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Chapter 1

Introduction

1.1 Motivation

Most of the real-world signals are corrupted by noise, but noise level is sometimes too

low to cause concern for a given application. When it is not the case, it is necessary to

employ efficient signal denoising algorithms to improve signal quality. Wavelet transforms

were proved as a valuable tool in many digital signal processing applications, including

signal denoising.

Although wavelet theory has been known for a long time, their application in signal

processing became widespread only after Mallat successfully linked the theory to the filter

bank theory (Mallat, 1988), showing that the wavelet transform can be easily calculated

by simple signal filtering. First, a low-pass and a high-pass filters are used on original

signal, and then the filtering step is iterated over the low-pass branch. The final results are

a low-pass subband containing only a coarse signal information, and high-pass subbands,

containing successively finer and finer signal details.

Compared to other well known transforms, such as the Fourier transform, compactly

supported wavelets have advantage that they achieve good localization of both the time

and the frequency. Because of the compact support, wavelets can much better represent

non-periodic and non-stationary signals, especially the ones containing sharp changes

in local properties, such as discontinuities. Another important property of wavelets is

sparseness of signal representation in the transform domain. It means that most of the

signal information is contained in a small number of larger magnitude wavelet coefficients.

Furthermore, white noise in a signal is, in the transform domain, represented by a large

number of smaller magnitude wavelet coefficients, concentrated about zero. The two

properties lead to a conclusion that signal denoising can be efficiently accomplished by

simple wavelet coefficients thresholding. A brief summary of wavelet transforms in signal

denoising is given in (Tomic, 2008a,b).

Popularity of wavelet transforms was further increased with the work of Sweldens,

who proposed ladder structure for the transform calculation, called the lifting scheme

(Sweldens, 1996). The benefits of the new approach are that it allows for more efficient

1



1.2 Improving Denoising Performance of Wavelet Transforms

transform calculation, makes the perfect reconstruction property guaranteed, performs all

calculations in the spatial domain and makes it easy to introduce adaptivity to a transform.

Wavelet construction is now also being performed in the spatial domain, instead of the

frequency domain, as in the classical approach. It became possible to construct wavelets

which are not necessarily dilates and translates of a single mother wavelet function. They

allow for efficient handling of signal boundaries, irregularly sampled signals or certain

signal features. Since they inherit all the good properties of classical wavelets (first

generation wavelets), but also introduce new features and advantages, they are called the

second generation wavelets.

In a separate field, Katkovnik proposed successful denoising methods built upon local

polynomial approximation (LPA) and intersection of confidence intervals (ICI) rule. The

ICI rule was used as a tool for adaptive support selection. First the 1-D case was examined

(Katkovnik, 1999) and afterwards the ICI was used for very efficient image denoising

algorithms (Foi, Katkovnik, and Egiazarian, 2007; Katkovnik, Egiazarian, and Astola,

2003). The ICI rule is also employed as an adaptation method in the wavelet based

denoising algorithm proposed in this thesis.

1.2 Improving Denoising Performance of Wavelet Trans-

forms

Most denoising algorithms, including wavelet transforms, generally perform very well for

smooth signals or smooth signal regions. The greatest difference in the algorithm efficiency

can be noted for signals containing higher frequency features, such as discontinuities,

spikes, bumps, or any other sudden change in local signal properties. Although compactly

supported wavelets stand out as an excellent performer for such signal classes, there is

still much room for improvements.

A common approach to wavelet transforms adaptation is introduction of algorithms

for basis functions selection. Based on the adaptivity criteria, one of wavelets from a

predefined set of wavelet functions is chosen. The selection is carried out in order to

find the optimal wavelet for a whole signal, for each decomposition scale or for each

individual point. Longer and smoother wavelets can efficiently represent smooth signals or

signal regions, while shorter or irregular wavelets can efficiently describe higher frequency

features in a given signal. Wavelet selection guidelines are, thus, straightforward. Basically,

a wavelet which shape best fits signal features should result in the highest quality denoised

signal.

We propose an adaptive algorithm which selects wavelet basis function on a point-

by-point basis. The ICI rule is used as the core of the adaptive algorithm. Should the

adaptive algorithm succeed, for each point, a wavelet shall be chosen which best matches

local signal properties in the points neighborhood.

2



1.3 Related Work

1.3 Related Work

Many adaptive wavelet transforms were proposed which try to improve performance in

higher frequency signal regions. They are mostly based on the lifting concept and try to

follow the basic guideline for wavelet basis selection.

Claypoole et al. (Claypoole, Baraniuk, and Nowak, 1998; Claypoole, Davis, Sweldens,

and Baraniuk, 1997, 2003) proposed two adaptive transforms - the scale-adaptive transform

(ScAT) and the space-adaptive transform (SpAT). In the ScAT, an adaptation is performed

on a scale-by-scale basis. From a set of predictors they choose the one which better fits

the prevailing signal properties. The objective measure of the quality of fit is a simple

sum of squared prediction errors. The predictor which yields the smallest sum of squared

errors is chosen as the predictor for the entire signal at a given scale.

The approach in the SpAT transform is to perform adaptation on a point-by-point

basis. The predictor is chosen for each data point as the one which gives the smallest

prediction error. It is to be expected that such predictor will often fit well to the local

signal properties and make it possible for the wavelets to contract in the neighborhood

of signal discontinuities. The shortcoming of SpAT is that it makes the predictor space-

varying. Since the update step depends on the predictor it may complicate its design

or introduce the necessity of bookkeeping of the predictor selection. To resolve this,

Claypoole proposed the update first framework where the update step is performed before

the predict step.

Unlike Claypoole et al. who adapt the predictor, Piella et al. in (Piella and Heijmans,

2002) proposed an adaptive update transform where only the update filter is adapted,

while the predictor is fixed. In the general form presented, choice of the update filter

depends on the decision maps which can be based on any meaningful criteria. In the

original work, an example of a gradient based decision maps is suggested, while in (Piella,

Pesquet-Popescu, and Heijmans, 2002) derivative based decision maps are proposed.

However, the method is only briefly investigated and no comparison to other methods are

provided.

Wu et al. in (Wu, Pan, Zhang, and Zhang, 2004) proposed the algorithm called the

switch thresholding. It is a very simple adaptation method in which two conventional

wavelets are used - Haar and CDF(2,2). The adaptation is performed on a point-by-point

basis by choosing the appropriate wavelet for the current point. For the step edges,

Haar transform is to be used, while for the other parts of the signal CDF(2,2) is chosen.

Whether the current point is part of a step edge is determined by the difference to its

neighboring point. If the difference is larger than the threshold it is considered to be a

step edge. Although some coarse limits for the threshold are suggested to follow from the

statistics theory, the actual threshold value is determined empirically.

Instead of modifying the transform Chan and Zhou (Chan and Zhou, 1999) took

the opposite approach. They showed that the signal itself can be modified in the place

of discontinuities. After the discontinuity is detected, signal values from one side of

3



1.3 Related Work

the discontinuity is used to extrapolate its values to the other side of the discontinuity.

Traditional wavelets may now be applied to such a signal region because the discontinuity

is eliminated and the whole region is smooth. If we record how the changes are made

to the signal, it should be possible to recover the discontinuities at synthesis, using the

inverse filters.

Finally, similar approach to the one taken in this thesis was explored by Sersic in

(Sersic, 2000a,b,c). He proposed a two-channel wavelet filter bank with adaptive number

of zero moments. His basic idea was to use filter banks with more zero moments for

smoother parts of a signal, while for the transients and singularities, filter banks with

less zero moments were to be used. In (Sersic and Vrankic, 2002), the idea was also

investigated for the 2-D wavelet filter banks.
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Chapter 2

Wavelet Transform and Wavelet

Filter Banks

A brief wavelet theory overview is given in this Chapter. We will introduce multiresolution

analysis, scaling and wavelet functions, and present the lifting scheme concept, which is

used in the thesis as a wavelet transform implementation tool.

2.1 Multiresolution Analysis

Theory of multiresolution analysis is central to a wavelet transform understanding. It

allows for signals to be decomposed into finer and finer details, allowing its analysis and

processing at several different resolutions (Burrus, Gopinath, and Guo, 1998). To present

the concept, let us first define a set of scaling functions, each being a translate of the

basic scaling function, given by:

ϕk(t) = ϕ(t− k) k ∈ Z ϕ ∈ L2. (2.1)

The functions span a subspace of L2(R), given by:

ν0 = Span
k

{ϕk(t)}, (2.2)

Functions f(t) belonging to the space ν0, can now be analyzed using linear decomposition:

f(t) =
∑

k

akϕk(t), f(t) ∈ ν0 (2.3)

Instead of only translating the basic scaling function (2.1), and staying confined to ν0,

it is also possible to increase the size of the subspace spanned, by changing the scaling

functions time scale:

ϕj,k(t) = 2j/2ϕ(2jt− k), (2.4)
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2.2 Wavelet Functions

Subspace spanned by the functions (2.3) is:

νj = Span
k

{ϕk(2jt)} = Span
k

{ϕj,k(t)}. (2.5)

As a consequence, any f(t) ∈ νj , can be expressed using the following decomposition:

f(t) =
∑

k

akϕ(2jt+ k). (2.6)

Scale parameter j defines the resolution at which a signal is analyzed. Spanned

subspace grows for j > 0, since ϕj,k(t) is narrower and can represent finer details. For

j < 0, the span is becoming smaller. Because ϕj,k(t) is becoming wider and translated in

larger steps, it can only represent coarse signal information. The two extreme cases for j

are:

ν−∞ = {0},
ν∞ = L2.

(2.7)

Generally,

νj ⊂ νj+1 ∀j ∈ Z,

{0} · · · ⊂ ν−2 ⊂ ν−1 ⊂ ν0 ⊂ ν1 ⊂ ν2 ⊂ · · ·L2.
(2.8)

Since ν0 is a subspace of ν1, function ϕ(t), belonging to ν0, also belongs to ν1. As

such, ϕ(t) can be written as a linear combination of basis functions from ν1. It leads to a

dilation (or refinement) equation, which characterizes a multiresolution analysis:

ϕ(t) =
√

2
∑

n

h(n)ϕ(2t− n), n ∈ Z, (2.9)

where weights h(n) are real or complex numbers, called scaling coefficients, while
√

2

maintains the norm of the scaling function.

2.2 Wavelet Functions

To better describe important features of the signal, we introduce a set of functions ψj,k(t),

called wavelet functions. Unlike the scaling functions ϕj,k(t), which span spaces νj , wavelet

functions span differences between the spaces. Let Wj be the orthogonal complement of

νj in νj+1. It means that any subspace νj+1 can be written as a direct sum:

νj+1 = νj ⊕ W0. (2.10)

In general, we can define the whole L2 by starting from an initial arbitrarily chosen

6



2.2 Wavelet Functions

subspace νj0 and successively adding the differences spanned by the wavelet functions:

L2 = νj0 ⊕ Wj0 ⊕ Wj0+1 ⊕ Wj0+2 ⊕ · · · . (2.11)

From the signal processing point of view, it is advantageous to choose the initial scale

j0 such that it represents coarse signal information. The coarse information is essential

for signal reconstruction and it is most often fully preserved. Subspaces Wj provide finer

and finer details which can be analyzed or processed to achieve the desired goal.

Since the wavelet functions ψj,k(t) reside in the subspace νj+1, spanned by the next

narrower scaling functions ϕj+1,k(t), they can also be expressed as their linear combination:

ψ(t) =
√

2
∑

n

h1(n)ϕ(2t− n), n ∈ Z, (2.12)

where h1(n) are wavelet coefficients. The function ψ(t) obtained by the above expression

is called the mother wavelet. All the other wavelet functions that form the expansion

basis, are translated and scaled versions of the mother wavelet:

ψj,k(t) = 2j/2ψ(2jt− k). (2.13)

2.2.1 Discrete Wavelet Transform

According to (2.9), (2.13), and (2.11), any function g(t) ∈ L2(R) can be represented as:

g(t) = 2j0/2
∑

k

cj0(k)ϕ(2j0t− k) + 2j/2
∑

k

∞
∑

j=j0

dj(k)ψ(2jt− k),

g(t) =
∑

k

cj0(k)ϕj0,k(t) +
∑

k

∞
∑

j=j0

dj(k)ψ(j, k(t).

(2.14)

As in (2.11), the initial scale j0 is arbitrarily chosen, and defines the lowest signal resolution,

containing the coarsest signal information. It is a subspace spanned by the ϕj0,k(t). The

rest of the L2(R) is spanned by the wavelet functions, providing the successively finer

signal details.

Coefficients cj0,k and dj,k in this wavelet expansion are called the discrete wavelet

transform (DWT) of the signal g(t) and they completely describe the g(t). Assuming the

wavelet system to be orthogonal, the coefficients can be calculated by inner products:

cj(k) = 〈g(t), ϕj,k(t)〉 =

∫

g(t)ϕj,k(t)dt,

dj(k) = 〈g(t), ψj,k(t)〉 =

∫

g(t)ψj,k(t)dt.

(2.15)
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2.3 Lifting Scheme Realization of DWT

2.3 Lifting Scheme Realization of DWT

Wavelet theory has been known for a long time, but widespread application in signal

processing was sparked by the work of Mallat, (Mallat, 1988, 1989a,b,c). In collaboration

with Meyer, he developed the multiresolution analysis concept for compactly supported

wavelets. He successfully linked wavelet and filter bank theory. It was shown that wavelets

could be implemented using iterated filter banks. In effect, calculating the DWT came

down to a simple task of signal filtering. More details can be found in (Strang and Nguyen,

1996) and (Vetterli and Kovacevic, 1995).

We put our focus on another important step forward in widening wavelet application

possibilities. In a series of papers, Sweldens introduced the lifting scheme realization of

the wavelet transform, (Stephens, 1976; Sweldens, 1996, 1997; Sweldens and Schroder,

1997). The new approach had several advantages over the conventional filter banks

approach. It was an efficient way to calculate the DWT, perfect reconstruction property

was guaranteed, all calculations were performed in the spatial domain and it made it easy

to introduce adaptivity to a transform. It was shown in (Daubechies and Sweldens, 1998)

that any wavelet transform can be decomposed into a finite sequence of simple lifting

steps, while in (Kovacevic and Sweldens, 2000) the lifting approach was generalized to

arbitrary dimensions.

In the classical approach, all wavelets were translates and dilates of a single mother

wavelet function. They are constructed in the frequency domain (Daubechies, 1992) and

referred to as the first generation wavelets. In the lifting scheme, wavelet construction is

entirely performed in the spatial domain. The benefit is, that it is possible to construct

wavelets which are not necessarily translates and dilates of a single mother wavelet

function. Such wavelets provide the means to address the problems such as a boundary

treatment or processing irregularly sampled signals. Because they inherit all the good

properties of the first generation wavelets, while introducing additional features, they are

called the second generation wavelets.

The Lifting Scheme

Basic lifting scheme, performing one level of signal decomposition, is shown in Fig. 2.1.

It consists of two simple filtering steps – predict (P) and update (U). Purpose of the filter

P is to predict values of the odd-indexed samples (Yo), based on a certain number of

even-indexed samples (Ye). Resulting prediction errors assume the role of the high-pass

subband and they are, actually, wavelet coefficients. The coefficients are used in the

update step to update properties of the input signal. Filter U is chosen such that the

signal average is maintained throughout the decomposition, and output from the “upper”

branch represents low-pass subband (Kovacevic and Sweldens, 2000).

Inverse transform, shown in Fig. 2.2, is achieved by simply reversing the order of

operations. As it emerges from the lifting scheme architecture, perfect reconstruction

8



2.3 Lifting Scheme Realization of DWT

Figure 2.1: Single level lifting scheme decomposition

requirement is guaranteed to be satisfied for any wavelet transform implemented using

the concept of lifting.

Figure 2.2: Single level lifting scheme reconstruction

To perform full signal decomposition, or reconstruction, iterative filtering is used, the

same way as in the classical filter bank realizations of wavelet transforms. The procedure

is depicted in Fig. 2.3.

9
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Figure 2.3: Lifting scheme decomposition (a) and reconstruction (b) tree
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2.4 Wavelet Transforms in Signal Denoising

2.4 Wavelet Transforms in Signal Denoising

Coefficients Thresholding

Application of wavelet transforms in signal denoising exploits two important transform

properties. One is the energy packing property – it is to be expected that most of the

useful signal information is contained in a relatively small number of larger magnitude

wavelet coefficients. The other is the fact that the wavelet transform maps white noise in

the signal domain to a white noise in the transform domain. As such, we can assume that

the high frequency noise component is almost completely represented by a large number of

smaller magnitude wavelet coefficients, concentrated about 0. Should the assumption hold,

signal denoising can be performed by altering the values of smaller magnitude coefficients.

Extensive research in the field was carried out by Donoho, (Donoho and Johnstone,

1994, 1995, 1998; Donoho, Johnstone, Kerkyacharian, and Picard, 1995). Wavelet coeffi-

cients are altered by introducing a non-linear operation of thresholding. Two commonly

used varieties are hard thresholding and soft thresholding, shown in Fig. 2.4. For the

hard thresholding, wavelet coefficients lower than the chosen threshold t are set to 0:

dt =

{

d, |d| > t

0, |d| ≤ t
(2.16)

In the soft thresholding case, all coefficients are shrunk by a threshold value t. In effect,

all coefficients lower than t in absolute value are set to zero, while the others are pulled

toward the origin:

dt = sgn(d) max(0, |d| − t). (2.17)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 2.4: Hard (a) and soft (b) thresholding transfer functions

Neither of the methods is found to be superior in every application. Hard thresholding

has more respect for sharp changes in a signal, while soft thresholding tends to produce

smoother results. For instance, hard thresholding works better for 1-D signals, while soft

thresholding performs better for natural images denoising.
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2.4 Wavelet Transforms in Signal Denoising

Translation Invariant Denoising

As decimated wavelet transforms are not shift-invariant, placement of certain features in

a signal can have a huge influence on denoising results. Let us consider the Haar wavelet

case and an n samples long signal, containing a single step edge between two constant

values. If the edge is located near a binary irrational position, such as n/3, denoised

signal would exhibit significant pseudo-Gibbs phenomena. On the other hand, location of

the edge at the n/2 position would lead to essentially no pseudo-Gibbs oscillations.

Typically, signals contain much more than a single discontinuity or feature of any

other kind, so it is, most often, practically impossible to perfectly align a signal to basis

functions. What is an optimal shift for one feature, may represent the worst case scenario

for another. Instead of trying to find the perfect shift, transform is calculated across all

shifts and results are averaged. The approach was analyzed in (Coifman and Donoho,

1996) and it is an equivalent to a undecimated (stationary) wavelet transform calculation.

Implementation of the undecimated transform using lifting scheme concept is straight-

forward. Only two modifications to the classical scheme (Fig. 2.1) are needed. We need

to remove the decimators, and we have to replace the filters P (z) and U(z), with their

upsampled versions: P (z2) and U(z2). The implementation is shown in Fig. 2.5. As

we progress through the decomposition tree, the filters are further upsampled at each

decomposition level.

Figure 2.5: Undecimated lifting scheme
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Chapter 3

Adaptive Edge Preserving

Denoising

In this chapter, we propose a method for signal denoising, based on the adaptive lifting

scheme realization of the wavelet transform. The Intersection of Confidence Intervals

(ICI) rule, presented by Katkovnik in (Katkovnik, 1999), is explained in details. The

ICI rule allows for efficient segregation of signal regions which share similar statistical

properties, and it is used as a core of the adaptation algorithm. The main goal of the ICI

rule is to prevent usage of lifting filters whose supports span across two or more signal

regions of different local properties, as such filters cause undesirable denoising artifacts,

especially about edges in a signal.

Before going into details, we will first look at the motivation and basic concepts which

lead to the development of the ICI-EPL adaptive denoising scheme.

3.1 Deciding the Right Wavelet

A large number of wavelet basis functions were developed over years. Some important

properties of wavelets, from the signal denoising point of view, are support size, smoothness

and symmetry. For instance, two different wavelets are shown in Fig. 3.1 – Haar and

Daubechies 9 (Db9 ). Haar wavelet features short support and sharp edges between the

two function values. Db9 has much longer support, it is oscillatory and very smooth.

Since reconstructed signal can be viewed as a superposition of coarse signal approximation

and scaled and translated wavelet functions, it is easy to predict the effect of using either

of the shown wavelets to denoise some typical signals. Scaled and translated Haar wavelet

very efficiently reconstructs sharp edges but will have difficulties with smooth signal

regions. Smoothness and longer support of the Db9 wavelet represent the opposite case.

It efficiently reconstructs the smooth signal regions, but will not be able to do the same

with higher frequencies in a signal, eventually leading to a pseudo-Gibbs oscillations at

sharp edges. This is illustrated in Fig. 3.2 and Fig. 3.3, in which results of denoising
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3.2 Adaptive Lifting Scheme Concept

sample signals with prevailing, respectively, higher and lower frequencies are shown.
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Figure 3.1: Haar (a) and Daubechies 9 (b) wavelet functions

The two examples make general principle for wavelet basis selection obvious. If a

given signal is characterized by smooth and slow transitions, i.e. low frequencies, longer

and smoother wavelet basis should be chosen. If the signal is characterized by high

frequencies, shorter wavelets should be chosen. In reality, the simple principle does not

solve the problem of the basis selection, as there are many signal classes beyond the two

extreme cases shown in Fig. 3.2 and Fig. 3.3. Given a class of signals, even if the signal

properties are same for the whole signal length, there is no simple solution to decide the

exact optimal wavelet shape or support length. A more difficult scenario is a class of

signals whose properties differ significantly during the course of the signal. In such cases,

it would be best to use several different wavelet basis for different signal regions.

It is difficult to address all the concerns without an efficient adaptive algorithm.

Lifting scheme concept simplified development of adaptive transforms, and many different

approaches to the problem were proposed, as presented in Chapter 1.3.

3.2 Adaptive Lifting Scheme Concept

The adaptive denoising method, we propose, uses the basic principle for a wavelet basis

selection – longer wavelets are to be chosen if low frequencies are prevailing in a signal,

while shorter wavelets are to be used if higher frequencies are prevailing in a signal. Instead

of applying the principle on a signal-by-signal basis, we apply it on a point-by-point basis,

in a given signal.

Let us examine the signal in Fig. 3.4. It features four smooth segments, connected by

three sharp edges. Our adaptive algorithm should ensure that the longest wavelet which

does not span the edge in a signal is used for each signal point. For instance, at edge

samples, Haar wavelet should be used as it allows for excellent edge reconstruction. As we

move away from the edge, longer wavelets should be used to allow for fine reconstruction
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Figure 3.2: Original (a) and noisy (b) Blocks signals. Signals denoised using Db9 (c) and
Haar (d) wavelets
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Figure 3.3: Original (a) and noisy (b) Sine signals. Signals denoised using Db9 (c) and
Haar (d) wavelets
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3.2 Adaptive Lifting Scheme Concept

of smooth signal regions. If done right, the algorithm will bring the good properties of

different wavelet basis into a single transform. Denoising scheme based on the transform

should perform well on both the smooth regions and edges, contained in the same signal.
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Figure 3.4: Sample signal with variable properties

3.2.1 Definition and Detection of an Edge

Strategy of changing the wavelet basis as we approach the edge, or move away from it,

brings about another obstacle – edge detection. Edge detection is a separate research

field and there are multiple approaches and solutions to the problem. Before trying to

implement any of the detection algorithms, it is necessary to define what does the edge

exactly mean for our application.

It could be defined as a step edge, a spike or even any high frequency change (drawing

another question: What is a high frequency?). We could say that the usable definition of

an edge, for this particular application, is that it is the point in a signal which divides two

regions of different local properties. It is a very broad definition, which includes much

more than what the common edge detectors are trying to detect. To detect the existence

of edges conforming to the given definition, we use the statistical method presented in

(Katkovnik, 1999) – Intersection of Confidence Intervals (ICI) rule. As explained in more

details later in the chapter, the ICI rule help us determine the largest neighborhood

about each signal point, which share the same local properties. It is used during the

decomposition procedure, for each point independently.

3.2.2 Wavelet Basis Set

Daubechies and Sweldens showed in (Daubechies and Sweldens, 1998) that any wavelet

transform with finite filters can be decomposed into a finite sequence of simple lifting

steps. Having many lifting steps leads to an unnecessary algorithmic and computational

complexity, while adding little benefits. Out of the many existing wavelet families, we

decided to use the biorthogonal wavelets which are “native” to the lifting scheme. Only
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3.2 Adaptive Lifting Scheme Concept

two lifting steps are required to construct the wavelets: a single predict and a single

update step.

Fig. 3.5 shows 4 wavelets used in the adaptive scheme. The wavelets are: Haar,

Bior2.2, Bior4.4 and Bior6.6. Should the adaptive algorithm perform well, the Haar

wavelet will be used about sharp edges in a signal, while the Bior6.6 will be used for

smoothest signal regions. It is possible to use even longer wavelets but there is no

practical advantage of doing so. Even the Bior6.6 improves denoising performance only

for extremely smooth signals.
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Figure 3.5: Biorthogonal wavelet set for adaptive algorithm: Haar (Bior1.1) (a) Bior2.2
(b) Bior4.4 (c) Bior6.6 (d)

Based on the results of the ICI rule, a set of lifting filters, constructing one of the

four wavelets, is chosen and used at each signal point. The adaptation is performed

independently for each point and on each scale (decomposition level).

3.2.3 Signal Boundaries

In signal processing, signals are commonly expanded over its boundaries to allow for

filtering of the boundary samples with the same filters as the rest of the signal. If wavelet

transform was used for processing, it would, essentially, mean using the same wavelet

for signal boundary samples as for the midst signal samples. Different types of padding

are used for the expansion, each having its own advantages and disadvantages. Since we

are constructing the adaptive wavelet transform, featuring second generation wavelets,
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3.3 Intersection of Confidence Intervals – ICI

there is no need to employ padding. Instead, we can opt to contract the wavelet support

as we are getting close to a signal boundary. It is the same effect that can be seen

when approaching the edge in a signal. By avoiding signal padding and expansion, the

denoising performance in the boundary region can be, depending on a specific signal,

greatly improved.

3.3 Intersection of Confidence Intervals – ICI

The ICI is a statistical method which utilizes non-parametric local polynomial approxi-

mation (LPA) and confidence intervals (CI) theory to estimate the real value of a sample

in a noisy signal. We will only explain part of the method theory which is relevant for

the adaptive lifting scheme, while the complete presentation and analysis of the method

can be found in (Katkovnik, Egiazarian, and Astola, 2003).

Let the signal:

y(x), y ∈ R
1, x ∈ R

1 (3.1)

be a piece-wise polynomial function, sampled on a regular or irregular grid:

x = x(n),

where index n corresponds to the n− th signal sample. Its noisy observations z(x) are

given by:

z(x) = y(x) + ε(x), (3.2)

where ε(x) ∼ N(0, σ2
ε ) is considered to be independent Gaussian white noise.

The aim of the method is to estimate real values of the unknown deterministic y(x),

from its noisy observations z(x). Each y(x) is considered to be lying on a polynomial

segment. The segment can be approximated by a polynomial of order m = 0, . . . ,M . We

are only interested in the polynomial value at a given point, so, instead of finding the

polynomial parameters, the non-parametric LPA route is taken.

3.3.1 LPA Kernel Calculation

Let the point x be a center point of the LPA, i.e., the point at which function value y(x)

is to be estimated using the LPA kernels. Estimate for the point xs in the neighborhood

of x can be looked for as follows:

y(x− xs) = CTu(x− xs),

u(x) = (u1(x), u2(x), . . . , uM (x))T ,

C = (C1, C2, . . . , CM )T ,

(3.3)

where u(x) ∈ RM is a vector of linearly independent 1D polynomials, of the power from 0

to M , while C ∈ RM is a vector of parameters for this model.
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3.3 Intersection of Confidence Intervals – ICI

Any set of linearly independent polynomials can be used. For instance, Lagrange

polynomials are defined by:

Ln(x) = xn, (3.4)

while Hermitian polynomials are defined by:

Hn(x) = (−1)nex
2/2 d

n

dxn
e−x2/2. (3.5)

For m = 3, the complete set of Lagrange linearly independent polynomials is given by:

u1(x) = 1,

u2(x) = x,

u3(x) = x2,

u4(x) = x3,

(3.6)

while the complete set of Hermitian linearly independent polynomials is given by:

u1(x) = 1,

u2(x) = x,

u3(x) = x2 − 1,

u4(x) = x3 − 3x.

(3.7)

Regardless of the polynomial choice, in order to find the coefficients C of (3.3), the

following criterion function is applied:

Jh(x) =
∑

s

wh(x− xs)(z(xs) − y(x− xs))
2, (3.8)

where the window wh(x):

wh(x) = w(x/h)/h2 (3.9)

formalizes localization of fitting with respect to the center x, while the scale parameter

h > 0 determines the window size. The window w(x) satisfies the following property:

∫

w(x)dx = 1. (3.10)

Estimates of parameters C are obtained by minimizing the criteria function Jh(x)

(3.8) with respect to the C:

Ĉ(x, h) = arg min
C∈RM

Jh(x), (3.11)
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3.3 Intersection of Confidence Intervals – ICI

gives:

Ĉ(x, h) = u−1
h

∑

s

wx(x− xs)u(x− xs)z(xs),

uh =
∑

s

wh(x− xs)u(x− xs)u
T (x− xs),

Ĉ(x, h) = (Ĉ1(x, h), . . . , ĈM (x, h))T .

(3.12)

Having obtained coefficients Ĉ, estimate of the function value at point xs follows,

from (3.3) and (3.11), as:

ŷh(x− xs) = ĈTu(x− xs) = uT (x− xs)Ĉ,

= uT (x− xs)u
−1
h

∑

s

(wh(x− xs)u(x− xs)z(xs)).
(3.13)

Let us assume that we orthonormalized the polynomials u(x− xs) with respect to the

window wh(x− xs). We shall denote the orthonormalized set of polynomials as φ(x− xs).

The expression (3.13) can now be written as:

ŷh(x− xs) = φT (x− xs)φ
−1
h

∑

s

(wh(x− xs)φ(x− xs)z(xs)). (3.14)

Considering that:

φh = IMxM , (3.15)

the (3.14) becomes:

ŷh(x− xs) = φT (x− xs)
∑

s

(wh(x− xs)φ(x− xs)z(xs)). (3.16)

After substituting:

φT (ds) = φT (x− xs), (3.17)

the function value estimate can be written as:

ŷh(x− xs) =
∑

s

(wh(x− xs)φ
T (ds)φ(x− xs)z(xs)). (3.18)

The notation of (3.18) can be further simplified to:

ŷh(x− xs) =
∑

s

gh(x− xs)z(xs),

gh(x− xs) = wh(x− xs)φ
T (ds)φ(x− xs),

(3.19)

showing that the estimate can be obtained by filtering the noisy signal with the finite
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3.3 Intersection of Confidence Intervals – ICI

impulse response filter, given by its impulse response gh(x− xs).

Orthonormalization of the Polynomials

It was assumed in (3.15) that we orthonormalized the set of linearly independent poly-

nomials u(x − xs) such that they are orthonormal with the window wh(x − xs). The

orthonormalization was accomplished using the Gram-Schmidt process, presented below.

Given a set of linearly independent functions {un}∞n=0, let {ψn}∞n=0 denote the orthog-

onalized functions and {φn}∞n=0 denote the orthonormalized functions. Let us further

define that:

ψ0(x) ≡ u0(x),

φ0(x) ≡
ψ0(x)

√

∫

ψ2
0(x)w(x)dx

.
(3.20)

Now take:

ψ1(x) = u1(x) + a10φ0(x), (3.21)

where it is required that:

∫

ψ1φ0wdx =

∫

u1φ0wdx+ a10

∫

φ2
0wdx = 0. (3.22)

By definition,

∫

φ2
0wdx = 1, (3.23)

so, from (3.21) and (3.22), follows:

a10 = −
∫

u1φ0wdx. (3.24)

The first orthogonalized function can now be found as:

ψ1 = u1 −
[

∫

u1φ0wdx

]

φ0, (3.25)

while the first orthonormalized function is given by:

φ1 =
ψ1

√

∫

ψ2
1wdx

. (3.26)
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3.3 Intersection of Confidence Intervals – ICI

All the other orthogonal functions can be found as:

ψi = ui + ai0φ0 + ai1φ1 + · · · + ai(i−1)φi−1,

aij ≡ −
∫

uiφjwdx,
(3.27)

while the corresponding normalized functions are given by:

φi =
ψi

√

∫

ψ2
iwdx

. (3.28)

Sample LPA Kernel

To illustrate the procedure for the LPA kernel generation, we consider an example in

which the true value of a point is estimated using symmetrical rectangular window, h = 5

signal points wide, and Lagrange polynomials of order m = 0 to 2.

The starting point for kernel calculation is the expression (3.19):

ŷh(x− xs) =
∑

s

gh(x− xs)z(xs),

gh(x− xs) = wh(x− xs)φ
T (ds)φ(x− xs).

(3.29)

Let us assume that the center point of the LPA is x = xs, so that ds = 0. If we, also,

make a substitution: l = x− xs in (3.19), we get:

gh(l) = wh(l)φT (0)φ(l). (3.30)

Symmetrical window function is given by:

wh(l) =
1

2L+ 1
, l ≤ |L|, L =

h− 1

2
, (3.31)

while a complete set of linearly independent Lagrange polynomials orthonormal with the

wh(l) (3.31) is:

φ1(l) = 1,

φ2(l) =

√

3

L(L+ 1)
l,

φ3(l) =

√

5

L(L+ 1)(2L+ 3)(2L− 1)
(3L2 − L(L+ 1)).

(3.32)

The final expression for the LPA kernel coefficients is then:

gh(l) = (1 + 5
L(L+ 1) − 3l2

(2L+ 3)(2L− 1)
)

1

2L+ 1
, l ≤ |L|, (3.33)
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3.3 Intersection of Confidence Intervals – ICI

And the LPA kernel for our example is:

gh(l) = [−0.085 0.343 0.486 0.343 − 0.085]. (3.34)

3.3.2 Idea of the ICI

Let us consider the LPA kernels from the example above. Symmetrical window with

|L| = 2 and estimation order m = 2 are used. In case the center point of LPA lies on a

polynomial segment whose order is ≤ m, the kernels will provide perfect estimate of the

function real value, for any window size h > m. For instance, given a point on a parabola,

to get ŷ(x) = y(x), it is enough to have h = 3. In this case, L = 1 would suffice.

In reality, the original signal y(x) is composed of many different polynomials. Also, it

is corrupted by noise and we are only given its noisy observations z(x). In such cases, it

would be difficult to expect that the polynomials contained in y(x) could be accurately

reconstructed based on the m+ 1 points. In fact, it would take h = ∞ for the perfect

signal reconstruction to be possible. Although the perfect reconstruction is not likely

scenario, widening of the estimation window is a rewarding approach for improving the

ŷ(x) accuracy. Additional signal points in the wider window allow for better polynomial

approximation and, from the statistical point of view, lower estimate variance.

As long as all the window points lie on the same polynomial segment, of order ≤ m,

the LPA kernels are regarded to be unbiased estimators. Lower variance is then, indeed,

reflected as a higher probability that the function value estimate is closer to the real value

y(x).

Influence of the estimation bias is another factor to consider. The problem with

growing estimation window arises when the enlarged window includes points which lie on

a different polynomial segment. LPA kernel estimators become biased and variance alone

cannot be looked at as a measure of accuracy. Should the window be further extended,

estimator bias could cause significant worsening of the ŷ(x), regardless of the low estimate

variance. This is depicted in Fig. 3.6.

ŷ

y

h1 h2 h3 h4 h5 h6
Figure 3.6: Probability distribution functions of ŷ(x), for growing window sizes hi

It is evident that an unbiased estimator can result in an unacceptably high estimate
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3.3 Intersection of Confidence Intervals – ICI

variance, while at the same time lowering of the variance, by extending the estimation

window, can result in an unacceptable estimation bias. The ICI rule considers both of the

variables and, as shown in (Stankovic, 2004), provides optimal bias-to-variance trade-off.

Determining Support Size – ICI Rule

Since the LPA kernels (3.19) are, basically, finite impulse response (FIR) filters, the

estimation window can also be viewed as a filter support. From now on, the term “support

” will be used in place of the estimation window.

Let us examine a case in which the kernels are used to estimate the real function

value, y(x). Associated with the resulting estimates are their upper (U) and lower (L)

confidence interval (CI) limits, given by:

U = ŷ(x) + zc · σŷ,

L = ŷ(x) − zc · σŷ,
(3.35)

where the critical level zc = χ1−α/2 is the (1−α/2)− th quantile of the standard Gaussian

distribution and defines the probability that the true value y(x) is contained within the

CI limits.

To make the expression (3.35) more accurate, the bias has to be considered. (Stankovic,

2004) showed that the upper bound of the estimation bias is given by:

ω̄(x, h) < γ · σŷ,

γ =
(
√

(m+ 1)
)

−1
.

(3.36)

Then, from (3.35) and (3.36), the expressions for CI limits are:

U = ŷ(x) + Γ · σŷ,

L = ŷ(x) − Γ · σŷ,
(3.37)

where Γ = γ +χ1−α/2 is a free parameter, which defines the method sensitivity. Too large

or too small Γ parameter value, respectively, results in oversmoothing or undersmoothing

the signal. The value is seen as a compromise, which has heavy influence on the final

results quality.

The ICI algorithm demands that we calculate CIs for estimators of growing supports:

H = {Hi, i = 1, . . . , N},

with length hi of each succeeding support being larger than the previous one:

{hi | hi < hi+1}.

Relevant part for the ICI method are the CI extreme values. Maximum lower CI limit
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3.3 Intersection of Confidence Intervals – ICI

and minimum upper CI limit values are recorded for each Hi (Katkovnik, Egiazarian, and

Astola, 2002):

L̄i+1 =max[L̄i, Li+1],

Ui+1 =min[Ui, Ui+1],

i = 1, 2, . . . ,N, L̄1 = L1, U1 = U1.

The ICI rule states that there is a high probability that the estimator producing

the most accurate estimate ŷ(x) is the one with the largest support Hi, for which the

condition:

L̄i ≤ Ui (3.38)

is still satisfied. The respective support is denoted as H+. For the next larger filter, there

would be no more intersection of L̄i and Ui and it is to be expected that the additional

samples added to the H+ belonged to a signal region with different local properties. This

is better illustrated in Fig. 3.7. Fig. 3.7 (a) shows part of a noise corrupted two-value

signal, for which the ICI rule is used to estimate the real value of the sample at x = 15

(as denoted by the vertical dashed line). Fig. 3.7 (b) shows confidence interval bars in

case the support is grown in the right direction only. The support H9 is the first one to

include the sample from the higher signal level. In the CI plot, it can be identified as a

breach of the condition (3.38). As per the ICI rule, the filter with support H8 is to be

chosen as the estimator for y(15), as it is the filter with the largest support for which the

condition (3.38) still holds.
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ŷ
h

j
a
n
d

C
I

li
m

it
s

(b)

Figure 3.7: Sample noisy signal (a) and CI limits for ŷ(15) (b). Filter support is growing
to the right

The ICI rule should ensure that the chosen filter support, generally, does not span

across the edges between the polynomial segments in a signal. In case it does, number of

points from the neighboring segments included in the support should stay very low, and
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3.4 Edge Preserving Lifting Scheme – ICI-EPL

their influence too small to significantly impact the estimation bias.

3.4 Edge Preserving Lifting Scheme – ICI-EPL

In Chapter 3.1 and 3.2 we explained the rationale and the goals for the ICI-EPL adaptive

denoising algorithm. We will now make an implementation of the algorithm using the ICI

rule as the core of the adaptive algorithm.

Let us, again, consider the lifting scheme realization of the wavelet transform (Fig.

2.1). In the predict step, filter P is used to predict values of the odd-indexed signal

sample, based on a certain number of even-indexed samples, and vice versa. Because,

for conventional wavelets, filter P is same for every signal sample, we get a performance

trade-off – longer filter P results in better performance in smooth signal regions, while

shorter P results in better performance about edges in a signal. In order to avoid the

trade-off, the ICI rule can be used to determine the filter P support for each signal sample,

independently.

3.4.1 Lifting Filters

As explained in 3.3.2, the ICI rule considers LPA kernels (3.19), while lifting filters used

in the lifting scheme are Neville filters. There are two options – either Neville filters will

be used for the ICI rule, or the (3.19) LPA type kernels will be used in the lifting scheme.

Let us briefly examine both options.

Neville Filters and the ICI Rule

Essentially, Neville filters of order N are also LPA kernels. They are interpolating filters

which are able to perfectly reconstruct any polynomial whose order is m < N . The same

is true for the LPA kernels. The difference between the ICI utilization of LPA kernels

and Neville filters is in the relationship of order of estimation and support size.

LPA kernels used for the ICI rule all share the same estimation order, set to a value of

m = const, regardless of the kernel support size. For the support size of h = m+ 1, the

kernels are exactly the same as the Neville filters of order N = m+ 1. As the support of

Neville filters grow, so does their order of estimation, which is always equal to: m = N −1.

If used for the ICI rule, both filter types must have growing support, but in the LPA

kernel case, estimation order is fixed, while for the Neville filters it grows with the support.

Important consequence is relationship of estimate variance to support size. Both estimator

types are finite impulse response (FIR) filters and the respective estimate variance is

derived as follows:

ŷ(x) =
∑

k

gh(k)y(x− k),

V ar(ŷ) = σ2
ŷ =

∑

k

g2
h(k) · σ2

y(x−k).
(3.39)
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Considering that:

σy(x−k) = σε,

the variance becomes:

V ar(ŷ) =
∑

k

g2
h(k) · σ2

ε ,

and finally:

V ar(ŷ) = σ2
ŷ = σ2

ε ·
∑

k

g2
h(k)

σŷ = σε ·
√

∑

k

g2
h(k).

(3.40)

The variance is directly proportional to the sum of squared filter/kernel coefficients, and,

as per (3.35), the confidence interval width is directly proportional to the variance. In the

LPA kernel case the variance and the CI width are getting lower as the support grows,

while for the Neville filters, they are getting higher. The ICI rule efficiency is based on

the shrinking CI widths, as shown in Fig. 3.7. The effect of expanding CI widths can be

observed in Fig. 3.8. The Figure shows plot of CI bars for a sample signal, when using

Neville filters of order N ∈ 1, 2, 3, 4, 5, 6, 7. It can be seen that the expanding CIs are

detrimental to the efficiency of the ICI rule, as it slows or even disables the breaching of

the condition (3.38). We can conclude that the Neville filters are not suitable for the ICI

rule utilization.
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Figure 3.8: Effect of growing variance of Neville filters to the ICI rule efficiency

LPA Kernels and the Lifting Scheme

LPA kernels as proposed in (Katkovnik, 1999) cannot be directly used in the lifting scheme.

Katkovnik assumes that the kernel uses every support point for the approximation. Also,

he assumes that, in (3.19), the center point of the LPA is always equal to xs. It leads to
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3.4 Edge Preserving Lifting Scheme – ICI-EPL

ds = 0 and modified expression (3.19):

gh(x− xs) = wh(x− xs)φ
T (0)φ(x− xs). (3.41)

Considering the symmetrical estimation window H of length h = 5, the effect of the

assumptions is that the estimators are used to estimate the value of signal sample H(3)

based on the values of all points of H, including H(3).

Filter P in the lifting scheme does not have all the samples at its disposal. It can

only use samples from one signal phase, to predict value of one of the samples from the

other signal phase. To achieve this, only minor additions to the Katkovnik approach are

necessary.

Let us examine the case if the rectangular asymmetrical window function:

wh(x− xs) = 1/h,

as in Fig. 3.9, is assumed. Points in the support H all belong to the same signal phase.

Samples from the other signal phase lie at the half-integer grid points. The kernels (3.41)

must be modified in order to estimate value of one of the mid-points. It can be easily

accomplished by proper selection of the ds in (3.19). It shall not be set to 0 but to

a half-integer value, defining the point in the other signal phase, whose value is to be

estimated. For instance, given a support length h = 4, and setting the ds = 1.5 results in

a symmetrical kernel, estimating the point in the center of support. Upsampled kernels

can now be used in place of the filter P .

0 1 2 3 ... h−1 0
0

1/2h

1/h

H

w
h

Figure 3.9: Asymmetrical rectangular window

Inclusion of the LPA kernels into the lifting scheme has obvious advantage of allowing

for the ICI rule to be efficiently used to determine the filter P support, which can now be

calculated separately for each signal sample. However, there is another characteristic of

the proposed denoising algorithm, which limits the potential of the approach. Obtaining

the best possible prediction in the predict step of the lifting scheme is not enough to

achieve excellent denoising performance. Purpose of the filter P is not only the prediction

but also, and in the first place, wavelet construction. As we already pointed out, wavelet
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basis choice has a major influence on denoising performance, and we must examine the

wavelets which get constructed with the LPA kernels.

Fig. 3.10 shows wavelets in case LPA kernels with estimation order m = 1 are used.

Plots are provided for support lengths h ∈ {4, 6, 8}. For h = 2, the LPA kernel is identical

to the Neville filter, and so are the resulting wavelets. Fig. 3.11 shows the case for m = 2

and support lengths h ∈ {6, 8}. Again, for h = 4 the LPA kernel and Neville filters are

identical. If we compare the resulting wavelets with the ones from Neville filters, shown

in Fig. 3.5, we can see some general similarity in the shape but there is a significant

difference in regularity. Wavelets constructed using Neville filters are very smooth, while

the wavelets from LPA kernels are not nearly as smooth and have numerous singularities.
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Figure 3.10: Synthesis wavelets from LPA kernels with estimation order m = 1. Support
length: h = 4 (a), h = 6 (b) and h = 8 (c)

Given that the reconstructed signal is a sum of the coarse signal approximation

and translated and scaled wavelet functions, we can anticipate the negative influence

of such wavelets on general denoising performance. It becomes nearly impossible to

reconstruct the smooth signal regions without the denoising artifacts in form of, mostly,

small fluctuations about the real signal value, being clearly visible. The effect is shown in

Fig. 3.12. The example compares two denoised HeaviSine signals. One is denoised using

the wavelets resulting from Neville filters with support length h = 8, while the other is

denoised using the wavelets resulting from LPA kernels with m = 2 and the same support
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Figure 3.11: Synthesis wavelets from LPA kernels with estimation order m = 2. Support
length: h = 6 (a) and h = 8 (b)

length, h = 8.
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Figure 3.12: HeaviSine signal denoised using wavelet transforms based on the (a) LPA
kernel, m = 2, h = 8 and (b) Neville filter h = 8

Combining the Advantages

We showed that the Neville filters work excellent for wavelet construction. Wavelets with

smaller support feature sharp edges and are good for reconstructing higher frequencies in

a signal, while wavelets with larger supports are very smooth and can easily reconstruct

lower frequencies in a signal. Unfortunately, Neville filters are not suitable to be used

for the ICI rule, because estimate variance rises with the filter support. On the other

hand, LPA kernels can be used with the ICI rule to achieve very efficient support size

determination, but wavelets they construct are inferior to the ones constructed by Neville

filters. They have many singularities, leading to visible artifacts in the denoised signal.

The logical solution would be to try to explore the advantages of both filter types. To
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achieve this, we propose the signal decomposition in the lifting scheme to be broken into

two separate steps.

In the first step, on each scale and for each point, the ICI rule with the symmetrical

LPA estimators of order m, with set of growing supports:

Hr = {Hm,i, i = 1, . . . , N}

of length:

{hm,i | hm,i < hm,i+1}

are used to find the largest admissible support (denoted by ’+’) H+
m of length h+

m. Based

on the H+
m even-indexed points (denoted as H+

m,e), the estimators predict value of one

of the H+
m odd-indexed points (denoted as H+

m,o), and vice versa. Since symmetrical

estimators are assumed, the supports Hm,i also grow symmetrically. Ideally, samples

which comprise the support H+
m would not belong to two (or more) signal regions with

different local properties.

In the second step, actual decomposition is performed by substituting the chosen

LPA kernels with Neville filters of the same support H+
m. The substitution can be

justified by the fact that the resulting smooth wavelets will have at least the same number

of vanishing moments as if the LPA kernel estimators were used. Possible additional

vanishing moments would provide smoother reconstruction but would have no negative

impact on edge preservation.

Choosing the Estimation Order

Basically, any estimation order m can be chosen for the LPA kernels, although differences

in actual denoising performance are not very significant. Another factor to consider when

choosing the estimation order is a potential for support growth. Because employing longer

wavelets do not bring further performance improvements, we have decided the longest

wavelet to be the Bior6.6. In effect, the longest filter support that can be used for the

ICI rule is of length h = 6. Too large estimation order m would, thus, limit the potential

for support growth. For instance, should we chose the order m = 3, minimum support

length would have been h = m+ 1 = 4. Since the support is grown symmetrically, only

two supports would have been considered by the ICI algorithm, which is not enough to

explore its benefits or ensure reasonable reliability.

As well as limiting support growth potential, larger estimation order values also

entirely exclude smaller wavelets. It means that longer wavelets would be used even at

a step edge. This is in harsh contradiction with the basic idea of adaptation and can

severely lower transform performance about edges in a signal.

The simulations showed that the estimation order m = 1 proved to be enough for

optimal denoising performance and it is the order we propose to be used in the ICI-EPL.
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Support Verification

Since we opted to set the kernel estimation order to m = 1, the resulting symmetrical

estimators are simple averaging filters:

PN (z) =
1

N

N−1
∑

k=0

z−k.

As a result, the more the support grows, the lesser is the impact of added samples

(Hm,i+1 \Hm,i) on the prediction result. It means that some edges might still show up in

the final support H+
m. Small denoising performance improvements can be achieved by

further examining the H+
m.

In order to verify the support and increase probability that it does not contain any

sudden changes in signal statistics, two asymmetrical LPA kernel estimator sets are

introduced. Each set is independently used in the ICI algorithm as a set of filters with

growing supports. They predict, respectively, values of the second and next to the last

points of H+
m. Their supports are growing from boundaries of the H+

m to the right and to

the left, respectively. The ICI algorithm results in supports HL+
m and HR+

m , whose lengths

(hL+
m and hR+

m ) are ≤ h+
m. The asymmetrical estimators ensure that samples added in

each step of the ICI algorithm carry higher weight, which increases the probability of

edge recognition.

In case that:

min[hL+
m , hR+

m ] < h+
m,

it is possible that the ICI rule did not indicate change in signal properties fast enough and

that the H+
m contains signal samples from different segments. Our strategy is to contract

the H+
m by one filter tap from both sides. The verification step is then repeated until:

hL+
m = hR+

m = h+
m

.

3.5 Results and Discussion

To investigate performance of the proposed ICI-EPL denoising scheme, we use 6 different

test signals: Blocks, Bumps, Doppler, HeaviSine, Piece-Polynomial and Piece-Regular.

The signals are shown in Fig. 3.13. They are generated as if they were samples of the

respective continuous time functions, taken at different sampling frequency. We chose

5 different frequencies to obtain discrete time test signals, whose lengths are from the

following set: {256, 512, 1024, 2048, 4096}.
Additive white Gaussian noise was added to each of the signals. Noise was generated

at 4 levels, equaling σε ∈ {5%, 10%, 15%, 20%} of total signal magnitude. Illustration
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3.5 Results and Discussion

of actual signal corruption caused by noise is shown in Fig. 3.14. The figure shows

four plots of the HeaviSine signal, containing white Gaussian noise at levels from the

above-mentioned set.

For comparison, signals are denoised using the original ICI method, as proposed in

(Katkovnik, 1999), the ICI-EPL and 5 well known conventional wavelet transforms: Haar,

Bior2.2, Bior4.4, Db3 and Db9. Haar and Bior wavelets were shown in Fig. 3.5, while

Db9 was shown in Fig. 3.1. Shape of the Db3 wavelet is depicted in Fig. 3.15.

Proper selection of the parameter Γ value is essential for achieving high efficiency of

the proposed ICI-EPL algorithm. In this performance analysis, signals were independently

denoised for each of the Γ values

Γ ∈ [0.5, 5],

in increments of 0.1. The best results were chosen and presented. Automated selection of

the parameter Γ value will be discussed in details in the next chapter.

To eliminate influence of threshold selection on the transform efficiency performance

comparison, all the wavelet transforms use the optimal threshold value. It is chosen by

using thresholds from the [σε, 10σε] range and selecting the best case, separately, for each

of the transforms.

We will thoroughly examine the denoising scheme performance for the signals whose

length is 1024 points. Two levels of additive white Gaussian noise will be considered:

σε ∈ {5%, 10%} of total signal magnitude. Objective performance measures for the

examined cases, in terms of the root mean square error (RMSE), are presented in Tab.

3.5. Results for all other signal length and noise level combinations are given in Appendix

A.

Table 3.1: RMSE values of denoised signals for additive Gaussian noise with σε ∈
{5%, 20%} of total signal magnitude. Signal length is 1024 points. RMSE multiplied by a
102

σε = 5% σε = 20%
Optimal

ICI-EPL
Optimal

ICI-EPL
wavelet wavelet

Blocks 1.22 0.89 5.42 5.21

Bumps 1.91 1.94 6.57 6.82
Doppler 1.66 1.69 5.59 5.51

HeaviSine 1.14 1.09 3.24 3.61
Piece-Polynomial 1.21 0.95 4.86 4.83

Piece-Regular 1.72 1.41 5.72 5.78

Blocks signal

First signal to be analyzed is the Blocks signal. It is a piece-wise constant signal,

characterized by sharp step edges between constant-level signal regions. Haar wavelet

transform is optimal transform for denoising such signals. It has the most compact
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Figure 3.13: Test signals for evaluation of denoising performance: (a) Blocks, (b) Bumps,
(c) Doppler, (d) HeaviSine, (e) Piece-Polynomial and (f) Piece-Regular
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Figure 3.14: HeaviSine signal corrupted by noise with σε equal to (a) 5%, (b) 10%, (c)
15% and (d) 20% of total signal magnitude
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Figure 3.15: Daubechies Db3 wavelet
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support and wavelet function is a piece-wise constant function, so we have a perfect fit of

the wavelet shape to the signal.

At moderate noise level, σε = 5% of total signal magnitude, ICI-EPL achieves ≈ 28%

lower RMSE than the Haar wavelet. Noisy and denoised signals are shown in Fig. 3.16. It

can be seen that the signal denoised by Haar wavelet exert occasional spikes and roughness

at edges between the constant values. Constant signal regions are, mostly, efficiently

denoised, although some roughness still exists, especially in shorter duration regions.

Signal denoised by the ICI-EPL shows almost perfect edge reconstruction and perfect

reconstruction of shorter duration constant regions. Performance on longer duration

constant regions is similar to the Haar wavelet case.

As expected, the best performance is achieved for small Γ parameter values. Larger

values result in signal oversmoothing and lower overall quality.

At extreme noise levels, Fig. 3.17, ICI-EPL achieves only ≈ 4% lower RMSE than the

Haar wavelet. General shape of denoised signals is very similar, but even in this extreme

case, ICI-EPL shows much better performance about edges. The edges are still quite

sharp, clearly defined, and with no spikes. The optimal Γ parameter value is lower and is

just above 0.5. Lowering of the optimal Γ value, as the noise level is increased, will be

exhibited in each of the test cases.

Bumps signal

Bumps signal is characterized by a series of bumps (or spires). Except for the bump

peaks, the signal can be considered to be smooth. Of the tested conventional wavelets,

the Bior2.2 wavelet performed the best for this type of signal, although Bior4.4 and Db3

were also close.

Denoising performance of the ICI-EPL is comparable to the Bior2.2. At moderate noise

level, the ICI-EPL denoised signal has ≈ 1.5% higher RMSE, with similar visual quality.

Fig. 3.18 shows denoising results. If we compare denoised signals with the original Bumps

signal, showed in Fig. 3.13, we can see that the ICI-EPL slightly better reconstructs

bumps than the Bior2.2 wavelet. It can be most easily spotted when comparing the

second bump in the third series. On the other hand, zero level regions in a signal are

better reconstructed by the Bior2.2 wavelet, while the ICI-EPL denoised signal shows

some fluctuations and minor spikes in the region.

For this class of signals, it is not possible to achieve desired smoothness in the denoised

signal when keeping the Γ parameter at low values. As can be seen in Fig. 3.18 (b), on

average, the best results are achieved for Γ > 3.

The extreme noise case is more difficult to evaluate. In terms of the RMSE, the

ICI-EPL scores ≈ 3.8% worse result than the Bior2.2, but in terms of the visual quality

of denoised signal, a different conclusion can be made.

ICI-EPL performance at zero value regions is indeed lower than the Bior2.2 perfor-

mance. There are more oscillations and several unwanted spikes, particularly the ones
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Figure 3.16: Blocks signal corrupted by noise with σε = 5% of total signal magnitude
(a), average RMSE for various denoising methods (b) signal denoised by optimal wavelet
transform (Haar) (c), signal denoised by the ICI-EPL (d) and original signal (e)
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Figure 3.17: Blocks signal corrupted by noise with σε = 20% of total signal magnitude
(a), average RMSE for various denoising methods (b) signal denoised by optimal wavelet
transform (Haar) (c) and signal denoised by the ICI-EPL (d)
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Figure 3.18: Bumps signal corrupted by noise with σε = 5% of total signal magnitude
(a), average RMSE for various denoising methods (b) signal denoised by optimal wavelet
transform (Bior2.2 ) (c), signal denoised by the ICI-EPL (d) and original signal (e)
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Figure 3.19: Bumps signal corrupted by noise with σε = 20% of total signal magnitude
(a), average RMSE for various denoising methods (b) signal denoised by optimal wavelet
transform (Bior2.2 ) (c) and signal denoised by the ICI-EPL (d)
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before the first series of bumps. Still, as can be seen in Fig. 3.19 (d), the false spikes

are easily distinguished from the real bumps in a signal. When we compare the bump

reconstruction, ICI-EPL performance is far superior. The first series of bumps is badly

corrupted in the Bior2.2 case, while the ICI-EPL successfully conserved all three bumps

in the series. Similar observation can be made for the fourth series of bumps. Although

the Bior2.2 performed better than for the first series, it is still inferior to the ICI-EPL.

Also, bump peaks in the ICI-EPL denoised image are much higher, and closer to the

actual peaks in the original signal.

Following above considerations and the fact that the bumps in the Bumps signal, and

not zero value regions, carry most of the useful signal information, we conclude that the

ICI-EPL performed significantly better in the extreme noise case, although the RMSE

does not suggest the same.

Doppler signal

Amplitude and frequency changes of the Doppler signal are challenging for denoising

algorithms. Since lowest signal amplitudes are associated with highest signal frequencies,

it is inevitable that the noise corruption will cause masking of actual signal features in

such regions. As the frequency declines and amplitude rises, the signal becomes very

smooth. The optimal wavelet to be used for denoising the Doppler signal, with respect to

RMSE, is the Bior4.4 wavelet.

At moderate noise level, performance of the ICI-EPL and the Bior4.4 are comparable.

ICI-EPL achieves better performance for larger Γ parameter values, with the best result

being at the largest value, Γ = 5. RMSE is ≈ 1.8% higher than for the Bior4.4, with

visual quality of denoised signals (Fig. 3.20) also being comparable. The Bior4.4 has

small performance edge in the highest frequency region, while the ICI-EPL provides

smoother signal in the lower frequency region.

Results are similar in the extreme noise case. RMSE of the ICI-EPL is now ≈ 1.4%

lower, and visual quality (Fig. 3.21) is again comparable. Because of the high noise

level, wider high frequency region is flattened in both denoised signals. Again, ICI-EPL

denoised signal is smoother, throughout the signal duration, except near the end, where

the Bior4.4 performs slightly better.

For both noise levels results of the optimal conventional wavelet transform and the

ICI-EPL are comparable in terms of the both, RMSE and the visual quality.

HeaviSine signal

This is another signal with conflicting requirements. Except for the two discontinuities,

the signal is completely smooth. As such, the Bior2.2 wavelet resulted in the smallest

RMSE for conventional wavelets.

At moderate noise level, the ICI-EPL performs better than the Bior2.2. It yielded

denoised image with ≈ 4.5% lower RMSE and much better visual quality. As can
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Figure 3.20: Doppler signal corrupted by noise with σε = 5% of total signal magnitude
(a), average RMSE for various denoising methods (b) signal denoised by optimal wavelet
transform (Bior4.4 ) (c), signal denoised by the ICI-EPL (d) and original signal (e)
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Figure 3.21: Doppler signal corrupted by noise with σε = 20% of total signal magnitude
(a), average RMSE for various denoising methods (b) signal denoised by optimal wavelet
transform (Bior4.4 ) (c) and signal denoised by the ICI-EPL (d)
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be seen in Fig. 3.22, the bulk of the signal is very smooth, while the discontinuities

are accurately reconstructed. The Bior2.2 denoised signal also features reasonable

discontinuity reconstruction, but is not as smooth as the ICI-EPL denoised signal.

On average, the best results for ICI-EPL are achieved for smaller Γ parameter values,

with minimum being at Γ = 1.3. Nature of the signal allows for such small values, as

the adaptive algorithm can easily recognize signal discontinuities, while still allowing for

longer filters to be used for smooth regions.

At extreme noise level, the Bior2.2 is no longer the optimal choice, and the Haar

wavelet performs better. In terms of the RMSE, the Haar is superior to the ICI-EPL

and results in ≈ 11% lower error. The difference is not confirmed in the visual quality

inspection. As shown in Fig. 3.23, the first discontinuity is almost completely lost in

both denoised signals, while the second one is equally attenuated. The biggest difference

between the signals is in the troughs and near the signal end, where the Haar wavelet

performed better.

We can conclude that the transforms yield comparable results, with small advantage

going to the Haar wavelet.

Piece-Polynomial signal

Piece-Polynomial is a piece-wise polynomial signal, with sharp edges (discontinuities)

between the pieces. The only tested conventional wavelet transform that produced

reasonable result is the Haar wavelet. All the other transforms perform inadequately

about edges and show significantly worse RMSE and visual quality.

At moderate noise level, the signal can be denoised very efficiently using the ICI-EPL.

Signal denoised by the Haar wavelet yields ≈ 21.5% higher RMSE than in the ICI-EPL

case. Huge difference in RMSE can, also, be confirmed by visual quality evaluation (Fig.

3.24). Larger polynomial pieces are comparable between the two denoised signal, but

difference in shorter pieces and about edges is distinctive. Edges in the ICI-EPL denoised

signal are completely preserved and accurately reconstructed. It is not true for the Haar

case, in which many spikes are present about edges. The Haar wavelet performance about

edges also has influence on reconstruction of smaller polynomial pieces, which is much

better in the ICI-EPL case.

Like for the Blocks signal, lower parameter Γ values are preferred for denoising the

Piece-Polynomial signal. On average, the best RMSE is achieved about Γ = 1.

In extreme noise case the ICI-EPL do not show the same advantage. In terms of

the RMSE, it shows only ≈ 1% better performance. When comparing visual quality of

denoised signals (Fig. 3.25), we can see that the signals are very similar. The only major

difference is the existence of several spikes in the Haar case, which is the main cause for

the difference in RMSE. ICI-EPL does seem to have a very slight advantage over the

Haar wavelet but, in general, the two transforms produce comparable results.
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Figure 3.22: HeaviSine signal corrupted by noise with σε = 5% of total signal magnitude
(a), average RMSE for various denoising methods (b) signal denoised by optimal wavelet
transform (Bior2.2 ) (c), signal denoised by the ICI-EPL (d) and original signal (e)
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Figure 3.23: HeaviSine signal corrupted by noise with σε = 20% of total signal magnitude
(a), average RMSE for various denoising methods (b) signal denoised by optimal wavelet
transform (Haar) (c) and signal denoised by the ICI-EPL (d)
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Figure 3.24: Piece-Polynomial signal corrupted by noise with σε = 5% of total signal
magnitude (a), average RMSE for various denoising methods (b) signal denoised by
optimal wavelet transform (Haar) (c), signal denoised by the ICI-EPL (d) and original
signal (e)
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Figure 3.25: Piece-Polynomial signal corrupted by noise with σε = 20% of total signal
magnitude (a), average RMSE for various denoising methods (b) signal denoised by
optimal wavelet transform (Haar) (c) and signal denoised by the ICI-EPL (d)
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Piece-Regular signal

The last signal to be analyzed is the Piece-Regular signal. It is characterized by many

singularities, which take form of either bumps or discontinuities with sharp edges. Db3 is

the wavelet which scored the lowest RMSE of the conventional wavelets tested.

As we already showed, in case signal contains sharp edges, the ICI-EPL denoising

scheme always shows definite advantage over conventional wavelet transforms . The same

can be noted for the Piece-Regular signal. At moderate noise level, the ICI-EPL yields

≈ 18% lower RMSE than the Db3. If we look at the visual quality of denoised signals

(Fig. 3.26), we can see that the overall quality of the signals is mostly comparable, except

about edges. The Db3 wavelet denoised signal features spikes at many edges, while the

ICI-EPL succeeded to efficiently recover signal information and accurately reconstruct

edges between regular pieces in the signal.

At extreme noise level, difference between the two denoising methods is again dimin-

ished. For the given noise level, the Haar wavelet performs better than the Db3 and

results in ≈ 1% lower RMSE than the ICI-EPL. As suggested by the RMSE, both of the

transforms produce comparable results, even in the terms of visual quality. However, as

can be seen in Fig. 3.27, several large spikes exist in the Haar denoised signal, which are

not present in the ICI-EPL denoised signal. Therefore, we favor the ICI-EPL over the

Haar wavelet for denoising the Piece-Regular signal, even at the extreme noise levels.

3.6 Conclusion

The ICI-EPL adaptive lifting scheme for signal denoising was proposed. The goal was

to develop an edge preserving transform, such that the good properties of conventional

wavelet transforms are retained, but performance about edges in a signal is greatly

improved. The adaptation is carried out by selecting appropriate wavelet basis, on each

scale and for each signal sample, independently.

The intersection of confidence intervals (ICI) rule is the core of the adaptive algorithm.

It is used in the predict step of the lifting scheme to determine the neighborhood of samples,

which share the same local properties as the sample whose value is being predicted. This

way, longer lifting filters are used in the smoother signal regions, while shorter wavelets

are used in the higher frequency regions. As a result, the transform efficiently reconstructs

both, the edges in a signal and the smooth signal regions.

Extensive experiments were performed to evaluate efficiency of the ICI-EPL. Different

classes of signals were used, sampled at several frequencies and with various levels of

additive noise. We showed that in many cases, the ICI-EPL easily outperforms the ICI

smoothing method and all the tested conventional wavelet transforms. When this is not

the case, it produces results which are comparable to the transform yielding the best results

for a given signal. The edge preserving nature can be clearly seen in denoised signals, as

edges are efficiently reconstructed, without oversmoothing, or exhibiting pseudo-Gibbs
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Figure 3.26: Piece-Regular signal corrupted by noise with σε = 5% of total signal
magnitude (a), average RMSE for various denoising methods (b) signal denoised by
optimal wavelet transform (Db3 ) (c), signal denoised by the ICI-EPL (d) and original
signal (e)
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Figure 3.27: Piece-Regular signal corrupted by noise with σε = 20% of total signal
magnitude (a), average RMSE for various denoising methods (b) signal denoised by
optimal wavelet transform (Haar) (c) and signal denoised by the ICI-EPL (d)
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3.6 Conclusion

oscillations.

The main deficiency of the ICI-EPL is its dependence on the proper choice of the

ICI Γ parameter value, as false selection can have detrimental influence on denoising

performance. We will try to solve it in the next chapter, by proposing statistical method

for automated parameter Γ selection.
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Chapter 4

Determining the Γ Parameter

Value

It was shown in Chapter 3, that the ICI-EPL performance in signal denoising can vary

significantly, depending on the chosen value of the parameter Γ. Each signal assumes

its own optimal Γ value and, if correctly selected, the transform will perform very well.

If the optimal value is missed, the transform performance may downgrade significantly.

Unfortunately, there is no direct analytical way of finding the value. Katkovnik in its

original work (Katkovnik, 1999) and later in (Katkovnik, Egiazarian, and Astola, 2002)

proposed cross-validation as a tool for determining the optimal value. A predefined set

of NG values, was used to perform denoising using the ICI denoising scheme. After the

denoising, a cross-validation loss function is constructed using the NG denoised signals

and associated kernel estimators. Chosen value for the Γ is a value for which the cross-

validation loss function has a minimum. To achieve satisfying results, it is necessary for

the kernel estimators to have large maximum support lengths. The condition is fulfilled

in original Katkovnik work, but in the ICI-EPL case, filters with compact support are

used, so a different approach is necessary.

In this chapter, we propose two methods for the parameter Γ value selection, which

are both based on the statistical distribution of wavelet coefficients. We show that

the distribution is linked to the efficiency of the adaptive algorithm, and we use that

connection to decide the Γ value for a given signal.

4.1 Distribution of Wavelet Coefficients

At each decomposition level of a wavelet transform, lowpass and highpass subbands are

generated. As presented in greater detail in Chapter 2, the lowpass subband contains signal

average, i.e., the coarse approximation of the signal, while the highpass subband contains

signal details. We can assume the highpass subband coefficients (wavelet coefficients) to

be realizations of independent and identically distributed random variables. Distribution
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of the variables carry important information about appropriateness of a wavelet transform

for a given signal. Extensive research has been carried out in analyzing and modeling the

distribution for image processing applications, for instance (Lam, 2004; Mallat, 1989c;

Wang, Li, Xuan, Lo, and Mun, 1997). Their main conclusions are also valid for the

1-D signals. Generally, authors agree that the distribution of wavelet coefficients can

be modeled as a generalized Gaussian distribution (GGD). However, it is not possible

to use the same GGD to model distribution of any set of wavelet coefficients, because

the coefficients distribution is neither unique nor constant. It changes at each scale

(decomposition level) and it is influenced by the type of signal being decomposed, the

type and level of additive noise, and the chosen wavelet basis. In order to devise the

parameter Γ selection methods, we need to consider each of the factors influencing the

highpass subband coefficients distribution.

For the beginning, let us recall that we assumed the given signal z(x) to be a noisy

observation of the original signal y(x):

z(x) = y(x) + ε(x). (4.1)

Since wavelet transform is a linear transform, it is true that the actual transform of the

z(x) consists of two separate components:

W(z(x)) = W(y(x)) + W(ε(x)). (4.2)

The same is also true for distributions of wavelet coefficients. They are influenced by

both, the coefficients originating from the original signal and the coefficients originating

from noise. As wavelet decomposition progresses, the influence of the two sources on

wavelet coefficients changes. In effect, on different decomposition levels, distribution

of wavelet coefficients will be more impacted by either the noise component or the

original signal component of z(x). Because of (4.2), we can study each of the components

separately.

4.1.1 Influence of Scale

The effect of scale on distribution of wavelet coefficients is depicted in Fig. 4.1. It

shows the distributions at 5 decomposition levels. Signals were decomposed using the

Bior2.2 as a wavelet basis. It can be seen that in most cases the distribution at level

1 closely resembles the Gaussian probability density function (PDF). Further down the

decomposition tree, the PDF steadily narrows and its peak rises. The exception to this

is the Bumps signal, Fig. 4.1(b), for which the PDF at level 5 has higher peak than at

the level 4. The exception can be attributed to the influence of other factors, as will be

seen later. The same is true for the Heavisine signal, Fig. 4.1(d), for which the difference

between PDFs at different decomposition levels is not that definite, as in the other cases.

The dynamics of the wavelet coefficients PDF, as seen in Fig. 4.1, is expected. All of
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Figure 4.1: Distribution of wavelet coefficients at each decomposition level, for signals:
Blocks (a), Bumps (b), Doppler (c), HeaviSine (d), Piece-Polynomial (e) and Piece-
Regular (f). Gaussian noise with σε = 5% of total signal magnitude was added to each
signal
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4.1 Distribution of Wavelet Coefficients

the original test signals considered belong to a class of signals with power spectral density

of the form:

S(f) ∝ 1

fα
, α > 0, (4.3)

which means that signals are mostly constituted of low frequencies. On the other hand,

additive white Gaussian noise contains equally all frequencies. As a result, the highpass

filter at the first decomposition level filters out most of the original signal, and, normally

distributed, wavelet coefficients almost entirely originate from the additive noise. This

can be confirmed in Fig. 4.2, which shows PDFs of wavelet coefficients at the first

decomposition level. Three different wavelet basis were used, namely, Haar, Bior2.2,

Bior4.4. For comparison, the Gaussian PDF is also shown. Obviously, changing the

wavelet or the signal do not have considerable influence on the PDF. For all the test

signals and the three different wavelet basis the PDF is very close to the Gaussian PDF.

Therefore, it is difficult to find a connection between the coefficient distribution at the

first decomposition level, and suitability of a given wavelet basis for a specific signal.

As we go down the decomposition tree, the highpass filter passes progressively narrower

and lower frequency bands. On each successive scale, impact of noise on wavelet coefficients

fades and coefficients mostly originate from the original signal. Because of the energy

packing property of wavelet transforms, most of the signal information will be contained

in a small number of relatively large wavelet coefficients. In effect, the distribution of

coefficients is expected to be narrow and peaked about zero. This is clearly visible in Fig.

4.3, in which the PDFs at the last decomposition level are shown.

In this case, there is a significant difference between the PDFs from the three wavelet

basis. More importantly, there is a clear connection between the PDFs shape and the

suitability of a given wavelet basis for a specific signal. It leads us to a hypothesis that

will be shown valid for all test signals and will be central for the proposed method for the

Γ parameter selection.:

The better the wavelet basis fits local signal properties, the narrower will be

the shape of the wavelet coefficients PDF at the last decomposition level, and

the higher its peak.

The two most exemplifying cases of the hypothesis validity are the PDFs for the

Blocks and the Doppler signals. The signals itself are shown in Fig. 3.13(a), and Fig.

3.13(c), respectively. Blocks signal is a piece-wise constant signal, characterized by sharp

edges between the constant pieces. As such, the ideal wavelet basis for the signal is the

Haar wavelet (Fig. 3.5 (a)). Its shape allows for an excellent reconstruction of sharp

edges in the signal. The PDFs of wavelet coefficient at the last decomposition level are

shown in Fig. 4.3(a). The PDF for the Haar transform has decisively higher peak and is

narrower than the other two PDFs. It is followed by the Bior2.2 and finally the Bior4.4.

The PDFs for the Doppler signal, Fig. 4.3(c), are subject to a similar interpretation.

The signal is characterized by lower frequencies and smooth regions which can be efficiently
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Figure 4.2: Distribution of wavelet coefficients at the first decomposition level, for signals:
Blocks (a), Bumps (b), Doppler (c), HeaviSine (d), Piece-Polynomial (e) and Piece-
Regular (f). Gaussian noise with σε = 5% of total signal magnitude was added to each
signal
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Figure 4.3: Distribution of wavelet coefficients at the last decomposition level, for signals:
Blocks (a), Bumps (b), Doppler (c), HeaviSine (d), Piece-Polynomial (e) and Piece-
Regular (f). Gaussian noise with σε = 5% of total signal magnitude was added to each
signal
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4.1 Distribution of Wavelet Coefficients

reconstructed using longer and smoother wavelet basis. The shorter basis and, in the

extreme case, the Haar wavelet, do not represent the optimal basis choice. In this case,

the PDF for the Bior4.4 wavelet basis is decisively narrower and with a higher peak than

the other two basis. It is followed by the Bior2.2 and finally the Haar wavelet.

The established connection between the suitability of a given wavelet basis for a

specific signal and the distribution of wavelet coefficients at the last decomposition level,

gives way to the assumption that the same connection should exist between the coefficients

distribution and efficiency of the adaptive algorithm of the ICI-EPL denoising scheme.

For correctly chosen parameter Γ value, the transform will adapt well to the local signal

properties, and result in a higher quality reconstructed signal. The assumption is that

the PDF of the wavelet coefficients at the last decomposition level takes narrower shape

and have higher peak than in the case of poorly chosen Γ, for which the transform is

unable to adapt well. Fundamentally, the distribution of wavelet coefficients at the last

decomposition level provides a coarse measure of the quality of adaptation.

Modeling the Distribution of Wavelet Coefficients at the Last Decomposition

Level

It was shown in Fig. 4.2 that PDFs of wavelet coefficients at the first decomposition level

are very close to the Gaussian PDF. To describe the PDF at the last decomposition level,

the Generalized Gaussian PDF will be used:

p(x) =a exp(−|bx|c),

a =
bc

2Γ(1
c )
,

b =
1

σχ

√

Γ(3
c )

Γ(1
c )
,

(4.4)

where Γ() is the Gamma function (Abramowitz and Stegun, 1964) and should not be

confused with the ICI parameter Γ. Parameter c is the distributions shape parameter,

for which there are two special cases. For c = 2.0, the GGD takes shape of the Gaussian

PDF, while for the c = 1.0, the GGD takes shape of the Laplacian PDF. As the shape

parameter is further lowered, the resulting GGD becomes narrower, while its peak gets

higher, Fig. 4.4.

As already noted, wavelet coefficients distribution is neither unique nor constant, so

there is no single value of the shape parameter c which would provide the optimal model

for any given actual PDF. Instead, different parameter values are used in different cases

and usage scenarios.
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Figure 4.4: Generalized Gaussian distribution for different values of the shape parameter
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4.1.2 Influence of Noise

Noise Level

At low noise levels, wavelet transforms can very efficiently remove noise from a given

noisy signal. If appropriate wavelet basis is chosen, even very fine original signal details

can be reconstructed. As the noise level rises, the original signal properties can become

substantially masked by the noise. Even if the chosen wavelet basis provides excellent

fit to the local signal properties of a clean signal, the ambiguity introduced by the noise,

results in a lower transform performance. Should our hypothesis stand, it will also result

in a distribution of wavelet coefficients which can be modeled by a GGD with progressively

larger shape parameter values, as the noise level rise. This is true for all test signals, as

shown in Fig. 4.5. Again, the most appropriate of the three wavelet basis was chosen

for each signal. Gaussian noise with standard deviation σε ∈ {5%, 10%, 15%} of total

signal magnitude was added to the test signals. As there are many factors impacting

the coefficients distribution, influence of noise level differs between the signals. Still, it is

evident that increased noise levels lead to a wavelet coefficients distribution which can be

modeled using a GGD with higher shape parameter values.

Noise Type

To predict influence of noise type on distribution of wavelet coefficients at the last

decomposition level, we should briefly analyze W(ε(x)), i.e., wavelet transform of the

noise component of z(x). In this case, input signal to the transform is pure noise, and

each signal sample can be considered to be a realization of an independent and identically

distributed random variable (IID). Both, the coarse signal approximation and the wavelet

coefficients are simple weighted sums of the IIDs. According to the central limit theorem,

whichever was the initial noise distribution, given adequate sample size, the sum of the

IIDs will always converge to a Gaussian distribution. Therefore, we do not expect the noise
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Figure 4.5: Distribution of wavelet coefficients at the last decomposition level for signals
with additive Gaussian noise with standard deviation σε ∈ {5%, 10%, 15%} of the total
signal magnitude. Signals used are: Blocks (a), Bumps (b), Doppler (c), HeaviSine (d),
Piece-Polynomial (e) and Piece-Regular (f)
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4.2 Considering Magnitudes of Wavelet Coefficients

type to have significant impact on the coefficients distribution at the last decomposition

level. This can be confirmed by analyzing Fig. 4.6. Gaussian, Poisson and Laplacian

noise, with σε = 10% of total signal magnitude were added to the test signals. It can be

seen that, in general, the PDFs share very similar shape, although the Gaussian noise

corruption tends to result in a slightly wider PDF curve.

4.1.3 Number of Decomposition Levels

In the foregoing discussions we were repeatedly referring to the wavelet transforms last

decomposition level, without deciding how many levels are actually to be used. Optimal

number of decomposition levels varies, based on a signal and noise content of z(x). Larger

than optimal number of levels do not bring further improvements in denoising efficiency

or even lowers it slightly, but also incur high cost in terms of unnecessary computational

complexity. Since our discrete time test signals are considered to be samples of their

respective continuous time functions, sampled at different sampling frequencies, number

of decomposition levels used will be a function of signal length, as per the Tab. 4.1.

Table 4.1: Number of decomposition levels used, based on the test signal length
Signal length 256 512 1024 2048 4096

Total decomposition levels 3 4 5 6 7

Higher number of wavelet decomposition levels, for signals sampled at higher sampling

frequencies, allow for finer separation of noise and original signal properties and a more

compact signal representation in the transform domain. In line with that, we expect that

the wavelet coefficient PDFs will be narrower and with a higher peak, than in the case of

test signals sampled at lower frequencies. The effect is shown in Fig. 4.7.

4.2 Considering Magnitudes of Wavelet Coefficients

In the lifting scheme realization of wavelet transforms (Fig. 2.1), wavelet coefficients

represent prediction errors, i.e., the difference between the real values of samples from

one signal phase, and prediction of their values, based on the samples from the other

signal phase. It is possible to evaluate the performance of the adaptation algorithm, by

analyzing magnitudes of the coefficients. In general, if the ICI algorithm adapts the

predictor to the signal well enough, the prediction errors are expected to stay small. The

small errors are assumed to account for noise and allow for efficient signal denoising using

the wavelet thresholding. The fact was used in (Claypoole, Baraniuk, and Nowak, 1998).

Claypoole et al. proposed an adaptive algorithm in which wavelet basis resulting in the

smallest prediction error was chosen at each signal point.

In case of the ICI-EPL there is an additional factor to consider. As the transform

tries to avoid edges in a signal, not only that most of the prediction errors should stay

small, but, since many edges are retained in the coarse signal approximation, there should
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Figure 4.6: Distribution of wavelet coefficients at the last decomposition level, for signals:
Blocks (a), Bumps (b), Doppler (c), HeaviSine (d), Piece-Polynomial (e) and Piece-
Regular (f). PDFs for Gaussian, Poisson and Laplacian additive noise with σε = 10% of
total signal magnitude are shown
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Figure 4.7: Distribution of wavelet coefficients at the last decomposition level, for various
signal lengths: Blocks (a), Bumps (b), Doppler (c), HeaviSine (d), Piece-Polynomial (e)
and Piece-Regular (f). Gaussian noise with σε = 5% of total signal magnitude was added
to each signal
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4.2 Considering Magnitudes of Wavelet Coefficients

also exist minimal number of very large wavelet coefficients. The difference between the

conventional wavelet basis and optimal/sub-optimal ICI-EPL is shown in Fig. 4.8.

The figure shows wavelet coefficients at the last decomposition level for the Blocks

signal, when using the Haar and the ICI-EPL wavelet transforms. The coefficients for

the Haar wavelet transform contain a number of very large coefficients which are missing

in the ICI-EPL case with optimal Γ parameter value (Γo). Even with a poorly chosen Γ

value (Fig. 4.8 (c) and (d)), number of large coefficients is still smaller than in the Haar

case.
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Figure 4.8: Wavelet coefficients at the last decomposition level for Blocks signal. Haar
wavelet (a), ICI-EPL with optimal Γ parameter value, Γo (b), ICI-EPL with Γ < Γo (c)
and ICI-EPL with Γ > Γo (d)

As a measure of adaptivity performance, that is based on the existence of very large

wavelet coefficients, a simple sum of squared errors (i.e. wavelet coefficients) at the last

decomposition level can be used:

SSEΓ =
∑

dN (Γ)2, (4.5)
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where N is the total number of decomposition levels. We expect that the transform which

better adapts to a signal will yield a lower SSEΓ values, than the one with less efficient

adaptation.

Fig. 4.9 shows normalized values of the SSEΓ measure across a range of the parameter

Γ values. Optimal Γ value, Γo, is depicted by a vertical dotted line. Signal length is 1024

samples and additive Gaussian noise with σε = 5% of total signal magnitude was added

to each signal. Measure was taken at the last decomposition level. We can see that for

the Blocks, HeaviSine and Piece-polynomial signals, the measure has minimum close to

the Γo. For the Bumps signal, the result is still reasonable but in case of the Doppler or

the Piece-regular signals, the Γ values suggested by the measure are unacceptable.

Fig. 4.10 shows normalized values for the same signal and length, but with the additive

Gaussian noise with σε = 15% of total signal magnitude. In this case, results are much

better and more consistent.

Simulations showed that, barring the class of a signal, the measure efficiency roughly

depends on two factors: the noise level and the signal length. Generally, the efficiency

improves as the noise level or signal length increases, while it declines for low noise levels

or signals sampled at lower frequencies.

The SSEΓ measure showed definite connection with the efficiency of the adaptive

algorithm. In some cases it came close to pinpointing the optimal Γ parameter value but,

unfortunately, it does not provide consistent and reliable enough results across the range

of signal classes, lengths and noise levels. As such, it cannot be used as a standalone

method for the parameter Γ value selection. However, it can be used to improve the

efficiency of the method based on the distribution of wavelet coefficients, which will be

proposed in the next section.

4.3 Selecting the Γ Parameter

We made a hypothesis, establishing a link between the distribution of wavelet coefficients

at the last decomposition level, and the suitability of a given wavelet basis for the signal to

be analyzed. After thorough examination of the coefficients distribution, and changes in

the distribution caused by each of the influencing factors, we now consider the hypothesis

to be valid. To summarize, the distribution of wavelet coefficients which is narrower and

has a higher peak, points to a wavelet basis that better fits the signal. Such distributions

can be modeled with GGDs with smaller shape parameter values, than in the case of

choosing less appropriate wavelet basis.

The findings allow us to devise and formalize two methods for automated selection of

the ICI-EPL parameter Γ. One method decides the parameter value by simple comparison

of wavelet coefficient distributions peakedness, as quantified by the kurtosis measure.

The other one compares the empirical distribution of wavelet coefficients at the last

decomposition level to a hypothetical GGD the coefficients would come close to taking,
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Figure 4.9: SSEΓ of wavelet coefficients at the last decomposition level, for: Blocks
(a), Bumps (b), Doppler (c), HeaviSine (d), Piece-Polynomial (e) and Piece-Regular (f)
signals. Gaussian noise with σε = 5% of total signal magnitude was added to each signal
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Figure 4.10: SSEΓ of wavelet coefficients at the last decomposition level, for: Blocks
(a), Bumps (b), Doppler (c), HeaviSine (d), Piece-Polynomial (e) and Piece-Regular (f)
signals. Gaussian noise with σε = 15% of total signal magnitude was added to each signal
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in case there was a near-perfect fit of a wavelet basis to a given signal.

4.3.1 Comparing Distribution Peakedness

To quantify the peakedness of a distribution, a kurtosis measure is used:

k =
E(x− µ)4

σ4
, (4.6)

where µ is the mean of x, σ is the standard deviation of x, and E(t) represents the

expected value of the quantity t. In line with the previous discussions, we expect the

wavelet coefficient distributions for correctly chosen Γ values to be more leptokurtic than

in the case of sub-optimal parameter Γ values.

Distribution kurtosis provides us with information on compactness of noisy signal,

z(x), representation in the transform domain. Although influence of noise on coefficients

distribution is diminishing, as we go towards higher decomposition levels, it still exists. If

original signal, y(x), was available, we could check the coefficients distribution kurtosis to

see how well the transform adapts to the signal itself. Similar effect can be achieved by

calculating kurtosis of thresholded wavelet coefficients . By choosing the threshold level

of, for instance:

t = 3σε, (4.7)

we can eliminate most of the noise influence. Inevitably, some of the original signal

information is also going to be missing in the thresholded coefficients, but what remains

should be enough to judge the adaptive algorithm efficiency.

The parameter Γ value selection method based on the distribution kurtosis is mostly

straightforward. First, we must decompose a noisy signal, using the ICI-EPL. Decompo-

sition has to be performed for a full range of reasonable parameter Γ values. Matrices

of both, the original and the thresholded, wavelet coefficients distribution kurtosis are

populated by calculating the kurtosis at each decomposition level and for each value of

the parameter Γ:

k(Γ, j) = k(d(Γ, j)),

kt(Γ, j) = k(dt(Γ, j)),
(4.8)

where d(Γ, j) are wavelet coefficients at level j of the transform, using a specific parameter

Γ value. Thresholded coefficients and respective distribution kurtosis are denoted by the

index t.

By finding the maximum kurtosis, max(k), we find a specific case for which a noisy

signal can be most compactly represented in the transform domain. Noting the decom-

position level at which the maximum is achieved, jm, we can now analyze the kt and

conclude the Γ value selection method. The Γ value shall be selected as a value for which

the kt, at level jm, has a maximum, i.e., for which the original signal is most compactly
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4.3 Selecting the Γ Parameter

represented in the transform domain, at the level jm. The value is denoted as Γ∗

k.

Most often, the max(k) is found on levels j >= 3. However, in some cases, mostly for

short signals, it can also be found at lower decomposition levels, j ∈ {1, 2}. Regardless of

the original signal type, it is difficult to expect that its impact on the coefficients distribu-

tion at these low levels is large enough to represent a reliable measure of the adaptive

algorithm performance. To improve the selection method efficiency in such scenarios, we

can slightly modify it, such that the max(k) is only searched for at decomposition levels

j >= 3. We denote the Γ value obtained by using the modified selection method as Γ∗

km.

4.3.2 Comparing the Empirical and Hypothetical Distributions

Second method for the parameter Γ value selection is based on a modeling of wavelet

coefficients distribution at the last decomposition level. Should there be a perfect fit of a

chosen wavelet basis to a signal being decomposed, the distribution of wavelet coefficients

at the last decomposition level would be very narrow and have a high peak. We can

model it with a GGD with a small shape parameter c. Our strategy is to find a Γ value

for which the empirical coefficients distribution is most similar to that hypothetical GGD.

In order to compare the distributions, we first have to perform decomposition of a given

signal, using the ICI-EPL transform. A full range of reasonable Γ parameter values is

tried, and wavelet coefficient at the last decomposition level (N) are recorded:

dN (Γ). (4.9)

The empirical distribution of wavelet coefficients at the last decomposition level, denoted

as WCD(dN (Γ)), is tested for a goodness-of-fit against the appropriate hypothetical

GGD:

t(WCD(dN (Γ)), GGD(c, σ2)), (4.10)

where t is the test statistic. According to observations in the first section of this chapter,

actual shape parameter c value, which defines the hypothetical GGD, is mostly influenced

by a signal length. Appropriate values for each of the signal lengths (in effect, each of the

signal sampling frequencies) are found empirically.

By analyzing the parameter Γ selection method performance graphs, shown in Ap-

pendix C, we can see that the optimal performance is achieved for a limited range of

shape parameter values. Appropriate value is chosen as a value which, approximately,

lies in the middle of a given range. Chosen shape parameter values, shown in Tab. 4.2,

should work well for a variety of different signal classes. If only a specific class of signals

is targeted, they could also be further adjusted or optimized.

To improve efficiency of the Γ parameter value selection, the test statistic is multiplied

by the sum of squared wavelet coefficients at the last decomposition level (4.5), resulting

70



4.3 Selecting the Γ Parameter

Table 4.2: Appropriate GGD shape parameter values, based on a signal length (sampling
frequency)

Signal length 256 512 1024 2048 4096

GGD shape parameter value 0.5 0.4 0.35 0.3 0.25

in the final score for the given Γ value:

T (Γ) = t(WCD(dN (Γ)), GGD(c, σ2)) · SSEΓ. (4.11)

The final value of the Γ parameter (Γ∗

GGD) shall be selected as the value for which

the score function has a minimum:

T (Γ∗

GGD) = min(T (Γ)). (4.12)

In rare occasions, when the score function has minimum for more than one Γ parameter

value, we will opt to choose the smallest value.

Testing the Goodness-of-Fit

There are many statistical tests for fitting of data to a distribution (Thode, 2002). Each of

the tests has certain advantages and disadvantages. Neither of them can be considered to

be the most powerful one, as each of the tests, in certain cases, outperforms the others. We

will evaluate the Γ selection method performance when using three commonly known tests:

the Kolmogorov-Smirnov test, the Pearson chi-squared test and the Cramer-von-Mises

criterion.

The Kolmogorov-Smirnov (KS) test (Chakravarti, Laha, and Roy, 1967) provides

a measure of equality of two continuous probability distributions. It is used to decide

whether a sample comes from a population with a specific, reference, distribution. The KS

statistic quantifies the difference between the actual distribution function of the sample,

and the reference distributions cumulative distribution function (Thas and Ottoy, 2002).

The null hypothesis is that the reference distributions fits the data, i.e., the sample is

drawn from a reference distribution. The KS test statistic is defined as:

D = max
1<i<J

|Fn(i) − F (i)|, (4.13)

where J is the sample length, Fn is the sample empirical distribution function (Kaplan-

Meier estimate), and F is the cumulative distribution function of a reference distribution.

In case the sample is drawn from the reference distribution, the D-statistic almost surely

converges to 0. The D-statistic is compared to the critical values of the Kolmogorov

distribution to either accept or reject the null hypothesis. In our case, we are not concerned

if the null hypothesis is accepted or rejected (in fact, it would probably be rejected most

of the time). We are only interested in the test statistics value. It will allow us to compare
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how close each of the empirical wavelet coefficient distributions (originating from the

ICI-EPL transforms, using different Γ values), are close to our hypothetical (reference)

distribution. As it is not necessary for the proposed Γ selection method, critical values or

their determination is not discussed further.

The Pearson chi-square (χ2) test (Snedecor and Cochran, 1967),(Thas and Ottoy,

2002) is another well known goodness-of-fit test. Unlike the KS test, the χ2 test works

on discrete distributions. This should not be considered as a limitation of the test since

the continuous data can also be analyzed. Prior to using the test, it is necessary to bin

the data, for instance, by calculating a histogram. Although not a limitation, it could be

considered as a disadvantage, since the test statistic can change significantly, based on the

way the data is binned. The null hypothesis is that the observed probability distribution

do not differ from a specific theoretical distribution. To test the hypothesis, the data is

divided into M bins, and the χ2 test statistic is calculated:

χ2 =
M
∑

i=1

(Oi − Ei)
2

Ei
, (4.14)

where Oi is the observed frequency for the bin i and Ei is a theoretical frequency asserted

by the null hypothesis. The statistic can also be written using the probability density

functions, resulting in the following form:

χ2 = M

M
∑

i=1

(fn(xi) − f(xi))
2

f(xi)
, (4.15)

where fn and f are, respectively, probability density functions of the sample data and of

the theoretical distribution asserted by the null hypothesis. There is no optimal number

of bins the data should be divided into, however, the result should be similar for any

reasonable number of bins. One common approach is to tie the bin width to the sample

standard deviation. This way, each bin, with the exception of the lower and upper ones,

has the same width: aσ. The exact value for the a has to be chosen based on a distribution

of a given sample.

The last test to be considered is the Cramer-von-Mises (CM) test. It is not as well

known as the KS or the χ2 tests but is often cited as an alternative to the KS test. It is

used to judge how well the empirical distribution function fits to the reference theoretical

cumulative distribution function. Again, the null hypothesis is that the sample comes

from the reference theoretical distribution. The Cramer-von-Mises ω2 criterion is defined

as:

ω2 =

∫

∞

−∞

[Fn(x) − F (x)]2dF (x), (4.16)

where Fn(x) is the empirical distribution function of the sample and F (x) is the reference
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distribution function. From the criterion, follows the CM test (Anderson, 1962):

T = Jω2 =
1

12J
+

J
∑

i=1

[

2i− 1

2J
− F (xi)

]2

, (4.17)

where J is the sample size, and xi are observed values, sorted in increasing order.

In our case, we will be testing how well the wavelet coefficients at the last decomposition

level fit the generalized Gaussian distribution (GGD) with a chosen shape parameter c.

So, in each of the tests, the reference distribution will be the GGD and the empirical

distribution will be the actual coefficients distribution. After substitution, the final

expressions for the three test statistics are given by:

DΓ,c = max
1<i<J

|FdN (Γ) − FGGDc |,

χ2
Γ,c = M

M
∑

i=1

(fdN (Γ)(xi) − fGGDc(xi))
2

fGGDc(xi)
,

TΓ,c = Jω2 =
1

12J
+

J
∑

i=1

[

2i− 1

2J
− FGGDc(xi)

]2

,

(4.18)

where FdN (Γ) and fdN (Γ) are, respectively, empirical distribution function and the probabil-

ity density function of the wavelet coefficients at the last decomposition level, while FGGDc

and fGGDc are, respectively, the cumulative distribution function and the probability

density function of a GGD with the shape parameter c.

Although the tests are, generally, used to decide if a given sample is drawn from the

reference distribution, this is not the case in our Γ selection method. As already noted,

we do not need confirmation that the sample is drawn from a chosen GGD. We are only

concerned of how close the actual distribution comes to the GGD. The closer it comes to,

the more efficient the adaptation algorithm is expected to be. The three tests allow for

the quantification of the “closeness”.

4.4 Results and Discussion

To investigate efficiency of the proposed methods, and decide whether they can be

considered to be generally applicable, we carry out multiple simulations. All three

major factors directly influencing the method outcome are taken into account: the

signal properties, the signal length and the level of additive Gaussian noise. To test the

influence of signal properties, 6 different classes of signals are used – the same 1-D signals

considered throughout the chapter: Blocks, Bumps, Doppler, HeaviSine, Piece-polynomial

and Piece-Regular. Signal lengths (corresponding to different sampling frequencies), are

{256, 512, 1024, 2048, 4096}. The effect of noise level is inspected by superimposing the

white Gaussian noise, with standard deviation σε ∈ {0.05, 0.10, 0.15, 0.20} of total signal

magnitude. Values of the Γ parameter are in the [0.5, 5] range, with increments of 0.1. In
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order to remove the influence of particularities of a specific noise realization, experiments

were performed with 10 different realizations and results were averaged.

Although both proposed methods try to determine the optimal Γ parameter value,

their efficiency, cannot be evaluated by examining how close the selected value comes to

the Γo. It is easy to comprehend this by looking at Fig. 4.11, in which root mean square

errors (RMSE) of two denoised signals are plotted against the Γ values. In case of the

Doppler signal (Fig. 4.11 (a)), the optimal Γ parameter value is 3.6 (as denoted by the

vertical dashed line). However, the Γ −RMSE curve shows clearly that almost the same

denoising efficiency is achieved for a very wide range of the Γ values – [2.6, 5]. For instance,

had the proposed method selected 5 as the Γ value it would have missed the optimal

value by more than a half of the total range of Γ values. Regardless of the seemingly

very poor value selection, the final result is an almost optimal denoising performance. On

the other hand, in case of the Piece-Polynomial signal (Fig. 4.11 (b)), the Γ −RMSE

curve has a distinct minimum at Γ = 1.1. Had the proposed method selected 1.5 for the

Γ value, it would have missed the Γo for only 4 increments. If one was to evaluate the

method efficiency based on the closeness of the selected Γ parameter value to the actual

optimal value, the conclusion would be drawn that the method performed better in the

latter case. It would, obviously, be wrong conclusion as the denoising performance would

have been degraded by ≈ 27%.
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Figure 4.11: Dependency of RMSE of denoised signals on the Γ parameter value, for:
Doppler (a) and Piece-Polynomial (b) signals. Gaussian noise with σε = 5% of total
signal magnitude was added to each signal. Optimal Γ value is denoted by the vertical
dashed line

The closeness of the selected Γ parameter value to the optimal value could be interesting

for gaining a very rough idea of the method performance, but for the correct evaluation

of its efficiency, we have to consider the final result, i.e. the denoised signals. Quality of

denoised signals is expressed in the terms of the root mean square error (RMSE). The

ultimate goal is to select the exact optimal Γ parameter value, resulting in denoised signal
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with the smallest RMSE. Unfortunately, it will most often not be the case. To evaluate

the Γ selection method efficiency, we have to compare the RMSEΓ∗ to a RMSEΓo .

Tables containing RMSE values for all the test cases can be found in Appendix B.

4.4.1 Efficiency of the Kurtosis Based Selection Method

The efficiency of the kurtosis based parameter Γ value selection is depicted in Fig. 4.12.

The RMSEΓ∗
km
/RMSEΓo ratios for each of the test cases are shown as points in Fig.

4.12 (a), while histogram of ratios is shown in Fig. 4.12 (b). We can see that in many of

the test cases the automated Γ value selection performance is reasonable. In about half of

the cases there is < 5% increase in RMSE and in about 70% of the test cases the increase

is < 10%. Unfortunately, in the remaining test scenarios there are many unacceptable

results, which cause even more than a 50% increase in RMSE.
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Figure 4.12: RMSEΓ∗
km
/RMSEΓo ratios for each of the test cases (a) and histogram of

ratios (b)

Results in Fig. 4.12 assume that the max(k) is searched for on decomposition levels

j >= 3. In Fig. 4.13, for reference only, we illustrate small improvements achieved by this

minor modification. Only a subset of test cases, representing shorter signals, is shown, as

there is no difference in method efficiency for longer signals.

4.4.2 Efficiency of the Distribution Model Based Selection Method

Since this is much more complex method, we will examine it more thoroughly. As in the

previous case, the RMSEΓ∗
GGD

/RMSEΓo ratio will be the main efficiency measure. The

closer we get to 1 in a given test case, the more efficient the method is. Before going into

greater details, let us first inspect the general improvements achieved by multiplying the

goodness-of-fit test statistic with the SSEΓ.
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Figure 4.13: Improvements in selection method efficiency in case max(k) is searched for
on levels j >= 3

Multiplying the Test Statistic by the SSEΓ

To illustrate the improvements, we show three score function plots. Fig. 4.14 shows

plots of the KS test score function for the usual test signals. The function values are

RMSEΓ∗
GGD

/RMSEΓo ratios, in which Γ∗

GGD is found using the proposed, distribution

model based, method for the parameter Γ value selection. Signal lengths are 1024 samples,

and Gaussian white noise with σε = 5% of total signal magnitude was added to each

signal. Fig. 4.15 shows the same type of plot, but this time the χ2 test statistic was used.

Signal length was also changed and it is now 256 samples. Gaussian noise with σε = 15%

of total signal magnitude was added to each signal. Finally, Fig. 4.16 shows the plot for

the CM test statistic. Signal length is 4096 samples and Gaussian noise with σε = 20% of

total signal magnitude was added to each signal.

The figures were not shown to demonstrate or evaluate the efficiency of the selection

algorithm, so the actual values of score functions are currently irrelevant. What is

important, is the general difference between the test statistic score function and the SSEΓ

improved score function. Different goodness-of-fit test was used for each figure and a

wide range of signal lengths and levels of additive Gaussian white noise were covered. It

can be clearly seen that in all those situations the score functions improved by the SSEΓ

are consistently at or below the pure test statistic score functions. It confirms that the

parameter Γ selection method makes better decision if the SSEΓ is taken into account

along with the distribution of wavelet coefficients.

The SSEΓ is a poor criterion to be used as a complete Γ selection method, however,

when used in conjunction with the findings about the distribution of wavelet coefficients

at the last decomposition level, it successfully and significantly improves the, distribution

based, selection methods efficiency and reliability. Even in the worst case scenario of

application of the SSEΓ measure, portrayed in Fig. 4.9 (c) and (f), if appropriate GGD

shape parameter c is chosen, multiplication of the test statistic by the SSEΓ will not have

a detrimental effect to the overall efficiency of the selection method, as can be seen in Fig.

76



4.4 Results and Discussion

0 0.2 0.4 0.6 0.8 1
1

1.2

1.4

1.6

1.8

2

2.2

2.4

GGD shape parameter c

R
M

S
E

Γ
*/
m

in
(R

M
S

E
)

 

 

KS score

SSE improved KS score

(a)

0 0.2 0.4 0.6 0.8 1

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

GGD shape parameter c

R
M

S
E

Γ
*/
m

in
(R

M
S

E
)

 

 

KS score

SSE improved KS score

(b)

0 0.2 0.4 0.6 0.8 1
1

1.2

1.4

1.6

1.8

2

2.2

2.4

GGD shape parameter c

R
M

S
E

Γ
*/
m

in
(R

M
S

E
)

 

 

KS score

SSE improved KS score

(c)

0 0.2 0.4 0.6 0.8 1
0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

GGD shape parameter c

R
M

S
E

Γ
*/
m

in
(R

M
S

E
)

 

 

KS score

SSE improved KS score

(d)

0 0.2 0.4 0.6 0.8 1
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

GGD shape parameter c

R
M

S
E

Γ
*/
m

in
(R

M
S

E
)

 

 

KS score

SSE improved KS score

(e)

0 0.2 0.4 0.6 0.8 1
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

GGD shape parameter c

R
M

S
E

Γ
*/
m

in
(R

M
S

E
)

 

 

KS score

SSE improved KS score

(f)

Figure 4.14: Score functions for the KS test statistic and the KS test statistic multiplied
by the SSEΓ, for: Blocks (a), Bumps (b), Doppler (c), HeaviSine (d), Piece-Polynomial
(e) and Piece-Regular (f) signals. Signal length is 1024 samples. Gaussian noise with
σε = 5% of total signal magnitude was added to each signal
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Figure 4.15: Score functions for the χ2 test statistic and the χ2 test statistic multiplied by
the SSEΓ, for: Blocks (a), Bumps (b), Doppler (c), HeaviSine (d), Piece-Polynomial (e)
and Piece-Regular (f) signals. Signal length is 256 samples. Gaussian noise with σε = 15%
of total signal magnitude was added to each signal
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Figure 4.16: Score functions for the CM test statistic and the CM test statistic multiplied
by the SSEΓ, for: Blocks (a), Bumps (b), Doppler (c), HeaviSine (d), Piece-Polynomial
(e) and Piece-Regular (f) signals. Signal length is 4096 samples. Gaussian noise with
σε = 20% of total signal magnitude was added to each signal
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4.14 (c) and (f).

Comparing the Three Goodness-of-Fit Tests

As shown above, the efficiency of the method, is improved and made more stable and

reliable by multiplying the test statistic by the SSEΓ. We now compare the efficiency of

the selection method for all three goodness-of-fit tests – the Kolmogorov-Smirnov (KS),

the χ2 (CS) and the Cramer-von-Mises criterion (CM). For the purpose, we show plots of

the average RMSEΓ∗
GGD

/RMSEΓo ratio achieved for a specific test, plotted against the

full range of tested GGD shape parameter c values.

Only three plots are shown here for illustration purposes. They are chosen as an

example of a near-best, an average and a near-worst case scenarios. The three could

be considered to mostly represent the overall efficiency that can be expected from the

proposed selection method. Plots for other signal lengths and noise levels tested, can be

found in Appendix C.

Fig. 4.17 depicts efficiency of the selection method for 512 samples long signals,

corrupted by additive white Gaussian noise with σε = 15% of total signal magnitude. Fig.

4.18 depicts the performance for signals with the same level of additive noise, but 4096

samples long. It can be seen that, for shorter signals, the method performed exceptionally

well. On average, denoised Blocks and Piece-Polynomial signals, have less than 10%

higher RMSE than for the optimal Γ value, while all the other test signals were below

the 5% difference. The performance is similar in the case of longer signals, but larger

discrepancies in performance of the Blocks and Piece-Polynomial signals, and the other

signals can be observed. This is especially true for the Piece-Polynomial signal, for which,

on average, achieved RMSE is more than 30% higher then the average optimal RMSE.

The other signals are still bellow the 5% difference.

Although, in most cases, the performance for the Blocks and the Piece-Polynomial

signal is lower than a performance for other signals, a different results can be found in

the third example, Fig. 4.19. Depending on the goodness-of-fit test used, the average

performance for the Blocks signal can get near the 5% mark, while the performance for

the Piece-Polynomial signal is near the 5% mark, regardless of the test used. On the

other hand, performance for the Piece-Regular signal is worse than in the previous two

examples and comes, depending on the test being used between 10% and 20% worse than

in the optimal case.

To compare performance of the proposed parameter Γ value selection method, based

on the type of goodness-of-fit test being used, it is helpful to analyze the plots of the score

functions, which can be found in Appendix C. To draw a conclusion on the preference of a

particular test, two things have to be considered. One is the actual performance, i.e. the

exact RMSEΓ∗
GGD

/RMSEΓo values achieved. The other could be classified as a stability or

a reliability. For instance, if both of the methods achieved RMSEΓ∗
GGD

/RMSEΓo ≈ 10%,

the preferred method would be the one that shows similar performance for a larger range
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Figure 4.17: Performance of the Γ selection method for 512 samples long signals, corrupted
by additive white Gaussian noise with σε = 15% of total signal magnitude. Score functions
are averaged over 10 noise realizations and multiplied by the SSEΓ. Appropriate GGD
shape parameter value is denoted by the vertical line. Test signals: Blocks (a), Bumps
(b), Doppler (c), HeaviSine (d), Piece-Polynomial (e) and Piece-Regular (f)
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Figure 4.18: Performance of the Γ selection method for 4096 samples long signals, corrupted
by additive white Gaussian noise with σε = 15% of total signal magnitude. Score functions
are averaged over 10 noise realizations and multiplied by the SSEΓ. Appropriate GGD
shape parameter value is denoted by the vertical line. Test signals: Blocks (a), Bumps
(b), Doppler (c), HeaviSine (d), Piece-Polynomial (e) and Piece-Regular (f)
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Figure 4.19: Performance of the Γ selection method for 512 samples long signals, corrupted
by additive white Gaussian noise with σε = 5% of total signal magnitude. Score functions
are averaged over 10 noise realizations and multiplied by the SSEΓ. Appropriate GGD
shape parameter value is denoted by the vertical line. Test signals: Blocks (a), Bumps
(b), Doppler (c), HeaviSine (d), Piece-Polynomial (e) and Piece-Regular (f)
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of the GGD shape parameter c value. In case the 10% ratio was confined to only a few

parameter c values, there would be a relatively high probability of significant performance

deterioration, after change in any of the influencing factors, described earlier in this

chapter, occurs. Thus, we could consider the method to be less stable and provide less

reliable results than in the former case.

After analyzing the score functions, we can conclude that the KS score functions are

less dependent on the GGD shape parameter c value, than the other two score functions.

They also, often, have their minimum extended over a wider range of shape parameter

values. In cases in which the RMSEΓ∗
GGD

/RMSEΓo ratio notably rises with the change

in c, the rise is often decisively less steep and significant than for the other two tests.

The actual performance of the selection method for the three goodness-of-fit tests can

be compared by analyzing Fig. 4.20. For each of the tests, plots of the relative performance

(RMSEΓ∗
GGD

/RMSEΓo) for all the test cases are shown, along with the histogram of

ratios. Histograms clearly indicate that the KS goodness-of-fit test is preferred over the

χ2 and the CM tests. It shows that most of the ratios are concentrated below the 10%

mark, and the smallest number of test cases showed unacceptable increase of the RMSE.

Considering that the Kolmogorov-Smirnov test showed advantages over the other two

tests, both in terms of the actual performance and the results stability, we can draw the

conclusion that it is the preferred goodness-of-fit test for the proposed parameter Γ value

selection method.

4.5 Conclusion

It was shown that the ICI-EPL adaptation algorithm can significantly improve signal

denoising performance, when compared to conventional wavelet transforms. Still, the

algorithm efficiency is heavily dependent on the proper choice of the Γ parameter value. As

it is not possible to calculate the value analytically, we proposed two empirical statistical

methods for the value selection, from a predefined set of possible values. The methods are

based on the analysis of statistical distribution of wavelet coefficients. We showed that if

a set of wavelet basis is given, there is a high probability that the basis which is the most

suitable for a signal being denoised, will result in a distribution of wavelet coefficients at

the last decomposition level which is the narrowest and has the highest peak.

The first selection method is only concerned about the distribution peakedness. The

Γ value selection is based on expectation that the distribution of coefficients will be more

leptokurtic in case the chosen wavelet basis fits well to a local signal properties, than

in the case of an improperly chosen wavelet basis. Although in many test scenarios the

expectation was fulfilled and successfully used for the Γ value selection, there were still

too many unacceptable results, so we find the method lacking in reliability and efficiency.

The other proposed method is based on modeling the wavelet coefficients distribution

at the last decomposition level, using a generalized Gaussian distribution (GGD). The
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Figure 4.20: RMSEΓ∗
GGD

/RMSEΓo ratios for each of the test cases, if KS (a), χ2 (c) or

CM (e) goodness-of-fit tests were used. Histogram of ratios for the KS (b), χ2 (d) and
CM (f) tests
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strategy for the Γ parameter value selection is to decompose the signal using all available

Γ values, and record all the distributions. Each of the distributions is then tested to

see how well it fits the GGD, the wavelet coefficients would come close to taking, in the

hypothetical case of a perfect fit of the wavelet basis to a signal. Distribution which best

fits the GGD is considered to come from the most preferable transform, so the respective

Γ parameter value is selected as the most appropriate one.

Three well known methods were used for the goodness-of-fit testing – the Kolmogorov-

Smirnov test, the Pearson chi-squared test and the Cramer-von-Mises criterion. In most

cases the three tests yielded similar results. When there was greater difference between

them, none of the tests proved to yield the best results in each case, but the Kolmogorov-

Smirnov test, generally, provided more stable and reliable results than the other two and

is, therefore, considered to be the preferred test for the proposed method.

The method was extensively tested on a range of different signal classes, lengths

(sampling frequencies) and noise levels. Its efficiency mostly depends on the class of

signals being decomposed, while signal length and noise level do not have major influence.

The best results are achieved for the Doppler signal, for which the average root mean

square error (RMSE) degradation is < 5%, when compared to the optimal Γ parameter

value case. Typically, it is in the [2%, 3%] range. In case of the Blocks or Piece-Regular

signals the average performance degradation is about 10%, but in a few individual cases

it can even reach up to > 30%.

We could conclude that, in general, the proposed method performs reasonably well

and is suitable for the automated selection of the Γ parameter value, as a part of the

ICI-EPL based denoising algorithm. Still, further improvements are possible in this area

which would further improve the method efficiency and reliability.
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Chapter 5

Application of ICI–EPL to

Fluoroscopic Image Sequences

Denoising

Conventional surgery procedures assume risks, such as bleeding, cardiovascular risks, or

risk of infections. Large incisions that have to be cut cause long post-operative recovery

time and increased pain during the gradual healing process. Scars in such procedures

are unavoidable and, in some cases, patients decide to undergo cosmetic surgeries to

remove them. Because of the negative effects, the conventional surgery procedures are

avoided when possible and interventional procedures are preferred and are becoming

more frequent. The procedures can most often be considered to be minimally invasive, as

only small incisions are cut in the patients skin through which the medical instrument

is inserted and further guided through the skin, body cavity or anatomical opening.

Depending on the type of the interventional procedure, different imaging techniques

may be used to help the surgeon perform the procedure. X-ray fluoroscopy is one such

technique, which is used to obtain the X-ray images at high frame rates. It can be used

to analyze patients internal structures or to track the position of medical instruments.

Some common treatments where fluoroscopy is used include placement of peripherally

inserted central catheter, balloon angioplasty, cardiac ablation or implantation of cardiac

rhythm management devices, such as pacemakers. The biggest concern of the technique

is the cumulative radiation dose delivered to the patient. A single frame dose is very

low, however, procedure times of up to 75 minutes have been recorded. Such prolonged

exposures may eventually lead to a severe skin injuries (Berlin, 2001; Frazier, Richardson,

Fabre, and Callen, 2007; Koenig, Mettler, and Wagner, 2001). Lowering the single frame

dose is of the utmost importance but lower dose also implies heavier noise image in the

image. Too high noise level could render the X-ray image sequence unusable during the

procedure, so a trade-off has to be made between the exposure and the acceptable image

noise level. Efficient image processing algorithms can help in removing the noise and
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5.1 Exploring the Temporal Dimension I – Wavelet Transform

improving image quality, thus, allowing for further dose reduction.

Many methods have been developed to address the problem of noise in a sequence

of X-ray fluoroscopy images. Aufrichtig and Wilson (Aufrichtig and Wilson, 1995) take

the object-detection approach and assume that most of the motion is constrained to

a long thin objects, such as catheters or guide wires. The method uses small oriented

line segments as template filter kernels to discover such objects. Schoonenberg et al.

(Schoonenberg, Schrijver, Duan, Kemkers, and Laine, 2005) focus on distinguishing the

moving objects (human organs) from the static background as well as on the catheter

detection. They propose adaptive filtering process in which motion compensated temporal

filtering is applied to moving parts of the image while spatial filtering is applied to

static image segments. Special care is taken on occasional catheter jumps between the

two subsequent frames. Manjeshwar and Dhawale (Manjeshwar and Dhawale, 2005)

achieved good results in image quality improvement by using a method based on the

motion discriminating temporal filter (MD-TF), which reduces motion-blur typical for

some commonly used temporal recursion filters. Their findings were assessed by both

the realistic image synthesis model and the visual perception experiments. Bismuth

and Vaillant (Bismuth and Vaillant, 2008) processed fluoroscopic image sequences in

interventional cardiology. Their algorithm is based on linear feature detection in which

they try to distinguish medical instrument from the background. The final image is

composed of denoised background and enhanced linear features.

In this chapter, we propose another method for denoising the fluoroscopic image

sequences. It is not tailored for a specific treatment but should be applicable to any

image sequence presenting a nearly static background, with the motion confined to a

human tissue, organ or medical instrument. Instead of the feature/object detection route,

redundant information stored in the temporal dimension is heavily exploited. Time

window of images is considered and two estimates of denoised images calculated. One

is obtained by transforming a set of images to a 1-D signal by 3D scanning of image

pixels, and denoising the resulting signal using the edge preserving wavelet transform

ICI-EPL, presented in Chapter 3 and (Tomic, Sersic, and Vrankic, 2008). The other

estimate is obtained by applying a basic intersection of confidence intervals (ICI) algorithm

(Katkovnik, 1999) to the temporal dimension of the time window image set, in order to

further improve performance near object edges. Two estimates are fused using statistical

properties of the ICI estimators, yielding high quality denoised images, with preserved

edges between objects.

5.1 Exploring the Temporal Dimension I – Wavelet Trans-

form

Over time, many image denoising methods were developed, largely focused on natural

images. Their efficiency, most often, rely on the well known fact that the human visual
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system (HVS) is much more susceptible to lower frequencies than to higher ones. Image

compression algorithms utilize the fact by removing the higher frequencies from the image,

allowing for image description with fewer bits. Image denoising algorithms also rely on

the same HVS property. Noise in natural images represent the high frequency component,

so removing the higher frequencies will also cause the noise to be attenuated, yielding

images of much improved perceived quality. In the case of medical images, it is a common

situation that the higher frequencies carry valuable information for medical personnel.

Quite often, large low frequency regions have little meaning, while higher frequency

regions, such as edges between objects, human tissue or blood vessels are more important.

It is the opposite assumption to the one taken for natural images. It was shown that

the ICI-EPL performs well around edges in a signal, and it is to be expected that it will

also perform well on medical images and tend to efficiently remove the noise, while still

reconstructing the intrinsic image higher frequencies. The requirement is essential for

application to a fluoroscopic image sequences.

As presented, ICI-EPL is proposed as a 1-D transform. Since it was a wavelet

transform, it is straightforward to generalize the method to multiple dimensions by means

of separable filter banks. The 3-D generalization can be achieved by addition of the

filtering in the temporal direction. Because of the specifics of the given application, neither

2-D nor 3-D generalization could be considered to be an optimal solution. In the 2-D

case, the temporal dimension is neglected and each X-ray image is denoised as if it was

independent of the images that preceded it. As subsequent images often differ in only

a few details, ignoring this redundancy cannot be considered to be the best approach.

On the other hand, the 3-D generalization of the ICI-EPL would quite efficiently use all

the spatial and temporal data available. However, there are two problems associated

with the approach, and both of them stem from the necessary amount of data in the

temporal dimension. Properties of the wavelet transform could not be utilized to a

desirable extent if there were less than 3 levels of wavelet decomposition, which again

presumes approximately 256 subsequent images. The two problems introduced with such

large data sets are excessive delay and long computation times. Even if the 3-D approach

performed well in off-line denoising, in case the real-time denoising requirement could

not be satisfied, it would be pointless.

Described multidimensional generalizations using separable filter banks assume that the

original 1-D transform has to be modified in order to efficiently process multidimensional

signals. For this particular application, the optimal solution is searched for by using

the opposite approach. Instead of generalizing the transform to fit the multidimensional

signal, the image sequences are modified and “fitted” to the 1-D transform.

5.1.1 3-D Sample Scans

To process the set of images from a sequence with a 1-D transform, the 3-D data has to

be converted to 1-D data. It is done by means of the 3-D sample scanning. Traversing
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5.1 Exploring the Temporal Dimension I – Wavelet Transform

the data in the horizontal, vertical and zig-zag 3-D paths, three 1-D signals are produced.

The horizontal and the vertical 3-D scans are depicted in Fig. 5.1. In the horizontal case,

pixels are scanned back and forth along temporal dimension, with horizontal offset at the

ends of the image set. After the first row is fully scanned, the scan continues at the next

row. In the vertical case, the offset is vertical and after the first column is fully scanned,

the scan continues at the next column.

(a) (b)

Figure 5.1: Horizontal (a) and vertical (b) 3-D scan of a set of subsequent fluoroscopic
X-ray images

In the zig-zag case the traversing progresses in a zig-zag fashion, in a diagonal direction.

The 2-D zig-zag scan is depicted in Fig. 5.2 and it’s 3-D implementation is constructed

following the same principles as in the horizontal or vertical case.

Figure 5.2: 2-D zig-zag pixel scan

The conversion of image sets to a 1-D signal allows for efficient utilization of the

temporal dimension using wavelet transforms, while still requiring only a small number of
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5.1 Exploring the Temporal Dimension I – Wavelet Transform

images, unlike the regular 3-D transform. It is to be expected that pixels in subsequent

images, which share the same coordinates, will in most cases have close values, with

difference often originating from noise. The same is often also true for surrounding pixels

of any pixel in a single image. The idea of the 3-D scans is to bring these pixels together.

The resulting 1-D signal should consist of many rather smooth regions with only minor

pixel value fluctuations caused by a noise. Edges between the regions are to be emphasized

and clearly identifiable. An example of such 1-D signal is shown in Fig. 5.3.

The set-up provides convenient input for the ICI-EPL, as smooth regions can be

denoised efficiently, while edges should be pronounced enough to allow for good transform

adaptivity. The assertion is best explained in the extreme case of an image containing a

single pixel wide line. Should the image be denoised using the 2-D separable generalization

of wavelet transforms, there is a high probability of the line completely disappearing from

the denoised image. Given the 3-D scan of, for instance, 6 subsequent images, the same

single pixel line would actually be 6 pixels wide and have much better chance of survival

in the denoised image.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

100

200

300

400
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Figure 5.3: Part of the sample 1-D signal, resulting from the 3-D horizontal scan of 6
subsequent images

5.1.2 Combining the Scans and Generating Denoised Image Estimate

After the conversion to a 1-D signal, each of the three signals is independently denoised

using the unmodified ICI-EPL 1-D transform and converted back to the 3-D by inverse

scanning. Sample noisy image and three denoised images are shown in Fig. 5.4. Only two

subsequent images were used for denoising. Resulting images suffer from clearly visible

horizontal, vertical and zig-zag artifacts, in respective images. The artifacts cannot be

avoided because images were not processed by a real 2-D or 3-D transform. To better

understand the effect of processing the image set using the 1-D transform, it is best to

analyze the wavelets used in signal reconstruction, and their dispersion during the inverse

scanning. For the purpose, fixed wavelet Bior2.2 is used.

In 1-D, the Bior2.2 wavelet looks as depicted in Fig. 5.5. After inverse scanning the
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1-D signal, wavelet disperses over all images in a set. The dispersion for several set sizes

is shown in Fig. 5.6. In case of a single image in a set, there is no dispersion and entire

wavelet is contained in that single image. Depending on the type of scan, the wavelet

stretches in either horizontal, vertical or diagonal direction. As the number of images

in a set rises, the wavelet disperses over all of the images and the prevailing direction of

the stretch becomes less pronounced. In effect, the artifacts in the denoised image slowly

diminish, although do not entirely disappear. To minimize artifact visibility, regardless

of the wavelet transform being used, the three images are averaged to form the single

denoised image.

(a) (b)

(c) (d)

Figure 5.4: Noisy image of catheter insertion (a) and denoised images resulting from 1-D
signals obtained by horizontal (b), vertical (c) and zig-zag (d) 3-D scans of two subsequent
images
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Figure 5.5: Bior2.2 synthesis wavelet function

The proposed approach of fitting the signal to the transform has two advantages. One

is that it allows for very efficient utilization of temporal dimension while still heavily

relying on each image spatial data (as can be seen in Fig. 5.6). This way, the advantages

of the full 3-D approach are inherited but with much smaller image sets. The smaller

image set size leads to the other advantage - the transform can be calculated much faster

than it would be possible in a 3-D case, making it more suitable for real-time applications.

5.2 Exploring the Temporal Dimension II – the Basic ICI

ICI-EPL provides very good results in denoising the fluoroscopic images, however, given

the significance of edge retention, one more estimate of denoised images is introduced.

It is based on the simple implementation of the ICI rule Katkovnik (1999), presented

in more details in Chapter 3.3. The basic ICI algorithm is applied along the temporal

dimension of a set of images, for each pixel independently. As piece-wise constant model

of the signal is assumed, the averaging filters may be used as a set of estimators of growing

supports:

ŷhj
(x, i) =

1

j

j−1
∑

k=0

z(x, i− k), j = 1 . . . N, (5.1)

where x = (m,n) are spatial coordinates of a given pixel, i is ordinal number of image

in a sequence and N is total number of images in a set. Although the scheme alone

cannot provide high-quality denoised image sets, it is efficient at preventing the blurring

of edges between objects and it is used to enhance the quality of denoised image estimates

obtained by the ICI-EPL.

5.3 Fusion of the Estimates

There are multiple ways of fusing the two estimates. Estimators used to produce the

estimates (adaptive wavelet filter banks and the ICI algorithm) differ in their statistical
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.6: Wavelet dispersion after inverse scanning the 1-D signal. Each row shows
wavelets after inverse horizontal, vertical and zig-zag scan. Number of images in a set is:
1 (a)-(c), 2 (d)-(f), 4 (g)-(i)
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(j) (k) (l)

(m) (n) (o)

(p) (q) (r)

Figure 5.6: Wavelet dispersion after inverse scanning the 1-D signal. Each row shows
wavelets after inverse horizontal, vertical and zig-zag scan. Number of images in a set is:
6 (j)-(l), 8 (m)-(o), 10 (p)-(r)

95



5.3 Fusion of the Estimates

properties. Because of that, ordinary mean would not produce the best results. In general,

optimal results are obtained by using the weighted mean, where weights are based on the

reciprocal of the estimate variance:

ŷ(x) =
1

∑

l 1/σ
2
l

∑

l

ŷl(x)

σ2
l

, (5.2)

where index l corresponds to the l-th estimate. Given that the estimators are FIR filters,

the variance of each pixel is given by:

σ2
ŷx

= σ2
ε ·

∑

k

g2
hx

(k), (5.3)

where σε is noise variance and ghx
is impulse response of the estimator used for the pixel

at position x = (x1, x2). From (5.2) and (5.3) follows:

ŷ(x) =
1

∑

l wl

∑

l

wlŷl(x),

wl =
1

∑

k g
2
lhx

(k)

(5.4)

For averaging filters used in the ICI estimate, it is straightforward to use (5.4), with

weights being wI ∈ 1, 2, 3, . . . , N . Since ICI-EPL is a highly adaptive wavelet transform,

estimating exact weights for each pixel, based on (5.4), would be a difficult and costly

operation. Therefore, setting the weight for the ICI-EPL estimate to a fixed value is

proposed:

wIE = const. (5.5)

Choice of the wIE decides the impact of the ICI–EPL estimate to a final denoised

image. The ICI-EPL estimate is considered to provide the base of denoised image, which

is only further enhanced by the ICI estimate. To promote its significance, we let its

weights to be equal to the weight of a reliable ICI estimator. Range of reasonable values

can only be determined empirically and we find it reasonable to set the wIE to a weight

of ICI estimator with support length of 10 pixels:

wIE = 10.

Although a sub-optimal solution, it still allows for efficient fusion, i.e. variance of

the fused estimate should be lower than the variance of either of the estimates. As well,

the final image should give higher PSNR value then either of the estimates. Another

benefit of the fixed-weight approach is the ability to easily adjust the general impact of

the ICI-EPL estimate in the final image.
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5.4 Results and Discussion

5.4 Results and Discussion

The effectiveness of the proposed method has been tested on a real fluoroscopic image

sequence of catheter insertion. Resolution of images is 512x512 pixels and they were

taken at 10 bits per pixel precision. For the wavelet transform estimate, four different

transforms were used: Haar, Bior2.2, Bior4.4 and ICI-EPL. The method is applied on

image sets of 4, 6, 8, 10 and 12 consecutive images. In case of the ICI-EPL, denoising

was performed, and performance examined, for a full range of reasonable Γ parameter

values: [0.5, 5]. The Γ value for the ICI step is always set to a value in the lower half of

the range: Γ = 1.7.

As a general denoising performance measure, PSNR values are given in Table 5.1.

As a clean signal approximation, necessary for the PSNR calculation, we averaged 250

consecutive sequence images. It can be seen that the ICI-EPL estimate yields better

estimate than the basic ICI. The total gains of 10dB are achieved, with the fusion of the

two estimates adding up to 0.5dB to the ICI-EPL estimate PSNR. Although seemingly

small difference, the fusion step is still very important and, as will be shown in the next

example, it is probably not reflected by the small 0.5dB improvement in the PSNR. The

significance of the improvement achieved by the fusion is in the the edge enhancement, as

edges are the most important part of the image to the medical personnel. This is better

observed in Fig. 5.7, in which results of applying the method to a set of 8 consecutive

sequence images are shown.

It can be seen that the ICI-EPL estimate is of high quality. The noise is very efficiently

removed and edges between the catheter and the background are mostly well preserved,

however, still slightly blurred in certain areas. Edges in the ICI estimate are better

pronounced than in the ICI-EPL estimate, but significant level of noise remained existent

in the denoised image. Finally, the fused estimate combines advantages of both of the

compounding estimates and provides denoised images, in which catheter and its tip are

clearly and easily distinguished from the background. Showed for comparison is also the

2D separable implementation of the ICI-EPL applied to a single image. As expected, it

cannot compete with the proposed spatio-temporal method.

To explore potential benefits of the proposed method, we introduce additional Gaussian

noise to the examined image sequence. The results of denoising are shown in Fig. 5.8. In

the previous example, even the noisy image could have been considered to be quite usable,

but after artificially raising the noise level, noisy image becomes completely useless as it

is impossible to discern the catheter from the noise. Sequence was denoised using image

set size of 8 subsequent images. Naturally, denoised images are of much lower quality

than in Fig. 5.7. There is more blurriness at the catheter tip as well as the wire but it

can also be seen that both the catheter wire and its tip can still be clearly distinguished

from the background.

PSNR values for denoised images can be found in Tab. 5.2. Denoising algorithm

brought improvements of 16dB. It is interesting to note that the fused image PSNR can
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5.4 Results and Discussion

(a) (b)

(c) (d)

(e) (f)

Figure 5.7: Denoising results for catheter insertion sequence. Zoomed in: noisy image
(a), approximation of clean image (b), ICI-EPL estimate of denoised image (c), basic ICI
estimate of denoised image (d), image denoised by separable 2-D implementation of the
ICI-EPL (e) and fused estimate (f)
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5.4 Results and Discussion

Table 5.1: PSNR values of denoised images for image sets of 2, 4, 6, 8, 10 and 12
consecutive images

2 4 6 8 10 12

Noisy 40.01 40.01 40.01 40.01 40.01 40.01
ICI 42.62 45.22 46.65 47.55 48.08 48.55

Haar 46.90 48.23 48.94 49.37 49.69 49.96
Fused Haar 46.93 48.40 49.20 49.73 50.10 50.43

Bior 2.2 47.04 48.12 48.97 49.00 49.25 49.43
Fused Bior 2.2 47.04 48.29 48.67 49.41 49.73 49.99

Bior 4.4 46.80 48.05 48.7 49.64 49.41 49.62
Fused Bior 4.4 47.00 48.4 49.13 49.13 49.96 50.23

ICI-EPL 46.74 48.21 48.96 49.39 49.58 49.82
Fused ICI-EPL 46.82 48.47 49.25 49.75 49.99 50.28

get up to 1.5dB lower than the PSNR of the wavelet transform based estimates (ICI-EPL

and conventional wavelets). It is a typical example of the insufficiencies of the PSNR as a

generally applicable objective measure of denoised image quality. If we compare denoised

images before and after the fusion (Fig. 5.8 (b) and (d)) it is evident that the catheter

and its tip are less blurry and better distinguished from the background in the fused

image than in the ICI-EPL estimate. As medical personnel focus on the catheter, we

find the fused image to be more usable in clinical application. Such specifics of the given

application cannot be addressed by the PSNR measure.

Table 5.2: PSNR values of denoised images for image sequence with raised noise level
PSNR Noisy 25.95
PSNR ICI 34.78

ICI-EPL Haar Bior2.2 Bior4.4

PSNR Wavelet 42.25 42.95 42.34 42.25
PSNR Fused 40.92 41.34 40.92 40.93

Fig. 5.9 shows the improvement of fused denoised image quality as the number of

images in a set rises. Generally, larger image sets result in better quality of denoised

images, but we must also, again, consider some specifics of the given application. Enlarging

the image set adds to processing time, which is a limiting factor since this is a real-time

application. Also, as the number of images in a set rise, so does the effect of averaging.

Quality of the background indeed improves, but quality of moving objects (catheter) in

an image does not or it could even deteriorate. We find that the reasonable number of

images in a set is 6-10. Larger image sets show some improvement in terms of the PSNR,

but the real clinical benefit or detriment introduced by such sets would be difficult to

evaluate without the real-world clinical or visual perception experiments.
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5.4 Results and Discussion

(a) (b)

(c) (d)

Figure 5.8: Denoising results for catheter insertion sequence with artificially added noise.
Zoomed in: noisy image (a), ICI-EPL estimate of denoised image (b), basic ICI estimate
of denoised image (c) and fused estimate (d)
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5.4 Results and Discussion

(a) (b)

(c) (d)

(e) (f)

Figure 5.9: Denoising results for catheter insertion sequence for image sets of : (a) 2, (b)
4, (c) 6, (d) 8, (e) 10 and (f) 12 images
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5.5 Conclusion

5.4.1 Automated Γ parameter selection

All the results in this chapter were obtained using the optimal value of the Γ parameter

for the ICI-EPL estimate, Γo. As it is not possible to calculate this exact value, we

should examine the dependency of the denoised image PSNR on the chosen value for the

Γ parameter, and the efficiency of the algorithm for automated Γ parameter selection,

devised in Chapter 4.

Fig. 5.10 (a) shows PSNR of the denoised image plotted against the full range of

Γ parameter values. Unlike in the 1-D case, selection of the Γ parameter does not

influence the denoising results significantly. Difference between the best and the worst

case performance is only slightly more than 1dB. Also, for any chosen Γ parameter value

in the range Γ ∈ [1, 5] the PSNR does not deteriorate more than 0.5dB. Fig. 5.10 (b)

shows score functions for the Γ selection algorithm. Separate score function is plotted for

each of the scans, with vertical lines marking the functions minimum, i.e. the chosen Γ

value: 1.7, 3.4, 5. In each case, the difference in PSNR when using selected and optimal Γ

value for denoising is < 0.2dB. If we average the selected values, the final Γ parameter

value becomes Γ∗ = 3.36, resulting in a 0.1dB lower PSNR than for the optimal Γ value.
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Figure 5.10: Dependency of denoised image PSNR on the chosen Γ parameter value (a)
and score functions for automated Γ parameter selection (b)

5.5 Conclusion

X-ray fluoroscopy is common method in interventional procedures. Since the procedure

can take more than an hour to complete, the problem of cumulative radiation dose to

the patient can become very significant and even lead to severe injuries. The only two

solutions to the problem are shortening the procedure time and lowering the fluoroscope

single frame dose. While the procedure time may be shortened slightly, as a result of

surgeon experience or development of new tools, realistically, only the lowering of the

single frame dose can lead to a substantial lowering of the cumulative radiation dose.

However, if the single frame dose is lowered too much, the images become unreadable

102



5.5 Conclusion

because of the too low signal-to-noise ratio. Denoising algorithms can be used to process

the images and make them usable, even though they were taken with a very low single

frame dose.

Denoising of X-ray image sequences using pure 2-D image denoising algorithms cannot

be considered as an optimal approach to the problem. Redundancy of certain image parts

in the temporal dimension can be efficiently explored to improve denoising algorithm

performance, so spatio-temporal denoising algorithms are preferred way of obtaining high

quality denoised images. Another specific of this application is treatment of edges in an

image. In X-ray fluoroscopic sequences such sharp edges carry valuable information for

the medical personnel so it is essential to prevent blurring, or even, blending them with

the neighboring objects or background.

The method we propose relies on extensive use of temporal dimension to yield denoised

images in which objects edges do not get blurred, but stay clearly identifiable and

distinguishable from the background. The idea of the algorithm is to produce two

estimates of denoised signal.

One is obtained by transforming the set of images from the image sequence to a 1-D

signal, and then perform denoising using the ICI-EPL, as if it was an ordinary 1-D signal.

Set size is arbitrary, with larger sets leading to better denoising performance on the

expense of prolonged processing times. Too large sets can also have other adverse effects.

Results showed that sets larger then 10 images should not be necessary. After denoising,

the signal is transformed back to 3-D, resulting in the ICI-EPL estimate of denoised

signal. The estimate is, generally, of high quality, with edges mostly well preserved.

The other estimate is based on applying the basic ICI algorithm to the same image

set. Algorithm is applied in the temporal dimension and for each pixel independently.

The ICI estimate is, generally, of much lower quality, but retains the edges better. The

two estimates are fused to produce the final denoised image. The fusion might be viewed

as an edge enhancement step for the ICI-EPL estimate.

The method was tested on a real fluoroscopic image sequence of catheter insertion.

The results show that the spatio-temporal implementation of the ICI-EPL can be used to

efficiently denoise X-ray fluoroscopic image sequences. Fusing the ICI-EPL image with

the basic ICI denoised image further enhances the edges between objects and improves

image readability. Simulations were also performed on image sequences with artificially

raised noise level. Such images, when unprocessed, were completely unreadable as it was

impossible to discern any of the objects from the noise. After denoising with the proposed

spatio-temporal method the catheter wire and its tip became clearly visible.

The quality of the final denoised images suggests that the proposed algorithm could

allow for significant lowering of the fluoroscope single frame dose, leading to a reduction in

the cumulative radiation dose to the patient. However, it would be very difficult to explore

the full potential of the proposed method without the real-world tests. Visual perception

experiments should be carried, in which medical personnel would help determine the
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5.5 Conclusion

actual possible reduction in the single frame dose for which the denoised images are still

clinically applicable.
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Chapter 6

Conclusion

In this thesis we proposed the ICI-EPL – an adaptive wavelet transform based on the

lifting scheme, with a target application in signal denoising. Purpose of the adaptive

algorithm was to improve performance of the conventional wavelet transforms about edges

in a signal, while still retaining all of their good properties.

The edge preserving nature of the ICI-EPL is achieved by selecting appropriate wavelet

basis, independently, for each signal point and on each scale. For smooth signal regions,

longer and smoother wavelet basis are used. As we come closer to the edge, more compact

wavelets are selected in order to avoid spanning of lifting filters support across the edge.

The edge is considered in a broad sense, and encompasses not only a step edge, but

also any other sudden change in signal statistics. The intersection of confidence intervals

(ICI) method is used to detect the change in the statistics, and to determine support

of the lifting filters, effectively selecting one of the wavelets from a predefined set. We

showed that the ICI-EPL is able to efficiently reconstruct both the edges and the smooth

regions in the same signal, leading to improved overall denoising performance. In many

cases, it is significantly better, while in the other, at least comparable to that of the best

performing compared transform.

Denoising efficiency of the ICI-EPL is heavily dependent on the proper choice of the

ICI Γ parameter value. Although manual selection can be employed with success, we also

proposed a statistical method for automated parameter selection. For the purpose, we

consider wavelet coefficients to be realizations of an independent and identically distributed

random variable. Distribution of the coefficients varies, based on the analyzed signal and

applied transform, with difference being clearly visible at the last decomposition level.

The closest model distribution is generalized Gaussian distribution (GGD). The proposed

selection method works by finding and comparing actual distribution to the hypothetical

GGD the coefficients might come close to taking, in case of a perfect fit of a transform to

a given signal. Comparison is carried out using Kolmogorov-Smirnov goodness-of-fit test.

The best fitting distribution signals that the respective transform/Γ parameter are to be

selected as the optimal ones.
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We used the ICI-EPL and its edge preserving nature to improve denoising performance

for medical X-ray fluoroscopy image sequences. The application particularities make clear

edges in a denoised image an essential requirement. To achieve this, two estimates of

denoised images are produced. One is based on converting the image sequence to a 1-D

signal and applying the ICI-EPL, before converting it back. The other is obtained by a

basic ICI rule applied in the temporal direction. The estimates are fused to form the final

denoised image.

The proposed adaptive ICI-EPL transform efficiently combines the statistical ICI

method and the lifting scheme wavelet transform realization. As shown in numerous

examples, denoising efficiency is greatly improved when compared to conventional wavelet

transforms. Most improvement is achieved about edges in a signal, which tend to be

most difficult to efficiently reconstruct. The ICI-EPL demonstrated a performance which

brings confidence that the proposed transform can be successfully utilized in a variety of

denoising applications.
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Appendix A

Denoising Performance Tables for

the ICI-EPL

Denoising performance of the ICI-EPL adaptive lifting scheme was evaluated by denoising

6 different test signals. They are generated as if they were samples of the respective

continuous time functions, taken at different sampling frequency. We chose 5 different

frequencies to obtain discrete time test signals, whose lengths are from the following

set: {256, 512, 1024, 2048, 4096}. Levels of additive white Gaussian noise added to the

signals were: σε ∈ {5%, 10%, 15%, 20%} of total signal magnitude. In Chapter 3.5, the

performance was thoroughly examined on two selected signal length/noise combinations.

In this Appendix, we present root mean square error (RMSE) tables of denoised signals

for all considered signal lengths and noise levels.
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Table A.1: RMSE values of denoised signals for additive Gaussian noise with σε = 5% of
total signal magnitude. Signal length is 256 points. RMSE multiplied by a 102

Haar Bior2.2 Bior4.4 Db3 Db9 ICI ICI-EPL

Blocks 2.17 2.93 3.11 3.17 3.95 3.92 1.81

Bumps 3.17 3.20 3.26 3.23 3.59 6.72 3.22
Doppler 3.68 2.93 2.71 2.83 2.74 3.82 2.81

HeaviSine 1.99 2.05 2.13 2.12 2.22 2.18 2.07
Piece-Polynomial 2.12 2.90 3.04 2.99 3.70 3.47 1.96

Piece-Regular 2.86 2.87 2.91 2.87 3.60 3.19 2.69

Table A.2: RMSE values of denoised signals for additive Gaussian noise with σε = 10% of
total signal magnitude. Signal length is 256 points. RMSE multiplied by a 102

Haar Bior2.2 Bior4.4 Db3 Db9 ICI ICI-EPL

Blocks 4.76 6.22 6.27 6.18 7.18 6.13 4.45

Bumps 5.95 5.79 6.03 5.94 6.62 8.07 5.89
Doppler 6.48 5.72 5.35 5.59 5.66 6.41 5.47

HeaviSine 3.38 3.56 3.70 3.65 3.79 4.11 3.66
Piece-Polynomial 4.38 5.36 5.56 5.47 6.04 5.28 4.19

Piece-Regular 5.28 5.50 5.82 5.72 6.31 5.67 5.38

Table A.3: RMSE values of denoised signals for additive Gaussian noise with σε = 15% of
total signal magnitude. Signal length is 256 points. RMSE multiplied by a 102

Haar Bior2.2 Bior4.4 Db3 Db9 ICI ICI-EPL

Blocks 7.15 8.44 8.74 8.64 9.28 8.40 6.85

Bumps 8.14 7.89 8.20 8.16 8.77 9.13 7.97
Doppler 8.73 7.81 7.78 8.03 8.29 8.74 7.66

HeaviSine 4.78 5.11 5.30 5.24 5.44 5.59 5.27
Piece-Polynomial 6.21 7.23 7.46 7.33 7.98 7.06 6.25

Piece-Regular 7.34 7.42 7.87 7.62 8.20 7.73 7.36

Table A.4: RMSE values of denoised signals for additive Gaussian noise with σε = 20% of
total signal magnitude. Signal length is 256 points. RMSE multiplied by a 102

Haar Bior2.2 Bior4.4 Db3 Db9 ICI ICI-EPL

Blocks 9.32 10.28 10.72 10.60 11.00 10.64 9.27

Bumps 9.76 9.72 10.00 9.99 10.57 9.89 9.66

Doppler 10.54 9.67 9.81 10.09 10.42 10.92 9.62

HeaviSine 6.21 6.69 6.95 6.86 7.13 7.17 6.92
Piece-Polynomial 7.96 8.85 9.13 9.02 9.55 8.74 7.98

Piece-Regular 9.14 9.17 9.57 9.39 9.84 9.46 9.24
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Table A.5: RMSE values of denoised signals for additive Gaussian noise with σε = 5% of
total signal magnitude. Signal length is 512 points. RMSE multiplied by a 102

Haar Bior2.2 Bior4.4 Db3 Db9 ICI ICI-EPL

Blocks 1.63 2.34 2.50 2.50 3.30 3.07 1.27

Bumps 2.60 2.40 2.55 2.67 3.18 4.89 2.53
Doppler 2.98 2.37 2.13 2.22 2.26 2.56 2.21

HeaviSine 1.56 1.56 1.62 1.61 1.79 1.63 1.50

Piece-Polynomial 1.63 2.35 2.46 2.37 3.10 2.48 1.30

Piece-Regular 2.13 2.12 2.16 2.13 2.92 2.27 1.83

Table A.6: RMSE values of denoised signals for additive Gaussian noise with σε = 10% of
total signal magnitude. Signal length is 512 points. RMSE multiplied by a 102

Haar Bior2.2 Bior4.4 Db3 Db9 ICI ICI-EPL

Blocks 3.61 5.00 5.18 5.11 6.05 4.90 3.04

Bumps 5.19 4.63 4.95 5.00 5.86 6.65 4.85
Doppler 4.97 4.16 3.91 4.12 4.20 4.65 3.89

HeaviSine 2.48 2.65 2.73 2.71 2.80 3.04 2.73
Piece-Polynomial 3.40 4.50 4.68 4.56 5.15 4.49 3.19

Piece-Regular 3.83 4.08 4.29 4.20 4.95 4.07 3.81

Table A.7: RMSE values of denoised signals for additive Gaussian noise with σε = 15% of
total signal magnitude. Signal length is 512 points. RMSE multiplied by a 102

Haar Bior2.2 Bior4.4 Db3 Db9 ICI ICI-EPL

Blocks 5.61 7.00 7.24 7.24 7.93 6.55 4.97

Bumps 7.30 6.64 7.12 7.07 7.90 7.77 6.83
Doppler 6.71 5.74 5.60 5.90 6.02 6.66 5.39

HeaviSine 3.43 3.64 3.76 3.72 3.85 4.01 3.78
Piece-Polynomial 5.16 5.90 6.05 5.97 6.51 5.90 4.93

Piece-Regular 5.55 5.69 6.04 5.85 6.50 5.87 5.56

Table A.8: RMSE values of denoised signals for additive Gaussian noise with σε = 20% of
total signal magnitude. Signal length is 512 points. RMSE multiplied by a 102

Haar Bior2.2 Bior4.4 Db3 Db9 ICI ICI-EPL

Blocks 7.35 8.43 8.75 8.78 9.33 8.15 6.90

Bumps 8.99 8.26 8.82 8.82 9.44 8.71 8.32
Doppler 8.20 7.22 7.17 7.53 7.89 8.22 6.92

HeaviSine 4.35 4.67 4.84 4.78 4.95 4.96 4.83
Piece-Polynomial 6.30 6.98 7.13 7.02 7.70 7.05 6.16

Piece-Regular 6.94 7.03 7.33 7.16 7.61 7.39 7.05
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Table A.9: RMSE values of denoised signals for additive Gaussian noise with σε = 5% of
total signal magnitude. Signal length is 1024 points. RMSE multiplied by a 102

Haar Bior2.2 Bior4.4 Db3 Db9 ICI ICI-EPL

Blocks 1.22 1.86 2.01 1.99 2.70 2.20 0.89

Bumps 1.99 1.91 1.99 2.03 2.53 2.25 1.94
Doppler 2.49 1.84 1.66 1.76 1.71 2.01 1.69

HeaviSine 1.27 1.14 1.18 1.18 1.41 1.14 1.09

Piece-Polynomial 1.21 1.79 1.85 1.84 2.47 1.73 0.95

Piece-Regular 1.73 1.75 1.80 1.72 2.32 1.80 1.41

Table A.10: RMSE values of denoised signals for additive Gaussian noise with σε = 10%
of total signal magnitude. Signal length is 1024 points. RMSE multiplied by a 102

Haar Bior2.2 Bior4.4 Db3 Db9 ICI ICI-EPL

Blocks 2.71 3.88 4.02 3.96 4.85 3.81 2.25

Bumps 3.85 3.67 3.92 3.90 4.67 4.00 3.73
Doppler 4.12 3.34 3.15 3.30 3.34 3.77 3.09

HeaviSine 1.91 2.04 2.13 2.10 2.23 2.29 2.08
Piece-Polynomial 2.50 3.38 3.59 3.49 4.27 3.35 2.22

Piece-Regular 3.12 3.21 3.47 3.37 4.27 3.20 2.96

Table A.11: RMSE values of denoised signals for additive Gaussian noise with σε = 15%
of total signal magnitude. Signal length is 1024 points. RMSE multiplied by a 102

Haar Bior2.2 Bior4.4 Db3 Db9 ICI ICI-EPL

Blocks 4.09 5.39 5.70 5.69 6.54 5.04 3.67

Bumps 5.71 5.21 5.61 5.53 6.36 5.64 5.33
Doppler 5.57 4.62 4.43 4.66 4.79 5.24 4.36

HeaviSine 2.58 2.77 2.87 2.83 2.93 3.18 2.85
Piece-Polynomial 3.71 4.69 4.97 4.80 5.53 4.76 3.63

Piece-Regular 4.50 4.61 5.00 4.84 5.63 4.63 4.47

Table A.12: RMSE values of denoised signals for additive Gaussian noise with σε = 20%
of total signal magnitude. Signal length is 1024 points. RMSE multiplied by a 102

Haar Bior2.2 Bior4.4 Db3 Db9 ICI ICI-EPL

Blocks 5.42 6.67 7.04 6.99 7.80 6.34 5.21

Bumps 7.35 6.57 7.12 7.02 7.68 6.83 6.82
Doppler 6.76 5.77 5.59 5.86 6.11 6.53 5.51

HeaviSine 3.24 3.48 3.60 3.56 3.67 4.00 3.61
Piece-Polynomial 4.86 5.67 5.97 5.85 6.50 5.82 4.83

Piece-Regular 5.72 5.78 6.20 6.00 6.69 5.86 5.78
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Table A.13: RMSE values of denoised signals for additive Gaussian noise with σε = 5% of
total signal magnitude. Signal length is 2048 points. RMSE multiplied by a 102

Haar Bior2.2 Bior4.4 Db3 Db9 ICI ICI-EPL

Blocks 0.87 1.46 1.55 1.53 2.14 1.61 0.67

Bumps 1.56 1.39 1.46 1.46 1.91 1.67 1.42
Doppler 1.89 1.34 1.18 1.26 1.17 1.54 1.22

HeaviSine 0.98 0.84 0.87 0.86 1.07 0.94 0.79

Piece-Polynomial 0.91 1.34 1.42 1.40 1.93 1.35 0.73

Piece-Regular 1.27 1.29 1.32 1.28 1.76 1.31 1.05

Table A.14: RMSE values of denoised signals for additive Gaussian noise with σε = 10%
of total signal magnitude. Signal length is 2048 points. RMSE multiplied by a 102

Haar Bior2.2 Bior4.4 Db3 Db9 ICI ICI-EPL

Blocks 1.99 3.04 3.19 3.18 3.98 2.92 1.55

Bumps 2.80 2.64 2.81 2.81 3.58 2.97 2.68
Doppler 3.11 2.43 2.25 2.36 2.35 2.88 2.22

HeaviSine 1.60 1.60 1.69 1.65 1.84 1.86 1.64
Piece-Polynomial 1.87 2.60 2.77 2.72 3.46 2.58 1.69

Piece-Regular 2.39 2.48 2.63 2.60 3.36 2.41 2.09

Table A.15: RMSE values of denoised signals for additive Gaussian noise with σε = 15%
of total signal magnitude. Signal length is 2048 points. RMSE multiplied by a 102

Haar Bior2.2 Bior4.4 Db3 Db9 ICI ICI-EPL

Blocks 3.13 4.31 4.58 4.52 5.38 4.18 2.80

Bumps 4.15 3.86 4.18 4.16 4.97 4.15 3.98
Doppler 4.15 3.37 3.19 3.34 3.37 3.95 3.12

HeaviSine 2.05 2.20 2.29 2.24 2.36 2.66 2.26
Piece-Polynomial 2.84 3.69 3.95 3.85 4.61 3.74 2.86

Piece-Regular 3.41 3.58 3.82 3.71 4.55 3.56 3.41

Table A.16: RMSE values of denoised signals for additive Gaussian noise with σε = 20%
of total signal magnitude. Signal length is 2048 points. RMSE multiplied by a 102

Haar Bior2.2 Bior4.4 Db3 Db9 ICI ICI-EPL

Blocks 4.20 5.44 5.75 5.69 6.58 5.33 4.13

Bumps 5.50 4.98 5.43 5.32 6.27 5.24 5.19
Doppler 5.11 4.29 4.07 4.25 4.35 5.02 4.01

HeaviSine 2.52 2.70 2.80 2.77 2.86 3.41 2.77
Piece-Polynomial 3.69 4.57 4.89 4.78 5.50 4.67 3.89

Piece-Regular 4.42 4.56 4.90 4.74 5.50 4.61 4.61
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Table A.17: RMSE values of denoised signals for additive Gaussian noise with σε = 5% of
total signal magnitude. Signal length is 4096 points. RMSE multiplied by a 102

Haar Bior2.2 Bior4.4 Db3 Db9 ICI ICI-EPL

Blocks 0.69 1.15 1.24 1.22 1.70 1.25 0.50

Bumps 1.18 1.04 1.13 1.11 1.46 1.28 1.08
Doppler 1.46 1.04 0.89 0.95 0.87 1.20 0.93

HeaviSine 0.74 0.64 0.67 0.67 0.86 0.85 0.58

Piece-Polynomial 0.71 1.04 1.13 1.11 1.53 1.10 0.58

Piece-Regular 0.98 0.99 1.01 0.98 1.34 1.03 0.80

Table A.18: RMSE values of denoised signals for additive Gaussian noise with σε = 10%
of total signal magnitude. Signal length is 4096 points. RMSE multiplied by a 102

Haar Bior2.2 Bior4.4 Db3 Db9 ICI ICI-EPL

Blocks 1.56 2.40 2.57 2.53 3.22 2.34 1.19

Bumps 2.11 1.99 2.15 2.13 2.73 2.34 2.05
Doppler 2.44 1.85 1.68 1.76 1.70 2.27 1.65

HeaviSine 1.35 1.24 1.30 1.27 1.50 1.67 1.28
Piece-Polynomial 1.43 2.00 2.15 2.11 2.75 2.15 1.29

Piece-Regular 1.81 1.84 1.99 1.95 2.57 1.93 1.55

Table A.19: RMSE values of denoised signals for additive Gaussian noise with σε = 15%
of total signal magnitude. Signal length is 4096 points. RMSE multiplied by a 102

Haar Bior2.2 Bior4.4 Db3 Db9 ICI ICI-EPL

Blocks 2.44 3.43 3.69 3.63 4.42 3.45 2.09

Bumps 3.03 2.88 3.17 3.13 3.92 3.31 2.99
Doppler 3.33 2.65 2.51 2.59 2.58 3.23 2.46

HeaviSine 1.67 1.74 1.84 1.78 1.96 2.41 1.82
Piece-Polynomial 2.13 2.86 3.10 3.01 3.76 3.09 2.18

Piece-Regular 2.55 2.69 2.91 2.83 3.59 2.86 2.50

Table A.20: RMSE values of denoised signals for additive Gaussian noise with σε = 20%
of total signal magnitude. Signal length is 4096 points. RMSE multiplied by a 102

Haar Bior2.2 Bior4.4 Db3 Db9 ICI ICI-EPL

Blocks 3.25 4.35 4.68 4.60 5.44 4.50 3.16

Bumps 4.02 3.74 4.15 4.07 4.94 4.22 3.96
Doppler 4.09 3.36 3.20 3.31 3.36 4.11 3.14

HeaviSine 2.00 2.16 2.27 2.23 2.32 3.10 2.26
Piece-Polynomial 2.76 3.65 3.96 3.83 4.57 3.92 3.26

Piece-Regular 3.28 3.46 3.77 3.60 4.45 3.74 3.52
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Appendix B

Parameter Γ Selection Method

Performance Tables

Two statistical methods for automated selection of the ICI-EPL Γ parameter value were

proposed in Chapter 4. Their efficiency was analyzed and discussed on a several selected

test case examples.

In this Appendix, we present the performance measures, in terms of the root mean

square error (RMSE) for all the considered test cases.
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Table B.1: RMSE values of denoised signals. Signal length is 256. Level of additive
Gaussian noise: σε = 5% of total signal magnitude. RMSE multiplied by a 102

Optimal
ICI

ICI-EPL
fixed Γo Γ∗

GGD Γ∗

k Γ∗

km

wavelet KS χ2 CM

Blocks 2.17 3.92 1.81 1.89 2.07 2.37 1.84 1.84

Bumps 3.17 6.72 3.22 3.60 3.34 3.61 3.85 3.62
Doppler 2.71 3.82 2.81 3.07 3.41 3.18 2.85 2.83

HeaviSine 1.99 2.18 2.07 2.18 2.16 2.18 2.35 2.18
Piece-Polynomial 2.12 3.47 1.96 2.04 2.15 2.32 2.02 2.02

Piece-Regular 2.86 3.19 2.69 2.99 2.95 2.88 3.50 3.55

Table B.2: RMSE values of denoised signals. Signal length is 256. Level of additive
Gaussian noise: σε = 10% of total signal magnitude. RMSE multiplied by a 102

Optimal
ICI

ICI-EPL
fixed Γo Γ∗

GGD Γ∗

k Γ∗

km

wavelet KS χ2 CM

Blocks 4.76 6.13 4.45 4.73 5.08 5.02 4.58 4.58

Bumps 5.79 8.07 5.89 6.14 6.14 6.22 6.21 6.28
Doppler 5.35 6.41 5.47 5.55 6.41 5.72 5.77 5.77

HeaviSine 3.38 4.11 3.66 3.76 3.75 3.75 3.93 3.78
Piece-Polynomial 4.38 5.28 4.19 4.45 4.78 4.69 4.51 4.50

Piece-Regular 5.28 5.67 5.38 5.90 5.71 5.83 6.21 6.12

Table B.3: RMSE values of denoised signals. Signal length is 256. Level of additive
Gaussian noise: σε = 15% of total signal magnitude. RMSE multiplied by a 102

Optimal
ICI

ICI-EPL
fixed Γo Γ∗

GGD Γ∗

k Γ∗

km

wavelet KS χ2 CM

Blocks 7.15 8.40 6.85 7.29 7.41 7.35 7.34 7.34
Bumps 7.89 9.13 7.97 8.30 8.21 8.32 8.24 8.35
Doppler 7.78 8.74 7.66 7.72 8.13 7.72 8.24 8.24

HeaviSine 4.78 5.59 5.27 5.36 5.32 5.37 5.38 5.37
Piece-Polynomial 6.21 7.06 6.25 6.69 6.50 6.59 6.60 6.68

Piece-Regular 7.34 7.73 7.36 7.81 7.74 7.78 7.84 7.87

Table B.4: RMSE values of denoised signals. Signal length is 256. Level of additive
Gaussian noise: σε = 20% of total signal magnitude. RMSE multiplied by a 102

Optimal
ICI

ICI-EPL
fixed Γo Γ∗

GGD Γ∗

k Γ∗

km

wavelet KS χ2 CM

Blocks 9.32 10.64 9.27 9.83 9.68 9.81 10.21 10.23
Bumps 9.72 9.89 9.66 10.07 10.03 10.10 10.03 10.01

Doppler 9.67 10.92 9.62 10.11 9.91 10.24 10.07 9.96
HeaviSine 6.21 7.17 6.92 6.99 7.03 6.98 7.02 6.97

Piece-Polynomial 7.96 8.74 7.98 8.41 8.33 8.28 8.38 8.59
Piece-Regular 9.14 9.46 9.24 9.57 9.53 9.53 9.61 9.53
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Table B.5: RMSE values of denoised signals. Signal length is 512. Level of additive
Gaussian noise: σε = 5% of total signal magnitude. RMSE multiplied by a 102

Optimal
ICI

ICI-EPL
fixed Γo Γ∗

GGD Γ∗

k Γ∗

km

wavelet KS χ2 CM

Blocks 1.63 3.07 1.27 1.32 1.45 1.59 1.30 1.30

Bumps 2.40 4.89 2.53 2.71 2.60 2.86 3.19 3.19
Doppler 2.13 2.56 2.21 2.30 2.33 2.31 2.24 2.24

HeaviSine 1.56 1.63 1.50 1.64 1.59 1.61 1.59 1.59
Piece-Polynomial 1.63 2.48 1.30 1.35 1.37 1.38 1.39 1.39

Piece-Regular 2.12 2.27 1.83 2.20 2.16 2.02 2.59 2.59

Table B.6: RMSE values of denoised signals. Signal length is 512. Level of additive
Gaussian noise: σε = 10% of total signal magnitude. RMSE multiplied by a 102

Optimal
ICI

ICI-EPL
fixed Γo Γ∗

GGD Γ∗

k Γ∗

km

wavelet KS χ2 CM

Blocks 3.61 4.90 3.04 3.42 3.43 3.83 3.37 3.37

Bumps 4.63 6.65 4.85 5.23 4.94 5.51 5.40 5.40
Doppler 3.91 4.65 3.89 3.91 3.91 3.91 3.92 3.92

HeaviSine 2.48 3.04 2.73 2.80 2.80 2.80 2.81 2.81
Piece-Polynomial 3.40 4.49 3.19 3.68 3.81 3.86 4.35 4.35

Piece-Regular 3.83 4.07 3.81 4.17 4.21 4.13 4.44 4.44

Table B.7: RMSE values of denoised signals. Signal length is 512. Level of additive
Gaussian noise: σε = 15% of total signal magnitude. RMSE multiplied by a 102

Optimal
ICI

ICI-EPL
fixed Γo Γ∗

GGD Γ∗

k Γ∗

km

wavelet KS χ2 CM

Blocks 5.61 6.55 4.97 5.39 5.51 5.57 5.27 5.27

Bumps 6.64 7.77 6.83 7.02 6.95 7.13 7.22 7.22
Doppler 5.60 6.66 5.39 5.47 5.50 5.45 5.69 5.69

HeaviSine 3.43 4.01 3.78 3.82 3.82 3.83 3.80 3.80

Piece-Polynomial 5.16 5.90 4.93 5.44 5.43 5.40 5.56 5.56
Piece-Regular 5.55 5.87 5.56 5.83 5.84 5.85 6.06 6.06

Table B.8: RMSE values of denoised signals. Signal length is 512. Level of additive
Gaussian noise: σε = 20% of total signal magnitude. RMSE multiplied by a 102

Optimal
ICI

ICI-EPL
fixed Γo Γ∗

GGD Γ∗

k Γ∗

km

wavelet KS χ2 CM

Blocks 7.35 8.15 6.90 7.68 7.56 7.62 7.31 7.31

Bumps 8.26 8.71 8.32 8.69 8.66 8.65 8.63 8.63

Doppler 7.17 8.22 6.92 7.14 7.04 7.02 7.46 7.46
HeaviSine 4.35 4.96 4.83 4.90 4.89 4.90 4.89 4.89

Piece-Polynomial 6.30 7.05 6.16 6.41 6.59 6.47 6.41 6.41

Piece-Regular 6.94 7.39 7.05 7.24 7.23 7.25 7.32 7.32
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Table B.9: RMSE values of denoised signals. Signal length is 1024. Level of additive
Gaussian noise: σε = 5% of total signal magnitude. RMSE multiplied by a 102

Optimal
ICI

ICI-EPL
fixed Γo Γ∗

GGD Γ∗

k Γ∗

km

wavelet KS χ2 CM

Blocks 1.22 2.20 0.89 0.99 0.94 1.47 0.96 0.96
Bumps 1.91 2.25 1.94 1.98 1.98 2.42 2.86 2.86
Doppler 1.66 2.01 1.69 1.75 1.70 1.73 1.70 1.70

HeaviSine 1.14 1.14 1.09 1.17 1.15 1.18 1.13 1.13

Piece-Polynomial 1.21 1.73 0.95 1.02 1.01 1.02 1.06 1.06
Piece-Regular 1.72 1.80 1.41 1.50 1.92 1.50 1.52 1.52

Table B.10: RMSE values of denoised signals. Signal length is 1024. Level of additive
Gaussian noise: σε = 10% of total signal magnitude. RMSE multiplied by a 102

Optimal
ICI

ICI-EPL
fixed Γo Γ∗

GGD Γ∗

k Γ∗

km

wavelet KS χ2 CM

Blocks 2.71 3.81 2.25 2.55 2.32 2.61 2.43 2.43
Bumps 3.67 4.00 3.73 3.84 3.82 4.33 4.25 4.25
Doppler 3.15 3.77 3.09 3.11 3.14 3.11 3.11 3.11

HeaviSine 1.91 2.29 2.08 2.18 2.18 2.19 2.15 2.15

Piece-Polynomial 2.50 3.35 2.22 2.48 2.45 2.52 3.36 3.36
Piece-Regular 3.12 3.20 2.96 3.12 3.27 3.16 3.32 3.32

Table B.11: RMSE values of denoised signals. Signal length is 1024. Level of additive
Gaussian noise: σε = 15% of total signal magnitude. RMSE multiplied by a 102

Optimal
ICI

ICI-EPL
fixed Γo Γ∗

GGD Γ∗

k Γ∗

km

wavelet KS χ2 CM

Blocks 4.09 5.04 3.67 4.06 3.94 4.15 4.03 4.03
Bumps 5.21 5.64 5.33 5.45 5.43 5.61 5.75 5.75
Doppler 4.43 5.24 4.36 4.37 4.53 4.37 4.37 4.37

HeaviSine 2.58 3.18 2.85 2.93 2.93 2.93 2.93 2.93
Piece-Polynomial 3.71 4.76 3.63 4.41 4.41 4.39 4.53 4.53

Piece-Regular 4.50 4.63 4.47 4.63 4.72 4.65 4.58 4.58

Table B.12: RMSE values of denoised signals. Signal length is 1024. Level of additive
Gaussian noise: σε = 20% of total signal magnitude. RMSE multiplied by a 102

Optimal
ICI

ICI-EPL
fixed Γo Γ∗

GGD Γ∗

k Γ∗

km

wavelet KS χ2 CM

Blocks 5.42 6.34 5.21 5.64 5.50 5.67 5.44 5.44

Bumps 6.57 6.83 6.82 6.88 6.90 6.88 7.05 7.05
Doppler 5.59 6.53 5.51 5.53 5.54 5.53 5.54 5.54

HeaviSine 3.24 4.00 3.61 3.66 3.66 3.66 3.67 3.67
Piece-Polynomial 4.86 5.82 4.83 5.41 5.43 5.43 5.44 5.44

Piece-Regular 5.72 5.86 5.78 6.04 6.06 6.03 6.04 6.04
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Table B.13: RMSE values of denoised signals. Signal length is 2048. Level of additive
Gaussian noise: σε = 5% of total signal magnitude. RMSE multiplied by a 102

Optimal
ICI

ICI-EPL
fixed Γo Γ∗

GGD Γ∗

k Γ∗

km

wavelet KS χ2 CM

Blocks 0.87 1.61 0.67 0.71 0.72 0.94 0.69 0.69

Bumps 1.39 1.67 1.42 1.54 1.45 1.92 2.33 2.33
Doppler 1.17 1.54 1.22 1.28 1.22 1.23 1.22 1.22

HeaviSine 0.84 0.94 0.79 0.85 0.87 0.88 0.83 0.83

Piece-Polynomial 0.91 1.35 0.73 0.77 0.77 0.77 0.80 0.80
Piece-Regular 1.27 1.31 1.05 1.11 1.40 1.08 1.16 1.16

Table B.14: RMSE values of denoised signals. Signal length is 2048. Level of additive
Gaussian noise: σε = 10% of total signal magnitude. RMSE multiplied by a 102

Optimal
ICI

ICI-EPL
fixed Γo Γ∗

GGD Γ∗

k Γ∗

km

wavelet KS χ2 CM

Blocks 1.99 2.92 1.55 1.75 1.62 2.07 1.65 1.65
Bumps 2.64 2.97 2.68 2.75 2.76 3.34 3.31 3.31
Doppler 2.25 2.88 2.22 2.23 2.23 2.23 2.23 2.23

HeaviSine 1.60 1.86 1.64 1.73 1.72 1.73 1.75 1.75
Piece-Polynomial 1.87 2.58 1.69 1.84 1.83 1.88 2.54 2.54

Piece-Regular 2.39 2.41 2.09 2.30 2.56 2.24 2.28 2.28

Table B.15: RMSE values of denoised signals. Signal length is 2048. Level of additive
Gaussian noise: σε = 15% of total signal magnitude. RMSE multiplied by a 102

Optimal
ICI

ICI-EPL
fixed Γo Γ∗

GGD Γ∗

k Γ∗

km

wavelet KS χ2 CM

Blocks 3.13 4.18 2.80 3.31 3.15 3.42 3.24 3.24
Bumps 3.86 4.15 3.98 4.04 4.04 4.26 4.44 4.44
Doppler 3.19 3.95 3.12 3.14 3.14 3.14 3.14 3.14

HeaviSine 2.05 2.66 2.26 2.36 2.36 2.36 2.37 2.37
Piece-Polynomial 2.84 3.74 2.86 3.68 3.67 3.67 3.76 3.76

Piece-Regular 3.41 3.56 3.41 3.59 3.69 3.60 3.56 3.56

Table B.16: RMSE values of denoised signals. Signal length is 2048. Level of additive
Gaussian noise: σε = 20% of total signal magnitude. RMSE multiplied by a 102

Optimal
ICI

ICI-EPL
fixed Γo Γ∗

GGD Γ∗

k Γ∗

km

wavelet KS χ2 CM

Blocks 4.20 5.33 4.13 4.44 4.44 4.58 4.36 4.36

Bumps 4.98 5.24 5.19 5.26 5.24 5.30 5.50 5.50
Doppler 4.07 5.02 4.01 4.03 4.02 4.02 4.03 4.03

HeaviSine 2.52 3.41 2.77 2.88 2.88 2.88 2.89 2.89
Piece-Polynomial 3.69 4.67 3.89 4.62 4.60 4.59 4.56 4.56

Piece-Regular 4.42 4.61 4.61 4.81 4.79 4.78 4.72 4.72
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Table B.17: RMSE values of denoised signals. Signal length is 4096. Level of additive
Gaussian noise: σε = 5% of total signal magnitude. RMSE multiplied by a 102

Optimal
ICI

ICI-EPL
fixed Γo Γ∗

GGD Γ∗

k Γ∗

km

wavelet KS χ2 CM

Blocks 0.69 1.25 0.50 0.54 0.57 0.60 0.52 0.52

Bumps 1.04 1.28 1.08 1.15 1.10 1.57 1.68 1.68
Doppler 0.87 1.20 0.93 0.96 0.93 0.95 0.93 0.93

HeaviSine 0.64 0.85 0.58 0.66 0.64 0.64 0.60 0.60

Piece-Polynomial 0.71 1.10 0.58 0.61 0.61 0.61 0.64 0.64
Piece-Regular 0.98 1.03 0.80 0.85 1.12 0.82 0.85 0.85

Table B.18: RMSE values of denoised signals. Signal length is 4096. Level of additive
Gaussian noise: σε = 10% of total signal magnitude. RMSE multiplied by a 102

Optimal
ICI

ICI-EPL
fixed Γo Γ∗

GGD Γ∗

k Γ∗

km

wavelet KS χ2 CM

Blocks 1.56 2.34 1.19 1.30 1.27 1.44 1.30 1.30
Bumps 1.99 2.34 2.05 2.10 2.10 2.24 2.49 2.49
Doppler 1.68 2.27 1.65 1.66 1.66 1.66 1.67 1.67

HeaviSine 1.24 1.67 1.28 1.35 1.35 1.36 1.33 1.33

Piece-Polynomial 1.43 2.15 1.29 1.37 1.37 1.38 1.99 1.99
Piece-Regular 1.81 1.93 1.55 1.70 1.87 1.68 1.71 1.71

Table B.19: RMSE values of denoised signals. Signal length is 4096. Level of additive
Gaussian noise: σε = 15% of total signal magnitude. RMSE multiplied by a 102

Optimal
ICI

ICI-EPL
fixed Γo Γ∗

GGD Γ∗

k Γ∗

km

wavelet KS χ2 CM

Blocks 2.44 3.45 2.09 2.49 2.39 2.55 2.46 2.46
Bumps 2.88 3.31 2.99 3.03 3.03 3.04 3.38 3.38
Doppler 2.51 3.23 2.46 2.47 2.46 2.47 2.47 2.47

HeaviSine 1.67 2.41 1.82 1.91 1.91 1.91 1.95 1.95
Piece-Polynomial 2.13 3.09 2.18 2.90 2.89 2.90 2.90 2.90

Piece-Regular 2.55 2.86 2.50 2.65 2.74 2.67 2.57 2.57

Table B.20: RMSE values of denoised signals. Signal length is 4096. Level of additive
Gaussian noise: σε = 20% of total signal magnitude. RMSE multiplied by a 102

Optimal
ICI

ICI-EPL
fixed Γo Γ∗

GGD Γ∗

k Γ∗

km

wavelet KS χ2 CM

Blocks 3.25 4.50 3.16 3.56 3.53 3.63 3.48 3.48

Bumps 3.74 4.22 3.96 3.99 3.99 3.98 4.30 4.30
Doppler 3.20 4.11 3.14 3.16 3.15 3.15 3.17 3.17

HeaviSine 2.00 3.10 2.26 2.34 2.34 2.35 2.36 2.36
Piece-Polynomial 2.76 3.92 3.26 3.86 3.86 3.86 3.78 3.78

Piece-Regular 3.28 3.74 3.52 3.66 3.66 3.68 3.67 3.67
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Appendix C

Parameter Γ Selection Method

Performance Plots

A statistical method for automated selection of the ICI-EPL Γ parameter value was

proposed in Chapter 4.3.2. The method is based on modeling the distribution of wavelet

coefficients at the last decomposition level. It was empirically devised and its performance

was briefly investigated by presenting a few performance examples only.

In this Appendix, we show all the performance plots of the proposed method for the

Blocks, Bumps, Doppler, HeviSine, Piece-Polynomial and Piece-Regular signals. Signal

lengths are ∈ {256, 512, 1024, 2048, 4096} samples. Noise corruption was simulated by

superimposing the Gaussian white noise to the signals. Noise levels considered are equal

to 5%, 10%, 15% and 20% of total signal magnitude.

Figures depict the performance of denoising algorithm, for all three goodness-of-fit

tests, in terms of the ratio:

RMSEΓ∗
GGD

/min(RMSE),

plotted against the GGD shape parameter c. To eliminate influence of particularities of a

given noise realization, the performance was averaged over 10 different noise realizations.

For more details about the method and discussion of results, see Chapter 4.
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Figure C.1: Performance of the Γ selection method for 256 samples long signals, corrupted
by additive white Gaussian noise with σε = 5% of total signal magnitude. Appropriate
GGD shape parameter value is denoted by the vertical line. Test signals: Blocks (a),
Bumps (b), Doppler (c), HeaviSine (d), Piece-Polynomial (e) and Piece-Regular (f)
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Figure C.2: Performance of the Γ selection method for 256 samples long signals, corrupted
by additive white Gaussian noise with σε = 10% of total signal magnitude. Appropriate
GGD shape parameter value is denoted by the vertical line. Test signals: Blocks (a),
Bumps (b), Doppler (c), HeaviSine (d), Piece-Polynomial (e) and Piece-Regular (f)
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Figure C.3: Performance of the Γ selection method for 256 samples long signals, corrupted
by additive white Gaussian noise with σε = 15% of total signal magnitude. Appropriate
GGD shape parameter value is denoted by the vertical line. Test signals: Blocks (a),
Bumps (b), Doppler (c), HeaviSine (d), Piece-Polynomial (e) and Piece-Regular (f)
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Figure C.4: Performance of the Γ selection method for 256 samples long signals, corrupted
by additive white Gaussian noise with σε = 20% of total signal magnitude. Appropriate
GGD shape parameter value is denoted by the vertical line. Test signals: Blocks (a),
Bumps (b), Doppler (c), HeaviSine (d), Piece-Polynomial (e) and Piece-Regular (f)
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Figure C.5: Performance of the Γ selection method for 512 samples long signals, corrupted
by additive white Gaussian noise with σε = 5% of total signal magnitude. Appropriate
GGD shape parameter value is denoted by the vertical line. Test signals: Blocks (a),
Bumps (b), Doppler (c), HeaviSine (d), Piece-Polynomial (e) and Piece-Regular (f)
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Figure C.6: Performance of the Γ selection method for 512 samples long signals, corrupted
by additive white Gaussian noise with σε = 10% of total signal magnitude. Appropriate
GGD shape parameter value is denoted by the vertical line. Test signals: Blocks (a),
Bumps (b), Doppler (c), HeaviSine (d), Piece-Polynomial (e) and Piece-Regular (f)
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Figure C.7: Performance of the Γ selection method for 512 samples long signals, corrupted
by additive white Gaussian noise with σε = 15% of total signal magnitude. Appropriate
GGD shape parameter value is denoted by the vertical line. Test signals: Blocks (a),
Bumps (b), Doppler (c), HeaviSine (d), Piece-Polynomial (e) and Piece-Regular (f)
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Figure C.8: Performance of the Γ selection method for 512 samples long signals, corrupted
by additive white Gaussian noise with σε = 20% of total signal magnitude. Appropriate
GGD shape parameter value is denoted by the vertical line. Test signals: Blocks (a),
Bumps (b), Doppler (c), HeaviSine (d), Piece-Polynomial (e) and Piece-Regular (f)
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Figure C.9: Performance of the Γ selection method for 1024 samples long signals, corrupted
by additive white Gaussian noise with σε = 5% of total signal magnitude. Appropriate
GGD shape parameter value is denoted by the vertical line. Test signals: Blocks (a),
Bumps (b), Doppler (c), HeaviSine (d), Piece-Polynomial (e) and Piece-Regular (f)
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Figure C.10: Performance of the Γ selection method for 1024 samples long signals,
corrupted by additive white Gaussian noise with σε = 10% of total signal magnitude.
Appropriate GGD shape parameter value is denoted by the vertical line. Test signals:
Blocks (a), Bumps (b), Doppler (c), HeaviSine (d), Piece-Polynomial (e) and Piece-Regular
(f)
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Figure C.11: Performance of the Γ selection method for 1024 samples long signals,
corrupted by additive white Gaussian noise with σε = 15% of total signal magnitude.
Appropriate GGD shape parameter value is denoted by the vertical line. Test signals:
Blocks (a), Bumps (b), Doppler (c), HeaviSine (d), Piece-Polynomial (e) and Piece-Regular
(f)
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Figure C.12: Performance of the Γ selection method for 1024 samples long signals,
corrupted by additive white Gaussian noise with σε = 20% of total signal magnitude.
Appropriate GGD shape parameter value is denoted by the vertical line. Test signals:
Blocks (a), Bumps (b), Doppler (c), HeaviSine (d), Piece-Polynomial (e) and Piece-Regular
(f)
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Figure C.13: Performance of the Γ selection method for 2048 samples long signals,
corrupted by additive white Gaussian noise with σε = 5% of total signal magnitude.
Appropriate GGD shape parameter value is denoted by the vertical line. Test signals:
Blocks (a), Bumps (b), Doppler (c), HeaviSine (d), Piece-Polynomial (e) and Piece-Regular
(f)
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Figure C.14: Performance of the Γ selection method for 2048 samples long signals,
corrupted by additive white Gaussian noise with σε = 10% of total signal magnitude.
Appropriate GGD shape parameter value is denoted by the vertical line. Test signals:
Blocks (a), Bumps (b), Doppler (c), HeaviSine (d), Piece-Polynomial (e) and Piece-Regular
(f)
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Figure C.15: Performance of the Γ selection method for 2048 samples long signals,
corrupted by additive white Gaussian noise with σε = 15% of total signal magnitude.
Appropriate GGD shape parameter value is denoted by the vertical line. Test signals:
Blocks (a), Bumps (b), Doppler (c), HeaviSine (d), Piece-Polynomial (e) and Piece-Regular
(f)
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Figure C.16: Performance of the Γ selection method for 2048 samples long signals,
corrupted by additive white Gaussian noise with σε = 20% of total signal magnitude.
Appropriate GGD shape parameter value is denoted by the vertical line. Test signals:
Blocks (a), Bumps (b), Doppler (c), HeaviSine (d), Piece-Polynomial (e) and Piece-Regular
(f)
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Figure C.17: Performance of the Γ selection method for 4096 samples long signals,
corrupted by additive white Gaussian noise with σε = 5% of total signal magnitude.
Appropriate GGD shape parameter value is denoted by the vertical line. Test signals:
Blocks (a), Bumps (b), Doppler (c), HeaviSine (d), Piece-Polynomial (e) and Piece-Regular
(f)
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Figure C.18: Performance of the Γ selection method for 4096 samples long signals,
corrupted by additive white Gaussian noise with σε = 10% of total signal magnitude.
Appropriate GGD shape parameter value is denoted by the vertical line. Test signals:
Blocks (a), Bumps (b), Doppler (c), HeaviSine (d), Piece-Polynomial (e) and Piece-Regular
(f)
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Figure C.19: Performance of the Γ selection method for 4096 samples long signals,
corrupted by additive white Gaussian noise with σε = 15% of total signal magnitude.
Appropriate GGD shape parameter value is denoted by the vertical line. Test signals:
Blocks (a), Bumps (b), Doppler (c), HeaviSine (d), Piece-Polynomial (e) and Piece-Regular
(f)
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Figure C.20: Performance of the Γ selection method for 4096 samples long signals,
corrupted by additive white Gaussian noise with σε = 20% of total signal magnitude.
Appropriate GGD shape parameter value is denoted by the vertical line. Test signals:
Blocks (a), Bumps (b), Doppler (c), HeaviSine (d), Piece-Polynomial (e) and Piece-Regular
(f)
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Abstract

We propose an adaptive lifting scheme with a goal of improving the wavelet transform

performance about edges in a signal. The adaptive algorithm is based on the statistical

method of intersection of confidence intervals (ICI) rule. It is used on a point-by-point

basis, and on each scale. As a final result, longer and smoother wavelets are used in

smooth signal regions, while shorter wavelets are used in higher frequency regions. The

approach allows for efficient reconstruction of edges or, in general, higher signal frequencies.

Additionally, a method for automated sensitivity parameter Γ value selection was proposed,

as its proper value is a prerequisite for high transform efficiency. The adaptive algorithm

was also tested in a real-world application of fluoroscopic image sequences denoising,

in which edge preservation is an essential requirement. The proposed adaptive edge

preserving lifting scheme and accompanying parameter Γ selection method were shown to

represent a well performing model of the second generation wavelets, i.e., wavelets which

inherit all the benefits and good properties of the classical wavelet transforms, while in

the same time introducing additional advantages and features.

Keywords: wavelet transform, adaptive lifting scheme, second generation wavelets,

local polynomial approximation, intersection of confidence intervals, signal denoising,

fluoroscopic imaging
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Sažetak

Predložena je adaptivna shema podizanja čiji je cilj pobolǰsavanje učinkovitosti valićne

transformacije u okolini rubova unutar signala. Adaptivni je algoritam baziran na

stastističkoj metodi pravilo presjeka intervala pouzdanosti (Intersection of Confidence

Intervals – ICI). Metoda se koristi na svakom nivou razlaganja i u svakoj točki signala.

Kao konačni rezultat, dulji i glatki valići koriste se za glatke dijelove signala, dok se kraći

valići koriste u dijelovima signala u kojima su prisutne vǐse frekvencije. Takav pristup

omogućava učinkovitu rekonstrukciju rubova unutar signala odnosno, općenito, visokih

frekvencija. Dodatno, predložena je i metoda za automatsko odredivanje vrijednosti

parametra osjetljivosti transformacije, Γ, čiji je dobar odabir preduvjet za njenu visoku

učinkovitost. Adaptivni je algoritam testiran i na primjeni uklanjanja šuma iz stvarnih

fluoroskopskih nizova slika, pri čemu je očuvanje rubova unutar slike ključan zahtjev.

Predložena adaptivna shema podizanja sa svojstvom očuvanja rubova unutar signala, te

pripadajuća metoda odabira Γ parametra, učinkovita su realizacija valića druge generacije,

odnosno valića koji zadržavaju sve prednosti i dobre značajke klasičnih valića, ali u isto

vrijeme donose i nove mogućnosti te pobolǰsanja učinkovitosti.

Ključne riječi: valićna transformacija, adaptivna shema podizanja, valići druge gen-

eracije, lokalna aproksimacija polinomima, presjek intervala pouzdanosti, uklanjanje šuma

iz signala, fluoroskopske snimke
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studija dobiva priznanje “Josip Lončar”. Diplomirao je 2000. godine te stekao zvanje
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