in
the environment. This work introduced new infrastructure and paradigms of in-
teraction inspired by need of widespread access to information and computational
capabilities. Wang and Garlan [153] introduced later task-driven computing which
enables users to interact with computer systems in terms of high-level tasks. In
this way an user does not need to learn low-level configuration details, which
results with reduced attention and knowledge requirements of mobile users in a
pervasive computing environment.

With the recognition and awareness of people in environments, the work on
ubiquitous computing later evolved to research of ambient intelligence. Here
the focus was moved toward intelligent environment research in order to provide
human-oriented services. Several famous corporation laboratories conducted their
own research devoted to various related fields. So the FX Palo Alto laboratory
of Xerox started Smart Media Space project [39], where in network-based envi-
ronments media interacts with the environment to promote knowledge sharing.
In the project called EasyLiving Technologies [28] at Microsoft Research human
tracking technology was employed in order to guess the intent of users in the space

5

6 Chapter 2. Mobile Robots in Intelligent Spaces

z

Sensors

Actuator
Human

user

Communication network

Physical
services

Information
services

Control

Perception

Intelligent Space

Figure 2.1. The Intelligent Space

and automate everyday tasks. In the Interactive Workspace Project [66] of HP
the applications of ubiquitous embedded sensors and information displays were
investigated. In yet another work, the Visualization Space research [94] at IBM,
a visual computing system was introduced and used as a testbed for a deviceless
multimodal user interface.

An important research on ambient intelligence was conducted at MIT, where
the concepts such as Smart Room, Smart Space, and Intelligent Room were in-
troduced. The research is now active under name Oxygen which aims at the
development of intelligent environments based on human-centered computation.
The goal is to make the computation “freely available everywhere, like batteries
and power sockets, or oxygen in the air we breathe” [49].

With similar motivation, Hashimoto et al. introduced in 1996 a concept called
Intelligent Space (iSpace) (see e.g. [6, 56]). The novelty of the Intelligent Spaces
over existing concepts was incorporation of physical services for humans, as op-
posed to only informational services. To achieve this, the space could be equipped
with a range of actuated devices such as mobile robots. The overall scheme of the
intelligent space is shown in Figure 2.1. To accomplish its task, the intelligent
space must contain the following:

• distributed sensors;
• computers;
• actuators;
• communication network.

The main role of sensors is to enable perception of what is happening in the

2.1. Intelligent Spaces 7

space. Thus sensors provide various information to the control logic of the intel-
ligent space, and implicitly also to the user (through information services). The
obtained information can give answers to questions such as who the current user
is, what his intentions and habits are, what commands does he give to the space,
etc. The sensors can also measure various environmental parameters if necessary
(temperature, humidity, light). Typically, multiple sensors are distributed so that
the whole space can be perceived. Cameras, microphone arrays and ultrasound
beacons are mostly used nowadays.

The computers build a brain of the space and run various software components
with the main goal of providing services. There are typically three types of tasks
performed by the software [91].

1. Sensor and actuator servers. Those are specialized modules for the data
preprocessing in order to derive relevant information from the sensors and
offer this information on the network.

2. Intermediate processing. Those modules connect as clients to one or more
sensor servers and process their data in order to perform tasks such as sensor
fusion, temporal integration and model building. The intermediate results
are again offered on the network.

3. Application processes. Here the actual applications of the space are imple-
mented. Those can include generation of information understandable to the
user or control of mobile robots using information obtained from sensors as
a feedback.

The software components can be assigned to multiple distributed computers
connected by the network, or onboard computers embedded in robots, and an
actual distribution is application-dependent. Typically, the computers that run
sensor servers are incorporated together with sensor devices and communication
circuitry. In this case they are referred as Distributed Intelligent Network Devices.

Specific tasks are accomplished by utilizing actuators (sometimes called agents).
In order to be able to provide informational services, the space uses passive de-
vices such as monitors, pointing devices, projectors, speakers and other interfaces.
However, to be able to provide physical support active devices must be utilized,
such as embedded motors, active switches, robot arms, and especially mobile
robots.

Finally, the communication network is used to connect sensors, computers
and actuators. Multiple types of networking technologies can be employed and
combined depending on type of communication required. e.g. LAN networks can
be used for connecting computer workstations, wireless LAN for communication
with mobile robots, and CAN networks for real-time sensor communication. In
general, the intelligent space will benefit greatly with the faster network.

8 Chapter 2. Mobile Robots in Intelligent Spaces

2.2 Introducing Mobile Robots

Due to their mobility, the mobile robots are the most appropriate physical agents
in the intelligent spaces. So mobile robots can be used for various services such
as carrying, delivering, cleaning, guiding. Another possible application of mobile
robots is the interaction with humans (see e.g. [137]).

There are mutual benefits that the intelligent space and mobile robots can
provide each other. Through interaction with the intelligent space, the space can
now be employed as an powerful interpreter between human and robot, in this
way avoiding the necessity of implementing the human interface on each robot. A
human operator can in this way control many systems with only a single human
interface. The space also plans high-level actions to be executed by robots in
order to provide useful services.

Regarding robot control, the system performances can be increased because
more powerful computer systems installed in space can be used resulting in possi-
ble higher sampling rate and thus lower delay and reaction time and higher speeds
of the robots. Moreover, intelligent space integration can have multiple benefits
regarding three most common problems that arise in mobile robots navigation:
robot localization, map building and robot motion planning.

1. Robot localization gets simpler because distributed sensors can determine
robot pose directly in global coordinate frame, and consequently the envi-
ronment map is no more required for robot localization purpose.

2. The map building process (map is required for robot motion planning) gets
also simpler because the robot location is always known and consequently
there is no problem of simultaneous localization and map building.

3. Robot motion planning becomes also easier and more reliable, since the
actual picture of the whole space and all obstacles in it is always available.
For optimal planning of robot motion in spite of moving obstacles, it is
beneficial to predict the changes in the space and crate a predictive map,
which again is being made possible by the intelligent space.

2.3 Sensing in Intelligent Spaces

Sensors in the intelligent space can be divided to distributed (at fixed locations in
the space) and onboard (embedded in the mobile robots). Both have advantages
that make them particularly appropriate for certain applications. So distributed
sensors are better for mobile robot localization, and onboard sensors enable reli-
able mapping of the environment. Therefore it is beneficial to use both types of
sensors if possible. Systems of distributed sensors are usually referred as tracking
systems and localization is in this case referred as tracking (e.g. human tracking,

2.3. Sensing in Intelligent Spaces 9

Table 2.1. Comparison of different indoor sensors.
METHOD ADVANTAGE LIMITATION MOUNT
Cameras Cheap; Easy to

install
Hard to achieve
robustness

Distrib. or on-
board

Range cameras Expensive Low resolution Distrib. or on-
board

Sonars Cheap Occlusions;
Low angular
resolution

Distrib. or on-
board

Laser range find-
ers

Accurate; Rela-
tively low price

Occlusions Distrib. or on-
board

Ultrasound, in-
door GPS, etc.

Accurate Rather expen-
sive

Distrib.; Objects
must wear tags

RFID Cheap Not accurate Distrib.; Objects
must wear tags

Inertial / En-
coders

Direct measure-
ment of speed,
orientation

Accumulating
error

Onboard

Microphone ar-
rays

Cheap Not accurate Distrib. or on-
board

robot tracking). The other special case is when only onboard sensors are used to
estimate robot’s position—this is often called self-localization.

In this thesis distributed cameras are used for robot tracking, but a whole
range of other sensors can be combined for other purposes, such as mapping or
human tracking. Detailed discussion about sensing in intelligent spaces and a
fusion of distributed and onboard sensors can be found in [27], and here only a
short overview is given. Commonly used sensors for applications in intelligent
spaces and their characteristics are given in Table 2.1, and further described in
the sequel.

Cameras

Of all sensors, cameras provide the greatest amount of data. With appropriate
computer vision techniques many useful information can be extracted, such as
color or shape. However, this could easily turn into a disadvantage: it is difficult
to robustly process so many information and high processing power is required.
Problems come from the complexity of real environments, effects of changing illu-
mination (the color looks different under different illumination), small resolution
if cameras are too far away, the need for accurate calibration, etc.

Nevertheless, specialized algorithms for tracking particular objects (e.g. robots)
using artificial landmarks can circumference this problem. In this way precise and

10 Chapter 2. Mobile Robots in Intelligent Spaces

robust robot tracking can be obtained as described in Chapter 3. Cameras are
also appropriate for human tracking in intelligent spaces [6]. Special camera sys-
tems, such as infrared cameras, can be beneficial in some circumstances. e.g. with
infrared cameras human tracking can become a rather easy job. Different aspects
of visual tracking of objects are described by Hu et al. [60].

Although cameras are relatively cheap today, additional costs come from re-
quirements for appropriate image processing hardware and adequate lighting, and
low-cost cameras may not be the best choice if one wants to achieve robust and
precise tracking. Special types of camera, such as infrared cameras, are very
expensive compared to common cameras.

Range Cameras

As the image obtained from camera has only two dimensions, to obtain a full
3D observation distance information is required (so called range imaging). This
may be achieved by combining information from two (stereo cameras) or more
cameras. However this technique is very computationally intensive as complex
correlation algorithms have to be implemented and it is hard to achieve acceptable
robustness. Another possibility is to combine camera and an additional range
sensor, such as laser range finder.

Recently, with advance of semiconductor technology time-of-flight (TOF) cam-
eras [158] have become available. Their principle is similar to that of laser range
finders but with the advantage that whole scene is captured at once. Those cam-
eras have illumination unit based on laser or LED array, that emits pulsed light
which is normally in infrared spectrum range to make the illumination unobtru-
sive. The light is reflected from objects and picked up by the camera to calculate
the distances to objects by measuring time-of-flight.

The advantage of TOF cameras are their compactness (as opposed to stereo
cameras) and they have no mechanical parts (in contrast to laser range finders).
Moreover, it is very easy to detect objects based on provided distance information.
Currently, these cameras are expensive and give rather noisy measurements. How-
ever, this is expected to improve in the future, so that many researchers agree that
time-of-flight cameras will become the dominant sensors in the field of robotics,
just as laser range finders are nowadays.

Sonars

Sonar (“SOund NAvigation and Ranging”) measures propagation time of ultra-
sound wave from sensor to some object or surface in the space, and back. A
sensor contains both ultrasound transmitter and receiver. Knowing the speed of
sound, the distance to an object can be computed.

It can be used both as onboard or distributed sensor. However, sonars are
rarely used as distributed sensors, but ultrasound based trackers are used instead

2.3. Sensing in Intelligent Spaces 11

(they use different arrangement of transmitter and receiver, as described later).
Sonars are cheap, relatively accurate and capable of detecting most materials
typically present in indoor spaces. Problems arise when specular, weak or mul-
tiple reflections occur. Also, sonars have bad angular resolution and short range
(usually 3 m) and limitations connected with low speed of sound. e.g. to mea-
sure a distance of 3 m, a time of 17.6 ms is required. Multiple circularly-placed
onboard sonars are usually mounted on the robot. With this arrangement a 2-D
distance-scan of the 360◦ space around the robot is obtained.

Laser range finders

Laser range finders (LRF; sometimes also called LIDAR – Laser Imaging De-
tection and Ranging) are devices that determine the distance to an object by
measuring time-of-flight of the reflected laser rays. LRF-s achieve significantly
finer angular resolution and shorter measurement time compared to sonars, but
have problem detecting opaque surfaces and mirrors. Most common types contain
mechanical system that rotates the sensor resulting with a 2-D distance cross-scan
of the space.

Due to their relatively low price, LRF-s are today frequently used as onboard
sensors in mobile robotics, especially for applications such as self-localization,
simultaneous localization and mapping (SLAM), and sometimes for detection
and tracking of humans in the vicinity of robots. Distributed LRF-s are seldom
found in literature, but Brščić [27] has found them useful in intelligent spaces
for human and robot tracking. Distributed LRF-s can also be used for mapping,
although onboard LRF-s are much better for this purpose.

Ultrasound and Indoor GPS

Ultrasound trackers work in different way than sonars. Namely, multiple trans-
mitters (or receivers) are mounted into space at known locations, while tracked
object wears a receiver (or transmitter). Some examples of tracking systems based
on ultrasound are Active Bat, Cricket [59] and the Zone Positioning System [114].
Apart from ultrasound, other signal types can be employed, such as radio waves
or light. These systems are sometimes called “indoor GPS” inspired by their
similarity to the GPS system. A typical example are the so-called “pseudolites”
[74], which use a signal similar to the GPS signal. In this way the same GPS
receiver can be used for both outside and inside localization.

The advantages of these systems are relatively high accuracy, especially for
systems based on electromagnetic waves, and low computational requirements for
sensor data processing. The drawbacks are rather high price (usually proportional
with accuracy), need for installation of multiple devices in the space and cum-
bersome calibration process. Furthermore, in human-tracking applications users
have to carry tags in order to be tracked which makes this method impractical.

12 Chapter 2. Mobile Robots in Intelligent Spaces

Radio-Frequency Identification (RFID) Systems

Recently, radio frequency identification (RFID) devices are being extensively used
for various identification purposes. Such identification is based on RFID tag
device applied to or incorporated into an object or person for the purpose of
identification and tracking using radio waves. RFID tags are very cheap and
small, so they are becoming increasingly prevalent in our everyday life [157], e.g.
for product tracking, transportation and logistics, human identification, but they
are also utilized for localization purposes [76].

It must be emphasized that RFID tags are actually not sensors, but more
like landmarks for RFID readers that achieve localization only within a certain
area, whereas accurate position cannot be determined. This is what makes RFID
tags inappropriate for applications such as mobile robot control. Nevertheless,
easy installation and small price makes them attractive, so that their increased
application combined with other tracking methods is expected in the future.

Encoders, Inertial Measurement Units

Wheel encoders and inertial measurement units, such as accelerometers and gyro-
scopes, are commonly used as auxiliary sensors in robot localization. The position
estimation based on these sensors is called dead reckoning [17]. Usually some kind
of integration of sensor data must be used to estimate position, or more precisely,
relative change of the position. Because of that dead reckoning suffers of error
accumulation over time, caused e.g. by measurement noise, wheel slippage, inac-
curate robot model etc. Therefore only a short-term estimation can be achieved
reliably, so that these sensors are appropriate for interpolation between measure-
ments from other, usually slower sensors. Of course, encoders and inertial sensors
can only be used in onboard option.

Microphone Arrays

Using microphone array a position of the sound source can be estimated by record-
ing the sound with spatially separated microphones. Most common methods are
based on measuring the phase shift between signals acquired by the microphones,
which in turn is mostly used for localization of a human speaker. Microphone
array can be mounted both distributed and onboard. Distributed microphone
array can also be used for localization of the robot or other sound sources.

The problem with sound-based localization is that it is not easy to determine
location when multiple sources of sound are present, and obtained location may
not be very accurate due to sound reflection, noise, or other disturbances. How-
ever, the advantages are low price and possibility to use microphones for voice
communication with the robot or the intelligent space.

2.3. Sensing in Intelligent Spaces 13

2.3.1 Mobile Robot Localization

The most appropriate sensors to be installed in the space and used for robot
tracking are cameras, resulting with so called global vision systems [129, 24].
With use of advanced image processing techniques robot pose can be determined
with much higher precision than by relying solely on robot’s onboard sensors.
As general visual-based pattern recognition suffers from weak robustness, usually
some kind of color-based markers placed on the robot body are utilized. Such an
algorithm that enables fast and precise localization of multiple mobile robots is
developed in this work and is described in details in Chapter 3.

Besides visual tracking, in our lab several other localization solutions have
been implemented. Regarding distributed sensors, a pose tracking algorithm has
been developed that ensures accurate mobile robot localization based on active
radiofrequency and ultrasound beacons and passive listeners (Cricket system), to
support pervasive indoor location determination [80]. Pose estimation is done
by Extended Kalman Filter with variable sampling time because of stochastic
nature of measurement arrival times. Experimental verification yielded poses
error approx. 1±2.5 cm and 1±2 ◦.

On the other side, self-localization and SLAM algorithms are needed when
certain areas are not covered by the distributed sensors. Here we take the clas-
sical approach to model-based localization, which consists of matching the local
representation of the environment built from sensor information with the global
model map. Our algorithm for robot pose tracking is based on the Unscented
Kalman Filter (UKF), which is computationally simple and provides low uncer-
tainty of the pose [64]. Since UKF cannot solve the problem of global localization
and the problem of kidnapped robots, a multicriteria localization algorithm based
on particle filter has also been developed. Furthermore, our SLAM solution is
based on a view-based representation of the environment and the current and key
past robot poses estimation by using the Extended Information Filter (EIF) [79].

If multiple sensors are utilized, there appears a problem of combining multiple
sensor measurements in order to obtain the best estimate. Onboard sensor fusion
is well covered in literature, but fusion of both onboard and distributed sensors is
yet an open area of research. An approach to this problem is given in [27], where
use of Covariance Intersection method is proposed and several fusion architectures
are introduced.

2.3.2 Human Tracking

To support humans in the space, the iSpace tracks humans. Various methods
exist for human tracking, and most are based on background subtraction [65].
Afterwards, features of a human such as the head, hands, feet, eyes, etc., can be
located. Using the images of several cameras, the 3D position of the human can
be obtained.

14 Chapter 2. Mobile Robots in Intelligent Spaces

In our lab a human tracking algorithm was implemented which is based on
background substraction, motion detection and region and shape tracking [109].
It is still under development as the problems with false detections caused by
shadows still exist.

Besides that, a general probabilistic algorithm for multiple moving objects
tracking using onboard laser range finder is developed [67], that can also be used
to specifically track humans in combination with other sensors.

Finally, we have been working on the auditory system for mobile robots, which
detects and tracks the sound source [100], but also can recognize who is speaking
and establish a dialog with him/her.

2.4 Mapping in Intelligent Spaces

A map of the environment is usually required for fast and safe navigation of a
mobile robot. In this way a map serves as an abstraction level between sensors
and motion planning modules. In intelligent spaces, distributed sensors enable
easy and continuous inclusion of new objects in the environment map, so the map
is always up-to-date. The space can then provide information which the robot can
lack because it is missing adequate sensors. This includes obstacles not visible to
robot, either because of occlusion or limited sensor range. Humans can also be
tracked by the space and included in the map.

However, using only distributed sensors for mapping may not be sufficient.
e.g. in case of global vision some objects may not be detected due to occlusion
or limited sensor range and complex image processing is required in order to
differentiate objects in the space from image background. Besides that, it is
hard to calibrate the distributed sensors completely accurately so some residual
error always exists and sensors usually have a systematic error in the distance
measurement which cannot be corrected by taking further measurements since
the measurements of static sensors are not informative (the background of the
sensor scan does not change no matter how many scans are taken and further
measurements give no additional information).

Nevertheless, intelligent spaces enable significant simplification of the mapping
process when both distributed and onboard sensors are used [27]. Robot onboard
sensors can provide information about distance to nearest obstacles which is re-
quired for map building, and is not easy to obtain by using distributed sensors
only. e.g. cameras installed into space and robots equipped with laser range sen-
sors is a very powerful combination that enables both, efficient robot localization
and mapping of the space. In this way robot onboard sensors bring benefits not
only to the robot, but also to the whole space. Robot itself becomes a mobile
sensor of the intelligent space and informations of both distributed and onboard
sensors can be combined together.

Currently in our lab a complete solution for exploration and mapping of un-

2.5. Motion Planning in Intelligent Spaces 15

known arbitrary polygonal environments is developed, which assumes an onboard
range sensor of finite angular resolution and thus provides sampled version of the
visibility polygon instead of imposing further restrictions on the environment [4].

2.5 Motion Planning in Intelligent Spaces

The tasks of a mobile robot motion planning system are finding the path and
guiding the robot to the goal position given by the user or by superimposed task
planning and scheduling controller. The majority of existing planning algorithms
produce a graph of possible paths to the goal and then a global path is found by
a graph search algorithm. The path produced by such an algorithm is a straight
line path with sharp turns which cannot be used directly due to robot’s kinematic
and dynamic constraints. Therefore a local planner is used that locally modifies
the planned path at the same time ensuring obstacle avoidance by incorporating
reactive behavior using some kind of sensor feedback. Such solution is also de-
veloped in our lab, where D* algorithm is used for path planning and dynamic
window algorithm is used as local planner [132].

Due to use of local short-term planning, this approach cannot ensure long-term
prediction of robot movement which may be too restrictive in some applications
(e.g. coordinated multi-robot planning). However, in intelligent spaces a more
deterministic behavior can be achieved, which is the goal of the motion-planning
algorithm developed in this thesis.

2.6 High-level Applications

The ultimate goal of the intelligent space project is to accomplish an environment
that comprehends human intentions and satisfies them. Such a system is hard
to achieve, since a huge number of functions would need to be prepared, and
human-like intelligence is required. Even though such a complete system cannot
be achieved immediately, it is believed that a useful system can be achieved with
current technology by proper system integration [56]. In this way, the intelligent
spaces are expected to spread from laboratories, where they currently reside, to
our homes and offices.

Some of the so far developed higher level applications in intelligent spaces
include map building by looking at people [6], which uses the fact that mobile
robots can navigate robustly without a precise geometrical model if some other
way of localization is given and a topological map is supplied. This topological
map can be build simply by looking at the movements of people in the room.

Next example is compressed human motion video and identification, where
the intelligent space recognizes what a human is doing and separates the real
video data into index images and actions with a time stamp. In this way a

16 Chapter 2. Mobile Robots in Intelligent Spaces

compressed human motion is obtained. Moreover, a human recognition function
can be achieved by using visual information.

Another examples are mobile robot control for following a human [65] and
internal state inference by motion tracking, where the space can detect if the
human is e.g. confused with user interface by analyzing movements of her hands
and head.

Although intelligent spaces are primarily oriented toward human servicing,
it must be emphasized that not only human can be a client of the intelligent
space—robot can be a client, too. In this way the space can be configured to
provide services solely to robots. This concept is useful in applications such as
delivery in factories or entertainment platforms such as robot soccer.

Chapter 3

Robot Localization Using Global

Vision

This chapter presents a new global vision system for tracking of multiple mobile
robots. To the best knowledge of the authors it outperforms all existing global vi-
sion systems with respect to measurement precision and accuracy, high speed and
real time operation and reliable tracking of large (theoretically unlimited) number
of robots under light intensity changes. The originality of the proposed system lies
mainly in specially designed robot marks and robots’ poses measuring directly in
Bayer format image delivered by the camera. These two measures enable robust
pose estimation of the robots with subpixel precision, while the significant simpli-
fication of the image processing algorithms ensures tracking of many robots with
very high framerate. With algorithms running on a 3 GHz Athlon 64 processor
65 robots can be tracked at 80 fps. Moreover, in order to perform a thorough
analysis of the system performances related to defined requirements, we propose
a new experimental procedure that can serve as a benchmark for evaluation of
other systems for the same purpose.

This chapter has been previously published as: M. Brezak, I. Petrović and
E. Ivanjko. Robust and accurate global vision system for real time tracking of
multiple mobile robots. Robotics and Autonomous Systems, 56:213–230, 2008 [24].
The early versions of the work have appeared as [20, 84, 26], while the extended
abstract is published in [21]. The application of the algorithm for mobile robot
odometry calibration is described in [63].

3.1 Introduction

A problem of mobile robot navigation is commonly solved using autonomous
concept where all necessary sensors and computers are on-board. However, when
multiple mobile robots navigate within the same structured space (e.g. a flat,

17

18 Chapter 3. Robot Localization Using Global Vision

warehouse, airport, supermarket, etc.) it may be reasonable to install sensors
and computers in the space instead. In this way the system price can be signifi-
cantly reduced, because robots are enabled to contain only cheap sensors for basic
collision avoidance (e.g. bumpers and sonars), and also the system performances
can be increased. The most appropriate sensors to be installed in a space and
used for navigation of multiple mobile robots in it are cameras. Such systems are
known as global vision systems.

The main task of a global vision system is first to detect robots in the image,
and then to track their poses in the image. In order to be applicable such a
system has to meet the following requirements:

(i) it must ensure high tracking accuracy and precision;

(ii) it must operate with high framerate in order to enable real time tracking
of fast-moving robots, so computational complexity of the image processing
algorithms must be as low as possible;

(iii) it must have ability to track large number of robots using images from one
or more cameras, and finally

(iv) it must be highly robust to light intensity changes.

Therefore, one must carefully design the vision system and address a number
of problems, concerning both physical system design, such as camera and hard-
ware elements selection, artificial landmarks design etc., and software design, such
as which visual cues to use for robot detection and tracking, which image process-
ing algorithms to employ, etc. There are a number of existing approaches tackling
those problems. For example, a global vision system with active cameras is used
in [148] and with omnidirectional cameras in [108]. These two approaches are not
suited for practical use due to high computational complexity and low tracking
accuracy. Other attempts are based on fixed cameras and they have been mainly
concerned with global vision intended for robot soccer. For example, in [85] an
example of global vision system designed for soccer robots is described, but with
limitation to small number of robots that algorithm can track, and with consider-
able computational complexity since the algorithm always makes global search of
the image. In [139] local image search is used, but robot pose measuring is based
only on color marks which cannot guarantee high measuring accuracy without
using expensive cameras that do not require color interpolation. None of men-
tioned works specifically addresses the problems of precision and accuracy. In [31]
a system is presented that can accurately track a broad class of robot patterns,
but it still relies on color information only so that there remain possibilities for
further improvements. Some more recent papers are especially concerned with
problems of camera distortion and non-uniform illumination, for example [86],
[45] and [54]. However, the assumptions that are made in these works make them
applicable only in robot soccer applications.

3.2. Physical System Design 19

Tracking of
robots

Decision
making

Robot control

Other
data

Global
vision
system

Figure 3.1. System overview scheme

In this work a new global vision system that fulfills all of the above enlisted
requirements is proposed. To the best knowledge of the authors the proposed
system outperforms all existing global vision systems with respect to at least
first three out of four enlisted requirements. The originality of the proposed
system lies mainly in specially designed robot marks and robots’ poses measuring
directly in Bayer format image. These two measures enable robust pose estimation
of the robots with subpixel precision and significant simplification of the image
processing algorithms ensuring many robots tracking with very high framerate.
Moreover, in order to perform a thorough analysis of the system performances
related to defined requirements, a new experimental procedure that can serve as
a benchmark for evaluation of other systems of the same purpose is proposed.

3.2 Physical System Design

The system consists of multiple mobile robots moving in the area supervised by
one or multiple distributed cameras fixed above the robots, which track robots’
poses, and one or multiple distributed computers connected via a high speed
communication bus, which execute image processing algorithms as well as decision
making and robot control algorithms (Figure 3.1). Behavior of the whole system is
highly dependent on the performances of the subsystem for robots’ poses tracking,
which are determined not only by the vision algorithm performances but also by
the characteristics of used cameras and marks placed on the robots for their
detection and tracking. While vision algorithm is described in the next section,
camera selection and calibration as well as robot marks selection are described
hereafter.

20 Chapter 3. Robot Localization Using Global Vision

G R

B

G

G

G

G

G G G

G G

G G G

B B

R

R R

B B B

R R

Figure 3.2. Bayer color filter array

3.2.1 Camera Selection and Calibration

Considering requirements imposed on the vision system, particularly requirement
for high framerate, cameras with Bayer color filter arrays (Figure 3.2) [12] are se-
lected. These cameras can deliver color image in standard VGA image resolution
(640×480 pixels) with high framerate (80 fps) via standard IEEE 1394a bus and
have acceptable price. Today are already available cameras that offer even higher
framerates via IEEE 1394b or gigabit ethernet interfaces. Intelligent cameras
would also be of great benefit since robot poses could be computed directly in
the camera and therefore the transfer of the image to the host computer would
become unnecessary reducing the need for high speed communication bus. Al-
though high prices of intelligent cameras currently limits their application, in
the future these cameras could become the prime choice for described system
implementation.

To capture the entire region of interest with as few cameras as possible wide
angle lens are commonly used, but at the cost of severe image distortions such
as radial and tangential distortion. It is very important to correct those distor-
tion effects in order to reach good measurement accuracy. In order to correct
distortion effects, camera calibration procedure has to be performed for extract-
ing distortion parameters. Many calibration techniques have been suggested, e.g.
[19], [146], [159]. Currently Camera Calibration Toolbox for Matlab [19] is used
for determining both intrinsic and extrinsic parameters of the camera using cal-
ibration grid. As the camera is fixed, calibration has to be done only once, and
then calibration parameters are stored and further used. In the future, possibil-
ities of calibration procedure automation will also be considered, so that system
setup would be further simplified.

3.2.2 Design of Robot Marks

The main tasks of a vision algorithm are reliable detection of the robots in the
image and measuring their poses. This means that vision system has to be ca-

3.2. Physical System Design 21

pable of distinguishing image elements that represent robots from elements that
represent other objects or background. Here different approaches can be applied,
but the most commonly used one is the background subtraction [147]. It per-
forms subtraction of acquired image and previously stored background image to
differentiate background pixels, which should be ignored, from foreground pixels,
which should be processed for identification or tracking. Although this method
can be very flexible since it can detect not only robots, but also humans or other
moving objects, it suffers from several drawbacks such as if a background ob-
ject moves, it can be recognized as a foreground object or if a foreground object
has the similar color as a background one, it is very difficult to detect it. Other
segmentation methods, like gray scale or color based thresholding methods, edge-
based methods, or region-based methods could also be employed, but generally,
regardless of applied method it is very difficult to design an universal system that
can reliably detect any kind of robot no matter of its size, color or shape, as
it would require very complex algorithms and would result with poor tracking
accuracy.

To overcome the problem of detection generality, customized patterns specifi-
cally designed for detection are used. Although this prevents such vision system
from being applied in every environment, in many situations this is not a major
limitation, and can save substantial amount of computation time and increase the
reliability and accuracy significantly. This customized pattern is implemented as
a robot mark placed on the top of the robot and tracked by the camera. The
robot mark is a critical component of the whole system, because it directly im-
pacts the system reliability and precision. Although both tasks, robot detection
and robot pose measuring, can be implemented using single robot mark, in order
to reach maximum detection reliability and maximum measuring precision and
accuracy a combination of two robot marks is used: one for robot detection and
one for robot pose measuring.

Robot Detection Mark

Design of the detection mark can employ different kinds of visual cues, like tex-
ture, known geometry, color etc. It is common for most cues that they depend
on relatively large portions of the image at once or require extensive hypothesis-
driven detection. In case when distinct geometric patterns are used high spatial
resolution of the image and high computational power are required to detect ev-
ery possible object position and orientation. On the contrary, using color as a cue
offers several advantages such as robustness under rotation, scale and resolution
changes, and the main advantage is processing speed. Namely, decisions can be
initially made at pixel level, and then inductively at whole regions of similar color,
and in case of careful robot mark design and efficient color recognition algorithm,
high detection reliability can be obtained. This is the reason why color patches
for design of the robot detection mark are chosen.

22 Chapter 3. Robot Localization Using Global Vision

The first question that arises in detection mark design is whether or not robots
should have different marks in order to enable the vision system to differentiate
and uniquely identify each of them. In case of different marks it is possible
to assign different color or combination of colors to each particular robot, so
that robots can be uniquely distinguished from each other, but this approach
has multiple drawbacks. Firstly, limited number of robots can be tracked since
limited number of colors can be reliably distinguished, which is opposite to our
goal that unlimited number of robots has to be tracked. Secondly, the system
has to be calibrated for each color, and this would result with reduced robustness
to light intensity changes and would also require long setup time. Thus, it can
be more appropriate that all robots use equal color marks. Unfortunately, this
has the drawback that it is impossible to distinguish one robot from another
based solely on robot detection marks. To cope with this problem, identification
method which can identify robots independently of robot detection marks is used,
as discussed later in Section 3.3.3.

Other important questions concerning robot detection mark design are: (1)
how many color patches to use; (2) where to place them on the mark; (3) which
colors to select and (4) which color patch shape to choose. Of course there are
no general answers to these questions and they depend on many factors, such
as available robot mark area, camera spatial resolution (pixels per meter), robot
environment etc.

Generally, number of color patches is limited with available area on the robot
where the mark can be placed and size of a particular color patch must be suffi-
ciently large in order for vision system to be able to recognize its color reliably.
A higher number of color patches results with increased detection robustness be-
cause of lower probability that the selected combination of colors is accidentally
found in image background thus resulting with false robot detection. On the
other side, this also results with increased computation time required to detect
and track higher number of colors, and the final decision about the number of
color patches is application dependent.

Once the decision is made about the number and the size of color patches, it
is necessary to place them optimally on the robot detection mark, where criterion
can be maximization of detection reliability. In order to reach unambiguity of
robot mark detection, it is convenient to place a “key patch” [31] in the middle
of the color mark, and other color patches around it so that their distances to the
key patch are identical. In this way, the key patch is first located in the image and
after that other belonging color patches are located on a circle around the key
patch with radius equal to the given distance, where it is guaranteed that no color
patches of other robots can appear, but only patches that belong to the related
robot, which significantly simplifies the color mark detection process. Another
criterion is that color patches must be distributed so that the robot orientation
can be unambiguously determined once locations of all individual patches are
known.

3.2. Physical System Design 23

Figure 3.3. Possible designs of the robot detection mark

The patch colors can be selected in a manner that detection reliability is max-
imized, so that only saturated colors are used, and distance between particular
colors on the hue scale is maximized, or alternatively colors that are less likely to
appear in the image background can be used.

Concerning the shape of the color patch, in order to maximize color recognition
reliability, the square color patch shape which provides maximum space utilization
can be selected. Figure 3.3 shows some examples of possible detection mark
designs, where black color is used for the background and blue color for the key
patch. Of course many other designs are possible.

Robot Pose Measuring Mark

Once the problem of robot detection is solved, it is necessary to accurately and
precisely measure its position and orientation. Since the camera with Bayer color
filter array is used (Figure 3.2), only one color per pixel is transferred via bus to
the host computer so that the remaining color information not detected by that
pixel must be estimated in host computer using some kind of interpolation algo-
rithm [125], [77]. Even in case that camera delivers full color images, the color
interpolation is also performed, but it is hidden from the user and is implemented
internally in camera (unless an expensive 3-sensor camera is used). Because color
interpolation around the edges in the image can result with colors that do not ap-
pear in the real scene (zipper effect) [125], using color as visual cue for measuring
position and orientation of the robot would cause low measuring accuracy and
precision. Therefore, it would be of great benefit if a way of measuring directly in
original raw Bayer image acquired by the camera could be found, thus avoiding
measuring on estimated RGB image.

In order to solve the aforementioned problem, introduction of a new mark
dedicated only for robot pose measuring is proposed. In this design, robot pose
measuring mark is a white square surrounded by black edge, so there exists clear,
maximum contrast and length black-white edge (Figure 3.4). The key point here
is that if using black-white edge for robot pose measuring, color information is
not important and measuring can be performed directly in Bayer image without
need for any color interpolation, which results in significantly improved precision
and accuracy over existing systems.

It is desirable that the robot pose measuring mark is as large as possible, so

24 Chapter 3. Robot Localization Using Global Vision

that maximum possible edge length is used for pose measurement. The size of
the robot detection mark is less critical, since it is not used for measurement.
Therefore, it is proposed that the robot pose measuring mark covers the whole
available area on the robot and that the detection mark is placed on it, but in such
a way that it doesn’t cover edges of the robot pose measuring mark. The final
recommended design of the robot mark, which consists of both robot detection
and robot pose measuring marks, is shown in Figure 3.4.

Measuring
mark

Detection
mark

Figure 3.4. Proposed robot mark consisting of robot detection and pose measuring
marks

3.3 Vision Algorithm

The task of the vision algorithm is detection and pose tracking of multiple mobile
robots based on the analysis of the robot marks that appear in the image ac-
quired by the camera. The vision algorithm consists of three main stages: robot
detection, robot pose measuring and robot identification (Figure 3.5), which are
described in detail bellow.

Robot detection

Robot pose measuring
procedure

Image

Robot positions and
orientations

Robot identification

Figure 3.5. Block diagram of the vision algorithm

3.3. Vision Algorithm 25

3.3.1 Robot Detection

Robot detection is process of determining initial pose of the robot by means of
locating its detection mark in the image. The flowchart of the robot detection
algorithm is shown in Figure 3.6. As can be seen, the input to the robot detection
algorithm is raw Bayer image from the camera, and output is approximate robot
pose obtained using determined pose of color patches on the robot detection mark.
Robot detection algorithm consists of two main stages: color classification and
extraction of color patches.

Color Classification

As the color patches are used for robot detection, it is necessary to scan the
image and classify pixels according to a color classification function. If the robot
pose in previous frame is known it is enough to perform local image scan around
expected robot pose (left branch of the flowchart in the Figure 3.6), with benefit
of significant computation time reduction. But, in order to detect new robots
entering the supervised area or to detect again temporarily occluded robots it
is necessary to perform global scan of the image (right branch of the flowchart
in Figure 3.6). Therefore, both local and global search are implemented and
combined in such a way that ensures reliable vision system operation.

Local search procedure starts with prediction of the robot pose taking into
consideration robot model and robot pose and velocity measured in previous
sampling instant. Because of high measurement precision and accuracy (which
are experimentally verified later in this chapter), and high framerate, the special
filtering schemes such as Kalman filtering are not necessary, and only simple
prediction based on kinematic model of the unicycle robot is used:

x(k + 1) = x(k) + v(k)T cos(θ(k) + ω(k)T),
y(k + 1) = y(k) + v(k)T sin(θ(k) + ω(k)T),
θ(k + 1) = θ(k) + ω(k)T,

(3.1)

where x, y, and θ are coordinates of measured robot position and orientation
relative to some global coordinate system, v and ω are linear and angular robot
velocities, respectively and T is the sampling time. Linear velocity of the robot
is estimated with the following equations:

v(k) = sgn(~o · ~d)

∣

∣

∣

~d
∣

∣

∣

T
,

~o = [cos(θ(k)), sin(θ(k))]T ,
~d = [x(k) − x(k − 1), y(k) − y(k − 1)]T ,

(3.2)

where ~o is robot orientation vector and ~d is robot motion vector. Angular
velocity estimate is given by:

26 Chapter 3. Robot Localization Using Global Vision

Bayer image from
camera

Predict robot pose
and compute search

spiral

Load next pixel on the
spiral

All pixels on the
spiral checked?

Load next pixel

All pixels
Checked?

(1) Bayer to RGB interpolation; RGB to HSV
conversion

(2) Pixel matches
the key color class?

(3) Extract contour, find area,
circumference and rectangularity

(4) Area,
circumference and rectangularity inside

tolerances?

New robot found –
store its approximate

pose

Robot found – store its
approximate pose

Approximate robot
pose in image
coordinates

Approximate poses of
the robots (if any found) in

image coordinates

No No

Yes Yes

NoNo

No No

Yes Yes

Robot not found

Yes Yes

C
ol

or
 c

la
ss

ifi
ca

tio
n

E
xt

ra
ct

io
n

of
 c

ol
or

 p
at

ch
es

Local
search

Global
search

Figure 3.6. Flowchart of the robot detection stage

ω(k) =































∆θ

T
, |∆θ| <

2vmaxT

L
∆θ − 2π

T
, ∆θ >

2vmaxT

L
∆θ + 2π

T
, ∆θ <

−2vmaxT

L

, (3.3)

3.3. Vision Algorithm 27

Predicted
robot position

Figure 3.7. Spiral search of the region of interest in local search

where ∆θ = θ(k) − θ(k − 1), vmax is maximum robot velocity and L is the
distance between robot wheels. The predicted robot pose obtained by (3.1) is
taken as the center of the rectangular region of interest that is searched in order to
detect the robot. The size of the region of interest is chosen to grow proportionally
with the robot velocity. The next step is scanning of determined region of interest
in order to localize the key color patch on the robot detection mark. To minimize
the probability that any other object of similar color, or any other robot is found
instead of robot that is being searched (this tracking failure would result with
swapping of robot identifications), the searching begins right from the middle of
the region of interest, i.e. from the predicted robot pose. Then the searching
is continued following the rectangular spiral toward the border of the region of
interest (Figure 3.7). Actually, regarding the dimensions of the color patch, not
every pixel must be checked. For example, if color patch has size of 9 pixels, as
was the case in the experiments, it is safe enough to have a scan interval of one
third of searched patch size in pixels, i.e. every third pixel is scanned. In this way,
a total number of checked pixels is reduced nine times. Using this approach in
combination with high vision system framerate, swappings of robot identifications
are almost completely avoided.

Global search procedure is much more computationally complex than local
search as explained afore. Therefore it must be performed only in situations
when previous pose of a robot in the space is not known. However, it is not
always possible to unambiguously detect such situations, e.g. vision system may
not be aware that a temporary occluded robot is visible again. Because of that a
more advanced approach is used, where global search is performed continuously
in every image frame. In order not to interrupt other algorithms and not to
increase system latency, it is conducted in computer idle time, after local search
and all other algorithms are executed, and commands are already sent to robots,
but before a new image is acquired. Of course, this approach requires that some
processor idle time is left available after all other algorithms are executed, but it
is not necessary to assure that this time is sufficient for complete global search
execution. Namely, if hardware is not capable to process entire image in remaining
processor idle time, the image is scanned only partially in single image frame, so

28 Chapter 3. Robot Localization Using Global Vision

that complete global search procedure is spanned over multiple frames. This
trade-off enables maintaining a high frame rate, while continuously executing
global search procedure. Of course, for computational efficiency reasons here also
every third pixel is scanned.

In order to enable color-based robot detection the color interpolation from
Bayer format to the RGB color space is computed for every pixel that is being
scanned, no matter global or local search is performed (block (1) in the Figure
3.6). Advanced interpolation methods have been developed [125] that can deal
with most common interpolation artifacts such as zipper effect, but they have
high computational complexity. Since color patches are used only for robot de-
tection and not for robot pose measuring, it is not necessary to apply an advanced
interpolation method. Therefore the bilinear interpolation algorithm is used that
has advantages of relatively low complexity and acceptable interpolation quality
for given application. However, it is well known that the RGB color space shows
too high scattering of all three color components when illumination changes so
that reliable color detection is very difficult, and that the HSV (hue-saturation-
value) color space shows high scattering of V component only, while H and S
components have relatively low scattering no matter of location in the image or
light intensity [51]. Therefore the HSV color system is far better choice for color
detection as it enables reliable color recognition based on H and S components.
However, many real-time color tracking systems use RGB color space due to com-
putationally expensive conversion from RGB to HSV space. In order to enable
the usage of the HSV color system, an efficient way of RGB to HSV conversion is
used. In computer vision applications lookup tables are used commonly as they
are the most efficient way to avoid complex calculations. The lookup table (LUT)
used for RGB to HSV conversion is of the following form:

(H,S, V) = LUT (R,G,B). (3.4)

This is a 3D lookup table whose size in computer memory for 8 bits per color
component is 3·23·8 = 48 MB. As this is not acceptable, the color resolution of
input components (R,G,B) is reduced to 6 bit per color component so that table
size is decreased to 3·23·6 = 768 kB which is acceptable for today’s computers.
In this way color conversion resolution is reduced, especially for colors with low
saturation and intensity values, but this is not an issue in our application because
acquired image contains high amount of noise anyway, and only a few colors have
to be recognized that are well separated on a hue scale and have high saturation
and intensity values. Note that the approach with the reduced lookup table also
allows conversion to any color space other than HSV, and in the same time, various
corrections to pixel values can be made if necessary, such as gamma correction
etc.

The final operation of the color classification stage is examination if the color
of a pixel matches any of defined color classes (color class is a subset of all pos-

3.3. Vision Algorithm 29

sible pixel color values) assigned to color patches (block (2) in the Figure 3.6).
The matching criterion is implemented as a thresholding operation, where each
color class is specified as a rectangular volume in the color space and is described
with set of six thresholds: low and high threshold are defined for each color space
dimension. Now the test is performed to check if pixel’s HSV components fall
between thresholds of a particular color class, where the thresholds are defined a
priori using a GUI tool that we have developed. A naive implementation of this
thresholding operation is rather inefficient because in the worst case it could re-
quire six comparisons per each color class, which can result with bad performance
especially on modern pipelined processors with speculative instruction execution.
Therefore a color classification algorithm is used that is capable of testing mem-
bership for all defined color classes at once with only two AND operations, as
described in [30]. Since the HSV color representation is used, this classification
method gave good classification results in the experiments with moderate light
intensity changes. In case that light intensity change would be so high that clas-
sification results would no longer be acceptable despite of using HSV, such as in
outdoor environments, it is possible to apply schemes that have been specially
developed to deal with this problem in real time, for example see [29], [143], [53].
Since lookup table for RGB to HSV color conversion is already used in previous
step, one may wonder why the color–color class mappings are not stored in this
lookup table and in this way color recognition additionally accelerated, as was
done for example in [11]. The reason is that this scheme would not allow to dy-
namically adjust thresholds of color classes because it would took too long time
to update 3D lookup table. Instead, in algorithm that is used it is only required
to update three arrays of 256 members to adjust thresholds, which enables real
time thresholds adjustment and consequently increases flexibility.

Extraction of Color Patches

If the color classification procedure identifies a pixel that meets the matching
criterion for color patch class, the procedure is executed that labels the whole
region of the given color class starting from that pixel. As the robot detection
mark is used with the key patch in its center, only color class of the key patch
is being searched initially. The common approach to region labelling problem,
in case starting pixel is known, is application of region growing methods. Under
the assumption that we are not interested in region interior properties, such as
number of holes in it, it is sufficient to extract only edge contour of the region.
Thus a contour following algorithm is used [141], which has the advantage of
low computational cost because not every pixel of the region is being checked,
but only pixels around the edge of the region, and pixels inside this contour are
assumed to belong to the region. The algorithm begins from some starting pixel
on the bottom edge of the region and its outputs are integer coordinates of edge
contour pixels. Effect of the algorithm on real robot image is illustrated in Figure

30 Chapter 3. Robot Localization Using Global Vision

Figure 3.8. An example of contour following on real robot image in Bayer format
(extracted contour pixels are labelled with blue color)

Start
points

Following
direction

Figure 3.9. Contour following procedure with different starting points

3.8.

Here a brief overview of the procedure for determining the starting pixel for
contour following is also given. Contour following algorithms locate this pixel
beginning from some pixel inside the region (in our case this is the pixel found by
the global or local search procedure), and scan the image in e.g. bottom direction.
The starting pixel is then the first pixel found, which has bottom neighbor that
does not belong to the region. However in this application this simple approach
does not suffice, since it does not ensure this pixel to be located on the edge of the
region, as it could also be on the edge of a hole contained inside the region (such
a hole may be result of the noise) as shown in Figure 3.9. This problem can be
solved by examining the contour following direction, which can be obtained using
the chain code representation [141] of the extracted contour. In case that the
found starting pixel is really on the region edge, the contour following algorithm
will run in counterclockwise direction starting from that pixel (see Figure 3.9).
But if starting pixel is on a hole edge, the following direction will be clockwise. In
that case the starting pixel searching procedure is continued by searching again in
bottom direction until new edge point is found that will result in correct following
direction.

3.3. Vision Algorithm 31

Finally, object recognition is done by computing area, circumference and rect-
angularity of the region surrounded by extracted contour (block (3) in the Figure
3.6) and their comparison with the expected values for given pose in the image
(these values vary along the image because of lens distortion). If these descriptors
are inside tolerances (block (4) in the Figure 3.6), there is a high probability that
the found region really represents the key color patch on the detection mark of
the robot. In case that apart from the key color patch additional color patches
are used, their locations have also to be determined. As they all have equal,
exactly defined distance to the key patch (see Figure 3.3), it is sufficient to search
along the circle centered in the key patch position, with radius equal to the given
distance. When a pixel is found that belongs to some of predefined color classes
of other color patches, the same contour following procedure is repeated as for
the key color patch. If all color patches are located successfully, robot detection
procedure is completed and robot pose is now approximately known. While the
existing color-based tracking algorithms usually finish at this point and use com-
puted robot pose as the exact one, e.g. [85], [31], [45], [104], here it is used only
as the input for the robot pose measuring procedure, which significantly increases
accuracy and precision of the robot pose estimation.

3.3.2 Robot Pose Measuring Procedure

The flowchart of the robot pose measuring procedure is given in Figure 3.10.
Measuring of robot position and orientation is based on subpixel detection of the
black-white edge of the robot pose measuring mark (Figure 3.4). Here advantage
can be taken that this edge can be detected directly in raw Bayer image because
theoretically gray tones should have equal values of all three color components of
RGB image so that raw Bayer image can locally be treated as a monochrome gray
scale image. However in praxis these three color components may differ slightly
depending on the illumination type and imaging sensor type (example can be seen
in Figure 3.11 (a) where a raw Bayer image of the robot mark is given). This
can be corrected by applying appropriate gains to red and blue color components
so that for gray tones these components are equal to the green component. This
correction is usually called white balance adjustment [3]. An example of white
balance corrected image is given in Figure 3.11 (b), and for illustration in Figure
3.11 (c) a RGB image interpolated from corrected Bayer image using bilinear
interpolation is given.

Robot pose measuring procedure starts similarly to the one used for extracting
the region of the color mark. Namely, the edge contour of the robot pose measur-
ing mark is extracted (block (2) in Figure 3.10) from the white balance corrected
source image in raw Bayer format (block (1) in Figure 3.10), using the known
approximate robot pose in image coordinates as a starting point. To save compu-
tational time, white balance correction is done only for pixels that are tested by
contour following algorithm. As a criterion for examining if a pixel belongs to the

32 Chapter 3. Robot Localization Using Global Vision

Approximate robot pose in
image coordinates

(2) Extract white patch border
contour, find area,
circumference and

rectangularity

(3) Area,
circumference and

rectangularity inside
tolerances?

(5) Square parameterization

(6) Edge detection in subpixel
precision using interpolated

green component

(7) Robot pose estimation

Robot pose in world
coordinates

(4) Threshold
adaptation

No

Yes

Raw Bayer image

(1) White balance correction

(8) Distortion correction

Figure 3.10. Flow chart of the robot pose measuring procedure

white region, a threshold is used. If the gray tone intensity of a pixel is greater
than the threshold value, the pixel is labelled as white. When the contour of
the white measuring mark region is extracted using some initial threshold value,
region area, circumference and rectangularity are computed. If these descriptors
are inside given tolerances (block (3) in Figure 3.10), we declare that the white
measuring mark is located. Since light intensity is not constant, but depends on
the location in the image, and can also be time variant, the failure can occur
in the contour edge localization. This implies that adaptive threshold should be
used in order to get system robust to light intensity variations. Threshold adap-
tation algorithm (block (4) in Figure 3.10) computes new threshold value using
previous threshold value, approximate robot pose in image coordinates which is
used as starting point for contour extraction, and white balance corrected raw
Bayer image. The threshold is adapted using the fact that the circumference and
area of extracted white mark region are proportional to the light intensity, so
that threshold is iteratively adjusted and the edge contour extraction process is
repeated with this adjusted threshold value until the area of white mark region

3.3. Vision Algorithm 33

(a) (b) (c)

Figure 3.11. Bayer image of a robot pose measuring robot mark: (a) raw image; (b)
white balance corrected image; (c) interpolated RGB image

gets as close to real as possible (real area is known because of known white mark
size and known location in the image). When the appropriate threshold value is
found, it is stored in virtual grid where each grid cell is assigned to respective
image fragment. This threshold value is then used until the illumination changes
again. In case that illumination variation is so high that even the threshold adap-
tation does not give acceptable results, camera gain or shutter can be adapted as
well.

Once the edge contour of the white mark is extracted, it is parameterized
with the best fit square (block (5) in Figure 3.10). Inputs to this block are co-
ordinates of white patch edge contour pixels and outputs are parameters of the
best fit square: coordinates of square center (i.e. intersection of diagonals), side
length, and rotation angle, which is defined as orientation of the bottom side of
square which can be in range (−45◦, 45◦]. Center of the square is computed as
an average value of x and y coordinates of all edge contour pixels, side length
is taken as known size of the white mark in pixels, and the only parameter that
left to be found is square orientation. It is found by an iterative method, where
the specified square is rotated, beginning from angle 0◦, in finer and finer angle
steps, until the mean square distance of contour points to the square sides is
minimized [26]. The rotation angle step is halved in each iteration, and the di-
rection of rotation is taken so that the distance criterion gets lower. This method
achieves square orientation resolution of less than 1◦ with only six iterations, and
computational cost is not high because the number of contour pixels that are
fitted with the square is small. Although the method can determine orientation
in range (−45◦, 45◦] only, the range can be extended to (−180◦, 180◦] based on
the previously detected color mark orientation. In this way, approximate location
of the white region edge is found with relatively low computational effort, what
is of great benefit for acceleration of later algorithm stages.

The contour following algorithm uses threshold criterion to find the contour
so that the determined edge position is not very precise and is sensitive to noise.

34 Chapter 3. Robot Localization Using Global Vision

(a) (b) (c)

Figure 3.12. Green component interpolation: (a) raw green pixels; (b) bilinear inter-
polation; (c) adaptive interpolation

To further improve measurement results, refinement of extracted white area edge
contour in subpixel precision is made. A problem that arises here, which is com-
mon for color cameras with wide-angle lens, is chromatic aberration. There are
two types of chromatic aberration: (i) longitudinal aberration, which is inabil-
ity of lens to focus different colors in the same focal plane, so that only one
color component is sharply focused, and (ii) transverse aberration, which refers
to sidewards displaced foci for different colors and results with displaced edges
of objects in different color planes. If imaged object is near the image border,
chromatic aberration can result with object edge displaced even for several pixels
in different color planes which would make measurement in subpixel precision
senseless. Since software compensation of this distortion would require too high
computation time, our solution for this problem is to use only one of the three
color components for measurement so that chromatic aberration is avoided. The
green component is chosen because in Bayer pattern there are twice as many
green pixels as red or blue ones (Figure 3.2), so that only 50 % of pixels have
to be interpolated. In order not to deteriorate measurement precision it is very
important to perform interpolation in an adaptive way so that edge structure is
preserved. Here the known approximate edge direction can be utilized for adapta-
tion, by interpolating missing values in the direction of the edge. In order not to
significantly increase computational complexity, only three cases are considered:
(i) if the edge is horizontal a missing green pixel is interpolated as mean value of
left and right neighbor pixels; (ii) if the edge is vertical it is interpolated as mean
value of upper and lower pixels; and (iii) if the edge is slopewise it is interpolated
as mean of four neighboring pixels. This is illustrated in Figure 3.12 with images
of nearly vertical black-white edge, where Figure 3.12 (a) shows raw green pixels
acquired by the camera, Figure 3.12 (b) the edge structure obtained with bilinear
interpolation (zipper effect is visible), and Fig 3.12 (c) the edge structure with
described adaptive interpolation.

The next step is edge detection of robot pose measuring mark in subpixel

3.3. Vision Algorithm 35

Figure 3.13. An image with gradient magnitudes of the edge of the robot pose mea-
suring mark

precision using interpolated green component (block (6) in Figure 3.10). Inputs
to this block are square parameters from the square parameterization procedure
(block (5) in Figure 3.10) and white balance corrected raw Bayer image (block
(1) in Figure 3.10). Outputs are coordinates of white patch edge contour pixels
refined in subpixel precision.

The main problem with subpixel edge detection methods is their high compu-
tational cost, because it is commonly required to compute gradient magnitude and
direction for each image pixel. This represents high computational burden, as it is
commonly conducted by applying a derivative filter in both horizontal and verti-
cal image direction, and then the gradient magnitude and direction are computed
in each pixel from horizontal and vertical gradient components. Fortunately, in
our case a great reduction of computational time can be obtained by utilizing the
fact that approximate edge positions and orientations are known from the square
parameterization procedure. This results with the following three benefits: (i)
it is not necessary to interpolate the green component, nor to compute gradient
magnitude and direction for each pixel, but only for pixels in neighborhood of
best fit square border, (ii) gradient directions do not need to be computed since
they are already accurately approximated by directions perpendicular to the sides
of the best fit square, and (iii) using the fact that gradient directions are known,
computing of gradient magnitudes is considerably simplified, since it is possible
to reduce complicated problem of edge detection in two-dimensional space to the
problem of detecting edges in one dimension only. Namely, it is sufficient to apply
the derivative filter in one direction only, i.e. in the previously computed gradi-
ent direction. To further reduce computational burden, gradient directions are
discretized, so that there are eight possible gradient directions allowed.

Thus, gradient magnitude is computed by applying the derivative filter in
horizontal, vertical or slopewise image direction, depending on gradient direction.
The example of gradient magnitude image of the edge of the robot pose measuring

36 Chapter 3. Robot Localization Using Global Vision

0 0.5 1 1.5 2 2.5 3

100

150

200

Pixels

G
ra

di
en

t m
ag

ni
tu

de

g
-1

g0

g1m

Figure 3.14. Example of computing the edge position in subpixel precision

mark obtained using this method is shown in Figure 3.13 (size of applied derivative
filter convolution mask was 4), where it can be seen that for each edge pixel, three
gradient magnitude values are computed. Local maximums of the gradient image
can be observed in the image as the most bright pixels in the middle of the
edge, and for each local maximum two neighbor gradient values are computed
so that subpixel edge position can be estimated. The subpixel edge position is
computed as follows: if the local maximum of gradient image is in pixel with
coordinates (x, y), g0 is gradient magnitude of that pixel, and g1 and g−1 are
gradient magnitudes of neighbor pixels in gradient direction, and in direction
opposite to the gradient direction, respectively, (see Figure 3.14) then the bias of
edge position m is computed using quadratic interpolation [43]:

m =
g−1 − g1

2 (g−1 − 2g0 + g1)
. (3.5)

The subpixel edge position is now estimated as:

xs = x + mdx

ys = y + mdy,
(3.6)

where (xs, ys) is subpixel edge position and (dx, dy) are projections of gradient
direction vector to x and y axes with possible values of {−1, 0, 1} depending on
edge direction.

Based on the subpixel coordinates of the white Bayer edge contour, robot pose
is estimated (block (7) in Figure 3.10) relative to the image coordinate frame.
First, edge points of each square side are approximated with lines using least
squares method, and then robot position is computed as centroid of quadrangle
formed by those four lines, and robot orientation angle is computed as average
value of all four line angles. Using this method, measurement precision is greatly
improved with only slightly increased total computational time.

In order to calculate robot pose in the world coordinate frame from its pose
in the image coordinate frame it is necessary to correct lens distortion (block
(8) in Figure 3.10). The correction could be applied directly to the image pix-

3.3. Vision Algorithm 37

els, or to the measured position and orientation of the robots. Approach that
works directly on the image data is not applicable in this case, because of its high
computational load and loss of precision. Thus the correction is performed on
measured coordinates using camera calibration parameters determined in setup
phase (see Subsection 3.2.1). Intrinsic parameters are used to obtain undistorted
robot pose relative to the image coordinate frame, and then these corrected co-
ordinates are converted to 2D world coordinate frame using extrinsic parameters
of the camera.

3.3.3 Robot Identification

Robot identification is a procedure of assigning unique identification number to
each individual robot localized in the image. As the equal marks for each robot
enable only localization of the robots, but not their identification, reliable robot
identification method is essential for practical use of the proposed vision algo-
rithm, otherwise the measured positions and orientations are useless for robot
navigation because we do not know which data belongs to which robot.

The simplest identification method is manual assignment of identification
numbers to individual robots in the image. Unfortunately, this method is suitable
only for small number of robots and can be used only in initialization phase, so
that application of one of two different methods is suggested. The first method
is based on special movement commands that are transmitted to robots and then
this movement is recognized by the software. For example in case of mobile robots
with differential drive that are capable of rotating in place, the first robot can be
commanded to rotate full circle, the second can rotate also full circle but in oppo-
site direction, the third robot rotates two circles and so on. The second method
is usage of controllable identification light (LED) mounted on top of the robot.
Then if necessary the software can turn on and detect this light in the image, and
distinguish the robot based on the color of light, number of light on-off sequences
or duration of the light. These procedures are used whenever robot identifications
are unknown, that is in initialization phase, in case when new robots enter the
field of view, when robots identification marks are temporary occluded and when
two or more robots swap identifications because of some unpredictable situations
like very fast collisions.

Another problem that arises here is how to detect tracking failure, i.e. false
robot identification (e.g. when swapping occur). One possible solution, which is
also able to correct this mistake in a few samples only, is described in [20]. The
approach is based on continuous online comparison of command velocities sent
to robots and measured robots velocities using residuals. If vi(k) and ωi(k) are
commanded linear and angular velocities and v̂i(k) and ω̂i(k) are measured linear
and angular velocities of the i-th robot at time sample k, residual Rvij for the
linear velocities is calculated as

38 Chapter 3. Robot Localization Using Global Vision

Figure 3.15. Robot soccer platform

Rvij(k) = e
−

T
Tf Rvij(k − 1) + (1 − e

−
T
Tf) |vi(k) − v̂j(k)| , (3.7)

and residual for angular velocities Rωij as

Rωij(k) = e
−

T
Tf Rωij(k − 1) + (1 − e

−
T
Tf) |ωi(k) − ω̂j(k)| , (3.8)

where Tf is the filter time constant. If there are no wrong identifications,
then all Rvij and Rωij with i = j are lower than some predefined thresholds.
However in case that commanded and measured velocities are not correlated, i.e.
identification failure has occurred, the process of reassignment of identification
numbers is started so that proposed criterion is minimized. This approach is
successfully used in this work.

The main drawback of described methods is that none can identify the robot
based on single image. This may be limitation for some time critical applications
because some initial time is required for identification. However for many appli-
cations it is acceptable, because this time is very short since high sampling rate
is used.

3.4 Experimental Results

The main goal of experiments was to verify whether the proposed vision system
meets the given requirements. Experiments were performed using robot soccer
platform (Figure 3.15) that is ideal for testing various mobile robot navigation
algorithms [78]. It consists of a team of five radio-controlled microrobots of size
7.5 cm cubed with differential drive and maximum velocity 4 m/s. The play-
ground is of size 2.2×1.8 m. Above the center of the playground, Basler a301fc

3.4. Experimental Results 39

x

y

Figure 3.16. Typical image acquired by the camera

Robot
detection

mark

Robot pose
measuring

mark

Figure 3.17. Robot marks used in experiments

IEEE-1394 Bayer digital color camera with resolution of 656×494 pixels and with
maximal framerate of 80 fps is mounted perpendicular to the playground. The
height of the camera to the playground is 2.40 m. A wide angle 6 mm lens is
used. For illustration, a typical image acquired by the camera is shown in Figure
3.16.

The robot mark shown in Figure 3.17 was used in experiments. The mark size
is 7.5×7.5 cm, giving the image size of the white area of the robot pose measuring
mark of about 16 × 16 pixels. As can be seen, robot detection mark consists of
only one color patch, which was sufficient for reliable robot detection, because
rules for robot soccer propose that blue or yellow color is reserved only for robot
identification and must not be used for any other purposes. The benefit is also
lower computational complexity of algorithms for robot detection. In order to
determine robot orientation unambiguously the color patch is not placed in the
middle of the white robot pose measuring mark, but shifted to the rear side of
the robot.

40 Chapter 3. Robot Localization Using Global Vision

In all experiments, an image coordinate frame (in pixels) that is used cor-
responds to the image borders as indicated in Figure 3.16, where x axis is in
range [0, 655] pixels, and y axis in range [0, 493] pixels. Global coordinate frame
(in meters) corresponds to playground borders, as indicated in Figure 3.18 (b),
where x axis is in range [0, 2.2] m, and y axis in range [0, 1.8] m.

A number of experiments were performed and below obtained results and their
analysis is presented. First, results of the experiments related to the precision and
accuracy of measured robot position and orientation in real world conditions are
described and analyzed. Then analysis of the vision system performances related
to other requirements stated in the introductory section is conducted.

3.4.1 Analysis of Vision System Precision and Accuracy

The analysis of precision and accuracy was performed using method described in
[144], where it was used to evaluate subpixel line and edge detection precision and
accuracy. Results of three experiments are presented illustrating high precision
and accuracy of both robot position and orientation measurements.

In the first experiment, the linear positioning device Linear Technology, PE1.4,
LM 6.2 (Figure 3.18 (a)) with robot mark on it were placed on playground (Figure
3.18 (b)). The precision of linear positioning device is 10 µm so that robot
mark can be shifted in one direction with resolution of 10 µm. The robot mark
was placed near the image border, so that influence of chromatic aberration was
notable and comparison of various algorithms with respect to this effect could be
performed. Using the linear positioning device, the robot mark was accurately
shifted in y direction of global coordinate frame in increments of 100 µm. A
total number of 100 increments were made so that total shift of the robot mark
was 1 cm. In each position 20 images were taken, and for each of those images
y coordinate of robot pose was calculated using proposed algorithm. Then the
standard deviation and mean of those 20 obtained y position coordinates were
calculated for each position. Figure 3.19 (a) shows obtained mean of measured
y coordinates as a function of robot mark shift and Figure 3.19 (b) precision
of the position measurement, i.e. its standard deviation. Each single value in
those figures is calculated from 20 obtained y coordinates in each position. It
can be seen that the standard deviation is almost everywhere less than 0.01 pixel
(0.040 mm) and the average standard deviation is 0.007 pixel (0.027 mm).

To determine absolute position accuracy camera would have to be calibrated
and results would be highly impaired by the quality of the calibration. To avoid
this dependency in the experiment it was assumed that the linear shift of the
object in the real world corresponds to the linear shift in the image which is true
for small shifts. Therefore a straight line can be fitted through measured positions
by means of least squares method. The equation of the line obtained from the
experiment shown in Figure 3.19 (a) is y = 0.2484x + 84.6973, where y is in pixels
and x in millimeters. Thus, 1 mm in the real world corresponds to 0.2484 pixels

3.4. Experimental Results 41

(a)

x

y

Linear
positioning

device

Camera

Robot
mark

Playground

(b)

Figure 3.18. (a) Linear positioning device; (b) Sketch of the experimental setup

for this part of the image, i.e. one pixel corresponds to the length of 4.0258 mm.
Using this equation, the absolute position error of the line is calculated as the
difference of the measured position mean and obtained regression line. The results
are shown in Figure 3.20. As can be seen, the absolute error shows a systematic
sinusoidal component, which may be caused by the mapping of the scene intensity
to the pixel values in the image, but it is always less than 0.002 pixels (0.008 mm).
Of course, the absolute accuracy (but not the precision) will vary in different
parts of the image, and in general can be worse than obtained in the experiment,
because it depends not only on vision algorithm, but also on many other factors,
such as quality of lens, quality of calibration, etc. However for many applications
precision is more important than absolute accuracy, because it enables precise
detection of robot relative movement and thus directly impacts the quality of

42 Chapter 3. Robot Localization Using Global Vision

robot control and motion.

0 2 4 6 8 10
84.5

85

85.5

86

86.5

87

87.5

shift [mm]

P
os

iti
on

 [
pi

xe
l]

(a)

0 2 4 6 8 10
4

5

6

7

8

9

10

11
x 10

-3

shift [mm]

S
ta

nd
ar

d
de

vi
at

io
n

[p
ix

el
]

(b)

Figure 3.19. Mean (a) and standard deviation (b) of the measured robot position y
coordinate as functions of the robot shift

The next series of experiments were conducted in order to compare the pro-
posed method with other similar methods. As the first method for comparison
(method M1), the standard color based method is used (e.g. see [31]), which does
not utilize any kind of subpixel edge detection algorithms and is commonly applied
for robot pose tracking in robot soccer application. The second method (method
M2) measures the black-white edge position directly in Bayer image with pixel
precision. This method is based on square parametrization method described
in Section 3.3.2, and it was our first attempt to enhance existing methods [26].
The third and the forth methods (methods M3 and M4) measures black-white

3.4. Experimental Results 43

0 2 4 6 8 10
-0.02

-0.01

0

0.01

0.02

shift [mm]

A
bs

ol
ut

e
er

ro
r

[p
ix

el
]

Figure 3.20. Absolute error of the robot position y coordinate

edge position in subpixel precision, but they differ in the fact that method M3
estimates edge position directly in Bayer image and is thus sensitive to chro-
matic aberration, and M4 is the proposed method that uses interpolated green
component for edge detection. The comparison results are shown in Table 3.1.
Measurements for all four compared methods were performed simultaneously, so
that they operated in the same conditions. The table shows average standard
deviations (σy) and average values of absolute error (ey) in y coordinate of the
position for all four methods as well as their decreases with respect to the method
M1 (σ

(M1)
y /σ

(Mi)
y , e

(M1)
y /e

(Mi)
y , i = 2, 3, 4).

As can be seen from the table, improvements of both position precision and
accuracy are noticeable even with method M2 (precision 2.6 times, accuracy 1.3
times), which are achieved by measuring directly in Bayer image although with
pixel precision only. But, methods that deal with subpixel precision enhance the
precision more than an order of magnitude (method M3 13.2 times and method
M4 11.6 times). The slightly worse precision obtained by method M4 is most
likely caused by green color interpolation. Methods M3 and M4 outperform the
other two also in accuracy but method M3 not so significantly (improvement: 2.7
times wrt M1 and about 2 times wrt M2) as method M4 (improvement: 25.6
times wrt M1, about 20 times wrt M2 and 9.5 times wrt M3). So big difference
in accuracy of methods M3 and M4 is most likely due to chromatic aberration
effect, which is present in M3 and avoided in M4 by green color interpolation.

The precision and accuracy of measured orientation angle is evaluated in sim-
ilar manner as for the position. The angle is measured while the robot mark is
rotated in increments of 0.29◦, which was achieved using described linear posi-
tioning device and a lever for converting linear shifts to rotation increments. In
order to enable color based angle measurement, which was needed for methods
comparison, apart from yellow color patch another color patch of smaller size was

44 Chapter 3. Robot Localization Using Global Vision

Table 3.1. Comparison of position precision and accuracy for different methods

Method σy [pix/mm] σ
(M1)
y /σ

(Mi)
y ey [pix/mm] e

(M1)
y /e

(Mi)
y

M1: Color tracking 0.0776/0.3124 1 0.2050/0.8253 1
M2: Bayer pixel 0.0297/0.1196 2.6 0.1535/0.6180 1.3
M3: Bayer subpixel 0.0059/0.0238 13.2 0.0746/0.3003 2.7
M4: Green comp. subp. 0.0067/0.0270 11.6 0.0080/0.0322 25.6

added next to it. For each angle increment 20 images were taken, and standard
deviation and mean of 20 measured angle values were determined. Figure 3.21
(a) shows the mean of measured angle as a function of the robot mark rotation
angle. The precision of the angle, i.e. its standard deviation is displayed in Figure
3.21 (b) wherefrom it can be seen that the standard deviation is everywhere less
than 0.12◦, and average standard deviation is 0.0797◦.

To determine angle accuracy a straight line is fitted through the measured
angles. The equation of the line obtained from the experiment shown in Figure
3.21 (a) is -1.0001x+179.4794. Then, the absolute angle error is estimated as
the difference of the measured angle mean and the regression line. The results
are shown in Figure 3.22. As can be seen, the absolute angle error is almost
everywhere less than 0.2◦.

Comparison of angle precision and accuracy between different methods is made
in similar manner as for position measurement and the results are shown in Table
3.2. As can be seen from the table, the similar observations can be made as for
position measurement although the enhancements are slightly lower. Obviously,
methods M3 and M4 give far better results than the other two methods, and
the method M4 is better than M3, particularly in the accuracy enhancement.
Therefore, the usage of method M4 is proposed.

Table 3.2. Comparison of angle precision and accuracy for different methods

Method σθ[
◦] σ

(M1)
θ /σ

(Mi)
θ eθ[

◦] e
(M1)
θ /e

(Mi)
θ

M1: Color tracking 0.6444 1 0.9762 1
M2: Bayer pixel 0.3036 2.1 0.7049 1.4
M3: Bayer subpixel 0.0911 7.1 0.3714 2.6
M4: Green comp. subpixel 0.0797 8.1 0.0831 11.8

Although it is not possible to directly compare the obtained results with results
of others because of different camera types, different shapes and sizes of robot
marks etc., here a comparison with results presented in referential paper [31] is
given, where a very comprehensive analysis of the performance of the color based
method is done. Only precision results could be compared, as results for accuracy
are not presented there. Standard deviations reported there (σy = 0.3432 mm
and σθ = 0.4011◦) are comparable with those obtained with method M1, which is

3.4. Experimental Results 45

0 1 2 3 4 5 6
172

174

176

178

180

Robot mark rotation [°]

A
ng

le
 [

°]

(a)

0 1 2 3 4 5 6
0.04

0.06

0.08

0.1

0.12

Robot mark rotation [°]

S
ta

nd
ar

d
de

vi
at

io
n

[°]

(b)

Figure 3.21. Measured angle mean (a) and standard deviation (b) as functions of the
robot mark rotation

our implementation of the color based method. Therefore, the proposed method
M4 significantly outperforms the method from [31] with about 13 times smaller
position standard deviation and about 5 times smaller angle standard deviation.

To investigate performance of the algorithm when robot is moving, a number
of experiments were performed with different velocities ranging from 0.1 m/s
to 1 m/s. It was observed that standard deviation of the measured velocity is
always less than 2 % of actual robot velocity, which is rather small. For the sake
of illustration, the result of an experiment is shown in Figure 3.23, where the
robot was moving in horizontal direction from the left to the right border of the
image with velocity of about 1 m/s with noncalibrated camera. The velocity of
the robot is computed by dividing the distance between the current measured

46 Chapter 3. Robot Localization Using Global Vision

0 1 2 3 4 5 6
-0.2

-0.1

0

0.1

0.2

0.3

Robot mark rotation [°]

A
bs

ol
ut

e
er

ro
r

[°]

Figure 3.22. Absolute error of the measured angle

robot position and measured position in the previous sampling instant with the
sampling time T = 0.0125 s, without any filtering. As can be seen, measured
velocity is lower near the image borders than in the image center, and the main
reason is lens distortion. Standard deviation of the velocity computed from 20
images taken near the image center is 0.01325 m/s, i.e. 1.3 % of the actual robot
velocity. The variations of the measured velocity are mainly consequence of the
image blurring caused by robot motion, lens distortion, and also fluctuations of
actual robot velocity during motion.

0 20 40 60 80 100 120
0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

n [samples]

V
el

oc
ity

 [m
/s

]

Figure 3.23. Measured robot velocity

3.4. Experimental Results 47

3.4.2 Analysis of Robustness to Light Intensity Changes

There are two algorithm stages that are particularly sensitive to light intensity
changes: thresholding of HSV image to detect color marks and thresholding of
gray intensity image to detect white measuring marks. Regarding the first thresh-
olding stage, using of HSV color system by itself guarantees some degree of ro-
bustness to light intensity changes, and by the second thresholding stage robust-
ness of white measuring mark detection is achieved using algorithm for threshold
adaptation described in 3.3.2.

To test robustness of the system to light intensity changes in praxis, exper-
iments with three different light sources were conducted: daylight, fluorescent
lamps with daylight spectrum and fluorescent lamps with yellow spectrum. In
the first experiment only daylight was used with measured illuminance ranging
from approximately 150 to 500 lux. Under such light conditions HSV thresholds
had been initially adjusted and were no more changed through later experiments.
The algorithm was started and thresholds for white measuring mark detection
were automatically adapted. The image obtained with adapted thresholds is
shown in Figure 3.24 (a), where brighter areas correspond to image segments
with higher thresholds. One can note that light distribution is not uniform and
the brightest part is at the left image border. The system was not losing robots
in any part of the image despite this nonuniform light distribution.

In the second experiment only fluorescent lamps with spectrum close to day-
light were used as light source where the illuminance had its maximum value
near the center of the image (140 lux), and the minimum illuminance was near
the image border (100 lux). The system adapted successfully to light change and
tracking of the robots was reliable in all parts of the image without change of any
settings. The obtained distribution of white measuring mark detection threshold
is shown in Figure 3.24 (b).

Above described two experiments verify tracking robustness to the wide range
of illuminance change, i.e. from 100 to 500 lux. In cases when illuminance was
outside of this range too low pixel intensity values or saturation occurred. If
wider range of illuminance changes is necessary the camera parameters should
be adapted (e.g. gain or shutter) according to illuminance change, and possibly a
camera with higher dynamic range should be used. The adaptation of the camera
parameters can be done by hardware (usually in the camera) or by software. In
this case hardware adaptation is more convenient, because it does not require
additional processing time. As the camera used in the experiments does not
posses automatic gain feature, and software adaptation would consume too much
processing time, camera parameters adaptation is not used so far.

The third experiment was performed with the fluorescent lamps with yellow
light in order to test robustness to the light spectrum change. The spectrum
change caused the change of the key patch hue component value from 140 to about
125, resulting occasionally with non detected robots in some parts of the image.

48 Chapter 3. Robot Localization Using Global Vision

Therefore, the vision system is robust to light intensity changes but problems with
robustness may arise in cases when the light spectrum changes (e.g. in outdoor
environments). This problem is not addressed in this work but it was addressed
by a number of researchers, e.g. possible solutions can be found in [29] or [143].

(a)

(b)

Figure 3.24. (a) Thresholds obtained using daylight; (b) Thresholds obtained using
fluorescent lamp with daylight spectrum

3.4.3 Ability to Track Large Number of Robots

As stated in previous sections, the ability to track large (theoretically unlimited)
number of robots is guaranteed by using equal robot marks for all robots while
the only limitations are available computational power and sizes of the space and
the robots. However, there remains potential problem of identification swapping.
Therefore in the focus of the experiments was to find out how often identification
swapping occurs and if algorithm is capable to recover from such situations. The
experiment was performed through many robot soccer games, where 5 robots
with equal robot marks were simultaneously on the playground together with 5
opponent robots. Because of the high frame rate used (80 fps) the tracking of
robots was reliable and identification swapping did not occur. The only exception
is when the vision system loses multiple robots for some reason (typically when

3.4. Experimental Results 49

robot marks are temporarily occluded by some object). But even in such situa-
tions, the identification algorithm is capable to recover correct identifications of
robots in only few samples.

3.4.4 Analysis of Real Time Operation Requirement

In order to fulfill real time and high speed requirements, i.e. to enable the track-
ing of large number of fast moving robots, a special attention is given to the
computational simplicity of the algorithms. The achieved execution time of the
algorithm on a 3 GHz Athlon 64 processor, when tracking five robots, was only
about 1.6 ms in local search mode and about 3.1 ms in global search mode.
Therefore the proposed vision system is able to track five robots with framerate
of at least 300 fps. In other words, there left enough time for execution of other
algorithms (e.g. algorithms for robot mission planning and motion control) within
the sampling time of 12.5 ms defined by the framerate of used camera (80 fps).

The find out which stage of the algorithm is most computationally expensive,
execution times of various stages of the algorithm were measured. Results for the
case where one robot is in the scene are shown in Table 3.3. As threshold adapta-
tion time varies randomly depending on illumination changes, its maximum over
multiple samples (about 500 samples) is taken and in this way a worst case is
considered. Execution times of other stages are computed as average value over
multiple samples, because these times are nearly constant over time. From the
table it is evident that in the case of local search most significant part of total
execution time refers to other necessary tasks that are not part of the algorithm,
such as buffer copying, image flipping etc. Pose measuring task takes more time
than robot detection, as it is expected because in local search robot position is
known. In global search, the most significant part of the execution time refers to
the color classification and robot detection time is significantly higher than the
robot pose measuring time. This is expected because the whole image has to be
scanned to detect the robot. The fact that in global search mode subpixel robot
pose measuring time is minor compared to robot detection time also proves the
claim that increased precision and accuracy are accomplished without significant
performance loss.

The goal of the next experiment was to find out how the execution time
depends on the number of robots, so that execution times for local and global
search and for different number of the robots on the playground were measured.
The results for local search mode are given in Figure 3.25. If line is fitted through
obtained results by means of least squares method, we obtain the following line
equation: t = 0.1606n + 0.7652, where t is execution time in milliseconds and n
is the number of robots. From this equation it is evident that the majority of
execution time is constant part, which refers to routines whose execution time is
independent on the number of robots, like buffer copying, image flipping etc. It
is also obtained that in local search mode all times except t9 grow nearly linearly

50 Chapter 3. Robot Localization Using Global Vision

Table 3.3. Execution times of various stages of algorithm for one robot in milliseconds
Stage Local Global
t1: Color classification 0.0146 1.5290
t2: Color patch extraction 0.0192 0.0181
t3 = t1 + t2: Robot detection 0.0338 1.5471
t4: White patch extraction 0.0161 0.0168
t5m: Threshold adaption max. 0.0575 0.0556
t6: Subpixel measuring 0.0347 0.0353
t7: Square parameterization 0.0461 0.0439
t8 = t4 + t5m + t6 + t7: Robot pose measuring 0.1544 0.1516
t9: Other tasks 0.7636 0.7352
t10 = t3 + t8 + t9: Total execution time 0.9518 2.4339

with the number of robots.

1 2 3 4 5 6 7 8 9 10
0.5

1

1.5

2

2.5

Number of robots

E
xe

cu
tio

n
tim

e
[m

s]

Figure 3.25. Local search algorithm execution time as function of number of robots

The results for global image search mode are given in Figure 3.26. If line is
fitted through obtained results, we obtain the following equation: t = 0.1569n +
2.2792. From this equation, it can be observed that execution time grows with
approximately same rate as for local search, but the constant part of the execution
time is about 3 times bigger, because the whole image has to be scanned. Using
this equation, it can also be estimated that within camera sample time of 12.5 ms,
a maximum number of robots that can be tracked is 65. It is observed that in
global search mode times t1 and t9 are independent on the number of robots,
while other times are nearly proportional with the number of robots.

3.5. Summary 51

1 2 3 4 5 6 7 8 9 10
2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

Number of robots

E
xe

cu
tio

n
tim

e
[m

s]

Figure 3.26. Global search algorithm execution time as function of number of robots

3.5 Summary

A new global vision system for real time tracking of two-dimensional poses of
multiple mobile robots is presented. A novel algorithm is proposed that operates
directly in Bayer format image thus enabling high framerates and at the same
time high measurement precision and accuracy as it works in subpixel precision.
Although the algorithm is highly optimized for Bayer format image, it is not re-
stricted to it and can be easily adapted to work with any image format. High
measurement precision and accuracy are verified by carefully performed experi-
ments. Moreover, algorithm is robust to the light intensity variations, and number
of robots that can be simultaneously tracked is not limited by the algorithm, but
only by available computational power and sizes of the space and robots, so that
it is very convenient for tracking robot teams with large number of robots. The
system requires easy and short setup process.

It is very important that the above mentioned advantages are not gained by
using high cost hardware or algorithms with high computational cost, so that
the system price is reasonably low, and high processing speeds can be achieved
(more than 80 fps is possible with adequate camera and hardware). The possible
drawback of the proposed algorithm is the fact that all robots use equal detection
marks, so that in some unpredictable situations (e.g. if robots mutually collide
with high velocities), there is still a small possibility of swapping identifications
of the robots. Implemented supervision algorithm requires some (but small) time
to detect and correct such situations. However, because of high framerate and
reliable tracking algorithm those situations occur very rarely.

Camera calibration procedure automation in order to further reduce the sys-
tem setup time is also planned, although it is still very short comparing to other
existing systems. Currently, every camera of the global vision system must be

52 Chapter 3. Robot Localization Using Global Vision

calibrated separately, which is a rather cumbersome task. However, the calibra-
tion can be automated by tracking the robots by the distributed cameras (and
possibly other sensors) while at the same time estimating the calibration param-
eters, utilizing the fact that robot’s state is continuously changing while moving
from one to another camera’s field of view. This is sometimes called simultaneous
localization and tracking (SLAT) [99].

Besides tracking multiple objects in intelligent spaces, there are many other
practical applications of developed vision algorithms, such as robot soccer, esti-
mation of mobile robots odometry parameters using global camera as a reference
sensor [5], tracing a marker on visually impaired person’s finger to assist him
reading tactile environment map [98] or for emulating an input device, like a
switch, a joystick or a mouse in human-computer interaction for people with
severe movement restrictions [101]. The developed vision algorithm is already
successfully applied for calibration of mobile robot odometry parameters in our
lab as described by Ivanjko in [62] and [63].

Chapter 4

Mobile Robot Motion Planning

This chapter defines a general motion planning problem and serves as an intro-
duction to later chapters which provide more details about the particular topics.
The direct and decoupled approaches to motion planning are introduced. Fi-
nally, selection of the motion-planning method used in this thesis is discussed.
Previously published works on motion planning include [23] and [25].

4.1 Introduction

Once a robot is localized, i.e. its pose in global coordinate frame is determined,
there remains a task of its automated driving to the desired location. This task is
called the mobile robot motion planning. The directives of the robot are usually
given in some kind of a high-level language, which the motion planning system au-
tomatically compiles into a set of low-level motion primitives to be accomplished
by appropriate feedback controllers.

As a robot actually moves in a physical world, it is subject to physical laws,
geometric constraints and uncertainty. Therefore, analysis and design of motion
planning algorithms consists of a combination of problems in many scientific dis-
ciplines with contributions coming from fields such as robotics, control theory and
artificial intelligence. Within field of robotics, the focus is on designing algorithms
that generate useful motions by processing complicated geometric models. Here
many algorithms from computational and differential geometry are used. Within
control theory, the focus is on algorithms that compute feasible trajectories for
systems, with some additional coverage of dynamics, feedback and optimality.
Analytical techniques are typically used to derive appropriate feedback laws ca-
pable of executing desired robot motion. Within artificial intelligence, the focus is
on designing systems that use decision-theoretic models to compute appropriate
actions.

Pioneer researches in robot motion planning can be traced back to the late

53

54 Chapter 4. Mobile Robot Motion Planning

60’s (e.g. [113]). Nevertheless, most of the effort started during 80’s and is still
in progress. The motion planning problem was first extensively studied for the
application in industrial manipulator robotics, and lately extended for use in
mobile robotics.

It is interesting to compare motion planning algorithms specific to industrial
manipulators to those in mobile robotics field. It can be concluded that motion
planning in static environment for a manipulator with, for instance, six degrees
of freedom is far more complex than that of a differential-drive robot operating
in a flat environment [138]. This comes from the fact that the motion planning
algorithms used by mobile robots tend to be simpler approximations owing to the
greatly reduced degrees of freedom. Furthermore, industrial robots often operate
at the fastest possible speed because of the economic reasons. So, the dynamics
and not just the kinematics of their motions are significant, further complicating
path planning and execution. In contrast, a number of mobile robots operate
at such low speeds that dynamics are rarely considered during motion planning,
further simplifying the mobile robot instantiation of the problem.

However, once we step out of static worlds, planning the motion of mobile
robots becomes much more complex. The key difference is that in mobile robotics
tasks are less repetitive and environments are less structured. Such dynamic envi-
ronments are manifested by the unexpected obstacles that can show up anywhere
and anytime in robot’s workspace. Those obstacles can be static (e.g. a chair)
or moving (e.g. people) which further complicates the problem. To adequately
react to those changes in environment, a mobile robot must also incorporate some
reactive behaviors based on readings of sensors. Static motion planning that is
usually used for industrial manipulator motion planning cannot detect or predict,
and therefore cannot react to changes in the environment.

Furthermore, possible motions of the most mobile robots are limited by non-
holonomic constraint. It is the consequence of the fact that robot wheels can only
roll without slipping so that many mobile robots have the property that they can-
not instantaneously slide sideways. From the control point of view, nonholonomic
systems are underactuated, i.e. they have less controls than configuration vari-
ables. For instance a car-like robot has two controls (longitudinal and angular
velocity) while it usually operates in a 3-dimensional configuration space (2-D
position and orientation).

The motion planning problem is usually solved by finding a path for a robot
from initial pose (configuration) to desired pose (configuration) while avoiding ob-
stacles. In many cases, e.g. when synchronized moving of multiple mobile robots
is required, planning only the path (where we worry only about geometric or
kinematic issues) is not sufficient, but also the velocity along the path must be
planned. This is called a trajectory planning, where we also consider dynam-
ics of the robot (e.g. its maximum velocity and acceleration). Today’s research
covers many more interesting topics, such as coverage, optimality, uncertainty
constraints, etc.

4.1. Introduction 55

The motion planning algorithms can be characterized according to the task
to accomplish, properties of the used mobile robot and properties of the used
algorithm. The most important motion planing tasks are navigation, coverage
and mapping. Navigation is the problem of finding a collision-free motion for
the robot system from initial configuration (state) to the desired configuration.
Coverage is the problem of passing a robot (or some sensor or tool mounted on
the robot) along all points in a space (mowing, cleaning). Mapping is the problem
of exploring and sensing an unknown environment to construct a representation
that is useful for navigation, coverage, or localization.

A selection of the most appropriate motion planning algorithm depends also on
properties of the robot that will execute the given task. The main characterization
of the robots is according to their mobility. In this way robots can be divided
to fixed-base robots (industrial robot arms) and mobile robots (wheeled robots).
Also, the robots are characterized by the number of degrees of freedom and the
shape of the configuration space. Further, if a robot can move in any direction in
its configuration space (when there are no obstacles), it is called omnidirectional.
On the contrary, if the robot has some velocity constraints, such as a car that
cannot move sideways, it is called nonholonomic.

Motion planning algorithms can be characterized according to many proper-
ties, such as optimality, computational complexity, completeness etc. Algorithm
is optimal if it finds motions that have minimal length, execution time, energy
consumption or any other criterion. Very important property is computational
complexity of the algorithm. If it is expected that the inputs of the algorithm will
vary in size (e.g. number of obstacles), then the algorithm is only considered prac-
tical if it runs in time polynomial or better in the inputs. The planner is offline
if it constructs the motion plan in advance, based on known map or model of the
environment, and it is online if it incrementally constructs the plan during robot
motion. There is no definite distinction between offline and online algorithms, as
offline planer can also be used as online if it has low computational time and it is
used to re-plan the motion with each new sensor data. The motion planner algo-
rithm can also be divided into planning and reactive algorithms. With planning,
the robot uses models of the environment and itself to determine the motion plan
to a specified goal in advance—this is the same as offline planning. With reactive
(sensor-based) control the motion of the robot is conditioned by the current state
of the environment based on sensor data, typically for small time period—this is
kind of an online planning algorithm. The key advantage of planning is that it
enables a robot to achieve complex goals. However, the planning capability has
its limitations since environment may not be deterministic in a sense that it is not
possible for the robot to predict all future states of both the robot and the envi-
ronment. Therefore, it becomes apparent that it is best to combine advantages of
both planning and reactive control to achieve robust execution of complex tasks.

We say that a planner is complete if it always finds a solution if one exists, and
otherwise indicates a failure in finite time. In complex environments, as number

56 Chapter 4. Mobile Robot Motion Planning

of degrees of freedom increases, complete solution may be computationally infea-
sible. In this case the completeness requirements can be relaxed and we may be
satisfied with resolution completeness (if a solution exists at a given resolution of
discretization, the planner will find a solution) or with probabilistic completeness
(probability of finding a solution, if one exists, converges to 1 as time goes to in-
finity). Demands such as completeness, optimality and computational complexity
are of course contradictory. E.g. planners that are both complete and optimal
will have increased computational complexity.

4.2 Common Approaches to Motion Planning

Motion planning is one of the fundamental challenges in robotics so that early
studies in this area date from the 1960’s. The motion planning problem was
originally studied as path planning in field of robotics, but trough this research
it has gained many applications in areas such as computer graphics, simulations,
geographic information systems (GIS), very large scale integration (VLSI) design,
and games. Due to its widespread application, there is a strong interest in indus-
trial and research areas where a multitude of approaches have been proposed.

The Bug algorithm [95] is based on a simple idea of finding a path to the goal
by avoiding obstacles by following their contours. In its first version Bug1, the
robot circumvents the obstacle in its full contour, finds the point of departure that
is closest to the goal position and then departs from the obstacle. In the worst
case it can circumvent the object twice in its full size. Although this algorithm
is inefficient, it is complete as it guarantees that the robot will reach a goal if it
is possible.

The Bug2 algorithm bring some improvements compared to Bug1, as it de-
parts immediately when it is able to move directly towards the goal. This may
significantly speed up the traversal to the goal, but the drawback is that there
exists situations where robot traversal is non optimal in the direction sense to-
wards the goal. There are several extensions to the basic Bug algorithm, such as
the Tangent Bug [68] which uses range sensing by constructing a local tangent
graph towards the goal position direction.

The problem of motion planning considered in this thesis is actually trajectory
planning problem where robot motion is planned as a function of time. Generally,
the trajectory planning problem is to find control inputs (e.g. forces) yielding a
trajectory that avoids obstacles, takes the robot to the desired goal state, and
perhaps optimizes some objective function. This is a complete motion planning
problem, as opposed to a path planning problem that only finds a feasible curve
in the configuration space without reference to the velocity. Two approaches to
this problem are usually divided into two categories: direct motion planning and
decoupled motion planning, described in the sequel.

4.2. Common Approaches to Motion Planning 57

4.2.1 Direct Motion Planning

Direct motion planning is method for planning the trajectory directly in the
state space. If additionally the trajectories are to be found that optimize some
optimality criterion such as motion time or utilized energy, the problem of finding
the trajectory is actually optimal control problem. Unfortunately, the optimal
control problem is too complex for almost any robot system, and as such cannot be
solved analytically. Therefore, a numerical approach must be used. In literature
usually two numerical approaches are studied: nonlinear optimization and grid
based search. When optimization is not crucial, potential field method and the
Rapidly exploring random tree method (RRT) are used as well.

If motion planning is viewed as the optimal control problem, the problem can
be transformed to a finite-dimensional parameter optimization problem, allowing
nonlinear optimization to be used to numerically solve the optimality conditions
[38]. If the problem is well formulated (e.g. the objective and constraint functions
are sufficiently smooth), nonlinear optimization may result in rapid convergence
to a locally optimal trajectory. The drawbacks of this approach are that the
method requires an initial guess (possibly provided by another method), and the
locally optimal solution reached generally depends heavily on this guess. Also,
evaluation of constraint and objective functions, and their gradients, may be
computationally demanded.

A grid-based search method enables the user to specify how close the solution
should be to time-optimal while avoiding the obstacles. The planned motion
is only approximate, but with property that user can determine how large the
error in final state can be. The advantage of this approach is that it is global,
i.e. it does not require initial guess like nonlinear optimization. The drawback
is that the size of the grid grows exponentially in the dimension of the state
space so that this approach is not appropriate for high dimensional systems.
Unfortunately, both nonlinear optimization and grid based search approaches are
usually computationally too complex to be used online.

Artificial potential fields method was first introduced for robotic manipulator
arms and later suggested for mobile robot platforms. Drawing from the field the-
ory concept in physics, this method models obstacles as emitting a repulsive force
and the goal point as emitting an attractive force on the robot. The robot senses
its current configuration, and applies the gradient forces at the actuators, i.e.
the navigation is performed by moving the robot so as to minimize the potential
energy. In this way a trajectory is implicitly defined by the potential field.

Finally, a Rapidly exploring random tree approach is a probabilistic method
that trades off optimality for planner run time. It may be able to quickly find a
feasible trajectory that is in no sense optimal.

58 Chapter 4. Mobile Robot Motion Planning

Compute a
collision-free

path

Smooth the path
to satisfy

differential
constraints

Compute a
trajectory along

the path

Design a
feedback control
law that tracks
the trajectory

Geometric
model of the

world

Execute the
feedback plan

Figure 4.1. A decoupled approach to motion planning.

4.2.2 Decoupled Motion Planning

There are many situations in which direct planning is computationally too ex-
pensive due to numerical integration, collision detection etc. In those situations
decoupled planning is appropriate because it divides the complicated problem of
motion planning into subproblems (or modules) that are easier to solve [89]. This
is the reason why this approach is sometimes called a refinement approach. A
typical decoupled trajectory planning approach consists of four modules (Figure
4.1):

1. Using a path-planning algorithm to find collision-free path.

2. Transforming the obtained path so that velocity constraints (if any, e.g.
nonholonomic) are satisfied. In case of a car-like robot this step ensures
that the path is feasible for the robot by ensuring that the curvature of the
path is never less than the minimum. Here at least a kind of smoothing
algorithm is used in most circumstances.

3. Computing a time scaling function so that the path from previous module
is time-parameterized while respecting robot actuator limitations.

4. Executing a feedback control law that will ensure tracking of the planned
trajectory. The control law should minimize tracking error, i.e. difference
between the desired state and measured state of the robot.

Decoupled approach is often used for planning in environments with mov-
ing obstacles or control of robot teams, because it decouples high-dimensional
problems to multiple low-dimension problems. However, although decoupled ap-
proach performs well in many situations, sometimes there arise situations that is
decoupled approach unable to solve. For example, typical decoupled schemes are
unable to solve a multiple robot planning problem in Figure 4.2.

The main drawback of decoupled approach is therefore its incompleteness—in
some situations it may not find a solution even if one exists. The incompleteness
also occurs when a module finds a solution that causes the failure in some of the
later modules. In other words it is often difficult for modules to take into account

4.3. Motivation 59

R1 R2

Figure 4.2. An example of multi-robot planning problem where solution cannot be
found by prioritized decoupled approach, although problem has a solution in general.
This happens because in prioritized scheme priority is given to either robot robot R1 or
R2, while the second robot is neglected.

problems that may arise later. This is sometimes solved by merging the modules,
e.g. there are many methods that solve the first two modules simultaneously.

4.3 Motivation

Regarding the motion planning task, this thesis covers the problem of robot nav-
igation, i.e. finding a collision-free motion from the initial to the desired location.
The solution should enable a wide spectrum of applications, ranging from simple
load delivery to precise planning required for robot soccer. A robot that is used
to accomplish those tasks is a differential drive robot. This is the robot that
has two drive wheels and one or more castor wheels that ensure stability of the
robot. The presumed operation space is flat environment, and it is assumed that
the map of the environment is known (at least partially). The environment is
assumed to be dynamic, where obstacles and zones can change shape or move
concurrently with the robot so that ability of efficient recomputation of the path
is required. It is also assumed that the robot is able to identify its position on
the global scale so that the problem of finding a path to a desired goal is well
defined.

The majority of approaches currently used in robot navigation are based on a
combination of global path planner and local planner that avoids obstacles that
were not known at the planning time. A typical example is combination of D*
algorithm for global path planning and dynamic window algorithm which is a
kind of reactive, direct grid-search algorithm that locally modifies the path in
order to avoid obstacles (see e.g. [132]). Due to computational complexity, local
planner is typically capable of planning only for a small time period ahead. This
is similar to the way that human plans his motion, where he first plans the rooms,
passages or doorways through which to pass, and then locally modifies the path
according to perceived situation while traversing to the goal.

60 Chapter 4. Mobile Robot Motion Planning

While this approach satisfies when it is simply required to drive the robot
from point A to point B, it has two major drawbacks that limit its use in some
applications:

• Even in static environments, it is impossible to precisely plan robot’s path,
as well as its velocity profile because reactive component is used. This also
means that traveling time cannot be predicted and no precise scheduling of
robot tasks can be made.

• Due to inability to precisely plan robot motion, it is also not possible to tell
the robot how it should enter the goal configuration, e.g. at what velocity
and heading direction. In other words, only goal position can be specified.
This can be too restrictive in applications such as robot soccer. 1

Motivation of this work is to overcome these difficulties, as well as to develop
a flexible, modular and real-time motion planner. Here flexibility means that the
method must be easily adaptable to environments of different complexity and
structure, different tasks, multi-robot planning etc. This means that the planner,
with little modification, must be applicable for various tasks in many possible
variants of intelligent spaces e.g. cleaning, entertainment (robot soccer, robot
dance), automated warehouses etc.

Particularly, the developed motion-planning algorithm must have the follow-
ing capabilities:

• leading the robot to the desired state (e.g. position, orientation, velocity)
in near-minimum time, while respecting actuator limits of the robot;

• reacting to changes in the environment;

• fast enough execution for online application.

4.4 Choosing an Adequate Planning Method

Although direct motion planning methods are superior over the decoupled ap-
proaches, they are still not not applicable for long-term online planning, mainly
due to their high computational burden. Therefore the decoupled approach is
selected as the method of choice because it decomposes complex motion planning
problem into simpler subproblems allowing a real-time execution. Besides, a very
important advantage of the decoupled approach is its flexibility, manifested by
easy to achieve software modularity and reusability. Each module is a separate
component that can easily be replaced or reused with other robot types or for
other robot tasks. This is important because mobile robots are expected to spread

1If differential drive robot is used, it can attain the desired heading at the goal by simply
reorientating itself after reaching the goal. However, this requires additional time.

4.4. Choosing an Adequate Planning Method 61

all over our homes and offices—in that sense a motion planner that is hard to
adapt to other tasks is of little practical use because robot destiny will be to
accomplish very distinctive missions.

As mentioned, the main drawback of decoupled approach is its incompleteness.
However, in this work this problem is at least alleviated by extending classical
decoupled architecture in Figure 4.1. This is obtained by avoiding strict algorithm
flow from the previous to the next module—in the developed method algorithm
execution can flow back and forth as necessary because modules are capable of
calling functions from other modules. In this way it became possible for a module
to ask other modules for instructions for further planning or rate the current plan,
so that it can be corrected as necessary.

In this way loss of completeness of the decoupled approach will manifest only
in some special circumstances, e.g. in multi-robot example in Figure 4.2. De-
spite that fact, the predominant algorithms for coordinating teams of robots are
still decoupled and prioritized. In recent time some efficient methods that can
overcome this problem have been developed, such as by Bennewitz et al. [14],
where a method for finding and optimizing priority schemes for multiple robots
is described.

By a decision to use the decoupled approach, the selection job is in no way
finished. There still left to select appropriate planning methods in each particular
module. Those decisions will be guided by the goal of best utilization of intelligent
space advantages, as will be described in the following chapters.

Chapter 5

Path Planning

Path planning while avoiding obstacles has long time been the main goal within
motion planning research community, while in this thesis it is part of the first stage
of the overall motion planning algorithm. Therefore, this chapter is concerned
with methods used to plan obstacle-free paths between two robot configurations.
A novel path-planning algorithm is introduced that enables fast path-replanning.

5.1 General Notions

The first stage of the decoupled approach is path planning. Path planning still
remains one of the core problems in modern robotic applications. The basic path-
planning problem is concerned with finding a good-quality path from a source
point to a destination point that does not result in collision of the robot and
obstacles.

Hereby, a robot is considered a rigid object capable of moving in a physical
space called workspace W , which is usually planar (R2) or three-dimensional R

3.
Although the robot always moves in the three-dimensional space, the third di-
mension (height) is often not considered in algorithms as the robot is constrained
to move in the ground plane. This is also assumed throughout this work. The
workspace of the robot often contains obstacles. Let WOi be the closed set that
represents the i-th obstacle in the robot workspace, where WOi ∈ W,∀i ∈ [1, n].
The free workspace is then defined as the set of points Wfree = W\⋃i WOi.

Motion planning is usually not performed in the workspace but in the so
called configuration space C of the robot (also called C-space). This is the set
of all robot configurations, where the robot configuration q contains a complete
specification of the position of every point of the robot system. E.g. for a mobile
robot that can translate and rotate in a planar workspace, q contains position
(x, y) and orientation θ. Therefore, its configurations space is an open unbounded
environment given by R

2 × S1 where the × represents Cartesian product and S1

63

64 Chapter 5. Path Planning

is the unit circle representing angles in range [−π, π].
Let R(q) be the set of points of the workspace occupied by the robot at

configuration q. Then the i-th obstacle in the configuration space COi corresponds
to the configurations of the robot that intersect an obstacle in the robot workspace
W , i.e. COi = {q|R(q)

⋂WOi 6= ∅}. Now the free configuration space can be
defined as

Cfree = C\
⋃

i

COi, (5.1)

and is often referred simply as “free space”. The configurations in the free space
are called free configurations or admissible configurations.

Therefore, a path can be described as a continuous curve on the configuration
space, i.e. it is a continuous function that maps some path parameter to a curve
in Cfree. The path parameter can be chosen arbitrarily; in this work an interval
[0, sg] is chosen, where sg is parameter s at goal configuration. Therefore, a path
can be written as a continuous function from the initial configuration qstart to the
goal configuration qgoal such that

q(s) : [0, sg] → C, where q(0) = qstart, q(sg) = qgoal and q(s) ∈ Cfree ∀s ∈ [0, sg].
(5.2)

By definition, every configuration along the path is free, so that such a path is
called free path or admissible path. If a path touches obstacles, but does not
penetrate them, it is no more determined in free configuration space, but in its
closure cl(Cfree). Such a path is called semi-free path.

The main difference between path planning and trajectory planning is that
the path planning only takes into account time-independent constraints such as
geometric constraints (i.e. obstacles) and kinematic constraints (i.e. curvature
constraint), but not time dependent (dynamic) constraints such as limits of robot
velocity and acceleration. If moving obstacles have to be taken into account, ob-
stacle avoidance is no more pure geometric constraint because obstacle positions
must be treated as time-dependent variables. Therefore path-planning techniques
deal only with static obstacles. Nevertheless, in some circumstances those meth-
ods can be adopted so that moving obstacles are directly taken into account. This
is usually achieved by adding time as an additional configuration variable.

Numerous methods are proposed that solve the path-planning problems. De-
pending on the amount of information available about the environment, which
can be completely or only partially known, the approaches vary considerably.
In many path-planning algorithms computational geometry plays a special role.
Many methodologies that rely on geometric representation of the space, have their
roots in computational geometry. Path-planning problems that are solved using
these methodologies usually have a well-defined and deterministic set of objec-
tives, regular geometric space representation, and specific functions that describe
robotic movements.

The common methods that are based on computational geometry are the cell

5.2. Free Configuration Space Construction 65

decomposition methods, the roadmap methods (and the sampling-based methods
as a special case), and the artificial potential field methods [38]. If robots are rep-
resented by polygonal objects, an approach based on the Minkowski sum is often
used [73]. It must be emphasized that this classification is somewhat arbitrarily
because many methods cannot be classified exactly to certain category as they
combine algorithms and principles from multiple categories. In continuation it
is shown how the free configuration space is geometrically constructed, which is
a prerequisite for some methods. Thereafter, description of the most important
path-planning methods and a literature review is given.

5.2 Free Configuration Space Construction

As motion planning is usually executed in the configuration space, many path-
planning methods depend on explicit construction of the free configuration space
Cfree of the robot. The configuration of a robot system is a complete specification
of the position of every point of that system, which is needed to ensure that no
point on the robot collides with an obstacle. The dimension of the configuration
space, i.e. minimum number of parameters needed to specify the configuration
depends on the type of a robot, and is equal to the number of degrees of freedom
of the robot.

This can be illustrated by considering a simple mobile robot that can translate
without rotating in the plane. A common way to represent robot configuration
is to specify the location of its center, (x, y) relative to some fixed coordinate
frame. If radius r of the robot is known, the set of points occupied by the robot
can be easily determined from the configuration q = (x, y) and is denoted as
R(q). Therefore, the configuration space of this robot can be represented by
R

2. As this robot operates in a two-dimensional Euclidean ambient space (i.e.
workspace) also represented by R

2, one may assume that configuration space
and workspace represent the same spaces. But those are different spaces, as will
become evident in the next example.

Apart from translation, mobile robot are usually capable of rotating, so let’s
consider a more complex robot that can translate and rotate in a planar workspace.
To specify configuration of this robot, it suffices that q contains robot position
given by the coordinates (x, y) and the orientation given by the angle θ with re-
spect to the workspace frame. Then the triple q = (x, y, θ) completely determines
position of any point of the robot relative to the workspace coordinate frame be-
cause the robot is a rigid body. This configuration space is denoted by R

2 × S1.
The workspace of this robot is again R

2, but it is now evident that it is different
from its configuration space, R

2 × S1. Properties of the different configuration
spaces can be described using tools from mathematic field called topology, see
e.g. [89].

The free configuration space Cfree is in equation (5.1) defined as the set of

66 Chapter 5. Path Planning

(a) (b) (c)

Figure 5.1. Construction of the free configuration space. (a) The circular mobile robot
approaches the workspace obstacle. (b) The robot slides around the obstacle touching
it. Robot path coincides with the contour of the configuration space obstacle (the thick
line). The configuration space obstacle therefore corresponds to the Minkowski sum of
the workspace obstacle and the robot. (c) Problem has been transformed into motion
planning for a point robot in the configuration space.

configurations at which the robot does not intersect any obstacle. To plan a path,
it is necessary to construct this set, i.e. map obstacles from robot workspace into
its configuration space. A simple example of the free C-space construction is for
the circular mobile robot in the planar workspace with a single polygonal obstacle
(Figure 5.1). The configuration space obstacle is obtained by an isotropic growth
of the workspace obstacle by the radius of the circular robot, which is actually the
Minkowski sum of the obstacle and the disc. Even in this simple example it can
be noticed that configuration space obstacles can have more complex geometric
shape than corresponding workspace obstacles. In particular case the C-space
obstacle contains also circular segments which were not present in the workspace
obstacle. As the robot in this example is circular, its geometric representation
is rotation invariant. Therefore, the shape of the free C-space does not change
along the third dimension and planning can be performed in first two dimensions
only.

Let’s now consider a more general case: a mobile robot of arbitrary shape that
can translate and rotate in the planar workspace. Whether or not is a particular
point in the C-space free depends now also on robot orientation resulting in true
3-dimensional free configuration space. Because of this the motion planning can
no more be reduced to two dimensional C-space, but has to be performed in 3
dimensions. This results in two main consequences. First, if motion planning is
to be performed in environment with moving obstacles, the 3-D free configuration
space has to be regularly updated, which is a complex operation. Second, motion
planning in three dimensions is also much more complex than in two dimensions.

5.3. Artificial Potential Fields 67

Both consequences contribute to significantly higher algorithm execution time.

This is the reason why in many applications the non-circular mobile robot
is approximated by its bounding circle. Unfortunately, even if a complete path-
planning algorithm is used, such an approximation makes it incomplete, meaning
that the planner might not find a path even if one exists. However, this may
not be considered as a practical limitation until e.g. precise manipulation tasks
are demanded that require motion very close to the obstacles. Moreover, many
commercial differential-drive mobile robots (e.g. Pioneer [2]) are approximately
circular.

In applications where the approximation by a bounding circle is too restrictive,
a multiple-planner strategy can be used. In this approach a high-level decision
algorithm makes a selection of the the most appropriate planner in a particular
situation. E.g. roadmap methods (Section 5.6) can be used for fast, near-optimal
motion planning in open environments. When it comes to navigation through very
narrow passages or precise manipulation tasks, sampling-based planners (Section
5.5) that do not depend on explicit configuration space construction are suitable.
The sampling-based planner will produce a path that may not be optimal, how-
ever, optimality is not of primary concern in manipulation tasks, and non-optimal
solution is better than no solution at all.

As it was shown, for the case of the circular mobile robot in a planar world pop-
ulated with polygonal obstacles, it is easy to explicitly construct free C-space by
dilating the workspace obstacles. When the robot is even slightly more complex,
it becomes much more difficult to do so. This process is sometimes simplified by
using grid-based representation of the configuration space. For the mentioned mo-
bile robot of arbitrary shape that translates and rotates in the planar workspace,
the configuration space C = R

2×S1 can be partitioned to 3-dimensional grid. For
each point in this grid we can perform a simple test to see if the corresponding
configuration is in collision with any of the obstacles; in this case the correspond-
ing grid cell can be labeled as “one”, or as “zero” otherwise. Then the graph
search algorithm can be used to find a path from start to goal configuration.
However, this approach is not very practical for large robot workspaces as the
3-D grid can become very “memory-hungry”. The memory requirements further
depend on selected space and orientation resolution; finer the resolution—higher
the memory requirements. Therefore, the grid partitioning approach is more
commonly used with circular-shaped robots, where the resulting grid map is only
two-dimensional.

5.3 Artificial Potential Fields

As it is not simple to explicitly represent the configurations space, especially
for robots with many degrees of freedom, an alternative is to use methods that
incrementally explore the free space while searching for a path. Example of this

68 Chapter 5. Path Planning

approach is the artificial potential field method, which was introduced by Khatib
[75] for robotic manipulator arms and later suggested for mobile robot platforms
(see e.g. [88, 18]).

The idea is to assign a function similar to the electrostatic potential to each
obstacle and then derive the topological structure of the free space in the form
of minimum potential valleys. The robot is pulled toward the goal configuration
as it generates a strong attractive force. In contrast, the obstacles generate a
repulsive force to keep the robot from colliding with them. The path from the
start to the goal hopefully can be found by following the direction of the steepest
descent of the potential toward the goal. This can be viewed as a landscape where
the robot moves from a high-value state to a low-value state, i.e. the robot follows
a path “downhill” by following the negated gradient of the potential function.

The environment for the original formulation of this idea is assumed to be
static, however there have been adaptations for using this approach for dynamic
environments. Potential can be associated with the objects in the environment
as they are encountered. Various variants of the artificial potential field method
have been developed to make the approach usable in dynamic or cluttered or
partially known environments.

The potential field experienced by the robot at configuration q can be ex-
pressed as

Uapf (q) = Ugoal(q) + Uobs(q). (5.3)

where Uapf (q), Ugoal(q) and Uobs(q) denote the artificial potential field, the attrac-
tive potential from goal and the repulsive potential from obstacles, respectively. A
related artificial force F (q) is then obtained as negative gradient of the potential
field Uapf (q) as

F (q) = −∇Uapf (q). (5.4)

Typically, obstacles are treated as exponentially repulsive bodies so that the
repulsion experienced by the robot rises exponentially as it approaches the bound-
ary of an obstacle at which point the force becomes practically infinite:

Uobs(q) = log |ρ(q)| + 1

ρ(q)2
, (5.5)

where ρ(q) is the distance between the robot and an object. The goal is typically
chosen to have a parabolic well shaped attractive force such as

Ugoal(q) = K|q − qgoal|2, (5.6)

where K is a positive constant.
The main advantage of the potential field method is that information on the

locations of all obstacles is not required beforehand so that path planning can be
done in real time by considering only the obstacles close to the robot. Besides,
it is extremely easy to implement. However, as only local properties are used in

5.4. Cell Decompositions 69

planning, the robot may get stuck at local minima and never reach the goal. There
are some adaptations of the original methods that use random walk sequences to
escape from local minima traps. But the heavy amount of parameter tuning
caused most people to abandon the method in recent times, in favor of newer
methods.

5.4 Cell Decompositions

The cell decomposition method uses nonoverlapping cells to represent the free
space connectivity. The decomposition can be exact or approximate. An ex-
act decomposition divides the free space into regions called cells whose union is
exactly the free space [10, 38]. The cells can be of various shape. The shared
boundaries of cells often have a physical meaning such as a change in the closest
obstacle, a change in line of sight to surrounding obstacles or some other change
in the constraints applying to the motion of a robot. Two cells are adjacent if
they have a common boundary. Therefore an adjacency (or connectivity) graph
is constructed which stores the information about adjacency relationships of the
cells, where a node corresponds to the particular cell, and edge denotes the adja-
cency between cells, i.e. ability to generate the path between corresponding cells
(example: a straight line). Once the decomposition is computed, i.e. the space
is divided up into cells, the adjacency graph that comes out gives all the regions
that need to be traversed to get from initial to goal configuration. The path
planning is then usually done in two steps:

1. The planner determines the cells that contain initial and goal configuration,
respectively;

2. The planner searches for a path in the adjacency graph.

There exist many techniques for decomposition. E.g. for convex polygonal
obstacles a typical sample algorithm is known as the sweep line algorithm that
sweeps through the vertices of all obstacles and splits the cells according to local
obstacle edge directions [88]. Other examples include triangulation, cylindrical
decomposition and 3D vertical decomposition [89].

An approximate cell decomposition treats a set of cells which approximately
covers free space. This scheme samples the free space with cells, where cells
have regular boundaries and thus it is easier to compute traversals, but a lot of
details about the environment may be lost. Specifically, a detail that is smaller
than half the smallest dimension of the cell would not be captured at all. This
method usually decomposes the free space recursively, stopping when a cell is
entirely in free space or entirely inside an obstacle. Otherwise, the cell is further
divided. Because of memory and time constraints, the recursive process stops
when a certain degree of accuracy has been reached. An example is the quad-
tree algorithm [112]. The computational efficiency of this method depends on

70 Chapter 5. Path Planning

the fineness of the decomposition. The finer decomposition, the more paths are
created, and the closer to the shortest path in the network.

An important decomposition that is frequently used in practical applications
is the occupancy grid map which also can be classified in the category of ap-
proximate methods. The occupancy grid method covers the space with a regular
grid and then determines whether a cell is free or occupied based on the pres-
ence or absence of an obstacle. Since in motion-planning problem one is basically
concerned whether an object occupies a cell or not, the representation can be a
simple histogram of sensor hits with respect to a certain cell. A threshold value
is used to filter out false noisy obstacle detection. In order to discourage robot
movements close to the obstacle contours, a certain mask operator is applied to
the occupied cells which propagates the increased costs in the case when graph
search algorithm are used to find the global path. The global path is usually found
using some variant of D* graph search algorithm, which allows efficient path re-
planning. One such example is an integration of focused D* and Witkowski’s
algorithm which produces the shortest path in occupancy grid maps [133].

The cell decomposition method, although simple to implement, seldom yields
high-quality paths. The exact cell decomposition technique is faster than the
approximate one, but the path obtained is not optimal. The approximate cell
decomposition can yield near-optimal paths by increasing the grid resolution, but
the computation time will increase drastically. There is also the known problem
of digitization bias associated with using a grid. This stems from the fact that
while searching for the shortest path in a grid, the grid distance is measured and
not the Euclidean distance.

However, cell decompositions distinguish themselves from other methods in
that they can be used to achieve coverage. A coverage path planner ensures that
an effector (e.g. a robot, a tool, etc.) passes over all points in a free space. Once
the robot visits each cell, the coverage is achieved.

5.5 Sampling-Based Algorithms

As the dimension of the configuration space grows, path planners that depend on
explicit representation of the configurations space become impractical. In those
cases sampling-based methods [38] have proved as very promising as they can be
used to solve very complex path-planning problems. Those planners do not at-
tempt to explicitly construct the boundaries of the configuration space obstacles
or represent cells of free configuration space. Instead, they conduct a search that
probes the C-space with a sampling scheme using a procedure that can decide
whether a given configuration of the robot is in collision with the obstacles or
not. Therefore, efficient collision detection procedures ease the implementation
of sampling-based planners and increase the range of their applicability. Further-
more, since collision detection is considered by a motion-planning algorithm as a

5.5. Sampling-Based Algorithms 71

“black box”, collision detection module can be designed for specific robots and
applications. The collision detection module handles concerns such as whether
the models are semi-algebraic sets, 3D triangles, nonconvex polyhedra, and so
on. Recent advances in collision detection algorithms have contributed heavily
to the success of sampling-based planners. Sampling-based methods use different
strategies to generate collision-free samples (i.e. configurations) and to connect
the samples with paths to obtain feasible solutions to path-planning problems.

This general philosophy has been very successful in recent years for solving
complex problems that involve thousands and even millions of geometric primi-
tives. Such problems would be practically impossible to solve using techniques
that explicitly represent C-space [89]. Sampling-based methods are often used
to solve complex path-planning problems in industrial automation, bat are also
used to solve problems beyond classic path planning. For example, sampling
based planner can be used to determine if a part can be removed from an aircraft
engine during construction phase using a CAD (computer-aided design) model
of an engine. This information is extremely important to verify correct design
of the engine, as some parts need to be removed and replaced for maintenance.
Sampling-based planners can also be used in computer animation (e.g. to plan
movements of a human model), planning with kinematic and dynamic constraints
etc. Sampling-based algorithms and their applications are still under intensive
research.

The Probabilistic RoadMap planner (PRM) [72] was one of the early ap-
proaches that demonstrated the tremendous potential of sampling-based meth-
ods. This planner fully exploits the fact that it is cheap to check if a certain
configuration is in free configuration space or not. PRM uses coarse sampling to
generate nodes of the path and very fine sampling to connect those nodes. In
this way a roadmap is constructed (usually offline) which can be used later to
find a path between user-defined initial and goal configurations (possibly online).
Initially, node sampling in PRM was done by using a uniform random distribu-
tion (basic PRM). This planner is probabilistic complete and worked very well
for a wide variety of problems. It was also observed that many other sampling
schemes (quasirandom sampling, sampling on a grid) can be used to effectively
solve many classes of problems.

PRM is intended for multiple-query problems (the constructed roadmap is
used many times later). If PRM is used to answer a single query, some modifi-
cations can be made to optimize it: the initial and goal configurations are added
to the roadmap nodes, and the construction of the roadmap is done incremen-
tally and is stopped when the solution is found. However, the faster planners
exist for single-query problems, e.g. Expansive-Spaces Tree planner (EST) and
the Rapidly-exploring Random Tree planner (RRT).

In general, sampling-based methods, being probabilistic in nature, do not meet
any optimality criteria. Further, execution time may vary considerably between
different queries so that it is hard to achieve real-time performance. However,

72 Chapter 5. Path Planning

sampling-based planners have been successfully used for many complex prob-
lems where real-time issues are not of primary concern. Despite their simplicity,
sampling-based planners are capable of dealing with robots with many degrees of
freedom and with many different constraints. They can take into account kine-
matic and dynamic constraints, closed-loop kinematics, stability constraints, re-
configurable robots, energy constraints, contact constraints, visibility constraints
and others. The PRM planner can also be used for dynamic path planning, as
its complexity depends mostly on the difficulty of the path and to a much lesser
extent on the global complexity of the environment or the dimension of the con-
figuration space. For example, a recent PRM-based algorithm that can efficiently
re-compute paths in dynamic environments can be found in [13].

5.6 Roadmap Methods

Data structure that models robot environment is called map, and mapping is
the task of generating such models from sensor data. In the context of indoor
systems, three map concepts prevail: topological, geometric, and grids [38].

Topological representations aim at representing environments with graph-like
structures, where nodes correspond to “something distinct” and edges represent
an adjacency relationship between nodes. For example, places may be locations
with specific distinguishing features, such as intersections and T-junctions in an
office building, and edges may correspond to specific behaviors or motion com-
mands that enable the robot to move from one location to another, such as
wall-following.

Geometric models use geometric primitives for representing the environment.
Mapping then amounts to estimating the parameters of the primitives to best
fit the sensor observations. In the past, different representations have been used
with great success. Many researchers use line segments to represent parts of
the environment, e.g. [7]. Popular approaches also represent three-dimensional
structures of the environment with triangle meshes.

Occupancy grids are grid structures, where the value of each pixel corresponds
to the likelihood that its corresponding portion of workspace or configuration
space is occupied [46]. Occupancy grid maps were first introduced for mapping
of robot environment using ultrasonic sensors.

A class of topological maps that attempt to capture the free-space connectiv-
ity with a graph are called roadmaps [34]. This roadmap graph is like network
of 1D curves or lines (roads). Roadmap graph also has physical meaning because
roadmap node corresponds to a specific location and an edge corresponds to a
path between neighboring locations. Therefore it could be viewed as decomposi-
tion of the robot configuration space based on obstacle geometry. Planning with
roadmaps is similar to the way people use highways. Instead of planning every
possible side-street path to a destination, people usually plan their path to a net-

5.6. Roadmap Methods 73

work of highways, then along the highway system, and finally from the highway
to the destination. Therefore, the bulk of motion occurs on the highway system.
Similarly, the roadmap-based planner first constructs a collision-free path from
initial configuration to the roadmap. Then it performs a graph search and finds
the path to the vicinity of the goal, and then departs from roadmap and con-
structs the path to the goal configuration. The most of the motion occurs on the
roadmap so that searching does not occur in a multidimensional configuration
space or workspace. Here the challenge is to construct roadmap that enables the
robot to reach any goal in the free space, while minimizing the length of roads or
minimizing some other criterion.

Roadmaps are appropriate if numerous start-goal queries are given to the
algorithm, while keeping the robot model and obstacles fixed. This leads to a
multiple-query version of the motion planning problem. In this case, it makes
sense to invest substantial time to preprocess the models so that future queries
can be answered efficiently. Intuitively, the paths on the roadmap should be easy
to reach from each initial and goal configuration, and the graph can be quickly
searched for a solution. If the obstacles are not fixed (dynamic environment), a
roadmap has to be efficiently updated, or a new roadmap must be constructed in
each algorithm sample. In the later case, there is of course no sense to construct
a whole roadmap, but only a part which is required to connect start and initial
configuration. Then it makes sense to optimize roadmap construction algorithms
so as to make them more appropriate for single query usage.

Formally the roadmap can be defined as [38]: A union of one-dimensional
curves is a roadmap RM if for all qstart and qgoal in Cfree that can be connected
by a path, the following properties hold:

1. Accessibility: there exists a path from qstart ∈ Cfree to some q′start ∈ RM ;

2. Departability: there exists a path from q′goal ∈ RM to qgoal ∈ Cfree;

3. Connectivity: there exists a path in RM between q′start and q′goal.

By satisfying those properties, a roadmap provides a discrete representation
of the continuous motion planning problem without losing any of the original
connectivity information needed to solve it. Those properties ensure completeness
of the roadmap algorithms; the first two conditions ensure that any query can
be connected to roadmap, and the third condition ensures that the search always
succeeds if a solution exists.

Sampling methods, such as PRM, previously discussed in Section 5.5, can also
be classified as roadmap methods as they represent the free space connectivity
with a graph whose vertices are generated randomly in free space and connected to
the neighboring vertices such that the connecting edges do not cross any obstacle,
which is actually a roadmap. The probabilistic aspect, however, is not important
to the method, but is relevant only to how the method determines roadmap nodes
and edges.

74 Chapter 5. Path Planning

Many types of the roadmaps can be found in literature, among them the most
important are visibility maps, deformation retracts and silhouettes. Visibility
maps are typically used for models with polygonal obstacles, where the edges of
the corresponding graphs, as the name suggests, are defined between the vertices
that are visible from each other, and the nodes of the graph are the vertices of
the obstacle polygons. Deformation retractions can be viewed as first creating a
cell decomposition of free space from which the roadmap is generated. A typical
example is a Voronoi diagram based method. In continuation two examples of
roadmaps will be described: visibility graphs and Voronoi diagrams that achieve
roadmaps with dramatically different types of roads. In the case of the visibil-
ity graph, roads come as close as possible to obstacles and resulting paths are
minimum-length solutions. In the case of the Voronoi diagram, roads stay as far
away as possible from obstacles.

5.6.1 Visibility Graph

The visibility graph has the properties that its nodes share an edge if they are
within line of sight of each other, and that all points in the free space of the robot
are within line of sight of at least one node of the graph. The second property
ensures accessibility and departability—the inherent properties of all roadmaps.
The idea was first introduced by Nilsson [113], which is maybe the first work
that concerns the path-planning problem. The visibility graph enables to find a
shortest path. Such a path is only semi-free—the robot is allowed to “touch” the
obstacles, but it is not allowed to penetrate them. To use such paths in praxis,
where position uncertainty is present, they need to be transformed in some way
so that they come close to obstacles but do not make a contact.

Problems of computational visibility found in the literature vary in form (see
[52] for an extensive survey). Among the two-dimensional spaces, the problem
is sometimes restricted to visibility in a simple polygon (no obstacles). More
generally, there can be obstacles, sometimes called holes or islands. The obstacles
can be restricted to special shapes, such as rectilinear, circular, line segments, or
convex polygons; or they can be more general, such as simple polygons. The
former case is often encountered in path planning, as in the real world obstacles
are often nonconvex.

For path-planning purposes, the visibility graph is usually defined in a two-
dimensional configuration space where obstacles are represented as simple poly-
gons [38]. The nodes vi of the visibility graph include the start location, the
goal location, and all the vertices of the configuration space obstacles. The graph
edges eij are straight-line segments that connect two line-of-sight nodes vi and
vj. Nodes and edges are embedded in the free space and edges of the polygonal
obstacles can also serve as edges in the visibility graph. The visibility graph can
be searched for the shortest path using the Euclidean distance norm. The visi-
bility graph can also be defined for a three dimensional configuration space with

5.6. Roadmap Methods 75

Figure 5.2. The tangent visibility graph contains edges between reflex vertices and
bitangent edges.

polyhedral obstacles, but in this case it may not contain the shortest path.
In order to construct a shortest path it is not required to connect all mutually

visible vertices within roadmap. Such visibility graph is called tangent visibility
graph, reduced visibility graph or shortest path roadmap. The tangent visibility
graph G is constructed as follows [89]. Let a reflex vertex be a polygon vertex
for which the interior angle (in Cfree) is greater than π. All vertices of a convex
polygon (assuming that no three consecutive vertices are collinear) are reflex
vertices. The vertices of G are the reflex vertices. Edges of G are formed from
two different sources:

• Consecutive reflex vertices: If two reflex vertices are the endpoints of an
edge of Cobs, then an edge between them is made in G.

• Bitangent edges: If a bitangent line can be drawn through a pair of reflex
vertices, then a corresponding edge is made in G. A bitangent line is a line
that is incident to two reflex vertices and does not poke into the interior of
Cobs at any of these vertices. Furthermore, these vertices must be mutually
visible from each other.

An example of the tangent visibility graph is given in Figure 5.2. It can be
noticed that roadmap can have isolated vertices, like at the top of the figure. Fur-
thermore, between two disjoint convex obstacles there are exactly four bitangent
segments.

The path from initial configuration qstart and goal configuration ggoal is ob-
tained by inserting qstart and qgoal as nodes to the graph and then connecting new
nodes to all visible vertices; this is shown in Figure 5.3. This makes an extended

76 Chapter 5. Path Planning

qstart

qgoal

Figure 5.3. The extended tangent visibility graph used to solve a query is obtained by
connecting all visible roadmap vertices to qstart and n qgoal.

roadmap that is searched for a shortest path. To each edge in graph a weight is
assigned, which is the Euclidean length of the physical edge. Dijkstra algorithm
can be used to find the shortest path within the visibility graph. Its running
time is O(n log n+k), where n is the total number of obstacle edges, and k is the
number of edges in the graph, which is in worst case k = O(n2) (to achieve this
time bound, one has to use Fibonacci heaps in the implementation). An example
of the shortest path is shown in Figure 5.4.

If the bitangent tests are performed naively, then the resulting algorithm re-
quires O(n3) time. There are O(n2) pairs of reflex vertices that need to be checked,
and each check requires O(n) time to make certain that no other edges prevent
their mutual visibility. The radial sweep algorithm can be used to obtain a better
algorithm, which takes O(n2 log n) time. The idea is to perform a radial sweep
from each reflex vertex, v. A ray is rotated starting at θ = 0, and check is
performed when the ray touches vertices. A set of bitangents through v can be
computed in this way in O(n log n) time. Since there are O(n) reflex vertices, the
total running time is O(n2 log n) [40]. This algorithm is due to Lee [90].

More efficient algorithms for visibility graph construction based on arrange-
ments have been proposed, which run in O(n2) time. An example is algorithm
of Welzl [156], which works for a set of line segments, but can be adapted for
sets of polygons. Ghosh and Mount developed an optimal, planar-scan technique
using triangulation and funnel splits to achieve O(k + n log n) time bounds. This
algorithm is important because it is output sensitive, meaning that its running
time depends on the number of edges in the graph. Therefore it can be very
efficient for sparse graphs. A practical comparison of those algorithms with real
time measurements against a variety of testcases is performed by Kitzinger [81].

5.6. Roadmap Methods 77

qstart

qgoal

Figure 5.4. The thick line represents the shortest path obtained by graph search in the
extended tangent visibility graph.

Any algorithm that computes a shortest path by first constructing the visi-
bility graph is doomed to have at least quadratic running time in the worst case,
because the visibility graph can have a quadratic number of edges. However,
if a shortest path is constructed directly, it can be found in O(n log n) time, as
demonstrated by Hershberger and Suri [58].

Sometimes it may be necessary to represent the obstacles with generalized
polygons. Generalized polygons are regions bounded by straight segments and
circular arcs. For example, generalized polygons show up when the polygonal
obstacles are isotropically grown by a disc of radius c in a preprocessing phase.
This ensures minimum clearance c between the path and the obstacles. The
visibility graph method can be extended so that it handles generalized polygons
[88].

5.6.2 Voronoi Diagram

Paths obtained using the Voronoi diagrams have the property that they keep as
far as possible from obstacles, so that the corresponding roadmap is also called
maximum clearance roadmap. Such paths may be preferred when the uncertainty
of the robot and obstacles position is high, and when it is hard to precisely control
mobile robot position. There are many variants of the Voronoi diagram (for a
survey on Voronoi diagrams see [9]). Here we primarily address Voronoi diagram
of polygons in the plane, which is a generalization of the Voronoi diagram of
points in the plane (thus it is also called generalized Voronoi diagram, although
the word “generalized” is often omitted).

A basic Voronoi diagram is defined for a set of points called sites [38]. A

78 Chapter 5. Path Planning

Voronoi region is the set of points closest to a particular site. The Voronoi
diagram is then the set of points equidistant to two sites; it sections off the free
space into regions that are closest to a particular site. In the case of points in the
plane, the Voronoi diagram contains only the line segments.

Within the path-planning, we can think of the point sites as obstacles. How-
ever, obstacles are usually represented by objects other than points. The distance
from a point to an object is then measured to the closest point on the object.
The definition of a Voronoi region is extended to the generalized Voronoi region,
Fi, which is the closure of the set of point closest to obstacle COi, i.e.

Fi = {q ∈ Cfree | di(q) ≤ dh(q) ∀h 6= i}, (5.7)

where di(q) is the distance to an obstacle COi (its closest point) from q, i.e.
di(q) = minc∈COi

d(q, c).

The basic building block of the Voronoi diagram is now the set of points
equidistant to two obstacles COi and COj. This set is called a two-equidistant
surface defined by Sij = {q ∈ C | di(q) = dj(q)}. This two-equidistant surface is
further restricted to the set of points that are both equidistant to COi and COj

and have COi and COj as their closest obstacles. This restricted structure is the
two-equidistant face denoted by Fij = {q ∈ Sij | di(q) = dh(q) ∀h}. The union
of the two-equidistant faces forms the Voronoi diagram V D, i.e.

V D =
⋃

i

⋃

j

Fij. (5.8)

This definition of the Voronoi diagram is valid in any dimensional space. For
planar maps, the faces Fij are called Voronoi diagram edges which terminate at
meet points, i.e. graph nodes. Those points are equidistant to three or more
closest obstacles.

If the obstacles are represented by polygonal objects, obstacles have two fea-
tures, vertices and edges. The set of points equidistant to pair of vertices is a
line, as well as set of points equidistant to pair of edges. But, the set of points
equidistant to a vertex and an edge is a parabola, therefore the corresponding
Voronoi diagram also contains parabolas. The Voronoi diagram can be built by
breaking down the free space with the appropriate equidistant curves (Figure 5.5).
The construction of the Voronoi diagram leads to a naive O(n4) time algorithm.
Several algorithms exist that provide better asymptotic running times, but they
are considerably more difficult to implement. The best-known algorithm uses
sweep line method [40] and runs in O(n log n) time in which n is the number of
roadmap curves.

Other useful generalizations of the Voronoi diagram concerning the shape of
the sites is the Voronoi diagram of the edges of a simple polygon, interior to the
polygon itself. Then Voronoi diagram is the subdivision of the interior of the

5.6. Roadmap Methods 79

Figure 5.5. The Voronoi diagram of polygonal obstacles.

polygon into faces where one or two edges are the closest. This Voronoi diagram
is also known as the medial axis or skeleton. The medial axis can be computed
in O(n) time, where n is the number of edges of the polygon, as demonstrated by
Chin et al. [37].

In comparison to the Voronoi diagram for point sites, which is composed
of straight edges, the occurrence of curved edges in the line segment Voronoi
diagram can be a disadvantage in the computer representation and construction,
and sometimes also in the application. There have been several attempts to
linearize and simplify the Voronoi diagram, mainly for the sake of efficient point
location and motion planning. For example McAllister et al. [102] developed an
algorithm for building a compact piecewise-linear Voronoi diagram for convex
sites in the plane.

In computational sense, the advantage of the Voronoi diagram over the visi-
bility graph could be its usually better efficiency. The Voronoi diagram has O(n)
edges, so that querying for a path in the Voronoi diagram roadmap is faster than
querying in a visibility graph. However, the quality of path obtained from the
Voronoi diagram may be far from optimal. It usually has many unnecessary
turns, and the length of the path may be undesirably long at regions where the
obstacles are far apart. In fact, it is worth noting that minimizing the path length
and maximizing the clearance seemingly contradict each other, as increasing the
clearance results in a longer path whereas reducing the path length necessarily
reduces the clearance from obstacles.

80 Chapter 5. Path Planning

P1

P2

P3
P4

Figure 5.6. The VV(c) diagram (image from [154]). The boundary of the union of
the dilated obstacles is drawn in a solid blue line, the relevant portion of the Voronoi
diagram is shown in dotted red. The visibility edges are drawn in a dashed line.

5.6.3 Other Roadmap Methods

Other common roadmap-based path-planning algorithms include silhouette meth-
ods [38]. Those approaches use extrema of a function defined on a codimension
one hyperplane called a slice. When the slice is one-dimensional, it can also be
called a sweep line. As the slice is swept through the configuration space, the
critical points of a function restricted to the slice are determined. The resulting
network of extremal point forms the roadmap. The first silhouette method was
roadmap algorithm of Canny [33], which indicated a begin of roadmap theory in
motion planning.

Recently, Bhattacharya and Gavrilova [15] developed a roadmap-based algo-
rithm that utilizes the Voronoi diagram to obtain a path that is a close approxi-
mation of the shortest path satisfying the required clearance to the obstacle value
set by the user. If the required clearance is set to zero, the obtained path is the
same as the one obtained with the visibility graph method. The obtained path is
further refined in order to make it smoother. The advantages of their approach
are claimed to be simplicity, versatility, and efficiency (it runs in O(n log n) time).

Another recent approach is a diagram called the VV(c) diagram (the Visibility-
Voronoi diagram for clearance c) developed by Wein et al. [154]. An example of
the VV(c) diagram is drawn in Figure 5.6. The motivation behind this work is also
to obtain a shortest path for a specified clearance value. The diagram evolves from
the visibility graph to the Voronoi diagram as the value of c increases. According
to [154], the VV(c) diagram can be constructed in O(n2 log n) time, however this
result is further enhanced to O(n log n) by Bygi and Ghodsi [32].

5.7. Proposed Path-Planner 81

5.7 Proposed Path-Planner

In the sequel a path-planning algorithm developed in this work is described. As
a prerequisite, a map representation is discussed first, followed by path-planning
algorithm description and some implementation aspects.

5.7.1 Map Representation

Distributed and onboard sensors of the intelligent space enable fast and precise
sensing of the whole space. To utilize those advantages, it is desirable to use a
deterministic environment model. Therefore a geometric map representation is
selected as the most appropriate. The advantage of geometric maps over com-
monly used grid maps is their precision due to continuous representation of the
robot workspace. Grid maps introduce discretization error typical for cell decom-
position methods (see Section 5.4). Additionally, geometric maps are typically
more compact and consume less memory, which is especially remarkable in sparse
environments.

It is commonly agreed that most geometric scenarios can be modeled with
sufficient accuracy by polygonal objects, especially in indoor environments where
walls are usually straight, as well as other objects (furniture, etc.). Therefore it
is decided to represent the obstacles by simple polygons. In the case that circular
objects are present, they can be approximated with multiple lines where number
of lines depends on desired quality of the approximation. The possible drawback
of this approximation can be the map overfilled with lines which could lead to
inefficiency. If this is a major problem, one can switch to generalized polygons
representation which, apart from lines, can also contain circular arc segments
(but algorithms are then more complex).

A possible difficulty with geometric maps could arise in large spaces with
many and complicated obstacles (but this is common for most other map rep-
resentations as well). In this case planning may become inefficient. A possible
solution for this problem is decomposition of the complex map into smaller maps.
For example, every room of a building could be a separate cell. Cell boundaries
and connections could be automatically determined using the narrow passages as
natural connectors between cells (see e.g. work by Seder et al. [131]). In this way
path planning is decomposed into high-level and low-level planning. High-level
planning first determines the cells with start and goal configurations. Then it
performs graph search to determine which cells the robot should traverse in order
to get from the start to the goal cell. Low-level planning then plans a path within
each cell.

In this work it is assumed that environment is dynamic and that obstacles can
move. Therefore, two kind of maps are utilized: static and dynamic map. The
static map serves as a placeholder for non-moving obstacles, such as walls, furni-
ture, etc. This map is created offline and can be generated using various methods,

82 Chapter 5. Path Planning

e.g. using building plan, using distributed sensors of the space, or using a mobile
robot equipped with appropriate sensors to explore and map the environment.
On the other side, dynamic map contains moving objects such as robots, and
people, which are detected online using onboard or distributed sensors. Unlike
the static map, the object positions in the dynamic map are updated in every
processing cycle to enable handling of changes in the environment. Details about
mapping algorithms are out of the scope of this work (see Section 2.4 for more
details).

It should be mentioned that in this work a map is used as an abstraction layer
between sensors on the one side, and planning modules on the other side. This
has an advantage of avoiding an explicit dependency of algorithms on a certain
type of sensors and increasing flexibility. Of course, use of the map abstraction
level presumes that map update and replanning can be performed in real-time.

In this way a map abstraction layer substitutes reactive algorithms that use
direct sensor feedback for obstacle avoidance commonly used in mobile robotics.
However, reactive algorithms are still very useful, particularly for a supervision
of higher-level planning algorithms. As sensor-feedback reactive algorithms can
be implemented very efficiently, they can run in robot onboard hardware as a
watchdog module. In this way a reactive algorithm would circumvent decisions
of the high-level planner if a dangerous situation occurs, such as a potential
collision. This can be caused by a number of reasons, such as hardware failure or
an unexpected error in the high-level motion planner.

5.7.2 Path-Planning Algorithm

A path planner that is ideal in our application would at least have the following
capabilities: (i) finding a shortest path that satisfies minimum clearance require-
ment wherever possible, (ii) reporting amount of available clearance otherwise1,
and (iii) acceptable execution time. Thus, a design of the algorithm was lead by
the three enlisted guidelines.

Further, to utilize advantages of precise localization of the robot and obsta-
cles in intelligent spaces, using of deterministic path-planning method is desirable.
The potential field methods are not appropriate because of local minima prob-
lems and the reactive character of the method. The sampling-based methods
are excluded because of their probabilistic nature. The cell decompositions are
excluded as well because, due to decomposition, they produce approximative or
low-quality paths.

Therefore the roadmap methods are picked as the most appropriate. One of
the goals is to obtain fast robot motion, which in most cases corresponds to taking
a shortest path. The visibility graph method is a roadmap method that produces

1This information is useful in later modules, e.g. a trajectory planner can reduce robot
velocity if the required clearance is not available.

5.7. Proposed Path-Planner 83

the shortest path in the geometric map with polygonal obstacles. Unfortunately,
the visibility graph produces only a semi-free path (a path that touches obstacles),
which is not acceptable in praxis due to uncertainty. Moreover, the next module
of the decoupled approach (path-smoothing) will produce deviations from an
original path, so that even if the original path is semi-free, smoothed path may
not be. One possibility to overcome this problem is to insert additional module
between path-planning and path-smoothing modules for path postprocessing. Its
task would be ensuring a necessary clearance to the obstacles. However, besides
the fact that it is very difficult to develop such algorithm, it would also bring
increased computational cost.

To avoid path postprocessing, in this work the configuration space is trans-
formed in order to account for required clearance from obstacles. This is achieved
by dilating configuration space obstacles. Minkowski sum is typically used for this
operation. This works well in most circumstances, but problems occur in narrow
passages as passage may disappear due to dilating. Although in praxis we usually
don’t prefer our robot to go through narrow passages, there are two situations
where this is still desirable: (i) if a pass through narrow passage considerably
shortens the path, and (ii) if the narrow passage is the only way to the goal.
Therefore, a way must be found to somehow allow passing through narrow pas-
sages even after dilating configuration space obstacles. Of course, such paths
should preferably go through the middle of the narrow passage.

This is achieved by kind of a selective dilatation of the configuration space
obstacles—obstacles are dilated for a required clearance only where possible. If
the visibility graph is constructed among such dilated obstacles, the resultant
roadmap will ensure required clearance from the obstacles. In narrow passages
where the required clearance is not available, a path is constructed through the
middle of the passage. This is obtained by using the Voronoi diagram. Therefore,
in the final roadmap both the visibility graph and Voronoi diagram are combined.

For later modules, path smoothing and trajectory planning, it is beneficial
to have information about the path clearance available at the particular path
segment. This is exactly what this method enables. The path segments produced
by the visibility graph are guaranteed to have required minimum clearance from
the obstacles everywhere but in narrow passages, where in turn the clearance is
reported based on Voronoi diagram.

The algorithm is decomposed to separately handle static and dynamic obsta-
cles. This is motivated by the fact that static roadmap can be computed offline
and efficiency is here not of big importance. On the contrary, it is critical that
dynamic obstacles are processed fast enough as it must be done online. For this
reason the algorithm that handles dynamic obstacles is designed to act more
locally, i.e. it updates only those portions of the configuration space where the
change occurred. Both algorithms are described in the sequel.

84 Chapter 5. Path Planning

Construction of the Static Roadmap

In the first stage of the algorithm static obstacles are processed to construct the
static roadmap. The algorithm is in many details similar to algorithm of Wein et
al. [154] that produces the visibility–Voronoi diagram for clearance c. Input to the
algorithm is the static workspace map containing a set of simple disjoint polygons
Wi, i ∈ [1, nw] that represent the static workspace obstacles. The algorithm is
called ConstructStaticRoadmap and is enlisted in Algorithm 5.7.1.

Algorithm 5.7.1: ConstructStaticRoadmap

Input: Wi, i ∈ [1, nw] : static workspace
Output: SRM : static roadmap

1. Approximately construct the configuration space C, i.e. configu-
ration space obstacles Ci, i ∈ [1, nc], nc ≤ nw by approximately
offsetting the workspace obstacles by the radius r of the robot (or
its bounding circle) plus some preferred safety distance ε. Unify
configuration space obstacles that intersect.

2. Construct the dilated configuration space obstacles C
(c)
i , i ∈ [1, nc]

by offsetting the configuration space obstacles by preferred clear-
ance value c minus ε. Dilated configuration space obstacles C

(c)
i

may not be disjoint. A point of intersection of two dilated obstacle
boundaries is called a chain point.

3. Find the dilated configuration space C(c) by computing union of all
C

(c)
i .

4. Compute the extended visibility graph V G of C(c) by first com-
puting the tangent visibility graph of C(c). Extend the graph by
connecting chain points to the graph. In this way visibility edges
between two chain points and tangent visibility edges emanating
from chain points are added to the tangent visibility graph.

5. Construct the Voronoi diagram V D of the configuration space C.
Compute the intersection V D

⋂

C(c), i.e. the part of the Voronoi
diagram that is contained within the union of the dilated con-
figuration space obstacles. Approximate Voronoi arcs by straight
segments. Static roadmap SRM is obtained by combining ex-
tended visibility graph V G and corresponding Voronoi segments,
i.e. SRM = V G

⋃

(V D
⋂

C(c)). Also find and store the clearance
of each Voronoi segment in the SRM .

5.7. Proposed Path-Planner 85

The first step of the algorithm deserves a further explanation. In Figure 5.1 it
is shown that the configuration space for the circular robot is exactly constructed
by finding the Minkowski sum with the robot (i.e. disc). However, Minkowski
sum, in addition to straight lines, produces also circular arcs. The obstacles
dilated in this are generalized polygons whose boundary consists of straight lines
and circular arcs and is therefore G1 continuous. Consequently, the visibility
graph constructed on such generalized polygons would also be G1 continuous.

Although G1 continuity may be sufficient in some applications, in this work
G2 continuity is required to achieve smooth velocity of the robot. As will be
discussed in Chapter 6, the required G2 continuity is ensured in the next, path-
smoothing module. However, the path-smoothing module is designed so that its
input can be only G0 continuous (piecewise-linear) path, and the module does all
the necessary job to transform it to G2 continuos path.

Therefore, we do not insist on G1 continuity in the path-planning module, so
that it is designed to produce only G0 continuous path. This also helps to save
some computation time, as it is more complex to construct visibility graph of
generalized polygons. This is the main difference between ConstructStatic-

Roadmap algorithm and Wein’s algorithm [154] that produces G1 continuous
paths. This is achieved by computing the Minkowski sum only approximately by
approximating circular arcs by line segments. In general case polygons may not
be convex, so that they are decomposed to convex polygons prior to computing
Minkowski sum [36].

The obstacles are dilated for r + ε, where an extra amount ε is the safety
distance that determines how close the robot may approach to an obstacle. This
parameter is user-defined, and it must at least account for various uncertainties,
such as uncertainty of the map, measurements, positioning, etc.

The most time-consuming task of the described algorithm is computing the
visibility graph. If standard radial sweep algorithm is used O(n2 log n) time is
required, which is acceptable because computation is done offline.

Adding Dynamic Obstacles

Dynamic obstacles make robot life considerably harder compared to their relatives
that reside in the static worlds. Consequently, the algorithm for incorporating
dynamic obstacles into the roadmap is significantly harder to design—it is more
time-critical because all computations have to be done online. For example, in the
algorithm ConstructStaticRoadmap it is acceptable to construct the Voronoi
diagram of the whole configuration space, although usually only a small portion
of it is incorporated into the final roadmap. On the contrary, when handling
moving obstacles the Voronoi diagram is computed only locally. The algorithm is
called AddDynamicObstacles and is enlisted in Algorithm 5.7.2. Input to the
algorithm is the dynamic workspace (i.e. map) containing a set of simple disjoint

86 Chapter 5. Path Planning

polygons DWi, i ∈ [1, ndw] representing dynamic workspace obstacles.

Algorithm 5.7.2: AddDynamicObstacles

Input: DWi, i ∈ [1, ndw] : dynamic workspace
Output: RM : final roadmap

1. Initialize the final roadmap RM to be equal to the static roadmap,
i.e. RM = SRM .

2. Approximately construct the dynamic configuration space DC, i.e.
its obstacles DCi, i ∈ [1, ndc], ndc ≤ ndw by offsetting the dynamic
workspace obstacles by the radius of the robot (or its bounding
circle) plus the preferred safety distance ε. Use collision module
to find collision(s) with the static configuration space obstacles or
another dynamic configuration space obstacles. If some obstacles
collide, there is no free pass between them so that they are joined by
computing their union. As this could invalidate some of the static
roadmap edges, these should be identified and marked as invalid
(they are not deleted, because they may become valid again).

3. Construct the dilated dynamic configuration space obstacles
DC

(c)
i , i ∈ [1, ndc] by offsetting the dynamic configuration space ob-

stacles by clearance c minus ε. Again, dilated configuration space
obstacles DC

(c)
i may no longer be disjoint.

4. Use collision detection to find collision(s) with the static dilated
configuration space obstacles. Compute intersection of colliding ob-
stacles and construct the medial axis of this intersection. Insert
valid edges of the medial axis into the final roadmap, where valid
edges are all inner edges and those edges that are connected with
chain points.

5. Update the visibility edges of the roadmap. This is done by updat-
ing the static extended visibility graph with any new chain points
and dilated configuration space obstacles DC

(c)
i .

The last step of the algorithm requires use of the algorithm that can handle
dynamic changes to maintain the visibility graph. For this the algorithm of Asano
[8] is appropriate that can handle dynamic changes (inserts and deletes) each in
O(n) time. The algorithm of Vegter [150] can do the same using a structure called
visibility diagram. This algorithms requires O log2 n+k log n time, where k is the
number of visibility edges created or destroyed at the change.

5.7. Proposed Path-Planner 87

It is also important to mention that, in case of multi-robot scenario, final
roadmap RM is different for each particular robot because a robot must not
be contained in its own map, but other robots may be, depending on the pri-
ority scheme. Only dynamic obstacles that are closer to the robot than some
threshold distance are included into robot roadmap. The reason for this is, be-
sides performance improvements, the position uncertainty of distant dynamic
obstacles—their position could change significantly at the time the robot reaches
them.

The algorithm AddDynamicObstacles can also be used to incrementally
build a roadmap in case that map is initially unknown and new obstacles are
detected online.

Once the final roadmap is constructed, it is used to plan the shortest path
from the start to the goal configuration. This is performed by connecting start
and goal configurations to the roadmap, which can be done in O(n log n) time
using Lee’s algorithm [90] that performs a radial sweep from each configuration.
Then the shortest path is found using Dijkstra algorithm [44]. The execution
of Dijkstra algorithm takes O(n log n + k), where k is the number of diagram
edges encountered during the search. A* algorithm [55] can be used as well,
as it increases the performance of the shortest path algorithm considerably in
case one is only interested in a path between a single source and a single goal.
Asymptotically however, the running time of Dijkstra algorithm and A* is equal.
With this step the shortest path is found and the path-planning algorithm is
terminated.

5.7.3 Collision Detection

In some circumstances the motion planner will require explicit collision check. In
this work the collision checks are used for the following tasks:

1. To check whether the current robot configuration is in collision with an
obstacle (which indicates robot position or map inconsistency) and whether
the goal configuration is in collision (then the motion planning problem has
no solution).

2. In Algorithm 5.7.2 (AddDynamicObstacles) to detect potential colli-
sions of dynamic configuration space obstacles, i.e. to identify narrow pas-
sages. In this case, in addition to the logical predicate that denotes the
collision, the output of the algorithm must also include the polygons that
are result of intersection operation of underlaying polygons.

3. In some circumstances it is used by path-smoothing module to check path
segment for the collision.

All collision checks are performed in configuration space, i.e. it must be deter-
mined whether a certain geometric primitive lies in free configuration space Cfree.

88 Chapter 5. Path Planning

As the robot in configuration space is represented by a point, and obstacles are
represented by polygons, the enlisted collision-check tasks impose the following
possible geometric pairs that have to be checked for the collision: point–polygon,
path segment–polygon, and polygon–polygon. Therefore, a path segment can be
a line, circular arc or clothoid arc (see Chapter 6 for details about clothoids).

To check point–polygon collision an instance of point-in-polygon problem must
be solved. If the polygon is convex the problem is straightforward to solve in O(n)
time, where n is the number of polygon edges. For simple polygons the problem
is more complex but can still be solved in O(n) time using ray crossings algorithm
[119].

Having the algorithm for point–polygon collision, it is straightforward to ex-
tend it to handle path segment–polygon collision tests in linear time. Here the
collision occurs if either of the following two cases is true: (i) the path segment
is completely contained in the polygon interior, and (ii) the path segment inter-
sects the polygon. To check the first case it is sufficient to detect whether either
one of path-segment endpoints lies in the polygon. If the answer is positive, the
collision is detected. To check the second case it is necessary to test every edge
of the polygon for the intersection with the path segment. If any of the edge in-
tersects the path segment, then the collision occurred. The second case requires
algorithm for detecting intersection between line-line, circle-line and clothoid-line
pairs. While the first two cases are straightforward to implement, the third case
is more complex and is described in Section 6.7.

Finally, the most complex problem is to determine collision of polygon-polygon
pairs. Here, if collision is detected, we also require computing of the corresponding
polygon-polygon intersection. Many algorithms exist for this purpose and in this
work a robust algorithm of Leonov and Nikitin [92] is used, whose running time
is O(n log n).

To check whether a geometric primitive is in collision with any of configura-
tion space obstacles, a naive implementation would require to perform collision
check with every single polygon in the configuration space map, which is ineffi-
cient. To accelerate the collision check, the map is organized in rectangular grid.
Commonly, every cell of the grid map stores the probability of the corresponding
portion of the space being occupied by an obstacle, resulting with discrete repre-
sentation of the free space. However, in order to retain continuous representation
of the geometric map, here every cell stores a list of polygons that intersect that
cell. If the map contains large and complex polygons, they are in this way decom-
posed into smaller pieces that can be checked more quickly for the collision. To
perform a collision check, it is first determined which grid cells need to be tested
for the collision. Then a collision algorithm is invoked only with the polygons
that are stored in the identified grid cells.

To decide about an appropriate cell size a tradeoff must be made, which
is also typical for any grid map application. So, too fine grid resolution will
result with much time needed to update the grid and many cells will have to

5.8. Experimental Results 89

be checked in collision tests. On the contrary, too coarse resolution will result
in poor performance gains. The final decision is application dependent and is
usually conducted empirically.

5.7.4 Implementation Aspects

A whole motion planning algorithm is implemented using modular architecture
imposed by the decoupled approach. Hereby, the path-planning algorithm is im-
plemented as a separate module. The motion planning is executed with constant
sampling time and the path-planning module is therefore executed in each pro-
cessing cycle. The algorithm is divided into preprocessing component and online
component, where online component is executed only as necessary (when goal
point changes, an obstacle moves etc.).

The visibility graph algorithm implementation is based on Obermeyer’s VisiLi-
bity C++ library [116]. For some computational geometry operations in prepro-
cessing stage Cgal (Computational Geometry Algorithms) library was used [35].
For online set operations with polygons (e.g. intersection), PolyBoolean C++
library was used [1].

5.8 Experimental Results

To verify effectiveness of the proposed path planner, the developed algorithms
are applied to the exemplary workspace. First the construction of the dilated
workspace is demonstrated, which actually represents first two stages of the al-
gorithm ConstructStaticRoadmap. The stages of the algorithms are illus-
trated in Figure 5.7. The test workspace is shown in Figure 5.7 a) and consists
of a boundary, two convex obstacles and one nonconvex obstacle.

In Figure 5.7 b) the approximated configuration space of the robot is shown (a
small robot with radius r = 4 cm is assumed and value ε = 0 was used), which is
computed as the union of approximate Minkowski sums of each obstacle and the
robot represented by a disc of radius r. By applying a similar algorithm again, the
approximated dilated configuration space is constructed, which is shown in Figure
5.7 c). Here the clearance value of c = 6 cm was used. A test for intersection
of the dilated configuration space obstacle boundaries was performed and in this
way the chain points are identified.

Intersections of dilated C-space obstacles and chain points are shown in Figure
5.7 d). We see that dilatation of the configuration space results with a loss of
space connectivity, as a passage between the left and the right part of the map
disappeared. A care must be taken about the fact that a single dilated C-space
obstacle can intersect even by itself, which typically happens with nonconvex
obstacles. An example is the obstacle in lower right part of the map in Figure

90 Chapter 5. Path Planning

(a) (b)

(c) (d)

Figure 5.7. Construction of the dilated configuration space. (a) Workspace that
consists of three obstacles and the boundary. (b) Configuration space (approximated).
(c) Dilated configuration space (approximated). (d) Chain points (intersections of two
dilated C-space obstacle boundaries).

5.7 d). The same can happen by inward offsetting the boundary of the workspace,
as can be seen in the narrow passage in the middle of the map.

Although this fact complicates the implementation of the algorithms, it can
also be of a great benefit. Namely, in this way we can automatically detect
narrow passages such as doors. At those passages the map can be decomposed
into smaller parts (or graph nodes), and narrow passages can be used as natural
bridges (or graph edges) between them. In this way we have obtained an algo-
rithm for automatical building of the graph-like hierarchical map. This actually
happened in the example shown, as we now have two maps, one of the left part
and another of the right part of the workspace.

The remaining stages of the algorithm ConstructStaticRoadmap are

5.8. Experimental Results 91

demonstrated in Figure 5.8. First the tangent visibility graph of the dilated
C-space is computed as shown in Figure 5.8 a). The resulting visibility graph
is not connected, i.e. we actually have two visibility graphs. Also, the visibility
graph is extended by connecting chain points to it, as can be seen in Figure 5.8 b).

The last stage of the algorithm ConstructStaticRoadmap begins with
construction of the Voronoi diagram of the configuration space, which is shown
in Figure 5.8 c). In current implementation the Voronoi diagram is found by
computing a dual of the Delaunay graph of the configuration space. Here we
don’t need the whole Voronoi diagram, so that we extract only those parts that
build up a skeleton of the configuration space, which is shown in Figure 5.8 d).

The configuration space skeleton enables now to recover from the lost connec-
tivity caused by the C-space dilatation. This is done by computing intersection of
skeleton arcs and dilated configuration space. In this way we obtain sub-skeletons
that bridge narrow passages. If any non-straight segments are contained within
sub-skeletons, they are approximated by line segments. Obtained sub-skeletons
are shown in Figure 5.8 e). The final static roadmap is now obtained by connect-
ing all extended visibility graphs and sub-skeletons into single graph, as shown
in Figure 5.8 f).

Now let’s suppose that a new obstacle is detected in the workspace. The
constructed static roadmap becomes in this way invalid and needs to be updated,
which is done by applying AddDynamicObstacles algorithm and is illustrated
in Figure 5.9). A new obstacle drawn over the static roadmap is shown in Figure
5.9 a).

The steps 2 and 3 of AddDynamicObstacles algorithm, which give dy-
namic workspace and dilated dynamic configuration space, are illustrated in Fig-
ure 5.9 b). In step 4 we use collision detection module to detect possible collisions
of the new (dilated) obstacle with other dilated C-Space obstacles. If collision
exists, we compute one or more intersections and the corresponding chain points
as illustrated in Figure 5.9 c). Next, the medial axis of the intersection is con-
structed as can be seen in Figure 5.9 d). In this way we bridge narrow passage
between the new obstacle and static obstacles.

As can be seen in Figure 5.9 a), visibility edges of the static roadmap became
invalid as they intersect with the dynamic obstacle. Thus we need to update the
static roadmap and also connect chain points to it. For this an algorithm for
dynamic update of the visibility graph is used, which correctly incorporates the
new obstacle into the roadmap as shown in Figure 5.9 e). In Figure 5.9 f) the
final dynamic roadmap is displayed over the original workspace.

Execution time of AddDynamicObstacles algorithm depends on many fac-
tors, such as complexity of the static roadmap, number and complexity of obsta-
cles that are added into the roadmap and complexity of specific algorithms used
to implement the algorithm. It is currently implemented using non-optimal al-
gorithms (e.g. faster implementation of visibility graph construction could be
achieved), but even so, it works sufficiently fast for smaller maps. E.g. it can be

92 Chapter 5. Path Planning

(a) (b)

(c) (d)

(e) (f)

Figure 5.8. Construction of the static roadmap. (a) Reduced visibility graph of
the dilated configuration space. (b) Chain points connected to the graph. (c) Voronoi
diagram of the configuration space. (d) Configuration space skeleton. (e) Intersections
of skeleton arcs and dilated configuration space (sub-skeletons). (f) The final roadmap
obtained by connecting all visibility graphs and sub-skeletons into single graph.

5.8. Experimental Results 93

(a) (b)

(c) (d)

(e) (f)

Figure 5.9. Construction of the dynamic roadmap. (a) A new obstacle is detected so
that static roadmap becomes invalid. (b) Dilated configuration space construction. (c)
Intersection with other obstacles. (d) Medial axis and chain points. (e) Updated static
roadmap. (f) Final dynamic roadmap which correctly incorporates the new obstacle.

94 Chapter 5. Path Planning

Start

Goal

(a) (b)

(c) (d)

Figure 5.10. Construction of the path. (a) Start and goal nodes. (b) Start and goal
nodes connected to the dynamic roadmap. (c) Edges of the roadmap that are part of the
shortest path from start to goal are shown with thick line. (d) Shortest path from the
start to the goal that satisfies the minimum clearance c requirement wherever possible.
A corridor of width 2c around the path is also shown.

used in real time for robot soccer application, where a number of moving obsta-
cles is typically ten (each robot acts as a moving obstacle). Optimization of the
algorithm and extensive tests on larger maps are planned in the future.

Finally, a process of finding the shortest path in the constructed dynamic
roadmap is conducted, as shown in Figure 5.9. The first step of the shortest path
construction is inserting a start and goal nodes into the roadmap as displayed in
Figure 5.9 a). Next we construct visibility polygons of the start and goal node
and use them to connect new nodes to the roadmap, which is illustrated in Figure
5.9 b).

Finally, we search for the shortest map in the resulting roadmap. Dijkstra

5.8. Experimental Results 95

(a)

(b)

Figure 5.11. (a) The roadmap of our department obtained by the proposed algorithm.
(b) The roadmap shown on the top of the dilated configuration space. The edges of the
roadmap contained in the narrow passages are shown in green, while visibility edges are
red. Here the decomposition of the space into small subspaces is clearly visible.

algorithm is used for this purpose, and in the future it is planned to use the A*
algorithm because it is faster than Dijkstra algorithm. Edges of the roadmap
that are part of the shortest path from start to goal node are shown in Figure
5.9 c). Finally, we obtain the shortest path from the start to the goal that
satisfies minimum clearance c requirement wherever possible, which is shown in
Figure 5.9 d). We can see that we have actually obtained a corridor of width 2c
around the path. The required clearance c is satisfied everywhere but in narrow
passage between the left and the right part of the map, where the path passes
right through the middle of the passage, which is just what we want.

The next path planning experiment was conducted using a real world map of
our department (however, most of the furniture was not included in the map due
to lack of the data). The map consists of a complex boundary polygon and six
inner polygons and has totally 663 line segments. In this experiment robot radius
was 0.3 m and required clearance was 0.2 m. The final roadmap obtained by the
proposed algorithm is shown in Figure 5.11 a) and it consists of 547 nodes and

96 Chapter 5. Path Planning

1384 edges.

In this example an ability of the algorithm to automatically decompose a large
space into simpler subspaces is even more important. As the map is very complex,
the preprocessing of the whole map consumes much time. However, automatic
decomposition reduces required time significantly so that preprocessing time is
about ten seconds, compared to more than a minute when the whole map is
being processed. Furthermore, dynamic updates of the roadmap in a particular
subspace is now possible in real time as well.

5.9 Summary

With growing computational capability of today’s computers it has become fea-
sible to perform real-time path planning using powerful computational geometry
based roadmap methods, which prior were almost exclusively used for offline plan-
ning. A path-planning algorithm is proposed that is based on modified algorithm
of Wein [154]. The method finds the shortest path amidst polygonal obstacles that
satisfies minimum clearance requirement where possible. At those path segments
where minimum clearance is not available the algorithm reports amount of clear-
ance available, which is beneficial for other motion planning modules. Moreover,
a novel algorithm that has a capability of dynamic path replanning is developed,
which enables planning in dynamic environments. The path-replanning algorithm
is efficient and allows realtime path replanning in presence of moderate number
of moving obstacles.

In this way the robot can be controlled in closed loop, and a path can be
replanned if necessary in each sample of the control algorithm in order to react
to unexpected and moving obstacles. The complexity of the algorithm does not
depend on size of the workspace, but only on its complexity. Under condition
that robot workspace is relatively sparsely populated with obstacles, this opens
possibilities such as path planning in huge workspaces, which is hard to achieve
with grid-based planners.

Of course, the developed path-planner is not universal and other planners may
be more appropriate in particular situations. However, a modular architecture
of the overall motion planner allows using the developed method in combination
with other path-planning methods as well. In such multiple-planner strategy for
each subproblem the most appropriate planning method is picked by the high-
level module. For example the developed path-planning method, although gener-
ally applicable for non-circular robots (e.g. car-like robots), will have difficulties
with such robots when it comes to operation in narrow passages or manipulation
tasks—the method may become incomplete because of circular-robot assumption
it makes. The multiple-planner strategy may then switch to the sampling-based
planner, which is more adequate in such situation as it is exact, although only
probabilistically complete.

5.9. Summary 97

Another such example is when the environment becomes heavily populated
by moving obstacles, where the methods based on computational geometry may
become inefficient. In such conditions long-term planning cannot achieve good
results anyway because long-term prediction of obstacle movements is generally
unreliable. This may be a good point to switch to some more local-oriented
planner, e.g. the D* algorithm in combination with the dynamic window method.
Implementation of multiple-planner strategy is planned in future investigations.

Chapter 6

Path Smoothing

Common path-planning algorithms usually give obstacles-free path, but with no
or very little concern about path feasibility or optimality. This chapter describes
how to transform a path so that the robot can track it faster. Smoothing algo-
rithm is given that can transform a path that consists of straight line segments to
continuous curvature path, which is essential for fast robot motion. The algorithm
is intended for differential drive robots and uses clothoid curves as primitives for
path smoothing, which have inherent property that their curvature changes pro-
portionally with distance traveled along the curve.

6.1 Introduction

Once the obstacle-free path is planned, it is usually necessary to apply some kind
of transform algorithm to locally modify the path. There are various motivations
to do this, e.g. the planned path may not be feasible for the particular robot at
all (because the path planner does not consider kinematic or other constraints of
the robot). The motivation could also be an optimization of the planned path,
e.g. the initial path may contain sharp turns that the robot cannot follow fast
enough. In the literature, path planning and transforming modules together are
sometimes referred as plan-and-transform approach.

The path-transforming algorithm assumes that obstacle-free path is already
planned by the path-planning module, that usually ignores nonholonomic con-
straints. This path is given as continuous function q(s) : [0, sg] → Cfree and is
defined by equation (5.2). Then the transforming algorithm can be formulated
as follows [89]:

1. For the planned obstacle-free path q(s), choose some s1, s2 ∈ [0, sg] such that
s1 < s2 and use a local planning method to attempt to replace the portion
of q(s) from q(s1) to q(s2) by a path γ(s) that satisfies the differential

99

100 Chapter 6. Path Smoothing

(nonholonomic) constraints.

2. If q(s) now satisfies the differential constraints over all [0, sg], then the
algorithm terminates. Otherwise, return to Step 1.

The points s1 and s2 in step 1 of the algorithm may be chosen using random
sequences or may be chosen deterministically.

A prerequisite for the further discussion is to introduce a path curvature—it is
defined as reciprocal value of the path radius. For the path given parametrically
in R

2 the curvature κ(s) is obtained as

κ(s) =
ẋ(s)ÿ(s) − ẏ(s)ẍ(s)

(ẋ(s)2 + ẏ(s)2)3/2
, (6.1)

where s denotes the path parameter. If traversing the path in direction of in-
creasing s, a positive value of the curvature corresponds to steering to the left,
and negative to the right, respectively. A zero curvature denotes a straight line
path.

What significantly differs path planning for differential drive and car-like
robots is path curvature limit that is characteristic for car-like robots, which
is not present in differential drive robots. Thus, for differential drive robot any
G0 continuous path is feasible, even if it contains step changes of the curvature—
this is enabled by robot’s ability to rotate in place. However, the differential drive
robot can pass such curvature steps only by first fully stopping, changing the ori-
entation in place, and then accelerating again to traverse the rest of the path.
The reason why the robot cannot pass curvature step with non-zero velocity is
that an instantaneous change of its orientation is required, which of course is not
possible in the real world.

If a robot has no curvature limits, as is the case with the robot used in this
work, it may be sufficient to transform the path by using an appropriate smooth-
ing algorithm that filters out the curvature steps. We refer to such algorithms
as path-smoothing algorithms. The required properties of a path-smoothing algo-
rithm in this work are at least the following:

i) G2 continuity of the smoothed path;

ii) smoothing with non-zero initial curvature;

iii) low computational complexity.

The first property ensures that the robot will be able to traverse the smoothed
path at non-zero velocity, allowing in this way fast robot motion without stop-
ping. This also imposes that the path curvature must be continuous. Curvature
continuity cannot be achieved by using solely lines and circular arcs as path-
smoothing primitives (which are commonly used by many authors), as they can
insure only G1 continuity so that higher order-curves must be used.

6.2. Literature Review 101

The second property is important if the path is to be replanned while robot
is moving. Namely, if current robot’s path has non-zero curvature, which is
often true in praxis, the smoothing method must be capable of taking this initial
condition into account to obtain a feasible path.

6.2 Literature Review

Various path-smoothing methods are proposed in the literature. Often ideas orig-
inating from computer aided design applications are used, where cubic B-spline
blending curves are popular because they allow inflection points and maintain cur-
vature continuity at the joints. It is however difficult to control their curvature.
Quadratic B-splines are simpler but do not maintain continuity of curvature.

Kanayama and Miyake [70] join initial and final configurations by a broken
line that is used as an entry to a smoothing algorithm which produces sequences
of clothoid pairs and straight lines. Initial and final configurations are supposed
to have zero curvature.

Shin and Singh [135] address a similar problem with the additional constraint
of a lower bounded turning radius. They produce a smooth path composed of clo-
thoid arcs only. The developed method consists of two steps: first, a sequence of
postures is obtained using given sequence of points, then each pair of neighboring
postures is connected with three clothoid curve segments.

In [69], Kanayama and Hartman propose the use of cubic spirals for obtaining
smooth trajectories linking a sequence of configurations two by two. They pro-
pose a criterion for smoothness (a quadratic function of the curvature or of its
derivative). The use of cubic spirals produces trajectories of a larger curvature
radius than in the case of clothoids, thus producing a “smoother” motion.

Delingette et al. [41] generalize the smoothing problem in order to take into
account specified end conditions as well as a limited turning radius by adding con-
trol points to the trajectory. They introduced “intrinsic splines”, curves whose
curvature is a polynomial function of the arc length. These curves are general-
izations of the clothoids and cubic spirals. In the work of Segovia et al. [134]
Bezier’s curves are used for this concern.

Fleury et. al. [48] use clothoids for smoothing the motion of a mobile robot
moving along a trajectory but also address the problem of smoothing mobile
robot motions when cusps are required, i.e., changes of motion direction along
the trajectory. For this purpose, special curves called anticlothoids are used
together with clothoids in order to smooth a predefined trajectory. The clothoids
and anticlothoids are used because they represent the time-optimal trajectories
of a two driving wheels mobile robot. Both types of curves are dual from the
point of view of control. They are produced by applying, respectively, equal
constant accelerations on both wheels (anticlothoids) or constant and opposite
accelerations (clothoids).

102 Chapter 6. Path Smoothing

Scheuer and Fraichard [130] use a set of paths, called bi-elementary paths,
which are smooth and feasible for a car-like robot (curvature is upper-bounded).
These paths are composed of two equal piecewise clothoids, and are used to define
a simplified planner (i.e. not complete) that can locally connect two configura-
tions. This planner can then be used in global planners, namely Ariadne’s Clew
algorithm and sampling-based planner, to obtain a complete planner.

Quinlan and Khatib [123] propose elastic bands to smooth a global path.
Moreover, elastic bands can be adapted in real-time so that the path is deformed
as changes in the environment are detected by sensors. This method enables
the robot to accommodate uncertainties and react to unexpected and moving
obstacles.

In [96, 97], Maček uses similar approach: D* method is used to find a global
optimal path in a minimum distance sense within an environment. Thus gener-
ated geometrical path is further explored by free-space bubbles. Finally, the path
is smoothed using by B-spline approximation. The method is designed for grid
representation of the free space and has high computational requirements.

Montes et al. [110] also use clothoids to join two arbitrary poses in a plane
by a shortest bounded-curvature path. They approximate clothoids offline with
rational Bezier curve, which is later used to plan bi-elementary paths online as in
[130]. This method is among the first methods that allow real-time application
of clothoids.

While most of the described methods fulfil the requirement i) from Section
6.1, i.e. produce G2 continuous path, neither method fulfils both requirement
ii) and requirement iii). In other words, the existing methods are whether not
specifically designed to work in real time, or do not allow specifying of non-zero
initial curvature. For example the major problem with clothoid-based methods
is that though they offer smoothness and linearity, it is non-trivial to generate
clothoid segments for arbitrary starting and ending postures; the expressions for
these curves are underconstrained and no closed form solution is available, which
makes clothoid paths hard to compute efficiently.

6.3 Clothoid Steering Model

When dramatic steering changes are required to avoid the obstacles at high ve-
locities, the navigation system operates almost entirely in the regime where cur-
vature is continuously changing. Further, it is assumed that the robot mass is
much greater than its moment of inertia, which is true for most differential drive
mobile robots. This enables fast robot steering, i.e. high angular accelerations,
while preventing high longitudinal accelerations. As a consequence, the longitu-
dinal velocity can be assumed to be approximately constant, while the angular
velocity will change linearly, i.e. with constant angular acceleration. Therefore,
the robot mostly operates in linear curvature change regime. The question is now

6.3. Clothoid Steering Model 103

what is the geometric form of such a path?

For this analysis a kinematic model of the robot is used, which assumes that
robot can ideally track referent longitudinal and angular velocity. There are
several reasons to use kinematic model instead of the dynamic model, and the
most important is that in the case of robots actuated with electrical motors, these
motors are frequently equipped with low-level servo controllers that have a task to
control angular velocity of the motor so that it tracks a referent angular velocity
which is given by a high-level controller [111]. If the control loop is efficient, the
difference between the referent and actual velocities remains small, even when
the desired velocity and the motor load vary continuously, at least within a range
imposed by the robot dynamic constraints (i.e. acceleration limits). Therefore,
for a kinematic model to be valid, dynamic limitations of the robot should be
taken into account by the motion planning algorithm. But the dynamic model
of the robot is implicitly considered by the trajectory planning, which enables
decoupling the kinematics from the dynamics of the vehicle. This gives a degree
of robustness that allows to view the referent velocity as a free control variable, as
opposed to dynamic model where the torque is viewed as control variable. In fact,
for many commercially available robots the motor torques are even not available
to the user-defined high-level control algorithm, but only the velocity.

Let x(t) and y(t) denote robot coordinates at time t in some global coordinate
system in robot workspace, and let the robot orientation (heading direction) be
denoted by θ(t). Let v(t) denote robot linear velocity, and ω(t) robot angular
velocity. Suppose that initial time is equal to zero, while x0 = x(0), y0 = y(0), and
θ0 = θ(0) denote initial robot position and orientation, respectively. Similarly, let
v0 = v(0) and ω0 = ω(0) be initial robot linear and angular velocity, respectively.
Then robot position at time t ≥ 0 can be expressed as:

x(t) = x0 +

t
∫

0

v(τ) cos θ(τ)dτ, (6.2a)

y(t) = y0 +

t
∫

0

v(τ) sin θ(τ)dτ. (6.2b)

In linear curvature change regime angular velocity is changing linearly with time,
i.e.

ω(t) = ω0 + αt, (6.3)

where α is the angular acceleration. Now the orientation can be obtained by
integrating angular velocity

θ(t) = θ0 +

t
∫

0

ω(τ)dτ = θ0 + ω0t +
1

2
αt2. (6.4)

104 Chapter 6. Path Smoothing

By substituting equation (6.4) into (6.2), and assuming the constant linear ve-
locity v = v0, it is obtained

x(t) = x0 + v0

t
∫

0

cos(θ0 + ω0τ +
1

2
ατ 2)dτ, (6.5a)

y(t) = y0 + v0

t
∫

0

sin(θ0 + ω0τ +
1

2
ατ 2)dτ. (6.5b)

0 0.2 0.4 0.6 0.8 1 1.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

α = 1
α = 1.2α = 1.44

α = 1.73

α = 2.07

v0 = 1

Figure 6.1. The trajectories obtained by numerical integration of equations (6.5a)
and (6.5b) using different values of angular acceleration α. The initial conditions are
x0 = y0 = 0, θ0 = 0, v0 = 1, ω0 = 0. The time interval is from t = 0 to t = 2.
The obtained curves are called Euler spirals or clothoids and represent paths that robot
traverses in the linear curvature change regime.

The trajectories obtained by integrating (6.5a) and (6.5b) have the form of
spiral, as can be seen in Figure 6.1. In the literature this curve can be found
under name Euler spiral or Cornu spiral, but most often it is called clothoid. The
corresponding steering model is therefore called clothoid steering model.

The clothoid curve had been originally characterized by Leonhard Euler in
1744, and rediscovered later by civil engineers in late-19th century. It is known
as track transition curve in civil engineering that is fitted between a straight (also
known as tangent) and a circular curve on a section of rail track or highway. A
spiral easement is used to avoid abrupt changes (thus providing transition in the
changes) in the centripetal acceleration experienced by a railroad vehicle and to
prevent abrupt forces and discomfort. With a road vehicle the driver naturally

6.4. Clothoid Curve Properties 105

applies the steering alteration in a gradual manner and the curve is designed to
permit this. Besides in highway and railway route design, clothoids have also
been used in computer graphics, e.g. McCrae and Singh [103] use clothoids to
approximate sketch strokes in order to obtain continuous curvature curves.

By differentiating (6.5a) and (6.5b) and substituting into (6.1), the curvature
of the clothoid is

κ(t) =
ω(t)

v(t)
=

ω0 + αt

v0

, (6.6)

from where it is evident that the curvature is changing linearly in time.

6.4 Clothoid Curve Properties

So far it is explained that the robot driving in linear curvature change regime
traverses a clothoid-shaped path so that the clothoid spiral shows up as a natural
choice for a geometrical primitive used to smooth robot paths. Therefore it
will be useful to further explore properties of the clothoid to find out about its
applicability in path-smoothing.

Let’s first note that the clothoid curve has easy-to-compute analytical equa-
tions for both the tangent angle and the curvature—the tangent angle is given
as quadratic polynomial in time (equation (6.4)) and curvature as linear poly-
nomial in time (equation (6.6)). Therefore, both the orientation and curvature
are smooth. This clearly encompasses advantages of clothoids over circular arcs,
which is illustrated in Figure 6.2. When smoothing with circular arcs, although
the path is somewhat shorter, it is not feasible unless the robot stops at curva-
ture discontinuity point, visible in Figure 6.2 (c). Those curvature steps imply
discontinuities in the angular velocity when robots travels at non-zero velocity. If
the path is smoothed with clothoids, although the maximum curvature is greater,
the curvature profile is continuous (Figure 6.2 (d)).

Unfortunately, equations (6.5a) and (6.5b) of the clothoid, that give path
coordinates, contain integrals that cannot be solved analytically. As it will be
shown in Section 6.6, this problem can be efficiently solved by using lookup-table
approximation.

By applying the Pontryagin Maximum Principle (from optimal control theory
[121]), one can prove that the time-optimal controls for the dynamic model of a
differential drive mobile robot are [142]

|ur| = |ul| = a, (6.7)

where ur and ul are accelerations of the right and left wheel, respectively, and
a is maximum acceleration. The time-optimal trajectories are supported by two
types of curves corresponding, respectively, to the cases ur = −ul = ±a and
ur = ul = ±a. In the first case the robot linear acceleration is zero, and as it was

106 Chapter 6. Path Smoothing

0.2 0.25 0.3 0.35 0.4
0.2

0.22

0.24

0.26

0.28

0.3

0.2 0.25 0.3 0.35 0.4

0.2

0.22

0.24

0.26

0.28

0.3

0 0.5 1 1.5 2 2.5 3
0

2

4

6

8

0 0.5 1 1.5 2 2.5 3
0

2

4

6

8

xx

yy

TimeTime

C
u
rv

at
u
re

C
u
rv

at
u
re

(a) (b)

(c) (d)

Figure 6.2. Comparison of path smoothing with circular arcs and clothoids. (a) Path
segment smoothed with a circular arc. (b) Path segment smoothed with a clothoid. (c)
Curvature profile for path smoothed with a circular arc. (d) Curvature profile for path
smoothed with a clothoid.

shown, in the (x, y) plane the curve is a clothoid. In the second case the angular
acceleration is null, and it can be shown that in the (x, y) plane the curve is an
involute of a circle. If the initial angular velocity of the robot is null, then the
involute of a circle is reduced to a straight line.

However, this result does not tell us what is the exact shape of the time-
optimal trajectory from the start configuration to the goal configuration; it just
gives necessary conditions for a trajectory to be time optimal. Nevertheless, it
shows how the optimal trajectory looks like locally. Thus, it can be concluded
that in the steering regime the optimal curve is a clothoid, which is one more
reason to use clothoid as a smoothing primitive. In the longitudinal acceleration
regime (zero angular acceleration), locally optimal curve is the involute of a circle.
This tells us that the clothoid is not optimal in this regime.

However, at smoothing stage (where the trajectory-planning is not yet per-
formed) it is not known where the robot will accelerate. All that can be done is
to assume that robot mostly operates in steering (continuous curvature change)
regime, as discussed in previous sections. Accordingly, the clothoid is chosen as

6.4. Clothoid Curve Properties 107

the smoothing primitive that is optimal in most situations.

The validity of clothoid steering model is further experimentally confirmed by
Meidenbauer [107] for Ackermann-steered vehicles. He obtained that the actual
paths driven by the vehicle were generally a close match to the originally planned
theoretical clothoid path.

The above considerations suggest that the clothoids are the best tradeoff re-
garding the required properties and they are therefore used in this work as geo-
metric primitives for achieving smooth path-curvature transitions.

6.4.1 Traversing the Clothoid at Different Velocities

It is interesting to investigate what is the required steering control if we want
to traverse the same clothoid path at different longitudinal velocities. Intuitively
expected answer would be that double longitudinal velocity requires also double
angular acceleration to retain the same path. But let’s check it using equations.
Let index “1” denote the case when longitudinal velocity is v1 = v0, and index
“2” the case with different longitudinal velocity v2 = kv0, where k is a positive
constant. For the simplicity, let the initial conditions be all zero, i.e. x0 = y0 = 0,
θ0 = 0, and ω0 = 0. If the robot travels at different longitudinal velocity, both
orientation and curvature at distance s of the clothoid must remain the same, i.e.
θ1(t1) = θ2(t2) and κ1(t1) = κ2(t2), where t1 and t2 are times needed to travel
the distance s at velocity v1 and v2, respectively. By using (6.4), the orientation
equality condition can be written as

α1

2
t21 =

α2

2
t22. (6.8)

Times t1 and t2 are obtained as t1 = s
v0

and t2 = s
kv0

. By substituting this into
(6.8), we obtain

α2 = k2 · α1. (6.9)

The same result would be obtained if the path curvature condition κ1(t1) = κ2(t2)
is examined instead the orientation condition. The result (6.9) tells us that by
increasing the longitudinal velocity along the clothoid linearly in time, the angular
acceleration required to follow the path must rise according to quadratic law.
Another consequence of this is that all paths with the same value of ratio α

v2

0

will

be clothoids that are geometrically identical.

It is also interesting to see what happens with the centrifugal acceleration. The
centrifugal acceleration is an inertial acceleration that virtually tries to keep the
vehicle going straight, and is obtained as the product of longitudinal and angular
velocity, i.e. acf (t) = v(t) × ω(t) = v(t)2κ(t). By appropriate substitutions it
is obtained that doubling the longitudinal velocity while traversing the clothoid
results in eight times higher centrifugal acceleration. This explains why it could
not be a very good idea to accelerate our car in the curve, especially while entering

108 Chapter 6. Path Smoothing

the clothoidal part of the curve.

6.5 Parametrization of a Clothoid

Until now, all clothoid equations were parameterized with the time variable t. As
the path-planning does not deal with time variable but with geometric parame-
ters only, it is necessary to rewrite clothoid equations without the time variable.
Also, all other parameters that implicitly depend on time, such as velocities and
accelerations, should be omitted.

As we move along the path, the parameter that uniquely determines loca-
tion on the path is the traveled distance s. Therefore, it is a natural choice to
parametrize the clothoid equations using the traveled distance instead of time.
The required substitution is

t =
s

v0

. (6.10)

By substituting into (6.6), the equation for clothoid curvature becomes

κ(s) =
ω0

v0

+
α

v0
2
s. (6.11)

In this way the equation without time is obtained, but there left parameters v0,
ω0 and α which implicitly consider time. From Section 6.4.1 it is evident that all
clothoids with equal ratio α

v0
2 are geometrically identical. Therefore this ratio can

be used as a parameter that uniquely describes geometrical shape of the clothoid
curve. The parameter is denoted as

c =
α

v2
0

, (6.12)

and it describes how sharp curvature changes with traveled distance, so that it is
also called sharpness of the clothoid.

Using (6.12), the curvature of the clothoid becomes

κ(s) = κ0 + cs, (6.13)

where κ0 = ω0

v0

is initial path curvature.

Substituting equations (6.10) and (6.12) into equation (6.4), the tangent angle
of the clothoid becomes

θ(s) = θ0 + κ0s +
1

2
cs2. (6.14)

6.6. Approximation to a Clothoid 109

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.2

0.4

0.6

0.8

1

1.2

x

y

C = 1

C = 1/2

C = 1/4

C = 1/8

Figure 6.3. Clothoid spirals with different values of scaling factor C.

Similarly, equations (6.5a) and (6.5b) can be written as

x(s) = Clx(x0, y0, θ0, κ0, c, s) = x0 +

s
∫

0

cos(θ0 + κ0ξ +
1

2
cξ2)dξ, (6.15a)

y(s) = Cly(x0, y0, θ0, κ0, c, s) = y0 +

s
∫

0

sin(θ0 + κ0ξ +
1

2
cξ2)dξ, (6.15b)

where operators Clx and Cly denote clothoid coordinates and are introduced in
order to obtain more compact equations in the sections that follow.

Instead of clothoid sharpness, scaling factor C is sometimes used. Relation
between clothoid scaling factor and sharpness is given by

C2 =
1

c
. (6.16)

Using (6.16), it is obtained:
∫

cos(1/2cξ2)dξ = C
∫

cos(1/2ξ2)dξ. Therefore the
scaling factor directly determines the clothoid size, as it is also illustrated in
Figure 6.3.

6.6 Approximation to a Clothoid

It is very easy to compute orientation and curvature of the clothoid path. How-
ever, the equations (6.15a) and (6.15b), that give point coordinates x and y of
clothoid curve in Cartesian space, contain Fresnel integrals (see e.g. [87]), which

110 Chapter 6. Path Smoothing

in their standard form are

CFresnel(s) =

s
∫

0

cos
(π

2
ξ2
)

dξ, (6.17a)

SFresnel(s) =

s
∫

0

sin
(π

2
ξ2
)

dξ. (6.17b)

Unfortunately, the Fresnel integrals are transcendental functions—they cannot
be expressed in terms of a finite sequence of the algebraic operations of addition,
multiplication, and root extraction. The only way of computing clothoid coor-
dinates is therefore the numerical approximation. Here we differentiate methods
that compute coordinates in a specified point only and methods that approximate
the clothoid at some interval.

Regarding methods that approximate clothoid coordinates in a single point,
in [122] iterative method is used that utilizes power series. However, in this way
error grows with parameter s so that power series are used only for small s. For
large values of s continued complex fractions are used instead. Although power
series can be computed quite quickly, continued fractions are numerically involved
due to complex numbers calculations. Further, number of iterations depends on
required precision.

Since clothoid coordinates are computed in terms of Fresnel integrals, many
existing numerical integration algorithms can be utilized. Starting from some
known initial point (usually (0,0)), such methods iteratively evaluate numeri-
cal integration algorithm with integration step that can be fixed or variable.
Apart from the final point, numerical integration also outputs series of coordi-
nates between initial and final point. Those points are unnecessary if only the
final coordinates are desired, so that numerical integration is not suitable for sin-
gle point approximation. However, numerical integration methods are good for
offline evaluation of clothoid coordinates at some interval, as will be shown later
in this chapter.

Regarding the methods that approximate a clothoid at some interval, in the
literature a variety of approaches can be found that approximate clothoid curves
by other analytical and easy to compute curves. For example Wang et al. [152]
approximate a clothoid by Bézier curves or B-spline curves of low degrees, while
Sanchez-Reyes and Chacon [128] use s-power series. Rational function approx-
imations to the clothoid, which are very convenient in computer programs, are
given by Heald [57]. Meek and Walton [105] use arc splines for this purpose.
Montes et al. [110] use rational Bézier curves to approximate Fresnel integrals in
real-time.

Nevertheless, if sufficient memory is available, the fastest solution and there-
fore the most appropriate for online computations, is to store clothoid coordinates

6.6. Approximation to a Clothoid 111

in a lookup table. Of course, it is not possible to store all coordinates of all pos-
sible clothoids. So it must be investigated if it is possible to find appropriate
numerical transformations that will compute coordinates of clothoid with any
parameters based on a single clothoid stored in the memory. The clothoid whose
coordinates are stored in the lookup table will be called the basic clothoid, and
any other clothoid whose points we want to compute will be called the general
clothoid.

Let the basic clothoid be denoted by L. The basic clothoid has all initial
conditions equal to zero and the sharpness that is some constant greater than
zero, i.e.

xL0 = yL0 = 0, θL0 = 0, κL0 = 0, cL > 0. (6.18)

By substituting (6.18) into (6.14) and (6.15), orientation and point coordinates
of the basic clothoid become

θL(sL) =
1

2
cLs2

L, (6.19a)

xL(sL) =

sL
∫

0

cos

(

1

2
cLξ2

L

)

dξL, (6.19b)

yL(sL) =

sL
∫

0

sin

(

1

2
cLξ2

L

)

dξL. (6.19c)

Now the question is whether it is possible to compute point coordinates of
any clothoid (i.e. with any initial conditions x0, y0, θ0, κ0, and any sharpness c)
using stored coordinates (xL, yL) of the basic clothoid. To answer this, let’s first
consider a slightly more general clothoid with zero initial conditions and different
value of the sharpness, and denote it by Z. Its initial conditions are thus

xZ0 = yZ0 = 0, θZ0 = 0, κZ0 = 0, (6.20)

and sharpness is some constant cZ = c so that c 6= cL and c 6= 0. Note first
that pure scaling of the basic clothoid does not change tangent angle of the
corresponding points. Therefore, for any point of the clothoid Z we need to find
the corresponding point of the basic clothoid L so that there are equal tangent
angles in both points, i.e. θZ(sZ) = θL(sL). Using (6.19a), and substituting initial
conditions (6.20) into (6.14), we obtain

|c|s2
Z = cLs2

L. (6.21)

112 Chapter 6. Path Smoothing

so that the corresponding traveled distance of the basic clothoid is

sL(sZ) =

√

|c|
cL

sZ . (6.22)

Substituting (6.22) and initial conditions (6.20) into equation for x(s) (6.15a)
yields

x(sZ) =

sL
∫

0

cos

(

sgn(c)
1

2
cLξ2

L

)

d

(
√

cL
|c|ξL

)

=

√

cL
|c|

sL
∫

0

cos

(

1

2
cLξ2

L

)

dξL

=

√

cL
|c|xL(sL) =

√

cL
|c|xL





√

|c|
cL

sZ



 .

(6.23)

Analogously, for y coordinate it is obtained

y(sZ) = sgn(c)

√

cL
|c|yL





√

|c|
cL

sZ



 . (6.24)

The obtained result shows that coordinates of clothoid with any sharpness c 6=
0 can be obtained using stored coordinates of the basic clothoid with sharpness
cL > 0.

The more complicated case is when x0 = y0 = 0, θ0 = 0, but initial curvature is
κ0 6= 0. First it will be shown how this clothoid can be decomposed to combination
of simpler clothoids Z with κZ0 = 0. The tangent angle for this case is

θ(s) = κ0s +
1

2
cs2. (6.25)

By substituting this into (6.15a), x coordinate can be written as

x(s) =

s
∫

0

cos

(

κ0ξ +
1

2
cξ2

)

dξ =

s
∫

0

cos

(

κ0ξ +
1

2
sgn(c)|c|ξ2

)

dξ =

=

s
∫

0

cos







sgn(c)





(
√

|c|
2

ξ +
sgn(c)κ0
√

2|c|

)2

− κ2
0

2c











dξ.

(6.26)

6.6. Approximation to a Clothoid 113

By using the cosine transform it can be rewritten as

x(s) = cos

(

−κ2
0

2c

)

s
∫

0

cos

(
√

|c|
2

ξ +
sgn(c)κ0
√

2|c|

)2

dξ−

sin

(

−κ2
0

2c

)

s
∫

0

sin

(
√

|c|
2

ξ+
sgn(c)κ0
√

2|c|

)2

dξ

(6.27)

To simplify the obtained integral, the following substitution can be used

ρ = ξ +
κ0

c
, (6.28)

which yields

x(s) = cos

(

−κ2
0

2c

)

s+
κ0

c
∫

κ0

c

cos
(c

2
ρ2
)

dρ − sin

(

−κ2
0

2c

)

s+
κ0

c
∫

κ0

c

sin
(c

2
ρ2
)

dρ

= cos

(

−κ2
0

2c

)







s+
κ0

c
∫

0

cos
(c

2
ρ2
)

dρ −

κ0

c
∫

0

cos
(c

2
ρ2
)

dρ






−

sin

(

−κ2
0

2c

)







s+
κ0

c
∫

0

sin
(c

2
ρ2
)

dρ −

κ0

c
∫

0

sin
(c

2
ρ2
)

dρ






.

(6.29)

114 Chapter 6. Path Smoothing

Now the following substitutions can be introduced into (6.29)

−θZ

(κ0

c

)

= −κ2
0

2c

xZ

(κ0

c

)

=

κ0

c
∫

0

cos
(c

2
ρ2
)

dρ

yZ

(κ0

c

)

=

κ0

c
∫

0

sin
(c

2
ρ2
)

dρ

xZ

(

s +
κ0

c

)

=

s+
κ0

c
∫

0

cos
(c

2
ρ2
)

dρ

yZ

(

s +
κ0

2c

)

=

s+
κ0

2c
∫

0

sin
(c

2
ρ2
)

dρ,

(6.30)

to obtain the following

x(s) = cos
(

−θZ

(κ0

c

))(

xZ

(

s +
κ0

c

)

− xZ

(κ0

c

))

− sin
(

−θZ

(κ0

c

))(

yZ

(

s +
κ0

c

)

− yZ

(κ0

c

))

. (6.31)

Similarly, the y coordinate can be written as

y(s) =

s
∫

0

sin



sgn(c)

(
√

|c|
2

ξ +
sgn(c)κ0
√

2|c|

)2

− κ2
0

2c



 dξ

= − sin

(

κ2
0

2c

)

s
∫

0

cos

(
√

|c|
2

ξ +
sgn(c)κ0
√

2|c|

)2

dξ

+ sgn(c) cos

(

κ2
0

2c

)

s
∫

0

sin

(
√

|c|
2

ξ+
sgn(c)κ0
√

2|c|

)2

dξ.

(6.32)

6.6. Approximation to a Clothoid 115

Again, by using substitution (6.28) in (6.32) it is obtained

y(s) = − sin

(

κ2
0

2c

)







s+
κ0

c
∫

0

cos
(

cρ2
)

dρ −

κ0

c
∫

0

cos
(

cρ2
)

dρ







+ sgn(c) cos

(

κ2
0

2c

)







s+
κ0

c
∫

0

sin
(

cρ2
)

dρ −

κ0

c
∫

0

sin
(

cρ2
)

dρ






. (6.33)

And with substitution (6.30) we obtain

y(s) = − sin
(

θZ

(κ0

c

))(

xZ

(

s +
κ0

c

)

− xZ

(κ0

c

))

+ sgn(c) cos
(

θZ

(κ0

c

))(

yZ

(

s +
κ0

c

)

− yZ

(κ0

c

))

. (6.34)

By noticing that sine and cosine functions in (6.31) and (6.34) actually build
up a rotation matrix, the following substitution can be made





cos
[

−θZ

(κ0

c

)]

− sin
[

−θZ

(κ0

c

)]

sin
[

−θZ

(κ0

c

)]

cos
[

−θZ

(κ0

c

)]



 = R
[

−θZ

(κ0

c

)]

, (6.35)

where R(θ) is rotation matrix defined as

R(θ) =

[

cos(θ) − sin(θ)
sin(θ) cos(θ)

]

. (6.36)

The tangent angle of Z in s = κ0/c is

θZ

(κ0

c

)

=
κ2

0

2c
, (6.37)

so that

R
[

−θZ

(κ0

c

)]

= R

(

−κ2
0

2c

)

. (6.38)

Using rotation matrix (6.38), (6.31) and (6.34) can be written in matrix form
as

[

x(s)
y(s)

]

= R

(

−κ2
0

2c

)





xZ

(

s +
κ0

c

)

− xZ

(κ0

c

)

sgn(c)
(

yZ

(

s +
κ0

c

)

− yZ

(κ0

c

))



 , (6.39)

which is telling us that to obtain Cartesian coordinates of clothoid with parame-

116 Chapter 6. Path Smoothing

ters x0 = y0 = 0, θ0 = 0, κ0 6= 0 and sharpness c 6= 0 from clothoid Z with zero
initial conditions and sharpness cz = c, the following transformations have to be
performed:

• shift in s parameter;
• translation;
• rotation.

The final question is how to obtain coordinates of general clothoid with any
initial conditions x0, y0, θ0, κ0 and sharpness c 6= 0 using the clothoid Z with
zero initial conditions and the same sharpness. Using previous result (6.39), this
step is easy, since only additional rotation and translation must be introduced.
Therefore

[

x(s)
y(s)

]

=

[

x0

y0

]

+ R

(

−κ2
0

2c
+ θ0

)





xZ

(

s +
κ0

c

)

− xZ

(κ0

c

)

yZ

(

s +
κ0

c

)

− yZ

(κ0

c

)



 . (6.40)

Finally, using equations (6.23), (6.24) and (6.40), it is possible to obtain co-
ordinates of the general clothoid using the coordinates xL and yL stored in the
lookup table:

[

x(s)
y(s)

]

=

[

x0

y0

]

+ R

(

−κ2
0

2c
+ θ0

)

·
√

cL
|c|









xL

(
√

|c|
cL

(

s +
κ0

c

)

)

− xL

(
√

|c|
cL

κ0

c

)

sgn(c)

[

yL

(
√

|c|
cL

(

s +
κ0

c

)

)

− yL

(
√

|c|
cL

κ0

c

)]









. (6.41)

The obtained result shows that it is possible to compute points of any clothoid
by transforming points of the basic clothoid. Our plan is to store coordinates of
the basic clothoid in the lookup table and reuse them later to accelerate calcula-
tions with clothoids. However, the number of points in the table is limited. This
fact restricts us from computing any clothoid, but only a subset of all possible
clothoids.

Therefore a careful analysis must be conducted in order to

1. determine a required set of clothoids that is sufficient for our application;
2. determine safe parameters of the lookup-table based on required set of clo-

thoids, that guarantee bounded error of clothoid coordinates retrieved with
equation (6.41).

The following lookup-table parameters have to be determined: (1) sharpness
cL of the basic clothoid stored in the lookup table; (2) interval of the basic clothoid
that will be stored in the table, i.e. the length of the basic clothoid sLmax; and

6.6. Approximation to a Clothoid 117

(3) how dense a selected interval will be sampled, i.e. sampling period ∆sL—this
is a distance between the successive points of the basic clothoid.

Note that although relation (6.41) is exact, the obtained point coordinates
will only be approximate. Sources of the error and possible remedies are the
following:

1. Source: Coordinates xL and yL of the basic clothoid still have to be com-
puted numerically and therefore contain errors.

Remedy: This error can be easily bounded because coordinates can be
computed offline with any desired accuracy (at least up to machine preci-
sion), and could therefore be neglected.

2. Source: As clothoid curve needs to be discretized in order to store it in
the lookup table, a sampling error is introduced.

Remedy: To answer a query that falls between two successive points of the
lookup table an interpolation can be used. Approximation error will then
depend on the sampling interval ∆sL and the quality of the interpolation.

In the sequel it will be discussed how to best implement the interpolation.
First the interpolation error will be analyzed. Then a possible procedure for deter-
mining the required set of clothoids for particular application will be given. Based
on this set, safe lookup table parameters in order to retain required precision will
be determined. Finally, an example of determining lookup table parameters for
real robot will be given.

6.6.1 Interpolation Issues

To compute the clothoid coordinates that fall between two successive points of the
lookup table an interpolation must be used. The fastest interpolation algorithm
than can be applied is the first-order interpolation. Because of high error that
it introduces it is no way applicable for this problem, unless very small sampling
interval ∆sL is used, which again causes high memory consumption for table
storage.

A better option is second-order interpolation where straight line is interpo-
lated between two neighbor points in the lookup table. Unfortunately, if points
are sampled with fixed ∆sL, larger lengths of the clothoid will result with the
higher interpolation error. This is because the curvature grows with parameter
s, resulting with larger distance of the clothoid curve from the interpolation line.
Therefore the straight-line interpolation is also a poor choice when dealing with
clothoids.

Circular interpolation is a far better choice, as a clothoid can be viewed as
infinite succession of circular arc segments with linearly growing curvature. Com-
parison of interpolation errors for straight line and circular interpolation is given

118 Chapter 6. Path Smoothing

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

x

y

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

x

y

(a) (b)

0 1 2 3 4 5
0

0.005

0.01

0.015

0.02

0.025

sL

ei

0 1 2 3 4 5
0

0.5

1

1.5
x 10

−4

sL

ei

(c) (d)

Figure 6.4. Comparison of straight line and circular interpolation of a clothoid. The
lookup table has the parameters cL = 1, ∆sL = 0.2 and sLmax = 5. To better illus-
trate effect of interpolation, lookup table is rather sparse and contains only 25 points.
A reconstructed clothoid has the sharpness c = 1, too. (a) Clothoid interpolated by
straight-line interpolation. Red curve is the exact clothoid, and blue is interpolated. (b)
Clothoid interpolated by circular interpolation. A difference between exact and interpo-
lated clothoid is hardly visible. (c) Interpolation error with straight-line interpolation.
It is visible that error grows linearly. Thus it is proportional with the curvature. (d)
Interpolation error with circular interpolation. This error is substantially lower than
straight-line interpolation error. It grows approximately by quadratic law, but very
slowly. If the change of orientation between neighbor points in the lookup table is kept
low (e.g. lower than 10◦), this error can be considered as constant.

in Figure 6.4. Although the circular interpolation somewhat increases compu-
tational burden, it is chosen in this application because of better accuracy. It
is experimentally determined that approximation error of the circular interpo-
lation grows approximately by quadratic law in parameter s, therefore it grows
faster than straight-line interpolation, which grows linearly. Although the error
is quadratic function, it grows very slowly with s and can be considered constant
if the change of tangent angle between neighbor points in the lookup table is kept

6.6. Approximation to a Clothoid 119

low (e.g. lower than 10◦).
To find out how the values of parameters ∆sL and cL are related with the

interpolation error an experimental analysis is conducted. The interpolation error
is defined as the Euclidean distance between the exact point and the interpolated
point. Here the maximum interpolation error is considered, which is the maximum
interpolation error that occurs between two neighbor points and is denoted by
eim.

First the sampling interval ∆sL is kept constant while the sharpness cL is
changed. It is obtained that interpolation error and sharpness are proportional.
Thus, halving cL also halves eim, which is expected because curvature then grows
half as fast. Next, the sharpness cL is kept constant, and sampling interval ∆sL is
changed. It is obtained that halving ∆sL results by lowering approximation error
approximately by the factor 1/23. Therefore, if the lookup table has n points, then
the error in the approximation is of order O(1/n3), which proves the effectiveness
of circular interpolation. Finally, the following empirical relation is derived that
estimates the maximum interpolation error using circular interpolation

eim ≈ 0.016cL∆s3
L. (6.42)

As already stated, care must be taken about the fact that relation (6.42) is
valid only if maximum change of tangent angle between neighbor points in the
lookup table is kept low. Maximum change of tangent angle will occur between
last two points, so that the following condition must be satisfied

cL∆sL
2

(2sLmax − ∆sL) < ∆θLmax, (6.43)

where ∆θLmax is maximum allowed orientation change, whose safe value is em-
pirically obtained to be 10◦. Theoretical verification of these results is left for the
future work.

Possible improvement in the interpolation algorithm could be the use of non-
constant sampling interval to better interpolate parts with higher curvature. An-
other possible improvement could be the use of other interpolation curves instead
of circular arcs, e.g. rational Bézier curves [110], resulting possibly with better
approximation and smaller lookup table.

6.6.2 Determining a Required Set of Clothoids

To find a required set of clothoids an allowed range of clothoid parameters suit-
able for particular application has to be determined. First of all, we will restrict
maximum clothoid length and orientation change. Second, we will avoid clothoids
with extremely low or extremely high sharpness so that clothoid sharpness can
be bounded to some closed interval. Without loss of generality, in the following
sections only clothoids in the first quadrant will be assumed, unless stated other-

120 Chapter 6. Path Smoothing

wise. Thus all parameters of a clothoid are non-negative, i.e. s ≥ 0, c ≥ 0, κ0 ≥ 0.
Clothoid initial conditions are assumed to be zero, i.e. x0 = y0 = 0, θ0 = 0.

Bounding the Clothoid Orientation Change and Length

In praxis the overall orientation change ∆θ that occurs along the single clothoid
can be upper bounded, e.g. an orientation change greater than π is rarely required.
Nevertheless, if the planner needs higher orientation change than π, it is better
then to combine both circular arcs and clothoids in order to avoid high curvature
segments. Typically a pair of two clothoids is applied to plan curves, so that for
a single clothoid maximum curvature change can be bounded to ∆θmax = π/2.

After the upper-bound of clothoid orientation change ∆θmax is chosen, using
the relation between clothoid orientation and distance (6.14), the length of the
clothoid can also be upper bounded. Assuming κ0 ≥ 0 and using (6.14), we
obtain

s ≤ −C2κ0 + C
√

C2κ2
0 + 2∆θmax, (6.44)

which yields upper bound of the clothoid length s.
The maximum length of the clothoid can be additionally limited by some fixed

upper-bound smax, which can be determined e.g. based on the size of robot nav-
igation workspace. Then the planner must be instructed not to use the clothoid
turns longer than this threshold. If properly chosen, this is no significant limita-
tion for the planner, because it can avoid unnecessarily long clothoids by using
lines and circular arcs. Using (6.44), the clothoid length is now upper bounded
by

s ≤ min

(

−C2κ0 + C
√

C2κ2
0 + 2∆θmax, smax

)

. (6.45)

In praxis we mostly have the case when κ0 = 0, when (6.45) becomes

s ≤ min
(

C
√

2∆θmax, smax

)

. (6.46)

Finding the Minimum Scaling Factor

To find the lower bound of clothoid scaling factor Cmin
1, we can limit how sharp

the clothoid path can steer, i.e. how fast orientation can change with the path
length. The lower bound will be found by defining the shortest clothoid length
smin at which the maximum allowed orientation change of π/2 can occur. Then
Cmin can be determined using the orientation equation (6.14) and assuming the
worst case (κ0 = 0), obtaining

Cmin =
smin√
2∆θ

. (6.47)

1Minimum scaling factor corresponds to the maximum sharpness c (see equation (6.16)).

6.6. Approximation to a Clothoid 121

In other words, we have now determined how fast the curvature is allowed to
grow with the traveled distance along the path.

There is an alternative way of finding the minimum scaling factor related with
the maximum approximation error. Namely, it can be shown that every clothoid
is a bounded spiral so that it can be fit inside its bounding circle. As scaling
factor C decreases, this bounding circle becomes smaller, as can be observed in
Figure 6.3.

In the limit case C = 0, a clothoid is reduced to a point. This means that for
scaling factor smaller than some Cmin clothoid can be practically approximated by
a point without exceeding maximum allowed approximation error. Here approx-
imation error e will be defined as the Euclidean distance between exact clothoid
point (xe, ye) and its approximating point (xa, ya), i.e.

e =
√

(xe − xa)2 + (ye − ya)2. (6.48)

For the case of approximating clothoid by a point, by considering the worst
case when κ0 = 0 and using (6.15) and (6.48), a corresponding approximation
error ept will be the function of C and can be expressed as

ept(C) =
√

xd(C)2 + yd(C)2, (6.49)

so that

xd(C) =

sd
∫

0

cos
1

2C2
ξ2dξ, yd(C) =

sd
∫

0

sin
1

2C2
ξ2dξ,

sd = arg max
s





s
∫

0

cos
1

2C2
ξ2dξ





2

+





s
∫

0

sin
1

2C2
ξ2dξ





2

,

where (xd, yd) is a point of the clothoid that is most distant from its begin point,
and sd is length at which this happens.

Now we can find a minimum Cmin by computing the scaling factor at which
the approximation error ept is no greater than maximum allowed error emax. This
will happen at a scaling factor where the clothoid just touches, but not intersects
a circle with center (0, 0) and radius emax. Then we lower-bound the scaling factor
as C ≥ Cmin, where its minimum Cmin is computed so that the following error
condition is fulfilled

ept(Cmin) = emax. (6.50)

The queries with C < Cmin can then be treated simply by returning x =
x0, y = y0, without exceeding maximum allowed error emax.

122 Chapter 6. Path Smoothing

Finding the Maximum Scaling Factor

Another special case of a clothoid occurs when κ0 = 0 and C = ∞. In this case
clothoid does not change the tangent orientation and is reduced to a straight line.
Of course we should not allow this case because a division by zero in equation
(6.41) would occur otherwise. Therefore, scaling factor should be upper-bounded,
too.

In case that clothoid has extremely high scaling factor it could be approx-
imated by a straight line. Based on (6.48), and using (6.15), the error eln of
approximating clothoid with zero initial curvature by a straight line at length s
is

eln(C, s) =

√

√

√

√

√



s −
s
∫

0

cos(
1

2C2
ξ2)dξ





2

+





s
∫

0

sin(
1

2C2
ξ2)dξ





2

. (6.51)

Now we can find a maximum allowed scaling factor Cmax by finding the scaling
factor at which the approximation error at maximum allowed clothoid length smax

is no greater than predefined maximum allowed error emax. Then we can upper-
bound the scaling factor so that C ≤ Cmax, where Cmax is computed so that the
following error condition is fulfilled

eln(Cmax, smax) = emax. (6.52)

If there, however, a query occurs with value C > Cmax, we can safely treat it
as C = ∞ case without violating the maximum allowed error emax. Such a query
is answered simply by solving the equation (6.15) for C = ∞ and κ0 = 0, so that
it reduces to the following straight-line equation

[

x(s)
y(s)

]

=

[

x0

y0

]

+

[

cos(θ0)
sin(θ0)

]

s. (6.53)

Finding the Maximum Initial Curvature

Yet another special case occurs when the clothoid has non-zero initial curvature
κ0 6= 0 and scaling factor C = ∞. Then the clothoid is reduced to a circle with
radius 1/κ0. We introduce a factor K defined as

K = κ0C (6.54)

which will serve as a measure of similarity of a clothoid to a circle. By increasing
K, a clothoid becomes more similar to a circle. So instead of bounding κ0, we
will bound factor K because by upper bounding K we can control how much a
clothoid with initial curvature κ0 and scaling factor C departs from a circular arc

6.6. Approximation to a Clothoid 123

with radius r = 1/|κ0|. If it departs less than predefined maximum error emax,
the clothoid can be approximated by a circle without exceeding maximum error.

To express the error, assume κ0 6= 0 and C = ∞. Then a clothoid reduces to
a circular arc of radius 1/|κ0|, whose endpoint (xa, ya) at length s is

xa(s) =
1

κ0

sin(κ0s), (6.55a)

ya(s) =
1

κ0

(1 − cos(κ0s)). (6.55b)

According to error definition (6.48), and using (6.15) and (6.55), the error earc

of approximating clothoid by a circular arc at length s can be expressed as

e2
arc(κ0, C, s) =





1

κ0

sin(κ0s) −
s
∫

0

cos(κ0ξ +
1

2C2
ξ2)dξ





2

+





1

κ0

(1 − cos(κ0s)) −
s
∫

0

sin(κ0ξ +
1

2C2
ξ2)dξ





2

. (6.56)

If this error is small, then it has approximately equal value no matter if the
sharpness is positive or negative.

The approximation error (6.56) becomes higher as length of the clothoid (or
tangent angle) is increased. To find the error bound, we must bound both clothoid
length (by smax) and its orientation change (by ∆θmax), as we did in previous
cases. Therefore

s ≤ min

(

∆θmax

|κ0|
, smax

)

. (6.57)

To see how factor K is changing with the initial curvature κ0, we will change
the value κ0 and search scaling factor C so that error (6.56) is exactly earc = emax

for each particular value of κ0. Hereby length of the clothoid is bounded by
(6.57). The obtained graph is shown in Figure 6.5. As expected, the maximum
approximation error occurs at the value of κ0

κ0me =
∆θmax

smax

, (6.58)

where both clothoid length and orientation change are at its maximum. Then K
is maximal because the maximum scaling factor (relative to initial curvature) is
required in order not to exceed the maximum allowed approximation error. If we
denote this worst-case scaling factor as Cme, a lower-bound of factor K can be
expressed as

K ≤ κ0me√
Cme

, (6.59)

124 Chapter 6. Path Smoothing

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55
5

10

15

20

25

30

35

40

45

k0

K
=

κ
0
C

s = smax, ∆Θ < ∆Θmax
s < smax, ∆Θ = ∆Θmax

s = smax, ∆Θ = ∆Θmax

e1 = 10−3

e2 = 2 · 10−3

e3 = 3 · 10−3

Figure 6.5. Dependency of factor K on initial curvature of the clothoid κ0. K is
computed so that the maximum error between clothoid and circular arc is exactly emax.
The maximum length of circular arc was bounded by smax, and its maximum orienta-
tion change by ∆θmax. Three values of emax were evaluated and it can be seen that
tighter error tolerance results with higher K. Further, it can be noticed that K is at its
maximum when both s = smax and ∆θ = ∆θmax.

where Cme is found so that it is fulfilled

earc(κ0me, Cme, smax) = emax. (6.60)

Like in previous cases, the queries where condition (6.59) is not fulfilled are
answered by solving the equation (6.15) for C = ∞, which yields the following
circular arc equation:

[

x(s)
y(s)

]

=

[

x0

y0

]

+
1

κ0

[

− sin θ0 + sin(θ0 + κ0s)
cos θ0 − cos(θ0 + κ0s)

]

. (6.61)

6.6.3 Determination of Lookup Table Parameters

Now that we have determined the set of required clothoid parameters, there left
a task of finding a safe mapping between these parameters and parameters of the
lookup table in order not to exceed the maximum approximation error.

First, to obtain required length of the basic clothoid sLmax, maximum possible
values of lookup table arguments, i.e. arguments of xL and yL in equation (6.41),
must be found. To do this we will rewrite the first argument in equation (6.41)
as

sL = CL

(s

C
+ K

)

, (6.62)

where CL = 1/
√

cL is scaling factor of a basic clothoid stored in the lookup table.
The second argument in (6.41) need not to be examined because its absolute
value is always less than or equal to absolute value of the first argument.

6.6. Approximation to a Clothoid 125

Now we will examine the maximum value of the first term in (6.62). Sub-
stituting the worst case bound on the clothoid length (6.46) it can be written
as

s

C
= min

(

√

2∆θmax,
smax

C

)

, (6.63)

whose maximum is

[s

C

]

max
= min

(

√

2∆θmax,
smax

Cmin

)

, (6.64)

where Cmin is minimum clothoid scaling factor defined by equation (6.50).

Regarding the second term in (6.62), we have already determined its maximum
value by determining the maximum factor K in equation (6.59). Although both
terms in (6.62) cannot be at their maximums instantaneously, for the simplicity
we take the worst case and by using equation (6.64) write the maximum argument
of the lookup table as

sLmax = CL

(

min

(

√

2∆θmax,
smax

Cmin

)

+ Kmax

)

. (6.65)

Another issue to consider is that values xL and yL returned by the lookup table
in equation (6.41) will contain the interpolation error. Even worse, whatever error
is introduced by the interpolation, it can be increased because of scaling by factor
C/CL in equation (6.41), which can be considerably larger than one.

Based on approximation error definition (6.48), the interpolation error intro-
duced in equation (6.41) will in the worst case result with the following approxi-
mation error

e = 2
√

2
C

CL

eim, (6.66)

where eim is maximum error that can be introduced by the interpolation. If we
bound the maximum allowed error as e ≤ emax, consider the worst case C =
Cmin, and substitute maximum circular interpolation error (6.42) into (6.66), the
following condition on the lookup-table maximum sampling interval is obtained

∆sLmax = 2.8062CL
3

√

emax

Cmin

. (6.67)

By dividing the minimum required length of the lookup table (6.65) and maxi-
mum sampling interval, we obtain minimum number of points in the lookup table.
We can notice that this minimum number of points is invariant of basic clothoid
scaling factor CL.

The condition (6.43) on maximum allowed orientation change between neigh-
bor points should also be considered. By introducing scaling factor CL and notic-

126 Chapter 6. Path Smoothing

ing that 2sLmax � ∆sL, condition (6.43) can be rewritten as

∆sLsLmax

C2
L

≤ ∆θLmax. (6.68)

By substituting (6.65) and (6.67) into condition (6.68), we can notice that this
condition is also invariant of CL. Therefore, basic clothoid scaling factor CL is
redundant so that any value of it can be chosen. To simplify calculations, the
choice CL = 1 is used in the sequel.

The final procedure for determining the lookup table parameters can now be
summarized as follows

1. Based on condition (6.65), choose the basic clothoid length sL so that

sL ≥ min

(

√

2∆θmax,
smax

Cmin

)

+ Kmax. (6.69)

2. Based on chosen sL and conditions (6.67) and (6.68), choose basic clothoid
sampling interval ∆sL so that

∆sL ≤ min

(

2.8062 3

√

emax

Cmin

,
∆θLmax

sL

)

. (6.70)

6.6.4 Example for the Pioneer 3DX Robot

An example of determining the lookup-table parameters for the Pioneer 3DX
robot navigating in indoor spaces will be given. The radius of the Pioneer 3DX
robot is approximately 20 cm. Regarding the size of the robot and precision of
its position measurement, choosing the maximum allowed clothoid approximation
error as emax = 1 mm should be more than satisfactory.

Determination of a required set of clothoids. We choose maximum ori-
entation change of a single clothoid ∆θmax = π/2. Maximum allowed clothoid
length that we allow is smax = 5 m.

The minimum scaling factor is obtained by using condition (6.50) that bounds
error of approximating a clothoid by a point. Using Matlab’s Optimization and
Symbolic toolboxes it is obtained Cmin = 5.9447 · 10−4.

The maximum scaling factor is obtained using condition (6.52) that bounds
error of approximating a clothoid by a line, so that it is obtained Cmax = 144.34.

The maximum factor K is found by solving equation (6.60) in order to bound
the error of approximating a clothoid by a circular arc, and it is obtained Kmax =
44.309.

6.6. Approximation to a Clothoid 127

Determination of the lookup-table parameters. Using condition (6.69) a
required length of the basic clothoid that will be stored in the lookup table is
determined. It is obtained sL ≥ 46.081, and we choose sL = 46.1.

Next, the sampling interval is obtained using (6.70). It is obtained ∆sL ≤
0.00378, and we choose ∆sL = 0.0035. The number of points in the lookup table
is therefore NL = ceil(sL/∆sL) + 1 = 13173, which is by no means acceptable for
modern computers (≈206 kB when stored in double precision).

6.6.5 Computation of Clothoid Coordinates

Now when the way is found how to compute points of any clothoid based on the
clothoid in the lookup table, there still remains problem of computing the basic
clothoid points in the lookup table. Therefore an appropriate numerical procedure
must be utilized to solve equations (6.19b) and (6.19c). Here the computational
efficiency is not of big importance because lookup table can be computed offline
in the initialization stage.

As discussed in introduction part of Section 6.6, algorithms for numerical
integration are appropriate for this task, since previously computed results are
propagated to obtain new solution. In this way each successive call of the integra-
tion procedure benefits from the results obtained in the previous call, as opposed
to methods that compute clothoid points in a single point.

For this task the Runge-Kutta numerical integration method [122] is chosen.
The procedure is shown in Algorithm 6.6.1 called ComputeClothoidCoordi-

nates. In order to compute coordinates of clothoid points in R
2, the algorithm

numerically integrates equations (6.19b) and (6.19c).

The inputs of the algorithm are sL and ∆sL, which denote the basic clothoid
length and sampling interval that is used as integration step, respectively. The
output is the lookup table containing two arrays for x and y coordinates. The
algorithm first determines number of points that the lookup table should contain
and then allocates the table for coordinates storage. Numerical integration error
becomes lower as internal step at which the distance parameter s increments
becomes lower, therefore it is set to 10 times lower value than parameter ∆s. In
each step of the for loop it is first checked if the current values of x and y should
be stored in the lookup table. For this check, an equality relation “==” is avoided
because of possible numerical errors, and relation “<” is used instead (indexes for
x and y arrays in the table start from zero). Finally, the coefficients k1, . . . , k4 of
Runge-Kutta method are separately computed for x and for y. Those coefficients

128 Chapter 6. Path Smoothing

are then used to obtain increments of x and y in current integration step.

Algorithm 6.6.1: ComputeClothoidCoordinates

Input: sL, ∆sL
Output: L : lookup table with arrays of x and y coordinates

nPoints = Ceil(sL/∆sL);
L = AllocateTable(nPoints);
sStep = ∆sL/10;
iPoint = 0;
x = 0, y = 0;
s = 0;
c = 1;
while (iPoint < nPoints)

do































































































































if (|s − iPoint · ∆sL| < sStep/10)

then







L.x[iPoint] = x;
L.y[iPoint] = y;
iPoint = iPoint + 1;

k1 = cos(c/2 · s2);
k2 = cos(c/2 · (s + sStep/2 · k1)2);
k3 = cos(c/2 · (s + sStep/2 · k2)2);
k4 = cos(c/2 · (s + sStep · k3)2);
x = x + sStep/6 · (k1 + 2 ∗ k2 + 2 ∗ k3 + k4);

k1 = sin(c/2 · s2);
k2 = sin(c/2 · (s + sStep/2 · k1)2);
k3 = sin(c/2 · (s + sStep/2 · k2)2);
k4 = sin(c/2 · (s + sStep · k3)2);
y = y + sStep/6 · (k1 + 2 ∗ k2 + 2 ∗ k3 + k4);

s = s + sStep;

In the future implementation it is planned to replace Runge-Kutta method by
a more elaborated numerical integration method with variable integration step.
This will result with better performance and accuracy.

In order to query coordinates of the basic clothoid from the lookup table, a
procedure called GetBasicClothoidCoordinates is designed, whose pseu-
docode is enlisted in Algorithm 6.6.2. Input of the algorithm is distance s and
outputs are basic clothoid coordinates (xL, yL) at distance s. Values sL and ∆sL

6.6. Approximation to a Clothoid 129

that are used in the algorithm are parameters of the lookup table.

Algorithm 6.6.2: GetBasicClothoidCoordinates

Input: s
Output: xL, yL

i1 = Floor(|s|/∆sL);

if (i1 ≥ nPoints − 1)
then (xL, yL) = Extrapolate(s);

else



















































































































comment: Circular interpolation between points

i2 = i1 + 1;
if (|s| > 10−5)

then r = 1/|s|;
else r = 2/(i1 + i2)/∆sL;

x1 = L.x(i1); y1 = L.y(i1);
x2 = L.x(i2); y2 = L.y(i2);
A = y1 − y2; B = x2 − x1;

xc = (x1 + x2 + A
√

4r2/(A2 + B2) − 1)/2;

yc = (y1 + y2 + B
√

4r2/(A2 + B2) − 1)/2;
θ1 = atan2(y1 − yc, x1 − xc);
θ2 = atan2(y2 − yc, x2 − xc);
p = (|s| − i1 · ∆sL)/∆sL;
θ = θ1 + p(θ2 − θ1);
xL = xc + r cos(θ);
yL = yc + r sin(θ);

if (s < 0)

then











comment: Return symmetrical point

xL = −xL;
yL = −yL;

6.6.6 Querying the Clothoid Coordinates

The algorithm first checks if the distance s is greater than the range stored in the
table. In this case algorithm performs an extrapolation. Normally this shouldn’t
happen as the planner uses clothoids of limited length, however the extrapolation
should be added for the sake of completeness. Otherwise, the algorithm performs
a circular interpolation between coordinates stored in the table. As the basic
clothoid is symmetrical with the origin of (x, y) plane as the center of symmetry,

130 Chapter 6. Path Smoothing

if distance s is negative a symmetrical point is returned in the last stage of the
algorithm.

Having designed the algorithm GetBasicClothoidCoordinates for basic
clothoid coordinates retrieval, it is now easy to design a higher level procedure
that queries coordinates of a general clothoid. This algorithm should first check if
the parameters of a general clothoid are in range of allowed parameters. If the an-
swer is positive, it calls algorithm GetBasicClothoidCoordinates and uses
equation (6.40) to compute the final coordinates. Otherwise, if the parameters
of a general clothoid are out of range, it approximates a general clothoid by a
point, a line or a circle, depending on value of parameters (see Subsection 6.6.2
for details).

6.7 Finding Intersections between a Clothoid and

a Line

As discussed in Chapter 5, in this work obstacles are represented by polygons,
which themself consist of straight lines. Therefore, to perform a collision check of
clothoid path segments it is necessary to design algorithm that checks if a clothoid
intersects a straight line and is also capable of computing the intersection points.

As we have bounded the maximum orientation change of a clothoid, for prac-
tical purposes it is sufficient to check only clothoids whose orientation change is
less than π. Also, the analysis will be restricted only to clothoids with non-zero
sharpness.2 Further, only clothoids with the same signs of sharpness and initial
curvature are considered. Such clothoids have tangent orientation that is mono-
tonic function in s, i.e. the corresponding path steers only to the left, or only to
the right, but not both. This ensures that there are no more than two intersec-
tion points with line, as illustrated in Figure 6.6. This restriction does not result
with loss of generality since more complex clothoid can always be decomposed to
simpler clothoids that fulfill this condition.

The algorithm should first determine how many intersection points between
a clothoid and a line exist, if any. Let a line be given by an implicit equation

Ax + By + C = 0, (6.71)

where A,B and C are real coefficients, and let a clothoid be given by a parametric
equation (6.15). Let the range of parameter s of a clothoid be in interval s ∈
[s1, s2], so that s1 = 0, s2 > 0 and θ(s2) − θ(s1) < π, where θ(s) is the clothoid
tangent orientation given by equation (6.14).

Additionally, an auxiliary function f(s) will be defined that will be used to
determine a number of intersection points. It is obtained by substituting the

2Otherwise the clothoid becomes a line, which is easy to check for collision.

6.7. Finding Intersections between a Clothoid and a Line 131

L1

L2

L3

Figure 6.6. Possible cases of intersection of a single-turn clothoid and a line. If
orientation change of a clothoid is limited to π, there can be only one intersection point
(line L1), two intersection points (line L2), or no intersections at all (line L3).

clothoid coordinates given by equation (6.15) into equation of the line (6.71) so
that we have

f(s) = A · Clx(s) + B · Cly(s) + C. (6.72)

Based on this function, a criterion for determining a number of intersection points
is given in Table 6.1. The intervals of parameter s where the intersection(s) reside
are given in the table, too. It can be shown that a necessary condition (but
not sufficient) for the case of two intersection points is the existence of clothoid
parameter st ∈ (s1, s2) so that

tan(θ(st)) = −A/B, (6.73)

i.e. the tangent direction of a clothoid in this point is equal to the direction of a
line. If st exists, in general the first intersection will always be in interval [s1, st]
of the clothoid, while the second intersection will reside in interval [st, s2].

To compute intersection points, the roots of function f(s) given by (6.72)
must be found, i.e. the equation f(s) = 0 must be solved. As the function (6.72)
is transcendental, a numerical root-finding method must be used. The bisection
method is the safe choice for this purpose because it is guaranteed to always
converge if the solution exists [122]. However, the bisection method’s rate of
convergence is slow. On the other side, since a derivative of the function (6.72)
can be efficiently evaluated, the Newton-Raphson method can be used that has
substantially higher rate of convergence, but its convergence is not guaranteed
even if solution exists. Therefore a fail-safe algorithm is used that utilizes a
combination of both bisection and Newton-Raphson method [122].

132 Chapter 6. Path Smoothing

f(s1) f(s2) f(st) NI int1 int2
> 0 > 0 n.a. 0
< 0 < 0 n.a. 0
> 0 > 0 > 0 0
< 0 < 0 < 0 0
> 0 < 0 n.a. 1 (s1, s2)
< 0 > 0 n.a. 1 (s1, s2)
= 0 6= 0 n.a. 1 s1

6= 0 = 0 n.a. 1 s2

= 0 > 0 > 0 1 s1

= 0 < 0 < 0 1 s1

> 0 = 0 > 0 1 s2

< 0 = 0 < 0 1 s2

6= 0 6= 0 =0 1 st

> 0 < 0 < 0 1 (s1, st)
> 0 < 0 > 0 1 (st, s2)
< 0 > 0 < 0 1 (st, s2)
< 0 > 0 > 0 1 (s1, st)
> 0 > 0 < 0 2 (s1, st) (st, s2)
< 0 < 0 > 0 2 (s1, st) (st, s2)
= 0 = 0 6= 0 2 s1 s2

= 0 > 0 < 0 2 s1 (st, s2)
= 0 < 0 > 0 2 s1 (st, s2)
> 0 = 0 < 0 2 (s1, st) s2

< 0 = 0 > 0 2 (s1, st) s2

Table 6.1. Criterion for determining number of intersection points between a clothoid
and a line based on the sign of function (6.72). Legend: NI – number of intersection
points; int1, int2 – intervals of parameter s where the corresponding intersection reside;
n.a. – point st does not exist. Knowing the intervals int1 and int2 is a prerequisite for
numerical methods that compute intersection points.

6.8 Smoothing Sharp Turn by a Clothoid Pair

Now when basic algorithms for general clothoid calculations have been estab-
lished, we have arrived to the point where the clothoid could be applied for path
smooting. The simplest case is smoothing of a sharp turn that consists of two
straight line segments, so that the problem is how to compute parameters of two
clothoids that ensure smooth transition between two lines. This corresponds to
the case where initial and final path curvatures are equal to zero. In the literature
process of smoothing piecewise linear segments is commonly called blending (see
e.g. [151]). With the use of clothoids a G0 continuous curve is blended to G2

continuous curve.

6.8. Smoothing Sharp Turn by a Clothoid Pair 133

The input to a corresponding smoothing algorithm is a sharp turn given by
two straight line segments. An example is shown in Figure 6.7, where the turn is
given by points S, T and G in the (x, y) plane, which denote the start position,
the location of the sharp turn, and the goal position, respectively. For simplicity,
it is assumed that point T is in the origin of the (x, y) plane, point S is on the
negative x-axis, while G can be anywhere, under condition that three point are
not collinear. No generality is lost with this simplification, because any particular
case can be transformed to the described one by an appropriate set of translations
and rotations. The output of the algorithm are parameters of the two clothoids
that build a final, smoothed path. The procedure is called SmoothSharpTurn

and its pseudocode is enlisted in Algorithm 6.8.1.

In step (1) of the algorithm it is being checked if the turn occurs in the negative
direction (i.e. the goal point is in negative y half-plane). The case of negative
turn can be viewed in the same way as the positive turn because of the symmetry
with respect to x-axis. Thus, the goal point is mirrored to positive y half-plane
and the appropriate flag is set in order to recover back to negative turn later.

To enable collision avoidance, the deviation of the smoothed path from the
original path can be controlled by means of two input parameters, namely dmax

and emax. The parameter dmax denotes the maximum allowed distance between
clothoid starting point and point T , denoted as d in Figure 6.7. This distance
obviously cannot be longer than distances |ST | and |TG|, which is ensured in step
(2) of the algorithm. The parameter emax denotes the maximum allowed distance
of the closest point on the clothoid to point T, denoted as e in Figure 6.7. To
robot will be able to reach higher velocity if the path curvature is lower. This
is obtained by maximizing distances d and e, but without exceeding the bounds
dmax and emax.

Algorithm first solves the problem using the basic clothoid and resulting path
is then scaled to match the original problem. The basic clothoid is depicted in
Figure 6.7 (b). A path is smoothed using a pair of two symmetrical clothoids,
the first from point C1 to C2, and the second from point C2 to C3. Because
of symmetry, the amount of orientation change is the same for both clothoids.
Therefore, the transition point C2 from the first to the second clothoid will lie at
the bisector of the angle spanned by lines ST and TG. The tangent angle at the
transition point θC2

is determined in step (3) of the algorithm.

134 Chapter 6. Path Smoothing

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1

0

0.05

0.1

0.15

x

y

S(xs, 0) T (0, 0)

G(xg, yg)

C1

C2

C3

Bisector

d

d

e

θC2

(a)

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0
-0.1

0

0.1

0.2

0.3

0.4

x

y

Bisector

θC2

dBC

eBC

(xBCs, yBCs)

(xBCt, yBCt)

(b)

Figure 6.7. Smoothing of sharp turn by clothoid pair. (a) A sharp turn is given by
two straight lines: |ST | from start to turn point and |TG| from turn point to goal. A
final smoothed path, shown as red curve, consists of two straight line segments |SC1|
and |C3G|, first clothoid between points C1 and C2, and second clothoid between C2 and
C3. (b) Basic clothoid used as auxiliary curve for computing parameters of the clothoid
pair.

6.8. Smoothing Sharp Turn by a Clothoid Pair 135

Algorithm 6.8.1: SmoothSharpTurn

Input: xs, xg, yg, dmax, emax

Output:
x0C1

, y0C1
, θ0C1

, κ0C1
, cC1

, LengthC1
: first clothoid parameters

x0C2
, y0C2

, θ0C2
, κ0C2

, cC2
, LengthC2

: second clothoid parameters

(1) if (yg < 0)

then

{

NegativeTurn = true ;
yg = −yg;

else NegativeTurn = false ;

(2) dmax = min(dmax, |ST|, |TG|);
(3) θC2

= arctan(yg/xg)/2;

(4) sBC =
√

2 · θC2
;

(5) (xBCs, yBCs, xBCt, yBCt, dBC , eBC) = ComputeBasicClothoid(sBC , θC2
);

(6) ScaleFactor = max(dBC/dmax, eBC/emax);
s = sBC/ScaleFactor;
xC2

= xBCt/ScaleFactor; yC2
= yBCt/ScaleFactor;

d = dBC/ScaleFactor;
e = eBC/ScaleFactor;

(7) x0C1
= −d; y0C1

= 0;
θ0C1

= 0;
κ0C1

= 0;
cC1

= ScaleRatio2;
LengthC1

= s;
if (NegativeTurn)

then cC1
= −cC1

;

(8) x0C2
= xC2

; y0C2
= yC2

;
θ0C2

= θC2
;

cC2
= −ScaleRatio2;

LengthC2
= s;

if (NegativeTurn)

then







y0C2
= −y0C2

;
θ0C2

= −θ0C2
;

cC2
= −cC2

;

In step (4) algorithm computes required length sBC of the basic clothoid so
that, at the point where it reaches the bisector, its tangent angle is equal to angle

136 Chapter 6. Path Smoothing

θC2
, as can be seen in Figure 6.7 (b). In step (5), a procedure ComputeBas-

icClothoid is called, which computes start point (xBCs, yBCs), transition point
(xBCt, yBCt) and distances dBC and eBC of the basic clothoid. This procedure
is straightforward to implement using procedure GetBasicClothoidCoordi-

nates given in Algorithm 6.6.2, so that its details are not given here. In general
case the obtained sizes dBC and eBC will not fulfil constraints dmax and emax.

This is solved by performing scaling of the basic clothoid in step (6) of the
algorithm. Scaling factor is determined as a maximum of ratios dBC/dmax and
eBC/emax. Therefore the distance d will be always lower than or equal to distances
|ST | and |TG|, so that the final path, besides of two clothoids, can also consist
of two straight line segments, SC1 and C3G.

Finally, parameters of both clothoids are computed in steps (7) and (8) of the
algorithm, respectively. The second clothoid is obtained by reflecting the first one
with respect to the bisector. Tangent angle and curvature continuity between the
two clothoids (i.e. in the point C2) follow by symmetry.

The described problem always has a solution. Even if one of the constraints
dmax and emax is equal to zero, the algorithm will produce a solution that consists
of two clothoids with infinite maximum curvature, which actually represents a
rotation in place.

The algorithm SmoothSharpTurn, as implemented in pseudocode given in
Algorithm 6.8.1, results with maximum change of the orientation that is always
lower than π. However, if required, algorithm can be extended to handle the
cases where orientation change is in the range [π, 2π). Further, the described
implementation takes obstacles into account only implicitly, via parameter emax.
This can be limitation in some cases so that the algorithm should be extended to
explicitly handle polygonal obstacles. This is obtained by using algorithm that
finds an intersection of a clothoid and a line described in Section 6.7. In this
case the clothoid path can be fine tuned so that it is placed in the middle of
the passage bounded by inner and outer obstacles. An example of the algorithm
output is illustrated in Figure 6.8.

This extension is especially useful if multiple successive short turns in the
same direction are required. This can be the case when circular obstacles are
approximated by polygons. When using the visibility graph with such polygonal
representations, the resulting path may consist of many short line segments. If
every pair of segments is smoothed separately, the curvature will change on every
segment to some maximum value and back to zero, so that the robot will have a
hard time following such a path. Therefore it makes sense to combine multiple
short turns into the one turn if possible. In this way the safe distance to the
obstacles is no more guaranteed implicitly by the path planner, so that the obsta-
cles must be handled explicitly when smoothing a path. The extended algorithm
illustrated in Figure 6.8 does exactly that.

6.9. Connecting Circle and Line by Two Clothoids 137

−1 −0.8 −0.6 −0.4 −0.2 0 0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Inner obstacles

Outer obstacles

Figure 6.8. The clothoid pair (blue) is tuned so that the minimum distance between the
path and inner obstacles is approximately the same as the minimum distance between
the path and outer obstacles.

6.9 Connecting Circle and Line by Two Clo-

thoids

Most of the motion planning approaches that are found in the literature as-
sume that both initial and final robot velocities are equal to zero. This kind
of smoothing corresponds to static smoothing. For static smoothing initial and
final path segments are always straight line segments, so that the algorithm
SmoothSharpTurn described in Section 6.8 does all the job. However, in
dynamic environments we often encounter situations when current plan becomes
invalid due to changes in the environment or change of the goal configuration.
Then replanning must be performed. But now initial linear and angular velocities
cannot be assumed to be zero because the robot was already moving while exe-
cuting the previous plan. If initial angular velocity is non-zero, the initial path
segment is no more line, but the circle.

This raises the question on how to extend the algorithm SmoothSharpTurn

in order to account for non-zero initial curvature of a path—this is called a dy-
namic smoothing and the problem is considerably harder than static smoothing.
The problem is equivalent to problem of connecting circle and line in order to
obtain a G2 continuous curve. When using clothoids, unlike static smoothing,
this problem does not always have a solution. The solution path is not unique
and may consist of various combinations of clothoids, circular arcs and straight

138 Chapter 6. Path Smoothing

lines. Here it will be solved by using two symmetric clothoids.

P0

P1

G1G2

Bisector

Figure 6.9. An example of connecting circle and line G1G2 using two clothoids. The
initial position of the robot is in point P0 on the circle. The circle has radius that is
inverse of initial curvature, i.e. r = |1/κP0

|.

An example of the solved problem is shown in Figure 6.9. The algorithm de-
veloped for this problem is called ConnectCircleLine2C and the pseudocode
is given in Algorithm 6.9.1. The input to the algorithm is an initial state denoted
as P0 with coordinates (xP0

, yP0
), tangent direction θP0

and curvature κP0
6= 0.

The goal line is given by points G1 and G2, where motion direction is from G1 to
G2. The planned path must end on the line through points G1 and G2, but not
after point G2. Outputs of the algorithm are parameters of two clothoids that
are solution to the problem and the flag that reports success or failure.

In the function CheckNecessaryConditions the algorithm checks if nec-
essary conditions are fulfilled in order to perform fast heuristics if it is worth to
further trying to solve the problem. The solution may exist even if the necessary
conditions are not fulfilled, but those are solutions that we are not interested, as
they typically result in extremely long paths or extremely sharp turns. The first
necessary condition is that the goal point is on the same side of the robot where
the center of the circle of curvature is located. In the example in Figure 6.9 this
means that at least one of the points G1 and G2 is to the left of the tangent vector
in point P0. The other necessary condition is that start point P0 is to the left of
vector G1G2 if the initial curvature is positive, and right otherwise.

To compute parameters of both clothoids, it is sufficient to find required sharp-
ness of the first (entering) clothoid—it is then straightforward to determine re-
maining parameters of both clothoids. Actually, instead of sharpness, scaling

6.9. Connecting Circle and Line by Two Clothoids 139

factor C is chosen as unknown variable because it directly determines size of the
clothoid and better numerical properties of the algorithms are achieved in this
way. A single equation of the form f(C) = 0 has to be solved in order to obtain
a solution. As it will be shown, function f is nonlinear so that numerical root-
finding method must be utilized. Those methods require that a root is bracketed
in some interval (C1, C2) so that f(C1) and f(C2) have opposite signs. This is
done in function BracketSolution of the algorithm.

Algorithm 6.9.1: ConnectCircleLine2C

Input:
P0 : initial state with parameters (x, y, θ, κ)
G1, G2 : begin and end points of goal line with parameters (x, y)

Output:
CL1, CL2 : two clothoids that connect circle and line with parameters

(x0, y0, θ0, κ0, c, C, length)
Success flag (true or false)

if fail CheckNecessaryConditions(P0, G1, G2)
then return (false);

if fail (C1, C2) = BracketSolution(P0, G1, G2)
then return (false);

if fail (C) = FindRoot(P0, G1, G2, C1, C2)
then return (false);

if fail CheckAdmissibility(P0, G1, G2, C)
then return (false);

(CL1, CL2) = ComputeClothoidParameters(P0, G1, G2, C)
return (true);

The lower bracket C1 is determined so that for a while it is assumed that
initial curvature κP0

is zero. Then the problem is reduced to the problem of
smoothing the sharp turn with a pair of clothoids from Section 6.8. If problem is
additionally constrained so that beginning clothoid must strictly begin in point
P0, then correspondent Algorithm 6.8.1 gives us the lower bracket C1. This is
enabled by the fact that if the initial curvature is zero, the required sharpness of
the clothoid is always higher, i.e. scaling factor is lower, compared to the case of
non-zero curvature.

Upper bracket C2 is obtained by limiting total orientation change of the turn
to be less than 2π. Let’s suppose a turn in the positive direction. Total orientation
change is then obtained as

∆θ = θG1G2
− θP0

, (6.74)

where θG1G2
is direction of vector G1G2. As this orientation change is divided to

both entering and exiting clothoid, the maximum absolute orientation change of

140 Chapter 6. Path Smoothing

any of these clothoids is less than π. Let point P1 in Figure 6.9 denote a virtual
begin point of the entering clothoid obtained by following the entering clothoid
in the direction of decreasing curvature until the curvature becomes zero. The
maximum orientation change of the portion of entering clothoid from P1 to P0 is

∆θP1P0max = min(2π − ∆θ, π). (6.75)

By using (6.13) and (6.16) we obtain the upper bracket as

C2 =

√

2∆θP1P0max

κP0

. (6.76)

It remains to define an appropriate function f(C) whose root gives a solution
of our problem. As a preliminary, let’s first define a bisector line as an axis of
symmetry between vector opposite to tangent vector in point P1 and vector G1G2

(see Figure 6.9). Now we want to find a value of C for which the entering clothoid
intersects the bisector so that in the point of intersection clothoid and bisector
are perpendicular to each other. If such value exists, then the problem has a
solution and the function f(C) has a root in this value.

P0

P1

G1G2

I

L

f1

f2

Bisector

Figure 6.10. An iteration of searching for the appropriate clothoid scaling, which is
the root of function f(C). For function f(C), angular distance f1 or Euclidean distance
f2 in the figure can be chosen. The scaling in the current iteration is lower than the
root. At the root value, both f1 and f2 will be zero.

The function f(C) that has such a property can be defined in two ways. The
first possibility is to first find an intersection point of clothoids with the bisector.

6.9. Connecting Circle and Line by Two Clothoids 141

This is illustrated in Figure 6.10, where the same problem as in Figure 6.9 is used
but lower scaling C was used. The mentioned intersection point is denoted as
I in the figure. The output of the function f(C) is then defined as a difference
between clothoid orientation in intersection point I and orientation of the normal
to the bisector, which is in the figure denoted as f1. If the tangent of the clothoid
and normal to the bisector are parallel, the solution is found and the output of
the function is zero. However, this definition of f(C) is problematic because for
some scalings C there will be no intersections of clothoids and bisector so that
function is undefined. The second problem is that to examine a function, an
intersection between clothoid and a line must be found, which requires solving a
nonlinear equation. This means that in every iteration of the root finding method,
another root finding problem must be solved which can considerably increase the
computation burden.

Algorithm 6.9.2: CriterionFunction

Input: C,P0, G1, G2
Output: f

P1 = ComputeP1(C,P0);
P1TangentOpp = LineFromDirectionAndPoint(P1.th + pi, P1.x, P1.y);
G1G2 = LineFromPoints(G1.x,G1.y, G2.x,G2.y);
if (IsParallelAndOppositeApprox(P1TangentOpp,G1G2))

then































distG1G2toP1 = GetDistanceToPoint(G1G2, P1.x, P1.y);
if (IsZeroApprox(distG1G2toP1)

then f = 0;
else if (distG1G2toP1 ∗ P0.k < 0)
then out = inf ;
else out = −inf ;

else























































Bisector = GetSymmetricalLine(P1TangentOpp,G1G2);
Cloth.x0 = P1.x; Cloth.y0 = P1.y;
Cloth.th0 = P1.th;
Cloth.k0 = 0;
Cloth.C = C;
s = GetPointWithOrientation(Cloth,Bisector.Direction − pi/2);
(xLat, yLat) = GetClothoidPoint(Cloth, s);
distToBisector = GetDistanceToPoint(Bisector, xLat, yLat);
f = − sgn (C) ∗ distToBisector;

The second and better implementation of f(C) is given in the Algorithm
6.9.2. Here a point on the clothoid is searched where the tangent is normal to the
bisector line, which is denoted by point L in Figure 6.10. Then the value of the

142 Chapter 6. Path Smoothing

function is defined as the signed distance between point L and bisector (denoted
as f2 in Figure 6.10). This definition does not require searching of an intersection
with the bisector line.

However, the problem with this definition is that distance f2 can become
infinite, as illustrated in Figure 6.11. This happens when vectors G2G1 and
tangent vector in P1 are parallel and have the same directions. Then the bisector
line is in the infinity, and the output of the function can be +∞, −∞ or zero,
depending on distance between vector G1G2 and point P1. If at some value of
scaling C this distance becomes approximately zero, then this value is a root so
that value f(C) = 0 is returned in the function. This is because then the position
of bisector line is undefined and any line normal to the vector G1G2 can be taken
as the bisector. To obtain the correct solution, those cases are handled separately
in Algorithm 6.9.2.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
−5

0

5

10

15

20

25

C

To +∞

Solution

Figure 6.11. Output of the function f(C) obtained with Algorithm 6.9.2 for a query
P0 = (0, 0, 0, 0.1), G1 = (6.5,−0.6) and G2 = (7.6,−0.7). Methods like false position or
secant method are not adequate for this problem because the function goes to infinity.
Newton-Raphson method would probably also have much difficulty because of the same
reason. Although the bisection method rate of convergence is usually slower than other
methods, in this particular case it is faster. It is also known that it is secure because
it does not depend on output of the function, but only on its sign. In this example it
needs 16 iterations to find a solution with precision of 10−4.

As in almost every computational geometry algorithm implementation, it is
very important to take into consideration the limited precision of the computer
floating point arithmetic, otherwise problems with the robustness may arise (see
e.g. [145]). Therefore some functions in Algorithm 6.9.2, such as IsParalle-

lAndOppositeApprox, are evaluated approximately.

6.10. Connecting Circle and Line by a Single Clothoid 143

Now that function f(C) is defined and its root is bracketed, it remains to
find a solution to the equation f(C) = 0 which is done in function FindRoot in
Algorithm 6.9.1. Not every root finding method is appropriate for this problem
because the function f(C) can go to infinity which is a serious problem for many
root-finding methods. In such circumstances, surprisingly, the bisection method
achieves faster rate of convergence than other, otherwise faster methods such as
the false position method. The fact that function can go to infinity is not a
problem for bisection method because it uses only a sign of the function value.
Moreover, the bisection method is one that cannot fail; if there exists a solution,
this method is guaranteed to find it.

The solution of f(C) is always unique because the entering clothoid is con-
strained to pass exactly through the initial position P0, as opposite to the case
with zero initial curvature where initial position could be anywhere on the begin-
ning line. It is left for future research to investigate if faster convergence can be
obtained by combining the bisection method with the Newton-Raphson method.

If the function FindRoot reports success, the solution C to the equation
f(C) = 0 is found. However, the solution may still not be admissible, so that
it is additionally checked in function CheckAdmissibility in Algorithm 6.9.1
(ConnectCircleLine2C). Here the conditions are checked such as that point
L in Figure 6.10 must lie after point P0 on the path. Additionally, the produced
path may not be collision-free so that it is tested using collision detection module.
If the solution C is admissible, it is straightforward to compute remaining param-
eters of both required clothoids. This is done in function ComputeClothoid-

Parameters in Algorithm 6.9.1.

6.10 Connecting Circle and Line by a Single Clo-

thoid

In some circumstances it is possible to connect circle and line by a single clothoid.
An example is shown in Figure 6.12. Assume that the point P0 is initial position,
so that the circle is determined with coordinates and tangent direction in point
P0, while its radius r is obtained as inverse of the initial curvature, i.e. r = 1/|κP0

|.
Line G1G2 is the goal line. In Figure 6.12, the clothoid begins in point P1 on the
circle and ends on the line G1G2. As clothoid is not very flexible in number of
parameters that can be tuned (only sharpness and length are available), additional
circular arc must be used in order to obtain G2 continuity, which is inserted
between points P0 and P1.

To solve the problem, again a nonlinear equation f(C) = 0 has to be solved,
whose root C represents, if it exists, the scaling of the required clothoid. In this
case function f(C) is defined as

f(C) = d(G1G2,M) − d(G1G2,M
′)

144 Chapter 6. Path Smoothing

P0

P1

G1G2

M

1

κP0

Figure 6.12. An example of connecting circle with tangent in P0 and the goal line
G1G2 using a single clothoid. An additional circular arc is inserted between points P0

and P1.

where d(G1G2,M) and d(G1G2,M
′) are signed Euclidean distances between vec-

tor G1G2 and points M and M ′, respectively (see Figure 6.13). The point M is
the center of path curvature in the point P0 and point M ′ is center of curvature
of the clothoid in the point P1 where it has the curvature equal to κP0

.
The coordinates of point M are

xM = xP0
− 1

κP0

sin θP0
, yM = yP0

+
1

κP0

cos θP0
. (6.77)

The point M ′ is center of curvature of the clothoid in the point P1 where it has the
curvature equal to κP0

. The parameter s of the clothoid in point P1 is therefore

sP1
= |κP0

|C2. (6.78)

The coordinates of point P1 are now obtained as

xP1
= Clx(sP1

), yP1
= Cly(sP1

), (6.79)

where the coordinates of clothoid point (Clx(s), Cly(s)) are defined by equation
(6.15), while its parameters are (x0, y0, θ0, κ0) = (xG1

, yG1
, θG2G1

, 0). Here the
point G1 was chosen as the begin point of the clothoid, but it can be any point
on the line G1G2 as well, because only distance to G1G2 is important. The path
tangent direction θP1

in point P1 is opposite to clothoid tangent direction in P1,

6.10. Connecting Circle and Line by a Single Clothoid 145

P0

P1

G1G2

M

M ′

f(C)

1
κP0

1
κP0

Figure 6.13. An iteration of searching for the right clothoid scaling, which is the root
of function f(C) given by equation (6.10). The scaling in the displayed iteration is
lower than the root. At the root value, function f(C) becomes zero.

so that

θP1
= θG2G1

+ sgn (C)
s2

P1

2C2
+ π. (6.80)

Finally, the coordinates of point M ′ are obtained as

xM ′ = xP1
− 1

κP0

sin θP1
, yM ′ = yP1

+
1

κP0

cos θP1
. (6.81)

The algorithm that solves the problem of connecting circle and line by a single
clothoid is called ConnectCircleLine1C. Its overall structure is actually very
similar to Algorithm 6.9.1 (ConnectCircleLine2C), except that the imple-
mentation details of the functions are different, so that pseudocode will not be
given here.

Implementation of the function BracketSolution is also similar to one in
algorithm ConnectCircleLine2C, and the absolute orientation change of the
clothoid is again limited to π.

The problem of root finding in function FindRoot is here considerably easier
compared to the case when two clothoids are used, since function f(C) has no
discontinuities, and its derivative can be easily found. Therefore, for root finding
the Newton-Raphson method using derivative is used. For safety, its fail-safe
combination with the bisection method is used. The function f(C) as defined in

146 Chapter 6. Path Smoothing

equation (6.10) has the unique root.
Function CheckAdmissibility here checks if the point P1 is before point

P0 on the path. Also, it is tested if the path is collision-free. If the path is not
admissible, it is rejected.

An alternative approach to this problem is described by Meek and Walton
[106], where instead of scaling factor, the tangent orientation of the clothoid is
used as unknown variable.

6.11 Connecting Circle and Line by Three Clo-

thoids

If replanning is required, algorithms ConnectCircleLine2C and Connect-

CircleLine1C give a quick solution to the problem of connecting circle and line
path segments. However there are configurations for which those algorithms may
not have a solution (e.g. if robot is currently steering right, but the goal is to the
left), solution may not be admissible (e.g. because of obstacles), or it may not be
feasible (e.g. because of actuator limits). This is illustrated in Figure 6.14, where
the robot initial configuration is in point P0. Original shortest path connects
initial configuration to the node G1 of the roadmap. As current configuration
in point P0 has high curvature to the right, i.e. opposite of the goal line G1G2,
both algorithms ConnectCircleLine1C and ConnectCircleLine2C fail to
produce an acceptable path.3

In such situations three clothoids can be used in order to obtain more flexibility
because in this way any circle and line can be connected. This may be obtained
by first forcing the path to go straight. This transition from circle to line can be
easily obtained by using a single clothoid called transition clothoid. The example
is displayed in Figure 6.14, where the transition clothoid goes from initial point
P0 to point P1.

After the path is made straight, the new shortest path is obtained by extending
the straight line segment to point C1 and dynamically inserting C1 as a new
node into the roadmap. In Figure 6.14 this results with the new shortest path
(P1-C1-G1). The new path segment (P1-C1-G1) consist of straight lines so that
it is easily smoothed using algorithm SmoothSharpTurn, resulting with line
segment P1P2, and two clothoids from P2 to P3 and from P3 to P4.

Altogether tree clothoids were used to connect initial configuration in point
P0 with the roadmap point G1, so that this is equivalent to connecting circle and
line with three clothoids. This method gives more flexibility because in this way
any circle and line can be connected.

However, in this case there is no more the unique solution as was the case

3Algorithm ConnectCircleLine2C, however, can find an admissible path, but it begins
with very sharp turn which is not acceptable, except at very low speeds

6.11. Connecting Circle and Line by Three Clothoids 147

P0

P1 P2
P3

P4

C1

G1

G2

Original shortest path

New shortest path

Smoothed path

Figure 6.14. Example of two paths constructed by ConnectCircleLine3C algo-
rithm. Initial configuration is in point P0, while the goal line goes from point G1 to
G2 (G1 and G2 may e.g. be roadmap nodes). The blue path is a better choice as it
is shorter. Red points in the figure denote transitions line-clothoid, clothoid-line and
clothoid-clothoid. Original shortest path is also shown, which is not very useful in this
case because current configuration cannot be connected to it. The new shortest path is
constructed beginning from point P1 where zero curvature is achieved.

previously so that there is an infinite set of possible solutions. Usually some
heuristics and trial and error method must be utilized to solve the problem in
real time.

The smoothing algorithm alone in this case is simpler comparing to algo-
rithms ConnectCircleLine2C and ConnectCircleLine1C because there
is no need to solve any nonlinear equation. However, the whole problem is more
complex and overall computation time is typically higher compared to previous
algorithms, mainly due to the fact that a new node has to be inserted into the
roadmap in every iteration. The correspondent algorithm is called Connect-

CircleLine3C and pseudocode is given in Algorithm 6.11.1.

Algorithm first determines maximum allowed clothoid sharpness that can be
used when transitioning to the straight line. As this requires knowledge about
robot dynamics and actuator limits, this query is directed to function GetMax-

imumSharpness in the trajectory planning module.

In each iteration of the for loop in the algorithm, a new scaling factor from

148 Chapter 6. Path Smoothing

allowed range is picked based on heuristics. The allowed range of scalings is
determined based on maximum sharpness and maximum allowed length of the
transition clothoid.

Algorithm 6.11.1: ConnectCircleLine3C

Input: ShortestPath, CurrentState
Output: SuccessF lag, SmoothedPath

cmax = TrajectoryPlanning->GetMaximumSharpness(CurrentState);

for 1 to MaxIterations






























































C = PickScaling(cmax);
ClothoidAndLine = StraightPath(CurrentState, C);
if (fail CheckAdmissibility(ClothoidAndLine))

then continue ;
PathPlanning->UpdatePath(ClothoidAndLine);
ShortestPath = PathPlanning->GetShortestPath();
SmoothedPath = SmoothPath(ShortestPath);
if (fail TrajectoryPlanning->CheckFeasibility(SmoothedPath))

then continue ;
else return (true);

return (false);

Then for the current scaling the transition clothoid is computed in function
StraigthPath. This function also returns a line where the clothoid lands,
which is easily computed as tangent in point where curvature of the clothoid be-
comes zero. The obtained clothoid and line are then checked for admissibility,
i.e. collision check is performed. If there is no collision, the endpoint of the line
is inserted as a new node into the roadmap, and the new shortest path is com-
puted. This path is then smoothed in function SmoothPath which internally
calls SmoothSharpTurn algorithm.

Finally, the smoothed path is checked for feasibility, which again cannot be
done by the path-smoothing module, but is directed to trajectory planning mod-
ule. Here it is tested if the path can actually be tracked by the robot regarding
its current velocity, actuator limits and other dynamic constraints. If the path is
feasible, the algorithm terminates and reports success. Otherwise, the next itera-
tion is tried, until maximum number of iterations is reached. If this happens, the
failure is reported. Note that no optimality criterion is examined in the described
algorithm, but this could easily be added so that the shortest, or even the fastest
path can be searched for.

An example of two different paths produced by algorithm ConnectCircle-

6.12. Emergency Stop 149

Line3C are given in Figure 6.14. It can be seen that algorithm ConnectCir-

cleLine3C successfully finds an admissible path. For illustration, another path
produced by the same algorithm is shown with lower sharpness of the transition
clothoid.

Another variant of this algorithm is possible that is less powerful but is po-
tentially faster. In that variant the shortest path would not be replanned and
therefore no roadmap update would be necessary. The idea is to directly con-
struct three clothoids in order to connect to the current shortest path. In this
case all three clothoids have to be explicitly checked for collision with obstacles.
It is expected that in some circumstances that algorithm could give a solution
that is more close to the optimum compared to described variant, so that it could
be added to existing algorithms in the future.

It can be noticed that algorithm ConnectCircleLine3C works on higher
level than any previously described algorithm—although it is located in the path-
smoothing module, it calls some functions from path-planning and trajectory
planning modules. This is because the solution is not unique, and path-smoothing
module by itself cannot tell which path is feasible, nor it can replan the global
path. This is one example where no strict algorithm flow of the decoupled ap-
proach is followed—control is directed back or forth to other modules as necessary.

6.12 Emergency Stop

In some situations changes in the environment happen to be so drastic that none
of the described replanning algorithms can find acceptable solution—this is most
likely to be caused by fast moving obstacles, change of goal configuration, or by
algorithm incompleteness. Then the last resort is to brake as fast as possible
and possibly to pick a steering direction that is clearest of obstacles—this is
called emergency stop maneuver. Similar situations often occur in everyday life,
such as in traffic, sport, or navigating trough spaces crowded with people. If
some obstacle crosses our path unexpectedly, we typically stop and continue our
motion when the path becomes clear again.

Once the robot has stopped, it can plan an alternative path to the goal if
one exists, wait some time until path becomes clear again, or decide to pick
alternative goal position. Path smoothing is always easier if the robot is in still
state because the feasible trajectory along the smoothed path can always be found
if one exists. This is enabled by the fact that no excessive space is needed for
robot to continue its prior motion and robot can simply reorientate itself in path
direction (remember that here we do not impose any constraints on maximum
path curvature) and then normally execute the rest of the path.

In current implementation the EmergencyStop algorithm is implemented
so that references of both linear and angular velocity are set to zero and no
further planning is performed. This is because here we only want to stop as fast

150 Chapter 6. Path Smoothing

as possible, without predicting the motion to the goal. However, while doing so,
it would be desirable to also pick a path that is free from obstacles if possible. For
such purpose a pure reactive algorithm that also takes into account presence of
obstacles is a good choice. The appropriate solution could be a dynamic window
algorithm developed by Fox et al. [50], which is planned in future implementation.
It is also desirable that this reactive algorithm is implemented in robot’s hardware
to obtain fastest possible reaction.

6.13 Smoothing at Goal Side

Once a path approaches to the goal, it is necessary to depart from the roadmap
in order to reach the goal. The difference between smoothing at start and goal
side is that at the goal we always want the path to have zero curvature, so that
the goal is always a single point, or a line. There are three possibilities:

1. Only a desired goal position is specified. This is the simplest case where a
path should only reach the goal point, no matter of tangent orientation at
the goal.

2. Both desired goal position and orientation are specified. A path can then
land somewhere at the tangent line that leads to the goal position and
orientation. If enough free space is not available in front of the goal, the
problem is still feasible because the robot can arrive to the goal, and then
rotate in the place in order to attain desired orientation. Thus, the goal
could be either a line or a point. The preferred case is the line, because
then the goal configuration can be reached in shorter time.

This case could be required e.g. if the robot should arrive at a passage
between two rooms. Then it is desirable that the robot is properly oriented
at the goal in order to quickly continue its motion.

3. Desired goal position, orientation and velocity are specified. In this case
path should always land on the tangent line at the place before the goal
position so that the goal is always a line. This means that the problem may
not have a feasible solution if not enough free space is available before the
goal.

This case could be required for applications such as robot soccer, where the
ball should be kicked with specified velocity and orientation.

In all three cases the problem of smoothing is actually problem of connecting
two lines, or a circle and a line with G2 continuous curve. This is straightforward
to solve using so far described algorithms. If the goal is a line, then it is necessary
to pull tangent from the goal point and use collision check algorithms to find out
how long this tangent can be. In the case that a velocity at the goal is specified, it

6.14. Putting It All Together 151

is also necessary to check the feasibility of the path, because it could be impossible
to reach specified velocity if the path makes a sharp turn before the goal.

For some applications there could also arise the need for non-zero curvature
at the goal. This imposes a problem of connecting two circles with G2 continuous
curve. Although the problem was not studied in this work, algorithms can be
extended for this case as well.

6.14 Putting It All Together

The highest level algorithm of the path-smoothing module is called SmoothPath

and its pseudocode is given in Algorithm 6.14.1. Algorithm inputs are current
and goal state of the robot as well as the shortest path obtained from the path
planning module, which consists of straight line segments. Outputs are success
flag and final smoothed path. In the pseudocode some input arguments of the
functions are omitted for the sake of brevity.

Algorithm 6.14.1: SmoothPath

Input: CurrentState,GoalState, ShortestPath
Output: Success, SmoothedPath

if DirectConnectionPossible()
then (Success, SmoothedPath) = DirectConnect();

else































SmoothedShortestPath = SmoothPiecewiseLinearPath();
(Success1, ConnectSegment) = Connect();
(Success2, DepartSegment) = Depart();
if Success1 and Success2

then SmoothedPath =
ConnectSegment + SmoothedShortestPath + DepartSegment;

if not Success
then EmergencyStop();

The algorithm first tests whether it is possible to directly connect start and
goal configurations, i.e. if there are no obstacles between. If this is the case, there
is no need for the roadmap, so that algorithm DirectConnect tries to directly
connect start and goal configurations using either lines, circular arcs or clothoids.

If there is no direct connection from start to goal, the shortest path is first
smoothed in algorithm SmoothPiecewiseLinearPath, which internally calls
SmoothSharpTurn algorithm. This algorithm effectively smoothes majority
of the path (except start and end parts). Note that this smoothing process is very
lightweight because it can be conducted without explicitly considering obstacles
as safe distance to the obstacles is ensured by the path-planning module. The al-

152 Chapter 6. Path Smoothing

gorithm SmoothPiecewiseLinearPath results with a smoothed shortest path
using clothoids and lines.

Remember that roadmap methods require procedures to connect to and depart
from the roadmap, and here we additionally require that connecting curves are
G2 continuous, which is done in Connect and Depart algorithms. If both
operations succeeded, connecting path segments, smoothed shortest path and
departing path segments are concatenated resulting with final smoothed path. In
case of failure in either of algorithms, algorithm EmergencyStop is called.

The pseudocode of the algorithm Connect is given in Algorithm 6.14.2. Its
main purpose is to find G2 continuous connection from current configuration to
the roadmap. It first checks if the curvature of robot’s current motion is zero.4

If this is the case, the algorithm ConnectLineLine is called. It internally calls
algorithm SmoothSharpTurn, and also performs some collision checks and
locally modifies the shortest path.

Algorithm 6.14.2: Connect

Input: CurrentState, SmoothedShortestPath
Output: Success, ConnectSegment

if CurrentState.κ == 0
then (Success, ConnectSegment) = ConnectLineLine();

else























(Success, ConnectSegment) = ConnectCircleLine2C();
if not Success

then (Success, ConnectSegment) = ConnectCircleLine1C();
if not Success

then (Success, ConnectSegment) = ConnectCircleLine3C();

Algorithm 6.14.3: Depart

Input: GoalState, SmoothedShortestPath
Output: Success,DepartSegment

(Success,DepartSegment) = ConnectLineLine();

The situation is more complicated if robot is moving along the path with
non-zero curvature—this typically happens in replanning scenarios. Here algo-
rithms that account for non-zero initial curvature have to be used. Start con-
figuration has to be connected to the beginning segment of the shortest path,
which is a line, therefore we are interested in algorithms that connect circle and

4if the robot is not moving, the curvature is also considered to be zero.

6.15. Experimental Results 153

line, namely ConnectCircleLine2C, ConnectCircleLine1C, Connect-

CircleLine3C.
If any algorithm fails to find an admissible path, the next algorithm is tried. In

the current implementation algorithm ConnectCircleLine2C is tried first, as
it gives the path that is most consistent with path obtained by SmoothSharp-

Turn so that some kind of repeatability is achieved and “path chattering” is
avoided in case of replanning.

In connection process, the shortest path from path-planning module may be
locally modified by some algorithms, so that connecting path segment has to be
explicitly checked for collision. Feasibility check is also performed, which is done
by calling functions from the trajectory planning module. For simplicity, these
calls are not shown in the pseudocode.

Finally, algorithm Depart (Algorithm 6.14.3) is called that departs from the
roadmap in order to connect it to the goal configuration. As it is assumed that
the curvature at the goal is always zero, algorithm ConnectLineLine suffices
for this purpose.

6.15 Experimental Results

To verify correctness of the clothoid steering model, some experiments on the real
mobile robot were performed. For this the soccer robot (described in more details
in Subsection 7.3) was used. To illustrate necessity of introducing G2 continuous
paths, the results were also compared to the case where only circular arcs are used
for smoothing, which is only G1 continuous. Circular arcs were used in former
implementation of the algorithms, as described in [25].

To best illustrate superiority of clothoids over circular arcs, a map with zig-zag
shaped walls was used. This produced a path that is very demanded for the robot
as it requires fast changes of steering direction. The trajectories were planned
so that the robot tracks smoothed paths at a constant velocity of 0.6 [m/s],
except at begin and end segments, where uniform acceleration and deceleration
were applied. For trajectory tracking a nonlinear trajectory-tracking controller
described in Section 8.3.2 was used.

The results obtained for path smoothing using circular arcs are shown in
Figure 6.15 (a). It is visible that the robot has a hard time tracking the trajectory,
as the tracking error is rather high. On the contrary, tracking of path smoothed
by clothoids resulted with significantly lower tracking error (Figure 6.15 (b)).
Particularly, the sum-squared-error (SSE) was 4 times lower.

Furthermore, with clothoid-smoothed path maximum trajectory-tracking ve-
locity that could be achieved was up to 25 % higher compared to the case with
circular arcs. Here the maximum trajectory-tracking velocity denotes the veloc-
ity at which the robot is still able to track the trajectory, i.e. the tracking error
remains stable.

154 Chapter 6. Path Smoothing

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0.05

0.1

0.15

0.2

0.25

0.3

0.35

x [m]

y
[m

]

(a)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0.05

0.1

0.15

0.2

0.25

0.3

0.35

x [m]

y
[m

]

(b)

Figure 6.15. Results of path smoothing and tracking experiment using different
techniques of path smoothing. The paths are tracked by the real robot with velocity
0.6 m/s. Legend: black – original non-smoothed path; red – smoothed path; blue – robot
actual path. (a) Path smoothed with circular arcs. It is visible that tracking error is
high. (b) Path smoothed with clothoids results with much lower tracking error.

To illustrate effectiveness of the proposed path smoothing algorithm in combi-
nation with the path planner described in Chapter 5, the planned path in Figure
5.10 is smoothed using clothoids. The resulting smoothed path is displayed in
Figure 6.16. One can see that the smoothed path never touches edges of the
corridor around the planned path, which confirms that the smoothed path is
safe.

6.16 Summary

In this chapter a path-smoothing algorithm capable of smoothing piecewise linear
paths is described. The produced path is G2 continuous with linearly changing
curvature which is achieved by using clothoid curves as smoothing primitives.
Clothoids were used due to their very attractive properties, where the major one
is linear relation between the curvature and the arc length. Moreover, efficient
algorithms capable of smoothing a path with non-zero initial curvature are de-
veloped, which is essential when path replanning for moving robot is required.
To the best author’s knowledge, this is the first complete solution that enables
application of clothoids for path replanning. This feature is useful for motion

6.16. Summary 155

Figure 6.16. The path from Figure 5.10 smoothed by using clothoids. A corridor
around the path is also displayed.

planning in changing environments.
In majority of the literature it is reported that clothoid-based path smoothing

is computationally expensive operation and therefore hard to use in real time. On
the contrary, in this work very fast smoothing using clothoid segments is achieved
that can be used in real time. This is obtained by storing points of the clothoid
in the lookup table. It is shown that points of any clothoid can be efficiently
computed based on the stored clothoid by rescaling, rotating and translating. In
this way the path smoothing is typically executed in time bellow 1 ms.

So far, we have obtained a smooth path, which may be used directly by
applying the path-following controller [111], provided that we are not interested
in questions such as how much time a robot will need to traverse the planned
path or where a robot will be at some time instance. This is similar to driving on
a road while trying to maintain the distance between the vehicle chassis and the
side of the road constant, while the velocity is kept constant or adapted according
to road conditions or other factors. However, our focus is in more deterministic
planning, so that the next topic refers to trajectory planning along the planned
path.

Chapter 7

Trajectory Planning

This chapter is concerned with the problem of finding an optimal velocity profile
along the planned path in order to traverse the path in shortest time. The planned
path and the velocity profile together build a trajectory. A dynamic model of the
differential drive robot is developed that accounts for robot actuator constraints,
as well as extrinsic constraints originating from the limited grip between the
robot’s wheels and the ground. Both types of constraints are very important
for planning at high velocities. It is shown how to use the developed dynamic
model to express acceleration limits and velocity limit curve required by the
optimal time-scaling algorithm. The developed trajectory planning algorithm is
demonstrated on two differential drive mobile robots: soccer robot and Pioneer
3DX robot.

7.1 Introduction

Trajectory planning can be considered as a complete motion-planning problem,
as opposed to a path-planning problem described in Chapter 5, which only asks
for a feasible curve q(s) in the configuration space without reference to the speed
of execution. As described in Chapter 4, trajectory planning problem can be
solved using two approaches: (1) the direct approach, where the search is per-
formed directly in the system’s state space and (2) the decoupled approach, where
first a path in the configuration space is found and then a time-optimal velocity
profile subject to the actuator constraints is computed. In this chapter the decou-
pled approach is used, which can also be referred as trajectory planning problem
constrained to precomputed path.

We assume that a path q(s) is a twice-differentiable curve in the configuration
space q(s) : [0, sg] → C, as defined by equation (5.2). To specify a trajectory, we
first introduce a time scaling function s(t) as s(t) : [0, tg] → [0, sg], which assigns
a value s to each time t ∈ [0, tg]. The time scaling s(t) is assumed to be twice-

157

158 Chapter 7. Trajectory Planning

differentiable and monotonic, i.e. ṡ(t) > 0, t ∈ (0, tg), where ṡ(t) denotes time
derivative of s(t). The twice-differentiability of s(t) ensures that the acceleration
is well defined and bounded. Using both path and time scaling, a trajectory can
now be defined as a function

q(s(t)) : [0, tg] → C, (7.1)

which is short-written as q(t).

We assume that a mobile robot is operating in a planar workspace, so that
its configuration q(t) is given by position coordinates (x(t), y(t)) and orientation
θ(t), i.e. q(t) = [x(t) y(t) θ(t)]T . If both time derivatives ẋ(t) and ẏ(t) are non-
zero, the orientation is not an independent variable and it can be calculated from
position derivatives as

θ(t) = atan2(ẏ(t), ẋ(t)) + kπ, (7.2)

where k = 0, 1 defines the desired drive direction (0 for forward and 1 for back-
ward) and the function atan2 is a four-quadrant inverse tangent function. The
longitudinal and angular velocities are then obtained as

v(t) = ±
√

ẋ2(t) + ẏ2(t), (7.3a)

ω(t) =
ẋ(t)ÿ(t) − ẏ(t)ẍ(t)

ẋ2(t) + ẏ2(t)
. (7.3b)

The chosen sign for v(t) determines forward or backward motion of the robot.

However, if for some time t the longitudinal velocity v(t) is zero, neither the
orientation θ(t) nor the angular velocity ω(t) are defined by equations (7.2) and
(7.3b), respectively, and must be given explicitly.

Until now, the path parameter s was not connected with any real-world vari-
able. From now on, it will denote the distance travelled along the path in the
case that robot’s motion has translation component, i.e. its longitudinal velocity
v(t) is non-zero. Otherwise, in case of pure rotation, i.e. v(t) = 0 and ω(t) 6= 0,
it will be used to denote the travelled angle. Then in case v(t) 6= 0, using (7.3)
and (6.1), the longitudinal and angular velocities are

v(t) = ṡ(t), ω(t) = κ(s(t))ṡ(t), (7.4)

and accelerations are

v̇(t) = s̈(t), ω̇(t) =
dκ(s)

ds
ṡ(t)2 + κ(s(t))s̈(t). (7.5)

In case of pure rotation, the velocities are

v(t) = 0, ω(t) = ṡ(t), (7.6)

7.2. Decoupled Trajectory Planning 159

and accelerations
v̇(t) = 0, ω̇(t) = s̈(t). (7.7)

7.2 Decoupled Trajectory Planning

In this work the motion planning problem is solved using the decoupled approach.
Therefore, the trajectory planning module takes a smoothed path q(s) as an in-
put, and tries to find the fastest feasible trajectory that follows this path. Here
the term “fastest” denotes the time-optimal scaling s(t), whereas the term “fea-
sible” refers to the actuator limits. Besides in mobile robot motion planning, this
problem is especially important for maximizing the productivity of static manip-
ulators when a path has been given as a task specification or found by a path
planner.

Let a general dynamic model of the robot be given by [38]

u = M(q)q̈ + C(q, q̇)q̇ + g(q), (7.8)

where u is the vector of generalized forces acting on the generalized coordinates
q. C(q, q̇)q̇ ∈ R

nC is a vector of velocity product terms with the Coriolis matrix
C(q, q̇) of dimension nC × nC, linear in q̇, g(q) ∈ R

nC is a vector of gravitational
forces, and M(q) is an nC×nC symmetric, positive definite mass or inertia matrix.

This model can also be expressed as

u = M(q)q̈ + q̇T Γ(q)q̇ + g(q), (7.9)

where Γ(q) ∈ R
nC×nC×nC can be viewed as an nC-dimensional column vector,

where each element is a matrix whose elements are Christoffel symbols of the
inertia matrix M(q).

The developed forces are subject to the actuator limits

umin
i (q, q̇) ≤ ui ≤ umax

i (q, q̇). (7.10)

In the most general form the actuator limits are expressed as functions of the robot
configuration and velocity. An example may be the torque available to accelerate
a DC motor, which decreases as its angular velocity increases. The simplest form
of actuator constraints is the limit independent of the robot configuration and
velocity |ui| ≤ umax

i .

If path is given by q(s), velocity and acceleration can be expressed as

q̇ =
dq

ds
ṡ (7.11)

q̈ =
d2q

ds2
ṡ2 +

dq

ds
s̈. (7.12)

160 Chapter 7. Trajectory Planning

By substituting this into dynamic model equation (7.9), we get

M(q(s))

(

d2q

ds2
ṡ2 +

dq

ds
s̈

)

+

(

dq

ds
ṡ

)T

Γ(q(s))

(

dq

ds
ṡ

)

+ g(q(s)) = u, (7.13)

i.e.

(

M(q(s))
dq

ds

)

s̈ +

(

M(q(s))
d2q

ds2
+

(

dq

ds

)T

Γ(q(s))
dq

ds

)

ṡ2 + g(q(s)) = u. (7.14)

This can be rewritten more compactly as the vector equation

a(s)s̈ + b(s)ṡ2 + c(s) = u, (7.15)

which defines robot dynamic model constrained to the path q(s). The vector
functions a(s), b(s), and c(s) are inertial, velocity product, and gravitational
terms in terms of s, respectively.

Because the robot motion is constrained to the path q(s), its state at any time
is determined by (s, ṡ). Now the actuator limits can be expressed as a function
of (s, ṡ) by substituting equation (7.11) into equation (7.10), yielding lower limit
umin(s, ṡ) and upper limit umax(s, ṡ). From equation (7.15), we conclude that the
system must satisfy the constraints

umin(s, ṡ) ≤ a(s)s̈ + b(s)ṡ2 + c(s) ≤ umax(s, ṡ). (7.16)

This equation enables us to express the minimum and maximum accelerations
s̈ as functions of the current state (s, ṡ), which are required to obtain time-optimal
scaling function. Let the minimum and maximum accelerations s̈ satisfying the i-
th component of equation (7.16) be denoted by Li(s, ṡ) and Ui(s, ṡ), respectively.
We define

αi(s, ṡ) =
umin

i (s, ṡ) − bi(s)ṡ
2 − ci(s)

ai(s)
, βi(s, ṡ) =

umax
i (s, ṡ) − bi(s)ṡ

2 − ci(s)

ai(s)
.

(7.17)
Now if ai(s) > 0, then

Li(s, ṡ) = αi(s, ṡ), Ui(s, ṡ) = βi(s, ṡ).

If ai(s) < 0, then

Li(s, ṡ) = βi(s, ṡ), Ui(s, ṡ) = αi(s, ṡ).

If ai(s) = 0, the system is at a zero inertia point (see e.g. [38] for details). If we

7.2. Decoupled Trajectory Planning 161

s

ṡ

0 1

Velocity limit curve

U(s, ṡ)

L(s, ṡ)

max. accel.max. accel. min. accel.min. accel.

Figure 7.1. At each state (s, ṡ) we can draw a cone defined by the minimum and
maximum accelerations s̈ satisfying the actuator limits. The time-optimal trajectory is
the curve that maximizes the area underneath it while remaining on the boundary of the
motion cones. The velocity limit curve indicates the states where the cone collapses to
a single tangent vector. Above the velocity limit curve are inadmissible states where no
feasible actuation will keep the robot on the path.

additionally define

L(s, ṡ) = max
i∈1...nC

Li(s, ṡ), U(s, ṡ) = min
i∈1...nC

Ui(s, ṡ), (7.18)

the actuator limits (7.16) can now simply be expressed as

L(s, ṡ) ≤ s̈ ≤ U(s, ṡ). (7.19)

The problem of finding the time-optimal trajectory constrained to a path can
now be stated [38]:

Given a path q(s) : [0, sg] → C, an initial state (0, ṡ0), and a final
state (sg, ṡg), find a monotonically increasing twice-differentiable
time scaling s(t) : [0, tg] → [0, sg] that (i) satisfies s(0) = 0, ṡ(0) =
ṡ0, s(tg) = sg, ṡ(tg) = ṡg, and (ii) minimizes the total travel time
tg along the path while respecting the actuator constraints (7.19)
for all time t ∈ [0, tg].

The problem is best visualized in the (s, ṡ) state space. The feasible accelera-
tion constraint (7.19) can be illustrated as a cone of tangent vectors defined at any
state (s, ṡ), as shown in Figure 7.1. Then the lower edge of the cone corresponds to

162 Chapter 7. Trajectory Planning

the minimum acceleration L(s, ṡ), while upper edge corresponds to the maximum
acceleration U(s, ṡ). The interior of the cone corresponds to a range of feasible
accelerations s̈ at the state (s, ṡ) along the path so that L(s, ṡ) ≤ s̈ ≤ U(s, ṡ).

Any of these tangent vectors denotes that if the corresponding acceleration is
selected in the next time interval, then the system state transition will occur in
the direction of this tangent. The problem is now to find a curve from (0, ṡ0) to
(sg, ṡg) such that ṡ ≥ 0 and the curve tangent is inside the cone at each state.
Further, to minimize the travel time, the velocity ṡ along the path should be
maximized. This can be obtained by maximizing the area beneath the curve. A
consequence of this is that the curve always follows the upper or lower bound of
the cone at each state, i.e. the system always operates at minimum or maximum
acceleration. In other words, at least one of the actuators is always saturated.
The problem is now to find an alternating sequence, i.e. the switching points
between maximum and minimum accelerations.

Because of the switching between extreme opposites this kind of trajectory is
often called a “bang-bang” trajectory. The method was introduced by Dobrow
et al. [16], and Shin and McKay [136]. One drawback of planning at maximum
accelerations is that it does not leave any maneuver space to recover from eventual
trajectory tracking error (the fourth module of the decoupled approach). Such
an error could be caused by many factors, e.g. by the non-flat floor, which can
be characterized as an unpredictable external disturbance. The solution could be
to leave some acceleration reserves and work with lower accelerations than the
actual maximums.

Another drawback of planning at maximum acceleration is high energy con-
sumption. However, in case that low energy consumption is more important than
to arrive at the goal in the shortest time, another time-scaling algorithms can be
considered that result with lover energy consumption.

Actuation constraints (7.19) impose that there could be some states at which
there is no feasible acceleration that is required for the system to continue to follow
the path. This region is depicted in gray in Figure 7.1 and is called inadmissible
region. If the robot state is in this region, it will leave the path immediately. But
even if robot state is in admissible region, robot may still be doomed to leave the
path, no matter of the selected command acceleration. This occurs if the range
of admissible accelerations is directed to the inadmissible region, as illustrated in
Figure 7.2. In this example the robot’s state, no matter if the robot is actuated
with the minimum or maximum admissible acceleration, always ends up in the
inadmissible region.

Here it is assumed that, for any s, the robot is strong enough to maintain its
configuration statically, so all ṡ = 0 states are admissible and the path can be
executed arbitrarily slowly. It is also assumed that as ṡ increases from zero for a
given s, there will be at most one switch from admissible to inadmissible, which

7.2. Decoupled Trajectory Planning 163

s

ṡ

Figure 7.2. Initial robot state (represented by the dot) is in admissible region, but
the robot is doomed to the inadmissible region, because its motion is constrained by the
admissible trajectories tangents represented by the cones, which are locally directed so
that robot always penetrates the velocity limit curve. The set of all feasible trajectories
is between the two integral curves shown, where the upper curve denotes the maximum
acceleration, and the lower curve denotes the minimum acceleration.

occurs at the velocity limit curve V (s), consisting of states (s, ṡ) satisfying

L(s, ṡ) = U(s, ṡ). (7.20)

Because of min(·) and max(·) function used in calculus of L(s, ṡ) and U(s, ṡ),
these functions, and velocity limit curve are generally not smooth. However,
in some special cases the equation (7.20) may have multiple solutions ṡ for a
single value of s. This may be due to friction in the system, weak actuators
that cannot hold each configuration statically, or the form of the actuation limit
functions. In this case, there may be inadmissible “islands” in the phase plane.
This significantly complicates the problem of finding an optimal time scaling, and
time-scaling algorithm for this case is given in [136].

The algorithm that gives optimal time scaling, i.e. the optimal sequence of s
values where the switching between maximum and minimum acceleration should
occur, is given by the following algorithm [38]:

Time-Scaling Algorithm

1. Initialize an empty list of switches S = {} and a switch counter i = 0. Set
(si, ṡi) = (0, ṡ0).

2. Integrate the equation s̈ = L(s, ṡ) backward in time from (sg, ṡg) until the
velocity limit curve is penetrated (reached transversally, not tangentially),
s = 0, or ṡ = 0 at s < sg. There is no solution to the problem if ṡ = 0 is

164 Chapter 7. Trajectory Planning

reached. Otherwise, call this phase plane curve F and proceed to the next
step.

3. Integrate the equation s̈ = U(s, ṡ) forward in time from (si, ṡi). Call this
curve Ai. Continue integrating until either Ai crosses F or Ai penetrates
the velocity limit curve. (If Ai crosses s = sg or ṡ = 0 before either of these
two cases occurs, there is no solution to the problem.) If Ai crosses F , then
increment i, let si be the s value at which the crossing occurs, and append
si to the list of switches S. The problem is solved and S is the solution. If
instead the velocity limit curve is penetrated, let (slim, ṡlim) be the point of
penetration and proceed to the next step.

4. Search the velocity limit curve V (s) forward in s from (slim, ṡlim) until
finding the first point where the feasible acceleration (L = U on the ve-
locity limit curve) is tangent to the velocity limit curve. If the velocity
limit is V (s), then a point (s0, v(s0)) satisfies the tangency condition if
dv
ds
|s=s0

= U(s0, v(s0))/v(s0). Call the first tangent point reached (stan, ṡtan).
From (stan, ṡtan), integrate the curve s̈ = L(s, ṡ) backward in time until it
intersects Ai. Increment i and call this new curve Ai. Let si be the s value
of the intersection point. This is a switch point from maximum to minimum
acceleration. Append si to the list S.

5. Increment i and set (si, ṡi) = (stan, ṡtan). This is a switch point from mini-
mum to maximum acceleration. Append si to the list S. Go to step 3.

An illustration of the time-scaling algorithm is shown in Figure 7.3. Although
the described optimal time-scaling algorithm is general, to use it we have to know
actuator limits (7.19), which are specific for each particular robot type. Therefore
in the sections that follow examples of modeling and trajectory planning for two
types of robots possessed by our lab will be given: soccer robot and Pioneer 3DX
robot.

7.3 Trajectory Planning for Soccer Robot

For lightweight robots with strong wheel-driving motors, longitudinal and angular
accelerations can be controlled independently if the motors are powerful enough to
attain both maximum longitudinal and angular acceleration simultaneously. An
example of such robot is a soccer robot shown in Figure 7.4. This is a small robot
with the differential drive that has two driving wheels and two castor (passive)
wheels.

Motors of the soccer robot can provide forces that are significantly higher
than available contact forces between driving wheels and the ground, so that ac-
celerations are not constrained by actuator limits, but rather by available friction

7.3. Trajectory Planning for Soccer Robot 165

s

ṡ

0 1
maxmax minmin

Velocity limit curve V (s)

(0, ṡ0)

(1, ṡg)

s1 s2 s3

A0

A1

A2

F

(slim, ṡlim)

(stan, ṡtan)

Figure 7.3. An illustration of the optimal time-scaling algorithm. The feasible
accelerations at points on the velocity limit curve are shown as arrows. The output of
the algorithm is the switch list S = {s1, s2, s3}.

force. Thus for the soccer robot, apart from intrinsic constraints imposed by
motor torque limits, there are also extrinsic constraints imposed by available grip
force of the wheels.

7.3.1 Intrinsic Constraints

The command inputs to the soccer robot are referent longitudinal and angular
velocities that are sent to the robot via wireless communication. However, dy-
namic model given by equation (7.9) requires use of generalized forces as the
command input. Therefore longitudinal acceleration a and angular acceleration
α (which are proportional to the corresponding forces) will be used as compo-
nents of generalized forces vector u, i.e. u = [a α]T . Final output of the trajectory
planning algorithm will be the velocity profile as the function of time, from which
the necessary acceleration commands are easily generated by differentiating the
longitudinal and angular velocities.

Until now, the vector [x y θ]T was used to describe robot state. However,
with this choice it is not possible to directly use described time-scaling algorithm
since we have three state components while there are only two components of the
command input vector—this is a consequence of the nonholonomic constraint.
Nevertheless, the velocity pair [v ω]T can be used to describe robot state, so that

166 Chapter 7. Trajectory Planning

Figure 7.4. Soccer robot.

dynamic model of the robot can be written as

[

v̇
ω̇

]

= u. (7.21)

Although the state vector [v ω]T does not answer us about the robot con-
figuration directly, this information can be obtained implicitly through the time
history of the velocity vector. In this way the configuration can be computed if an
initial configuration [x0 y0 θ0]

T , time history of the velocity vector and kinematic
model of the robot are known. Hereby, kinematic model of the differential drive
robot is given by





ẋ
ẏ

θ̇



 =





cos θ 0
sin θ 0

0 1





[

v
ω

]

. (7.22)

Additionally, the nonholonomic constraint that comes from the fact that the
driving wheels can only roll, but not slip, must be fulfilled:

− ẋ sin θ + ẏ cos θ = 0. (7.23)

For v 6= 0 we can substitute (7.4) and (7.5) into dynamic model (7.21), ob-
taining

[

1
κ(s)

]

s̈ +

[

0
dκ(s)

ds

]

ṡ2 =

[

a
α

]

. (7.24)

From this model, and using analogy with (7.15) and (7.17), we have the following
longitudinal acceleration limits imposed by the robot actuators

L1(s, ṡ) = amin(s, ṡ), U1(s, ṡ) = amax(s, ṡ), (7.25)

7.3. Trajectory Planning for Soccer Robot 167

where the minimum longitudinal acceleration is nonlinear function given by

amin(s, ṡ) =

{

āmin, ṡ ∈ (−v̄max, v̄max)
0, otherwise

, (7.26)

where āmin is a negative constant that denotes the minimum longitudinal ac-
celeration, while v̄max is the maximum longitudinal velocity of the robot. The
maximum longitudinal acceleration is given similarly by

amax(s, ṡ) =

{

āmax, ṡ ∈ (−v̄max, v̄max)
0, otherwise

, (7.27)

where āmax is a positive constant denoting the maximum longitudinal accelera-
tion. It is usually āmax = |āmin|, although some electronic motor drivers achieve
|āmin| > āmax, i.e. they enable faster braking than accelerating. It is important
to mention that acceleration limits in the case of the soccer robot do not stem
from the motor torque limits, but from software configuration of the robot control
circuitry.

From robot dynamic model (7.24), the acceleration constraints due to angular
acceleration limits are

L2(s, ṡ) =



























αmin(s, ṡ) − dκ(s)
ds

ṡ2

κ(s)
, κ(s) > 0

undefined, κ(s) = 0

αmax(s, ṡ) − dκ(s)
ds

ṡ2

κ(s)
, κ(s) < 0

U2(s, ṡ) =



























αmax(s, ṡ) − dκ(s)
ds

ṡ2

κ(s)
, κ(s) > 0

undefined, κ(s) = 0

αmin(s, ṡ) − dκ(s)
ds

ṡ2

κ(s)
, κ(s) < 0

,

(7.28)

where the minimum angular acceleration is nonlinear function given by

αmin(s, ṡ) =

{

ᾱmin, κ(s) = 0 ∨ ṡ ∈ [−ω̄max/|κ(s)|, ω̄max/|κ(s)|]
0, otherwise

, (7.29)

where ᾱmin is a negative constant denoting minimum angular acceleration, while
ω̄max is the maximum angular velocity of the robot. The maximum angular
acceleration is given similarly by

αmax(s, ṡ) =

{

ᾱmax, κ(s) = 0 ∨ ṡ ∈ [−ω̄max/|κ(s)|, ω̄max/|κ(s)|]
0, otherwise

, (7.30)

168 Chapter 7. Trajectory Planning

,1longF

,2longF
1F

2F

2
cfF

2
cfFC

wd

cwd

1W 2W
1CW

2CW

Figure 7.5. Top view of the robot. The forces developed on robot driving wheels are
illustrated.

where ᾱmax is the a positive constant denoting maximum angular acceleration.
Experiments have shown that for the soccer robot from Figure 7.4, unlike for

longitudinal acceleration, for angular acceleration it is ᾱmax < |ᾱmin|, i.e. maxi-
mum angular acceleration is lower than maximum angular deceleration. This is
most likely caused by the bad implementation of the castor wheel, which results
in high friction between the castor wheel and the ground in the case of robot
rotation. Thus a part of the available torque is used to compensate this fric-
tion, which in effect decreases the angular acceleration and increases the angular
deceleration.

In case when v = 0, we have a pure rotation. Then the dynamic model reduces
to a single equation s̈ = α, from which we derive acceleration limits as

L1,rot(s, ṡ) = αmin,rot, U1,rot(s, ṡ) = αmax,rot, (7.31)

where

αmin,rot(s, ṡ) =

{

ᾱmin, ṡ ∈ [−ωmax, ωmax]
0, otherwise

αmax,rot(s, ṡ) =

{

ᾱmax, ṡ ∈ [−ωmax, ωmax]
0, otherwise

.

(7.32)

7.3.2 Extrinsic Constraints

Apart from intrinsic constraints originating from robot actuator limits, in case of
the soccer robot we have also extrinsic constraints caused by limited grip force
between the wheels and the floor. To find corresponding acceleration limits,
first the forces developed between robot driving wheels and the ground will be

7.3. Trajectory Planning for Soccer Robot 169

expressed. A force on the each wheel consists of a longitudinal and a lateral
component (Figure 7.5). The longitudinal component comes from the torque
used to accelerate or decelerate wheels. The lateral component developes if robot
translates and rotates at the same time and is caused by inertial centrifugal force.
Each wheel takes the half of the total centrifugal force. Then for both wheels it
can be written

F 2
i = F 2

long,i +
F 2

cf

4
, i = 1, 2 (7.33)

where index i = 1 stands for the left wheel, while i = 2 is for the right wheel,
Fi is the overall force developed on the wheel, Flong,i is the longitudinal force
component, and Fcf is the overall centrifugal force acting on the robot.

The equations that describe robot motion dynamics are

mv̇ = Flong,1 + Flong,2, (7.34a)

Jω̇ = (Flong,2 − Flong,1)
dw

2
, (7.34b)

where m is the mass of the robot, J is the inertia moment of the robot and dw

is the distance between robot wheels. The centrifugal forces does not influence
robot motion as long as the developed force on the wheels is lower than the
available friction force, i.e. we suppose that wheels can only roll. From (7.34) the
longitudinal forces are obtained as

Flong,1 =
m

2
v̇ − J

dw

ω̇, (7.35a)

Flong,2 =
m

2
v̇ +

J

dw

ω̇. (7.35b)

The centrifugal force is obtained as

Fcf = macf = mvω, (7.36)

where acf is the centrifugal acceleration.

We absolutely want to prevent the robot from entering the wheel slipping
mode, as this would result in uncontrolled motion of the robot. Therefore we
have to ensure that required overall forces Fi on the wheels do not exceed max-
imum available friction forces between the wheels and the ground. To express
friction forces, the Coulomb’s friction model model is used. A prerequisite for the
Coulomb’s model application is to compute weighting forces on the each wheel.
Robot’s center of the mass is located approximately in the middle point of the
driving wheels axle (point C in Figure 7.5), so that in static conditions each wheel
carries half the weight of the robot. However, the weight distribution changes as
the robot accelerates or rotates since the mass center is at a certain height above

170 Chapter 7. Trajectory Planning

the ground.

,2cfW

cfFC

ch
,1cfW

wd

Figure 7.6. Rear view of the robot. The centrifugal forces acting on robot driving
wheels are illustrated.

If the robot translates and rotates simultaneously, the centrifugal force is
developed, which acts in the mass center (Figure 7.6). This has an effect of
redistribution of the weighting force on the driving wheels. If we imagine that
the robot is driving along a circle, the effective weighting force on the wheel that
is closer to the center of the circle will decrease, and increase for the other wheel.
From Figure 7.6 and using equation (7.36), the additional weighting forces due
to centrifugal force can be expressed as

Wcf,1 = −mvω
hc

dw

, Wcf,2 = mvω
hc

dw

, (7.37)

where hc is the height of the mass center relative to the ground. The positive
sign of the force means that it increases the static weight on the wheel.

When the robot travels at constant velocity, its whole weight is distributed
solely on driving wheels. However, as the robot accelerates or decelerates, a
portion of the weight will also be carried by the castor wheel that is on the opposite
side of the acceleration direction. This is illustrated in Figure 7.7, from where
we derive the effective weighting force on the driving wheels due to longitudinal
acceleration as

Wacc,i = −|Fin|
hc

2dcw

= −m|v̇| hc

2dcw

, (7.38)

where Fin is the inertial force that resists to robot acceleration. The force Wacc,i

is always negative, no matter if the robot accelerates or decelerates—the only
difference is that by acceleration the force acts on the rear castor wheel, while by
deceleration it acts on the front castor wheel.

Now we can obtain the overall effective weighting forces acting on driving
wheels as Wi = Wstatic +Wcf,i +Wacc,i, where Wstatic = mag/2 is the static weight
on the wheel and ag is gravitation acceleration. By using (7.37) and (7.38) the

7.3. Trajectory Planning for Soccer Robot 171

inF C

ch
,2accW

cwd

Acceleration

Figure 7.7. Side view of the robot. The inertial force that resists to robot acceleration
decreases the weight on driving wheels and increases the weight on the castor wheel.

effective weighting forces on wheels are

W1 = m

(

ag

2
− vω

hc

dw

− |v̇| hc

2dcw

)

, (7.39a)

W2 = m

(

ag

2
+ vω

hc

dw

− |v̇| hc

2dcw

)

. (7.39b)

Naturally, it must be Wi > 0, i.e. the weighting forces must remain positive at
all times since otherwise the robot would tip over. Substituting (7.4) and (7.5)
into (7.39) and considering the worst case, where the weighting force decreases
due to centrifugal acceleration, yields the constraint

− hc

2dcw

|s̈| − hc

dw

|κ(s)|ṡ2 +
ag

2
> 0, (7.40)

from where the following acceleration limits are obtained:

L3(s, ṡ) = −2dcw

hc

(

ag

2
− hc

dw

|κ(s)|ṡ2

)

, (7.41a)

U3(s, ṡ) =
2dcw

hc

(

ag

2
− hc

dw

|κ(s)|ṡ2

)

. (7.41b)

Using the Coulomb’s friction model, the maximum friction force that can be
developed between the wheel and the ground is

Ffr,i = µWi, (7.42)

where µ is the friction coefficient. Now the condition that the force developed
between the wheel and the ground must not exceed maximum friction force can
be written as Fi ≤ Ffr,i. By using (7.42), (7.39), (7.33), (7.35) and (7.36), this

172 Chapter 7. Trajectory Planning

condition for i = 1 (left wheel) can be written as

(

m

2
v̇ − J

dw

ω̇

)2

+
(mvω)2

4
6

[

µm

(

ag

2
− vω

hc

dw

− |v̇| hc

2dcw

)]2

, (7.43)

and for i = 2 (right wheel)

(

m

2
v̇ +

J

dw

ω̇

)2

+
(mvω)2

4
6

[

µm

(

ag

2
+ vω

hc

dw

− |v̇| hc

2dcw

)]2

. (7.44)

To express the limits as a function of parameter s, for v 6= 0 (translational motion)
we substitute (7.4) and (7.5) into (7.43), which yields the condition for the left
wheel as

[

m

2
s̈ − J

dw

(

dκ(s)

ds
ṡ2 + κ(s)s̈

)]2

+
(mκ(s)ṡ2)

2

4
6

[

µm

(

ag

2
− hc

dw

κ(s)ṡ2 − hc

2dcw

|s̈|
)]2

,

(7.45)
and for the right wheel as

[

m

2
s̈ +

J

dw

(

dκ(s)

ds
ṡ2 + κ(s)s̈

)]2

+
(mκ(s)ṡ2)

2

4
6

[

µm

(

ag

2
+

hc

dw

κ(s)ṡ2 − hc

2dcw

|s̈|
)]2

.

(7.46)
Condition (7.45) can be written in form of a quadratic inequation as

A1,2(s, ṡ)s̈
2 + B1,2(s, ṡ)s̈ + C1,2(s, ṡ) 6 0, (7.47)

where coefficients A1, B1, C1 are used in case s̈ 6 0, and coefficients A2, B2, C2 in
case s̈ > 0. These coefficients are obtained as

A1,2(s, ṡ) =

(

m

2
− Jκ(s)

dw

)2

−
(

µmhc

2dcw

)2

, (7.48a)

B1,2(s, ṡ) =
−2J dκ(s)

ds

(

m
2
− Jκ(s)

dw

)

dw

ṡ2 ∓
m2µ2hc

(

ag

2
− hcκ(s)ṡ2

dw

)

dcw

, (7.48b)

C1,2(s, ṡ) =

(

J2

d2
w

(

dκ(s)

ds

)2

+
1

4
m2κ(s)2

)

ṡ4 − m2µ2

(

ag

2
− hcκ(s)ṡ2

dw

)2

.

(7.48c)

From equation (7.47) we get lower and upper acceleration limits that suppress

7.3. Trajectory Planning for Soccer Robot 173

sliding of the left wheel for non-zero longitudinal velocity

L4(s, ṡ) =
−B1(s, ṡ) −

√

B1(s, ṡ)2 − 4A1(s, ṡ)C1(s, ṡ)

2A1(s, ṡ)
, (7.49a)

U4(s, ṡ) =
−B2(s, ṡ) +

√

B2(s, ṡ)2 − 4A2(s, ṡ)C2(s, ṡ)

2A2(s, ṡ)
. (7.49b)

If κ(s) = 0 and dκ(s)/ds = 0, (7.49) becomes

L4(s, ṡ)|κ=0, dκ
ds

=0 = − µag

1 + µ hc

dcw

, U4(s, ṡ)|κ=0, dκ
ds

=0 =
µag

1 + µ hc

dcw

(7.50)

Analogously, right-wheel condition (7.46) can be written in form of a quadratic
inequation as

A3,4(s, ṡ)s̈
2 + B3,4(s, ṡ)s̈ + C3,4(s, ṡ) 6 0, (7.51)

where coefficients A3, B3, C3 are used in case s̈ 6 0, and coefficients A4, B4, C4 in
case s̈ > 0. These coefficients are obtained as

A3,4(s, ṡ) =

(

m

2
+

Jκ(s)

dw

)2

−
(

µmhc

2dcw

)2

, (7.52a)

B3,4(s, ṡ) =
2J dκ(s)

ds

(

m
2

+ Jκ(s)
dw

)

dw

ṡ2 ∓
m2µ2hc

(

ag

2
+ hcκ(s)ṡ2

dw

)

dcw

, (7.52b)

C3,4(s, ṡ) =

(

J2

d2
w

(

dκ(s)

ds

)2

+
1

4
m2κ(s)2

)

ṡ4 − m2µ2

(

ag

2
+

hcκ(s)ṡ2

dw

)2

.

(7.52c)

From (7.51) we get lower and upper acceleration limits that suppress sliding of
the right wheel for non-zero longitudinal velocity

L5(s, ṡ) =
−B3(s, ṡ) −

√

B3(s, ṡ)2 − 4A3(s, ṡ)C3(s, ṡ)

2A3(s, ṡ)
, (7.53a)

U5(s, ṡ) =
−B4(s, ṡ) +

√

B4(s, ṡ)2 − 4A4(s, ṡ)C4(s, ṡ)

2A4(s, ṡ)
. (7.53b)

For κ(s) = 0 and κ̇(s) = 0, (7.53) has the same form as (7.50).

To obtain the limits in terms of parameter s for v = 0 (pure rotation) we
substitute (7.6) and (7.7) into (7.43), which yields the condition for both wheels
as

J

dw

|s̈| 6
µmag

2
, (7.54)

174 Chapter 7. Trajectory Planning

from where the acceleration limits for pure rotation are obtained as

L2,rot(s, ṡ) = −µmagdw

2J
, U2,rot(s, ṡ) =

µmagdw

2J
. (7.55)

Finally, acceleration limits are obtained using equation (7.18), i.e. for v 6= 0
we have

L(s, ṡ) = max
i∈1...5

Li(s, ṡ), U(s, ṡ) = min
i∈1...5

Ui(s, ṡ), (7.56)

while for v = 0

Lrot(s, ṡ) = max
i∈1,2

Li,rot(s, ṡ), Urot(s, ṡ) = min
i∈1,2

Ui,rot(s, ṡ). (7.57)

The general rule for robot model development is that a more accurate model
enables driving at higher velocities, but of course then the computational com-
plexity is increased. The developed model already covers all the most important
real-world effects so it can be used at high velocities. Nevertheless, it can be
further improved by introducing a better friction model and modeling a friction
introduced by the castor wheels.

7.3.3 Computing the Velocity Limit Curve

Computation of the velocity limit curve is complicated by the fact that min(·) and
max(·) functions are used in equation (7.20). Thus we do not know in advance
from which conditions to compute the curve. In other words, we must check all
possible combinations of i and j in equation Li(s, ṡ) = Uj(s, ṡ), which could be
computationally expensive for large number of constraints.

However, if the values of robot parameters are known in advance, we can
substitute them into corresponding equations to predict which i and j combi-
nations are relevant. If we do that for the soccer robot, it becomes evident (as
will be demonstrated by the experimental results) that for straight path segments
(κ(s) = 0), only the condition L1(s, ṡ) = U1(s, ṡ) is relevant for the velocity limit
curve. Similarly, for κ(s) > 0 (left curve) only the condition L4(s, ṡ) = U4(s, ṡ)
for the left wheel is relevant, while for κ(s) < 0 (right curve) only the condi-
tion L5(s, ṡ) = U5(s, ṡ) of the right wheel should be evaluated. This significantly
speeds up computation of the velocity limit curve. It must be emphasized that
these results are not general—for different robots or parameter values the involved
conditions might change.

Thus for κ(s) = 0, from L1(s, ṡ) = U1(s, ṡ) and using (7.25) the velocity limit
curve is

V11(s) = v̄max. (7.58)

7.3. Trajectory Planning for Soccer Robot 175

For κ(s) > 0, by using (7.49) the relevant condition L4(s, ṡ) = U4(s, ṡ) yields

B1(s, ṡ) +
√

B1(s, ṡ)2 − 4A1(s, ṡ)C1(s, ṡ)

= B2(s, ṡ) −
√

B2(s, ṡ)2 − 4A2(s, ṡ)C2(s, ṡ), (7.59)

from which we obtain equation of the form f(ṡ, κ(s), κ̇(s)) = 0. Solving this equa-
tion for ṡ gives the velocity limit curve V44(s). A similar equation is obtained for
κ(s) < 0 for the condition L5(s, ṡ) = U5(s, ṡ). Unfortunately, these equations do
not have closed-form solution. The possible solution of this problem is discussed
in the next section that discusses implementation aspects.

7.3.4 Implementation Aspects

As it was shown, the soccer robot has quite complicated expressions for accelera-
tion limits and velocity limit curve. To enable trajectory planning in real time it
is necessary to apply some optimizations to accelerate the calculations. The first
possible optimization comes from the fact that for straight segments equations
for acceleration limits and velocity limit curve become particularly simple; it is
possible to explicitly find velocity limit curve, as well as the solution of integrals
in the time-scaling algorithm. This makes possible to execute time-scaling al-
gorithm even for long paths in real-time, as such paths will most likely contain
many straight-line segments.

For segments with non-zero curvature such an optimization is not possible as
the equations are too complicated to find an explicit solution. However, numerical
integration is further optimized by making integration step variable, so that a
greater step is used when acceleration limits change slowly, and a lower step
otherwise.

As was already stated in Section 7.2, equation (7.59) for computing the veloc-
ity limit curve for the soccer robot does not have analytical solution and must be
solved numerically. As it would be too slow to compute it online, the lookup-table
approximation is used. The equation is solved numerically offline for different
pairs of (κ(s), κ̇(s)), and results are stored in the lookup table and reused later
for online computations.

7.3.5 Experimental Results

The values of model parameters for the soccer robot are taken (with some correc-
tions) from [47] and are shown in Table 7.1. To account for modeling uncertainties
and disturbances, in praxis we will of course be more conservative and use lower
acceleration limits than the maximums shown in the table. Also, the friction
coefficient may vary depending on the floor type or other factors, so that it is also
recommended to use somewhat lower value than one shown in the table.

176 Chapter 7. Trajectory Planning

Table 7.1. Parameters of the soccer robot.
Parameter Symbol Value Unit
Mass m 0.4924 kg
Inertia moment J 4 · 10−4 kg m2

Min. long. acceleration āmin -2.5 m/s2

Max. long. acceleration āmax 2.5 m/s2

Min. ang. acceleration ᾱmin -74.2 rad/s2

Max. ang. acceleration ᾱmax 55.8 rad/s2

Max. long. velocity v̄max 4 m/s
Max. ang. velocity ω̄max 32 rad/s
Friction coefficient µ 0.6 –
Mass center height hc 0.025 m
Distance between driving wheels dw 0.068 m
Distance to cast. wheels dcw 0.025 m
Gravitation ag 9.81 m/s2

0 0.5 1

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

x [m]

y
[m

]

(a)

0 1 2 3 4 5
−10

−5

0

5

s [m]

κ
(s

)
[m

−
1
]

(b)

Figure 7.8. (a) The experimental path. (b) Curvature profile of the path.

A path that was used in all experiments, together with its curvature profile,
is shown in Figure 7.8. The experimental path consists of two clothoids with
positive curvature, a straight part and two clothoids with negative curvature.

For this path acceleration limits and velocity limit curves Vii(s) are determined
separately for each constraint Li(s, ṡ) = Ui(s, ṡ), i ∈ 1 . . . 5 and are displayed in
Figure 7.9 (a)–(e). In Figure 7.9 (f) all velocity limit curves are shown in different

7.3. Trajectory Planning for Soccer Robot 177

colors. The overall velocity limit curve V (s) can now be obtained as the minimum
of all velocity limit curves.

In Figure 7.9 (f) it can be noticed that for positive curvature only the velocity
limit curve V44(s) is relevant (shown in blue), while for negative curvature only
V55(s) matters (red). In zero-curvature segment, only the velocity limit curve
V11(s) is relevant. It can be seen that the velocity limit V44(s) (ensures positive
weight force on driving wheels) is never relevant, as non-slipping conditions are
always stronger. The velocity limit V22(s) (angular acceleration limit) is also not
relevant in any situation, however it could become important in pure rotation
mode, which is not shown here.

The acceleration limits, which in Figure 7.9 are illustrated with cones, are
dominantly determined by condition L1(s, ṡ) 6 s̈ 6 U1(s, ṡ), while conditions
L3,4(s, ṡ) 6 s̈ 6 U3,4(s, ṡ) are relevant in curves and can be observed only near
their corresponding velocity limit curves. The fact that the acceleration limits
are dominantly determined by L1(s, ṡ) and U1(s, ṡ) (imposed by robot’s internal
longitudinal acceleration limit), and not by the available grip force, leads us to
conclusion that robot’s internal acceleration limit is too restrictive and much
faster motion could be obtained on the straight path segments by increasing this
limit. Unfortunately, available soccer robot has closed architecture and does not
permit the modifications in its firmware.

It can also be noticed that tangents at the velocity limit curve are always
horizontal, i.e. no accelerations other than s̈ = 0 are feasible. This makes im-
plementation of the time-optimal scaling algorithm easier, because at non-zero
curvature path segments the minimum of the velocity limit curve is the only point
where acceleration is tangent to the velocity limit curve. On the contrary, every
point on the velocity limit curve corresponding to zero-curvature path segments
has acceleration that is tangent to the velocity limit curve (this is zero inertia
arc).

Finally, the optimal time-scaling algorithm is implemented and applied to the
given path. The obtained velocity profile is shown in Figure 7.10. It can be seen
that the time-optimal velocity profile contains three maximum acceleration and
three maximum deceleration segments. The total travel time is 5.1 s, which gives
an average velocity of 0.99 m/s.

The experiment has also been conducted with the goal to find out whether
wheel sliding occurs during execution of the velocity profile in Figure 7.10. For
this a high fidelity simulator [82] based on ODE (Open Dynamics Engine) [140]
library was used. The reason of using simulator instead of the real robot is
that the simulator enables detection of wheel sliding, while doing so on the real
robot is hard to achieve. The robot was driven in open loop because the goal
was not precise trajectory tracking but only checking feasibility of the generated
commands. No sliding was detected during simulation, even on path segments
with high curvature, which proves effectiveness of the developed algorithm. By
scaling up the velocity profile for 5 % the robot was no more able to execute the

178 Chapter 7. Trajectory Planning

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

s

ṡ

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

s

ṡ

(a) (b)

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

s

ṡ

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

s

ṡ

(c) (d)

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

s

ṡ

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

s

ṡ

(e) (f)

Figure 7.9. Acceleration limits and velocity limit curves computed for the soccer robot
using the path in Figure 7.8. (a) Velocity limit curve V11(s). (b) Velocity limit curve
V22(s). (c) Velocity limit curve V33(s). (d) Velocity limit curve V44(s). (e) Velocity limit
curve V55(s). (f) Overall velocity limit curve V (s) is the minimum of all velocity limit
curves. Acceleration limits Li(s, ṡ), Ui(s, ṡ), and velocity limit curves Vii(s) originating
from different constraints are plotted by the following colors: i = 1 (green), i = 2
(magenta), i = 3 (black), i = 4 (blue), i = 5 (red).

7.4. Trajectory Planning for Pioneer 3DX Robot 179

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

s

ṡ

Figure 7.10. Time-optimal velocity along the experimental path for the soccer robot is
plotted in black color, while the overall velocity limit curve is red curve.

trajectory, both because of acceleration limits and sliding, so that it confirms that
the original trajectory is time optimal.

7.4 Trajectory Planning for Pioneer 3DX Robot

Figure 7.11. Pioneer 3DX mobile robot.

Pioneer 3DX robot (Figure 7.11) is a typical representative of middle-size
differential drive mobile robots. It has two driving wheels and one castor wheel.

180 Chapter 7. Trajectory Planning

Due to its relatively heavy weight (more than 25 kg with sensors), wheel slipping
is no more of big concern for this robot.

Some preliminary experiments [61] have shown that this robot, like soccer
robot, also can attain maximum longitudinal and angular acceleration simulta-
neously. Under this assumption, the longitudinal and angular accelerations are
independent and the model of robot’s intrinsic constraints developed for the soc-
cer robot, given by equations (7.25) and (7.28), is also valid for the Pioneer 3DX
robot.

However, the assumption of independent longitudinal and angular accelera-
tions yet has to be confirmed under the full load (all sensors and batteries) of the
robot, as the relevant experiments in [61] are performed with no additional load.
At the full weight of the robot and at the maximum longitudinal acceleration it
is possible that motors approach to their torque limits, so that the maximum an-
gular acceleration would no more be feasible at the same time. Then longitudinal
and angular accelerations could no more be considered as independent, and two
additional constraints on wheel torques should have been added.

Regarding extrinsic constraints, by substituting parameter values of the Pi-
oneer 3DX robot in Table 7.2 into equations (7.43) and (7.44) that refer to the
maximum grip force of the driving wheels1, and considering the maximum ac-
celerations and velocities (worst case), it is obvious that developed forces never
exceed available grip force. This is the reason why for the Pioneer 3DX robot
wheel slipping is not an issue, so that only intrinsic constraints can be considered.

7.4.1 Implementation Aspects

For Pioneer 3DX robot equations for the velocity limit curve and acceleration
limits are particularly much simpler than for the soccer robot. Thus it is possible
to express a closed forms of the velocity limit curve and find an explicit solution
of integrals in time-scaling algorithm. This is planned for future implementation
and it is expected to result with very fast trajectory planning.

7.4.2 Experimental Results

The values of model parameters for the Pioneer 3DX robot that are used for
trajectory planning experiments are taken from [120] and are shown in Table 7.2.
To account for modeling uncertainties and disturbances, in final implementation
we need to be more conservative and use accelerations somewhat lower than
maximums shown in the table.

The same experimental path as for the soccer robot is used (Figure 7.8). Ac-
celeration limits Li and Ui and velocity limit curves Vii obtained from constraints

1Actually the modified equations (7.43) and (7.44) have been used that account for different
position of robot’s center of the mass.

7.4. Trajectory Planning for Pioneer 3DX Robot 181

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s

ṡ

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s

ṡ

(a) (b)

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s

ṡ

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s

ṡ

(c) (d)

Figure 7.12. Acceleration limits and velocity limit curves computed for the Pioneer
3DX robot with path in Figure 7.8. (a) Velocity limit curve V11(s). (b) Velocity limit
curve V22(s). (c) Overall velocity limit curve V (s) is the minimum of all velocity limit
curves. Acceleration limits Li(s, ṡ), Uj(s, ṡ), and velocity limit curves Vij(s) originating
from different constraints are plotted with the following colors: i = 1, j = 1 (blue),
i = 2, j = 2 (red), i = 1, j = 2 (green), i = 2, j = 1 (magenta). (d) Time-optimal
velocity along the experimental path is plotted in black, while the overall velocity limit
curve V (s) is shown in red.

182 Chapter 7. Trajectory Planning

Table 7.2. Parameters of the Pioneer 3DX robot.
Parameter Symbol Value Unit
Mass m 28.05 kg
Inertia moment J 0.175 kg m2

Min. long. acceleration āmin -0.3 m/s2

Max. long. acceleration āmax 0.3 m/s2

Min. ang. acceleration ᾱmin -1.745 rad/s2

Max. ang. acceleration ᾱmax 1.745 rad/s2

Max. long. velocity v̄max 0.75 m/s
Max. ang. velocity ω̄max 1.745 rad/s
Friction coefficient µ 0.6 –
Mass center height hc 0.18 m
Distance between driving wheels dw 0.27 m
Distance to cast. wheels dcw 0.25 m
Gravitation ag 9.81 m/s2

Li(s, ṡ) = Ui(s, ṡ) are shown in Figures 7.12 (a) and (b) for i = 1 and i = 2,
respectively. The planning for Pioneer 3DX robot differs also also in the fact
that the velocity limit curves V12 and V21 are relevant, which were not important
for the soccer robot. These velocity limit curves are obtained from conditions
L1(s, ṡ) = U2(s, ṡ) and L2(s, ṡ) = U1(s, ṡ), respectively. In Figure 7.12 (c) all ve-
locity limit curves Vij are shown in different colors, and the overall velocity limit
curve V (s) is their minimum. It can be noticed that in zero-curvature segment
only the velocity limit curve V11(s) is relevant, again.

The final velocity profile is shown in Figure 7.12 (d). It can be seen that it
consists of three maximum acceleration segments, three maximum deceleration
segments and two constant velocity segments. The total travel time of the ob-
tained trajectory is approximately 14 s, while the average longitudinal velocity
is 0.36 m/s. Therefore, on the given path the Pioneer 3DX robot is about three
times slower than the soccer, which is expected due to its large mass. In the
future it is planned to test the trajectories with the real robot.

7.5 Moving Obstacles

Having covered basic stages of the decoupled planning, we can now consider some
problems beyond basic planning, first of all the problem of moving obstacles. In
current implementation the motion planner handles moving obstacles simply by
replanning the path. However, as no prediction of future motion of the obstacles
is performed, this approach is satisfactory only for slow-moving obstacles. If the
obstacles are fast, the lack of prediction can result with non-optimal motion, or
even with collision.

7.6. Multiple Robots 183

To better handle moving obstacles, we must assume that the future motion
of obstacles is at least partially known, meaning that the future trajectory for
the moving obstacles can be estimated based on acquired sensor data (e.g. by
extrapolating current position, velocity and direction of motion). There are many
researches on planning in dynamic environments (see e.g. [149]). The simplest
approach is to extend the configuration space C with time dimension T , obtaining
the state space X as the Cartesian product X = C × T . The complete planning
is possible only if motions of the obstacles are perfectly known in advance.

The introduced state space X is in many ways similar to C-space seen so far,
but there is one critical difference—time goes forward. Thus there must be a way
of preventing the algorithm of generating paths that travel backward in time. If
the roadmap method is used to solve the problem, the resulting roadmap must
be directed with all edges being time-monotonic. Sampling-based methods can
be applied as well.

An efficient alternative is again to decouple the problem into path planning
and velocity planning parts. Here the path is planned as usual, avoiding the
stationary obstacles. Moving obstacles are accounted in the second part, so that
velocity of the robot along the pre-planned path is tuned to avoid collision with
the moving obstacles. Therefore this approach is called the velocity-tuning method
[89]. This results in a two-dimensional configuration-time space, as a configura-
tion along a path can be described using one parameter. As a result, moving
obstacles manifest as inadmissible “islands” in (s, ṡ) plane. In this case optimal
time-scaling algorithm is more complicated and is described in [136]. As mov-
ing obstacles in (s, ṡ) phase plane do not have a fixed position with respect to ṡ
axis, it is better to perform the velocity tuning in (t, s) plane (configuration-time
space) instead of (s, ṡ) plane.

Obviously, algorithms based on the decoupled approach are not complete,
yet they provide a way to efficiently plan a collision-free trajectory through the
configuration-time space. The incompleteness problem can be alleviated by using
path adaptation in addition to velocity tuning. This can be obtained by treating
a moving obstacle as the static one and adding it into the static roadmap. But
instead of using its current position, position at the moment when the robot is
estimated to first time hit the obstacle is used as it was done e.g. in [27]. In this
process obstacles may also be dilated in order to account for uncertainty. This
algorithm can be used in case that there is enough space to adapt the path. Other-
wise, velocity tuning can be used. In this way a powerful combination is obtained
that circumferences problem of incompleteness in almost all circumstances.

7.6 Multiple Robots

There are many problems that can be solved easier, more efficient or cheaper
by using multiple robots. Examples include delivery in factories or warehouses,

184 Chapter 7. Trajectory Planning

robot soccer etc. In multi-robot planning the problem is to plan motion for a set
of robots in order to bring each robot from some start configuration to some goal
configuration without mutual collisions and collisions with stationary obstacles.
Finding paths for the individual robots only guarantees here that there are no
collision with obstacles, but there is still possibility that two or more robots are in
collision. Thus, motion plans have to be coordinated so that none of the robots
are in collision. This makes the problem significantly harder than in the case
of a single robot. The problem can be solved using centralized and decoupled
planning.

In the centralized approach the set of robots are treated as one multi-body
robot with one composite configuration space. The dimensionality of this config-
uration space is equal to the total number of degrees of freedom of all the robots.
Therefore planning directly in this space is generally too slow for online planning.
However, this formulation of the problem shows that we are dealing with a static
motion planning problem in which time does not play an intrinsic role.

Decoupled approach works in two stages. Initially, a collision-free path is
planned for each individual robot by ignoring all other robots. In the second
stage velocity tuning along the previously planned paths is used too achieve coor-
dination between robots. In this way dimensionality of the configuration space is
not increased. Alternatively, a prioritized planning can be used. It is applied as
follows: first, each robot is given a priority. Then, in order of priority a trajectory
is planned for each individual robot, where robots with higher priority are treated
as moving obstacles for the lower-priority robots. Thus, here multiple instances
must be solved of single robot planning problem in a known dynamic environ-
ment. Decoupled multi-robot planning is very fast, but it is not complete, as the
robots are not able to coordinate their motions, which is sometimes necessary.
However, in most practical situations the prioritized approach is reported to work
very well [149].

7.7 Summary

In this chapter the optimal time-scaling algorithm is presented for trajectory
planning along the predefined path while respecting the actuator constraints. An
overview of planning algorithms for moving obstacles and multiple robots is also
given.

A contribution of this chapter is development of a dynamic model of two
differential-drive robots: soccer robot and Pioneer 3DX robot. The model ac-
counts for velocity and acceleration limits, as well as limited grip between the
wheels and the ground, which is very important for reliable robot operation at
high velocities. This model is then used to express acceleration limits and veloc-
ity limit curve for the optimal time-scaling algorithm, which are further used for
algorithm implementation.

7.7. Summary 185

Developed algorithm can also be adapted for other types of limitations. E.g.
it could be used to prevent tip over of a mobile robot used for human-robot
interaction. For such interaction to be practical, those robots are usually high
and therefore their motion can be unstable at high accelerations. This can be
solved by adding an additional extrinsic constraint on the maximum value of the
overall acceleration, which is a vector sum of the longitudinal and the lateral
(i.e. centrifugal) acceleration. The developed model of intrinsic and extrinsic
constraints can also be used in combination with reactive planners in order to
check whether a particular command is admissible for the robot.

Besides optimization of the developed trajectory planning algorithms, future
works will include extending of basic trajectory planning for the case of moving
obstacles and implementation of the prioritized approach for multi-robot plan-
ning.

Chapter 8

Trajectory Tracking

This chapter presents an experimental overview of three common trajectory track-
ing methods for nonholonomic mobile robots: linear control, nonlinear control
and model predictive control. All methods are compared experimentally on a
two-wheel mobile robot with differential drive. The goal was to determine which
control method is the best with respect to robustness and low trajectory track-
ing error. Thereby, a special emphasis is given to real-time trajectory tracking
and behavior in conditions near the robot velocity and acceleration limits. This
chapter was previously published as [22], while an early version was published in
[23].

8.1 Introduction

Trajectory tracking is the last module in the chain of modules of the decoupled
motion planning approach. The input of the trajectory tracking module is a
feasible trajectory planned by the previous modules, where feasibility refers to
the ability of a robot to actually track the planned trajectory. This means that
the planned trajectory respects various robot physical and dynamical limitations
such as its velocity and acceleration limits, as described in Chapter 7.

The task of a trajectory tracking algorithm is to ensure that the robot actu-
ally tracks the planned trajectory. One may wonder why we do not achieve this
by simply letting the robot execute commands obtained from the planned tra-
jectory, which theoretically should ensure perfect tracking. However, various real
world issues would almost certainly result by a failure of such a simple plan—the
tracking error would typically accumulate over time unboundedly. The sources of
error are numerous and include unperfect robot model used for trajectory plan-
ning, external disturbances such as non-flat floor, delay of commands, unperfect
measurement of robot initial state etc.

The problem of accumulating error can be addressed by frequent trajectory

187

188 Chapter 8. Trajectory Tracking

replanning, however it is better to replan the trajectory only if it is absolutely
necessary (e.g. if an obstacle has moved), in this way saving computational time
for other tasks. In case that tracking error is small, the problem is best solved
by online reactive algorithm that uses sensor readings to generate appropriate
robot commands in order to correct the tracking error. More precisely, such an
algorithm should ensure that a selected reference point on the robot follows the
planned trajectory. In other words, the distance between the reference point on
the robot and current reference point of the trajectory must be kept as small as
possible.

The stated problem is actually a control problem that can be formulated as
follows: based on reference state from the trajectory and measured state of the
robot used as a feedback, generate the robot commands such that the track-
ing error is stabilized. The corresponding algorithm is called trajectory tracking
controller. Here we assume that the variables used for feedback in the control
loop (typically the position and orientation of the mobile robot with respect to a
fixed frame) can be reliably measured by either distributed sensors of the iSpace,
onboard robot sensors, or both.

Various approaches to this problem that cover different mobile robot archi-
tectures regarding number and type of wheels, their location etc. can be found
in the literature (see [111] for a general overview). In practical applications, the
most common configurations are robots with differential drive or car-like drive
and omnidirectional steering. In this work a problem of trajectory tracking for
mobile robot with differential drive is addressed, which is a typical example of
nonholonomic mechanism where the driving wheels can only roll without slipping.
However, most algorithms can also be applied for more complex robot configu-
rations. Nonholonomic constraints have motivated the development of various
highly nonlinear control techniques.

A problem of trajectory tracking controller design using a nonlinear feedback
action is addressed in [127]. In [42] the same problem is solved independently
using dynamic feedback linearization. Trajectory tracking controllers based on
linear control, nonlinear control and dynamic feedback linearization are described
and compared in [93]. Advanced control methods, such as model predictive con-
trol, are also commonly used. Examples of using model predictive controller for
trajectory tracking of nonholonomic systems can be found in [117] and [115], and
a newer example is in [83]. As the trajectory tracking controller is in its nature
a reactive algorithm, it can be implemented efficiently and thus can incorporate
some real world issues that are hard to model at the planning time, such as
friction in the actuators. One such controller that is based on fuzzy control is
proposed in [124].

Unfortunately, an extensive experimental comparison of denoted control ap-
proaches in equal conditions is not well covered in the literature, especially not at
high robot velocities. Therefore this chapter is concerned with an experimental
comparison of several control architectures in conditions near the robot velocity

8.2. Robot Model 189

and acceleration limits. The comparison also encompasses controller implemen-
tation issues and problem of determining controller parameters. In this work it
is assumed that the most important limitations of the robot (acceleration limits
etc.) are already well modeled in the trajectory planning module, so that the
trajectory tracking controller need not to encompass these issues. Thus, simpler
controller architectures are selected, with the additional demand that the con-
troller must be simple enough to be implemented in the microcontroller of the
robot. With this in mind, linear-design controller and nonlinear controller [93],
which are simple and pure reactive algorithms, and model predictive controller
(MPC) [83] as an representative of more advanced control methodologies are se-
lected for comparison. All of the three selected controllers can be implemented
in the microcontroller, although for MPC a more powerful microcontroller is re-
quired.

8.2 Robot Model

x

y

vR

vL v
e2

e1

θ

(xr , yr)

(x , y)

dw

vr

rθ

Figure 8.1. Robot model

A mobile robot with differential drive is kinematically equivalent to a unicy-
cle and its kinematic model is already given by equation (7.22). This equation
transforms longitudinal velocity v and angular velocity ω expressed in coordinates
of mobile robot base to its velocities expressed in global Cartesian coordinates
(Figure 8.1). Also, the nonholonomic constraint that the driving wheels purely
roll and do not slip must be fulfilled, which is given by equation (7.23).

The mapping between longitudinal (driving) and angular (steering) velocities
and circumferential velocities of the wheels, which are sometimes used as the

190 Chapter 8. Trajectory Tracking

commands to the system, is given by:

vR = v + ωdw/2, vL = v − ωdw/2, (8.1)

where dw is the distance along the axle between the centers of the drive wheels,
and vR and vL are circumferential velocities of the right and the left wheel, re-
spectively.

It is important to mention that dynamics of a robot is not modeled by the
kinematic model. Therefore, it is assumed that robot exactly realizes velocity
commands v and ω. Of course, due to robot and actuator dynamics, and also
non-idealities such as friction, gear backslash, wheel slippage, actuator deadzone
and saturation, the robot cannot exactly realize velocity commands. Nevertheless,
as we have assumed that the command trajectory is feasible for the robot, robot
can approximately track the reference velocity commands.

As a safety measure, in case when trajectory tracking controller temporarily
generates command velocities higher than robot limitations, a velocity saturation
will occur. During this time it is important that velocity commands are saturated
so that robot retains its steering direction, i.e. path curvature. This means that
ratio ω/v (which is equal to path curvature) has to be preserved. Therefore, if
v̄max and ω̄max are maximum robot longitudinal and angular velocity commands,
respectively, bounded command velocities vc and ωc that preserve path curvature
are obtained by first defining

σ = max {|v|/v̄max, |ω|/ω̄max, 1} .

Then the following algorithm is used to determine bounded velocities [118]:

vc = v, ωc = ω, if σ = 1;

vc = sign(v)v̄max, ω = ω/σ, if σ = |v|/v̄max;

vc = v/σ, ω = sign(ω)ω̄max, else.

(8.2)

8.3 Trajectory Tracking Controllers

Trajectory tracking problem is a problem of computing appropriate robot com-
mands so that robot (i.e. reference point on the robot) tracks a reference point on
a trajectory. Hereby, a trajectory is given as a function that associates a robot
configuration to each time instance t, i.e. t → qr(t) (see equation (7.1)). In this
chapter reference robot configuration imposed by the planned trajectory will be
denoted by vector qr(t) = [xr(t), yr(t), θr(t)]

T . The problem of trajectory track-
ing may also be formulated as one of controlling the vehicle in order to track a
reference vehicle whose trajectory is given by t → qr(t).

Output of the trajectory tracking controller is control vector u, which consists
of command longitudinal velocity v and command angular velocity ω, i.e. u =

8.3. Trajectory Tracking Controllers 191

Reference
trajectory
generator

Transformation to
robot coordinates

Controller gain
K

Feedforward
part

Mobile
robotqr e

uB

uF

q

-

Figure 8.2. Trajectory tracking controller structure

[v ω]T . Commonly, control vector consists of feedforward and feedback part

u = uF + uB, (8.3)

where uF is feedforward control vector, and uB is feedback control vector. The
structure of general trajectory tracking controller, which consists of feedforward
and feedback part, is shown in Figure 8.2.

Feedforward control vector is usually computed based on reference longitu-
dinal velocity vr and reference angular velocity ωr, which are obtained from the
trajectory using equations (7.3a) and (7.3b), respectively. In this work the feed-
forward control vector is obtained using the following nonlinear transformation
of reference velocities

uF = [vrcos(e3) ωr]
T , (8.4)

where e3 = θr − θ is angular error (see Figure 8.1). The term cos(e3) in equation
(8.4) has a task of avoiding high longitudinal velocities that can be counterpro-
ductive if the angular error is high. This feedforward generation algorithm is used
by all presented control schemes.

The feedback control vector is computed based on current tracking error and
is added to the generated feedforward commands. It consists of command lon-
gitudinal velocity vB and command angular velocity ωB, i.e. uB = [vB ωB]T .
Unlike feedforward part, the feedback part is different for each of the controllers
presented in the sequel.

8.3.1 Linear-Design Controller

The simplest design of trajectory tracking controller is obtained using tangent
linearization along the reference trajectory. The problem of minimizing difference
between reference configuration and measured robot configuration is equivalent
to problem of stabilization of tracking error dynamics. The tracking error e(t)
can be defined in the configuration space of the robot, however it is convenient
to transform it to the robot local coordinate system. This transformation is

192 Chapter 8. Trajectory Tracking

performed as follows

e(t) =





e1

e2

e3



 =





cos θ sin θ 0
− sin θ cos θ 0

0 0 1









xr − x
yr − y
θr − θ



 , (8.5)

where error component e1 is the longitudinal error, e2 is the orthogonal error,
while e3 is the orientation error as illustrated in Figure 8.1. By taking a derivative
of equation (8.5) and taking into account robot kinematics (7.22) and (7.23), the
error dynamics becomes





ė1

ė2

ė3



 =





cos e3 0
sin e3 0

0 1





[

vr

ωr

]

+





−1 e2

0 −e1

0 −1





[

v
ω

]

, (8.6)

Using equations (8.3) and (8.4), equation (8.6) can be rewritten as

ė =





0 ω 0
−ω 0 0
0 0 0



 e +





0
sin e3

0



 vr +





−1 0
0 0
0 −1



uB. (8.7)

Error dynamics model (8.7) is obviously nonlinear. Linearizing it around the
reference trajectory (e = 0, uB = 0, v = vr, ω = ωr) yields the linearized error
dynamics as follows

ė =





0 ωr 0
−ωr 0 vr

0 0 0



 e +





−1 0
0 0
0 −1



uB. (8.8)

It can be shown that this system can be locally stabilized around reference
trajectory which consists of linear or circular paths with constant velocity. Fur-
thermore, it is shown that by using linear design methods it is possible to locally
stabilize given system even for arbitrary feasible trajectories under condition that
they do not come to a stop.

Now, following [93], the design procedure of the linear-design controller will
be shortly described. First, the linear feedback law is defined as

uB(t) = Kse(t), (8.9)

where the gain matrix Ks is defined as

Ks =

[

k1 0 0
0 sign(vr)k2 k3

]

. (8.10)

The structure of gain matrix (8.10) can be intuitively explained by looking at

8.3. Trajectory Tracking Controllers 193

Figure 8.1. The longitudinal error e1 is reduced by manipulating the command
longitudinal velocity vB via gain k1. The orientation error e3 is reduced similarly
by controlling command angular velocity ωB of the robot via gain factor k3.
Finally, the orthogonal error e2 is also reduced by changing the angular velocity,
but here the driving direction (forward or backward) should also be taken into
account.

Now the gains k1, k2, k3 are determined by using desired closed-loop charac-
teristic equation

(λ + 2ζωn)(λ2 + 2ζωnλ + ω2
n), (8.11)

with one negative eigenvalue at −2ζωn and a complex pair with natural angular
frequency ωn > 0 and damping coefficient ζ ∈ (0, 1). The closed loop character-
istic (8.11) is obtained by choosing the gains

k1 = k3 = 2ζωn, k2 =
ω2

n − ωr(t)
2

|vr(t)|
. (8.12)

The problem with this choice of gains is that k2 goes to infinity as reference
longitudinal velocity vr goes to zero. The possible gain scheduling scheme that
solves the problem is obtained by letting ωn(t) =

√

ω2
r(t) + gv2

r(t), which gives:

k1 = k3 = 2ζ
√

ω2
r(t) + gv2

r(t), k2 = g|vr(t)|, (8.13)

where parameter g > 0 gives an additional degree of freedom. It can be noted
that with this choice of gains linear-design controller actually becomes nonlinear
time-varying controller. It should be emphasized that, even if the closed-loop
eigenvalues are constant and with negative real part, this control law does not
guarantee the asymptotic stability of the tracking error e, as the system is time-
varying. Also, this is a continuous controller, but as it has only the proportional
gains, under assumption that sampling period is small, it can also be used directly
as a discrete controller.

8.3.2 Nonlinear Controller

The main importance of nonlinear controller design is that its global asymptotic
stability can be proven. Its feedback control is defined by the following gain
matrix [126]

Kn =

[

k1(vr(t), ωr(t)) 0 0

0 k2vr(t)
sin(e3)

e3

k3(vr(t), ωr(t))

]

, (8.14)

where k2 > 0 is constant positive gain, and k1(·, ·) and k3(·, ·) are positive con-
tinuous gain functions. Assuming that vr and ωr are bounded and with bounded
derivatives, and that vr(t) 9 0 and ωr(t) 9 0 when t → ∞, using Lyapunov anal-

194 Chapter 8. Trajectory Tracking

ysis one can prove that the control law (8.14) globally asymptotically stabilizes
the origin e = 0.

Following the design of previous linear-design controller, the gain functions k1

and k3, and the constant gain k2 can be chosen as

k1(vr(t), ωr(t)) = k3(vr(t), ωr(t)) = 2ζ
√

ω2
r(t) + gv2

r(t),

k2 = g,
(8.15)

where g > 0 and ζ ∈ (0, 1).

8.3.3 Model Predictive Controller

The main idea of the model predictive controller (MPC) is to minimize a difference
between used-defined reference trajectory tracking error and predicted trajectory
tracking error, as well as control effort. Accordingly, a quadratic cost function
can be written as

J(uB, k) =
h
∑

i=1

εT (k, i) Qε(k, i) + uT
B(k, i) R uB(k, i), (8.16)

where ε(k, i) = er(k + i) − e(k + i|k) is difference between reference (desired)
trajectory tracking error er(k+i) and predicted trajectory tracking error e(k+i|k),
h is prediction horizon interval, and Q and R are weighting matrices, where
Q ≥ 0, Q ∈ R

n × R
n and R ≥ 0, R ∈ R

m × R
m, n is the number of state

variables and m is the number of input variables.

For the design purpose, error dynamics (8.8) is discretized as

e(k + 1) = Ae(k) + BuB(k), (8.17)

where A ∈ R
n × R

n and B ∈ R
n × R

m. Discrete model matrices A and B for
short sampling time Ts can be well approximated as

A = I + AcTs

B = BcTs.
(8.18)

Following [83], error prediction in h steps ahead can be written as

e(k + h|k) =
h−1
∏

j=1

A(k + j|k)e(k) +
h
∑

i=1

(

h−1
∏

j=i

A(k + j|k)

)

×B(k + i − 1|k)uB(k + i − 1)

+B(k + h − 1|k)uB(k + h − 1).

(8.19)

8.3. Trajectory Tracking Controllers 195

The vector of trajectory tracking error predictions is defined as

E∗(k) =
[

e(k + 1|k)T e(k + 2|k)T . . . e(k + h|k)T
]T

(8.20)

where E∗ ∈ R
n·h. If the control vector is defined as

UB(k) =
[

uB(k)T uB(k + 1)T . . . uB(k + h − 1)T
]T

, (8.21)

where UB ∈ R
m·h, and

Λ(k, i) =
h−1
∏

j=i

A(k + j|k), (8.22)

the vector of trajectory tracking error predictions can be written in matrix form
as

E∗(k) = F (k)e(k) + G(k)UB(k), (8.23)

where
F (k) = [A(k|k) A(k + 1|k)A(k|k) . . . Λ(k, 0)]T , (8.24)

and

G(k) =










B(k|k) 0 · · · 0

A(k + 1|k)B(k|k) B(k + 1|k) · · · ...
...

...
. . .

...
Λ(k, 1)B(k|k) Λ(k, 2)B(k + 1|k) · · · B(k + h − 1|k)











,
(8.25)

where F (k) ∈ R
n·h × R

n, G(k) ∈ R
n·h × R

m·h.

A dynamics of reference trajectory tracking error can be defined as

er(k + 1) = Ai
re(k), i = 1, . . . , h, (8.26)

whereas matrix Ar is selected so that reference trajectory tracking error decreases
with desired dynamics over time. Now the vector of reference trajectory tracking
errors is defined as

E∗

r (k) =
[

er(k + 1|k)T er(k + 2|k)T . . . er(k + h|k)T
]T

, (8.27)

and it can be computed as
E∗

r (k) = Fre(k), (8.28)

where
Fr =

[

Ar A2
r . . . Ah

r

]T
, (8.29)

and Fr ∈ R
n·h × R

n.

196 Chapter 8. Trajectory Tracking

The cost function (8.16) can now be expressed as

J(UB) = (E∗

r − E∗)T Q(E∗

r − E∗) + UT
BRUB. (8.30)

In order to obtain optimal control law, the cost function is minimized by setting
its derivative to zero. In this way the control law becomes

UB(k) =
(

GT QG + R
)−1

GT Q(Fr − F)e(k), (8.31)

where

Q =











Q 0 · · · 0

0 Q · · · ...
...

...
. . .

...
0 0 · · · Q











, R =











R 0 · · · 0

0 R · · · ...
...

...
. . .

...
0 0 · · · R











, (8.32)

where Q ∈ R
n·h × R

n·h and R ∈ R
m·h × R

m·h. The feedback control law of the
MPC now becomes

uB(k) = Kmpc e(k) (8.33)

where Kmpc is defined as first m rows of the matrix
(

GT QG + R
)−1

GT Q(Fr−F),
so that Kmpc ∈ R

m × R
n.

The main improvement of MPC over pure reactive liner-design and nonlinear
controllers is its prediction of future robot states, which should, at least theoret-
ically, improve quality of the control and reduce tracking error.

8.4 Experimental Results

8.4.1 Trajectory Tracking Controllers Comparison

Three described trajectory-tracking algorithms were tested on robot soccer plat-
form described in Section 3.4. Robot state was measured using global vision
system described in Chapter 3. For experiments 8-shaped trajectory was used
that is defined by

xr(t) = 1.1 + 0.7sin

(

vmaxt√
2.45

)

yr(t) = 0.9 + 0.7sin

(

2 · vmaxt√
2.45

)

,

(8.34)

where vmax is the maximum longitudinal velocity of the trajectory, which is
achieved in the center point of shape “8”, with coordinates (1.2, 0.9) m. This
type of trajectory is appropriate for experiments, because it has sharp turns, as
well as parts with high acceleration and velocity, but it’s still feasible for the robot
because there are no step changes of the longitudinal, nor angular velocity, and
maximum acceleration of the robot is never exceeded. The maximum longitudinal

8.4. Experimental Results 197

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x [m]

y
[m

]

Figure 8.3. Trajectory tracking experiment with linear-design controller: robot path
(–), reference path (- -)

velocity that was used in experiments is vmax = 1.5 m/s. With this setting, the
maximum longitudinal acceleration of the trajectory is 1.9 m/s2, which is close to
robot acceleration limits (characteristics of the soccer robot can be seen in Table
7.1). In experiments, robot was first accelerated to achieve position, orientation
and velocity that were approximately equal to trajectory initial condition.

The sampling period for all controllers was 12.5 ms. The parameters for linear-
design controller were ζ = 0.7 and g = 60, and the same parameters were used
for nonlinear controller. For the MPC, after many trials the prediction horizon
h = 12 was taken as the best choice. Also using trial and error, the reference
matrix Ar = I3×3 · 0.85 and weighting matrices

Q =





4 0 0
0 10 0
0 0 0.1



 , R = I2×2 × 10−3,

were selected.

The obtained robot paths for experiments with linear-design controller, non-
linear controller and MPC are given in Figures 8.3, 8.4 and 8.5, respectively. To
compare tracking errors, for all experiments sum of squared errors (SSE) for each
component of error vector e is computed and it is obtained:

198 Chapter 8. Trajectory Tracking

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x [m]

y
[m

]

Figure 8.4. Trajectory tracking experiment with nonlinear controller: robot path (–),
reference path (- -)

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x [m]

y
[m

]

Figure 8.5. Trajectory tracking experiment with MPC: robot path (–), reference path
(- -)

8.4. Experimental Results 199

SSElinear = (0.0177 0.0397 0.4395)

SSEnonlinear = (0.0144 0.0354 0.3555)

SSEMPC = (0.0442 0.0416 0.4010).

It can be seen that nonlinear controller has the lowest SSE for all three error
components, although the difference is not significant. This can also be confirmed
by visual comparison of obtained paths. The error of linear-design controller is
only slightly higher compared to nonlinear. Although the simulation experiments
performed prior to real-world experiments suggested superiority of MPC over
other controllers, as its SSE was more than 10 times lower, surprisingly, in real
world it could be no more confirmed—MPC resulted with about three times
higher longitudinal error e1 compared to nonlinear controller, while other two
error components are comparable to other controllers.

The produced command velocities of linear-design, nonlinear and MPC con-
trollers, together with ideal velocities generated from reference trajectory, are
displayed in Figures 8.6, 8.7 and 8.8, respectively. The difference between gen-
erated command velocity and ideal velocity denotes how much feedback action a
controller uses. It can be observed that all controllers produce similar command
values, but MPC command values are smoothest and closest to ideal velocities.
This is because it implicitly performs some filtering during prediction process.
However, this makes the MPC more conservative—it reacts slower and is thus
less robust and more prone to uncertainties. But this also suggests that MPC
has the lowest control effort, i.e. it has the lowest energy consumption.

Regarding the choice of controller parameters, for linear-design and nonlinear
controllers it was very easy to find controller parameters using trial and error.
The control algorithm still performed well under moderate deviation of parameter
values. On the contrary, MPC was very sensitive to choice of parameters and
control sometimes became unstable under only slight modifications of parameter
values.

The next important issue is sensitivity to initial tracking error. It is obtained
that in presence of moderate initial position error (few centimeters) linear-design
and nonlinear controllers show acceptable robustness, while MPC often demon-
strates unstable behavior.

The experiment was also conducted to find out the maximum velocity at which
the control remains stable. Here an additional problem appears, as measurements
become more noisy at high velocities. The maximum longitudinal velocity was
changed by tuning parameter vmax in equation (8.34). It was obtained that the
maximum velocity that could be achieved is 1.5 m/s with MPC, 1.6 m/s with
linear-design controller and 1.7 m/s with nonlinear controller. Thus, the nonlinear
controller again demonstrated the best behavior.

All described controllers can be implemented in a microcontroller. Linear-
design controller, being the simplest one of three controllers, is the easiest to

200 Chapter 8. Trajectory Tracking

0 1 2 3 4 5 6 7
−6

−4

−2

0

2

4

6

t [s]

v r [m
/s

],
u 1 [m

/s
],

ω
r [r

ad
/s

],
u 2 [r

ad
/s

]

u
1

v
r

u
2

ω
r

Figure 8.6. Experiment with linear-design controller: ideal longitudinal (vr) and an-
gular (ωr) velocity, generated command longitudinal (u1) and angular (u2) velocity

0 1 2 3 4 5 6 7
−6

−4

−2

0

2

4

6

t [s]

v r [m
/s

],
u 1 [m

/s
],

ω
r [r

ad
/s

],
u 2 [r

ad
/s

]

u
1

v
r

u
2

ω
r

Figure 8.7. Experiment with nonlinear controller: ideal longitudinal (vr) and angular
(ωr) velocity, generated command longitudinal (u1) and angular (u2) velocity

8.4. Experimental Results 201

0 1 2 3 4 5 6 7
−6

−4

−2

0

2

4

6

t [s]

v r [m
/s

],
u 1 [m

/s
],

ω
r [r

ad
/s

],
u 2 [r

ad
/s

]

u
1

v
r

u
2

ω
r

Figure 8.8. Experiment with MPC: ideal longitudinal (vr) and angular (ωr) velocity,
generated command longitudinal (u1) and angular (u2) velocity

implement in a microcontroller. Nonlinear controller is only slightly more com-
plicated, as its implementation involves computation of sinus function, which can
be obtained through a lookup table. MPC is the most complicated, since its
implementation requires matrix operations including matrix inversion. However,
if the microcontroller is powerful enough, MPC can be still implemented, yet it is
questionable whether it would execute fast enough for long prediction horizons.

Finally, it can be concluded that nonlinear controller achieves highest velocity
and lowest tracking error, and it is easy to tune its parameters. For MPC it was
noted that, although it is the best in simulations, in the real world it has the
highest tracking error. The most serious problem of MPC is its weak robustness,
as it is highly sensitive to initial position error and choice of parameters. This
is most likely caused by the fact that the described MPC algorithm depends
on linearized model for prediction of future errors. However, linearized model
is inexact, especially for long prediction horizons, so that MPC makes wrong
predictions. Moreover, it is difficult to determine its parameters. Its potential
advantage is flexibility regarding tuning options and energy saving so that it
could be used at low velocities in applications where energy saving is important.
However, as in this work more emphasis is given to achieving fast robot motion,
nonlinear controller is taken as a method of choice, since it demonstrated the best
behavior so far.

202 Chapter 8. Trajectory Tracking

8.4.2 Complete Motion Planner

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time [s]

V
el

oc
ity

 [m
/s

]

Planned velocity
Robot velocity

(a)

0 0.5 1 1.5 2

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

x [m]

y
[m

]

Reference path
Robot path

(b)

Figure 8.9. Motion planning experiment in simulator. (a) Robot velocity. (b) Robot
path.

Having tested all the particular modules, it is now necessary to check function
of the complete motion planner. It consists of path planning module described in
Chapter 5, path smoothing module described in Chapter 6, trajectory planning
module described in Chapter 7 and trajectory tracking module based on nonlinear

8.5. Summary 203

controller described in this chapter. In this experiment robot soccer simulation
test bed is used, with some additional obstacles added to the robot soccer field,
so that robot workspace was as shown in Figure 5.7. The planned path that
was used in the experiment is shown in Figure 5.10 and is further smoothed by
clothoids as shown in Figure 6.16.

The velocity profile obtained by applying the trajectory planning algorithm
to the smoothed path is displayed in Figure 8.9 a), together with actual robot
velocity obtained in high fidelity simulator by applying the nonlinear trajectory
tracking controller. It can be observed that the actual robot velocity is very
close to reference velocity although some delay is visible, which affects mainly
longitudinal error. In Figure 8.9 b) robot path is displayed and it can be seen
that robot tracks the planned path very closely, which implies that lateral error is
low. It can be concluded that the developed motion planner shows good behavior.
Experiments with real robots are planned in the future.

8.5 Summary

An experimental comparison of three trajectory tracking controllers for nonholo-
nomic mobile robot is presented: linear-design controller, nonlinear controller
and model predictive controller. The goal was to obtain tracking at highest pos-
sible trajectory velocity, and all controllers were tested on a real mobile robot.
Experiments have shown that all three controllers produce comparable quality
of trajectory tracking, but MPC is highly sensitive to initial robot state error,
and it is very difficult to determine optimal parameters of the MPC algorithm.
Moreover, the drawback of MPC is its complexity, especially if longer prediction
intervals are used. Therefore, at high velocities the nonlinear controller is selected
as it provides global asymptotic stability, it is easy to choose its parameters, is
simple to implement and has low computational requirements, which makes it
especially appropriate for fast, real-time trajectory tracking.

Finally, simulation experiment with the overall motion planner system is per-
formed, which demonstrates that all modules work well when combined together.

Future work will include developing a nonlinear model predictive controller
(e.g. [71]) that is expected to provide better prediction of future robot states, and
therefore better robustness at high velocities. Also, the procedure of determining
optimal controller parameters will be developed.

It should also be mentioned that in some applications velocity planning is
not of particular importance for the motion planning, so that trajectory planning
algorithm could be skipped and path-following controller can be applied directly
to the planned path. A number of different path-following algorithms is described
in the literature, see e.g. [111]. Investigation of path-following algorithms could
be also an interesting topic of ongoing research.

Chapter 9

Conclusion

The thesis investigates application of mobile robots in environments that are pro-
vided with ambient intelligence to form the so-called Intelligent Spaces (iSpaces).
The purpose of the iSpace is providing various services to its users, where mo-
bile robots provide numerous possibilities, such as load delivery, visitor guidance
etc. Thus the focus of the thesis is set to developing the capability of the space
to fully utilize mobile robots, with the emphasis on development of low-level al-
gorithms that can benefit by using intelligent space advantages. The problem
of introducing mobile robots can be considered from two main aspects—sensing
and planning. Consequently, a research is conducted in two directions. First, a
method for fast and precise mobile robot localization using distributed cameras is
developed. Second, a fast and flexible robot motion planning method appropriate
for intelligent space application is developed.

The iSpace infrastructure presumes installation of distributed sensors into the
space. One of the most versatile sensors to be installed is camera, where such
systems are known as global vision systems. Important issues when using global
vision for robot localization are measurement errors due to noise contained in the
image and sensitivity to illumination changes. In this work a method for mobile
robot localization using distributed cameras is developed that solves both issues.
The method uses specially designed markers mounted on the top of the robot. The
developed vision algorithm achieves high measurement precision and accuracy as
it works in subpixel precision and is robust to light intensity changes. Moreover,
the algorithm is efficient, as it operates directly in Bayer image, so that high
framerates (> 100 fps) can be achieved with typical hardware. High measurement
precision and robustness are verified by carefully performed experiments.

Regarding robot motion planning, benefits of iSpace can manifest in more
accurate robot’s state estimation, known environment and more computational
power available. Therefore it is reasonable to expect that more deterministic mo-
tion planning can be achieved compared to typical reactive planners. One such
approach that uses decoupled planning to obtain deterministic long-term planning

205

206 Chapter 9. Conclusion

is developed in this thesis. The method consists of four stages: path planning,
path smoothing, trajectory planning and trajectory tracking. As the basis of path
planning a modified visibility-Voronoi diagram for clearance is used that finds the
shortest path amidst polygonal obstacles satisfying minimum clearance require-
ment where possible. The method is extended to handle path replanning in real
time, which enables planning in dynamic environments. A path-smoothing al-
gorithm capable of smoothing piecewise linear paths is developed, that produces
G2 continuous paths. Moreover, the curvature of the produced path changes
linearly with distance, which is obtained by using clothoids as path-smoothing
primitives. Efficient algorithms capable of smoothing a path with non-zero ini-
tial curvature are also developed, which represents an important contribution,
essential for path replanning when robot initial velocity is non-zero. An opti-
mal trajectory planning algorithm along the predefined path is developed that
accounts for velocity and acceleration limits, as well as limited grip between the
wheels and the ground, which is very important for reliable robot operation at
high velocities. Finally, three trajectory tracking controllers for nonholonomic
mobile robot are implemented and experimentally compared, namely linear de-
sign controller, nonlinear controller and model predictive controller. The overall
system is successfully tested on high-fidelity robot soccer simulator.

9.1 Contributions

The contributions of the presented work can be summarized as follows:

1. A new global vision system for real-time tracking of two-dimensional poses
of multiple mobile robots is presented. A novel algorithm is proposed that
operates directly in Bayer format image thus enabling high framerates and
at the same time high measurements precision and accuracy as it works in
subpixel precision. High measurement precision and accuracy are verified
by carefully performed experiments.

2. A path-planning algorithm is proposed that finds a shortest path amidst
polygonal obstacles that satisfies minimum clearance requirement where
possible. Hereby, a novel algorithm that has a capability of dynamic path
replanning is developed, which enables planning in dynamic environments.
The developed path-replanning algorithm is efficient and allows real-time
path replanning in presence of moderate number of moving obstacles. The
complexity of the algorithm does not depend on size of the workspace, but
only on its complexity.

3. A path-smoothing algorithm capable of smoothing piecewise linear paths is
proposed, which produces G2 continuous path with linearly changing cur-
vature. This is obtained by using clothoid curves as smoothing primitives.

9.2. Future Work 207

Efficient algorithms capable of smoothing a path with non-zero initial cur-
vature are developed, which is essential when path replanning for moving
robots is required. To the best of author’s knowledge, this is the first com-
plete solution that enables application of clothoid for path replanning.

It is known that expressions for clothoids coordinates have no closed form
solution, which makes calculations with clothoids hard to do in real time.
This problem is solved by storing points of the clothoid in the lookup table.
It is shown that points of any clothoid can be efficiently computed based
on the stored clothoid by rescaling, rotating and translating.

4. A dynamic model of differential-drive robot is developed. The model ac-
counts for acceleration limits, as well as limited grip between the wheels and
the ground, which is very important for reliable robot operation at high ve-
locities. The developed model is then used to express acceleration limits and
velocity limit curve required by the optimal time-scaling algorithm. The de-
veloped algorithms are used for time-optimal trajectory planning along the
predefined path for the soccer robot and Pioneer 3DX robot.

5. An experimental comparison of three trajectory tracking controllers for non-
holonomic mobile robot is presented: linear-design controller, nonlinear con-
troller and model predictive controller.

9.2 Future Work

A number of algorithms presented in this thesis could be further improved or
extended. Some of the possible improvements are already mentioned in the main
text, and here we bring a summary:

• Currently, every camera of the global vision system must be calibrated
separately, which is a rather cumbersome task. However, the calibration
can be automated by tracking the robots by the distributed cameras (and
possibly other sensors) while at the same time estimating the calibration
parameters, utilizing the fact that robot’s state is continuously changing
while moving from one to another camera’s field of view.

Furthermore, fusion of global vision with other sensors, both distributed
and onboard, should be implemented to increase measurement reliability
and avoid e.g. occlusion problems.

• The developed path planner is not appropriate in all situations (e.g. ma-
nipulation), so that it could be combined with other methods, such as
sampling-based planner. In such multiple-planner strategy for each sub-
problem the most appropriate planning method would be picked by the
higher-level module.

208 Chapter 9. Conclusion

• Several improvements can be made in path-smoothing module, such as use
of Bezier curves for clothoid interpolation.

• The current motion planner handles moving obstacles by performing path
replanning, without any prediction of future obstacles’ positions. As such,
it is acceptable only for slow-moving obstacles. For faster obstacles velocity
tuning, path adaptation, or both can be implemented.

• Currently the nonlinear trajectory tracking controller is used for trajectory
tracking. It should be investigated whether other algorithms, such as the
model predictive controller based on nonlinear model, could achieve better
performance and robustness at high velocities.

This thesis covers an application of mobile robots in iSpaces, which is only a
small segment of an overall iSpace problematic. Thus, there is yet a long way to
achieving a fully operational system, where to the author’s opinion at least the
following issues must be addressed:

• Robust human tracking;
• User friendly human-iSpace interface (speech recognition, etc.);
• To allow manipulation tasks, mobile robot should be equipped with a grasp-

ing manipulator.

Bibliography

[1] The PolyBoolean library. http://www.complex-a5.ru/polyboolean/.

[2] ActivMedia Robotics. Pioneer 2 Mobile Robots with Pioneer 2 Operating
System Servers – Operations Manual, 2000.

[3] J. E. Adams, K. Parluski, and K. Spaulding. Color processing in digital
cameras. IEEE Micro, 18(6):20–29, 1998.

[4] Šandor Ileš, M. Seder, and I. Petrović. Improvement of map building dur-
ing the exploration of polygonal environments using the range data. In
Proc. of the 15th International Conference on Electrical Drives and Power
Electronics (EDPE2009), Dubrovnik, Croatia, 2009.

[5] G. Antonelli, S. Chiaverini, and G. Fusco. A calibration method for odom-
etry of mobile robots based on the least-squares technique: Theory and
experimental validation. IEEE Transactions on Robotics, 21(5):994–1004,
October 2005.

[6] G. Appenzeller, J.-H. Lee, and H. Hashimoto. Building topological maps
by looking at people: An example of cooperation between intelligent spaces
and robots. In Proceedings of the International Conference on Intelligent
Robots and Systems (IROS’97), Grenoble, France, 1997.

[7] K. O. Arras, N. Tomatis, B. T. Jensen, and R. Siegwart. Multisensor on-
the-fly localization: Precision and reliability for applications. Robotics and
Autonomous Systems, 34(2-3):131–143, 2001.

[8] T. Asano, T. Asano, L. Guibas, J. Hershberger, and H. Imai. Visibility of
disjoint polygons. Algorithmica, 1(1):49–63, 1986.

[9] F. Aurenhammer and R. Klein. Voronoi diagrams. Technical report, Fer-
nUniversität Hagen, Department of Computer Science, Germany, 1996.
Technical Report 198.

209

210 Bibliography

[10] F. Avnaim, J.-D. Boissonnat, and B. Faverjon. A practical exact motion
planning algorithm for polygonal objects amidst polygonal obstacles. In
Proceedings of IEEE Int. Conf. on Robotics and Automation, volume 3,
1988.

[11] D. Ball, G. Wyeth, and S. Nuske. A global vision system for a robot
soccer team. In Proceedings of the Australasian Conference on Robotics
and Automation (ACRA’04), Canberra, Australia, 2004.

[12] B. E. Bayer. Color imaging array. U.S. Patent No. 3,971,065, 1976.

[13] K. Belghith, F. Kabanza, L. Hartman, and R. Nkambou. Anytime dynamic
path-planning with flexible probabilistic roadmaps. In Proceedings of IEEE
Int. Conference on Robotics and Automation, pages 2372–2377, 2006.

[14] M. Bennewitz, W. Burgard, and S. Thrun. Finding and optimizing solvable
priority schemes for decoupled path planning techniques for teams of mobile
robots. Robotics and Autonomous Systems, 41:89–99, 2002.

[15] P. Bhattacharya and M. L. Gavrilova. Roadmap-based path planning -
using the Voronoi diagram for a clearance-based shortest path. Robotics
and Automation Magazine, IEEE, 15(2):58–66, June 2008.

[16] J. E. Bobrow, S. Dubowsky, and J. S. Gibson. Time-optimal control
of robotic manipulators along specified paths. International Journal of
Robotics Research, 4(4):3–17, 1985.

[17] J. Borenstein, H. R. Everett, and L. Feng. Where am I? sensors and methods
for mobile robot positioning. Technical Report 1996.MI 48109, University
of Michigan, 1996.

[18] J. Borenstein and Y. Koren. Real-time obstacle avoidance for fast mobile
robots. IEEE Trans. on Systems, Man, and Cybernetics, 19(5):1179––1187,
1998.

[19] J.-Y. Bouguet. Camera Calibration Toolbox for Matlab.

[20] M. Brezak, G. Klančar, I. Petrović, and D. Matko. Supervised tracking of
a mobile robot team. In Proceedings of International Electrotechnical and
Computer Science Conference (ERK’05), Portorož, Slovenia, 2005.

[21] M. Brezak and I. Petrović. Global vision based tracking of multiple mo-
bile robots in subpixel precision. In Proc. of International Conference on
Industrial Informatics (INDIN 2007), 2007.

Bibliography 211

[22] M. Brezak, I. Petrović, and N. Perić. Experimental comparison of tra-
jectory tracking algorithms for nonholonomic mobile robots. In Proc. of
35th Annual Conference of the IEEE Industrial Electronics Society, Porto,
Portugal, 2009.

[23] M. Brezak, I. Petrović, and K. Vrdoljak. A trajectory tracking controller for
mobile robot with differential drive. In Proc. of International Conference
on Electrical Drives and Power Electronics, Slovakia, 2003.

[24] M. Brezak, I. Petrović, and E. Ivanjko. Robust and accurate global vi-
sion system for real time tracking of multiple mobile robots. Robotics and
Autonomous Systems, 56:213–230, March 2008.

[25] M. Brezak, I. Petrović, and A. Kitanov. An approach to motion planning of
mobile robots considering dynamic constraints. In Proceedings of Interna-
tional Conference on Power Electronics and Motion Control (EPE-PEMC
2004), Riga, Latvia, 2004.

[26] M. Brezak, I. Petrović, and D. Rožman. Global vision based tracking of
multiple mobile robots. In Proceedings of International Symposium on In-
dustrial Electronics (ISIE’06), Montreal, Canada, 2006.

[27] D. Brščić. Mobile robot control scheme based on distributed and onboard
sensors. PhD thesis, University of Tokyo, Intelligent Control System Lab-
oratory, 2008.

[28] B. B. Brian, B. Meyers, J. Krumm, A. Kern, and S. Shafer. Easyliving:
technologies for intelligent environments. In Proceedings of the 2nd inter-
national symposium on Handheld and Ubiquitous Computing, pages 12–29,
Bristol, UK, 2000. Springer-Verlag.

[29] B. Browning and M. Veloso. Real-time, adaptive color-based robot vision.
In Proceedings of the International Conference on Intelligent Robots and
Systems (IROS’05), Edmonton, Canada, 2005.

[30] J. Bruce, T. Balch, and M. Veloso. Fast and inexpensive color image seg-
mentation for interactive robots. In Proceedings of the International Con-
ference on Intelligent Robots and Systems (IROS’00), Takamatsu, Japan,
2000.

[31] J. Bruce and M. Veloso. Fast and accurate vision-based pattern detection
and identification. In Proceedings of the 2003 IEEE International Confer-
ence on Robotics and Automation (ICRA’03), Taipei, Taiwan, 2003.

[32] M. N. Bygi and M. Ghodsi. Improving the construction of the visibil-
ity–Voronoi diagram. In Proc. of European Workshop on Computational
Geometry, Graz, Austria, 2007.

212 Bibliography

[33] J. F. Canny. The Complexity of Robot Motion Planning. The MIT Press,
MA, 1988.

[34] J. F. Canny. Constructing roadmaps of semi-algebraic sets I: Completeness.
Artificial Intelligence, 37:203–222, 1988.

[35] Cgal, Computational Geometry Algorithms Library. http://www.cgal.org.

[36] CGAL Editorial Board. Cgal User and Reference Manual, 3.5 edition,
2009.

[37] F. Chin, J. Snoeyink, and C. A. Wang. Finding the medial axis of a simple
polygon in linear time. Discrete Computational Geometry, pages 382–391,
1995.

[38] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E.
Kavraki, and S. Thrun. Principles of Robot Motion. MIT Press, 2005.

[39] F. Daoud and T. Nomura. Preface to ’smart spaces’. Journal of Network
and Computer Applications, 25(4):239–242, 2002.

[40] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computational
Geometry, Algorithms and Applications. Springer, third edition, 2008.

[41] H. Delingette, M. Herbert, and K. Ikeuchi. Trajectory generation with
curvature constraint based on energy minimization. In Proceedings of Int.
Conference on Intelligent Robots and Systems (IROS ’91), Osaka, Japan,
November 1991.

[42] A. DeLuca and M. DiBenedetto. Control of nonholonomic systems via
dynamic compensation. Kybernetika, 29(6):593–608, 1993.

[43] F. Devernay. A non-maxima suppression method for edge detection with
sub-pixel accuracy. Technical Report RR-2724, INRIA Institute, 1995.

[44] E. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1:269–271, 1959.

[45] A. Egorova, M. Simon, F. Wiesel, A. Gloye, and R. Rojas. Plug and play:
Fast automatic geometry and color calibration for cameras tracking robots.
In Proceedings of the 8th International RoboCup Symposium (RoboCup’04),
Lisboa, Portugal, 2004.

[46] A. Elfes. Sonar-based real-world mapping and navigation. IEEE Journal
of Robotics and Automation, 3:249–265, June 1987.

Bibliography 213

[47] Željko Srbljinović. Dinamički modeli mobilnih robota s diferencijalnim
pogonom i njihovo parametriranje. University of Zagreb, Faculty of Elec-
trical Engineering and Computing, October 2008. Diploma thesis.

[48] S. Fleury, P. Soueres, J.-P. Laumond, and R. Chatila. Primitives for smooth-
ing mobile robot trajectories. IEEE Transactions on Robotics and Automa-
tion,, 11(3):441–448, June 1995.

[49] M. L. for Computer Science and M. A. Intelligence. MIT Project Oxygen.
http://www.oxygen.lcs.mit.edu/.

[50] D. Fox, W. Burgard, and S. Thrun. The dynamic window approach to
collision avoidance. IEEE Robotics & Automation Magazine, 4(1), 1997.

[51] T. Gevers and A. W. M. Smeulders. Color-based object recognition. Pattern
Recognition, 32(3):453–464, April 1999.

[52] S. K. Ghosh. Visibility Algorithms in the Plane. Cambridge, 2007.

[53] C. Gönner, M. Rous, and K.-F. Kraiss. Real-time adaptive colour seg-
mentation for the robocup middle size league. In Proceedings of RoboCup
International Symposium 2004, Lisbon, Portugal, 2004.

[54] K. Gunnarsson, F. Wiesel, and R. Rojas. The color and the shape: Au-
tomatic on-line color calibration for autonomous robots. In Proceedings of
The 9th International RoboCup Symposium (RoboCup’05), Osaka, Japan,
2005.

[55] P. Hart, N. Nilsson, and B. Rafael. A formal basis for the heuristic deter-
mination of minimum cost paths. IEEE Transactions on Systems Science
and Cybernetics, 4:100–107, 1968.

[56] H. Hashimoto. Present state and future of intelligent space—discussion on
the implementation of RT in our environment. Artificial Life and Robotics,
11(1):1–7, 2007.

[57] M. A. Heald. Rational approximations for the fresnel integrals. Math.
Comp, 44:459–461, 1985.

[58] J. Hershberger and S. Suri. An optimal algorithm for Euclidean shortest
paths in the plane. SIAM Journal on Computing, 28:2215–2256, 1999.

[59] J. Hightower and G. Borriella. Location systems for ubiquitous computing.
IEEE Computer, 34(8):57–66, 2001.

[60] W. Hu, T. Tan, L. Wang, and S. Maybank. A survey on visual surveillance
of object motion and behaviors. IEEE Transactions on Systems, Man and
Cybernetics, 34:334–352, 2004.

214 Bibliography

[61] E. Ivanjko. Umjeravanje dinamike mobilnog robota. Technical report, Uni-
versity of Zagreb, Faculty of Electrical Engineering and Computing, Croa-
tia, 2008.

[62] E. Ivanjko. Autonomna navigacija mobilnih robota zasnovana na ultra-
zvučnim senzorima udaljenosti. PhD thesis, University of Zagreb, Faculty
of Electrical Engineering and Computing, Zagreb, Croatia, January 2009.
(In Croatian).

[63] E. Ivanjko, M. Brezak, and I. Petrović. Eksperimentalni postav za au-
tomatsko umjeravanje odometrijskog sustava mobilnih robota. In Proceed-
ings of MIPRO, Opatija, Croatia, 2008. (In Croatian).

[64] E. Ivanjko, A. Kitanov, and I. Petrović. Robot Localization, chapter Model
based Kalman Filter Mobile Robot Self-Localization. I-Tech, Vienna, 2009.

[65] T. Jin, K. Morioka, and H. Hashimoto. Human-following robot using the
particle filter in ispace with distributed vision sensors. Artificial Life and
Robotics, 10(2):96–101, 2006.

[66] B. Johanson, A. Fox, , and T. Winograd. The interactive workspaces
project: Experiences with ubiquitous computing rooms. IEEE Pervasive
Computing Magazine, 1(2):67–74, 2002.

[67] S. Jurić-Kavelj, M. Seder, and I. Petrović. Tracking multiple moving objects
using adaptive sample-based joint probabilistic data association filter. In
Proc. of the Fifth International Conference on Computational Intelligence,
Robotics and Autonomous Systems (CIRAS 2008), pages 93–98, Linz, Aus-
tria, 2008.

[68] I. Kamon, E. Rivlin, and E. Rimon. Range-sensor based navigation in three
dimensions. In Proceedings of IEEE International Conference on Robotics
and Automation, 1999.

[69] Y. Kanayama and B. Hartman. Smooth local planning for autonomous
vehicles. In Proceedings of IEEE Int. Con. on Robotics and Automation
(ICRA ’89), 1989.

[70] Y. Kanayama and N. Miyake. Trajectory generation for mobile robots. In
M. Press, editor, Proceedings of the International Symposium on Robotics
Research, pages 16–23, 1985.

[71] K. Kanjanawanishkul, M. Hofmeister, and A. Zell. Smooth reference track-
ing of a mobile robot using nonlinear model predictive control. In Proceed-
ings of European Conference on Mobile Robots, Mlini/Dubrovnik, Croatia,
2009.

Bibliography 215

[72] L. E. Kavraki, P. Švestka, J.-C. Latombe, and M. H. Overmars. Probabilis-
tic roadmaps for path planning in high-dimensional configuration spaces.
IEEE Transaction on Robotics and Automation, 12(4):556–580, June 1996.

[73] K. Kedem and M. Sharir. An efficient motion planning algorithm for a
convex rigid polygonal object in 2-dimensional polygonal space. Discrete
and Computational Geometry, 5(1):43–75, 1990.

[74] C. Kee, H. Jun, and D. Yun. Indoor navigation system using asynchronous
pseudolites. The Journal of Navigation, 56(3):443–455, 2003.

[75] O. Khatib. Real-time obstacle avoidance for manipulators and mobile
robots. International Journal of Robotics Research, 5(1):90–98, 1986.

[76] B. Kim, N. Tomokuni, K. Ohara, T. Tanikawa, K. Ohba, and S. Hirai.
Ubiquitous localization and mapping for robots with ambient intelligence.
In Proc. of the IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS ’01), Beijing, China, 2006.

[77] R. Kimmel. Demosaicking: Image reconstruction from color CCD samples.
IEEE Transaction on Image Processing, 7(3):1221–1228, 1999.

[78] H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, and E. Osawa. RoboCup:
The robot world cup initiative. In Proceedings of the First International
Conference on Autonomous Agents (Agents’97), Marina del Rey, California,
USA, 1997.

[79] A. Kitanov and I. Petrović. Exactly sparse delayed state filter based robust
slam with stereo vision. Submitted to the 41st International Symposium
on Robotics – ISR2010, Munich, 2010.

[80] A. Kitanov, V. Tubin, and I. Petrović. Extending functionality of RF ul-
trasound positioning system with dead-reckoning to accurately determine
mobile robot’s orientation. In Proc. of the 3rd IEEE Multi-conference on
Systems and Control, pages 1152–1157, Saint Petersburg, Russia, 2009.

[81] J. Kitzinger. The visibility graph among polygonal obstacles: a comparison
of algorithms. Master’s thesis, University of New Mexico, 2003.

[82] G. Klančar, M. Brezak, I. Petrović, and D. Matko. Two approaches to mo-
bile robots simulator design. In Proceedings of the 6th EUROSIM congress
on Modelling and Simulation, 2007.

[83] G. Klančar and I. Škrjanc. Tracking-error model-based predictive control
for mobile robots in real time. Robotics and Autonomous Systems, 55:460–
469, 2007.

216 Bibliography

[84] G. Klančar, M. Brezak, D. Matko, and I. Petrović. Mobile robot tracking
using computer vision. Automatika, 46(3-4):155–163, 2005.

[85] G. Klančar, M. Kristan, S. Kovačič, and O. Orqueda. Robust and efficient
vision system for group of cooperating mobile robots with application to
soccer robots. ISA Transactions, 43:329–342, 2004.

[86] G. Klančar, M. Kristijan, and R. Karba. Wide-angle camera distortions
and non-uniform illumination in mobile robot tracking. Robotics and Au-
tonomous Systems, 46:125–133, 2004.

[87] L. Korkut, D. Žubrinić, and V. Županović. Box dimension and Minkowski
content of the clothoid. Fractals, 17:485–492, 2009.

[88] J.-C. Latombe. Robot Motion Planning. Kluwer Academic Publishers,
Boston, MA, USA, 1991.

[89] S. M. LaValle. Planning algorithms. Cambridge University Press, 2006.

[90] D. T. Lee. Proximity and reachability in the plane. Technical report, Dept.
Elect. Engineering, Univ. Illinois, Urbana, IL, 1978.

[91] J.-H. Lee and H. Hashimoto. Intelligent space — concept and contents.
Advanced Robotics, 16(3):265–280, 2002.

[92] M. V. Leonov and A. G. Nikitin. A closed set of algorithms for performing
set operations on polygonal regions in the plane. Technical report, A. P.
Ershov Institute of Informatics Systems, 1997.

[93] A. D. Luca, G. Oriolo, and M. Vendittelli. RAMSETE. Articulated and
Mobile Robotics for Services and Technologies, volume 270, chapter Con-
trol of wheeled mobile robots: An experimental overview, pages 181–226.
Springer-Verlag, London, third edition, 2001. Lecture Notes in Control and
Information Sciences.

[94] M. Lucente, G.-J. Zwart, and A. George. Visualization space: a testbed
for deviceless multimodal user interface. In Proceedings of AAAI Intelligent
Environments Symposium, pages 87–92, California, USA, 1998.

[95] V. J. Lumelsky and A. A. Stepanov. Dynamic path planning for a mobile
automaton with limited information on the environment. IEEE Trans. on
Automatic Control, 31(11):1058–1063, November 1986.

[96] K. Maček. Motion planning of mobile robots in indoor environemnts. Mas-
ter’s thesis, Faculty of Electrical Engineering and Computing, Zagreb, Oc-
tober 2004.

Bibliography 217

[97] K. Maček, I. Petrović, and R. Siegwart. A control method for stable and
smooth path following of mobile robots. In Proc. of the 2nd European
Conference on Mobile Robots, pages 128–133., 2005.

[98] R. Mahkovic. Improved use of the tactile maps for visually impaired people.
In Proceedings of 16th International Workshop on Robotics in Alpe-Adria-
Danube Region (RAAD 2007), Ljubljana, Slovenia, 2007.

[99] D. Marinakis, D. Meger, I. Rekleitis, and G. Dudek. Hybrid inference for
sensor network localization using a mobile robot. In Proc. of the 22nd
AAAI Conference on Artificial Intelligence (AAAI ’07), pages 1089–1094,
Vancouver, Canada, July 2007.

[100] I. Marković and I. Petrović. Speaker localization and tracking in mobile
robot environment using a microphone array. In Proc. of of 40th Interna-
tional Symposium on Robotics, pages 283–288, Barcelona, Spain, 2009.

[101] C. Mauri, T. Granollers, J. Lorés, and M. Garćıa. Computer vision inter-
action for people with severe movement restrictions. Human Technology,
2(1), April 2006.

[102] M. McAllister, D. Kirkpatrick, and J. Snoeyink. A compact piecewise-linear
Voronoi diagram for convex sites in the plane. Discrete Computational
Geometry, 1996.

[103] J. McCrae and K. Singh. Sketching piecewise clothoid curves. Computers
& Graphics, 33:452–461, August 2009.

[104] M. McNaughton and H. Zhang. Color vision for robocup with fast lookup
tables. In Proceedings of IEEE International Conference on Robotics, In-
telligent Systems and Signal Processing (RISSP 2003), Changsha, Hunan,
China, 2003.

[105] D. S. Meek and D. J. Walton. An arc spline approximation to a clothoid.
Journal of Computational and Applied Mathematics, 170(1):59–77, Septem-
ber 2004.

[106] D. S. Meek and D. J. Walton. A note on finding clothoids. Journal of
Computational and Applied Mathematics, 170(2):433–453, 2004.

[107] K. R. Meidenbauer. An investigation of the clothoid steering model for
autonomous vehicles. Master’s thesis, Virginia Polytechnic Institute and
State University, Blacksburg, Virginia, July 2007.

[108] E. Menegatti, G. Gatto, E. Pagello, T. Minato, and H. Ishiguro. Distributed
vision system for robot localisation in indoor environment. In Proceedings

218 Bibliography

of the 2nd European Conference on Mobile Robots (ECMR’05), Ancona,
Italy, 2005.

[109] I. T. Miletić. Sustav za praćenje ljudi u stvarnome vremenu pomoću digi-
talne kamere. University of Zagreb, Faculty of Electrical Engineering and
Computing, 2008. Diploma thesis.

[110] N. Montés, A. Herraez, L. Armesto, and J. Tornero. Real-time clothoid
approximation by rational bezier curves. In Proceedings of International
Conference on Robotics and Automation, pages 2246–2251, 2008.

[111] P. Morin and C. Samson. Motion control of wheeled mobile robots, chap-
ter 34, pages 799–826. Springer Berlin Heidelberg, 2008.

[112] H. N. T. Naniwa and S. Arimoto. A quadtree-based path-planning algo-
rithm for a mobile robot. Robotic Systems, 1990.

[113] N. J. Nilsson. A mobile automaton: An application of artificial intelligence
techniques. In Proceedings of 1st International Conference on Artificial
Intelligence, Washington D.C., USA, 1969.

[114] A. Nishitani, Y. Nishida, T. Hori, , and H. Mizoguchi. Portable 3D ultra-
sonic tag system based on a quick calibration method. In Proceedings of the
IEEE International Conference on Systems, Man and Cybernetics, pages
1561––1568, The Hague, Netherlands, October 2004.

[115] J. E. Normey-Rico, J. Gomez-Ortega, and E. F. Camacho. A smith-
predictor-based generalised predictive controller for mobile robot path-
tracking. Control Engineering Practice, 7(6):729–740, 1999.

[116] K. J. Obermeyer. The VisiLibity library. http://www.VisiLibity.org,
2008. R-1.

[117] A. Ollero and O. Amidi. Predictive path tracking of mobile robots. In
Proceedings of 5th International Conference on Advanced Robotics, Robots
in Unstructured Environments (ICAR ’91), volume 2, June 1991.

[118] G. Oriolo, A. D. Luca, and M. Vendittelli. WMR control via dynamic feed-
back linearization: Design, implementation, and experimental validation.
IEEE Tranasactions on Control Systems Technology, 10(6):835–852, 2002.

[119] J. O’Rourke. Computational Geometry In C. Cambridge University Press,
second edition, 1998.

[120] T. Petrinić. Dinamički model – Pioneer 3DX. University of Zagreb, Faculty
of Electrical Engineering and Computing, May 2009. Seminar work.

Bibliography 219

[121] L. Pontryagin, V. Boltyansky, R. Gamkrelidze, and E. Mischenko. The
Mathematical Theory of Optimal Processes. Wiley, New York, 1962.

[122] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numer-
ical Recipes in C — The Art of Scientific Computing. Cambridge University
Press, second edition, 1992.

[123] S. Quinlan and O. Khatib. Elastic bands: Connecting path planning and
control. In Proceedings of int. Conference on Robotics and Automation,
pages 802–807, Atlanta, Georgia, USA, 1993.

[124] F. M. Raimondi and M. Melluso. A new fuzzy robust dynamic controller
for autonomous vehicles with nonholonomic constraints. Robotics and Au-
tonomous Systems, 52:115–131, 2005.

[125] R. Ramanath, W. E. Snyder, G. L. Bilbro, and W. A. S. III. Demosaicking
methods for bayer color arrays. Journal of Electronic Imaging, 11:306–315,
2002.

[126] C. Samson. Time-varying feedback stabilization of car-like wheeled mobile
robots. International Journal of Robotics Research, 12(1):55–64, 1993.

[127] C. Samson and H. Ait-Abderrahim. Feedback control of a nonholonomic
wheeled cart in cartesian space. In Proceedings of IEEE International Con-
ference on Robotics and Automation, pages 1136–1141, Sacramento, CA,
1991.

[128] J. Sanchez-Reyes and J. M. Chacon. Polynomial approximation to clothoids
via s-power series. Computer-Aided Design, 35:1305–1313, 2003.

[129] T. Sasaki, K. Morioka, P. T. Szemes, D. Brščić, and H. Hashimoto. Moving
object tracking and an application in intelligent space. In International
Conference on Instrumentation, Control and Information Technology (SICE
Annual Conference 2005), pages 2326–2329, Okayama, Japan, 2005.

[130] A. Scheuer and T. Fraichard. Collision-free and continuous-curvature path
planning for car-like robots. In Proceedings of International Conference on
Robotics and Automation (ICRA ’97), Albuquerque, U.S.A., April 1997.

[131] M. Seder, P. Mostarac, and I. Petrović. Hierarchical path planning of mobile
robots in complex indoor environments. Transactions of the Institute of
Measurement and Control, 2009. Accepted for publication.

[132] M. Seder and I. Petrović. Dynamic window based approach to mobile robot
motion control in the presence of moving obstacles. In Proc. of the IEEE
International Conference on Robotics and Automation, pages 1986–1991,
Roma, Italy, 2007.

220 Bibliography

[133] M. Seder and I. Petrović. Integration of Focused D* and Witkowski’s algo-
rithm for path planning and replanning. In I. Petrović, editor, Proceedings
of the 4th European Conference on Mobile Robots, pages 99–104, Mlini,
Croatia, September 2009. KoREMA.

[134] A. Segovia, M. Rombaut, A. Preciado, and D. Meizel. Comparative study
of the different methods of path generation for a mobile robot in a free envi-
ronment. In Proceedings of International Conference on Advanced Robotics,
Pisa, Italy, June 1991.

[135] D. H. Shin and S. Singh. Path generation for robot vehicles using compos-
ite clothoid segments. Technical Report CMU-RI-TR-90-31, Robotics In-
stitute, Carnegie Mellon University, Pittsburgh, PA, USA, December 1990.

[136] K. G. Shin and N. D. McKay. Minimum-time control of robot manipulators
with geometric path constraints. IEEE Transactions on Automatic Control,
30(6):531–541, 1985.

[137] M. Shiomi, T. Kanda, H. Ishiguro, and N. Hagita. Interactive humanoid
robots for a science museum. IEEE Intelligent Systems, 22(2):25–32, 2007.

[138] R. Siegwart and I. R. Nourbakhsh. Introduction to Autonomous Mobile
Robots. MIT Press, 2004.

[139] M. Simon, S. Behnke, and R. Rojas. Robust real time color tracking. In
Proceedings of The 4th International RoboCup Symposium (RoboCup’00),
Melbourne, Australia, 2000.

[140] R. Smith. Open Dynamics Engine (ODE) library. http://www.ode.org/.

[141] M. Sonka, V. Hlavac, and R. Boyle. Image Processing, Analysis, and Ma-
chine Vision. Brooks/Cole Publishing Company, second edition, 1999.

[142] P. Soueres and J. D. Boissonnat. Robot Motion Planning and Control,
chapter Optimal Trajectories for Nonholonomic Mobile Robots. Springer,
1998.

[143] M. Sridharan and P. Stone. Structure-based color learning on a mobile
robot under changing illumination. Autonomous Robots, 2007.

[144] C. Steger. Evaluation of subpixel line and edge detection precision and
accuracy. International Archives of Photogrammetry and Remote Sensing,
XXXII, Part 3/1:256–264, 1998.

[145] Sun Microsystems. What every computer scientist should know about
floating-point arithmetic, 1992.

Bibliography 221

[146] R. Swaminathan and S. Nayar. Polycameras: Camera clusters for wide
angle imaging. Technical report, Columbia University, Computer Science,
1999.

[147] K. Toyama, J. Krumm, B. Brummit, and B. Meyers. Wallflower: Principles
and practice of background maintenance. In Proceedings of the International
Conference on Computer Vision (ICCV’99), Corfu, Greece, 1999.

[148] N. Ukita and T. Matsuyama. Real-time cooperative multi-target track-
ing by communicating active vision agents. Computer Vision and Image
Understanding, 97:137–179, February 2005.

[149] J. van den Berg. Path Planning in Dynamic Environments. PhD thesis,
Utrecht University, 2007.

[150] G. Vegter. Algorithms and Data Structures, volume 519/1991 of Lecture
Notes in Computer Science, chapter Dynamically maintaining the visibility
graph, pages 425–436. Springer Berlin / Heidelberg, 1991.

[151] D. J. Walton and D. S. Meek. A controlled clothoid spline. Computers &
Graphics, 29(3):353–363, 2005.

[152] L. Wang, K. Miura, E. Nakamae, T. Yamamoto, and T. Wang. An approx-
imation approach of the clothoid curve defined in the interval [0, π/2] and
its offset by free-form curves. Computer-Aided Design, 33:1049–1058, 2001.

[153] Z. Wang and D. Garlan. Task-driven computing. Technical Report CMU-
CS-00-154, School of Computer Science, Carnegie Mellon University, 2000.

[154] R. Wein, J. P. van den Berg, and D. Halperin. The visibility–Voronoi
complex and its applications. Computational Geometry: Theory and Ap-
plications, 36(1):66–78, 2007.

[155] M. Weiser. The computer for the twenty-first century. Sci. Am., 265(3):94–
104, 1991.

[156] E. Welzl. Constructing the visibility graph for n line segments in O(n2)
time. Information Processing Letters, 20:167–171, May 1985.

[157] Wikipedia the free encyclopedia. Radio-frequency identification.
http://en.wikipedia.org/wiki/Rfid. Accessed 2009-12-08.

[158] Wikipedia the free encyclopedia. Time-of-flight camera.
http://en.wikipedia.org/wiki/Time-of-flight camera. Accessed
2009-12-07.

222 Bibliography

[159] Z. Zhang. A flexible new technique for camera calibration. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 22(11):1330–1334,
2000.

Abstract

Localization, Motion Planning and Control of Mobile Robots in
Intelligent Spaces

This thesis investigates application of mobile robots in environments provided
with ambient intelligence to form the so-called Intelligent Spaces (iSpaces). The
purpose of the iSpace is providing various services to its users, where mobile
robots provide numerous possibilities, such as load delivery, visitor guidance etc.
Thus the focus of the thesis is set to developing the capability of the space to fully
utilize mobile robots, with the emphasis on development of low-level algorithms
that can benefit by using intelligent space advantages, such as precise localization
and mapping and increased computational power. In this way a method for fast
and precise mobile robot localization using distributed cameras is developed. The
developed algorithm enables high framerates and at the same time high measure-
ment precision and accuracy as it works in subpixel precision. The algorithm was
tested in multiple experiments and performed with very good results. Second,
a fast and flexible robot mobile robot motion planning method appropriate for
application in iSpaces is developed. The developed motion planner is decoupled
and consists of four stages: path planning, path smoothing, trajectory planning
and trajectory tracking. The method can replan the path in real time, which
enables planning in dynamic environments.

Keywords: Intelligent Spaces, mobile robotics, global vision, motion planning,
trajectory tracking

223

Sažetak

Lokalizacija, planiranje gibanja i upravljanje mobilnim robotima u
inteligentnim prostorima

Disertacija obraduje primjenu mobilnih robota u prostorima opremljenim pros-
tornom inteligencijom, tvoreći na taj način tzv. inteligentne prostore (iProsto-
re). Svrha iProstora je pružanje usluga korisnicima prostora, gdje mobilni roboti
pružaju brojne mogućnosti, primjerice dostavu, vodenje posjetitelja itd. Stoga
je težǐste disertacije stavljeno na razvoj mogućnosti prostora da u potpunosti
iskoristi mobilne robote, s naglaskom na razvoj algoritama niže razine koji mo-
gu iskoristiti prednosti inteligentnih prostora, kao što su precizna lokalizacija i
kartiranje te povećana računalna snaga. U prvom redu, razvijena je brza i pre-
cizna metoda lokalizacije korǐstenjem sustava raspodijeljenih kamera (tzv. sustav
globalnog vida). Razvijeni algoritam omogućava obradu velikog broja slika u
sekundi, i istodobno visoku preciznost i točnost mjerenja, budući da radi u po-
dručju potpiksela. Algoritam je ispitan kroz vǐse eksperimenata koji su pokazali
vrlo dobre rezultate. Zatim je razvijena brza i fleksibilna metoda planiranja giba-
nja mobilnih robota pogodna za inteligentne prostore. Razvijeni planer gibanja je
raspodijeljen i sastoji se od četiri faze: planiranje putanje, izgladivanje putanje,
planiranje trajektorije i slijedenje trajektorije. Metoda omogućava replaniranje
putanje u stvarnom vremenu, čime je omogućeno planiranje u dinamičkim pros-
torima.

Ključne riječi: Inteligentni Prostori, mobilna robotika, globalni vid, planira-
nje gibanja, praćenje trajektorije

225

Curriculum Vitae

I was born on the 25th July, 1978 in Zagreb, Croatia. After the primary school
in Pregrada, I finished the math-oriented high school in 1996 in Krapina. The
same year I started the undergraduate studies at the Faculty of Electrical Engi-
neering and Computing of the University of Zagreb (FER), Croatia. In 1999 the
Faculty council appointed me to finish the undergraduate studies with emphasis
on scientific research. I graduated in September 2001. Since November 2001 I
have been a student of graduate scientific studies at FER and have worked at the
Department of Control and Computer Engineering, FER. In 2005 I started my
PhD studies, and I passed the qualifying doctoral exam and the public talk in
February 2006 and July 2009, respectively.

I was a teaching assistant on the following undergraduate courses: Digital and
Nonlinear Control Systems, Nonlinear and Optimal Systems, Process Measure-
ments, Basics of Digital Computers, Computer Architecture 1. Currently I am
involved in the undergraduate courses Remote and Distributed Control Systems,
Automatic Control, Laboratory and Skills – Matlab and Computer Controlled
Systems.

During my undergraduate studies I received the Croatian Ministry of Science,
Education and Sports scholarship for especially gifted students. The Faculty
council of FER awarded me with recognition Josip Lončar for the second year of
my undergraduate studies. I am the main developer of FER robot-soccer team
ACT-Croatia, where I won the 5th place at 10th European Championship in Robot
Soccer, Zürich/Linz 2008.

The main areas of my scientific interests are intelligent spaces with empha-
sis on mobile robot application, localization of mobile robots using computer
vision, mobile robot motion planning based on computational geometry and con-
trol of mobile robots. I published one paper in CC-indexed journal Robotics
and Autonomous Systems, two papers in journal Automatika and 15 papers in
proceedings of scientific conferences.

227

Životopis

Roden sam 25. srpnja 1978. u Zagrebu. Osnovnu školu sam pohadao u Pregradi,
a prirodoslovno-matematičku gimnaziju završio sam 1996. u Krapini. Iste godine
započinjem dodiplomski studij na Fakultetu elektrotehnike i računarstva (FER)
u Zagrebu. Godine 1999. Fakultetsko vijeće odobrilo mi je završetak studija s
naglaskom na znanstveno-istraživačkom radu. Diplomirao sam u rujnu 2001. s
prosjekom ocjena 4,62. Od studenog 2001. godine student sam poslijediplom-
skog znanstvenog studija na FER-u i radim u Zavodu za automatiku i računalno
inženjerstvo. Godine 2005. upisao sam doktorski studij na FER-u, u veljači 2006.
položio sam kvalifikacijski doktorski ispit, a u lipnju 2009. održao javni razgovor.

Sudjelovao sam u nastavi iz sljedećih predmeta: Digitalni i nelinearni sustavi
upravljanja, Nelinearni i optimalni sustavi, Procesna mjerenja, Osnove digitalnih
računala, Arhitektura računala 1, dok trenutno sudjelujem na predmetima Susta-
vi za daljinsko i distribuirano upravljanje, Automatsko upravljanje, Laboratorij i
vještine – Matlab te Računalno upravljanje sustavima.

Tijekom dodiplomskog studija primao sam državnu stipendiju za osobito na-
darene studente. Fakultetsko vijeće mi je dodijelilo priznanje Josip Lončar za
osobiti uspjeh na drugoj godini studija. Glavni sam istraživač FER-ova robo-
nogometnog tima ACT-Croatia, s kojim sam osvojio 5. mjesto na Europskom
prvenstvu u robotskom nogometu, Zürich/Linz 2008.

Glavna područja mog znastvenog interesa su inteligentni prostori s naglaskom
na primjeni mobilnih robota, lokalizacija mobilnih robota računalnim vidom, pla-
niranje gibanja mobilnih robota primjenom računalne geometrije te upravljanje
gibanjem mobilnih robota. Objavio sam jedan rad u CC časopisu Robotics and
Autonomous Systems, dva rada u časopisu Automatika te 15 radova u zbornicima
znanstvenih skupova.

229

	Introduction
	Motivation and Scope
	Thesis Overview

	Mobile Robots in Intelligent Spaces
	Intelligent Spaces
	Introducing Mobile Robots
	Sensing in Intelligent Spaces
	Mobile Robot Localization
	Human Tracking

	Mapping in Intelligent Spaces
	Motion Planning in Intelligent Spaces
	High-level Applications

	Robot Localization Using Global Vision
	Introduction
	Physical System Design
	Camera Selection and Calibration
	Design of Robot Marks

	Vision Algorithm
	Robot Detection
	Robot Pose Measuring Procedure
	Robot Identification

	Experimental Results
	Analysis of Vision System Precision and Accuracy
	Analysis of Robustness to Light Intensity Changes
	Ability to Track Large Number of Robots
	Analysis of Real Time Operation Requirement

	Summary

	Mobile Robot Motion Planning
	Introduction
	Common Approaches to Motion Planning
	Direct Motion Planning
	Decoupled Motion Planning

	Motivation
	Choosing an Adequate Planning Method

	Path Planning
	General Notions
	Free Configuration Space Construction
	Artificial Potential Fields
	Cell Decompositions
	Sampling-Based Algorithms
	Roadmap Methods
	Visibility Graph
	Voronoi Diagram
	Other Roadmap Methods

	Proposed Path-Planner
	Map Representation
	Path-Planning Algorithm
	Collision Detection
	Implementation Aspects

	Experimental Results
	Summary

	Path Smoothing
	Introduction
	Literature Review
	Clothoid Steering Model
	Clothoid Curve Properties
	Traversing the Clothoid at Different Velocities

	Parametrization of a Clothoid
	Approximation to a Clothoid
	Interpolation Issues
	Determining a Required Set of Clothoids
	Determination of Lookup Table Parameters
	Example for the Pioneer 3DX Robot
	Computation of Clothoid Coordinates
	Querying the Clothoid Coordinates

	Finding Intersections between a Clothoid and a Line
	Smoothing Sharp Turn by a Clothoid Pair
	Connecting Circle and Line by Two Clothoids
	Connecting Circle and Line by a Single Clothoid
	Connecting Circle and Line by Three Clothoids
	Emergency Stop
	Smoothing at Goal Side
	Putting It All Together
	Experimental Results
	Summary

	Trajectory Planning
	Introduction
	Decoupled Trajectory Planning
	Trajectory Planning for Soccer Robot
	Intrinsic Constraints
	Extrinsic Constraints
	Computing the Velocity Limit Curve
	Implementation Aspects
	Experimental Results

	Trajectory Planning for Pioneer 3DX Robot
	Implementation Aspects
	Experimental Results

	Moving Obstacles
	Multiple Robots
	Summary

	Trajectory Tracking
	Introduction
	Robot Model
	Trajectory Tracking Controllers
	Linear-Design Controller
	Nonlinear Controller
	Model Predictive Controller

	Experimental Results
	Trajectory Tracking Controllers Comparison
	Complete Motion Planner

	Summary

	Conclusion
	Contributions
	Future Work

	Bibliography
	Abstract
	Sažetak
	Curriculum Vitae
	Životopis

