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Abstract

State Estimation and Multiple Moving Object Tracking on
Riemannian Manifolds

Multi-target tracking is an essential task in autonomous driving. In order to ensure
the safety of other participants in traffic, an autonomous vehicle needs reliable data about
the surrounding moving objects, such as other vehicles and pedestrians. Therefore, the
purpose of this thesis is to tackle some of the plethora of challenging problems of multiple
object tracking. First, the thesis presents a novel method for pedestrian tracking from
the sequences of images. The visual tracking of moving objects differs from using other
sensors in the availability of the objects’ appearance, which can be extremely beneficial
when dealing with one of the challenges of multi-target tracking – the detection-to-target
assignment ambiguity. Nonetheless, fusing appearance cues represented by deep features of
the neural networks together with the kinematic cues inside a classical multi-target tracking
framework, such as probabilistic data association, proves to be a non-trivial problem due to
the nonlinearity of the underlying space of deep embeddings. To this end, this dissertation
focuses on the problem of state estimation on Riemannianmanifolds – differentiable curved
spaces with metric structures. By utilizing the tools of the Riemannian geometry, this thesis
proposes a novel filtering method based on the unscented transform for systems whose
state-space is a tangent bundle of a Riemannian manifold. By modeling the state-space as a
tangent bundle of a manifold, it is possible to simultaneously estimate the position of the
object on the manifold and its velocity, which lies in the tangent space of the manifold. In
other words, it allows us to use the constant velocitymotion model for state estimation on
Riemannian manifolds. Even though this could be achieved by using an extended Kalman
filter for Riemannian manifolds, the advantage of the proposed method is that it uses the
unscented transform based on sigma-point representation to propagate the uncertainty of
the filter, thus avoiding the tedious calculation of Jacobians necessary for extended Kalman
filter. In the final part of the thesis, the state estimation methods for Riemannian manifolds
are adapted to the multi-target case resulting in the novel multi-target tracking method for
Riemannian manifolds based on probabilistic data association.

keywords: state estimation, multi-target tracking, Bayesian estimation, Kalman filter,
Riemannian geometry, nonlinear estimation
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Sažetak

Estimacija stanja i praćenje više gibajućih objekata na Riemannovim
mnogostrukostima

Praćenje više objekata jedan je od osnovnih preduvijeta autonomne vožnje. Kako bi
se osigurala sigurnost ostalih sudionika u prometu, autonomno vozilo treba pouzdane
podatke o okolnim gibajućim objektima, kao što su druga vozila i pješaci. Stoga je svrha
ove disertacije suočavanje s nekima od mnoštva izazovnih problema praćenja više objekata.
Prvo, rad predstavlja novu metodu za praćenje pješaka iz sekvenci slika. Vizualno praćenje
gibajućih objekate razlikuje se od praćenja pomoću drugih senzora u tome što su kod
vizualnog praćenja dostupni izgledi objekata, što može biti izuzetno korisno kod rješavanja
problema pridruživanja podataka. Unatoč tome, spajanje izgleda predstavljenog dubokim
značajkama neuronskih mreža zajedno s kinematičkim stanjem gibajućeg objekta unutar
klasičnih metoda praćenja više objekata, kao što je vjerojatnosno pridruživanje podataka,
pokazuje se kao zahtijevan problem zbog nelinearnosti prostora u kojem leže duboke znača-
jke. Zbog toga, ova se disertacija usredotočuje na problem estimacije stanja na Riemannovim
mnogostrukostima – diferencijabilnim zakrivljenim prostorima s pridruženom glatkom
metrikom. Korištenjem alata Riemannove geometrije, ova disertacija predlaže novumetodu
filtriranja koja se temelji na transformaciji pomoću sigma točaka za sustave čiji je prostor
stanja tangencijalni snop Riemannove mnogostrukosti. Modeliranjem prostora stanja kao
tangencijalnog snopa mnogostrukosti, moguće je istovremeno estimirati položaj objekta na
mnogostrukosti kao i njegovu brzinu, koja leži u tangentcijalnom prostoru mnogostrukosti.
Drugim riječima, omogućuje nam korištenje modela gibanja konstantne brzine za esti-
maciju stanja na Riemannovim mnogostrukostima. Iako bi se to moglo postići korištenjem
proširenog Kalmanovog filtra za Riemannove mnogostrukosti, prednost predložene metode
je u tome što koristi transformaciju temeljenu na reprezentaciji pomoću sigma točaka za
propagaciju nesigurnosti stanja filtra, čime se izbjegava zahtijevno izračunavanje Jakobije-
vih matrica potrebnih za prošireni Kalmanov filter na Riemannovim mnogostrukostima.
U završnom dijelu disertacije, metode estimacije stanja za Riemannove mnogostrukosti
prilagođene su za slučaj s više objekata, što je rezultiralo novom metodom praćenja više ob-
jekata na Riemannovimmnogostrukostima koja se temelji na vjerojatnosnom pridruživanju
podataka.
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Ovadisertacija predstavlja tri originalna znanstvena doprinosa koji dajumetode praćenja
više objekata na zakrivljenim prostorima. U nastavku su navedeni i ukratko opisani glavni
znanstveni doprinosi ove disertacije.

#1 Metoda praćenja pješaka zasnovana na združenom integriranom vjerojatnos-
nom pridruživanju nad dubokim ugrađivanjima.

Prvi doprinos ove disertacije pokriva novu metodu praćenja pješaka koja se
sastoji od dva duboka modela te metode praćenja više objekata na temelju
vjerojatnosnog pridruživanja podataka. Za detekciju pješaka korišten jeMask
R-CNN duboki model koji je unaprijed utreniran te nakon toga fino podešen
na COCO i CityPersons skupovima podataka. COCO skup podataka ko-
rišten je jer pruža veliku raznovrsnost u pozama ljudi, a CityPersons jer
sadrži maske istinitosti na razini piksela. Za generiranje dubokih značajki
izgleda korišten je drugi duboki model koji se temelji na ResNet-18 arhitek-
turi. Korištena su prva dva rezidualna bloka modela unaprijed treniranog na
ImageNet skupu podataka koja su dodatno fino podešena na MOT16 skupu
podataka. Za praćenje pješaka primjenjena je metoda združenog integrira-
nog vjerojatnosnog pridruživanja podataka koja koristi model konstantne
brzine za estimaciju stanja pojedinih pješaka.

#2 Metoda filtriranja sigma točkama na tangencijalnom snopu Riemannove mno-
gostrukosti

Ovaj doprinos pokriva proširenje metode za estimaciju stanja na Rieman-
novim mnogostrukostima na temelju transformacije pomoću sigma točaka.
Prethodno predložena metoda Kalmanova filtra temeljena na reprezentaciji
pomoću sigma točaka za sustave ograničene na Riemannovemnogostrukosti
razvijena je za jednostavne modele prijelaza stanja sustava. U sklopu ovog
doprinosa, metoda estimacije na Riemannovimmnogostukostima temeljena
na reprezentaciji pomoću sigma točaka proširena je na tangencijalni snop
Riemannove mnogostrukosti. To proširenje omogućuje primjenu modela
gibanja prvog reda, odnosno konstantne brzine, za estimaciju stanja na Rie-
mannovim mnogostrukostima. Također, prednost ove metode u usporedbi
s već postojećom metodom za estimaciju stanja na tangencijalnom snopu
Riemannove mnogostrukosti pomoću proširenog Kalmanovog filtra je što
predložena metoda ne zahtjeva računanje Jakobijevih matrica.

#3 Metoda za vjerojatnosno praćenje više objekata naRiemannovimmnogostrukos-
tima

Treći doprinos ove disertacije pokriva novu metodu praćenja više objekata
koji su ograničeni na glatke i zakrivljene prostore. Praćenje više objekata
pomoću vjerojatnosnog pridruživanja podataka prošireno je na glatke za-
krivljene prostore korištenjem Riemannove geometrije. Koraci predikcije i
ažuriranja predložene metode za praćenje više objekata dobiveni se prim-
jenom proširenog Kalmanovog filtara ili Kalmanovog filtra temeljenog na
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reprezentaciji pomoću sigma točaka za Riemannove mnogostrukosti. Pred-
ložena metoda praćenja više objekata na Riemannovim mnogostrukostima
podržava i model nultog reda kao i model gibanja prvog reda.

Disertacija je podjeljena u sedam poglavlja. Na početku svakog poglavlja dan je kratak
sažetak koji uvodi metode opisane u tom poglavlju. Nakon toga dan je kratak pregled
literature usko vezane za navedenumetodu. Nadalje, čitatelja se postepeno uvodi u probleme
koje predložena metoda rješava. Na kraju svakog poglavlja dan je kratki sažetak.

Prvo poglavlje disertacije predstavlja uvod u disertaciju. Na početku poglavlja, dana je
formulacija problema kojih rješavamo te motivacija. Nakon toga navedeni su te ukratko
opisani znanstveni doprinosi disertacije. Na poslijetku poglavlja, opisana je struktura dis-
ertacije te dan kratak sažetak svakog poglavlja.

Drugo poglavlje daje pregled Riemannove geometrije neophodan za razumijevanje ove
disertacije. Riemannova geometrija pruža nam alate za diferencijalnu analizu na glatkim
zakrivljenim prostorima. Prvo se razmatraju opće Riemannove mnogostrukosti. Definira
se tangencijalni prostor Riemannove mnogostrukosti te glatki metrični tenzor pomoću
kojega možemo izračunati skalarni produkt tangencijalnih vektora na mnogostrukosti.
Nadalje, pomoću metričnog tenzora moguće je izračunati duljine krivulja kao i kuteve
između krivulja na mnogostrukosti. Nakon toga uvedeni su geodezici, koji su krivulje koje
lokalno povezuju točke na mnogostrukosti najkraćim putem. Uvede se dva preslikavanja
izmeđumnogostrukosti i njezinog tangencijalnog prostora – eksponencijalno i logaritamsko
preslikavanje. Nadalje, razmatra se i geometrija tangencijalnog snopa Riemannove mno-
gostrukosti koji je i sam Riemannova mnogostrukost. Zatim, navedeno je nekoliko primjera
Riemannovih mnogostrukosti kao što su n-dimenzionalna sfera te prostor simetričnih
pozitivno-definitnih matrica. Na poslijetku se uvode koncentrirane Gaussove distribucije
na tangencijalnom prostoru mnogostrukosti kao generalizacija multivarijatne normalne
distribucije.

Treće poglavlje daje pregled stanja tehnike u području estimacije stanja i praćenja više
objekata. Poglavlje započinje s uvodom u teoriju Bayesove estimacije. Zatim se uvode
Kalmanov filtar i njegova nelinearna proširenja kao posebni slučajevi Bayesovog filtra.
Još jedna klasa Bayesovog filtara, von Mises-Fisher filtar, također je predstavljen u ovom
poglavlju. Drugi dio ovog poglavlja razmatra proširenje klasičnih metoda estimacije stanja
na praćenje više objekata. Prikazana su tri različita pristupa problemu praćenja više objekata.
Jedna od te tri grupe metoda praćenja više objekata je praćenje pomoću vjerojatnosnog
pridruživanja podataka. Te metode rješavaju problem pridruživanja detekcija objektima na
način da generiraju listumeđusobno isključivih hipoteza o tome koja detkcija pripada kojem
objektu. Zatim, za svaku od tih hipoteza izračuna se njezina vjerojatnost, a potom se za svaku
detekciju izračuna vjerojatnost da ta detekcija potječe od svakog pojedinog objekta. Stanje
svakog objekta se onda ažurira s otežanom srednjom vrijednosti svih dostupnih detekcija,
pri čemu se svaka detekcija oteža s pripadajućom vjerojatnosti pridruživanja. Praćenje
pomoću višestrukih hipoteza predstavlja drugu grupu metoda praćenja više objekata. Te
metode grade globalno stablo hipoteza asocijacije između detekcija i objekata. Na taj se
način odgađa odluka o asocijaciji detekcija u trenutnom koraku algoritma. Na temelju novih
detekcija stablo hipoteza se proširuje s novim hipotezama te se zatim uklanjaju one hipoteze
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čija je vjerojatnost zanemariva kako bi se osiguralo da je algoritam računalno izvodljiv.
Treća grupa metoda praćenja više objekata su metode temeljene na slučajnim konačnim
skupovima. Umjesto eksplicitnog rješavanja problema pridruživanja detekcija objektima,
kod ovih metoda se cijeli više-objektni sustav modelira pomoću slučajnih skupova. Budući
slučajni skupovi imaju slučajan broj elemenata, pri čemu je svaki element slučajni vektor, ti
skupovi su pogodni za praćenje više objekata jer implicitnomodeliraju vremenski promjenjiv
broj objekata kao i nesigurnost pridruživanja detekcija objektima. Na kraju poglavlja, dane
su neke od metoda za evaluaciju algoritama praćenja više objekata.

Četvrto poglavlje predlaže metodu za praćenje pješaka pomoću vjerojatnosnog pridruži-
vanja podataka i dubokih značajki. Prvi dio poglavlja predstavlja duboke neuronske modele
koji se kasnije koriste za detekciju pješaka i generiranje dubokih značajki. Za detekciju
pješaka u nizu slika korišten je Mask R-CNN detektor. Detektor je prethodno uvježban na
COCO skupu podataka, a zatim fino podešen na skupu podataka CityPersons. Duboke
značajke dobivene su iz drugog dubokog modela, koji se temelji na ResNet-18 arhitekturi.
Eksperiment ablacije pokazao je da ugradnje izvađene iz posljednjeg sloja drugog rezidu-
alnog bloka ResNet-18 daju najbolje rezultate. Model duboke korespondencije uvježban
je na MOT2016 skupu podataka. Združeni integrirani filtar vjerojatnosnog pridruživanja
podataka prilagođen je kako bi se postiglo praćenje pješaka na temelju detekcija dobivenih
Mask R-CNN detektorom. Metoda je evaluirana na javno dostupnim MOTChallenge
skupovima podataka, gdje je ostvarila #1 rank u 3DMOT2015 kategoriji.

Peto poglavlje uvodi novu metodu za estimaciju stanja na Riemannovim mnogostrukos-
tima. Polazeći od proširenja Kalmanovog filtra temeljenog na reprezentaciji pomoću sigma
točaka za sustave koji su ograničeni na Riemannove mnogostrukosti, proširujemo ga ko-
rištenjem modela gibanja prvog reda, odnosno modelom konstantne brzine. Kako bi se
implementirao model gibanja prvog reda na Riemannovim mnogostrukostima, korištena
je geometrija tangencijalnog snopa mnogostrukosti. Predložena metoda filtriranja eksperi-
mentalno je provjerena u Monte Carlo simulacijama na nekoliko različitih Riemannovih
mnogostrukosti: jedinične n-dimenzionalne sfere, prostor simetričnih pozitivno-definitnih
matrica te prostor dijagonalnih pozitivno-definitnih matrica. Iako predložena metoda
postiže slične rezultate kao prošireni Kalmanov filtar s modelom gibanja prvog reda na
Riemannovoj mnogostrukosti, njezina prednost je u tome što ne zahtijeva Jakobijeve ma-
trice modela gibanja koje bi mogle biti komplicirane ili za izračunavanje na pojedinim
mnogostrukostima.

Šesto poglavlje predstavlja novu metodu praćenja više objekata za objekte koji se kreću
po Riemannovim mnogostrukostima. Predložena metoda dobivena je proširenjem metoda
procjene stanja za Riemannove mnogostrukosti uvedenih u petom poglavlju. Vjerojatnosno
pridruživanje podataka korišteno je za rješavanje problema pridruživanja detekcija objek-
tima u slučaju praćenja jetnog objekta, a združeno vjerojatnosno pridruživanje podataka
u slučaju praćenja više objekata. U eksperimentalnoj evaluaciji razmatrano je nekoliko
različitih implementacija filtara vjerojatnosnog pridruživanja podataka na Riemannovim
mnogostrukostima: pomoću proširenog Kalmanovog filtra te na temelju Kalmanovog filtra
temeljenog na reprezentaciji pomoću sigma točaka. Uz to, korišteni su i modeli gibanja
nultog reda i prvog reda. U simulacijama su korištena dva različita primjera Riemannove
mnogostrukosti: jedinična sfera te prostor dijagonalnih simetričnih pozitivno definitnih

xiii



matrica.
Posljednje poglavlje daje zaključak disertacije te diskutira o potencijalnim budućim

smjerovima istraživanja.

ključne riječi: estimacija stanja, praćenje više objekata, Bayesova estimacija, Kalmanov
filter, Riemannova geometrija, nelinearna estimacija
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Chapter 1
Introduction



“A person who never made
a mistake, never tried anything new.”

– Albert Einstein

T he introduction chapter elaborates the motivation behind the research con-
ducted within this thesis. First, we start by discussing what exactly does the task of the

multi-target tracking refer to. There we discuss on the many challenging problems that arise
in multi-target tracking applications. Then we proceed with introducing the geometry of
the curved spaces in the context of state estimation and multi-target tracking. Subsequently,
the original contribution of the thesis are presented together with a short summary of each
of them. Finally, we provide the outline and the structure of the thesis and give a short
summary of each chapter.

1.1 Motivation and Problem Statement
Many challenging problems arise in multi-target tracking (MTT) compared to classical
estimation such as missing detections, false alarm, uncertainty in measurement origin and
many others [1]. Most of the state-of-the-art MTT algorithms can be divided in three groups
with respect to how they treat the unknownmeasurement origin (data association): (i) prob-
abilistic data association (PDA), (ii) multiple hypothesis tracking (MHT) and (iii) random
finite sets (RFS) tracking. PDA and its variants [2–5] calculate posterior association probabil-
ities between tracks and received detections and then update each target with the weighted
sum of detections. MHT methods [6, 7] handle the detection origin uncertainty by creating
a tree of possible association hypotheses. The tree is created recursively while the unlikely
hypotheses are discarded to reduce the computational load. RFS tracking methods [8–11]
are paradigm that does not solve the data assignment problem directly but rather formulate
the tracking as filtering on random finite sets [12]. Regardless of the MTT approach, the
underlying geometry of the tracked targets state does not have to necessarily reside on a
Euclidean space.

Non-Euclidean spaces have recently been addressed in many robotic and computer
vision applications [13, 14]. Rigid body pose can be naturally modelled as an element of
the Lie group, hence state-of-the-art simultaneous localisation and mapping (SLAM) and
pose estimation algorithms rely on the geometry of the underlying space [15–19]. Other
examples of using non-Euclidean geometry can be found in state estimation and tracking
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on directional only data, which can be accomplished by utilizing directional distributions,
such as the vonMises-Fisher or the Bingham distribution [20–24]. In visual tracking, object
appearance is very useful in the detection-to-target association procedure which can be
represented using hand-crafted features [25–27] or deep neural network features [28–30].
Both directional only data and covariance features lie on smooth metric spaces called
Riemannian manifolds (RMs) [14]. Visual tracking applications can use the geometry of
those spaces to find the optimal assignment between detected and tracked objects [31], but
they often ignore the dynamics of objects and the uncertainty of deep features. Nonetheless,
filtering methods involving RM valued systems have been introduced in [32–34].

1.2 Original Contributions of the Thesis
This thesis provides three original scientific contributions which offer multi-target tracking
methods for objects that evolve on curved spaces. Hereafter we introduce all contributions
and provide a brief elaboration of each of them:

#1 A method for pedestrian tracking based on joint integrated probabilistic data
association over deep embeddings.

The first contribution of this thesis covers the novel pedestrian tracking
method which consist of an Mask R-CNN object detector and probabilistic
data association tracker. The Mask R-CNN object detector is pre-trained
and fine-tuned on different datasets in order to avoid overfitting.

#2 A method for sigma point filtering on the tangent bundle of a Riemannian
manifold.

This contribution covers the novel method for state estimation on Rieman-
nian manifolds based on unscented transform. Previously proposed un-
scented Kalman filter method for systems constrained on Riemannian mani-
fold considered simple state transition model.

#3 A method for probabilistic multiple object tracking on Riemannian manifolds.

The third contribution covers the novel multi-target tracking method for
targets that are constrained to smooth and possibly curved spaces. The
probabilistic data association based multi-target trackers are extended to the
smooth, curved spaces by utilising the Riemannian geometry.The prediction
and update steps of the novel tracker are obtained by applying extended
and unscented Kalman filters for Riemannian manifolds. The proposed
Riemannian manifold multi-target tracking method supports both the zero-
order as well as first-order motion model.

1.3 Outline of the Thesis
This thesis is organised into seven chapters. Each chapter begins with a brief abstract
which aims to concisely present the method proposed in the chapter and its contributions.
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Afterwards, the reader is gradually introduced to the problem and the related work in the
field. In the end of each chapter, a short summary is given which restates some of the main
results of the chapter, obtained experimental results and conclusions that stem from them.
The sequel of this section presents the outline of the thesis with a short summary of each
chapter.

Chapter 2 This chapter presents the overview of the Riemannian geometry necessary
for the understanding of this thesis. The Riemannian geometry provides
the tools for the differential analysis on the smooth curved spaces. First,
the general Riemannianmanifolds are considered followed by some exam-
ples of Riemannian manifolds. Additionally, the geometry of the tangent
bundle of the Riemannian manifold is also considered. Concentrated
Gaussian distributions on the tangent space of the manifold are intro-
duced as an generalisation of the multivariate normal distribution.

Chapter 3 This chapter gives an overview of the state-of-the-art of the state estima-
tion andmulti-target tracking. First, the theory of the Bayesian estimation
is presented.Then, the Kalman filter and its nonlinear extensions are intro-
duced as special cases of the Bayes filter. Another class of Bayes filter, the
vonMises-Fisher filter, is also presented in this chapter.The second part of
this chapter considers the extension of the classical state estimation to the
multi-target tracking. Three different approaches to multi-target tracking
problem are presented. Finally, some multi-target tracking evaluation
methods are introduced.

Chapter 4 This chapter proposes a method for pedestrian tracking via probabilistic
data association and deep embeddings. The first part of the chapter in-
troduces deep neural models used to detect pedestrians and generate the
deep correspondence embeddings. The Mask R-CNN detector was used
to detect the pedestrians on the image. The detector was pre-trained on
the COCO dataset and then fine-tuned on the CityPersons dataset. Deep
correspondence embeddings were extracted from another deep model,
which was constructed from the ResNet-18 architecture. The ablation
experiment showed that the embeddings extracted from the last layer of
the second residual block of the ResNet-18 yield best results. The deep
correspondence model was trained on the MOT2016 dataset. The joint
integrated probabilistic data association filter was adapted in order to
achieve multi-target tracking given the detections obtained by the Mask
R-CNNdetector.Themethodwas evaluated on the publicMOTChallenge
benchmark where it was ranked #1 result on the 3DMOT2015 dataset.

Chapter 5 This chapter introduces the novel method for state estimation on Rieman-
nian manifolds. Starting from the unscented Kalman filter for systems
that evolve on Riemannian manifold, we extend it using the first-order
motion model. In order to implement the first-order motion model on
Riemannian manifold, the theory the geometry of the tangent bundle of
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the manifold was utilised. The proposed filtering method was experimen-
tally verified in Monte Carlo simulations on two different Riemannian
manifolds. Although the proposed method achieves similar results as the
extended Kalman filter with the first-order motion model on the Rieman-
nian manifold, it does not need Jacobians of the motion model which
might be tedious or even impossible to calculate on some manifolds.

Chapter 6 This chapter presents the novel multi-target tracking method for targets
moving on Riemannian manifolds. The proposed method was imple-
mented by extending the state estimation methods for Riemannian mani-
folds introduced in chapter 5. Probabilistic data association was utilized
to solve the measurement-to-target assignment problem in single-target
case and joint probabilistic data association in multi-target case. In the ex-
perimental evaluation, a few different implementation of the Riemannian
manifold probabilistic data association filters were considered: one based
on the extended Kalman filter and one based on the unscented Kalman
filter. Additionally, both the zero-order and first-order motion models
were used. Two different manifolds were used in simulations: the unit
sphere and the space of positive definite matrices.

Chapter 7 This chapter presents the conclusion of the thesis and gives a summary of
each scientific contribution of the thesis.



Chapter 2
Riemannian Geometry



T he purpose of this chapter is to give a brief introduction to the field of Riemannian
geometry necessary to understand the rest of the thesis. The Riemannian geometry

studies the geometry of smooth spaces equipped with metric tensor that are also known as
Riemannian manifolds (RMs). A d-dimensional manifoldM is a connected space such
that there exists a neighbourhood U at each point inM which is homeomorphic to some
open subset Ω on Rd [35]. Hence, there exists a continuous bijective mapping x ∶ U → Ω
which is called a local coordinate chart. A set of charts {Ua , xa}na=1 that covers the complete
manifoldM is called an atlas ofM. Furthermore, if all transitions between the charts in an
atlas are differentiable, then the atlas is called differentiable atlas.

Definition 2.1 (Differentiable atlas [35]). An atlas {Ua , xa}na=1 is called differentiable
atlas if for any two charts Ua and Ub such that Ua ∩Ub ≠ ∅, the chart transition

xb ○ x−1a ∶ xa(Ua ∩Ub) → xb(Ua ∩Ub)
is differentiable of class C∞.

AmanifoldM together with the differentiable atlas {Ua , xa}na=1 is called a differentiable
or smooth manifold. A representation of a point p ∈ Ua in a chart is given by (x1, . . . , xd) =
xa(p) and (x1, . . . , xd) are called local coordinates of p in chart (Ua , xa).

Definition 2.2 (Differentiable manifold). Differentiable, or smooth, manifold is an
manifoldM together with the differentiable atlas.

2.1 Tangent Space
Although differentiable manifolds are generally curved spaces and thus are not Euclidean,
they can be well approximated by the Euclidean space at the neighbourhood of each of its
points p ∈ M. Such spaces are called tangent spaces ofM and are denoted with TpM. Let
x = (x1, ..., xn) represent a local coordinate chart on some subset U ∈ M and let p ∈ U
be a point on a manifold. The partial derivatives ∂

∂x i for i ∈ (1, . . . , d) at point p span the
tangent space TpM [35]. In the following, ∂i will be used as a shorthand notation for ∂

∂x i .
Thus, all tangent vectors u ∈ TpM can be expressed in local coordinates as u = u i∂i , where(u1, . . . , ud) are components of u in chart (U , x). Here and in the sequel we use the Einstein
notation, i.e. repeating the same index once as a subscript and once as a superscript denotes

7
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M
Ua

Ub

xa

xb

Rd

Rd

xb ○ x−1axa ○ x−1b

Figure 2.1: Smooth d-dimensional manifoldMwith two subsetsUa andUb with smooth maps
xa and xb respectively. Map xa provides local coordinate representation of subset Ua in Rd ,
while xb provides local coordinate representation of Ub. The change of coordinates between
these two local charts are given by transitions xb ○ x−1a and xa ○ x−1b which are differentiable of
class C∞ on the set Ua ∩Ub.

summation over that index from 1 to the dimension of the space), hence u i ∂i stands for∑d
i=1 u i ∂i , while

gi ju iv j = d∑
i , j=1 gi ju

iv j.

In numerical applications it is sometimes necessary to switch from one coordinate chart
to another. For example, during state estimation on manifold, a state might move out of
the domain of a chart and different chart must be used. Let x̄ represent the new coordinate
chart and let (u1, . . . , ud) be components of u ∈ TpM in coordinate chart x. The coordinate
transformation of u is given by [35]

ū j = ∂x̄ j

∂x i u
i , (2.1)

where ∂x̄ j

∂x i are components of the Jacobian of coordinate change. Furthermore, let f ∶ M → N
be a smooth mapping from manifoldM to manifold N . The differential of f at point p
is then the linear map d f (p) ∶ TpM→ Tf (p)N . Denote with F i

j components of d f (p) in
local charts x onM and y onN . Let now x̄(x) be a coordinate change onM and ȳ(y) a
coordinate change onN . The coordinate transformation of d f (p) is then given by [35]

F̄a
b = ∂ȳa

∂y i
∂x j

∂x̄b
F i
j . (2.2)
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2.2 Riemannian Metric
So far we have defined what the smooth manifolds are and we showed that any smooth
manifold can be locally approximated with the Euclidean space. However, to be able to
measure lengths of curves and angles between tangent vectors on smooth manifold, it is
necessary to introduce the metric structure on differentiable manifold. Since each tangent
space TpM is Euclidean space, it can be equipped with the scalar product ⟨u, v⟩p. Moreover,
ifM is a smooth manifold, it is possible to define ⟨u, v⟩p in such a way that it depends
smoothly on point p ∈ M [35].

Definition 2.3 (Metric tensor [35]). The Riemannian metric g on smooth manifoldM is the bilinear symmetric positive-definite tensor, which induces the scalar product⟨u, v⟩p on each tangent space TpM. This scalar product can be written in coordinate
chart x as ⟨u, v⟩p = gi j(x(p))u iv j, (2.3)

where gi j are components of metric tensor g at point p in chart x, while u i and v j are
respectively components of tangent vectors u, v ∈ TpM in the same coordinate chart
x. A smooth manifoldM endowed with the metric tensor g is called the Riemannian
manifold (RM).

Equation (2.3) can also be written in matrix notation as uTG(x(p))v, where G is the
matrix representation of metric tensor g. The norm of the tangent vector u ∈ TpM is then
given by ∥u∥p = √⟨u, u⟩p. (2.4)

Let now γ(t) ∶ [a, b] →M be a smooth curve on manifoldM. The velocity γ̇(t) at each
point of the curve is then the tangent vector ofM. Thus, it is possible to measure length of
γ(t) by using the metric tensor g [35]

L(γ) = ∫ b

a
∥γ̇(t)∥γ(t) dt = ∫ b

a

√
gi j(x(γ(t))) γ̇ i(t) γ̇ j(t)dt. (2.5)

Similarly, the energy of a curve is defined by [35]

E(γ) = 1
2 ∫

b

a
∥γ̇(t)∥2γ(t) dt. (2.6)

Now it is possible to define the distance between two points p and q on manifoldM as the
length of the shortest piecewise smooth curve connecting p and q [35]

dM (p, q) = inf{L(γ); γ ∶ [a, b] →M}, (2.7)

where γ(a) = p and γ(b) = q. It can be easily showed that this definition satisfies the usual
distance axioms [35].

2.3 Connection
It is often necessary to perform various operations on tangent vectors that do not lie on the
same tangent space. For this purpose, it is possible to equip the smooth manifold with the
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u1

u2 u3

u4

v1
v2 v3

v4 M

γ

Figure 2.2: Parallel transport of vectors u and v along a curve γ on a manifold.

affine connection ∇. Such connections joins infinitesimally close tangent spaces. However,
due to the non-existence of the global coordinate system for general smooth manifolds
there is not a unique way to define the affine connection. One example of a connection is the
Levi-Civita connection [35], which is often referred to as a covariant derivative. Informally,
the covariant derivative is the generalization of the directional derivative from the usual
vector calculus.

Definition 2.4 (Covariant derivative). An affine connection ∇ is called a covariant
derivative if

a) it is compatible with the metric tensor g, i.e. , ∇g = 0
b) it is torsion-free, i.e. , ∇uv − ∇vu = [u, v] for any two vector fields

u and v onM, where [u, v] is the Lie bracket operation on vector
fields.

The covariant derivative of the vector field v = v i∂i with respect to vector field u = u i∂i
in a coordinate chart x ∶ U → Rd , where U ⊂M, is given by [35]

∇uv = (u j ∂vk
∂x j + u jv iΓk

i j) ∂k. (2.8)

Coefficients Γk
i j are called Christoffel symbols of the second kind and are given by [35]

Γk
i j = 1

2
gkl ( ∂

∂x j gi l + ∂
∂x i g jl − ∂

∂x l gi j) , (2.9)

and gkl are elements of the inverse of a metric tensor g. The first term in (2.8) is the usual
directional derivative while the second term accounts for the curvature of the coordinate
system with respect to the covariant derivative.
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2.3.1 Parallel Transport
By applying the covariant derivative it is possible to define the parallel transport of the
tangent vectors along smooth curves on manifold. Let γ ∶ [a, b] →M be a smooth curve
on manifoldM and let u(t) be a smooth vector field defined along γ(t). The vector field u
is said to be parallel along curve γ(t) with respect to covariant derivative, if it satisfies

∇γ̇(t)u(t) = 0. (2.10)

A parallel transport between two points p and q on a smooth manifoldM, in general, is
not uniquely defined, but it depends on the choice of the curve γ connecting p and q. The
parallel transport is visualised on the figure 2.2.

2.3.2 Curvature
In general, the covariant derivative on the RM does not commute, i.e.

∇u∇vw ≠ ∇v∇uw,
where u, v, and w are smooth vector fields on manifoldM. This non-commutativity is
captured by the Riemann curvature tensor defined by [35]

R(u, v)w = ∇u∇vw −∇v∇uw −∇[u, v]w, (2.11)

where [u, v] is the Lie bracket operation on the vector fields u and v. The components of
the curvature tensor are given by

R i
jkl = ∂kΓi

l j − ∂lΓi
k j + Γi

kmΓml j − Γi
lmΓmk j , (2.12)

2.4 Geodesics
In Euclidean space, there is a concept of a straight line, a shortest line connecting two points.
Due to the curvature, there is no such thing as a straight line on a general smooth manifold.
Nonetheless, it is possible to generalize the concept of the smooth shortest path connecting
close-by points on the manifold by minimizing the length or energy functionals given by
eqs. (2.5) and (2.6). Such curves are called geodesics and can be taught of as straight lines
on the smooth manifold.

Let x ∶ U → Rd be a coordinate chart onM. Then the Euler-Lagrange equations of the
energy functional (2.6) are [35]

ẍ i(t) + Γi
jk(x(t)) ẋ j(t) ẋk(t) = 0. (2.13)

Thus, we define:

Definition 2.5 (Geodesic curve [35]). A smooth curve γ ∶ [a, b] → M which mini-
mizes the energy functional (2.6) is called geodesic and it satisfies (2.13) with ẋ i(t) =
d
dt x i(γ(t)).
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2.4.1 Exponential and Logarithmic Map
LetM be an RM and let p ∈ M. It can be shown that there exists a neighbourhood
V = {v ∈ TpM ∶ ∥v∥p < ε} for some ε > 0 such that for each tangent vector v ∈ V there exist
a unique geodesic γ passing through p such that its velocity at p equals v [35]. Hence, it is
possible to define a diffeomorphic mapping from V to the neighbourhood of p ∈ M.

Definition 2.6 (Exponential map [35]). LetM be an RM and p ∈ M. Denote with
γv(t) a geodesic starting at p with velocity γ̇v(0) = v ∈ TpM and let Vp be a subset
of TpM such that for any v ∈ Vp, the geodesic γv(t) is uniquely defined on [0, 1]. The
diffeomorphism

Expp ∶ Vp →M
v ↦ γv(1)

is called the exponential map of manifoldM at p.

For many manifolds it is possible to extend the domain of the exponential to the entire
TpM for all p ∈ M. Such manifolds are called geodesically complete manifolds [35]. Infor-
mally, the inverse of the exponential map, when it exists, is called the logarithmic map and
it maps the neighbourhood of p ∈ M to the tangent space TpM. Note that the logarithmic
map does not need to be unique even in the case of geodesically complete manifold. For
example, two antipodal points on sphere can be connected by infinitely many geodesics, all
of the same length. The logarithmic map is denoted with

Logp ∶ M → TpM
q ↦ v.

When there is a unique shortest geodesic connecting two points p and q ∈ M, then Logp(q)
is uniquely defined and following holds

dM (p, q) = ∥Logp(q)∥p. (2.14)

2.5 Tangent Bundle
Tangent bundle TM of a manifoldM is a union of all its’ tangent spaces

TM= ⋃
x∈MTxM. (2.15)

Thus a pair p = (x , v), where x ∈ M and v ∈ TxM, forms a point of a tangent bundle
TM. A choice of local coordinates x = (x1, ..., xn) onM thus naturally induces the local
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Figure 2.3: Exp and Log maps of a Riemannian manifoldM.

coordinates p = (x1, ..., xn , v1, ..., vn) on TM and the basis ( ∂
∂x1 , ...,

∂
∂xn ) induces the basis( ∂

∂p1 , ...,
∂

∂p2n ) = ( ∂
∂x1 , ...,

∂
∂xn ,

∂
∂v1 , ...,

∂
∂vn ) on the tangent space TpTM.

Let now x̄ i(x1, ..., xn) be a coordinate change onM and v i components of a tangent
vector v ∈ TxM. From (2.1) we have that the components of v change by multiplying it with
the Jacobian of the coordinate change ∂x̄ i

∂x j . Hence the induced coordinate change on TM is
given by

(x , v) → (x̄(x), ∂x̄ i

∂x j (x) ⋅ v j) . (2.16)

Similarly as in the case of a simple manifoldM, the coordinate transformation of tangent
vector µ ∈ TpTM at point p = (x , v) is obtained by multiplying it with the Jacobian of the
coordinate change (2.16) which is given by

∂p̄
∂p
= ⎡⎢⎢⎢⎢⎣

∂x̄ i
∂x j 0

∂
∂xk ( ∂x̄ i∂x j ⋅ vk) ∂x̄ i

∂x j

⎤⎥⎥⎥⎥⎦ . (2.17)

Tangent bundle of a Riemannian manifold is a Riemannian manifold as well [35] and
can be endowed with the natural metric g̃ called Sasaki metric given the metric g of the
manifoldM[36, 37]. The tangent space TpTM at point p = (x , u) can be split in horizontal
and vertical subspaces HpTM and VpTM [36]. Let v = ξH + µV ∈ TpTM be a tangent
vector of TM at point p, where ξH is its horizontal component and µV vertical component.
Both of these components can be represented by tangent vectors ofM at point x. Lifts from
the tangent space of TxM to horizontal and vertical subspaces of TpTM are denoted by[⋅]H ∶ TxM→ HpTM and [⋅]V ∶ TxM→ VpTM. Expressions for horizontal and vertical
lifts of ν ∈ TxM to T(x ,v)TM in local coordinates are [36]

νH = ν i ∂
∂x i − ν jvkΓi

jk
∂
∂v i

, (2.18)

νV = ν i ∂
∂v i

. (2.19)
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Logx̄ Expx̄
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x
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y
ȳ
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Figure 2.4: An example of the coordinate change on manifoldM. In first coordinate system
(left) we have two points, x and y, whose coordinates in the other coordinate system (right) are
x̄ = f (x) and ȳ = f (y). Logx maps the neighbourhood of x to the tangent space TxM at point
x and Expx maps the tangent space TxM to the neighbourhood of x. Similarly, we have the
tangent space Tx̄M and maps Expx̄ and Logx̄ in the other coordinate system (left) In essence,
TxM and Tx̄M are the same tangent space represented in different basis and the transformation
between two is given by the Jacobian of the coordinate transformation df ∶ TxM→ Tx̄M. If,
for example, we are given the point x and tangent vector u ∈ TxM and we want to calculate
y = Expx(u), but the expression for the exponential map is too complex in the first (left)
coordinate system compared to the second (right), we can transform the tangent vector to the
second coordinate system by ū = df ⋅ u, then calculate ȳ = Expx̄(ū) and finally transform back
to the first coordinate system y = f −1( ȳ).
Now let v = ξH + µV and w = νH + ηV be two tangent vectors of a tangent bundle at

point p. Scalar product of v and w with respect to metric tensor g̃ is given by

⟨v ,w⟩p = ⟨ξ, ν⟩x + ⟨µ, η⟩x = ξTG(x) ν + µTG(x) η, (2.20)

where ⟨⋅, ⋅⟩x is a scalar product onM. Let γ(t) = (x(t), u(t)) be a smooth curve on TM.
γ is a geodesic of TM if following holds

∇̃γ̇γ̇ = 0, (2.21)

where ∇̃ is the covariant derivative of the metric G̃. by decomposing γ̇ = µH + νV to its
horizontal µ and vertical ν components, geodesic equation can be written as [38]

∇µµ = R(u, ν)µ, (2.22)

∇µν = 0, (2.23)

where R(u, v)w and ∇ are the Riemannian curvature tensor and covariant derivative ofM. Solving (2.22) and (2.23) does not yield a closed form solution even ifM has a closed
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form solution for its geodesic equation. However, exponential and logarithmic mappings
of a tangent bundle can be calculated numerically by using expressions of a base manifold
[38]. Exponential map can therefore be obtained using numerical integration of (2.22) and
(2.23), while the logarithmic mapping is obtained by optimisation procedure.

Let p = (x , u) ∈ TM be a point of the tangent bundle and w = (ν, µ) ∈ TpTM be
a tangent vector. The exponential map of tangent bundle can be calculated by repeating
following equations N times [38]:

xk+1 = Expxk ενk, (2.24)

uk+1 = Pxk→xk+1 (uk + εµk) , (2.25)

νk+1 = Pxk→xk+1 (νk − εR(uk , µk)νk) , (2.26)

µk+1 = Pxk→xk+1 (µk) , (2.27)

where ε = 1
N is the step size. Note that the exponential map, parallel transport and curvature

tensor in above equations are evaluated onM and are available in closed form for many
manifolds used in robotics.

To calculate the logarithmic mapping of the tangent bundle Logp(q), the curve on the
tangent bundle is approximated as a discrete set of points p0, ..., pN+1, where pi = (xi , ui),
p0 = p and pN+1 = q. Mid points pi are initialised in a way that the points xi ∈ M lie
on the geodesic connecting x0 and xN+1, and tangents ui ∈ Tx iM are obtained by linear
interpolation of u0 and uN+1. The points pi , in general, do not lie on the geodesic of TM,
however, byminimising the energy of the discretized curve we can get a good approximation
of the geodesic. Let νi = (Logx i(xi+1)−Logx i(xi−1))N2 be the central finite difference at point
xi and let µi = (Px i+1→x i (ui+1) − Px i−1→x i (ui−1)) N

2 be the central finite difference of tangent
ui at point xi . Tangents ν0 and µ0 are calculated as a finite differences between (x0, u0)
and (x1, u1), while νN+1 and µN+1 are calculated as finite differences between (xN , uN) and(xN+1, uN+1) because the central finite difference cannot be used at edge points. The energy
of discretized curve is then given by [38]

E = N∑
i=1 (∥νi∥2x i + ∥µi∥2x i) . (2.28)

The gradients of E with respect to xi and ui are given by

gradx i E = ∇ν iνi + R(ui , µi)νi , (2.29)

gradu i
E = ∇ν i µi . (2.30)

The covariant derivatives∇ν iνi and∇ν i µi are approximated as central finite differences of νi
and µi respectively:

∇ν iνi ≈ (Px i+1→x i (νi+1) − Px i−1→x i (νi−1)) N2 , (2.31)

∇ν i µi ≈ (Px i+1→x i (µi+1) − Px i−1→x i (µi−1)) N2 . (2.32)

Now the steepest descend or conjugate gradient algorithm may be used to find the geodesic
of TM connecting p and q and the logarithmic map is given by

Logpq = νH0 + µV
0 . (2.33)
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2.6 Examples of Riemannian Manifolds

2.6.1 Sphere
The proposed approach can be applied to any RM but in this dissertation, as a case study, we
take the n-dimensional sphere. Thus, the scalar product of tangent vectors u and v at point
x ∈ Sn

ρ is ⟨u, v⟩x = uTv, i.e. the metric tensor, is the identity matrix. The distance between
x , y ∈ Sn

ρ can be computed as [39]

d (x , y) = ρ arccos xTy
ρ2

(2.34)

defining great circles as the geodesic lines. The exponential map of the tangent vector u at
point x is defined as [14]

Expx(u) = x cos ∥u∥ρ + u∥u∥ρ sin ∥u∥ρ , (2.35)

while the logarithmic map amount to the following expression

Logx y = dM (x , y) ρ2 y − xTy x∥ρ2 y − xTy x∥ . (2.36)

Parallel transport of a tangent vector u from point x to point y along a geodesic is finally
given by [14]

Px→y (u) = u − Logx(y)Tu
d (x , y)2 [Logx(y) + Logy(x)] . (2.37)

Riemann curvature tensor of the sphere is

R(u, v)w = ⟨v ,w⟩u − ⟨u,w⟩v, (2.38)

where u, v ,w ∈ TxSn
ρ for some x ∈ Sn

ρ .

parametrisation of a sphere
In this section we provide the local coordinate representation of the n-sphere of radius ρ.
The motivation to use local coordinates is so that we could define the covariance of the
concentrated Gaussian distribution in those coordinates. If we would use the representation
of the ambient Euclidean space, the covariance would lie in the tangent space of the sphere,
which is the hyperplane in the ambient space. Hence, the resulting covariance matrix would
not be of the full rank.

There are many different ways to parametrise the sphere, for example polar coordinates
and stereographic projection. However, it is not possible to cover the whole n-dimensional
sphere using only n parameters. Hence we will use 2 different parametrisations: stereo-
graphic projection from the north pole and stereographic projection from the south pole.
These two coordinate systems form an atlas of the sphere [35]. In the north pole stereographic
projection the local coordinates of a point x = (x1, ..., xn+1) ∈ Sn

ρ are

ξ i = ρ x i

ρ − xn+1 , i = 1, ..., n. (2.39)
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Note that this local representation is valid for all x except north pole (0, ..., ρ). The inverse
of the mapping (2.39) is

x i = 2ρ2

ρ2 + ∥ξ∥2 ξ i , i = 1, ..., n, (2.40)

xn+1 = ∥ξ∥2 − ρ2
ρ2 + ∥ξ∥2 ρ. (2.41)

The conversion of the tangent vector u ∈ TxSn
ρ from ambient coordinates to its representation

in a north pole stereographic projection the Jacobian of the coordinate transformation (2.39)
is used:

ũ j = ∂ξ j
∂x i u

i , (2.42)

where u i are components of u in ambient coordinates, ũ j are components of u in local
coordinates and

∂ξ j
∂x i =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ρ

ρ−xn+1 δi j, i = 1, ..., n,
ρ x j

(ρ−xn+1)2 , i = n + 1, (2.43)

where δi j is the Kronecker delta, i.e. δi j = 1 if i = j and 0 otherwise. To transform the tangent
vector back to ambient coordinates, Jacobian of the inverse mapping ∂x j

∂ξ j is used.
Similarly, the local coordinates of x in the south pole stereographic projection are

ηi = ρ x i

ρ + xn+1 , i = 1, ..., n, (2.44)

and is valid for all x except the south pole (0, ...,−ρ). The inverse of this projection is given
by

x i = 2ρ2

ρ2 + ∥η∥2 ηi , i = 1, ..., n, (2.45)

xn+1 = ρ2 − ∥η∥2
ρ2 + ∥η∥2 ρ. (2.46)

The conversion between these local coordinates is given by following

ηi = ρ2∥ξ∥2 ξ i , ξ i = ρ2∥η∥2 ηi , i = 1, ..., n. (2.47)

To convert tangent vectors fromone representation to other, or between ambient coordinates
to local coordinates and vice versa, the Jacobian of coordinate transformation must be used.
For example, let u i be components of the tangent vector u in ξ coordinates. Then the
components of the vector u in η coordinates are given by [35]

ũ j = ∂η j

∂ξ i
u i . (2.48)
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The components of the Jacobian in this case are

∂ηi

∂ξ j
= ρ2∥ξ∥2 δi j − 2ρ2∥ξ∥4 ξ i ξ j. (2.49)

The components of the metric tensor for both of these local representations is given by
[39]

gi j = 4ρ4

(ρ2 + ∥ξ∥2)2 δi j, (2.50)

hence all expressions of the sphere (exponential and logarithmic map, parallel transport and
curvature tensor) are same in both coordinate systems. However, it is more convenient to
calculate those expressions in ambient coordinates and then convert the result back to local
coordinates because the expressions in local coordinates are more complex. The Christoffel
symbols of the metric tensor gi j are

Γk
i j = − 2

ρ2 + ∥ξ∥2 (ξ iδ jk + ξ jδik − ξkδi j) . (2.51)

2.6.2 Space of Symmetric Positive Definite Matrices
The space of n×n symmetric positive definite (SPD) matricesPn is a Riemannian manifold
of dimension d = 1

2n(n + 1). The tangent space TXPn of Pn at point X is a space of a
symmetric n × n matrices denoted by Sym(n) [40]. Due to the symmetry of SPD matrices,
they can be represented by their upper-triangular (or lower-triangular) part. Hence, the
point X ∈ Pn can be represented in the following way

v(X) = D+n vec(X), (2.52)

where vec(X) is the vectorization operator and D+n is the pseudo-inverse of a duplication
matrix Dn [40]. Now the matrices

Ei j =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
1ii , if i = j,

1i j + 1 ji , if i ≠ j,
(2.53)

where 1i j stands for n × n matrix whose (i , j)-th element is 1 and others are 0, form the
basis of the space of symmetric matrices Sym(n) that corresponds to parametrisation v(x)
[40]. Thus any symmetric matrix X can be written as

X = xαEα. (2.54)

where α = ı(i , j) and ı converts a pair of indices (i , j) to a single index1. The scalar product⟨U ,V⟩X = tr(X−1UX−1V), where X ∈ Pn and U ,V ∈ Sym(n), defines the smooth metric
tensor on Pn. The elements of this metric tensor are [40]

gαβ(X) = tr (X−1EαX−1Eβ) (2.55)

1 In this section, latin indices are assumed to run from 1 to n, while greek indices run from 1 to d.
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and the Christoffel symbols are

Γαβγ = − tr (EβX−1EγX−1E∗αX−1) , (2.56)

where E∗α = gαβEβ is the dual basis of Sym(n) with respect to metric (2.55). The Riemann
curvature tensor of Pn at point X is given by [41, 42]

R(U ,V)W = 1
4
{[VX−1, UX−1]W +W [X−1U , X−1V]}, (2.57)

where U ,V ,W ∈ Sym(n) while [U , V] = UV −VU is the matrix commutator. The com-
ponents of curvature tensor are

Rα
βγδ = 1

4
tr{ [X−1E∗α , X−1Eβ] ⋅ [X−1Eγ , X−1Eδ] }. (2.58)

The metric tensor (2.55) induces the exponential map given by [40]

ExpX(U) = X 1/2 exp (X−1/2UX−1/2)X 1/2 , (2.59)

where X ∈ Pn, U ∈ Sym(n) and exp is the usual matrix exponential. The inverse of (2.59) is
well defined for all X ,Y ∈ Pn and is given by

LogX(Y) = X 1/2 log (X−1/2YX−1/2)X 1/2 , (2.60)

where log is the usual matrix logarithm. The distance between points X and Y on Pn is
given by [40]

dPn (X ,Y) = ∥log (X−1/2YX−1/2)∥F = ( n∑
i=1 ln

2 λi)
1
2

, (2.61)

where ∥⋅∥F is the Frobenius norm and λi are eigenvalues of X−1Y . The parallel transport of
a tangent vector U ∈ Sym(n) along a geodesic connecting points X and Y of Pn is given by
[14]

PX→Y (U) = AU AT , (2.62)

where A = Y 1/2X−1/2 .

2.6.3 Space of Diagonal Positive Definite Matrices
The space of n × n diagonal positive definite matrices, Dn, is a Riemannian submanifold
of Pn and its dimension is n. It can be parametrised by diagonal elements (x1, ..., xn). The
metric tensor of this manifold can be obtained from the metric tensor of Pn given by (2.55)
by restricting X to bi diagonal matrix. It follows that the metric tensor is

gi j(x) = δi j 1x2i (2.63)

and the scalar product of two tangent vectors u, v ∈ TxDn is

⟨u, v⟩x = n∑
i=1

u i ⋅ v i
x2i

. (2.64)
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The exponential mapping of Dn is then

Expxu = (x1 exp u1

x1
, ..., xn exp

un

xn
) (2.65)

and the logarithmic map is given by

Logx y = (x1 log y1
x1
, ..., xn log

yn
xn
). (2.66)

The distance between two points on Dn is

dDn (x , y) =
¿ÁÁÀ n∑

i=1 log
2 yi
xi
. (2.67)

Components of Riemannian curvature tensor of Dn are all 0, i.e.

R(u, v)w = 0 (2.68)

for all u, v and w ∈ TxDn.

2.7 Statistics on Riemannian Manifolds

Themean of N points, {x1, ..., xn} ∈M, can be calculated as the Kärcher mean by minimiz-
ing the quadratic error [14]

µ = argmin
x∈M

1
N

N∑
i=1 d

2M (x , xi) . (2.69)

When points are close enough, a unique global solution called the Fréchet mean can be com-
puted using the Gauss-Newton optimisation. The covariance matrix of points {x1, ..., xn}
in the tangent space TµM is Σ = 1

N ∑N
i=1 Logµ(xi)Logµ(xi)T .

To generalise a Gaussian distribution to RMs, it is defined in the tangent space at its
mean value [14]

NM(x ∣ µ, Σ) = 1√
det(2πΣ) exp(−

1
2
d2
M(µ, x)) , (2.70)

where dM(µ, x) = √Logµ(x)T Σ−1 Logµ(x) is the generalised Mahalanobis distance.



Chap. 2: riemannian geometry 21

2.8 Summary
In this chapter we have presented an overview of the Riemannian geometry. We started
by stating the definition of a Riemannian manifold as an differentiable manifold coupled
with the smooth metric structure. Then, we showed that each differentiable manifold can
be approximated with an Euclidean space of the same dimension at the neighbourhood
of each of its points. Such Euclidean spaces are called tangent spaces. We proceeded with
introducing geodesics – the shortest lines on Riemannian manifolds. Exponential and
logarithmic mappings are then introduced as maps between the manifold and its tangent
spaces. Next, we consider the space of all tangent spaces of an Riemannian manifold which
is called tangent bundle of a manifold. It is shown that the tangent bundle of a Riemannian
manifold is Riemannian manifold as well. Finally, some statistical tools necessary for state
estimation on Riemannian manifolds are introduced.



Chapter 3
State Estimation and Multi

Object Tracking



I n the state estimation, the goal is to determine the state of some dynamical system based
on the sequence of noisy measurements. Usually, the state is not completely observable

by the sensor used to collect measurements. For example, when tracking multiple objects,
the state of an object often includes both position and velocity, however, it is not always
possible to measure the velocity of the object directly. The measurement noise is present
due to the sensor imperfections and some unknown environment conditions, while the
process noise is used to account for the uncertainties of the dynamical model of the system.

The multi target tracking (MTT) is the extension of the state estimation where, in
addition to the unknown objects’ states, the number of objects is unknown and time
varying as well. Together with the variable number of targets and noisy data, the MTT
systems often cope with the uncertainty in the measurement origin which makes it a
very challenging problem. Hence, many modern MTT methods handle the problem of
measurement origin uncertainty separately and then proceed with the estimation of each
object’s state independently.

The rest of this chapter is organized as follows. Section 3.1 introduces the paradigm
of Bayesian filtering and Kalman filter (KF) as one example of closed-form solutions to
Bayesian estimation problem. Then, section 3.2 gives brief overview on the state-of-the-art
MTT algorithms. And finally, some evaluation methods for multi target tracking systems
are presented in section 3.6.

3.1 Bayesian Estimation

The aim of Bayes filtering is to estimate the probability density function (PDF) pk (xk ∣ y1∶k)
of the unknown state vector xk given the sequence of detections y1∶k ≜ {y1, ..., yk}. The time
evolution of the state can be often described with nonlinear transition function

xk = fk−1(xk−1, uk−1,wk−1), (3.1)

where uk−1 denotes the control input of the system andwk−1 denotes the process noise. Since
in target tracking, which is the main interest of this thesis, the control input uk−1 is usually
unknown, it will be omitted in continuation. The unknown input is therefore treated as the
process noise. The state transition (3.1) of the stochastic system can also be expressed with
Markov transition density [43]

fk∣k−1 (xk∣k−1 ∣ xk−1) . (3.2)

23
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x̂k−1 x̂k∣k−1

x̂k yk

prediction

update

observation

Figure 3.1:This illustration shows the one cycle of the Bayes filter. At the beginning of a cycle
(top-left plot), the prior probability density of a state is shown with solid blue line and its
maximum a posteriori (MAP) estimate is denoted with x̂k−1. The Bayes filter then proceeds
with the prediction step which results with a new probability density (top-right) and a new
MAP estimate x̂k∣k−1. It can be seen that the new PDF is wider due to the uncertainties of
the dynamical model of the system. Now, the new observation denoted with yk is collected
(bottom-right) and the likelihood function of the unknown state x given this new observation
is illustrated with solid red line. Given this likelihood and the predicted PDF, the posterior
density calculated using the update step of the Bayes filter is shown with the solid blue line
(bottom-left).

Similarly, the observation of the stochastic system can be described with nonlinear model

yk = gk(xk , vk), (3.3)

where vk denotes the measurement noise, or alternatively by a likelihood function [43]

gk (yk ∣ xk) . (3.4)

Suppose that the PDF of state is known at time 0 and denote it with p0(x0). The Bayes
filter then recursively estimates the posterior density pk in two steps. Firstly, given the prior
PDF pk−1 (xk−1 ∣ y1∶k−1), the predicted density pk∣k−1 (xk∣k−1 ∣ xk−1, y1∶k−1) is calculated. Then,
given the prediction from previous step and the new measurement zk , the updated density
pk (xk ∣ xk∣k−1, y1∶k) is obtained.The whole cycle of the filter, including prediction and update
step, is illustrated on figure 3.1. The Bayesian filtering utilizes the Markov property which
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says that the current state xk contains the information about its whole past [43]. In other
words, the previously mentioned PDFs can be simplified to

pk−1 (xk−1 ∣ y1∶k−1) = pk−1(xk−1), (3.5)

pk∣k−1 (xk∣k−1 ∣ xk−1, y1∶k−1) = pk∣k−1 (xk∣k−1 ∣ xk−1) , (3.6)

pk (xk ∣ xk∣k−1, y1∶k) = pk(xk). (3.7)

The prediction of the PDF is obtained by Chapman-Kolmogorov equation from the prior
density and Markov transition density (3.2) [43, 44]

pk∣k−1(xk∣k−1) = ∫ fk∣k−1 (xk∣k−1 ∣ xk−1) pk−1(xk−1)dxk−1. (3.8)

The updated PDF is then obtained using Bayes rule and the total probability theorem

pk(xk) = gk (yk ∣ xk) pk∣k−1(xk)
∫ gk (yk ∣ xk) pk∣k−1(xk)dxk . (3.9)

To obtain an optimal estimate x̂k of the state xk given the posterior PDF pk(xk), one
must apply some of the estimators that minimizes the particular Bayes risk [44]. Such
estimate is called Bayes optimal estimate. Most commonly used Bayes optimal estimators
are MAP

x̂MAP
k = arg sup

xk
pk(xk) (3.10)

and expected a posteriori (EAP) estimator

x̂EAP
k = ∫ xk pk(xk)dxk. (3.11)

The Bayesian filtering recursion does not admit the closed-form solution in general,
hence some approximations are necessary to implement the filter. One popular implemen-
tation of Bayes filter is the particle filter, which approximates the densities by randomly
generated samples. However, particle filters are not used throughout this thesis and hence
are not further studied here, but curious readers are referred to [43, 45]. Under linear Gaus-
sian assumptions (linear system and Gaussian process and measurement noise), it can be
shown that if the prior density pk−1(xk−1) is Gaussian, the pk(xk) is Gaussian as well. This
leads to the closed-form solution, the Kalman filter [46] which is presented in section 3.1.1.

3.1.1 Kalman Filter
Introduced by Kalman in [46], the KF is an example of Bayesian filters. Although it was
originally derived using least squares (LS) technique, it can be shown that it is a closed-form
solution to Bayesian filtering recursion when the system is linear Gaussian assumptions
[47].

Consider a discrete stochastic linear time-invariant system described with

xk = Fk−1xk−1 + Lk−1wk−1, (3.12)

yk = Hkxk +Mkvk. (3.13)
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The time evolution of that system is captured by equation (3.12), where x is the state of the
system,w is the zero-mean Gaussian process noise signal of covariance Qk−1, while Fk−1 and
Lk−1 are matrices of corresponding dimensions. The observations of the system’s state are
modelled by (3.13), where y is the observation, v is the zero-mean Gaussian measurement
noise of covariance Rk, while Hk and Mk are matrices of adequate dimensions. Suppose
that the PDF of the state vector at previous is a Gaussian distribution, i.e. pk−1(xk−1) =N (xk−1 ∣ x̂k−1, P̂k−1), the prediction of the KF is then given by

x̂k∣k−1 = Fk−1x̂k−1, (3.14)

P̂k∣k−1 = Fk−1P̂k−1FT
k−1 + Lk−1Qk−1LT

k−1. (3.15)

Similarly, the PDF of the predicted observation is alsoGaussian and itsmean and covariance
are given by

ŷk∣k−1 = Hk x̂k∣k−1, (3.16)

Ŝk∣k−1 = Hk P̂k∣k−1HT
k +MkRkMT

k . (3.17)

Given the observation yk, the update of the KF is

Kk = P̂k∣k−1HT
k Ŝ−1k∣k−1, (3.18)

x̂k = x̂k∣k−1 + Kk (yk − ŷk∣k−1) , (3.19)

P̂k = (I − KkHk) P̂k∣k−1. (3.20)

Instead of (3.20), the Joseph form

P̂k = (I − KkHk) P̂k∣k−1 (I − KkHk)T + KkMkRkMT
k KT

k (3.21)

is often used to ensure the positive-definiteness of the covariance matrix.

3.1.2 Extended Kalman Filter
Let now consider the non-linear system defined by

xk = fk−1 (xk−1,wk−1) , (3.22)

yk = hk (xk , vk) , (3.23)

where wk−1 ∼ N (⋅ ∣ 0,Qk−1) and vk ∼ N (⋅ ∣ 0, Rk) are respectively the zero-mean non-
additive process and measurement noises.The KF introduced in previous section cannot be
applied in this case due to non-linear functions fk−1 and hk . One of often used adaptation of
the KF to non-linear systems is the extended Kalman filter (EKF). The EKF uses the first
order Taylor approximation of the non-linear functions fk−1 and hk in order to propagate
the covariance matrix P̂. Let Fk−1 and Lk−1 be following Jacobians of (3.22)

Fk−1 = ∂ fk−1
∂xk−1 ∣x̂k−1 , 0 , Lk−1 = ∂ fk−1

∂wk−1 ∣x̂k−1 , 0 , (3.24)
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and let Hk and Mk be the Jacobians of (3.23)

Hk = ∂hk

∂xk
∣
x̂k∣k−1 , 0

, Mk = ∂hk

∂vk
∣
x̂k∣k−1 , 0

(3.25)

The time prediction of the EKF is obtained by the non-linear model (3.22)

x̂k∣k−1 = fk−1 (x̂k−1, 0) . (3.26)

The covariance matrix P̂ is predicted as in linear KF by equation (3.15), where Fk−1 and
Lk−1 are calculated by (3.24). The prediction of the measurement ŷk∣k−1 is obtained from the
non-linear function (3.23)

ŷk∣k−1 = hk (x̂k∣k−1, 0) . (3.27)

Given the predicted measurement (3.27) and the Jacobians (3.25), the rest of the update step
of the EKF follows the and the update procedure of EKF is given by equations eqs. (3.17)
– (3.21).

3.1.3 Unscented Kalman Filter
Theneed to calculate the Jacobians of the non-linear state transition function f andmeasure-
ment function g is the main drawback of the EKF. Even when it is possible to differentiate
functions f and g, it might still be very tedious. Furthermore, the high non-linearity of the
system may lead to the divergence of the first-order approximation used by EKF. Rather
than using Jacobians, the unscented Kalman filter (UKF) [48] approximates the PDF
pk(xk) = N (xk ∣ x̂k , P̂k) with a set of sample points. Note that, as opposed to the particle
filter, the sample points in UKF are chosen deterministically.

Consider the following non-linear system

xk = fk−1(xk−1) +wk−1, (3.28)

yk = gk(xk) + vk, (3.29)

where wk−1 and vk are zero-mean, mutually independent, Gaussian process and measure-
ment noises respectively. Note that this model uses the additive process and measurement
noise, however, other implementations of UKF exists that may use non-additive noise
models, for example see [49]. Suppose that the prior PDF is Gaussian with the mean x̂k−1
and covariance p̂k−1. The goal is to approximate the PDF of the predicted state pk∣k−1(xk∣k−1)
with the Gaussian distributionN (xk∣k−1 ∣ x̂k∣k−1, P̂k∣k−1). In order to achieve this, the prior
Gaussian distribution must be mapped with the non-linear state transition model (3.28),
which, in general, does not result in a Gaussian distribution. To alleviate this problem, the
unscented transform is applied [48]. The prior distribution pk−1(xk−1) is approximated with
2n+1 samples called sigma points, where n is the dimension of the system.The sigma points
are generated by the following equations

σ0 = x̂k−1, (3.30)

σ j = x̂k−1 + α√κA j, j = 1, ..., n, (3.31)
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σn+ j = x̂k−1 − α√κA j, j = 1, ..., n, (3.32)

where A j is the j-th column of the Cholesky factor of the covariance matrix, P̂k−1 = AAT .
Each sigma point has its first order and second order weights given by following equations

w(1)0 = α2κ − n
α2κ

, w(2)0 = w(1)0 + 1 − α2 + β, (3.33)

w(1)j = w(2)j = 1
2α2κ

, j = 1, ..., 2n. (3.34)

The parameters α and κ control the spread of the sigma points, while β depends on the
distribution and the optimal value for the Gaussian distribution is β = 2. There is also a
simpler parametrization of UKF given in [48] where the sigma points and corresponding
weights are calculated according to

σ0 = x̂k−1, w0 = κ
n + κ , (3.35)

σ j = x̂k−1 +√n + κA j, w j = 1
2(n + κ) , j = 1, ..., n, (3.36)

σn+ j = x̂k−1 −√n + κA j, w j = 1
2(n + κ) , j = 1, ..., n. (3.37)

Given the sigma point representation of the prior Gaussian PDF, the unscented transform
can be calculated in the following way. Firstly, the transformed mean is obtained as the
weighted mean of transformed sigma points

x̂k∣k−1 = 2n∑
i=0w

(1)
i fk−1(σi). (3.38)

The transformed covariance is then calculated by using second order weights

P̂k∣k−1 = 2n∑
i=0w

(2)
i [ fk−1(σi) − x̂k∣k−1] [ fk−1(σi) − x̂k∣k−1]T +Qk−1, (3.39)

where Qk−1 is the process noise covariance matrix.
Now the another unscented transform is applied to obtain the predicted measure-

ment and the innovation covariance. Given the predicted probability density function
pk∣k−1(xk∣k−1) = N (xk∣k−1 ∣ x̂k∣k−1, P̂k∣k−1) the new set of sigma points σ̄ j and weights w̄(1)j
and w̄(2)j are calculated using the same procedure as before. The predicted measurement is
calculated by

ŷk∣k−1 = 2n∑
i=0 w̄

(1)
i gk(σ̄i), (3.40)

while the innovation covariance is given by

Ŝk∣k−1 = 2n∑
i=0 w̄

(2)
i [gk(σ̄i) − ŷk∣k−1] [gk(σ̄i) − ŷk∣k−1]T + Rk, (3.41)

where Rk is the measurement noise covariance matrix. Additionally, the cross-covariance is

Cxy = 2n∑
i=0 w̄

(2)
i [σ̄i − x̂k∣k−1] [gk(σ̄i) − ŷk∣k−1]T , (3.42)
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The Kalman gain of the UKF is given by

Kk = Cxy Ŝ−1k∣k−1 (3.43)

and the updated PDF isN (xk ∣ x̂k , P̂k), where
x̂k = x̂k∣k−1 + Kk (yk − ŷk∣k−1) , (3.44)

P̂k = P̂k∣k−1 − Kk Ŝk∣k−1KT
k . (3.45)

3.1.4 Von Mises-Fisher Filter
The probability density given by

f (x; µ, κ) = Cn(κ) exp (κµTx) , (3.46)

where x and µ are points on the unit sphere Sn and κ ∈ R+ is called the von Mises-Fisher
(vMF) distribution. The normalization constant is

Cn(κ) = κ(n−1)/2(2π)n+1I(n−1)/2(κ) , (3.47)

where Ip(⋅) denotes the p-th order modified Bessel function of the first kind [20] which is
given by the expression

Ip(x) = 1
π ∫ π

0
ex cos θ cos(pθ)dθ − sin(pπ)

π ∫ ∞0 e−x cosh t−pt dt. (3.48)

The positive constant κ is the concentration parameter of the vMF distribution and controls
the spread of the distribution. The vMF distribution belongs to the exponential family
of distributions which is a very important property [24]. The expectation of the vMF
distribution, or the directional mean, is given by

E [x] = An+1(κ)µ, (3.49)

where
An(κ) = I(n+1)/2

I(n−1)/2 . (3.50)

The proof of (3.49) can be found in [24].
Special cases of the von Mises-Fisher distributions are distribution on the unit circle

(also known as the von-Mises distribution) and the vMF distribution on the unit sphere.
The normalization constant and the ratio of Bessel functions (3.50) in the latter case simplify
to

C2(κ) = κ
4π sinh κ

, (3.51)

A2(κ) = 1
tanh κ

− 1
κ
. (3.52)
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motion and observation model
In von Mises-Fisher filtering it is often assumed that the object moves slowly compared to
the sensor’s sampling rate. Markovic et al. in [24] stated that in that case it is practical to
approximate the Markov transition density with the vMF density

fk∣k−1 (xk∣k−1 ∣ xk−1) = f (xk∣k−1; xk−1, κτ) , (3.53)

where κτ models the uncertainty of the process. As in [24], the vonMises-Fisher distribution
is chosen as the measurement model given by

p (yk ∣ xk) = f (yk; xk , κo) , (3.54)

where κo models the uncertainty of the measurement process.

state prediction and update
The prediction and update equations for vMF filter are obtained from Bayesian filtering
equations (3.8) and (3.9). Under the assumption that both the prior distribution pk−1(xk−1)
and the Markov transition density fk∣k−1 (xk∣k−1 ∣ xk−1) are vMF densities, the resulting
predicted density pk∣k−1 unfortunately is not vMF. In [24] Markovic et al. proposed to
approximate the resulting density with the von Mises-Fisher density by moment-matching
technique. Hence, given the prior density pk−1(x) = f (x; µ̂k−1, κ̂k−1), the predicted density
is also vMF density pk∣k−1(x) = f (x; µ̂k∣k−1, κ̂k∣k−1), where

µ̂k∣k−1 = µ̂k−1, (3.55)

κ̂k∣k−1 = A−1n (An(κτ)An(κ̂k−1)). (3.56)

The function A−1n is the inverse of the function (3.50) that can be computed numerically [24].
Given the new measurement yk and using the von Mises-Fisher measurement model, the
update equations of the vMF filter are given by [24]

µ̂k = κ̂k∣k−1 µ̂k∣k−1 + κoyk
κ̂k

, (3.57)

κ̂k = ∥κ̂k∣k−1 µ̂k∣k−1 + κoyk∥ . (3.58)

3.2 Introduction to Multiple Object Tracking
MTT is a challenging problem where the goal is to simultaneously estimate the states
of numerous objects that are present in the field of view of a sensor [50]. In addition to
the uncertainty of the underlying motion model that each object follows, there are many
moreThe objects may disappear from the scene as well as new objects may appear, hence
the number of objects is time-varying and has to be estimated together with the states
of individual objects. Detections obtained by the sensor are in no particular order and
often cannot be easily associated with previous detections. Moreover, the detections can
be cluttered with spurious data that cannot be distinguished from true detections. Thus,
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Figure 3.2: Typical flowchart of an MTT algorithm. New detections are first validated and
then separated together with predicted tracks in independent clusters. Data association is then
performed for each cluster and the tracks are updated with assigned detections. New tracks are
initialised based on unassigned detections. Finally, the prediction step is performed on both
updated and new tracks to predict their position in the next step.

most of the MTT methods include some kind of data association that tries to match new
detections with tracked objects.The flowchart of the typical multi target tracking algorithms
is shown on figure 3.2. Inmost applications it is assumed that the objects are small enough so
they can be treated as points. However, sometimes such assumption is not possible and each
object can generate it’s own cluster of detections, and furthermore, detections of multiple
objects may be merged in one detection due to the finite resolution of the sensor. These
two problems of having multiple detections originating from the same object and multiple
objects sharing same detections pose a tremendous challenge to already difficult problem of
data association. In this thesis, the following premises about the MTT problem are made:

a) objects move and generate detections independently of each other,

b) new objects may appear on the scene and existing objects may disappear,

c) each object may either be detected and generate one detection or be
undetected in each frame,

d) each detection may belong to at most one object,

e) spurious detections are independent of each other and of ground truth
objects.

The first multi target tracking methods emerged in the second half of the previous
century and were applied in various areas such as air traffic control, air defence and missile
defence [6]. Initial MTT solutions involved the use of single target trackers in parallel
for each target. Such trackers are known in literature as nearest neighbour (NN) filters
because each target is updated with the closest detection. The main limitation of NN is
that each single target filter is run independently of each other, hence the same detection
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could be used to update more than one target. The global nearest neighbour (GNN) filter
is the improvement of NN, where the measurement-to-target association is done globally,
usually by applying Hungarian algorithm [51] to find the optimal assignment. Nevertheless,
GNN is still prone to divergence when there are many targets tightly spaced. Thus, many
MTT algorithms have been developed in recent years and multi target tracking is still
actiev research field today. Current state-of-the-art MTT algorithms can be divided in three
different categories [1] (i) probabilistic data association (PDA), (ii) multiple hypothesis
tracking (MHT) and (iii) random finite set (RFS) approaches. The rest of this section
covers some examples of MTT algorithms belonging to these three groups.

3.3 Probabilistic Data Association
In [2] Bar-Shalom and Tse proposed the probabilistic data association filter (PDAF) for sin-
gle object tracking in a presence of false alarms. Rather than choosing only onemeasurement
to update the object state, the PDAF takes into account all available measurements that
might have originated from the object. It is assumed that the false alarms are independent
and identically distributed according to uniform distribution over the surveillance region.
Further, assume that at most one of the received measurements may belong to the target
and denote with H i

k event that the i-th measurement at time k is correct. Also, denote with
H 0

k that all measurements at time k are clutter. The association probabilities are given by
[2]

β0k ≜ Pr (H 0
k ) = C (1 − pd pg) , (3.59)

β i
k ≜ Pr (H i

k ) = Cλ−1pd pg g (yk,i ∣ x̂k) , (3.60)

where pd is the detection probability, pg is the gating probability, λ is clutter density,
g (yk,i ∣ x̂k) is the likelihood of measurement yk,i given that the target is detected and gated
and that its state is x̂k , and finally, C is the normalization constant. Due to the fact that these
events are mutually exclusive and exhaustive, the association probabilities are [2]

β0k = 1 − pd pg

1 − pd pg +∑mk
j=1 λ−1pd pg g (yk,i ∣ x̂k) , (3.61)

β i
k = λ−1pd pg g (yk,i ∣ x̂k)

1 − pd pg +∑mk
j=1 λ−1pd pg g (yk,i ∣ x̂k) . (3.62)

3.3.1 Integrated Probabilistic Data Association
ThePDAF assumes that the object is always present in the field of view of a sensor. However,
in many real-world application the object may disappear from the scene and then reappear
later. To adapt the PDAF for such environment, a heuristics for track initialisation and
termination is necessary. Alternative is to use integrated probabilistic data association
filter (IPDAF) introduced by Musicki et al. in [52]. Instead of simply assuming that the
object is present, the existence probability is estimated in IPDAF. Then the track can be
terminated when its existence probability falls below some threshold.
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3.3.2 Joint Probabilistic Data Association
Joint probabilistic data association filter (JPDAF) [3] is an extension of PDAF to the multi-
target scenario. Similarly to the PDAF, it is assumed that the number of targets is known and
they cannot disappear. At each sensor scan, obtained detections are validated for each track
thus forming a validation matrix with binary values that indicate if a measurement could
have originated from a target. In order to calculate a posteriori data association probabilities
it is necessary to generate all possible joint measurement to track associations. In case of
large number of targets andmeasurements, data association problem can become intractable
for a real-time application. To avoid this problem, it is proposed in [5] to consider only a
fixed number of possible associations that are most likely. To find most likely association,
joint data association problem is formulated as a series of integer linear programs.

3.3.3 Joint Integrated Probabilistic Data Association
To allow tracking of a time varying number of targets, a joint integrated probabilistic
data association filter (JIPDAF) is proposed [4, 53]. JIPDAF predicts the target state
individually for each track. If we construct an appropriate target motion model, then the
state of each target can be propagated using the standard Kalman filter prediction step.
Additionally, the target existence probability prediction is given by

pk∣k−1 (H j ∣Y1∶k−1) = pS pk−1 (H j ∣Y1∶k−1) , (3.63)

where pS is the target survival probability which is assumed to be independed of the target’s
state, Y k = {yki }mk

i=1 is the set of all observations at time k where mk is the number of
observations at time k. Y1∶k is the set of all observations up to and including time k andH j

is the hypothesis that track j exists.
Let νi , j = yi − ŷ j denote the innovation of the i-th measurement to the track j, where

yi is the measurement and ŷ j is the predicted measurement for track j. Time superscripts
are omitted here for clarity. The target state is then corrected by the Kalman filter update
equation

x̂k = x̂k∣k−1 + K j,kν j, (3.64)

where ν j = ∑mk
i=1 βi , j νi , j is the weighted innovation, βi , j are posterior association probabilities,

and K j,k is the Kalman gain for target j. The update of the covariance matrix slightly differs
from the original Kalman update step [3]

Pj,k = Pj,k∣k−1 − (1 − β0, j)K j,kS j,kKT
j,k + P̄j,k, (3.65)

P̄j,k = K j,k [mk∑
i=1 βi , jνi , jνTi , j − ν jνTj ]KT

j,k, (3.66)

where S j,k is the innovation covariance of the target j.
The combinatorial computational complexity of the JIPDA can be alleviated by discard-

ing the assignment hypotheses that are unlikely. Since the innovation of the measurement
is a zero-mean normal distribution, the measurement validation can be achieved by select-
ing only those measurement that lie in the confidence ellipsoid of the target [2]. A priori



Chap. 3: state estimation and multi target tracking 34

likelihood function of a measurement i given state of a target j after validating with the
gating probability pG is given by

gi , j ≜ g(yi ∣ ŷ j) = p−1G N(yi ; ŷ j, S j), (3.67)

when yi is inside the validation gate and zero otherwise.
To calculate a posteriori association probabilities βi , j, all possible joint association events

must be considered. In each event, one target can be associated with at most one detection,
and each detection cannot be assigned to more than one target. Let A denote the set of
all joint association events. Since those events are exhaustive and mutually exclusive, the
probability of the joint eventAi is given by [4]

p(Ai ∣ Y1∶k) = C ×∏
j∈T0
(1 − pD pG pH j)

×∏
j∈T1
(pD pG pH j gi , j λ−1) , (3.68)

where C is the normalization constant, pD is detection probability, λ is clutter density, T0

and T1 are sets of tracks assigned with no measurements and with one measurement inAi

and pH j = pk∣k−1(H j∣Y1∶k−1).
Let H j

i be the hypothesis that the measurement i belongs to target j and H j∅ the hy-
pothesis that the target j was not detected. The posterior probabilities of individual track
existence and measurement association can be obtained by [4]

p(H j,H j
i ∣ Y1∶k) = ∑A∈A(i , j)p(A ∣ Y1∶k), (3.69)

p(H j,H j∅ ∣ Y1∶k) = (1 − pDpG)pH j

1 − pDpGpH j

× ∑A∈A(∅, j)p(A ∣ Y1∶k), (3.70)

whereA(i , j) is the set of all events that assign measurement i to track j, whileA(∅, j) is
the set of all events in which track j was missed. Given probabilities (3.69) and (3.70), the a
posteriori track existence probability is computed as

pk (H j ∣Y1∶k) =p(H j,H j∅ ∣ Y1∶k)
+∑

i∈{Mi , j=1}
p(H j,H j

i ∣ Y1∶k), (3.71)

whereMi , j is the element of the validationmatrix, while a posteriori association probabilities
are given by

βi , j = P(H j,H j
i ∣ Y1∶k)

pk(H j ∣ Y1∶k) . (3.72)

3.4 Multiple Hypothesis Tracking
Multiple hypothesis tracking (MHT), introduced by Reid [6], is a deferred decision ap-
proach to data association based multi-target tracking [1]. To deal with the unknown
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Figure 3.3:The illustration of hypothesis tree generation of the hypothesis oriented multiple
hypothesis tracking. In this example the prior hypothesisHi

k−1 contains two targets o1 and o2.
Given two measurements z1 and z2 ∈ Zk , new hypotheses are constructed by branching fromHi

k−1. First, 4 branches are created by assigning z1 to o1, o2, considering it as a false alarm, and
finally, by assigning it to a new target denoted with o3. Then, the same process is applied to
each branch for the measurement z2. Note that measurements z1 and z2 are not assigned to the
same object in any branch.

measurement-to-tracks association, MHT keeps a set of possible association hypotheses
until more data is collected[54]. After a new set of measurements is available, a new set
of hypotheses is created from the existing hypotheses and their posterior probabilities are
updated using Bayes rule. To avoid exponential growth of a hypotheses, a heuristic pruning
method is needed to discard unlikely hypotheses. By creating and pruning of hypotheses,
the MHT algorithms inherently handles track initiation and termination, and hence ac-
commodates to an unknown and time-varying number of targets. Based on the most likely
hypothesis, a single-target Bayes filter is used to update the states of each targets using
measurements associated with them.

Multiple hypothesis tracking algorithms can be divided into two groups – hypothesis
oriented multiple hypothesis tracking (HOMHT) and track oriented multiple hypothe-
sis tracking (TOMHT). The MHT algorithm proposed by Reid in [6] is the hypothesis-
oriented, which means that it keeps a number of global hypotheses between consecutive
sensor scans [1].

3.4.1 Hypothesis Oriented Multiple Hypothesis Tracking
The algorithm proposed by Reid in [6] is an example of the hypothesis oriented multiple
hypothesis tracking (HOMHT) method. The HOMHT maintains the list of possible
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measurement-to-target association hypotheses. After each sensor scan, the set of hypotheses
is expanded with new measurements. Denote withHk−1 the set of global hypotheses at time
k − 1 and with Yk the set of measurements collected at time k. Starting from the prior set
of hypothesesHk−1, new hypotheses of the HOMHT are formed by iteratively combining
measurements form the new scan with them [6]. Let H̄i

k be the set of hypotheses after
the i-th measurement from Yk has been applied and initialize H̄0

k with Hk−1. The set of
hypotheses H̄i+1

k is formed by creating branches from every hypothesis in H̄i
k . The following

assumptions are taken into account when generating new hypotheses. Each measurement
may be assigned to one target, considered as a false alarm, or may be assigned to a new
target. Each target may only be associated with one measurement from the same sensor
scan. The whole procedure is illustrated on figure 3.3. Denote with Ψk the set of hypotheses
about the measurement-to-target associations in time step k. Then, each global hypothesisHi

k may be considered as a joint hypothesis that some prior hypothesis Ha
k−1 and some

association hypothesis Ψb
k are true. The probability of each global hypothesisHi

k can then
be evaluated recursively by utilizing Bayes rule [6]

P (Hi
k ∣Zk) = 1

C
⋅ P (Zk ∣Ha

k−1, Ψb
k ) ⋅ P (Ψb

k ∣Ha
k−1) ⋅ P(Ha

k−1), (3.73)

where C is the normalization constant. The first term in (3.73) is the product of likelihoods
of measurements in Zk given prior hypothesisHa

k−1 and association hypothesis Ψb
k [6].

3.4.2 Track Oriented Multiple Hypothesis Tracking
Instead of generating and maintaining the tree of global hypotheses, the TOMHT con-
structs the tree for each target [1, 54]. TOMHT approaches can be further split to tree
based and non-tree based [1]. In the rest of this section, only the tree-based variant is
considered. Each branch of a target tree of an TOMHT represents one hypothesis for
that target. As new measurements are available, each target tree is expanded by assigning
different measurements to it or by making a hypothesis that the target is missed by the
sensor in current scan. This whole process is illustrated on figure 3.4. From the list of all
target hypotheses at present time, the best global hypothesis can be obtained by solving the
multi-dimensional assignment problem [1]. The multi-dimensional assignment problem
refers to the problem of assigning n consecutive sets of sensor scans to targets in such a
way that it obtains highest total track score. Each global hypothesis must fulfil following
constraints: each measurement can by assigned to at most one target and each target can be
associated with at most one detection from one sensor scan.

The track score that is used to rank global hypotheses in TOMHT is the logarithm of
likelihood ratio normalized by the probability density of false alarms [1]. Let LLRi ,k−1 denote
the score of the i-th target at time k − 1. The score of i-th target at time k in hypothesis ha

can then be computed by [1]

LLRi ,k = LLRi ,k−1 + ∆LLRi ,k. (3.74)

Depending on the detection assigned to i-th target in hypothesis ha, the incremental track
score is given by

∆LLRi ,k = log pd gk (y j,k ∣ x̂i ,k∣k−1)
λc

(3.75)
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Figure 3.4: Formation of target trees of an tree-based TOMHT. In this example there are
two confirmed targets T1 and T2 present at time k − 2. There are three detections collected at
time k − 1 denoted with z1,k−1, z2,k−1 and z3,k−1, and two detections obtained at time k denoted
with z1,k and z2,k . The tree is generated for each target by assigning different detections or by
assuming to it in time k − 1 and k. Missed detections are also considered and are denoted with∅ in the target tree. Additionally, new tentative target trees are initiated for each detection.
Figure adapted from [1].

if j-th measurement is assigned to i-th target, or by

∆LLRi ,k = log(1 − pd pg) (3.76)

in the case of missed detection. Detection probability, gating probability and false alarm
density in above expressions are denoted respectively by pd , pg and λc , while gk (y j,k ∣ x̂i ,k∣k−1)
denotes the measurement likelihood. Track scores of new targets are initialised to [1]

LLRinit = log λinit
λc

, (3.77)

where λinit denotes the density of new targets.
In a tree-based TOMHT approach, the hypothesized target is represented by the target

tree so the N-scan pruning can be performed resulting in a reduced number of tracks
figure 3.4), as opposed to non-tree based TOMHT which cannot perform N-scan pruning.

Frank et al. proposed a graphical model representation of the TOMHT filter [55],
where the track posterior distribution of TOMHTs was formulated as a factor-graph. This
formulation allowed the approximate calculation of track marginal probabilities, which may
be used for online parameter estimation. In [56] the track-oriented MHT logic has been
extended to a through the wall radar tracking, where in addition to the direct returns there
are also several returns caused by the reflections.Thus themultiple passes through theMHT
logic are performed in order to update the tracks with direct as well as multipath detections.
Another example of multi-target tracking with multipath detections is presented in [57],
where the multiple-detection MHT was proposed. The developed algorithm was tested
in the simulation for multi-target tracking using over-the-horizon radar (OTHR). Many
other improvements and extensions of MHT algorithms can be found in [1, 54, 58–61].
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3.4.3 Probabilistic Multiple Hypothesis Tracking
In [62] the probabilistic multiple hypothesis tracking (PMHT) was developed. As opposed
to the traditional MHT algorithms, PMHT approaches the data association problem in
a probabilistic manner, thus resulting in a much lower computational load as compared
to the algorithm proposed in [6]. Further, the PMHT algorithm does not require the
enumeration of measurement-to-track assignments and pruning because all measurements
are assigned to all tracks thus it is an optimal empirical Bayesian multi-target tracker.
PMHT algorithm was also applied to the multi-sensor tracking but it is optimal only when
the all sensors are identical. Thus, in [63] Krieg and Gray implemented the general multi-
sensor PMHT algorithm (msPMHT). In addition tomeasurement-to-track assignment and
target states, the general msPMHT also estimates the sensor from which each measurement
is collected. This allows the application of the algorithm in the scenarios in which the
source of measurements are unknown or when the parameters of sensors are unknown. In
[64] the maximum likelihood PMHT (ML-PMHT) was applied in a scenario of a sharply
maneuvering targets implemented in both the Cartesian and delay-bearing measurement
space. Furthermore, the maneuvering-model parametrization was introduced for ML-
PMHT to deal with rapidly-maneuvering targets. Choi and Hong presented the PMHT
algorithm that can simultaneously estimate target states and signal-to-noise ratio, the
PMHT-S filter [65].

3.5 Random Finite Sets Approach
During last decade a great deal of progress has been achieved in the finite set statistics
[12] resulting in a variety of RFS based multi-target tracking algorithms, one of which
is probability hypothesis density (PHD), introduced by Mahler in [66]. Since PHD filter
propagates only the first moment of a multi-target density it alleviates the computational
load making it suitable for real-time applications. Although PHD recursion cannot be
analytically solved in general case, in [8] Vo and Ma showed that under Gaussian mixture
approximations the closed-form solution may be obtained for linear single-target motion
and observation model, resulting in a Gaussian mixture (GM) implementation of the PHD
filter.Themain drawback of the PHD filter is that it rests on the assumption that the number
of tracked objects is Poisson distributed thus making it unreliable in scenarios with high
number of targets. To overcome this problem a cardinalized probability hypothesis density
(CPHD) filter was introduced, which releases the premise of a Poisson distributed number
of targets. In [9], analytic implementation of a CPHD filter is presented – the Gaussian
mixture CPHD filter, while in [67] Mahler et al. developed an adaptive CPHD filter that
can learn the unknown clutter rate and detection model while filtering. In [68] the GM
CPHD filter was integrated with the digital road maps in order to track the ground moving
targets. Lindgren et al. presented a CPHD filter with the target spawning model in [69].
Although, the prediction step in a CPHD filter may become computationally intractable
with the general spawning model, it is shown that for certain cardinality distributions of the
spawning model, computationally efficient expressions for the prediction step are derived.
In Gaussian mixture PHD and CPHD algorithms, the appearance of the new targets is



Chap. 3: state estimation and multi target tracking 39

modelled by Gaussian mixtures, thus it demands a large number of components to cover
the entire surveillance area in the case when new targets may appear anywhere. Beard et
al. proposed a partially uniform target birth model1 for GM implementation of a PHD
and CPHD filters in [70]. In [71] the cubature Kalman GM PHD and CPHD (CKF-GM-
PHD and CKF-GM-CPHD) filters were implemented. Further, the adaptive gating was
proposed for developed filters in order to reduce the computational complexity without
the significant impact on the tracking performance. Although the GM approximation of
the PHD/CPHD filters leads to the closed-form solution, it is also possible to implement
them using sequential Monte Carlo (SMC) methods thus avoiding assumptions of a linear
target motion and measurement model as shown in [72]. Another interesting application of
the PHD filter is presented in [21], where Marković et al. developed a von Mises mixture
implementation of the PHD filter to tackle the problem of tracking on a unit circle.

In [12] Mahler introduced another approximation to the multi-target Bayes recursion –
the multi-target multi-Bernoulli (MeMBer) filter. As opposed to PHD and CPHD, MeMBer
propagates full multi-target density with the assumption that the filtering density is a
multi-Bernoulli RFS. Mahler also presented the Gaussian mixture implementation of the
MeMBer filter. However, Vo et al. showed analytically that the proposed MeMBer recursion
overestimates the number of targets resulting in a high number of false tracks [10, 73]. In
addition, they proposed a improved approximation to the MeMBer recursion that deals
with the cardinality bias – cardinality balanced MeMBer filter. Furthermore, the Gaussian
mixture as well as sequential Monte Carlo implementations were provided. In [74] an
adaptive version of the MeMBer filter is developed in order to accommodate to unknown
and time-varying clutter rate and detection profile.

Neither of the RFS methods mentioned above are not designed to output whole target
trajectories but rather to yield current estimated states in each time step. Hence, labeled RFS
methods were introduced in [75], where δ-generalized labeled multi-Bernoulli (δ-GLMB)
filter. In [76] an further improvements of the δ-GLMB filter were achieved by truncating
the sums of a large number of terms by using K-shortest path algorithm as well as using
the PHD filter as a efficient look-ahead strategy to reduce the number of computations.
Additionally, in [77] is presented even more efficient implementation of a GLMB filter that
combines prediction and correction into a single step, thus requiring only one truncation
process per iteration. Reuter et al. presented the labeled multi-Bernoulli (LMB) filter in
[11]. The LMB filter can be considered as a generalization of the above mentioned MeMBer
filter with two important advantages – it outputs trajectories, and it does not suffer from
a cardinality bias. Labeled multi-Bernoulli filter is also an efficient approximation of a
δ-GLMB filter because it exploits GLMB’s accuracy while avoiding its computational load
due to the exponential growth in the number of components. Olofsson et al. applied the
LMB filter to the sea ice tracking [78], moreover, they used spatial indexing in order to
further simplify the clustering process of the filter, providing efficient partitioning of the
filter into smaller and independent parts.

The main advantage in a random finite set approach is that it provides a way to sys-
tematically treat non-standard measurement models like extended targets and merged

1 In RFS multi-target tracking literature the spontaneous target appearance is termed target birth, while target
spawning refers to the new targets being created by existing targets
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measurements as well as non-standard multi-target motion models such as interaction
among the targets [12]. In [79] and [80] extended targets are considered. Such targets may
generate multiple detections in a single sensor scan, hence it can be considered as a RFS
observation.The PHD and CPHD filtering algorithms are developed, and Gaussian mixture
implementations are given, as well as the particle implementations. Beard et al. implemented
both GLMB and LMBmulti-target filter in [81], where theymodelled the extended targets by
gamma Gaussian inverse Wishart (GGIW) distribution. They also showed that the GLMB
filter performs better than the extended target CPHD filter. In [82], Scheel et al. applied the
extended target LMB filter for a laser-based tracking of vehicles using separable likelihood
model. In [83], the generalisation of a GLMB tracking method was applied to MTT with
merged measurements. Merged measurements may appear due to the closely spaced targets
in regards to the sensor resolution. In [84], a different type of a non-standardMTT problems
is studied – the interaction among the targets. The goal was to develop the method for a
pedestrian tracking that would systematically deal with the interaction among them. Thus
the social force model was developed that encapsulates various factors that affect the human
motion. Based on a developed social force model, the SMC and GM implementations of
the social force PHD filter were provided.

3.5.1 Random Finite Sets
A random finite set (RFS) X on X ⊆ Rd is a finite-set valued random variable which
means that it takes values in the space of all finite subsets of X , F(X). An RFS consists
of n unordered random object states (random vectors) x1, ..., xn ∈ X , where n is a discrete
random variable. In other words, the RFS is a set of random vectors, such that the number of
its elements is the random variable as well. Due to this property RFSs are a useful statistical
tool in multiple object tracking in cluttered environment.

An RFS can be completely described by the discrete cardinality distribution

ρ(n) = Pr (∣X∣ = n) (3.78)

that captures the cardinality (number of points) of RFS X and a set of symmetric joint
probabilistic densities

pn(x1, ..., xn) (3.79)

that characterize the spatial distribution of points given the cardinality n. The probability
distribution of the RFS X on X is the probability measure P on F(X) defined as

P(S) = Pr ({X ∈ S}), (3.80)

where S is any Borel subset2 of F(X). The probability density π of the RFS X on X , if it
exists, is given by [12]

P(S) = ∫S π(X)µ(dX), (3.81)

where µ is a dimensionless measure on F(X) and the integral in (3.81) is a set integral
defined by [12]

2 Borel set is any set in a topological space that can be formed from open sets through the operations of
countable union, countable intersection and relative complement.
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∫S f (X)µ(dX) = ∞∑
n=0

1
n! ∫ 1S( {x1, ..., xn} ) f ( {x1, ..., xn} )λn(dx1, ..., dxn), (3.82)

where 1S is the indicator function for S and λ is a dimensionless Lebesgue measure on X .
As it is case with ordinary probability densities, it is also possible to define the moments

of RFSs. The first moment of the RFS X on X , which is very significant in a multi target
tracking, is defined by [12]

V(S) = E[∣X ∩ S∣] (3.83)

for any S ⊆ X . If V can be written as

V(S) = ∫S v(x) dx (3.84)

for any S ⊆ X and v ∶ X → [0,∞), then v is called the intensity function or the probability
hypothesis density (PHD) andV is called the intensitymeasure.Thus, the intensitymeasure
gives the expected number of points of X that are contained in region S, while the intensity
function gives the density of the expected number of points of X at x. There are also
moments of higher order but they are not used often.

poisson random finite set
APoissonRFS X onX is the RFS which is completely defined by its intensity function v.The
cardinality of a Poisson RFS is a Poisson discrete random variable with mean λ = ∫ v(x) dx
and its elements are spatially distributed identically and independent of each other with
probability density v(⋅)/λ. The probability density of a Poisson RFS is given by

π( {x1, ..., xn} ) = Kne−λ n∏
i=1 v(xi), (3.85)

where K is the unit of volume on X .
independent identically distributed clusters
Independent and identically distributed clusters are a generalization of the Poisson RFS.
They are uniquely defined by the intensity function v(⋅) and its cardinality distribution ρ(⋅)
which can be any discrete distribution that satisfies

N = ∞∑
n=0 nρ(n) = ∫ v(x) dx, (3.86)

where N is expected cardinality. The probability density of a IID cluster X on X is

π( {x1, ..., xn} ) = Knn!ρ(n) n∏
i=1

v(xi)
N

. (3.87)
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bernoulli random finite set
The Bernoulli RFS is either empty with the probability 1 − r or has a single element which
is distributed by the probability densitiy p(⋅) on X . Hence, the cardinality distribution of a
Bernoulli RFS is a Bernoulli random variable with parameter r. The probability density π
of a Bernoulli RFSX on X is given by

π(X) =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − r, X = ∅
Kr p(x), X = {x}
0, otherwise

(3.88)

where K is the unit of volume in X . Since the Bernoulli RFS X on X is completely charac-
terized by parameters r and p(⋅), its probability density is often abbreviated by (r, p).
multi-bernoulli random finite set
Amulti-Bernoulli RFS X on X is a union of many independent Bernoulli RFSs Xi given
by their existence probability ri and probability density pi(⋅) on X

X = M⋃
i=1 Xi , (3.89)

where M is a number of independent Bernoulli RFSs. The expected cardinality of a multi-
Bernoulli RFS is given by N = ∑M

i=1 ri . The probability density of X is given by

π(X) =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∏M
i=1(1 − ri), n = 0

Kn∏M
i=1(1 − ri)∑1≤i1≠...≠in≤M∏n

j=1 r i j p i j (x j)
1−r i j , n ≤ M

0, n > M
(3.90)

where n = ∣X∣. Since the multi-Bernoulli RFS is fully defined by its parameters ri and pi , its
probability density is often abbreviated by {(ri , pi)}Mi=1.
3.5.2 Multi-Target Bayes Filtering
Since the number of targets and detections vary with the time and because the order of
target state does not matter due to the unknown data association, it is natural to model
multi-target state and detections as RFSs. Suppose that the target states evolve in a state
spaceX ⊆ Rnx where nx is the dimension of the state space, and the target states are partially
observed in the observation space Z ⊆ Rnz where nz is the dimension of the observation
space. Then the multi-target state and detections at time k are realisations of a RFS and can
be written in following form [44]

Xk = {xk,1, ..., xk,n(k)} ⊂ X , (3.91)
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Zk = {zk,1, ..., zk,m(k)} ⊂ Z , (3.92)

where n(k) is the number of targets at time k, while m(k) is the number of detections.
The multi-target state Xk takes values on the space F(X) which is called multi-target state
space and Zk takes values on F(Z) which is called multi-target observation space.

In the rest of this section, the multi-target state transition and observation models are
considered, then the multi-target Bayes recursion is given and finally, some methods for
state extractions are proposed.

state transition model
Themulti-target state transition model must incorporate the disappearance and appearance
of objects in addition to the single-object dynamical model to allow the time-varying
number of targets. The RFS theory allows us to model complex multi-target transition
models, e.g. interaction between objects, however it may result in a probability densities
that are hard to work with. Hence, it is often assumed, as it will be in this work too, that the
targets move independent of each other and that the target appearance and disappearance
is independent of other objects.

Let Xk−1 = {xk−1,1, ..., xk−1,n} be the multi-target state at time k− 1.Then each object with
the state xk−1 either continues to exist at time k with survival probability pS ,k(xk−1) and
evolves to the new state xk according to the (single-target) probability density fk∣k−1(xk ∣xk−1)
or it dies with probability 1− pS ,k(xk−1). It is easy to see that the state transition of the single
objects can be modelled as the Bernoulli RFS

Sk∣k−1(xk−1). (3.93)

Then the state transition of all targets is the multi-Bernoulli RFS given by [44]

Tk∣k−1(Xk−1) = ⋃
xk−1∈Xk−1

Sk∣k−1(xk−1), (3.94)

with parameters {(pS ,k(xk−1), fk∣k−1(⋅∣xk−1)) ∶ xk−1 ∈ Xk−1}. The probability density of the
RFS of transitioned objects is given by [44]

πT ,k∣k−1(Xk ∣Xk−1) = K ∣Xk ∣
s (1 − pS ,k)Xk−1 ∑

τ∈T (Xk ,Xk−1)
qXk
S ,k,τ, (3.95)

where
qS ,k,τ(x) = pS ,k(τ(x)) fk∣k−1(x∣τ(x))

1 − pS ,k(τ(x)) , (3.96)

and T (W , X) is the set of all one-to-one mappings fromW to X with convention that the
summation is zero when ∣W ∣ > ∣X∣ and unity whenW = ∅.

RFS considered above covers time-evolution and deaths of existing targets. If the ap-
pearance of new objects can be modelled by an RFS Γk than the multi-target state at time k
is given by

Xk = Tk∣k−1(Xk−1) ∪ Γk, (3.97)
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and the multi-object transition density can be written as

fk∣k−1(Xk ∣Xk−1) = ∑
W⊆Xk

πT ,k∣k−1(W ∣Xk−1)πΓ,k(Xk ∖W). (3.98)

Multi-target transition model can also incorporate the target spawning (new targets gener-
ated by existing targets) [8, 69] but it not considered in this work and explicit formulae for
multi-target transition densities can be found in [12, 44].

observation model
Similar to the multi-target transition model, here will only the standard multi-target detec-
tionmodel be considered.At the time k each object xk ∈ Xk is either detectedwith probability
pD,k(xk) according to the likelihood gk(zk ∣xk), or missed with probability 1−pD,k(xk).Thus,
each target generates the detection which is a Bernoulli RFS

Dk(xk) (3.99)

with parameters (pD,k(xk), gk(⋅∣xk)), and the collection of all target generated detections is
a multi-Bernoulli RFS

Θk(Xk) = ⋃
xk∈Xk

Dk(xk), (3.100)

with parameter set {(pD,k(xk), gk(⋅∣xk)) ∶ xk ∈ Xk}. (3.101)

The probability density of the RFS Θk(Xk) is [44]
πΘ,k(Zk ∣Xk) = K ∣Zk ∣

o (1 − pD,k)Xk ∑
τ∈T (Zk ,Xk)

qZk
D,k,τ, (3.102)

where
qD,k,τ(z) = pD,k(τ(z)) gk(z∣τ(z))

1 − pD,k(τ(z)) . (3.103)

The set of false detections, which is assumed to be independent of targets, is modelled by
RFS Kk and is often specified as a Poisson RFS in practical implementations. Finally, the
multi-target observation at time k is given by

Zk = Θk(Xk) ∪ Kk (3.104)

and the multi-target likelihood is

gk(Zk ∣Xk) = ∑
W⊆Zk

πΘ,k(W ∣Xk) πK ,k(Zk ∖W). (3.105)

multi target bayes recursion
In this section the Bayes filtering recursion introduced in section section 3.1 is generalised
to the MTT scenario by using the RFS theory presented in section section 3.5. Suppose that
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the all information about the multi-target system state is contained in a posteriori filtering
density πk−1(Xk−1∣Z1∶k−1). Then the multi-target Bayes recursion is given by [44]

πk∣k−1(Xk ∣Z1∶k−1) = ∫ fk∣k−1(Xk ∣X) πk−1(X∣Z1∶k−1) µ(dX), (3.106)

πk(Xk ∣Z1∶k) = gk(Zk ∣Xk) πk∣k−1(Xk ∣Z1∶k−1)
∫ gk(Zk ∣X) πk∣k−1(X∣Z1∶k−1) µ(dX) , (3.107)

where fk∣k−1(Xk ∣Xk−1) and gk(Zk ∣Xk) are previously defined multi-target transition density
and likelihood.

The recursion given by eqs. (3.106) and (3.107) is intractable in real-time application
due to the set integrals in addition to the combinatorial nature of the multi-target transition
densities and likelihoods. To overcome the problem of a combinatorial explosion, many
approximations to the full multi-target Bayes recursion were proposed. In [66] the first
moment approximation of themulti-target filter, the so-called probability hypothesis density
(PHD filter), was introduced and in [8] the closed-form solution to the PHD recursion was
presented for the Gaussian mixture approximation, which will be studied more closely in
section section 3.5.3. The PHD filter was further improved in [9, 85] in order to estimate the
second moment of the cardinality distribution. Besides the moment approximations, in [10,
74] multi-Bernoulli approximation to the multi-target Bayes filter has been proposed.

state estimation
Themulti-target Bayes filter outputs the multi-target probability density, hence to obtain the
locations of targets it is necessary to extract the target states from the density πk(Xk ∣Z1∶k).
However, it is not easy to generalize the single-target EAP and MAP estimators to the
multi-target case, as it is shown in [12, 44].

One possible approach to the state estimation problem is tomake use of the first moment
of the filtering density. Recall that the local maxima of the intensity function indicate
locations with high expectancy of number of objects. Thus for the given cardinality n it is
possible to obtain the target states as the n highest peaks of the intensity function, while the
number of targets may be obtained using the MAP estimate of the cardinality distribution

n̂ = arg sup
n

ρk(n∣Z1∶k). (3.108)

Besides the first moment visualization method described above, in [44] the marginal
multi-object (MaM) and joint multi-object (JoM) estimators are proposed. The MaM
estimate can be obtained in two steps. First the number of targets is MAP estimated by
(3.108) and then the individual target states are estimated according to [44]

X̂MaM = arg sup
X∶∣X∣=n̂ πk(X∣Z1∶k). (3.109)

The JoM estimate can also be evaluated in two steps. First, determine the MAP estimate

X̂n = arg sup
X∶∣X∣=n πk(X∣Z1∶k) (3.110)
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for each n ≥ 0 and then obtain n̂ as

n̂ = arg sup
n

πk(X̂n∣Z1∶k) cnn! , (3.111)

where c is a dimensionless constant which determines accuracy and the convergence rate
of the estimator [44]. The JoM estimate is then given by

X̂ JoM
c = X̂n̂. (3.112)

3.5.3 Probability Hypothesis Density Filter
Althoughmathematically rigorous, the full multi-target Bayes recursion given by eqs. (3.106)
and (3.107) it is computationally intractable in real time due to set integrals and combinato-
rial nature of multi-target probability densities. Thus, it is necessary to use some kind of
approximation of the full multi-target recursion. In this section, the probability hypothesis
density (PHD) filter is presented, which propagates only the first moment (intensity func-
tion) of the multi-target probability density to mitigate the computational complexity of a
multi-target Bayes filter.

Suppose that the multi-target probability density πk−1 (Xk−1 ∣Z1∶k−1) at time k − 1 is a
Poisson RFS with intensity function vk−1. Suppose further that the multi-target system can
be modelled in the following way [8]:

– At time k each target moves independently of other targets according
to single-target Markov transition density fk∣k−1(⋅∣⋅) and continues to
exist with probability pS ,k(⋅).

– RFS Γk of new targets is a Poisson RFS with intensity function γk(⋅)
and is independent of existing targets.

– The RFS Bk∣k−1 of targets spawned at time k by existing target is a
Poisson RFS with intensity function βk(⋅∣⋅).

– Each target is detected at time k with the probability pD,k(⋅) and gener-
ates measurement independent of other targets according to likelihood
gk(⋅∣⋅).

– The RFS Kk of a false alarms at time k is a Poisson RFS with intensity
function κk(⋅) and is independent of targets.

Mahler showed in [66] that under assumptions given above, the predicted multi-target
density πk∣k−1 and updated posterior density πk remain Poisson RFS densities. Therefore, it
is possible to propagate only the intensity function instead of the full multi-target density.
The Bayes recursion in terms of intensity functions is given by [8]

vk∣k−1(x) = ∫ pS ,k(ξ) fk∣k−1 (x ∣ ξ)vk−1(ξ) dξ
+ ∫ βk∣k−1 (x ∣ ξ)vk−1(ξ) dξ + γk(x), (3.113)
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vk(x) = (1 − pD,k(x))vk∣k−1(x)
+ ∑

z∈Zk

pD,k(x)gk (z ∣ x)vk∣k−1(x)
κk(z) + ∫ pD,k(z)gk (z ∣ ξ)vk∣k−1(ξ) dξ . (3.114)

Note that both integrals in eqs. (3.113) and (3.114) are defined on X ⊆ Rd , while integrals in
the full multi-target Bayes recursion are set integrals onF(X). Hence, propagating only the
first moment of the multi-target density avoids a lot of the computational burden caused by
data association problem.

gaussian mixture implementation
Although recursion given by eqs. (3.113) and (3.114) is computationally feasible in real-time,
the integrals cannot be solved analytically in general case. Therefore, sequential Monte
Carlo (SMC) method is often used to approximate intensity functions [72]. However, under
some additional assumptions on multi-target system model it is possible to obtain a closed-
form solution of the PHD recursion [8], the Gaussian mixture probability hypothesis
density (GM-PHD) filter. In addition to assumptions in the previous section, let’s also
assume the following [8]

– Each target follows a linear Gaussian dynamical model given by the
Markov transition density

fk∣k−1 (xk∣k−1 ∣ xk−1) = N (xk∣k−1 ∣ Fk−1xk−1, Lk−1Qk−1LT
k−1) . (3.115)

– Each target generates observations given by linear Gaussian measure-
ment model

gk (zk ∣ xk) = N (zk ∣ Hkxk ,MkRkMT
k ) . (3.116)

– The target survival and detection probabilities are state independent3

pS ,k(x) = pS ,k, (3.117)

pD,k(x) = pD,k. (3.118)

– The intensity function of the birth RFS Γk is a Gaussian mixture of the
following form

γk(x) = Nγ ,k∑
i=1 wγ,k,iN (x ∣ mγ,k,i , Pγ,k,i) , (3.119)

where Nγ,k is a number of Gaussian components, wγ,k,i > 0 is the
weight of i-th component, mγ,k,i and Pγ,k,i are mean and covariance of
i-th Gaussian component.

3 In [8] it was also shown that if the survival and detection probability are exponential mixtures, the closed
form solution can still be obtained.
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– The intensity of RFS Bk∣k−1 spawned by target with previous state ξ is
a Gaussian mixture of the form

βk∣k−1 (x ∣ ξ) = Nβ ,k∑
i=1 wβ,k,iN (x ∣ Fβ,k−1,i ξ + dβ,k−1,i ,Qβ,k−1,i) , (3.120)

where Nβ,k is the number of Gaussian components, wβ,k,i > 0 is the
weight of i-th component, Fβ,k−1,i , dβ,k−1,i and Qβ,k−1,i are model pa-
rameters of i-th Gaussian component.

Prediction Step If the above assumptions hold and if the posterior intensity at time k − 1
is a Gaussian mixture of the following form [8]

vk−1(x) = Nk−1∑
i=1 wk−1N (x ∣ mk−1,i , Pk−1,i) , (3.121)

then the predicted intensity at time k is also a Gaussian mixture of the form

vk∣k−1(x) = vS ,k∣k−1(x) + vβ,k∣k−1(x) + γk(x), (3.122)

where vS ,k∣k−1 is the intensity of the survived targets, vβ,k∣k−1 is the intensity of targets spawned
by targets existing at time k − 1 and γk is the intensity of targets born at time k given by
(3.119). The intensity of the target that survived is given by

vS ,k∣k−1(x) = pS ,k Nk−1∑
i=1 wk−1,iN (x ∣ mS ,k∣k−1,i , PS ,k∣k−1,i) , (3.123)

mS ,k∣k−1,i = Fk−1mk−1,i , (3.124)

PS ,k∣k−1,i = Fk−1Pk−1,iFT
k−1 + Lk−1Qk−1LT

k−1. (3.125)

The intensity of targets spawned by targets existing at time k − 1 is given by

vβ,k∣k−1(x) = Nk−1∑
i=1

Nβ ,k∑
j=1 wk−1,iwβ,k, jN (x ∣ mβ,k∣k−1,i , j, Pβ,k∣k−1,i , j) , (3.126)

mβ,k∣k−1,i , j = Fβ,k−1, jmk−1,i + dβ,k−1, j, (3.127)

Pβ,k∣k−1,i , j = Fβ,k−1, jPk−1,iFT
β,k−1, j +Qβ,k−1, j. (3.128)

Update Step If the above assumptions hold and if the predicted intensity at time k is a
Gaussian mixture of the following form

vk∣k−1(x) = Nk∣k−1∑
i=1 wk∣k−1,iN (x ∣ mk∣k−1,i , Pk∣k−1,i) , (3.129)

then the posterior intensity at time k is also a Gaussian mixture of the form [8]

vk(x) = (1 − pD,k)vk∣k−1(x) + ∑
z∈Zk

vD,k (x ∣ z) , (3.130)
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where the first term is the intensity of the targets that are not detected at time k and the
second term is the intensity of detected targets given by

vD,k (x ∣ z) = Nk∣k−1∑
i=1 wk,i(z)N (x ∣ mk,i(z), Pk,i) , (3.131)

wk,i(z) = pD,k wk∣k−1,i qk,i(z)
κ(z) + pD,k∑Nk∣k−1

j=1 wk∣k−1, j qk, j(z) , (3.132)

qk,i(z) = N (z ∣ Hkmk∣k−1,i , Sk,i) , (3.133)

mk,i(z) =mk∣k−1,i + Kk,i(z −Hkmk∣k−1,i), (3.134)

Pk,i = (I − Kk,iHk)Pk∣k−1,i , (3.135)

Kk,i = Pk∣k−1,iHkS−1k,i , (3.136)

Sk,i =HkPk∣k−1,iHT
k +MkRkMT

k . (3.137)

Gaussian Mixture Reduction Although Gaussian mixture approximation of the PHD
recursion yields a closed form solution, the number of mixture components needed to
represent the intensity function grows exponentially with time. In a real-world application
even after a few iterations of the GM-PHD recursion, the number of components would be
to large for a limited memory, and the algorithm would become computationally intractable.
However, most of the components would have negligibly small weights, and some of the
components would be close enough, so that they could be well approximated by a single
Gaussian. Thus, it is important to incorporate a heuristic for reduction of Gaussian mixture
components in any real-world implementation of the GM-PHD filter.

Some of the algorithms for Gaussian mixture reduction can be found in [86–89]. The
method proposed in [8] will be used in this report for simplicity. Firstly, all components
whose weight is below certain threshold T are truncated and the weights of all remaining
components are scaled so that the expected number of targets remains unchanged. Secondly,
components that are close enough given a threshold U are merged, where the distance
between two components is a Mahalanobis distance. Finally, if the number of components
is still too large, then only a desired number with highest weights is kept (and weights of
remaining components are appropriately scaled).

State Extraction After the posterior intensity function vk(x) is calculated, the state extrac-
tion procedure is needed in order to obtain individual targets. Since the peaks of intensity
function represent locations with high concentration of objects and N̂ = ∫ v(x) dx is the
expected number of objects, it is intuitive to pick N̂ highest peaks of the intensity function
as estimated targets. Moreover, since the intensity function in GM-PHD filter is a Gaussian
mixture, and because Gaussian components are well separated due to merging procedure,
the peaks of the intensity are approximately means of the individual Gaussian components.
However, the height of peak depends not only on the weight of the Gaussian, but also on
its covariance [8], and it is not desirable to pick a low-weight Gaussian as a target estimate.



Chap. 3: state estimation and multi target tracking 50

Figure 3.5: Illustration of four frames in MTT where red circles represent ground truth objects
and blue crosses are estimated targets.

Hence, to obtain the target estimates of the GM-PHD filter, the N̂ Gaussian components
with highest weight, keeping in mind that w > 1 implies that more than one target exist near
that peak.

3.6 Multiple Object Tracking Evaluation
Estimation error or miss-distance is an important concept in any estimation problem. In
classical single-target filtering, the system state is a random variable on some Euclidean
space, hence the estimation error can be defined as a distance from the estimated state to the
true system state (ground truth).Themain difference betweenmulti-target and single-target
filtering is that the multi-target state is a unordered set of individual target states. Thus, it is
not easy to extend the single-target miss-distance concept to the multi-target concept. One
could naively just stack target states in a single vector and try to use Euclidean distance.
However, since RFSs are unordered, there are many different ways arrange target states
into a vector resulting in a different distance for each arrangement. Furthermore, even if it
was known how to associate estimated targets with ground truth objects, it is not clear how
to penalize error in estimated target number.

3.6.1 Optimal Sub-Pattern Assignemnt
In [90] Schuhmacher et al. proposed the optimal sub-pattern assignment (OSPA) metric
for evaluating the multi-target filtering performance. Let dc(x , y) ≜min(c, d(x , y)), where
d(x , y) is the Euclidean distance between x , y ∈ X , and c > 0 is the cut-off distance. Then
the OSPA distance between sets X = {x1, ..., xm} and Y = {y1, ..., yn} is defined as follows

d̄p,c(X ,Y) ≜ ⎛⎝ 1n(min
π∈Πn

m∑
i=1 dc(xi , yπ(i))p + cp(n −m))

⎞⎠
1
p

, (3.138)
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if m ≤ n and d̄p,c(X ,Y) ≜ d̄p,c(Y , X) otherwise, where Πn is the set of permutations on{1, ..., n}. The proof that (3.138) is a well-defined metric can be found in [90].The parameter
c, as said above, is the cut-off distance, which means that estimated target and a true object
can not be associated if their distance in greater than c. The parameter p ∈ [1,∞⟩ is the
order of the metric which affects the sensitivity of the metric to outliers in the sense that as
p increases the outliers are more penalized.

3.6.2 Clear MOT Metrics
Themain disadvantage of the MTT evaluation method presented in section 3.6.1 is that it
does not take into account the consistency over time of the tracker. To overcome this issue,
Bernardin and Stiefelhagen proposed the clear MOT (CMOT) metrics in [91]. The CMOT
provides two measures: multiple object tracking precision (MOTP), which measures the
error in location of the tracker, and multiple object tracking accuracy (MOTA) which
measures the trackers ability to assign correct labels to its object hypotheses.

The MOTA measures incorporates the number of false positives (FPs), missed objects
or false negatives (FNs) and the number of mismatches or identity switches (IDS’s). The
number of FPs in a single frame is obtained by counting all of the tracker’s hypotheses
that cannot be matched to any of the ground truth (GT) objects. Similarly, the number of
FNs in obtained by counting all GT objects that are not matched to any of the tracker’s
hypotheses at current frame. The IDS’s number counts how many of the GT objects are
matched to the hypothesis with label inconsistent with the one from the previous frame.

In order to calculate the MOTP and MOTA scores, it is necessary to map the track
hypotheses to GT objects in each frame. Firstly, the threshold T is used to check if corre-
spondences between GT objects and track hypotheses are valid [91]. If the distance between
the true object and the track hypothesis is greater than the threshold, the correspondence
between this object and track hypothesis is considered as not valid. Furthermore, all map-
pings from frame k − 1 that are still valid in frame k are preserved. The rest of objects and
tracks are paired in such a way that minimizes the total distance, which can be achieved
with the Hungarian algorithm [51]. Now, denote with FPk the count of all false positives
in frame k, with FNk the number of all false negatives in frame k and, finally, denote with
IDsk the number of identity switches in frame k.

MOTP = ∑i ,k di ,k∑k ck
, (3.139)

MOTA = 1 − ∑k (IDsk + FPk + FNk)∑k GTk
, (3.140)
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Figure 3.6: Illustration of the CMOT evaluation. Figure shows 10 consecutive time frames of
tracking. True locations of objects o1, o2 and o3 are marked with red, green and blue circles.
Estimates of object positions are indicated by triangles, where the color of the triangle represents
the unique label of the estimated object. Matching between true objects and tracker’s hypotheses
are shown with doted rectangles. There are a few examples of false positives, false negatives and
identity switches on this illustration.
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3.7 Summary
In this chapter we have presented the state-of-the-art state estimation and multi-target
tracking methods. First, we introduced the Bayesian estimation paradigm.Then we con-
sidered some special cases of Bayesian estimators. Under linear Gaussian assumption, the
Bayesian recursion admits a closed-form solution which is in the literature known as a
Kalman filter. Although Kalman filter is an linear recursive estimator, there are several
extensions for nonlinear systems. Extended Kalman filter uses first-order approximation of
the state transition function to propagate the uncertainty of the filter, while the unscented
Kalman filter utilizes the unscented transform to propagate both the state of an nonlinear
system and its uncertainty. The second part of this chapter introduces the problem of multi-
target tracking.Three different types of multi-target tracking methods are presented. Finally,
optimal sub-pattern assignment and clear MOT metrics are introduced.



Chapter 4
Probabilistic Tracking over

Deep Embeddings



P edestrian multi target tracking methods require detections as inputs and deep
convolutional models are particularly suitable for the task. Pre-training deep models

on large datasets is shown to have a great regularization effect. Datasets like ImageNet [92]
and COCO [93] hold great generalization potential which is available through pre-training
on such large collections of annotated data. However, fine-tuning of a multi class object
detector to detect pedestrians is not a straightforward task. Limitations in model vertical
receptive field, noise in bounding box annotations, and annotation errors are common
issues [94]. Fine-tuning on homogeneous video sequences incurs high overfitting risk,
thus diversity in training data should be targeted to improve generalization. Given that,
fine-tuning a multiclass object detector for the task of pedestrian detection is possible by
training on a dataset like CityPersons [95]. This dataset contains diversity on multiple axes,
such as person identity, clothing, pose, occlusion level etc.

Correspondence embeddings can be useful for a target association problem such as
pedestrian tracking, since they are trained to measure similarity between images. The
pioneer of approaches for deep metric learning used siamese networks [96], while triplet
networks are considered as an improvement [97]. This is due to a slight, but impactful
modification of the loss, which ensures better alignment between the similarity in the
embedded space and the likeliness of correspondence. A body ofwork analyses and improves
triplet loss functions. Convergence issues of metric learning using triplet loss are alleviated
using N-pair loss, which compares a positive example to N − 1 negatives [98]. Rather than
focusing on pairwise distances in metric space, angular loss [99] minimizes the angle at the
negative point of the triplet. This has a positive effect on quality of learning, since angles
are insensitive to changes in scale. Our approach follows previous work which utilizes
segmentation masks to make the appearance embedding less sensitive to occlusions and
changes in the background [100].

A good overview of the current state-of-the-art of the MTT algorithms can be found in
[1], where authors consider three different approaches to theMTT problem: (i) probabilistic
data association, (ii) multiple hypothesis tracking, and (iii) random finite set approach. In
probabilistic data association (PDA) [2–4] tracking methods, the measurement associa-
tion uncertainty is untangled by soft assignment. The first such methods for single and
multiple target tracking were the PDA filter [2] and the joint probabilistic data association
filter (JPDAF) [3], respectively. However, both approaches assume known and constant tar-
get number and need some heuristics for track initialisation and termination.The integrated
probabilistic data association filter (IPDAF) [52] and joint integrated probabilistic data asso-
ciation filter (JIPDAF) [4] alleviate this issue by estimating the targets existence probability

55
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Figure 4.1: Pedestrian tracking on 3DMOT2015 sequences, PETS09-S2L1 (up) frame 125 (left)
and frame 138 (right), AVG-TownCentre (down) frame 341 (left) and frame 351 (right).

together with its states, thus providing a natural method for automatic track initialisation
and termination. Unlike probabilistic data association (PDA) methods, multiple hypothesis
tracking (MHT) algorithms [6, 54] generate hypotheses for different associations and the
decision about which of the hypotheses is correct is postponed until new data is collected.
Somewhat more recent approaches are based on the random finite set (RFS) paradigm
[101]. Based on the RFS theory, the closed-form first moment approximation of the RFS
filter, the Gaussian mixture probability hypothesis density (GM-PHD) filter was presented
in [8], and since then other novel approaches have been proposed [11, 12, 84].

In this chapter we present a pedestrian tracking-by-detection approach based on a
deep learning detector combined with the JIPDA and an appearance-based tracker using
deep correspondence embeddings. A convolutional neural network detector was pretrained
on the COCO dataset for accurate pedestrian detection and serves as the input for the
JIPDA based tracking algorithm where the state consists only of pedestrian kinematic cues
(positions and velocities). The proposed pedestrian tracker with kinematic cues currently
ranks first on the 3DMOT2015 online benchmark [102] that contains sequences with a
static camera (cf. figure 4.1). In order to enable pedestrian tracking in sequences containing
camera motion, under the assumption that camera ego-motion is not available, kinematic
parameters in 3D need to be exchanged for appearance cues based on a deep correspondence
metric in the image space. We therefore learn a correspondence embedding and leverage it
for association across video frames using the global nearest neighbor approach (GNN). In
the end, we compare GNN tracking of correspondence embeddings with the JIPDA tracker
based on kinematic cues (position and velocity).
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This chapter is organized as follows. Firstly, the section 4.1 gives a brief overview of
the literature related to visual tracking. Then, the public MOT Challenge benchmark that
was used to evaluate the proposed method is outlined in section 4.2. Section 4.3 describes
models we used to detect pedestrians as well as calculate correspondence embeddings.
The probabilistic data association method used for tracking pedestrians is presented in
section 4.4. Results on the online MOT benchmark as well as validation experiments are
presented in section 4.5. Finally, we give a summary of our accomplishments and findings
in section 4.6.

4.1 Related Work
Visual pedestrian tracking can be implemented by consolidating an object detector, appear-
ance based association metric, and a suitable MTT approach. In [103] authors track multiple
pedestrians using a Rao-Blackwellized particle filter [104] with track management based on
detection association likelihoods. Therein, the authors augment the state vector of tracked
objects by an appearance based deep person re-identification vector [105] and compute data
association probability by multiplying conditionally independent position and appearance
association likelihoods. The appearance association likelihood computed as the softmin
function of the norm of the appearance vector differences. The authors report that adding
appearance information reduced the number of identity switches and increased slightly
the overall tracking score; however, tracking using just the appearance, without position
information, showed to perform quite poorly.

In [106] probabilistic models were incorporated into a track-by-detection approach
using prior knowledge of a static scene, describing pedestrian state using position, height
and width in world coordinates. Such approach lacks information on pedestrian appearance
to correctly handle interactions between pedestrians in crowded scenes.

In [107] authors utilize the probability hypothesis density (PHD) filter to track multiple
pedestrians. Since, PHD does not provide the track labels but only the locations of tracked
objects, additional data association step must be performed on the outputs of the PHD
filter. Hence, authors propose to use the min-cost flow network to solve the data association
problem. Furthermore, they reformulate the PHD recursion in terms of single-target track
hypotheses.

Song et al. propose a multi target tracking tracking method based on the Gaussian
mixture implementation of PHD filter in [108].They expanded theGM-PHD filterwith the
hierarchical data association module. The hierarchical data association uses the Hungarian
algorithm [51] to solve both the detection-to-track and track-to-track assignment problems.
Authors claim that due to hierarchical data association it is possible to recover tracks lost
because of missed detections. Additionally, tracking merging and occlusion group energy
minimization techniques are used together to tackle the occlusions.

Yang et al. proposed themulti-person localization and tracking framework in [109].They
estimate the 2D human poses for each person and then apply intrinsic camera parameters
to obtain the 3D location of a person. 3D person locations makes it easier to utilize the
Kalmanfilter (KF) tomodel humanmotion.Additionally, authors also utilize the appearance
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similarity together with the trajectory to improve data association. In order to evaluate their
method, authors annotated their own multi-person panoramic localization and tracking
dataset and also use KITTI and MOT Challenge datasets.

The MOANA approach [110] introduces an adaptive model capable of encoding a long-
term appearance change. Furthermore, they incorporate that appearance model together
with the geometry information in the re-identification model to diminish the problem of
occlusion and association ambiguity of nearby objects. The authors tested their method on
the MOT Challenge benchmark [102] on both the 2D and 3D datasets of MOT15 challenge
and achieved remarkable results.

In [111] Stadler and Beyerer tackles the problem of heavy occlusions which arise in
pedestrian tracking in crowds. They propose to cluster tracks based on their overlap and
adding cluster states to each cluster that depend on the number of target and detections in
cluster.The past track data is used to correct the wrong detection-to-target associations after
the targets are re-detected. Finally, authors combined the tracking-by-detection framework
together with regression-based tracking in order to improve the tracking performance in
crowded scenes even more. Their method achieved promising results on MOT16, MOT17
and MOT20 datasets of MOT Challenge benchmark [102].

Wang et al. propose a deep learning based approach to multiple object tracking [112].
Similar to many recent deep learning MTT methods, they use the joint MTT approach,
where the object detection and data association modules are optimized simultaneously.
Moreover, they apply graph neural network model to exploit its ability to learn the relations
between variable sized sets of objects and detection in both the spatial and temporal domains.
Authors compare their approach with other state-of-the-art pedestrian trackers on various
MOT Challenge [102] datasets.

In [113] the graph convolutional neural network was utilized to achieve multi target
tracking. With the combined the graph and convolutional neural network architecture,
it is possible to extract the deep features as well as to model the interaction among the
objects and among their features. In addition, authors applied the Sinkhorn algorithm to
enforce the MTT constraints during the training of their model. Authors also claim that
their method significantly improves performance compared to other graph neural network
due to the use of geometric features. The performance of the approach is measured on the
MOT15, MO16, MOT17 and MOT20 datasets of MOT Challenge benchmark.

4.2 MOT Challenge Benchmark

The MOT Challenge benchmark1 [102] provides a set of different multi target tracking
datasets. Datasets are split into two types of sequences. One group contain ground truth
(GT) data and is suitable for training and parameter tuning, while the other group is
intended for evaluation and comparison of different methods. To achieve that, the GT data
is not publicly available, but the benchmark provides the centralized evaluation method to
ensure the fair comparison.

One of the datasets available on MOT Challenge is the MOT15 dataset [102] which has

1 https://motchallenge.net/

https://motchallenge.net/
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Figure 4.2: Some of the images from MOT15 sequences of the MOT Challenge multi target
tracking benchmark.

both 2D and 3D versions. 2D-MOT15 dataset contains 11 training and 11 testing sequences.
Some of the images from this dataset are shown on figure 4.2.The dataset contains sequences
recorded with different types of cameras, from different angles and also contains some
sequences with moving camera. The 3D-MOT15 dataset contains a few of the sequences of
2D-MOT15 where the camera is static, and furthermore, the intrinsic calibration parameters
of the camera as well as the parameters for the transformation to the world coordinates
are given. The MOT16 dataset [114] aims to improve some of the issues in MOT15 such
as imbalance in the crowd density between training and test sequences and the quality of
the detections provided with the dataset. Moreover, MOT16 introduces sequences with
higher crowd density, different weather conditions and with different perspective to make
the tracking more challenging.
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4.3 Detection and Appearance Representation
In order to detect pedestrians, theMask region based convolutional neural network (R-CNN)
algorithm trained on a suitable blend of public datasets is applied. The obtained bounding
boxes were cropped and scaled, masked with segmentation masks and then processed
with the separate deep model trained with a metric loss. This resulted in correspondence
embeddings which were used as descriptors in appearance-only tracking. The details are
described in the rest of this section.

4.3.1 Pedestrian Detection
Mask R-CNN [115] is an extension of the Faster R-CNN [116] object detector. It consists
of two stages: (i) finding regions of interest (RoIs) using region proposal network (RPN)
and (ii) classification of the proposed RoIs and bounding box regression. Mask R-CNN
enhances the second stage by predicting segmentation masks of RoIs provided by RPN.
By utilizing the RoIAlign operation and attaining better representations through learning
segmentationmasks,Mask R-CNN surpasses Faster R-CNN on the task of object detection.
We adapted the multi-class Mask R-CNN for pedestrian detection. The architecture of the
Mask R-CNN is shown on figure 4.3.

RoIAlignRoIAlign

class
box

convconv convconv

Figure 4.3: Architecture of mask R-CNN object detector. Figure taken from [115].

Themost suitable transfer-learning strategy is chosen by performing validation experi-
ments with a Mask R-CNN detector trained on different datasets. It turned out that the
fine-tuning from COCO to CityPersons was the most appropriate course of action as shown
in details in section 4.5. We believe this can be explained as follows. Firstly, CityPersons
includes annotations with fixed aspect ratio (BB-full) which are suitable to train occlusion
invariant bounding box regression. Secondly, we noticed that COCO people are much more
diverse than MOT Challenge pedestrians due to numerous other contexts such as riding,
driving, sitting down etc. Furthermore, CityPersons inherits ground truth pixel-level masks
from the Cityscapes dataset [117]. Presence of ground truth pixel level masks is suitable for
fine-tuning Mask R-CNNs mask head.
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We adapted the pre-trained multi class Mask R-CNN [115] for pedestrian detection in
two steps. Firstly, we adapted theMask R-CNN classification, bounding box regression and
mask prediction heads to have two possible outputs: background and pedestrian. We sliced
the weights of the last layer of the classification head in order to leave only the logits for the
background and pedestrian classes which we initialized with weights of the corresponding
COCO classes. Secondly, we fine-tuned the resulting model with ground truth bounding
boxes and segmentation masks from CityPersons.

4.3.2 Deep Correspondence Embedding
We represented pedestrian appearance with a metric embedding provided by a deep cor-
respondence model. Appearance of each pedestrian is represented by high-dimensional
embeddings in metric space. Selection of the correspondence model is not straightforward.
We started form ResNet-18 [118] classification architecture which consists of four residual
blocks, from RB1 to RB4. Features from RB4 are suitable for discriminating between dif-
ferent classes. However, we found that features from earlier blocks are more beneficial for
differentiating between different person identities. Therefore, we calculated embeddings
from features in the last convolutional layer of RB2. Validation experiments suggest that
these features contain more information about person appearance than features in any
other residual block. Furthermore, the last two blocks hold around 70% of total ResNet
parameters. By getting rid of them, we decreased the susceptibility to overfitting. At the same
time, it is possible to initialize the first two blocks with pre-trained weights and profit from
regularization induced by ImageNet. We demonstrate the effectiveness of this approach in
more detail in section 4.5.

Furthermore, we investigated the possibility of using segmentation masks provided by
Mask R-CNN to generate descriptors which are robust to changes in object background
and occlusions. We experimented with two approaches for incorporating the segmenta-
tion mask MS into the correspondence embedding. The first approach applies MS to the
input image. The second approach uses MS to mask the convolutional features. The two
approaches are not the same since the latter approach preserves some background influ-
ence due to receptive field of the convolutional features. Despite this, applying the mask
to ResNet features performed better in experiments. We conjecture that this is due to low
resolution of the Mask R-CNN mask resulting in poor accuracy when upsampled to RoI
resolution. Note that a segmentation mask can be interpreted as a dense probability map
that the corresponding pixel is foreground. Therefore, one can suppress the background by
elementwise multiplication with the segmentation mask.

As mentioned before, we adapted the ImageNet pre-trained architecture by taking only
the first two residual blocks. The features of the last residual block were passed to a 1 × 1
convolutional layer and masked using the output of Mask R-CNNs segmentation head.
Finally, the correspondence embedding was produced by global average pooling.

The model was trained using angular loss [119]. We extended the angular loss by adding
the margin term. For a given reference embedding r, a corresponding embedding of the
same identity p and a negative embedding q, we calculated the angular loss (4.1), where m
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is the margin hyperparameter and c = r+p
2 :

Lang =max(0,m + ∥r − p∥ − 4 tan(α)2 ∥q − c∥). (4.1)

Gradients of the angular loss push the negative example away from the center of p and
r examples in the q − c direction. This also minimizes rTq and pTq (r, p and q are unit
vectors).

4.3.3 Details of Training Correspondence Embedding
We trained the correspondence model on MOT2016 [114]. We refrain from training on 2D
MOT 2015 since it does not include precise ground truth data regarding occlusion level.
During training, we removed all training samples with occlusion level greater than 50%.
We incorporated the following method for generating positive and negative samples. We
generated positive examples by taking random detections less than 5 frames away from the
reference example frame. We generated negative examples by taking random identity from
the same sequence. We sampled random easy negatives as bounding boxes which do not
intersect any ground truth bounding boxes. This made the correspondence model more
robust to pedestrian detector’s false negative outputs. We chose the following sequences
to serve as validation data: MOT16-02, MOT16-04, MOT16-05. The validation data was used
for early stopping and tuning of hyperparameters. The output embedding vectors had 64
dimensions.We used theAdam [120] optimizer with fixed learning rate of 10−4.Weight decay
was set to 10−4 for all parameters and the model was trained for 10 epochs. During training
and testing, we did not use whole images. Instead, we cropped the detection bounding
boxes and resized them to the fixed resolution 224 × 96.
4.4 Pedestrian Tracking Method
Out of many available state-of-the-art MTT methods, we chose to utilize the JIPDAF
described in section 3.3.3. The state of each pedestrian can be described by the coordinates
of the centroid and the width and height of the bounding box. We use the constant velocity
Kalman filter to model the motion of pedestrians. Denote with x = [px ṗx py ṗy]T the
state of the pedestrian, where px and py denote the image coordinates of the centroid of the
bounding box. The motion model is then given by

xk = F xk−1 +wk−1, (4.2)

yk = Hxk + vk, (4.3)

where wk−1 is the zero-mean Gaussian process noise with the covariance matrix Q =
diag[Q1, Q1] and vk is the zero-mean Gaussian measurement noise with the covariance
matrix R. F = diag[F1, F1] is the state transition matrix. The motion model matrices are as
follows

F1 = [1 ∆T
0 1

] Q1 = σ2
q [∆T 3/3 ∆T 2/2

∆T 2/2 ∆T
]
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H = [1 0 0 0
0 0 1 0

] R = σ2
r [1 0

0 1
]

The width and height of bounding box are not included in the Kalman filter because it is
possible that they could take negative values after the update step of the filter. Instead, the
updated heights and widths are calculated as weighted sums given prior bounding box,
detected bounding boxes and obtained association probabilities. In case of the 3D-MOT
Challenge, the ground plane coordinates are used in KF instead of the image coordinates of
the bounding box centroid in order to improve performance. The strategy for initialisation
is based on the probability that the detection does not originate from any of the existing
tracks, which is given by pnew = 1−∑ j βi , j. Hence, the new track is created for each detection
for which the probability pnew exceeds certain threshold. The initial target’s state is set to[px 0 py 0]T , where px and py are coordinates of the centroid of the detection wich is
used to initiate this track.

We also consider the appearance-only tracking, where the deep embeddings of the deep
neural network are used to describe the appearance of pedestrians. In this case, the simple
global nearest neighbour (GNN) method is used to track the pedestrians. Similarity for all
pairs of between tracked objects and detections are calculated based on deep embeddings,
and then the Hungarian method [51] is utilized to find the optimal matching. The bounding
boxes of the targets are then replaced with the bounding boxes of the matched detections
without any filtering.

4.5 Experimental Results
The experimental evaluation of the proposed method is given in this section. Firstly, sec-
tion 4.5.1 provides the validation of the detection and correspondence deep models intro-
duced in section 4.3. Section 4.5.2 then shows the evaluation of the proposed pedestrian
tracking method on the MOT Challenge benchmark.

4.5.1 Validating the Detection and Correspondence Model
For validation experiments we studied the impact of training Mask R-CNN on different
combinations of training datasets and we carefully analyzed the design possibilities to find
the most suitable correspondence embedding. Here, we describe several validation studies
and comment on the results.

Fine Tuning Mask R-CNN After having little success in transfer learning from COCO
to MOT in preliminary experiments, validation experiments were performed by training
just on CityPersons, just on COCO, and on both datasets, achieving average precision of
45.1, 53.3, and 57.0, respectively table 4.1. Considering the size of dataset for pre-training,
the results in the first two rows are not surprising. Fine-tuning on CityPersons is suitable to
distinguish between pedestrians and other people. Also, bounding boxes generated by Mask
R-CNN trained using BB_full annotations from CityPersons are a better fit for detection
of MOT pedestrians. All detection experiments feature Mask R-CNN detector based on
ResNet-50 FPN.
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Table 4.1: Strategies for training pedestrian detectors. Checked columns denote that themodel is
trained on the given dataset. The AP column denotes detection average precision on MOT2016
train. All experiments use Mask R-CNN with a ResNet-50 FPN backbone.

COCO CityPersons AP
✓ 45.1

✓ 53.3
✓ ✓ 57.0

Using segmentation maps The impact of using segmentation masks is shown in table 4.2,
where IDs denote the number of identity switches, while IDs† shows evaluation on ground
truth bounding boxes. There are more IDs when evaluating on ground truth because no
fragmentations are present. The models were trained on the MOT2016 train dataset, while
evaluation was performed using an appearance based GNN on 2DMOT2015 train. We
showed that segmentation masks generated by Mask R-CNN benefit the correspondence
model by alleviating impacts of background and occlusions. First, a baseline correspon-
dence model which did not use segmentation masks was trained. Secondly, we trained two
correspondence models improved by segmentation masks. The first model masks the input
image. The second model masks the final feature map before the global average pooling
operation. We witnessed an improvement in tracking with the latter approach.

Table 4.2: Applying segmentation masks at image vs feature level.

masked tensor IDs† IDs MOTA
– 507 404 53.6
input image 420 337 53.8
final conv features 328 291 53.9

Residual Blocks Our final model uses only the first two residual blocks of an ImageNet
pre-trained ResNet-18.This design choice is supported by experiments shown in table 4.3. In
each experiment, we used one additional residual block.We trained the model onMOT2016
and evaluate tracking using a position-agnostic GNN approach. The results complement
our initial hypothesis that for describing appearance, abstract features like ones in the
output of a full ResNet model may not be beneficial. In figure 4.4 we can see how the
appearance similarity is distributed throughout the frames by looking at the similarity score
of appearance vectors of the same object separated in time. The results show that even for
a separation of five time steps the similarity of most appearance vector is preserved, with
clear separation from the other objects.

4.5.2 Pedestrian Tracking Evaluation
To track the states of individual targets we used the constant velocity motion model with
the state vector of the targets given by eqs. (4.2) and (4.3). The process and measurement
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Table 4.3:Validation of the model architecture. RB* designates a resblock, while #params shows
the total parameter count.

RB1 RB2 RB3 RB4 #params IDs† IDs
✓ 161.7K 393 458
✓ ✓ 691.3K 328 291
✓ ✓ ✓ 2.8M 416 398
✓ ✓ ✓ ✓ 11.2M 1271 687

Figure 4.4:Distribution of scalar products of the deep embeddings mapped to interval [0, 1].
Black line is the distribution of feature vector scalar products which do not belong to the same
object. Red, green and blue lines show distributions of feature vector scalar products of the
same object at consequent time steps. Feature vectors were evaluated on ground truth bounding
boxes.

noise deviations were set to σq = 0.836ms−2 and σr = 0.141m. Target survival and detection
probabilities were PS = 0.999 and PD = 0.990. Measurement gating probability was PG =
0.990. False alarm rate was set to λ = 15V−1, where V is the surveillance area. 2. New targets
were initialized for the measurements whose a posteriori association probability of not
being associated to any of the existing targets was

1 −∑
j
βi , j > 0.7.

2 In the 3DMOT2015 the surveillance area was estimated by projecting the image frame to the real-world
coordinates and then calculating its area
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Table 4.4:MOTChallenge benchmark results for 3DMOT2015 category, proposed method is
MCN_JIPDA, ↑ denotes that higher is better and ↓ that lower is better, ∗ denotes that the work
is still unpublished. Best score for each metric is in boldface.

Tracker MOTA↑ MOTP↑ FP↓ FN↓ IDs↓
MCN_JIPDA 55.9 64.0 2,910 4,011 486
MOANA [110] 52.7 56.3 2,226 5,551 167
DBN [106] 51.1 61.0 2,077 5,746 380
GPDBN[121] 49.8 62.2 1,813 6,300 311
GustavHX∗ 42.5 56.2 2,735 6,623 302

Initial existence probability for new targets was set to winit = 0.65 and the target was
confirmed when its existence probability exceeded threshold wconfirm = 0.85. Since nothing
could be inferred about the new target’s velocity from only onemeasurement, it was assumed
to be zero, but the initial covariance matrix of the target was inflated so that the state of
the target converges to the actual value when the new measurements arrived. Targets were
terminated when their existence probability fell below the threshold wdelete = 0.003. To
improve tracking performance we discarded all detections with confidence score below the
threshold t = 95%.

The tracking results are shown in table 4.4, where we can see that the proposed kinematic
cues based JIPDAF with theMask R-CNN detector ranked first on the 3DMOT2015 dataset
that contains static camera sequences. The table shows results for the test sequence, while
on the train sequences the tracker obtained MOTA 80.6 and MOTP 69.1. Our method did
produce a higher number of identity switches compared to MOANA, since we did not use
appearance cues and our detector has higher recall than public detections. The tracking
performance could be further improved by using interacting multiple model [122] instead
of a constant velocity Kalman filter and by taking unresolved measurements into account
as proposed in [123].

In table 4.5, which compares the kinematic cues based JIPDAF with deep detections to
the deep correspondence metric based GNN, we can see that both trackers show roughly
the same performance for static camera sequences and tracking in the image space, while
the kinematic based JIPDAF is not appropriate for moving camera with unknown motion.
Augmenting the state space with deep correspondence embeddings directly within a soft
data association approach such as JIPDAF did not result in increased tracking accuracy
in our experiments. It remains an interesting venue of future work to investigate the cor-
respondence embeddings space geometry and utilize the findings in soft data association
approaches.

4.5.3 Comparison With Public Detections
In table 4.6 we compare tracking performance of the JIPDAF with our Mask R-CNN
detections to the tracking with public benchmark detections. JIPDAF parameters used in
the case of the Mask R-CNN detections are the same as in section section 4.5.2. In the case
of benchmark detections we find that the detection confidence threshold t = 47% and the
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Table 4.5: Comparison of a kinematic based JIPDAF and appearance based GNN on
2DMOT2015 train sequences.

Cam Sequence JIPDA Appearance GNN

St
at
ic

ADL-Rundle-6 58.4 58.4
KITTI-17 58.3 56,1
PETS09-S2L1 79.8 78.8
TUD-Campus 78.3 79.4
TUD-Stadtmitte 81.0 81.6
Venice-2 46.0 47.1

M
ov
in
g

ADL-Rundle-8 – 49.5
ETH-Bahnhof – 29.4
ETH-Pedcross2 – 58.0
ETH-Sunnyday – 62.8
KITTI-13 – 40.8

Total – 53.8

clutter density λ = 5V−1 are suitable. Other parameters are same as when Mask R-CNN
detections were used.

Table 4.6: Comparison of the JIPDAF performance with public and with ours detections on
3DMOT2015 train sequences.

Detections MOTA↑ MOTP↑ FP↓ FN↓ IDs↓
Mask R-CNN 80.6 69.1 594 426 70
Public 60.7 74.7 609 1,106 145
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4.6 Summary
In this chapter an online pedestrian tracking method based on JIPDAF and deep models
for pedestrian detection and correspondence embedding was proposed. It was demonstrated
how a COCO pre-trained Mask R-CNN can be adapted for accurate pedestrian detection.
Furthermore,segmentation masks were incorporated to improve the correspondence model
embeddings. Correspondence embeddings use masked features from the second residual
block of ResNet-18 in order to focus on low-level foreground appearance and reduce the
parameter count. The features are pre-trained on ImageNet and fine-tuned with the angular
loss. The proposed tracking method achieved best results on the 3DMOT2015 benchmark
by combining Mask R-CNN detector and JIPDAF. Submitted tracking results achieved
MOTA score of 55.9 and ranked #1. Suitable directions for future work include integrating
correspondence embeddings within JIPDAF and investigating the geometry of such soft
data association.



Chapter 5
State Estimation on

Riemannian Manifolds



T his chapter scrutinizes the problem of state estimation on smooth, possibly curved
spaces called Riemannian manifolds (RMs) which were introduced in chapter 2.

RMs often appear naturally in robotics, for example when dealing with rotations and
poses, which can be captured with Lie groups. Due to the non-linearity of the underlying
geometry, it is not convenient to use classical estimation methods such as the KF on RMs.
The reason for this is that the KF uses the addition and subtraction of vectors to perform
the prediction and update. However, adding or subtracting two points of a general RM
rarely results in a valid point belonging to manifold. Although this issue could be solved by
simply projecting resulting point back to the manifold after each prediction and update step,
this would increase the estimation errors and possibly even result in divergence of the filter.
A better approach is to use the filtering method that takes into account the geometry of the
underlying space. Another possibility is to use particle filtering on Riemannian manifold
[124]. In this case, the distribution on the manifold is approximated by a set of points lying
on the manifold and corresponding set of weights.

The rest of this chapter is organized as follows. First, the review of the state estimation
on manifolds is given in section 5.1. Then, the section 5.2 considers the motion models on
Riemannian manifolds that will be used to implement state estimators. The extensions of
extended Kalman filter and UKF to RM are given in the section 5.3. The section 5.4 intro-
duces the constant velocity motion model for RM extensions of the KF. The experimental
evaluation of proposed filtering methods is given in section 5.5.

5.1 Related Work
Bourmaud et al. studied filtering on Lie groups in series of papers. In recent years, Lie
groups found immense use in various robotic applications since they can naturally represent
orientations and poses. Authors generalized the EKF to processes evolving on Lie groups in
[15]. Assuming that the distribution of the state can be represented by concentrated Gaussian
distribution on Lie group, they obtained the closed-form expression of their discrete Lie
group extended Kalman filter (LG-EKF). In addition, in the same paper it is also shown
that the LG-EKF reduces to the ordinary EKF in case that the state space is Euclidean.
In [16], authors extended discrete LG-EKF to continuous-discrete LG-EKF. Inspired by
the iterative version of the EKF, Bourmaud et al. also developed the iterative EKF on Lie
groups [125], which they used to solve the problem of global motion estimation.

Continuing on the work of Bourmaud et al. on LG-EKF, Ćesić et al. developed a

70
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method for moving object tracking using the rigid body motion represented by Lie groups
[18]. They generalized the constant velocity model, which is often used in object tracking
in Euclidean space, to Lie groups. The state of the object was represented in two different
ways. In one as a cross product of the special Euclidean group SE (2)modelling the pose of
the rigid body and R3 modelling translation and angular velocities on R2. The other model
was the product of two special Euclidean groups, the SE (2) × SE (2). Both of these models
showed similar performance in simulation, while significantly outperforming basic EKFs
with constant velocity and constant turn-rate and velocity models. This method was further
extended by Joukov et al. in [126], where the LG-EKF was used to estimate the human
motion. The complete pose of the human was represented as the kinematic chain, where
each joint was modelled by the element of the special orthogonal group SO (2) or SO (3),
while the SE (3) was used to model the pose of the base of the body. Moreover, this method
can be applied to arbitrary kinematic chains.

In [127] authors present the Bayesian approach to filtering the state of the hiddenMarkov
process evolving on the Stiefel manifold. In [128], the author considers the problem of state
estimation on the RMs. In the same paper the author also obtains the conditions that the
process on a RM must satisfy to be a Brownian motion. The results are provided in both
local coordinate approach as well as in the extrinsic approach. Furthermore, the author
obtains some new results concerning un-normalized nonlinear filter. In [124], Snoussi
and Mohammad-Djafari proposed the particle filter for stochastic systems evolving on
Riemannian manifolds. Zhang et al. expanded the feefback particle filter [129] to stochastic
processes on RMs and matrix Lie groups in [130]. The main disadvantage of particle filters
is the large number of particles needed to approximate the state distribution. Hauberg et al.
approach this problem by generalizing the Kalman filter to RMs [32]. They develop the
version of UKF for Riemannian manifolds. Following the work of Hauberg, Menegaz et al.
provided the systematization of the UKF theory on RMs and introduced some extensions
like augmented Riemannian manifold unscented Kalman filter (RM-UKF) in [34]. In the
implementation, they used SMC method to solve the Bayesian recursion. Leonardos et al.
were dealing with the problem of articulated motion estimation from a monocular image
in [33]. Due to the physical constraints of the systems, differential geometry came into
play naturally. They developed the generalization of the EKF to systems whose states are
constrained to some RM. In addition, they used the generalized constant velocity model in
order to obtain the estimation of angular velocities of the system as well. Since the velocity
lies in the tangent space of a manifold, this required them to model the motion of a system
on the tangent bundle of a RM.

5.2 System Models on Riemannian Manifold
As stated in [131], generalizing from discrete stochastic systems evolving in Euclidean space
to RMs is not possible for arbitrary manifolds. In discrete stochastic models, the process
noise acts on the system by addition, which is not generalizable to RMs because of the
aforementioned reasons. However, in the continuous model, the process noise acts on the
tangent space of the manifold, which is vector space, hence the generalization to manifold
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is possible. Suppose that the system state x evolves on manifoldM. The time evolution of x
can then be modelled by following equation

ẋ(t) = f (x(t), u(t), t) +w(x(t), t). (5.1)

The function f ∶ M × U × R → TxMmodels the deterministic part of the process, while
the function w models the stochastic part, the Brownian motion on manifold. The signal
u in (5.1) is the known control input that takes values in the space U . Now the discretized
version of (5.1) can be obtained by Euler integration on RM [131], taking into account that
w(x(t), t) is Brownian motion, resulting in

x(t + ∆T ) = Expx(t)(∆T f (x(t), u(t), t) +√∆T w (x(t), t)), (5.2)

where ∆T is the sampling interval. Instead of (5.2), a simplified discrete model of the
following form may be used

xk = Exp fk−1(xk−1 ,uk−1) (wk−1) . (5.3)

In this case, function fk−1 ∶ M × U → M models the deterministic state transition from
step k − 1 to k and wk−1 is the process noise signal defined on the tangent space Txk−1M.

The observation process can be described by equation

yk = Exphk(xk) (vk) , (5.4)

where h ∶ M → N is the mapping from manifoldM to possibly different manifold N ,
while vk is the measurement noise that takes values at tangent space Thk(xk)N . Note that the
exponential mapping in (5.2) differs from the one in (5.4) because the former is related to
manifoldM, while the latter is related to manifoldN .

5.2.1 Zero-Order Motion Model on Riemannian Manifold
The simplest motion model is the zero-order (or constant) model xk = f (xk−1) = xk−1. Mo-
tion of the state in this model is completely described by the process noise. The observation
process in constant model is usually also given by identity function, i.e. yk = h(xk) = xk.
Figure 5.1 shows few examples of the zero-order Brownian motions on the sphere starting
from the same point, but with different sampling times.

5.2.2 First-Order Motion Model on Riemannian Manifold
The object tracking methods often use higher-order motion models to improve the tracking
performance. One of them is the first-order motion model or constant velocity model,
where it is assumed that the zero-mean process noise acts as acceleration on the objects.
This section generalizes the constant velocity motion model to manifolds. Hence, in this
case the state of the object contains not only it’s position, but also it’s velocity. Denote the
state with x = (p, v), where p ∈ M is position and v ∈ TpM is velocity. It is clear now that
the state x is a point of the tangent bundle TM of the manifoldM. It is also supposed that
the zero-mean concentrated Gaussian process noise w acts as acceleration on the object.
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Figure 5.1: Simulation of Brownian motion on a sphere with different sampling times, starting
from the same point.

Although the discrete constant velocity model could be derived by discretization of (5.1)
where x(t) = (p(t), v(t)), let’s just for simplicity consider that the object moves at constant
velocity between two sampling instants and the process noise only acts at samplingmoments.
We get following

pk = Exppk−1(∆T vk−1), (5.5)

vk = Ppk−1→pk (vk−1 +wk−1) . (5.6)

A few examples of the discrete constant velocity motions on the sphere with different
sampling times are shown on figure 5.2.

5.3 Kalman Filters on Manifolds
In this section the Riemannian manifold based KFs are presented. Due to the curvature of
the manifolds, the uncertainty of the Kalman filter is described by the covariance matrix on
the tangent space of the manifold. Consider a discrete stochastic system whose state takes
values on some n-dimensional manifoldM and suppose that the state transition of that
system can be described by following equation

xk = fk−1 (xk−1,wk−1) , (5.7)

where wk−1 ∈ Txk−1M is the zero-mean concentrated Gaussian process noise signal and
fk−1 ∶ M × TM → M is the non-linear mapping. The model (5.7) does not include the
control input u but it can easily be extended to allow the control input. Suppose also that
the state xk of the system is partially observed by a measurement yk which takes value on a
(possibly) different manifoldN . The measurement model can then be expressed by

yk = hk (xk , vk) , (5.8)
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Figure 5.2: Simulation of a first-order Brownian motion on a sphere with different sampling
times, starting from the same point.

where vk is the zero-mean concentrated Gaussian measurement noise. In the rest of this
section, the two implementations of the Riemannain manifold KFs are provided. The first
one uses Jacobians of the motion and measurement models to propagate the covariance
matrix of the state, while the second one utilizes the unscented transform.

5.3.1 Extended Kalman Filtering on Manifolds

prediction step
Suppose that the prior distribution of the state x is concentrated Gaussian distribution
(CGD) with mean x̂k−1 and covariance P̂k−1. Leonardos et al. propose the Riemannian
manifold extended Kalman filter (RM-EKF) in [33] to propagate and update the state and
its covariance. Although they model the system in a slightly different way, the filtering
equations are similar. The prediction step of RM-EKF is given by [33]

x̂k∣k−1 = fk−1(x̂k−1, 0), (5.9)

P̂k∣k−1 = Fk−1 P̂k−1 FT
k−1 + Lk−1Qk−1 LT

k−1, (5.10)

where Qk−1 is the covariance matrix of the noise wk−1 at time k − 1, while Fk−1 and Lk−1 are
Jacobians of transition model given by

Fk−1 = ∂ fk−1
∂xk−1 ∣x̂k−1 , 0, Lk−1 = ∂ fk−1

∂wk−1 ∣x̂k−1 , 0. (5.11)

Given the predicted density of the state parametrized by x̂k∣k−1 and P̂k∣k−1, the prediction
of the measurement at time k can be obtained by [33]

ŷk∣k−1 = hk (x̂k∣k−1, 0) , (5.12)
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while the covariance matrix of the predicted measurement is given by

Ŝk∣k−1 = Hk P̂k∣k−1HT
k +Mk Rk MT

k , (5.13)

where Rk is the covariance matrix of the measurement noise vk, while Mk and Hk are
Jacobians of measurement model h calculated as follows

Hk = ∂hk

∂xk
∣
x̂k∣k−1 , 0

, Mk = ∂hk

∂vk
∣
x̂k∣k−1 , 0

. (5.14)

update step
The Kalman gain of the RM-EKF can now be calculated similarly as in Euclidean version
of EKF [33]

Kk = P̂k∣k−1HT
k Ŝ−1k∣k−1. (5.15)

Given the observation yk of the state x at time k, the innovation can be calculated as the
vector on the tangent space around the predicted measurement as follows

µk = Log ŷk∣k−1 yk. (5.16)

Finally, the update equation of the state is given by [33]

x̂k = Expx̂k∣k−1Kk µk, (5.17)

while the update of the covariance matrix is obtained by [33]

P̄k = (I − KkHk) P̂k∣k−1, (5.18)

or, written in the Joseph form which is numerically more robust, by

P̄k = (I − KkHk) P̂k∣k−1 (I − KkHk)T + KkMkRkMT
k KT

k . (5.19)

The covariance matrix P̄k calculated by (5.18) or (5.19) is in the tangent space Tx̂k∣k−1M and
must be transported to Tx̂kM, resulting in

P̂k = Px̂k∣k−1→x̂k (P̄k) . (5.20)

implementation issues
When working with manifolds, there are three different approaches: intrinsic, local and
extrinsic. Within the intrinsic approach in differential geometry, objects such as tensors,
differential operators, and others are defined in an invariant way, without the reference
to any coordinate frame. However, in filtering applications it is necessary to have some
kind of coordinate representation. In extrinsic approach, the manifold is embedded in a
higher dimensional Euclidean space and objects such as points, tangent vectors and tensors
can be written in coordinates of the ambient Euclidean space. One example of estimation
on RM entirely in extrinsic coordinates is [33]. When working in extrinsic coordinates,
some relations like (5.15) are not valid. The reason for this is that covariance matrices are
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constrained to the tangent space of the manifold, which has lover dimension than the
ambient Euclidean space. Hence the covariance matrix is not of full rank and cannot be
inverted when written in extrinsic coordinates. To overcome this issue, the set of linearly
independent vectors that span the tangent space of the manifold must be chosen. Arranging
those vectors in a matrix forms a linear map from higher dimensional ambient space, to
the tangent space of the manifold. Using this matrix, covariance, as well as Jacobians can
be transformed to lower dimensional space. Now, filtering equations can be applied and
resulting covariance can be transformed back to extrinsic coordinates

Another problemwith using extrinsic coordinates is that the dimension of the Euclidean
space in which the manifold can be embedded might be much larger compared to the
dimension of the manifold. Furthermore, additional care must be taken to ensure that the
state of the filter and its covariance does not fall of the manifold due to the numerical errors.

The alternative is to use the representation in local coordinates. However, not all mani-
folds can be uniquely covered with only one coordinate chart (e.g. 2-sphere) and instead a
set of multiple coordinate charts must be used. The issue with this is that when the system
state approaches the end of domain of one coordinate chart, it is necessary to convert the
state, as well as covariance matrix and Jacobians used in filtering to different chart. It might
also be tedious to calculate Jacobians in local coordinate representation. However, this can
be avoided by calculating the Jacobian in extrinsic coordinates and then converting it in the
specific coordinate chart when needed. In this thesis, the representation in local coordinates
is used.

5.3.2 Unscented Kalman Filtering on Manifolds
Like in the Euclidean case, it is also possible to implement the unscented version of KF
for Riemannian manifolds. The RM-UKF was introduced by Hauberg et al. in [32], while
some additional variants such as augmented state RM-UKF were proposed by Menegaz
et al. in [34]. The main part of the unscented Kalman filter is the unscented transform, this
section starts by presenting the extension of unscented transform to RMs.

riemannian unscented transform
Suppose that the function f ∶ M → N is the mapping from m-dimensional manifoldM
onto n-dimensional manifoldN . Suppose as well that the concentrated Gaussian variable
x ∼ NM(⋅ ∣ µ, P) is given. The purpose of unscented transform is to find how x transforms
under mapping f . The d-dimensional CGD can be approximated with 2d + 1 deterministi-
cally sampled points. Applying the Cholesky decomposition on the covariance matrix P
yields the sigma vectors on the tangent space TµM

σ̄i = √d + κ ⋅ Li , i = 1, ..., d, (5.21)

σ̄i+d = −√d + κ ⋅ Li , i = 1, ..., d, (5.22)

where Li represents the i-th column of the Cholesky factor of matrix P. The sigma points
are obtained by projecting sigma vectors eqs. (5.21) and (5.22) toM by exponential map

σi = Expµ (σ̄i) i = 1, ..., 2d. (5.23)
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Keep in mind that one sigma point is the mean σ0 = µ. To obtain the unscented transform
of distribution, sigma points are propagated by mapping f . The approximation of the mean
of the propagated distribution is obtained by calculating the Kärcher mean of propagated
sigma points [32]

µ̄ = argmin
x∈N

2d∑
i=0wid2N (x , f (σi)) , (5.24)

where wi are weights calculated as in case of a regular UKF (see eqs. (3.33) – (3.37)). Once
the mean (5.24) is calculated, it is possible to project the propagated sigma points f (σi) to
the tangent space at new mean Tµ̄N and use them to calculate the covariance matrix of the
propagated distribution [32]

P̄ = 2d∑
i=0wi(Logµ̄ f (σi))(Logµ̄ f (σi))T . (5.25)

Thus, the transformed CGD is given by f (x) ∼ NN (⋅ ∣ µ̄, P̄).
prediction step
Suppose that the estimation of state of the system at step k − 1 is x̂k−1, while its covariance is
P̂k−1 and let f ∶ M →M be the state transition model of system. The prediction step of the
RM-UKF is calculated as follows. Firstly, the set of 2d + 1 sigma points σi ,k∣k−1 is obtained
as in eqs. (5.21) and (5.22). Then, the predicted state is obtained as the mean of sigma points
transformed by the function f [32]

x̂k∣k−1 = argmin
x∈M

2d∑
i=0wid2M (x , f (σi ,k−1)) , (5.26)

while the predicted covariance is given by

P̂k∣k−1 = 2d∑
i=0wi(Logx̂k−1 f (σi))(Logx̂k−1 f (σi))T +Qk, (5.27)

where Q is the covariance of the process noise. Alternatively, the process noise covariance
Q can be added at the beginning of the unscented transform, i.e. to the prior covariance
P̂k−1.

Let now h ∶ M → N be the measurement model of the system. The new set of sigma
points σi ,k∣k−1 are calculated from x̂k∣k−1 and P̂k∣k−1. The prediction of the measurement is
obtained by using the unscented transform on the new set of sigma points [32]

ŷk∣k−1 = argmin
y∈N

2d∑
i=0wid2N (y, h(σi ,k∣k−1)) . (5.28)

Now, the innovations covariance and the cross-covariance matrices are given by [32]

Ŝk∣k−1 = 2d∑
i=0wi(Log ŷk∣k−1h(σi ,k∣k−1))(Log ŷk∣k−1h(σi ,k∣k−1))T + Rk, (5.29)

Ĉk∣k−1 = 2d∑
i=0wi(Logx̂k∣k−1σi ,k∣k−1)(Log ŷk∣k−1h(σi ,k∣k−1))T , (5.30)

where R is the measurement noise covariance matrix.
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update step
Given the innovation covariance matrix (5.29) and cross-covariance (5.30), the Kalman gain
at step k is given by [32]

Kk = Ĉk∣k−1Ŝ−1k∣k−1. (5.31)

Note that the Kalman gain Kk ∶ Tŷk∣k−1N → Tx̂k∣k−1M is the mapping from the tangent
space of the measurement manifold to the tangent space of the manifoldM. Denote with
µk = Log ŷk∣k−1 yk the innovation of the measurement yk at time k. Then the update of the
state x is given by [32, 34]

x̂k = Expx̂k∣k−1Kkµk. (5.32)

The update equation for the covariance matrix is the same as in Euclidean case [32]

P̄k = P̂k∣k−1 − Kk Ŝk∣k−1KT
k , (5.33)

however, the resulting covariance is written in the tangent space at x̂k∣k−1 and, hence, it must
be parallel transported to Tx̂kM

P̂k = Px̂k∣k−1→x̂k (P̄k) . (5.34)

5.4 Constant Velocity Kalman Filters on Rie-
mannian Manifolds

This section considers the object tracking on Riemannian manifold with constant velocity
motion model. In this case the state of the object contains not only its position, but also the
velocity. Denote the state with x = (p, v), where p ∈ M is position and v ∈ TpM is velocity.
It is clear now that the state x is a point of the tangent bundle TM. The discrete constant
velocity model f ∶ TM× TM→ TM is given by

[pk
vk
] = fk−1 (xk−1,wk−1) = [ Exppk−1(∆T vk−1)

Ppk−1→pk (vk−1 +wk−1)] , (5.35)

where wk−1 is the zero-mean concentrated Gaussian process noise with covariance Qk−1
defined at tangent space Tpk−1M. Note that both Exppk−1 and Ppk−1→pk (⋅) in (5.35) are expres-
sions ofM, not TM. Suppose that the sensor measures only the position of the object. The
observation model can then be written as

yk = hk(xk ,ωk) = Exppk(ωk), (5.36)

where ωk is the zero-mean concentrated Gaussian measurement noise1.

1 Measurement noise is usually denoted with v within this thesis, however ω is used here instead because v
represents the velocity of the state x.
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5.4.1 Riemannian Manifold Extended Kalman Filter
To implement the RM-EKF with the generalized constant velocity motion model, it is
necessary to calculate the following jacobians of (5.35)

Fk−1 = ∂ fk−1
∂xk−1

RRRRRRRRRRR(x̂k−1 , 0) =
⎡⎢⎢⎢⎢⎢⎢⎣
∂ f1,k−1
∂pk−1
∣(x̂k−1 , 0) ∂ f1,k−1

∂vk−1
∣(x̂k−1 , 0)

∂ f2,k−1
∂pk−1
∣(x̂k−1 , 0) ∂ f2,k−1

∂vk−1
∣(x̂k−1 , 0)

⎤⎥⎥⎥⎥⎥⎥⎦
, (5.37)

Lk−1 = ∂ fk−1
∂wk−1

RRRRRRRRRRR(x̂k−1 , 0) =
⎡⎢⎢⎢⎢⎢⎢⎣
∂ f1,k−1
∂wk−1
∣(x̂k−1 , 0)

∂ f2,k−1
∂wk−1
∣(x̂k−1 , 0)

⎤⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

0
∂ f2,k−1
∂wk−1
∣(x̂k−1 , 0)

⎤⎥⎥⎥⎥⎥⎦ . (5.38)

and the Jacobians of observation model (5.36) with respect to xk and ωk

Hk = ∂hk

∂xk

RRRRRRRRRRR(x̂k∣k−1 ,0) = [
∂hk
∂pk
∣(x̂k∣k−1 ,0) ∂hk

∂vk
∣(x̂k∣k−1 ,0)] (5.39)

= [ ∂hk∂pk
∣(x̂k∣k−1 ,0) 0] , (5.40)

Mk = ∂hk

∂ωk

RRRRRRRRRRR(x̂k∣k−1 ,0). (5.41)

Consider the case of constant velocity model on n-sphere Sn
ρ . Using relations of exponential

map and parallel transport of a sphere given by eqs. (2.35) and (2.37) yields following
Jacobians

F =
⎡⎢⎢⎢⎢⎢⎣

I ⋅ cos θ I ⋅ ∆Tθ sin θ − pvT θ∥v∥2 sin θ + vvT ( ∆T∥v∥2 cos θ − ρ∥v∥3 sin θ)
−I ⋅ ∥v∥ρ sin θ I ⋅ cos θ − vvT ∆T

ρ∥v∥ sin θ − pvT ( 1
ρ∥v∥ sin θ + ∆T

ρ2 cos θ)
⎤⎥⎥⎥⎥⎥⎦ , (5.42)

L = ⎡⎢⎢⎢⎢⎣
0

I − pvT
ρ∥v∥ sin θ − vvT∥v∥2 (1 − cos θ)

⎤⎥⎥⎥⎥⎦ , H = [I 0] , M = I, (5.43)

where θ = ∆T ∥vk−1∥
ρ . For the full derivation of these Jacobians see appendix A. Note that

jacobians in eqs. (5.42) and (5.43) are written in the extrinsic coordinates of Rn+1. To use
them in the local coordinate implementation of RM-EKF, it is necessary to convert them
in the corresponding coordinate system.

5.4.2 Riemannian Manifold Unscented Kalman Filter
The adaptation of RM-UKF from constant model to the constant velocity model is straight-
forward. Sigma points are created on the tangent space of the tangent bundle TM and
then are projected to the TM via exponential mapping of the bundle. Then, sigma points
are transformed according to the first-order model given by (5.35) and the new mean and
covariance are then calculated by eqs. (5.26) and (5.27). To obtain the prediction of the
measurement, the new sigma points are created from the state and are then projected to the
measurement space which is the manifoldM.
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Table 5.1: Root-mean-square error (RMSE) of four filtering methods on unit sphere over 100
Monte Carlo trials.

Method RMSE [m]
RM-EKF 0.03811
RM-UKF 0.03812

vMF 0.03810
KF 0.03811

5.5 Experimental Results
This section provides the experimental evaluation of the Riemannian manifold EKF and
UKF. The performance of filters is measured on the simulated data. In order to show that
proposed methods can be applied to different Riemannian manifolds, they are tested on a
few different manifolds, i.e. sphere and the space of positive definite matrices. Furthermore,
both the zero-order and first order models were used in the simulations. In addition to the
RM-EKF and RM-UKF, another two filters were used in simulations as baselines: the
von Mises-Fisher filter and the discrete Kalman filter. The vMF was used in experiments
on the sphere. In the case of the discrete KF, the state was projected to the manifold after
every prediction and update step.

5.5.1 Zero-Order Model

filtering on the unit sphere
This section provides the evaluation of zero-order filtering methods on the unit sphere.
Methods are tested on different dimensions of the system, ranging from 1 to 20.

Table 5.2: RMSE of RM-EKF, RM-UKF, vMF and KF on unit spheres of different dimen-
sions.

S1 S2 S3 S4 S5 S10 S15 S20

RM-EKF 0.02724 0.03811 0.04700 0.05415 0.06036 0.08560 0.1053 0.1220
RM-UKF 0.02726 0.03812 0.04700 0.05417 0.06039 0.08563 0.1054 0.1220

vMF 0.03125 0.03810 0.04700 0.05415 0.06036 0.08560 0.1053 0.1220
KF 0.02724 0.03811 0.04700 0.05415 0.06036 0.08560 0.1053 0.1220

In this experiment the trajectory was generated by simulating Brownian motion on
the sphere. The Brownian motion was driven by the concentrated Gaussian noise with
covariance matrix Q = σ 2

q ⋅ I2 = 0.02 ⋅ I2, while the measurements were simulated by adding
concentrated Gaussian noise with covariance matrix R = σ2

r ⋅ I2 = 0.001 ⋅ I2. The sampling
time2 in the simulation was set to ∆T = 0.1 s and the duration of the simulation was 200
steps. The experiment consisted of 100 Monte Carlo runs with randomly generated starting
point.

2 This was the sampling rate at which the measurement were created, however, the simulation of a Brownian
motion used sampling time ∆T = 0.005 s.
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Figure 5.3: Simulation results of one trial of tracking on sphere with zero-order motion model.
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Figure 5.4: RMSE of filtering on unit sphere with with zero-order motion model.

Process and measurement noise covariance matrices of the RM-EKF were set to
Q = 0.02∆T ⋅ I2, and R = 0.001 ⋅ I2. The same values were used by the RM-UKF. In
addition, Jacobians of the RM-EKF were set to identity matrices, i.e. F = H = L = M = In.
Additionally, the coefficients for calculating weights of sigma points of RM-UKF were
α = √0.5, β = 2 and κ = 1. The parameters of vMF were set to κd = 1

∆T σ 2q
= 500 and

κo = 1
σ 2r
= 1000. Moreover, the parameters of the discrete KF were Q = 0.02∆T ⋅ I3 and
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Figure 5.5: RMSE of filtering on space of SPD matrices with zero-order motion model.

R = 0.001 ⋅ I3. All of the filters were initialized with the first measurement x0 and the co-
variances were set to P0 = 0.001 ⋅ I2 for RM-EKF and RM-UKF and to P0 = 0.001 ⋅ I3 for
discrete KF. The initial concentration parameter of vMF filter was set to κ0 = 1000.

Figure 5.4 shows the mean-square error (MSE) averaged over 100 Monte Carlo trials
of these four filters. Furthermore, RMSE averaged over all runs and over time is given
by table 5.1. The state estimates are shown on figure 5.3. Additionally, the methods were
also tested on higher dimensional spheres and the results are shown in table 5.2. It can be
concluded that for the systems that all four methods perform similar when the ground truth
system obeys the zero-order Brownian motion.

filtering on the space of spd matrices
This section provides the evaluation of state estimation on the space of SPD matrices.
The experiment consisted of 100 Monte Carlo trials. Each trial lasted 200 steps and the
sampling time was ∆T = 0.1 s. The ground truth trajectory was generated by simulating the
Brownian motion on Pn driven by the concentrated Gaussian noise with covariance matrix
Q = σ2

q∆T ⋅ In, where σq = 0.005ms−1 is the standard deviation of the noise. Measurements
were simulated by applying the concentrated Gaussian measurement noise with covariance
R = σ2

r ⋅ In, where σr = 0.001m. Covariance matrices of the RM-EKF and RM-UKF were
set to Q = 0.0052∆T ⋅ In and R = 0.0012 ⋅ In. In case of RM-EKF, Jacobian matrices were
F = H = L = M = In. RM-UKF parameters used to calculate weights of sigma points were
set to α = 1 ⋅ 10−3, β = 2 and κ = 1. The RMSE of the RM-EKF and the RM-UKF filters in
the case of the P2 manifold are shown on table 5.3, while table 5.4 how the error of filters
depend on the dimension of the space.
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Figure 5.6: State estimation on P2. Black line is the ground truth, grey dots are measurements,
blue line is the output of the RM-EKF and the red line is the output of the RM-UKF.
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Table 5.3: RMSE of filtering methods on the space of 2× 2 SPD matrices over 100 Monte Carlo
trials.

Method RMSE [m]
RM-EKF 0.006856
RM-UKF 0.006887

Table 5.4: RMSE of RM-EKF and RM-UKF on SPD manifolds of different dimension.

P2 P3 P4 P5
RM-EKF 0.006856 0.007284 0.007914 0.008199
RM-UKF 0.006887 0.007362 0.008038 0.008246

5.5.2 First-Order Model
This section provides the experimental evaluation of the filtering methods on Riemannian
manifolds for the systems that obey the constant velocity motion model.
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Figure 5.7: Ground truth and state estimates in the simulation whit the first-order motion
model on the unit sphere.
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filtering on the unit sphere
In this experiment, the ground truth trajectory was created using discrete constant velocity
model on the sphere. Parameters used to create the simulation scenario were as follows.
The trajectory was generated by simulating the Brownian motion on the tangent bundle
of the sphere given by eqs. (5.5) and (5.6). The process was driven by the concentrated
Gaussian noise with covariance matrix Q = σ2

q∆T ⋅ In, where the standard deviation was
σq = 0.005ms−1. Measurements were simulated by projecting the state of the system to the
sphere, keeping only the position, and then adding the concentrated Gaussian measurement
noise with covariance matrix R = σ 2

r ⋅ In, where σr = 0.001m.
Jacobians of the RM-EKF were set to eqs. (5.42) and (5.43). Covariance matrices of the

process andmeasurement noise of the RM-EKF were set toQ = 0.0052 ⋅I2 and R = 0.0012 ⋅I2.
The covariance of the state of the filter was initialised to P0 = diag(0.01, 0.01, 0.1, 0.1).

The covariance matrix of the RM-UKF was set to

Q = 0.052 ⋅
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∆T 4

4 0 ∆T 3

2 0
0 ∆T 4

4 0 ∆T 3

2
∆T 3

2 0 ∆T 2 0
0 ∆T 3

2 0 ∆T 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and the covariance matrix of the measurement noise was R = 0.0012 ⋅ I2. Additionally,
parameters of RM-UKF that control the spread of the sigma points were α = 0.1, β = 2 and
κ = 1. The initial covariance of the state of the filter was set to P0 = diag(0.01, 0.01, 0.1, 0.1).

Parameters of the vMF filter were κd = 50, κo = 1000 and the initial concentration of
the filter was κ0 = 100.

Jacobians of the baseline discrete KF were F = H = I3, while covariance matrices of the
process and measurement noise were Q = 0.0052 ⋅ I3 and R = 0.0012 ⋅ I3. Covariance of the
state of the filter was initialised to P0 = 0.001 ⋅ I3.

To assess filters, 10 Monte Carlo simulations were conducted. Initial states of filters were
moved for 0.05m in the random direction from the ground truth. The figure 5.7 shows
the estimated states, while figure 5.8 shows the estimation error. It can be seen that the
RM-EKF and RM-UKF have similar performance and both significantly outperform the
vMF and baseline Kalman filter. The average RMSE over time and all Monte Carlo runs
is 0.00368 for RM-EKF, 0.003799 for RM-UKF, 0.00902 for baseline KF and 0.01796
for vMF filter. As expected, the methods that use the constant velocity motion model
outperformed the vMF and baseline KF.

filtering on diagonal positive definite matrices
This section provides the evaluation of the first-order estimation on the space of the diagonal
positive definite matrices D3, which is the Riemannian submanifold of SPD matrices. The
ground truth was generated by simulating the discrete constant velocity model driven by
zero-mean concentrated Gaussian noise with covariance Q = 0.0052 ⋅ I3. Measurements
were simulated by applying the concentrated zero-mean Gaussian measurement noise with
covariance R = 0.0052 ⋅ I3. The duration of the simulation was 200 steps with sampling
period ∆T = 0.05 s. Parameters of the RM-EKF and RM-UKF with constant velocity
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Figure 5.8:MSE of state estimation on the tangent bundle of the S2 averaged over 10 Monte
Carlo runs.

motion model were as follows. Process and measurement noise covariances were set to
same values used to simulate the ground truth. States of filters were initialised with the
first measurement. Covariance matrices of filters were set to P0 = blkdiag(R, I3). Jacobians
of the RM-EKF with first-order motion model on D3 are calculated in appendix A.2.
Additionally, a zero-order motion model RM-EKF was also used in this experiment in
order to show the advantage of using the first-order motion model. Its parameters were as
follows: process noise covariance was set to Q = 0.012 ⋅ I3, measurement noise covariance
was set to R = 0.0052 ⋅ I3 and the initial covariance of the filter was P0 = 0.0052 ⋅ In. The
results of 50 Monte Carlo runs are shown in table 5.5. Both filters with constant velocity
model significantly outperformed the filter with constant model as expected. Furthermore,
the RM-EKF with constant velocity model outperformed the RM-UKF with constant
velocity model. This is most likely due to the numerical optimisation methods used to
compute the Kärcher mean and logarithmic mapping on the tangent bundle of the manifold.
Those optimisation methods were limited to only a few iterations so that it can be computed
in reasonable time.

Table 5.5: RMSE of filtering on tangent bundle ofD3 averaged over time and 50 Monte Carlo
runs.

Method RMSE
Zero-order RM-EKF 0.5232
First-order RM-UKF 0.09575
First-order RM-EKF 0.07027
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5.6 Summary
In this chapter, we proposed a novel approach to state estimation problem on RMs. We
extended a RM-UKF method by expanding the state of the filter with its velocity. Such
expanded state is now an element of the tangent bundle of the Riemannian manifold. We
then applied the tools of the geometry of the tangent bundles of Riemannian manifolds
in order to develop the version of the unscented Kalman filter that can handle systems
whose state evolve on the tangent bundle. Hence, the proposed filtering method can use the
first-order motion model on Riemannian manifold.The proposed filtering method achieves
slightly worse results than the RM-EKF with the first-order motion model. Nevertheless,
the unscented Kalman filter with the first-order motionmodel uses the unscented transform
in order to propagate the uncertainty of the filter. Hence, it does not need the Jacobians
of the motion model and as such it provides a good alternative to the RM-EKF with first-
order motion model in case it is tedious to obtain the closed-form Jacobians. In the end
of the chapter, we conducted several experiments in order to evaluate proposed method.
Experiments contain simulations with both zero and first-order motion models and are
conducted on various manifolds such as unit sphere and space of symmetrical positive
definite matrices. Nonetheless, proposed method is not limited only on those manifolds,
but can by applied to any Riemannian manifold.



Chapter 6
Probabilistic Multi Object

Tracking on Riemannian

Manifolds



I n the previous chapter we have studied the problem of the state estimation on RMs.
The goal of this chapter is to extend developed methods to the case of tracking of

multiple moving objects.
The rest of this chapter is structured as follows. We first start by giving a brief overview

of the literature regarding the MTT on Riemannian manifolds in section 6.1. Then, in
section 6.2 we propose the extension of JIPDAF to Riemannian manifolds. To achieve this
goal, we utilize the Riemannian manifold extended and unscented KFs presented in the
previous chapter. Finally, in section 6.4 we show the empirical results of proposed method.

6.1 Related work
Recently, many works regardingmultiple target tracking on non-Euclidean spaces nave been
proposed, however, they usually focus on a specific class of the manifold. In [21] Marković
et al. consider the problem of tracking on the unit circle. They derive the PHD recursion
on the von Mises mixtures. Authors tested the proposed filter on the simulated data and
compared it with the Gaussian mixture PHD filter. The evaluation showed significant
improvement with respect to OSPA metric. In [132] Markovic et al. consider the MTT
with directional-only sensors. They develop the PDAF and JPDAF trackers based on the
von Mises-Fisher Bayesian filter. To ensure that the posterior distribution remains in the
von Mises-Fisher distribution family, authors apply the moment matching technique based
on Kullback-Leibler divergence. Furthermore, their work on vMF-JPDAF is extended to
all hyperspheres in [24]. The performance of the proposed methods is demonstrated on
synthetic data.

One popular type of non-Euclidean spaces that is often used in various robotics-related
applications are Lie groups. Ćesić et al. studied the problem of mixture reduction on Lie
groups in [19]. As an example of application of their mixture reduction method, they
presented the PHD filter on Matrix Lie groups. The performance of their Lie group PHD
filter is presented in Monte Carlo simulations. In [133] Ćesić et al. tackle the problem of
moving object detection and tracking in the context of adaptive driver assistance system
(ADAS). They propose to model the sensor data in polar coordinates in order to model
the measurement uncertainty more accurately. Hence, both the measurement model and
motion model of the rigid body reside on the Lie group geometry. Authors decide to apply
the Lie group EKF in order to perform the state estimation for that system. Furthermore,
authors adapt the JIPDAF in order to achieve multi target tracking on the Lie groups.
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In [134], Bak et al. deal with the problem of MTT in crowded scenes from a single
camera.They extract the appearance models from the tracks obtained by a short-termMTT
algorithm. These appearance models that are based on the covariance descriptors are then
used for re-identification of targets, i.e. to achieve long-term tracking. Since covariance
descriptors confine to the RM, authors propose to use the discriminative analysis on Rieman-
nian manifold to link tracks. According to authors, the evaluation of their method showed
that the discriminative analysis significantly reduced the number of false alarms and identity
switches in both single camera tracking and in track matching between non-overlapping
cameras in multi-camera tracking.

6.2 PDAF on Riemannian manifolds
Before tackling the full MTT problem on RMs, consider the simpler single target problem.
In Euclidean case, the single target tracking problem in cluttered environment can be
solved by applying the probabilistic data association filter or integrated probabilistic data
association filter which also takes into account the disappearing and reappearing of the
target. The PDA based tracking methods usually rely on some kind of Kalman filter that is
responsible for estimation of the kinematic state of the target. Recall the expression for the
association probabilities of PDAF given by eqs. (3.61) and (3.62)

β0k = 1 − pd pg

1 − pd pg +∑mk
j=1 λ−1pd pg g (yk,i ∣ x̂k) ,

β i
k = λ−1pd pg g (yk,i ∣ x̂k)

1 − pd pg +∑mk
j=1 λ−1pd pg g (yk,i ∣ x̂k) .

The likelihood g (yk,i ∣ x̂k) in eqs. (3.61) and (3.62) is in Euclidean case given by normal
distribution. Since we want to extend the PDAF to RMs by applying the Riemannian
manifold EKF and UKF it is natural to use the concentrated Gaussian distribution to
calculate the prior likelihood. Hence, the likelihood is given by

g (yk,i ∣ x̂k) = NM(yk,i ∣ ŷk , Ŝk), (6.1)

where ŷk is the predicted measurement at time k, while Ŝk is its covariance.

6.2.1 Prediction step
Prediction of the Riemannain manifold probabilistic data association filter (RM-PDAF) is
simply given by the prediction step of the underlying estimator on Riemannian manifold.
In the case of RM-UKF the Riemannian manifold unscented transform is applied

Furthermore, in case of IPDAF it is also necessary to calculate the existence proba-
bility of the target at new time step. This is done in the same way as in Euclidean case, by
multiplying the existence probability from the previous step with the survival probability
ps which is assumed to be known and constant, i.e.

pk∣k−1 (H ∣Y1∶k−1) = pS pk−1 (H ∣Y1∶k−1) , (6.2)

whereH denotes the hypothesis that the target exists and Y1∶k−1 denotes the measurement
history (the set of all collected measurements from step 1 to k − 1.



Chap. 6: probabilistic multi object tracking on riemannian manifolds 91

6.2.2 Measurement gating
To reduce the complexity of the data association step, measurements are gated using the
generalized χ2 test in the tangent space of the prediction Tŷ−kN

Log ŷ−k yk,i
T Ŝ−1k Log ŷ−k yk,i ≤ χ2n(pg), (6.3)

where χ2n is the quantile function of n-dimensional χ2 distribution, and the pg is the gating
probability. Given that the detection yk,i is validated, the likelihood of yk,i given the predicted
detection ŷk is gi = p−1g NM(yk,i ∣ ŷk , Ŝk), where pg is gating probability.

6.2.3 Update step
Given the predicted target states x̂k∣k−1 and its existence probability pk∣k−1 (H ∣Y1∶k−1), the
posterior association probabilities βi ,k can be calculated by eqs. (3.61) and (3.62). The
innovation of i-th measurement is given by

νi ,k = Log ŷk yi ,k (6.4)

and the total weighted innovation is

νk = mk∑
i=1 βi ,kνi ,k. (6.5)

The update of the state of the target is than given by the update equation of the underlying
Riemannian manifold Kalman filter

x̂+k = Expx̂−k Kkνk, (6.6)

where Kk is the Kalman gain.
Suppose that the updated covariance P̄k of the underlying filter is given by (5.19) or

(5.33), depending on whether the extended or unscented KF is used. P̄k is exact when there
is exactly one measurement, however, when there are multiple measurements, then the
posterior covariance depends also on the number of measurements and their spread around
the ŷk [2]. This dependency can be expressed using the matrix

Tk = mk∑
i=1 βi ,k νi ,k νTi ,k − νk νTk . (6.7)

Hence, final update equation is obtained by adding the term Kk Tk KT
k to P̄k, i.e.

P̂†
k = P̄k + Kk Tk KT

k . (6.8)

Finally, all of the previous calculations are conducted in the tangent space of x̂−j,k, and
therefore, P̂†

j,k must be parallelly transported to the tangent space at the updated state x̂+k
[32]. Hence, the updated covariance matrix of the RM-PDAF is

P̂+k = Px̂−k→x̂+k (P̂†
k) . (6.9)
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6.3 JPDAF on Riemannian manifolds

6.3.1 Prediction step
The extension of the prediction step of the Riemannian manifold PDAF and IPDAF to
the multi-target case is trivial. The state of each target is predicted independently of each
other according to the motion model of the system. Furthermore, in case of the JIPDAF,
the prediction of the existence probability of each target is also calculated independently
for each target according to equation (6.2).

6.3.2 Measurement gating
Similarly as in single-target case, the computational burden of the JPDAF and JIPDAF can
be significantly reduced by measurement gating. The gating is achieved by calculating the
generalized Mahalanobis distance for each target-measurement pair. Thus, the validation
matrix V is formed such that its (i , j)-th component is one if the relation

Log ŷ−k , j yk,i
T Ŝ−1k Log ŷ−k , j yk,i ≤ χ2n(pg) (6.10)

is fulfilled and zero otherwise. The complexity of the RM-JPDAF can be further reduced
by clustering the set of targets and measurements into independent clusters.

6.3.3 Update step

Given the predicted target states x̂k∣k−1, j and its existence probabilities pk∣k−1 (H j ∣Y1∶k−1),
where j denotes j-th target, the posterior association probabilities βi , j,k are calculated as
described in the section 3.3.3. The innovation of i-th measurement to j-th target is given by

νi , j,k = Log ŷ j ,k yi ,k. (6.11)

Then, the total weighted innovation of all measurements to j-th target, given posterior
association probabilities βi , j,k, is

ν j,k = mk∑
i=1 βi , j,k νi , j,k. (6.12)

Given the weighted innovation (6.12) and the Kalman gain K j,k of j-th target calculated
by the Riemannian manifold extended or unscented Kalamn filter, j-th target is updated as
follows

x̂+j,k = Expx̂−j ,kK j,k ν j,k. (6.13)

Similarly as in the update step of the RM-PDAF, the updated covariance matrix of the
j-th target is obtained by adding the term which captures the spread of the detections to
the covariance matrix P̄j,k obtained by updating according to the underlying filter

P̂†
j,k = P̄j,k + K j,k Tj,k KT

j,k, (6.14)
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where
Tj,k = mk∑

i=1 βi , j,k νi , j,k νTi , j,k − ν j,k νTj,k. (6.15)

Finally, the updated covariance matrix P̂†
j,k of j-th target must be transported to the tangent

space at the updated state x̂+j,k
P̂+j,k = Px̂−j ,k→x̂+j ,k (P̂†

j,k) . (6.16)

6.4 Results
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Figure 6.1:MOT on the sphere. Ground truth trajectories (left) and the Riemannian manifold
JIPDA tracking result (right).

6.4.1 Tracking on the unit sphere
The experiment consisted of 100 Monte Carlo runs. The duration of each run was 200
steps with the sampling time ∆T = 0.05 s. In each run, there were 5 randomly generated
GT trajectories. Each trajectory was generated by simulating Brownian motion on the
unit sphere. The Brownian motion was driven with the concentrated Gaussian noise with
the standard deviation σq = 0.025. The measurements were simulated by adding the con-
centrated Gaussian noise with standard deviation σr = 0.001 to targets. Furthermore, to
simulate the missed detections, generated measurements were randomly discarded with the
probability 0.02.Then, the set of detections was cluttered with the set of spurious detections
which was sampled from the Poisson distribution with the expected number of false alarms
λ = 5. The spatial distribution of false alarms was uniform over unit sphere.

Three different MTT methods were compared in this experiment. First one uses the
standard KF to model the motion of the targets. In order to ensure that estimates of this
method are constrained on the unit sphere, the state of the filter is projected on the sphere
after each prediction and update step. The second method used the von Mises-Fisher filter,
and finally, the third method used the Riemannian manifold extended Kalman filter with
the first-order motionmodel on the unit sphere. All three methods used JIPDAF to achieve
multi-target tracking.
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Figure 6.2: Evaluation of the multi-target tracking on the unit sphere. Figure shows OSPA error
of three different multi-target tracking methods: JIPDAF with baseline KF model (red), with
von Mises-Fisher filter (blue) and with Riemannian manifold EKF (green).

Parameters of the JIPDAF were as follows in all three cases. Survival, detection and
gating probability were ps = 0.99, pd = 0.98 and pg = 0.95. The expected number of false
alarmswas set to λ = 5. New targets were initialised fromdetections that satisfy the following
criterion∑nk

j=1 βi , j,k ≤ 0.5 and their existence probability was initialised to 0.5. Targets were
confirmed when their existence probability exceeded threshold 0.95 and terminated if it
falls below 0.003.

Parameters of the baseline KF were as follows. The covariance matrix of the process
noise was Q = 0.012 ⋅ ∆T ⋅ I3, while the covariance matrix of the measurement noise was
R = 0.0012 ⋅ I3. The initial covariance of each target was set to 0.012 ⋅ I3. Parameters of the
vMF filter were following. The diffusion coefficient was set to κd = 50, the concentration of
the measurement distribution was κo = 1000 and the initial concentration of new targets was
κ0 = 100. The covariance matrices of the process and measurement noise of the RM-EKF
were set to Q = 0.0252 ⋅ ∆T ⋅ I2 and R = 0.0012 ⋅ I2. The initial covariance matrix of the new
targets was P0 = diag(0.01, 0.01, 0.3, 0.3).

The metric used for the evaluation was the OSPA metric with parameters c = 1 and
p = 2. Figure 6.2 shows the OSPA error averaged over all Monte Carlo runs. The JIPDAF
with the RM-EKF with the first-order motion model achieved best result with average
OSPA error of 0.1109, while the JIPDAF based on vMF filter achieved average OSPA error
of 0.1775. The average error of the JIPDAF with the baseline KF was 0.4101. One example
of the Monte Carlo simulation is shown on the figure 6.3, where we can see ground truth
trajectories, simulated detections and estimates obtained by the JIPDAF with RM-EKF.
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Figure 6.3:The results of the multi-target tracking on the unit sphere with the constant velocity
model. Left column shows the position of targets, while the right column shows the velocity.
Black lines show ground truth trajectories, gray dots show simulated measurements including
clutter and colored lines represent estimates of the JIPDAF with the RM extended Kalman
filter. Each color corresponds to the unique ID of the targets estimated by the filter.
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6.5 Summary
This chapter propoes a novel multi-target tracking method for targets moving on the Rie-
mannian manifold. The tracking method was developed starting from the extended and
unscented KFs for systems constrained on Riemannian manifold. The update methods of
those filters were adapted so that they can be used within the probabilistic data association
framework. Additionally, the gating method of the classical probabilistic data association
methods was adapted to use the generalizedMahalanobis distance on Riemannianmanifold.
The probabilistic data association filter on Riemannian manifolds were presented in case of
single-target tracking in clutter and joint integrated probabilistic data association filter for
multi-target tracking on manifolds. The Riemannain manifold JIPDAF was evaluated on
simulated data. The conducted Monte Carlo simulations showed promising results.



Chapter 7
Conclusion and Outlook



“Done is better than perfect.”

– Sheryl Sandberg

D ue to the recent significant emergence of autonomous vehicles, there is a need for
ever more precise and robust multiple object tracking methods to ensure the safety

of other traffic participants. Autonomous vehicles are equipped with a plethora of sensors
such as radars, lidars, cameras, etc. However, tracking of surrounding moving objects is not
a trivial task due to the many problems such as spurious detections, missed detections due
to occlusions, ego motion, detection-to-track assignment uncertainty and many others. In
this thesis, we decided to tackle some of those problems.

The thesis started with an overview of the state-of-the-art state estimation and methods.
Bayesian estimation paradigm is presented and some special cases of Bayesian estimators are
further scrutinized. Under linear Gaussian approximation, Bayesian estimation recursion
yields a closed-form solution, the Kalman filter. However, the Kalman filter is also very
often used in nonlinear state estimation. Two common nonlinear extensions of the Kalman
filter are extended Kalman filter and unscented Kalman filter. Former uses the linearisation
of the nonlinear state transition model in order to propagate the uncertainty of the filter,
while the later applies the unscented transform to propagate the distribution of the state
through nonlinear state transition models. Another example of the Bayes filter emerges
when dealing with direction-only data. Thus, assuming the von Mises-Fisher distribution
yields the closed-form solution in this case, the von Mises-Fisher filter. Further, the few
of the state-of-the-art multi-target tracking methods were studied within this thesis. It
is customary to divide the tracking methods in three different groups: probabilistic data
association approaches, multiple hypothesis tracking and random finite set approaches. In
this thesis, the emphasis was on the probabilistic data association methods.

In the continuation of the thesis we tackle the problem of pedestrian detection and
tracking. The Mask R-CNN was selected as the deep convolutional model appropriate
for the task of pedestrian detection. The detector was pre-trained and then fine-tuned
on various datasets in order to avoid over-fitting of the model. Additional deep model
based on the ResNet18 architecture was used to extract the deep features. The deep features
were extracted form the last layer of the second residual block of the ResNet18 model.
The purpose of deep features was to use them in order to solve the detection-to-target
assignment ambiguity. Furthermore, the joint integrated probabilistic data association filter
was adapted to achieve the multi-target tracking of pedestrians from detections provided
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by the Mask R-CNNmodel. By using only detections provided by Mask R-CNN detector,
we achieved #1 result on the 3DMOT2015 dataset of the public MOT Challenge benchmark.
However, on 2DMOT2015 dataset, which contains challenging scenes with moving camera,
this approach did not yield good results. Hence, we implemented another multi-target
tracker, the global nearest neighbour method which used only deep features to achieve
data association. This appearance-based pedestrian tracking method showed better results
than kinematic-only tracking on scenes with moving camera, however on the scenes with
static camera it did not outperform kinematic-only tracker. This motivated us to try to
incorporate the deep features together with the kinematic cues in the probabilistic data
association filtering. However, it proved to be challenging due to highly nonlinear geometry
of the underlying space of deep embeddings.

To this end, we concentrated on the state estimation on curved, but smooth spaces. Such
spaces can be endowed with the metric which varies smoothly along the space. Such smooth
and curved spaces together with the smooth metric are called Riemannian manifolds.
Therefore, we focused on the estimationmethods for the systems that evolve on Riemannian
manifolds. There are a several Kalman filter extensions to the Riemannian manifolds, the
extended and unscented Riemannian manifold Kalman filters. However, when the state of
the system changes rapidly with time, as in tracking applications, simple motion models
are not adequate enough. Higher-order motion models, such as constant velocity model,
can be used instead. Although, it is in some cases possible to develop the Riemannian
manifold extended Kalman filter with the constant velocity motion model, the calculation
of Jacobians of the constant velocity model is tedious. Thus, we proposed the extension
of the Riemannian manifold unscented Kalman filter with the constant velocity model in
order to avoid the calculation of Jacobians. To extend the Riemannian manifold unscented
Kalman filter, we extend its state together with its velocity. Such extended state forms a
point on the tangent bundle of the Riemannian manifold, hence we use the geometry of the
tangent bundle to implement the unscented Kalman filter for Riemannian manifolds with
the constant velocity model. The proposed method showed promising results, but there still
remain some challenges and there is still a room for further research.

Thereafter, we took on the problem of multi-target tracking on Riemannian manifolds.
We started from the Riemannian manifold extended and unscented Kalman filters. The
update equations of extended and unscented Riemannian manifold Kalman filter were
adapted in order to be used within the probabilistic data association paradigm. Furthermore,
we utilised the generalised Mahalanobis distance on the tangent space of the manifold to
achieve the measurement gating. Therein, we presented both the single-target probabilistic
data association filter and the multi-target joint integrated probabilistic data association
filter for the targets that move on the Riemannian manifold. Several simulation experiments
were conducted to evaluate proposed tracking method on a few examples of Riemannian
manifolds. The experiments showed promising results, but there are still a lot of challenges
interesting for further research. For example, this tracking method may be applied to the
pedestrian tracking to fuse the appearance cues of the deep features together with the
kinematic cues of the classical tracking methods. The target’s state space in that case can
be modelled as the product space of the embeddings and kinematic state-space of the
targets. The model for extraction of deep features can be implemented in such a way that
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those features lie on some Riemannian manifold, for example unit hypersphere, while the
kinematic state of the target lies in the Euclidean space which is itself a Riemannianmanifold,
and finally, a product space of two Riemannian manifolds is a Riemannian manifold as well.
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Appendix A
Derivation of Jacobians



This appendix provides the calculations of Jacobians used inRiemannianmanifold EKF with
constant velocity motion model. The discrete constant velocity model on the Riemannian
manifolds is given by

pk = Exppk−1 (∆T vk−1) , (A.1)

vk = Ppk−1→pk (vk−1 +wk−1) , (A.2)

where wk−1 is a concentrated Gaussian process noise on the tangent space Tpk−1M and ∆T
is the sampling period. We denote these two equations as (pk , vk) = fk−1 (pk−1, vk−1,wk−1).
a.1 Sphere
Recall from section 2.6.1 that the exponential map on Sn

ρ is given by

Exppv = p cos ∥v∥ρ + v∥v∥ρ sin ∥v∥ρ , (A.3)

while parallel transport can be expressed by

Px→y (v) = v − Logx(y)Tv
d (x , y)2 [Logx(y) + Logy(x)] . (A.4)

The above expression can be simplified by substituting expressions for logarithmic mapping
of sphere (2.36) and distance function of sphere (2.34):

Px→y (v) = v − Logx yTv
d2Sn

ρ
(x , y) [Logx y + Logyx] (A.5)

= v − (y − x xT y
ρ2 )T v

∥y − x xT y
ρ2 ∥2 ⋅ (y − x

xT y
ρ2
+ x − y xT y

ρ2
) (A.6)

= v − (y − x xT y
ρ2 )T ⋅ v ⋅ (x + y) ⋅ (1 − xT y

ρ2 )
ρ2 − (xT y)2ρ2

(A.7)

= v − (y − x xT y
ρ2 )T ⋅ v ⋅ (x + y) ⋅ (1 − xT y

ρ2 )
ρ2 ⋅ (1 − xT y

ρ2 ) ⋅ (1 + xT y
ρ2 ) (A.8)

111
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= v − (y − x xT y
ρ2 )T ⋅ v

ρ2 + xT y
⋅ (x + y), (A.9)

where we used the fact that

∥y − x xT y
ρ2
∥2 = ρ2 − (xT y)2

ρ2
(A.10)

for x , y ∈ Sn
ρ

Let’s now write the state transition model fk−1 explicitly for Sn
ρ . Substituting expressions

for exponential map and parallel transport of the sphere in eqs. (A.1) and (A.2) results in

pk = pk−1 cos θ + vk−1∆Tθ sin θ, (A.11)

vk = vk−1 +wk−1 − (pk − pk−1
pTk−1pk
ρ2 )T (vk−1 +wk−1)

ρ2 + pTk−1pk (pk−1 + pk) , (A.12)

where θ = ∆T ∥vk−1∥
ρ . Now let’s substitute pk in (A.12) with (A.11). Note that

pTk−1pk = pTk−1 (pk−1 cos θ + ∆T
θ

vk−1 sin θ)
= pTk−1pk−1 cos θ + ∆T

θ
pTk−1vk−1 sin θ

= ρ2 cos θ
since pk−1 is a point of a sphere of radius ρ and vk−1 is orthogonal to pk−1. It now follows that

vk = vk−1 +wk−1 − (pk − pk−1 cos θ)T (vk−1 +wk−1)
ρ2(1 + cos θ) (pk−1 + pk−1 cos θ + ∆T

θ
vk−1 sin θ)

= vk−1 +wk−1 − (∆Tθ vk−1 sin θ)T(vk−1 +wk−1)
ρ2(1 + cos θ) (pk−1(1 + cos θ) + ∆T

θ
vk−1 sin θ)

= vk−1 +wk−1 − ∆T
ρ2θ
(vTk−1vk−1 + vTk−1wk−1)(pk−1 sin θ + ∆T

θ
vk−1 sin2 θ

1 + cos θ)
= vk−1 +wk−1 − ∆T

ρ2θ
(∥vk−1∥2 + vTk−1wk−1)(pk−1 sin θ + ∆T

θ
vk−1 sin2 θ

1 + cos θ)
= vk−1 +wk−1 − ∥vk−1∥ρ

(1 + vTk−1wk−1∥vk−1∥2 )(pk−1 sin θ +
∆T
θ

vk−1 sin2 θ
1 + cos θ)

= vk−1 +wk−1 − (1 + vTk−1wk−1∥vk−1∥2 )(
∥vk−1∥
ρ

pk−1 sin θ + vk−1 sin2 θ
1 + cos θ)

= vk−1 cos θ − ∥vk−1∥ρ
pk−1 sin θ +wk−1 − vTk−1wk−1

ρ ∥vk−1∥ pk−1 sin θ −
vTk−1wk−1∥vk−1∥2 (1 − cos θ)vk−1.



bibliography 113

Finally, the discrete constant velocity model on n-sphere is given by

f (x ,w) = ⎡⎢⎢⎢⎢⎣
p cos θ + ∆T

θ v sin θ

v cos θ − ∥v∥ρ p sin θ +w − vTw
ρ∥v∥ p sin θ − vTw∥v∥2 (1 − cos θ)v

⎤⎥⎥⎥⎥⎦ , (A.13)

where x = (p, v).
The Jacobian of f with the respect to the system state x = (p, v) is given by

F = ∂ f
∂x
∣
w=0
= ⎡⎢⎢⎢⎢⎣

∂ f1
∂p ∣w=0 ∂ f1

∂v ∣w=0
∂ f2
∂p ∣w=0 ∂ f2

∂v ∣w=0.
⎤⎥⎥⎥⎥⎦ (A.14)

The first submatrix is given by

∂ f1
∂p
= ∂
∂p
(p cos θ + ∆T

θ
v sin θ) = I ⋅ cos θ,

since θ is not a function of p. Next,

∂ f1
∂v
= ∂
∂v
(x cos θ + ∆T

θ
v sin θ)

= −p sin θ ∂θ
∂v
+ I ⋅ ∆T

θ
sin θ + v sin θ ∂

∂v
(∆T

θ
) + v∆T

θ
cos θ ∂θ

∂v

= −pvT ∆T
ρ ∥v∥ sin θ + I ⋅ ∆Tθ sin θ − v∆T

θ2
sin θ ∂θ

∂v
+ vvT ∆T 2

θρ ∥v∥ cos θ
= I ⋅ ∆T

θ
sin θ − pvT θ∥v∥2 sin θ − vvT ∆T 2

ρθ2 ∥v∥ sin θ + vvT ∆T 2

θρ ∥v∥ cos θ
= I ⋅ ∆T

θ
sin θ − pvT θ∥v∥2 sin θ + vvT ( ∆T∥v∥2 cos θ − ρ∥v∥3 sin θ) .

To calculate derivatives of f2, notice that the terms involving w will vanish after derivation
and substituting w = 0. It follows that

∂ f2
∂p
= − ∂

∂p
∥v∥
ρ

p sin θ = −I ⋅ ∥v∥
ρ

sin θ,

and finally

∂ f2
∂v
= ∂
∂v
(v cos θ − ∥v∥

ρ
p sin θ)

= I ⋅ cos θ − v sin θ ∂θ
∂v
− p
ρ
∂ ∥v∥
∂v

sin θ − p∥v∥
ρ

∂θ
∂v

cos θ

= I ⋅ cos θ − vvT ∆T
ρ ∥v∥ sin θ − pvT 1

ρ ∥v∥ sin θ − pvT ∆Tρ2 cos θ

= I ⋅ cos θ − vvT ∆T
ρ ∥v∥ sin θ − pvT ( 1

ρ ∥v∥ sin θ + ∆T
ρ2

cos θ) .
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The Jacobian of the state transition model is

F =
⎡⎢⎢⎢⎢⎢⎣

I ⋅ cos θ I ⋅ ∆Tθ sin θ − pvT θ∥v∥2 sin θ + vvT ( ∆T∥v∥2 cos θ − ρ∥v∥3 sin θ)
−I ⋅ ∥v∥ρ sin θ I ⋅ cos θ − vvT ∆T

ρ∥v∥ sin θ − pvT ( 1
ρ∥v∥ sin θ + ∆T

ρ2 cos θ)
⎤⎥⎥⎥⎥⎥⎦ . (A.15)

The Jacobian of f with respect to the process noise signal w is

L = ⎡⎢⎢⎢⎢⎣
∂ f1
∂w ∣w=0
∂ f2
∂w ∣w=0

⎤⎥⎥⎥⎥⎦ (A.16)

Since f1 does not depend on w, it follows that ∂ f1
∂w = 0 Furthermore,

∂ f2
∂w
= I − p ∂

∂w
(vTw) 1

ρ ∥v∥ sin θ − v ∂
∂w
(vTw) 1∥v∥2 (1 − cos θ)

= I − pvT
ρ ∥v∥ sin θ − vvT∥v∥2 (1 − cos θ)

Thus,

L = ⎡⎢⎢⎢⎢⎣
0

I − pvT
ρ∥v∥ sin θ − vvT∥v∥2 (1 − cos θ)

⎤⎥⎥⎥⎥⎦ . (A.17)

Now consider the observation process given by

yk = hk(xk ,ωk) = Exppkωk, (A.18)

where ωk is a concentrated zero-mean Gaussian measurement noise, while xk = (pk , vk).
Substituting the explicit expression for exponential map of a sphere in above equation yields

hk(xk ,ωk) = pk cos ∥ωk∥
ρ
+ ωk∥ωk∥ρ sin ∥ωk∥

ρ
. (A.19)

The Jacobian of observation model (A.19) with respect to system state xk(pk , vk) is
H = [ ∂h∂p ∣ω=0 ∂h

∂ω ∣ω=0] (A.20)

= [I cos ∥ω∥ρ ∣ω=0 0] (A.21)

= [I 0] . (A.22)

And finally, the Jacobian of h with respect to measurement noise ω

M = ∂h
∂ω
∣
ω=0

=⎛⎝ − p ∂
∂ω
(∥ω∥

ρ
) sin ∥ω∥

ρ
+ I ρ∥ω∥ sin ∥ω∥ρ + ω ∂

∂ω
( ρ∥ω∥) sin ∥ω∥ρ

+ ω ∂
∂ω
(∥ω∥

ρ
) ρ∥ω∥ cos ∥ω∥ρ ⎞⎠∣ω=0
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=⎛⎝I ρ∥ω∥ sin ∥ω∥ρ − pωT 1
ρ ∥ω∥ sin ∥ω∥ρ − ω∂ ∥ω∥

∂ω
ρ∥ω∥2 sin ∥ω∥ρ

+ ωωT 1∥ω∥2 cos ∥ω∥ρ
⎞⎠∣ω=0

=(I sinc ∥ω∥
ρ
− pωT

ρ2
sinc ∥ω∥

ρ
− ωωT

∥ω∥2 sinc ∥ω∥ρ + ωωT

∥ω∥2 cos ∥ω∥ρ )∣ω=0
=((I − pωT

ρ2
) sinc ∥ω∥

ρ
+ ωωT

∥ω∥2 (cos ∥ω∥ρ − sinc ∥ω∥ρ ))∣ω=0
=I + lim

ω→0

ωωT

∥ω∥2 (cos ∥ω∥ρ − sinc ∥ω∥ρ )
=I

a.2 Diagonal positive definite matrices
The first-order motion model on Dn is given by

(pk , vk) = f (pk−1, vk−1,wk−1) = (ExpPk−1(∆T vk−1), Ppk−1→pk (vk−1 + ∆T ⋅wk−1)) . (A.23)

By utilizing expressions for exponential map and parallel transport of Dn we get

pik = pik−1 exp ∆T v ik−1
pik−1 i = 1, ..., n (A.24)

vk = (v ik−1 + ∆T ⋅w i
k−1) exp ∆T v ik−1

pik−1 i = 1, ..., n. (A.25)

The Jacobian F is then given by

F = ⎡⎢⎢⎢⎢⎣
∂pk
∂pk−1

∂pk
∂vk−1

∂vk
∂pk−1

∂vk
∂vk−1

⎤⎥⎥⎥⎥⎦ (A.26)

Then, by partial derivation we obtain

∂pik
∂p j

k−1
= δi j ⋅ (1 − ∆T v ik−1

pik−1 ) exp
∆T v ik−1
pik−1 , (A.27)

∂pik
∂v j

k−1
= δi j ⋅ ∆T ⋅ exp ∆T v ik−1

pik−1 , (A.28)

∂v ik
∂p j

k−1
= −δi j ⋅ ∆T ⋅ ( v ik−1pik−1)

2 ⋅ exp ∆T v ik−1
pik−1 , (A.29)
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∂v ik
∂v j

k−1
= δi j ⋅ (1 + ∆T v ik−1

pik−1 ) exp
∆T v ik−1
pik−1 . (A.30)

The Jacobian L is given by

L = ⎡⎢⎢⎢⎢⎣
∂pk
∂wk−1
∂vk

∂wk−1

⎤⎥⎥⎥⎥⎦ , (A.31)

where

∂pik
∂w j

k−1
= 0 (A.32)

∂v ik
∂w j

k−1
= δi j ⋅ ∆T ⋅ exp ∆T v ik−1

pik−1 . (A.33)
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