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Zagreb, 2023



FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA
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Abstract

Modern transmission systems operation and planing problems involve computationally difficult

optimizations. Transmission system operators monitor, manage power flows and plan system

expansion to ensure that the system is always operating within permitted limits. Exact formu-

lations exist, but are usually uncomputable even for small system sizes. On-the-other-hand,

private power system entities optimize their investments and operation to maximize profit due

to market participation. Market participation problems, due to interaction of the market partic-

ipant and the market, are of even more computationally difficult bilevel optimization structure.

Bilevel optimization involves two interlinked optimization problems, each optimizing its objec-

tive function and inheriting decision variables of the other optimization problem as parameters

where one optimization is the master problem or the upper level, i.e. strategic player, and the

other is the follower problem or the lower level problem, i.e. non-strategic player. Tradition-

ally, solving bilevel problems involves mathematical transformation to single-level equivalent

problem that of-the-shelf solvers can solve, but this procedure has severe computational perfor-

mance implications. This thesis aims at improving numerical tractability of both optimization

problem categories: transmission system AC optimal power flows as stand-alone optimization

and bilevel optimization problems with AC transmission network constrained market clearing

in the lower level.

The developed optimal power flow formulation is based on a convex approximation of Tay-

lor expansion, as opposed to nonconvex exact formulations. Convex form is relevant for power

system operation models as modern convex solvers generally handle binary variables more effi-

ciently than nonconvex or general nonlinear solvers. The emphasis on achieving great accuracy,

sufficiently close to the exact models to be used as substitution in practical cases. To achieve

it, it uses the developed presolve that aims to eliminate relaxation errors. The applicability of

the developed optimal power flow approach is verified on a unit commitment problem and a

transmission system expansion problem. The results demonstrate faster computation times than

the exact nonconvex formulation and greater accuracy than the existing convex quadratically-

constrained quadratic or second-order cone formulations with similar computation times.

The presented convex optimal power flow formulations are used as a foundation for bilevel

market participation modeling using single-level reduction solution techniques. This is highly

relevant as the existing single-level reduction techniques do not hold for nonconvex models. The

developed optimal power flow model is applied to deliver a new and accurate bilevel day-ahead

AC transmission-constrained market participation model. Due to the computational difficulties

of the resulting bilevel optimization formulation, second-order cone complementary condition

constraints smoothening techniques is employed. The results indicate faster computation times

than with other existing solution techniques and significantly higher first iteration accuracy than



with other compared existing optimal power flow models.

This thesis also presents an alternative neural network approach for solving bilevel day-

ahead AC transmission constrained market participation model. The approach consists of gen-

erating neural network training dataset by computing optimal power flows for different bid

values, training the neural network where the output of it is market participant’s profit and

optimizing the biding where the lower level is bypassed by simulating its market clearing de-

cision with neural network in the objective function. The numerical tractability is achieved by

using a smooth nonlinear activation function, as opposed to typical mixed-integer linear formu-

lation. High accuracy is achieved due to convolutional neural network structure that mimics

weak intertemporal market price dependency, i.e. its structure is physics informed. While the

computation times are longer than for the single-level reduction technique, the solution process

of this approach can converge for larger systems.

Keywords: AC Optimal Power Flow, Bilevel Optimization, Numerical Tractability, Smooth-

ing Complementary Conditions, Convolutional Neural Network, Unit Commitment, Transmis-

sion System Expansion
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Konveksna polarna aproksimacija optimalnih izmjeničnih tokova

snaga Taylorovim polinomom drugoga reda

Postojeća europska tržišta električne energije dijele prijenosnu energetsku mrežu u zone. Svaka

zona se modelira kao jedno čvorište, odnosno pretpostavlja se da unutar zone ne postoje aktivna

mrežna ograničenja i zanemaruju se gubici. Čvorišta su med̄usobno povezana vrlo jednos-

tavnim linearnim mrežnim modelom tokova snaga. Tim modelom zanemaruju se utjecaj kuta i

magnitude napona na tokove snaga, gubici djelatne snage kao i tokovi jalovih snaga, dok nije

zanemarena maksimalna snaga razmjene čvorišta i njihova topološka povezanost. Tržište se

potom oslanja na naknadni postupak redispečiranja koje provodi operator prijenosnog sustava.

Taj postupak uključuje provjeru izvedivosti tržišnih pozicija, eventualne korekcije proizvod-

nje i upravljanje naponima mijenjanjem tokova jalove snage. Ovakav način pogona sustava

koji se sastoji od jednostavnog čišćenja tržišta i naknadnim redispečiranjem rezultira subop-

timalnim rješenjem. Kvalitetniji model po pitanju optimalnosti je u upotrebi na, primjerice,

američkim tržištima električne energije gdje vozni red elektrana odred̄uje nezavisni operator

prijenosnog sustava koristeći detaljniji istostjerni model optimalnih tokova snaga. Med̄utim, i

taj je postupak dvokoračni jer se nakon odred̄ivanja voznog reda elektrana u zasebnom koraku

upravlja jalovom snagom, što takod̄er rezultira suboptimalanim rješenjem. Težnja je modeli-

rati prijenosni sustav računalno zahtjevnijim izmjeničnim tokovima snaga u fazi čišćenja tržišta

kako bi se izbjegla potreba za naknadnim redispečiranjem i tako postigao globalni maksimum

društvenog blagostanja.

Točan model optimalnih tokova snaga je nekonveksan i posljedično se može optimizirati

samo s općenitim nelinearnim optimizacijskim alatima koji su manje učinkoviti kada se ko-

riste cjelobrojne varijable. To je važno za elektroenergetski sustav jer su problemi čišćenja

tržišta, odred̄ivanja voznog reda elektrana i izgradnje prijenosnog sustava numerički vrlo zaht-

jevni zbog utjecaja cjelobrojnih varijabli. Ova disertacija razvija novi konveksan model izm-

jeničnih optimalnih tokova snaga s ciljem postizanja veće preciznosti od postojećih konvek-

snih modela i bolje izračunljivosti u odnosu na postojeće točne nekonveksne modele. Novi

model temelji se na aproksimaciji tokova snaga Taylorovim polinomom drugoga reda, a do-

biveni zapis je konveksno kvadratno ograničeneog kvadratnog oblika, što omogućava upotrebu

za to namijenjenih optimizacijskih alata. Model postiže preciznost tako što je Taylorov poli-

nom razvijen oko približne radne točke, što čini model lokalnom aproksimacijom. Dodatno,

koristi se razvijeni pretproračun koji uklanja pogreške relaksacije. Pogreške relaksacije nastaju

zbog zamjene znaka jednakosti s nejednakosti kod kvadratnih ograničenja kako bi bila kon-

veksna, s obzirom da ne postoji konveksno nelinearno ograničenje jednakosti. Pretproračun

odabire relaksirana ograničenja za zamjenu s alternativnim ograničenjima linearih jednakosti,

koja ne mogu prouzročiti pogreške relaksacije. Predmetna zamjena temelji se na predznaku ci-



jene u sijeni iz analize osjetljivosti odgovarajućih ograničenja proračuna približne radne točke.

Preciznost modela može se iterativno poboljšavati tako što se novi proračun pokrene s Tay-

lorovim polinomom razvijenim oko nove približne radne točke sustava dobivenom u prethod-

noj iteraciji. Iterativni postupak, počevši s radnom točkom prazog pogona, konvergira unutar

0.00% pogreške za svaku od testirane četerdesetčetiri prijenosne mreže unutar tri iteracije od

prve izvedive iteracije. Praktična primjena modela je demonstrirana na problemu voznog reda

elektrana i problemu dogradnje prijenosnog sustava. Rezultati upućuju na brže vrijeme pro-

računa od točnog nekonveksnog modela i veću preciznost u odnosu na postojeće konveksne

kvadratno ograničene kvadratne modele i modele konusa drugoga reda. Preciznost je potvrd̄ena

koristeći dodatan proračun s točnim nekonveksnim optimalnim tokovima snaga, ali s fiksiranim

cjelobrojnim varijablama. Proračun se algoritamski može prikazati:

•Prora čun približne radne točke

•Pretprora čun

•Prora čun optimalnih tokova snaga

•Prora čun provjere preciznosti

Osim problematike odred̄ivanja čišćenja tržišta električne energije uvažavajući ograničenja

izmjeničnih tokova snaga u prijenosnoj elektroenergetskoj mreži, vrlo je aktualan problem opti-

miziranja sudjelovanja tržišnog sudionika na takvim centraliziranim tržištima. Tržišni sudionik,

ako raspolaže velikim snagama i kapacitetima, može utjecati na cijenu električne energije na

tržištu što utječe na njegov profit i odluke o kupnji i/ili prodaji. Stoga su dvije optimizacije

vezane u dvorazinsku strukturu. Donja razina je tržište električne energije koje maksimizira

društveno blagostanje temeljem ponuda za kupnju i prodaju svih sudionika, dok gornju razinu

čini razmatrani tržišni sudionik koji maksimizira svoj profit trgovanja uzimajući u obzir tržišnu

cijenu i svoj utjecaj na nju. Postojeća tehnika rješavanja dvorazinske optimizacije temeljena

je na svod̄enju problema na jednu razinu koristeći Karush–Kuhn–Tucker uvjete optimalnosti i

linearizaciji komplementarnih ograničenja koristeći tehniku velikog M. Dobivena formulacija je

numerički vrlo zahtjevna za računala i nije primjenjiva ukoliko je donji optimizacijski problem

nelinearnog oblika. Cilj ove disertacije je izraditi precizan model i računalno efikasno riješiti

problem dvorazinske optimizacije sudionika na tržištu električne energije ograničenom s izm-

jeničnim tokovima snaga prijenosne mreže u donjoj razini.

Konveksna formulacija optimalnih tokova snaga je osnova za dvorazinsku optimizaciju

tržišnog sudjelovanja uz tehnike svod̄enja na jednu ekvivalentnu razinu jer u suprotnom matem-

atičke pretpostavke tih tehnika nisu zadovoljene. Za razvoj novog preciznog dovrazinskog mod-

ela upotrebljen je takod̄er novi konveksni model optimalnih tokova snaga razvijen u prvom

dijelu disertacije. Samoj dvorazinskoj optimizaciji prethodi odred̄ivanje približne radne točke

sustava koja se za razmatrani problem računa kao stanje prijenosnog sustava bez kupnje ili pro-

daje energije razmatranog tržišnog sudionika. Zatim slijedi pretproračun za izbjegavanje poten-
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cijalnih pogrešaka relaksacije optimalnih tokova snaga. Poželjno, iako opcionalno, je izračunati

početne vrijednosti svih varijabli u optimizaciji kako bi se inicijalizirao glavni proračun s do-

brim vrijednostima. To ne utječe na optimalno rješenje, ali olakšava optimizacijskim alatima da

ga pronad̄u. Zadnji korak proračuna, nakon dvorazinske optimizacije, je provjera preciznosti,

odnosno uspored̄uju se profiti izračunati u dvorazinskoj optimizaciji s profitima postignutima uz

fiksirane odluke kupnje i prodaje uz točan model optimalnih tokova snaga. Proračun se može it-

erativno pokretati, uz obnavljanje pretpostavljene radne točke s novom dobivenom u prethodnoj

iteraciji, ali postignuta preciznost u prvoj iteraciji je vrlo visoka i rijetko ju je potrebno poveća-

vati u naknadnim iteracijama. Opisani dvorazinski proračun može se algoritamski zapisati na

sljedeći način:

•Prora čun približne radne točke

•Pretprora čun

•Prora čun primalnog zapisa optimalnih tokova snaga

•Prora čun dualnog zapisa optimalnih tokova snaga

•Dvorazinska optimizacija

•Prora čun provjere preciznosti

Naglasak disertacije je u odred̄ivanju računalno najpovoljnije metode rješavanja jednorazin-

skog ekvivalenta prethodno opisane dvorazinske optimizacije. Uspored̄uje se sedam različitih

kategorija metoda rješavanja. Usporedba je provedena temeljem profita tržišnog sudionika i

vrijednosti društvenog blagostanja izračunate u dvorazinskoj optimizaciji i točnim iznosom iz

provjere preciznosti i iznosom dualnog razmaka primalnog i dualnog donjeg optimizacijskog

problema. Primalno-dualne tehnike su računalno najmanje zahtjevne, ali ostavljaju velik du-

alni razmak i stoga su niskih preciznosti. Tehnike jake dualnosti u potpunosti zatavaraju dualni

razmak, ali optimizacijski alati teško konvergiraju s tim formulacijama. McCormick omotnice

relaksiraju bilinearne umnoške iz jake dualnosti, što rezultira s istim rješenjima kao primalno-

dualne tehnike jer je relaksacija prevelika. Nerelaksirane varijante tehnika komplementarnih

uvjeta mogu u potpunosti zatvoriti dualni razmak, ali samo relaksirana agregirana varijanta je

u praktičnim uvjetima izračunljiva. Pokazalo se da je teško odrediti vrijednost relaksacijskog

parametra kod te podtehnike. Tehnike penalizacijskog faktora pokazuju poteškoće u konver-

giranju optimizacijskih alata ukoliko je vrijednost penalizacijskog faktora visoka, dok za niže

vrijednosti dualni razmak je značajan. Diskretizacijske tehnike, iako su teorijski egzaktne, raču-

nalno su gotovo neizračunljive zbog velikih binarnih stabala pretraživanja cjelobrojnih vrijed-

nosti. Vrlo visoka preciznost i dobra izračunljivost, povoljnije u odnosu na ostale tehnike koje

mogu gotovo u potpunosti smanjiti dualni razmak, postignuti su metodama uglad̄enja komple-

mentarnih uvjeta. Uspored̄ene su sljedeće tehnike i njihove inačice:

•Primalno-dualne tehnike

– Primal-dual
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– Osnaženi primal-dual

•Tehnike jake dualnosti

– Jaka dualnost

– Relaksirana jaka dualnost

•McCormick omotnice

•Tehnike komplementarnih uvjeta

– Komplementarni uvjeti

– Relaksirani komplementarni uvjeti

– Agregirani komplementarni uvjeti

– Relaksirani agregirani komplementarni uvjeti

•Tehnike penalizacijskog faktora

– Penalizacijski faktor – jaka dualnost

– Penalizacijski faktor – komplementarna labavost

•Tehnike diskretizacije interakcije

– Binarna ekspanzija – jaka dualnost

– Binarna ekspanzija – penalizacijski faktor

– Unarna ekspanzija – jaka dualnost

– Unarna ekspanzija – penalizacijski faktor

•Tehnike ugla d̄enja

– Chen–Harker–Kanzow–Smale

– Kanzow

Disertacija takod̄er istražuje pristup rješavanja prethodno opisanog dvorazinskog optimizaci-

jskog problema koristeći neuronske mreže. Ovim pristupom nadomješta se donji opimizacijski

problem s neuronskom mrežom treniranom da replicira odluke tržišta o cijeni električne energije

ovisno o ponudi gornje razine. Prvo je potrebno napraviti bazu podataka za treniranje neuron-

skih mreža proračunima optimalnih tokova snaga za razne vrijednosti trgovane energije gornje

razine, zatim je potrebno istrenirati neuronsku mrežu za ukupan profit razmatranog sudionika

na tržištu i na kraju optimizirati odluke gornje razine uz nadomještenu funkciju cilja s funkci-

jom neuronske mreže. Računalna izračunljivost postupka postiže se uglad̄enom aktivacijskom

funkcijom, nasuprot uobičajenoj mješovitoj-cjelobrojnoj linearnoj formulaciji, i smanjivanjem

veličine optimizacijskog problema evaluirajući neuronsku mrežu u jeziku za modeliranje um-

jesto u optimizacijskom alatu. Visoka preciznost postiže se konvolucijskom strukturom neu-

ronske mreže koja oponaša slabu med̄uvremensku ovisnost tržišnih cijena. Drugim riječima,

struktura neuronske mreže je fizikalno informirana. Vremena proračuna su duža ovim pris-

tupom nego pristupom svod̄enja na jednu razinu temeljem Karush–Kuhn–Tucker uvjeta, ali

postupak neuronskim mrežama može konvergirati za veće sustave. Razvijeni algoritam pro-

računa sažeto je prikazan na sljedeći način:
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ponavljaj
•Generirati bazu podataka za treniranje neuronske mreže (10 5unosa)

•Evaluirati odaziv donje razine za svaki podatak iz baze

•Istrenirati 60 neuronskih mreža za aproksimaciju donje razine

•Optimizirati gornju razinu s neuronskim mrežama umetnutim u funkciju cilja

•Odrediti stvarne profite za optimizirane iznose trgovane energije

•Odabrati najbolji stvarni profit od:

– najbolji izravan rezultat;

– rezultat dobiven usrednjavanjem odluka dobivenih sa svim neuronskim mrežama;

•Za idu ću iteraciju smanjiti prostorno područje podataka za treniranje neuronske mreže

oko najboljeg rezultata

dok: Najbolji rezultat je gori u odnosu na prethodnu iteraciju

Ključne riječi: optimalni izmjenični tokovi snaga, dvorazinska optimizacija, računalna

izračunljivost, uglad̄enje komplementarnih uvjeta, konvolucijska neuronska mreža, vozni red

elektrana, proširenje prijenosnog sustava

x
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Chapter 1

Introduction

1.1 Background, Motivation and Objective of the Thesis

Existing European electricity markets use zonal areas to divide the operational responsibility for

the pan-European transmission power system. Every zone is represented by a singe bus only,

i.e. it is assumed that there are no transmission system active operating constraints and power

loses are ignored. Buses are interconnected using a simple network power flow model [1]. This

model does not consider the effect of physical properties of electricity such as voltage magni-

tude and angle on power flows and it ignores the losses and reactive power flows. The only

considered properties are maximum power exchange and topological bus placements. Reliable

operation after the market clearing process is achieved by the transmission system operators,

who check the feasibility of the market clearing outcome and perform a redispatch of active

power if required or control the voltage magnitudes by reactive power. The described two-step

production optimization procedure, consisting of a simple market clearing in the first step and

the transmission system operator corrections in the second one, results in suboptimal opera-

tion. Slightly different electricity market design is used in the United States of America. There,

the unit commitment is determined by an independent system operator using a detailed DC

optimal power flow model [2], which considers voltage magnitude and angle effect on power

flows. However, this procedure also resorts to a two-step optimization that results in suboptimal

solutions. Thus, the incentive is to use AC optimal power flow and to optimize all grid compo-

nents in a single optimization. However, this requires abundant computational resources even

for simple linear optimal power flow models. This thesis focuses on improving the numerical

tractability of the AC optimal power flow while achieving very high model accuracy.

The motivation to develop a new AC optimal power flow arises from the fact that mod-

ern mixed-integer quadratic solvers handle binary variables much more efficiently than general

mixed-integer nonlinear solvers. This is highly relevant since many power system problems,

such as unit commitment and system expansion planing, contain plentiful of integer variables.
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Furthermore, there is also a motivation to increase the accuracy of existing relaxation and ap-

proximation AC optimal power flow models since their typical inaccuracy is approximately as

large as system losses, which is several percent. To adequately model the system losses, optimal

power flow accuracy needs to be significantly higher than the share of losses in the total power

flows. To achieve high accuracy, the proposal is to use an approximation of the transmission

system operating point and a presolve to dynamically adapt the model to a transmission system

state so that the potential relaxation errors are avoided. As such, the goal of the thesis is to

develop an AC optimal power flow model that will be more tractable than the exact models

and comparably tractable, but more accurate than the existing convex quadratically-constrained

quadratic programming models.

The second research focus is on maximizing the benefit from AC transmission system con-

strained electricity market participation. Market participants that have available large capacities

can impact the market price with their bids which, in turn, changes their optimal bid quantities.

Since electricity markets maximize the overall social welfare and participant optimizes its profit

due to arbitrage on a market, the two optimizations are interlinked in bilevel optimization struc-

ture. The market participant is called the leader or the upper-level problem. It decides on bid

quantities anticipating the market result. The market, which is called the follower or the lower-

level problem, determines market prices based on all bids. The two interlinked optimizations

are much more difficult to solve than solving them individually. Existing solution techniques

effectively solve bilevel problems where the lower level is linear, but severe intractabilities oc-

cur for optimizations that contain convex quadratic or more complex constrains in the lower

level. The goal of this thesis is to deliver a new bilevel model that will accurately solve the AC

market participation problem and address numerical tractability issues that occur due to mathe-

matically difficult constraints. Recent mathematical advancements provide unexplored options

for solving difficult optimization problems. The issue of solving the described bilevel problem

is approached with two novel techniques: a) smoothing the complementary conditions and b)

using neural networks to replace the lower level with its metamodel. The goal of the thesis is to

develop an algorithm for each technique and demonstrate their advantages over the each other

and the existing techniques.

To summarise, this thesis contribution is divided in two parts:

1.A development of an accurate and numerically tractable AC optimal power flow model

and a presolve technique which further increases accuracy.

2.A development of two accurate and numerically tractable bilevel models for bilevel op-

timization with AC transmission system constrained electricity market in the lower level

and market participant in the upper level.
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1.2 Structure of the Thesis

The thesis is structured as follows:

•Chapter 2 introduces relevant mathematical concepts and presents state-of-the-art.

•Chapter 3 highlights the main contribution of the thesis and links them to the related

publications;

•Chapter 4 presents the list of all relevant publications;

•Chapter 5 summarizes the author’s contribution to the publications;

•Chapter 6 concludes the thesis and highlights the main findings.
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Chapter 2

Concepts and State-of-the-art

This review section covers three research areas relevant to this thesis: optimal power flow and

bilevel solution techniques.

2.1 Optimal power flow

2.1.1 Exact models

Optimal power flow research focuses on developing new power flow equations. Exact power

flow equations are directly derived from an equivalent circuit scheme displayed in Fig. 2.1. Fi-

nal expressions depend on the coordinate system for representing general complex from equa-

tions (2.1) and (2.2) and on substitution of the variables, e.g. currents can be fully substituted

by voltages. Commonly used formulations are voltage-based in rectangular coordinates [3], [4]

and in polar coordinates [3], [5]. In case of nonlinear impedances, rectangular current-voltage

formulation without current substitutions is used [6]. An important concept in optimization is

that the numerical tractability of a formulation is not a result of physical properties, but of a

notation. Voltage-based rectangular and current-voltage formulations both contain nonconvex

quadratic equations. However, current-voltage formulation has more variables than the for-

mer. Voltage-based formulation is of general nonlinear and nonconvex form. As a result, all

exact formulations solve differently despite mathematical equivalence. Furthermore, formula-

tion convexity is also important factor in optimization. For convex models, every local optimal

solution is also global solution. Thus, for convex models it is easy to prove using first order

optimality criteria if global solution is found. Thus far no finite exact convex formulation has

been found, but there is infinite exact convex moment-based formulation [7].

Si, j = (Yi, j +Y sh
i, j/|Ti, j|2)∗ · |Vi|2 +Y ∗i, j ·Vi ·V ∗j /Ti, j (2.1)

S j,i = (Yi, j +Y sh
i, j )
∗ · |Vi|2 +Y ∗i, j ·Vi ·V ∗j /Ti, j (2.2)
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𝑌𝑌𝑖𝑖𝑖𝑖

𝑌𝑌𝑖𝑖𝑖𝑖𝑠𝑠𝑠 𝑌𝑌𝑖𝑖𝑖𝑖𝑠𝑠𝑠
𝑇𝑇𝑖𝑖𝑖𝑖: 1

𝑉𝑉𝑖𝑖 𝑉𝑉𝑖𝑖

Figure 2.1: Equivalent circuit scheme for lines and transformers.

Table 2.1: Summary of exact optimal power flow formulations.

Name & reference Optim. class Notes

Polar, [3], [5] NLP Voltage expressed in terms of voltage magnitude
and angle.

Rectangular, [3], [4] NLP Voltage expressed in terms of real and imaginary
parts.

Current-voltage, [6] NLP Power flows expressed in terms of voltage and
current real and imagniary parts.

Power system problems frequently contain discrete variables to model discrete decisions

such as investments, activity states or activation levels, normally occurring in unit commitment

or transmission expansion planning problems. Generally, exact formulations solve well if there

are no discrete variables in the model, but show severe computational intractabilities if contain-

ing only few discrete variables. Computational difficulties are a result of the way the solvers

address discrete variables. Solution procedure is based on the branch-and-bound algorithm [8]

that first relaxes the discrete variables, than solves the optimization, adds integrality cuts on non-

integer relaxed discrete variables and repeats the procedure until all relaxed discrete variables

take integer values. The key in achieving faster computation times is in warm-starting the sub-

sequent branch-and-bound iterations within the solver since only one constraint in the model is

added in each new iteration. General nonlinear solvers do not use algorithms that can efficiently

warm-start the iterations and thus optimal power flow research has been focused on developing

new approximate or relaxed formulations that can use more specific solvers that handle discrete

variables more efficiently. Relaxation models expand the feasibility space and provide best

bound solution for exact models. If the solution of exact and relaxed model are the same, then

the found solution of the exact model is proven optimal. Approximations, on the other hand,

both tighten and relax the feasibility space and thus have wider set of transformations available

to derive the model. Example of feasible spaces is shown in Fig. 2.2.
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(a) (b) (c)

Figure 2.2: Feasible spaces: a) nonconvex; b) relaxed; c) approximated

2.1.2 Relaxation models

The least tight relaxations are the copper-plate model and the Network-flow model [1]. The

copper-plate model is also know as the single-bus model. It removes all network constraints

and places all devices on a single bus. It is a relaxation since its solution is always equal or

more favourable than with the exact models. On the other hand, the network-flow model has

network constraints, but it only accounts for network topology and maximum power exchange,

ignoring dependency of the power power flows on the physical properties such as current and

voltage. Both models are linear and thus solve easily with discrete variables since simplex

algorithm can be used in the solution process to quickly solve branch-and-bound leaf nodes.

This is a result of the simplex algorithm feature that it can be warm-started with the previous

solution when solving a model with slightly changed parameters or constraints. Warm-starting

it usually results in a speed-up of the two orders of magnitude which is significant. Tighter

relaxations are of a more general second-order cone or an even more general semidefinite form.

Jabr’s second-order cone relaxation [9] is commonly used in power distribution systems. For

distribution systems, i.e. radial in structure, there are proven conditions for which the relaxation

is exact as elaborated in detail in paper [10]. In some cases, where the exactness conditions are

not met, penalty factors can be used to retrieve the exact solution. The model is significantly

less accurate for meshed transmission systems, commonly reaching inaccuracy of several per-

centages, and in some cases even over 10% [11]. Quadratic-convex relaxation [12] tightens the

Jabr’s relaxation by adding cuts due to assumed or computed maximum voltage angle differ-

ences. Unless the voltage angle differences can be determined to be very small, the model is just

marginally more tight than the Jabr’s model. Shor’s relaxation [13] is of the most computation-

ally demanding semidefinite form, but is also significantly tighter than the Jabr’s formulation.

To achieve tractability, semidefinite matrix sparsity needs to be used to separate it into more

smaller ones [14]. A sparse Jabr’s model achieves linear scaling with the number of system

buses, but is still very demanding and currently there are very few solvers that are capable of

solving mixed-integer semidefinite programming problems, namely SCIP-SDP [15], BNB [16]

and CUTSDP [17]. However, these solvers are still not mature and can not solve difficult cases.

Overview of relaxations, sorted in increasing tightness, is available in Table 2.2.
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Table 2.2: Summary of optimal power flow relaxations, sorted in increasing tightness.

Name & reference Optim. class Notes

Copper-plate, [1] LP Single-bus model. Does not model voltages, re-
active power and losses.

Network-flow, [1] LP Accounts for network topology, but not for phys-
ical power flow properties. The only constraint
is maximum power transfer between connected
nodes. Does not model voltages, reactive power
and losses.

Jabr’s, [9] SOCP SOCP relaxation of exact polar or rectangular for-
mulation. Commonly used in distribution net-
works.

QC, [12] SOCP Further tightened Jabr’s model with precomputed
variable bounds.

Shor’s, [13] SDP SDP relaxation of exact polar or rectangular
formulation. Requires SDP specialised solver.
Computationally demanding.

2.1.3 Approximation models

Accuracy of approximation models is typically more consistent than of the relaxation models,

which are for some cases exact, but for other cases achieve large errors of over 10%. The

most widely used approximation for transmission systems is the DC optimal power flow [2].

It ignores losses and reactive power flows, but models the power flow voltage angle depen-

dence. It is accurate for transmission systems since they, due to high voltages, have low active

power flow losses. The DC model is linear and thus solves well in combination with discrete

variables. Further research led to generalization of the DC model to include losses and reactive

power. The linear model in [18] adds a piece-wise linear expression for losses using numerically

difficult and nonconvex integer variables. The model presented in [19] uses linear data-driven

constraints to add losses. However, it needs to penalize the objective function to prevent neg-

ative losses. DC model extensions are generally still inaccurate for losses and reactive power

flows. A convex quadratic AC optimal power flow approximation [20] has been published as a

patent. It is more accurate than the linear models, but also more computationally demanding.

A linear-programming AC Taylor-based optimal power flow [21] uses piece-wise linearization

of quadratic terms with relaxed components to avoid discrete variables. The model considers

only angle-dependent quadratic Taylor terms. After the initial publication, the author in Power-

Models package [22] implemented more accurate version of the model that does not piece-wise

linearize considered quadratic terms, but uses more accurate initial quadratic terms. Out of the

7
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presented models, only the DC extension models and the linear programming AC model can be

warm-started with approximate operating point to achieve greater accuracy. However, none of

them utilizes this advantage efficiently, potentially resulting in even worse accuracy if warm-

started. In this thesis the linear programming AC model [21] will be enhanced to better exploit

the approximate operating point potential using convex quadratically constrained quadratic pro-

gramming. Overview of optimal power flow approximations is given in Table 2.3.

Table 2.3: Summary of optimal power flow approximations.

Name & reference Optim. class Notes

DC, [2] LP No reactive power.

DC extensions, [18],
[19]

MILP/LP Based on linear Taylor expansion and added lin-
ear or mixed-integer linear losses.

LPAC, [21] LP/QCQP Based on first-order and select second-order Tay-
lor expansion terms.

QPAC, [20] QCQP Published patent. Based on series of convex
quadratic approximations of initial exact noncon-
vex quadratic equations.

2.2 Bilevel solution techniques

Bilevel modeling is mainly used for operation and planning optimization. Literature cov-

ers a wide range of topics, with the more common ones being: pricing [23] and arbitrage

[24] schemes, maintenance scheduling [25] and transmission system expansion planning [26].

Bilevel optimization is an optimization structure where one optimization is embedded, i.e.

nested, into the other. Its formal mathematical notation is provided in equation (2.3), where

F , G and H are general functions. The two optimizations exchange decision variables x and

y. Variables of one problem may be parameters in the other and vice versa. The embedded

problem is called the lower-level problem and the outer problem is called the upper-level prob-

lem. Such optimization problems cannot be solved directly using off-the-shelf solvers and have

to be converted into a more suitable form. Research of bilevel solution techniques focuses on

improving numerical tractability of solution algorithms. Bilevel problems are difficult to solve

even if problems are linear.

8
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min
x

F1(x,y)

subject to G1(x,y)≤ 0

H1(x,y) = 0

y ∈ arg min {F2(x,y) : G2(x,y)≤ 0, H2(x,y) = 0}

(2.3)

There are two main bilevel groups of solution approaches: the classical approaches and the

evolutionary approaches. Classical approaches are based on the duality theory and are applica-

ble to cases where the strong duality holds. In general, the strong duality holds for all convex

problems that are strongly feasible, i.e. there exists a solution to a convex optimization prob-

lem that is not at the boundary of the feasible space. Conditions that encompass broader set

of problems also exist, but they are difficult to prove and validity does not only depend on the

problem structure, but also on the solution point. Thus, in practice they only apply to optimiza-

tion problems with strong regularity assumptions such as linearity or convexity and continuity

of the lower-level problem. Most widely used classical approach is the KKT-based single-level

reduction. This way the lower-level optimization problem is replaced with a set of constraints

that have the same solution as the original optimization problem. The set of equations is then

added to the upper level as constraints. The resulting formulation is of the standard optimization

form that can be solved using off-the-shelf solvers. However, computational costs are moder-

ately high due to combinatorial characteristics of complementary conditions, i.e. equations that

require that bilinear terms are equal to zero. The single-level reduction approach has been used

to solve either bilevel problems with linear lower levels [27] or convex quadratic lower levels

[28]. In a special case when interaction between the two levels is discrete, it has also been

used to solve bilevel problems with convex quadratically constrained quadratic lower levels

[29]. Other classical approaches are the descent method, the penalty function method, the trust-

region method and the parametric programming method. The descent method uses a gradient

to determine optimal variable change. Numerical difficulties occur due to the lower level being

feasible only when it is optimal, so it is difficult to determine a variable change that respects fea-

sibility. This technique was used in paper [30]. The penalty method transfers constraints into an

objective function penalizing the constraint violations. In such way, the lower-level constraints

are transferred to the objective function in [31], while in [32] constraints of the both levels are

transferred to the objective function. The trust region algorithms are based on an iterative ap-

proximation of the lower level feasible space around the operating point by a linear problem or

a quadratic problem [33]. This thesis researches which solution method for KKT-based single-

level reduction works the best in terms of tractability and accuracy with the developed convex

AC optimal power flow approximation model for bilevel transmission-system-constrained mar-

ket participation.

9
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On the other hand, the evolutionary approaches for solving bilevel problems mimic biolog-

ical evolution by allowing generational propagation of the most favourable numbers by some

metric, usually the combination of the objective function value and the infeasibility penalty.

These approaches are efficient in finding good solutions of mathematically very irregular, non-

linear or discrete problems, but usually cannot prove or find global optimal solutions. Evolu-

tionary approaches normally involve solving the lower-level problem separately using simplex

or interior point algorithm for any upper-level variable values, in a nested way, that have been

determined using evolution such as in [34] and [35]. However, the lower level can also be solved

using an evolution, as in [36]. The nested evolutionary method cannot solve large problems due

to an exponential growth of the lower-level optimizations with the number of upper-level vari-

ables. Single-level reduction can also be used for evolutionary approaches where the evolution

is applied to a reduced form, as in [37]. The approach inherits mathematical regularity require-

ments of the classical approaches for the lower level, but can solve for more irregular upper

levels. Finally, bilevel problems can be solved by adding a metamodel to the upper level as a

substitution for the lower level. This can be done using a reaction set mapping to approximate

the lower-level variable values as a response to the upper-level decisions, as demonstrated in

[38]. Another way of substituting the lower level with a metamodel is by replacing its objective

statement, i.e. objective function and minimize and maximize goal, with a constraint requiring

that its objective function value is at least equal or better than function approximating optimal

value of it in terms of upper level variables. The described approach is called the optimal lower-

level function value approach and was used in [39]. More generally, but widely unexplored, the

lower levels can be bypassed completely by metamodels. The latest advancements in machine

learning provide new tools to train statistics-based metamodels. With a goal of increasing the

numerical tractability and solution accuracy, this thesis focuses on applying machine learning

techniques on solving bilevel models. The considered bilevel transmission-system-constrained

market participation model does not conform to the required regularity constraints for classical

approaches in its original exact formulation since it is nonconvex, which makes it suitable for

evolutionary approaches. The most recent trend to achieve modeling accuracy and efficiency is

to make metamodels, in this case neural networks, physics informed about the original models

that they replace. This thesis thereby researches how to make good physics-informed neural

networks as a metamodel for bypassing the lower level completely.
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Chapter 3

Main Scientific Contribution

This thesis’ contribution is divided into three parts. The first one provides a new convex optimal

power flow formulation that uses approximate operating point to warm-start the model and

achieve greater accuracy. The second part investigates using presolve to dynamically determine

between quadratic inequality and linear equality constraints to further increase the accuracy

of the developed optimal power flow model. The third part of contribution proposes a bilevel

model for AC transmission system constrained day-ahead electricity market participation with

contributions of achieved accuracy and numerical tractability. The contribution is listed here

and then explained in the follow-up sections:

•a convex polar second-order Taylor approximation model of optimal AC transmission

system power flow;

•a presolve method for selecting between quadratic inequality and linear equality con-

straints to improve accuracy of the optimal power flow models based on second-order

Taylor approximation;

•a bilevel optimization model of an AC power-transmission-system-constrained day-ahead

electricity market participation.

3.1 Convex polar second-order Taylor approximation model

of optimal AC transmission system power flow

The developed convex AC optimal power flow model from [P1] enables the use of modern,

efficient solvers for mixed-integer programming. The achieved accuracy is greater than for

the existing relaxation and approximation models. Computational tractability is comparable to

other existing convex quadratically-constrained quadratic or second-order cone models. Ac-

curacy and tractability are demonstrated on a unit commitment case study in [P1] and on a

transmission system expansion case study in [P5].
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3.2 Presolve method for selecting between quadratic inequal-

ity and linear equality constraints to improve accuracy

of the optimal power flow models based on second-order

Taylor approximation

Convex optimal power flows are susceptible to relaxation errors. These errors have gross im-

pact to the model accuracy. The developed presolve dynamically adapts the model based on

computation of an approximate operating point. It selects the relaxed constraints likely to cause

relaxation errors and replaces them with linear equality alternatives that cannot result in re-

laxation errors. Its effectiveness and implementation are presented in paper [P1]. The results

indicate that on stable test cases, i.e. without relaxation errors, the presolve keeps more accurate

quadratic constraints. However, in less stable test cases, where relaxation errors would other-

wise occur, it successfully selects the correct constraints for replacement with the nonrelaxed

constraints.

3.3 Bilevel optimization model of an AC power-transmission-

system-constrained day-ahead electricity market partici-

pation

The last part of the contribution focuses on accuracy and numerical tractability of bilevel mod-

eling of AC power-transmission-system constrained day-ahead electricity market participation.

The exact AC optimal power flow is a nonconvex formulation and thus difficult to solve when

in the lower level since it does not satisfy the mathematical regularity requirements. This the-

sis presents two approaches to solve this problem: using the developed convex AC optimal

power flow model and a single-level reduction technique with smoothing of complementary

conditions, as presented in two-part papers [P2] and [P3] and using a convolutional neural net-

work metamodel to bypass the lower level, as presented in [P4]. The first part of the two part

paper [P2] presents the model and the algorithm of the bilevel model, while the second part

[P3] presents case studies for accuracy demonstration, economic profit due to increased model

accuracy and comparison of the solution techniques. The results indicate that the smoothing

technique has the best tractability out of all single-level reduction-based techniques that are

able to almost fully close the duality gap. Comparing the two approaches, i.e. the single-level

reduction and the metamodel, the results indicate that the single-level reduction achieves greater

accuracy and better computation times for smaller networks. However, for larger networks, the

single-level reduction approach diverges, which is not the case with the metamodel. Thus, the
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metamodel approach is more suitable for more difficult large cases.
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Chapter 4

List of Publications

The publications published within this thesis and considered as the main contribution are di-

vided into two sections: journal papers and conference papers. Other published papers can be

found under biography Chapter 6.2.
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[P3]K. Šepetanc, H. Pandži ć and T. Capuder, "Solving Bilevel AC OPF Problems by Smooth-

ing the Complementary Conditions – Part II: Solution Techniques and Case Study," IEEE

Transactions on Power Systems, 2022,

ISSN: 1558-0679, DOI: 10.1109/TPWRS.2022.3207097
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Chapter 6

Conclusions and Future Work

6.1 Main Conclusions of the Thesis

The developed convex AC optimal power flow model demonstrated higher accuracy than the

existing convex models. This is a result of the new power flow equations developed using

extensive numerical experiments to determine the importance of various equation terms. The

developed optimal power flow model works in tandem with a presolve to avoid relaxation er-

rors and retain high accuracy even in otherwise unfavourable cases. With the new optimal

power flow and the presolve, discrete power system problems, such as unit commitment and

transmission expansion planning, can now be solved with better computation times than with

the exact models and with better accuracy and similar computation times than using the existing

approximations and relaxations.

The thesis proposes two new bilevel AC transmission system constrained market participa-

tion models. One is based on the KKT single-level reduction, smoothing of the complementary

conditions and the developed convex AC optimal power flow model. This approach solves

the problem accurately, but solution process diverges for large networks. The second model

replaces the lower level with convolutional neural network metamodel. The accuracy of this

approach is high, but lower than the accuracy of the first model. Computation times are as well

longer for the metamodel approach. However, unlike the KKT approach, the metamodel solu-

tion process converges for larger networks. As a result, using the developed two bilevel models,

both large and small cases can be solved to high accuracy.

6.2 Future Work

The future research may diverge in multiple directions. One direction is the simplification the

presolve to compute the required constraint marginals directly from the approximate operating

point. The second one is to further improve numerical tractability of bilevel models based on

18
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KKT single-level reduction approach. Furthermore, future work may also focus on applying

the developed models to real-life applications.
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Y sh
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Yi, j Line or transformer between nodes i and j series admittance
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Convex Polar Second-Order Taylor Approximation of
AC Power Flows: A Unit Commitment Study

Karlo Šepetanc , Student Member, IEEE, and Hrvoje Pandžić , Senior Member, IEEE

Abstract—Modern mixed-integer quadratic solvers generally
handle binary variables more efficiently than nonlinear mixed-
integer solvers. This is relevant to the power system operation
models as the unit commitment formulations typically contain a
large number of binary variables. This paper investigates how to
achieve the accuracy level close to the one of the exact nonlinear
models, but by utilising convex models and solvers. The presented
unit commitment model is based on a Taylor-series expansion
where both the voltage magnitude and angle are quadratically
constrained. To achieve high accuracy, the model takes advantage
of the meshed transmission network structure that enables replace-
ment of the quadratic inequality constraints that cause constraint
relaxation errors with the linear equality constraints. Quadratic
constraints to be replaced as well as the operating point parameters
are determined based on the presolve. The first presented case study
validates the model’s accuracy and the convergence of the iterative
algorithm, while the second is a non-iterative full unit commitment
problem. Unit commitment results show superior accuracy and
similar computation times to the existing quadratic formulations
on one hand and faster computation times than the exact nonlinear
polar formulation on the other.

Index Terms—Mixed-integer quadratically constrained
quadratic program, network-constrained unit commitment,
optimal power flow approximation.

NOMENCLATURE

Sets and Indices
N Set of buses, indexed by i and j.
NP Tuple set of paired buses aligned with branch E

orientation, indexed by (i, j).
R Set of reference buses, indexed by i.
E,ER Tuple set of branches, forward and reverse orientation,

indexed by (e, i, j).
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Ei, E
R
i Array of tuple sets of branches at bus i, forward and

reverse orientation, indexed by (e, i, j).
G,Gi Set of all generators and array of sets of generators at

bus i, indexed by k.
Li Array of sets of loads at bus i, indexed by l.
Si Array of sets of shunts at bus i, indexed by s.
τ Set of time steps, indexed by t and h.
Ξ Set of decision variables.

Parameters
c̈k, ċk, ck Generator cost coefficients.
P d

t,l,Q
d
t,l Active and reactive power load.

gsh
s , bshs Bus shunt conductance and susceptance.

ge, g
fr
e , g

to
e Branch π-section conductances.

be, b
fr
e , b

to
e Branch π-section susceptances.

τ e,σe Branch tap magnitude and shift angle.
P g

k ,P
g
k Generator minimum and maximum active

power production.
Qg

k
,Q

g
k Generator minimum and maximum reactive

power production.
Se Branch maximum apparent power.
θi,j ,θi,j Bus-pair minimum and maximum voltage an-

gle difference.
V i,V i Bus minimum and maximum voltage magni-

tude.
V op

t,i ,θ
op
t,i Assumed bus voltage magnitude and angle op-

erating points.
csuk Generator start-up cost.
RUk,RDk Generator ramp-up and -down limits.
MUk,MDk Generator minimum up and down time.
Λt,e,Γt,i,j Boolean parameters which indicate whether

to use quadratic form of voltage and cosine
representations respectively.

Variables

Continuous variables
P g
t,k, Q

g
t,k Generator active and reactive power produc-

tion.
Pt,e,i,j , Qt,e,i,j Branch active and reactive power flow.
V Δ
t,i , θ

Δ
t,i Bus voltage magnitude and angle change.

Vt,i, θt,i Bus voltage magnitude and angle.
ĉost,i,j Cosine approximation.
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qVt,e Second-order Taylor series voltage magnitude
term approximation.

Binary variables
xt,k Generator activity state indicator.
yt,k, zt,k Generator start-up and shut-down indicators.

I. INTRODUCTION

A. Motivation

UNIT commitment is an optimization problem that de-
termines the least-cost production of the generators to

satisfy the demand while considering the generators’ physical
limitations. Besides generator capacity limits, it typically en-
compasses output ramp limits, minimum up and down times
and start-up costs, whose modeling requires computationally
expensive binary variables. Computational burden of the unit
commitment problem can be assessed from two perspectives:
the binary formulation tractability and the grid formulation
tractability.

Novel binary formulations are typically studied without the
network constraints to better demonstrate and isolate the source
of numerical difficulties. To this end, there is even a unit com-
mitment benchmark generally accepted by the scientific com-
munity [1], but without the network constraints. However, the
ISO-type electricity markets consider transmission constraints
already at the market-clearing phase. Hence, we focus on the
network-constrained unit commitment problem and deliver a
new transmission system power flow formulation that retains
an accuracy level close to the exact nonlinear AC models, but
allows for the use of more specific and performant mixed-integer
quadratically constrained quadratic program (MIQCQP) solvers
as opposed to the mixed-integer nonlinear (MINLP) ones. It is
a common practice in transmission system modeling to reduce
a MINLP to a mixed-integer linear (MILP), e.g. by applying
DC network approximation. However, linear models are inac-
curate when it comes to modeling reactive power flows, voltage
magnitudes and losses. On the other hand, the existing convex
quadratic approximations or relaxations of AC power flows
may achieve good or even perfect accuracy when there are no
quadratic constraint relaxation errors. These are a consequence
of the convexification process that requires the quadratic equality
constraints to be relaxed into quadratic inequalities. However,
when such errors do occur, they are very large. Since unit com-
mitment is a multi-period optimization problem thus simulating
the grid under various conditions, including generating units
nonconvexities, the chances of having relaxation errors in at least
one of the simulated periods are relatively high, rendering the
relaxation model inaccurate. A motivation to develop a model
based on the Taylor expansion comes from the thought that
constraint relaxation errors, which in this case can occur due
to convexification of the second-order parts of the expansion,
can be avoided without otherwise gross changes to the power
flow equations by upfront neglecting these terms on per-branch
basis as determined by the presolve. Constraint relaxation errors
due to convexification are avoided since when the second-order
terms are neglected, the resulting constraints are linear equalities

instead of quadratic inequalities. Additionally, meshed transmis-
sion network structure acts favourably as it provides a sufficient
number of quadratic constraints to preserve the accuracy and
iterative convergence of the algorithm that reruns the model
around an updated Taylor operating point despite some ne-
glected second-order terms. A parallel can be drawn to the
Newton’s power flow calculation method that converges faster
when using higher-order modifications [2]. Fast convergence
is important as it allows us to achieve high warm-start single
iteration accuracy using the approximate warm-start operating
point parameters obtained by first solving the problem in its
continuous version where binary variables are relaxed into con-
tinuous in the range from 0 to 1. Utilising the described features
and the proposed transmission system power flow formulation,
we solve the network-constrained unit commitment problem
while cooptimizing the real and reactive powers to exploit the
unused monetary value in the traditional separate optimization,
as demonstrated in [3], but by using an implementation without
any loop statements.

B. Literature Review

Unit commitment research started with the development of the
branch-and-bound algorithm [4], which is the basis of modern
mixed-integer solvers. The MILP approach is still considered
as the state-of-the-art due to its computational tractability. The
early works grasped the unit commitment problem in its simple
form without the network constraints, thus focusing on tighten-
ing the binary formulation, which can be expressed using three
such variables per generator, as in [5], [6] and [7], or using
a single binary variable as in [8]. Because of reliance on the
branch-and-bound algorithm to solve mixed-integer problems,
less variables does not necessarily imply better computational
tractability. Size of the problem can be decreased by cluster-
ing similar generators [9], but this requires simplifications that
reduce accuracy and applicability.

The subsequent unit commitment research branches out in
multiple directions, mainly focusing on uncertainties [10] se-
curity constraints [11], and network constraints [12]. Security
constraints add an additional contingency scenario dimension to
the unit commitment problem drastically increasing the problem
size. Our work and this literature review are focused on network
constraints, whose inclusion in the unit commitment model
also has a detrimental effect on the computational time. The
inclusion of both security and network constraints forms an
even more demanding problem, however in this work we focus
on the network constraints to better isolate their difficulties
and features. To reduce the problem complexity, DC optimal
power flow is widely used. This transmission grid approximation
results in good accuracy of the active power flows [13]. There are
various attempts to generalize the DC model to include losses
and reactive power, e.g., by expanding the first-order Taylor
series around the operating point and adding only the voltage-
angle-dependent nonconvex piece-wise linear losses [14], which
require integer variables, or by linear loss estimation [15], which
needs a penalty factor to prevent negative losses. Quadratic
approximations [16] are much more accurate, but also more
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TABLE I
OVERVIEW OF OPTIMAL POWER FLOW TECHNIQUES (OP – OPERATING POINT)

∗some simple formulations do not include voltage variables nor losses

computationally demanding than the linear models. Work [17]
proposes a Taylor-based piece-wise linearization with no in-
teger variables, i.e. linear programming approximation of AC
power flows (LPAC) of the initially quadratic approximation,
that considers angle-only dependent losses. In a post-publication
in PowerModels package [18], the author implemented an en-
hanced variant of the model with better accuracy by using the
quadratic losses constraint instead of the piece-wise linear one.

Relaxations, on the other hand, have less persistent accuracy
that is highly dependent on the test case. Performance of Jabr’s
(Second-order Cone Programming – SOCP) [19], quadratic-
convex (QC) [20] and Shor’s (semi-definite programming –
SDP) [21] relaxations were analysed in [22], which showed
that Jabr’s relaxation is dominated in terms of tightness by
the both remaining formulations. Finally, there are nonconvex
exact rectangular current-voltage [23] and voltage-based rect-
angular [24], [25] and polar [24], [26] formulations that can
be directly utilised for unit commitment, but with the highest
computational burden. An overview of the described optimal
power flow (OPF) techniques is provided in Table I. Our work
builds upon the quadratic implementation of the LPAC model
by introducing the voltage magnitude-dependent losses and by
expanding the Taylor series around a general operating point.

C. Paper Contribution and Structure

Contribution of the paper consists of the following:� We develop new transmission network AC equations based
on the Taylor’s expansion that approximates the second-
order voltage terms. The approximation consists of dis-
tributing power losses to both branch ends based on the
forward- and reverse-orientation power flows.� We develop a presolve technique for deciding whether
to use the quadratic or the linear form of power flow
constraints to avoid constraint relaxation errors due to
convexification.� The resulting MIQCQP solution is obtained much quicker
than the MINLP solution without sacrificing accuracy.

Rest of the paper is structured as follows. Section II mathemat-
ically derives and states the proposed model. It is divided in three
subsections: SubSection II-A presents the Taylor expansion
analysis, SubSection II-B introduces the presolve technique and
subSection II-C presents the model components. Case study
Section III consists of the three main parts: the description
and set-up III-A; and two case studies. In the first case study
III-B we solve optimal power flow problem on a number of net-
works to demonstrate convergence and accuracy of the model.
The second case study III-C solves unit commitment problems
to demonstrate computational tractability and accuracy of the
model. Section IV provides relevant conclusions and guidelines
for future work.

II. MATHEMATICAL MODEL

A. Taylor Expansion Analysis

Our analysis of the optimal power flow starts from the polar
formulation for the branch power flow in equations (1.1) and
(1.2). For clarity of the analysis, a general branch, which en-
compasses lines and transformers according to the PowerModels
0.13 standard [18], is simplified to a line without the shunt sec-
tions, i.e. tap is 1∠0◦ and gfr

e , g
to
e , bfre , b

to
e = 0. Also, to shorten

the expressions, two substitutions are made: θt,i,j = θt,i − θt,j
and θop

t,i,j = θop
t,i − θop

t,j . Otherwise, the final presented model
(2.1)–(2.20) and all the benchmarked models include a general
branch without any simplifications or substitutions.

Pt,e,i,j = V 2
t,i · ge − Vt,i · Vt,j(ge · cos(θt,i,j)
+ be · sin(θt,i,j)) (1.1)

Qt,e,i,j = − V 2
t,i · be − Vt,i · Vt,j(ge · sin(θt,i,j)

− be · cos(θt,i,j)) (1.2)

Full second-order Taylor series for the branch active and
reactive power flow is structurally written in expressions (1.3)
and (1.4). The first line contains the zeroth-order part (in blue),
the next three lines the first-order part (in green) and the last
six lines the second-order part (in red) of the Taylor series
expanded over variables Vt,i, Vt,j and θt,i,j around the operating
point parameters V op

t,i , V op
t,j and θop

t,i,j . Variables representing
a change from the operating point (delta variables) are at the
beginning of the row, while the corresponding coefficients are
within the square brackets.

Pt,e,i,j =

(V op
t,i )

2 ·ge−V op
t,i ·V op

t,j (ge ·cos(θop
t,i,j)+be ·sin(θop

t,i,j))

+V Δ
t,i ·[2·V op

t,i ·ge−V op
t,j ·(ge ·cos(θop

t,i,j)+be ·sin(θop
t,i,j))]

−V Δ
t,j ·[V op

t,i ·(ge ·cos(θop
t,i,j)+be ·sin(θop

t,i,j))]

−θΔt,i,j ·[V op
t,i ·V op

t,j ·(be ·cos(θop
t,i,j)−ge ·sin(θop

t,i,j))]

+(V Δ
t,i)

2 ·[ge]

−V Δ
t,i ·V Δ

t,j ·[ge · cos(θop
t,i,j)+be ·sin(θop

t,i,j)]
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+(V Δ
t,j)

2 · 0

+(θΔt,i,j)
2 ·[

V op
t,i ·V op

t,j

2
·(ge ·cos(θop

t,i,j)+be ·sin(θop
t,i,j))]

−V Δ
t,i ·θΔt,i,j ·[V op

t,j ·(be ·cos(θop
t,i,j)−ge ·sin(θop

t,i,j))]

−V Δ
t,j ·θΔt,i,j ·[V op

t,i ·(be ·cos(θop
t,i,j)−ge ·sin(θop

t,i,j))] (1.3)

Qt,e,i,j =

−(V op
t,i )

2 ·be+V op
t,i ·V op

t,j ·(be ·cos(θop
t,i,j)−ge ·sin(θop

t,i,j))

+V Δ
t,i ·[−2·V op

t,i ·be+V op
t,j ·(be ·cos(θop

t,i,j)−ge ·sin(θop
t,i,j))]

+V Δ
t,j ·[V op

t,i ·(be ·cos(θop
t,i,j)−ge ·sin(θop

t,i,j))]

−θΔt,i,j ·[V op
t,i ·V op

t,j ·(ge ·cos(θop
t,i,j)+be ·sin(θop

t,i,j))]

−(V Δ
t,i)

2 ·[be]

+V Δ
t,i ·V Δ

t,j ·[be ·cos(θop
t,i,j)−ge ·sin(θop

t,i,j)]

+(V Δ
t,j)

2 · 0

−(θΔt,i,j)2 ·[
V op

t,i ·V op
t,j

2
·(be · cos(θop

t,i,j)−ge ·sin(θop
t,i,j))]

−V Δ
t,i ·θΔt,i,j ·[V op

t,j ·(ge ·cos(θop
t,i,j)+be ·sin(θop

t,i,j))]

−V Δ
t,j ·θΔt,i,j ·[V op

t,i ·(ge ·cos(θop
t,i,j)+be ·sin(θop

t,i,j))] (1.4)

Expressions (1.3) and (1.4) are nonconvex because i) they are
equalities, and no quadratic equality is convex; ii) (V Δ

t,j)
2 term

is multiplied by zero. Convexification of the polar AC OPF by
Taylor series was studied in [17], where the model was obtained
by ignoring all but one of the second-order terms, (θΔt,i,j)

2,
and by taking θop

t,i,j = 0, which leaves the model voltage-wise
loosely constrained, i.e. without the voltage second-order terms.

We performed extensive tests to determine the importance of
different second-order terms by removing them one-by-one from
the series in expressions (1.3) and (1.4) and analysing accuracy
and iterative algorithm convergence which reruns the model
around an operating point obtained from a previous solve. Since
the Taylor series is nonconvex (quadratic equality), nonlinear
IPOPT solver was used. As a result, all combinations without the
(V Δ

t,i)
2 term failed to algorithmically fully converge and the ver-

sion with only (V Δ
t,i)

2 and (θΔt,i,j)
2 terms converged extremely

slowly, requiring over 100 iterations. However, the versions with
(V Δ

t,i)
2, V Δ

t,i · V Δ
t,j and (θΔt,i,j)

2 exhibited fast convergence and
good first iteration accuracy, while V Δ

t,i · θΔt,i,j and V Δ
t,j · θΔt,i,j

terms had little effect. Also, reactive power voltage second-order
terms, which in the tests were shown to be better ignored than
approximated, have small impact on convergence and overall
accuracy due to an absence of reactive power in the objective
function. Based on these results, we include the quadratic angle
term (θΔt,i,j)

2 convexified by a relaxation in constraint (1.5),
as well as the voltage (V Δ

t,i)
2 and V Δ

t,i · V Δ
t,j terms for active

power flow by convex approximation in (1.6). The relaxation in
constraints (1.5) and (1.6) refers to the swap of the equality sign
with the inequality. However, since the constraints are obtained

by the Taylor expansion, which is an approximation, even with
inequality sign they are still an approximation, albeit convex.

ĉost,i,j ≤ 1−
(θΔt,i,j)

2

2
, ∀t, (i, j) ∈ NP (1.5)

qVt,e≥ ge · (V Δ
t,i)

2 − 2 · ge · cos(θop
t,i,j) · V Δ

t,i · V Δ
t,j

+ ge · (V Δ
t,j)

2, ∀t, (e, i, j) ∈ E
(1.6)

Constraints (1.5) and (1.6) are embedded in the main model
as constraints (2.9.1) and (2.8.1), respectively, without simpli-
fications and substitutions introduced at the beginning of this
section. To retain similarity with the existing formulations in
the literature, the right-hand side of (1.5) is a second-order
Taylor series of a cosine function and, once multiplied with a
parameter in the power flow constraints (2.4)–(2.7), it forms
a part of the power flow zero-order Taylor term and (θΔt,i,j)

2

term. The approximation in expression (1.6) is obtained by
summing the voltage (V Δ

t,i)
2 and V Δ

t,i · V Δ
t,j Taylor terms from

both the forward and the reverse orientations of the branch active
power flow, effectively representing losses evenly distributed
between both branch ends in active power constraints (2.4) and
(2.5). Second-order voltage approximation is always at least
marginally convex, assuming ge > 0.

While the second-order voltage approximation from (1.6)
could mathematically be applied to reactive power as well (by
simply extracting and transferring factor ge from the approxi-
mation into the active power flow constraints and −be for the
reactive power flow constraints), it was determined that this
approximation is in some cases inadequate for reactive power, as
it leads more commonly to an infeasible model using the flat start
operating point assumptions, i.e.V op

t,i = 1 p.u. andθop
t,i = 0 rad.

Reactive power flows are generally about an order of magnitude
lower than active power flows, while the dominant factor for
the approximation in reactive power flows, susceptance be, is an
order of magnitude higher than the dominant factor, conductance
ge, in active power flows. Applying approximation only to active
power flows does not limit its purpose to better constrain voltages
since active power has much stronger effect on the objective
function and thus on constraining the voltages. Also, no accuracy
drawbacks were observed when applying the approximation
only on active power flows in conditions where be/ge was
close to 1 and in lightly loaded networks. Constraint (2.8.1),
the subsequent of constraint (1.6), is applied in the model as a
constraint for every branch in the forward orientation E rather
than bus-pairs NP, so it can account for parallel conductances
(gfr

e and gto
e ) and differing taps in parallel branches.

B. Presolve Technique

An important problem feature is a meshed structure of the
transmission networks. It makes all the delta variables V Δ

t,i and
θΔt,i quadratically constrained despite removing some quadratic
inequality constraints and swapping them with the equality con-
straints since the delta variables appear in multiple instances of
(2.8.1) and (2.9.1) constraints. Swapping the quadratic inequal-
ity constraints with linear equality constraints avoids constraint
relaxation errors due to convexifications, i.e. errors due to a
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deviance from the inequality boundary, without a significant
loss in a single iteration accuracy or multiple iterations con-
vergence. Constraint (2.8.1) is a second-order voltage approx-
imation without the simplifications introduced in the analysis,
while (2.8.2) is its linear alternative. Similarly, (2.9.1) and (2.9.2)
are quadratic and linear representations of the Taylor series
cosine. Quadratic forms of the constraints are used only if
the respective Boolean parameter Λt,e or Γt,i,j is true and if
conductance ge is positive in the case of voltage approximation
constraint (2.8.1).

Our proposition is to determine the value of the Boolean
parameters, i.e. decide whether to use linear or quadratic forms
of the voltage and cosine approximation constraints, in the pre-
solve computation step. The AC unit commitment is a difficult
problem mostly due to binary variables needed for generators
in combination with network constraints, which slow down the
solution process and limit the selection of solvers that can be
used. However, if binary variables are fixed, i.e. replaced with
a parameter, the problem is relatively easy to solve even if the
network constraints are nonconvex or nonlinear. Furthermore,
since the constraint marginal represents the sensitivity of the
objective function on adding a small positive constant to the
right-hand side of the constraint, sign of the equality constraint
marginal, which is computed by default by, e.g., IPOPT and
Knitro solvers, indicates if this constraint would be binding if it
was relaxed into an inequality constraint. For constraint (2.8.1)
to be binding, due to its greater-or-equal sign, qVt,e should have a
tendency to be as small as possible. Adding a positive constant
to the right-hand side of (2.8.1) would in this binding scenario
increase qVt,e and thus worsen the objective function, i.e. the
marginal would be positive. Oppositely, for constraint (2.9.1)
to be binding, since its less-or-equal sign, its marginal needs
to be negative. As a result, a nonconvex presolve with only
quadratic approximation constraints (2.8.1) and (2.9.1) in the
equality form and fixed binary variables is proposed. Values
of the fixed variables are determined simultaneously with an
approximate operating point as described in SubSection III-C.
This way, the main unit commitment solve will have only the
convex quadratic approximation constraints that the presolve
flagged as binding. All other quadratic constraints are replaced
with linear ones to avoid constraint relaxation errors.

C. Optimization Model

This section presents the whole network-constrained unit
commitment model. The objective function (2.1) is a variable
generation and start-up cost minimization. While the ISO mar-
kets typically consider piecewise linear cost curves, we tend
to avoid further approximations and thus use the quadratic
cost curves. Constraints (2.2) and (2.3) are the bus balance
constraints, (2.4)–(2.7) are power flow equations which also
contain second-order term approximation variables qVt,e and
ĉost,i,j from (2.8.1)–(2.9.2). Constraints (2.10) and (2.11) are
generator production constraints that disable production when
a generator is inactive (xt,k = 0). (2.12) is the branch apparent
power constraint for both orientations, (2.13) is the reference

bus angle constraint, (2.14) and (2.15) are voltage magnitude
and bus-pair angle constraints, and (2.16) is the generator ramp-
up and -down constraint. Constraints (2.17) and (2.18) model
the interaction between the generator activity binary variable
and the start-up and shut-down binary variables. Constraints
(2.19) and (2.20) ensure generator minimum up and down time
requirements. Such start-up and shut-down formulation using
three binary variables was first presented in [6] and was proven
efficient in [27]. The presented problem is of MIQCQP [28]
class with convex objective function and constraints, except for
binary variables.

Min
Ξ

∑

t,k

(c̈k · (P g
t,k)

2 + ċk · P g
t,k + ck · xt,k + csuk · yt,k)

(2.1)
∑

k∈Gi

P g
t,k −

∑

l∈Li

P d
t,l −

∑

(e,i,j)∈Ei∪ER
i

Pt,e,i,j

− ((V op
t,i )

2 + 2 · V op
t,i · V Δ

t,i) ·
∑

s∈Si

gsh
s = 0, ∀t, i

(2.2)

∑

k∈Gi

Qg
t,k −

∑

l∈Li

Qd
t,l −

∑

(e,i,j)∈Ei∪ER
i

Qt,e,i,j

+ ((V op
t,i )

2 + 2 · V op
t,i · V Δ

t,i) ·
∑

s∈Si

bshs = 0, ∀t, i
(2.3)

Pt,e,i,j =
((V op

t,i )
2 + 2 · V op

t,i · V Δ
t,i) · (ge + gfr

e )

τ 2
e

+
qVt,e

2

− (ge · cos(θop
t,i − θop

t,j − σe) + be · sin(θop
t,i − θop

t,j − σe))·

(V op
t,i · V op

t,j · ĉost,i,j + V Δ
t,i · V op

t,j + V Δ
t,j · V op

t,i )/τ e

− (be · cos(θop
t,i − θop

t,j − σe)− ge · sin(θop
t,i − θop

t,j − σe))·

V op
t,i · V op

t,j · (θΔt,i − θΔt,j)/τ e, ∀t, (e, i, j) ∈ E (2.4)

Pt,e,i,j = ((V op
t,i )

2 + 2 · V op
t,i · V Δ

t,i) · (ge + gto
e ) +

qVt,e

2

− (ge · cos(θop
t,i − θop

t,j + σe) + be · sin(θop
t,i − θop

t,j + σe))·

(V op
t,i · V op

t,j · ĉost,j,i + V Δ
t,i · V op

t,j + V Δ
t,j · V op

t,i )/τ e

− (be · cos(θop
t,i − θop

t,j + σe)− ge · sin(θop
t,i − θop

t,j + σe))·

V op
t,i · V op

t,j · (θΔt,i − θΔt,j)/τ e, ∀t, (e, i, j) ∈ ER (2.5)

Qt,e,i,j = −
((V op

t,i )
2 + 2 · V op

t,i · V Δ
t,i) · (be + bfre )

τ 2
e

+ (be · cos(θop
t,i − θop

t,j − σe)− ge · sin(θop
t,i − θop

t,j − σe))·

(V op
t,i · V op

t,j · ĉost,i,j + V Δ
t,i · V op

t,j + V Δ
t,j · V op

t,i )/τ e

− (ge · cos(θop
t,i − θop

t,j − σe) + be · sin(θop
t,i − θop

t,j − σe))·

V op
t,i · V op

t,j · (θΔt,i − θΔt,j)/τ e, ∀t, (e, i, j) ∈ E (2.6)
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Qt,e,i,j = −((V op
t,i )

2 + 2 · V op
t,i · V Δ

t,i) · (be + btoe )

+ (be · cos(θop
t,i − θop

t,j + σe)− ge · sin(θop
t,i − θop

t,j + σe))·

(V op
t,i · V op

t,j · ĉost,j,i + V Δ
t,i · V op

t,j + V Δ
t,j · V op

t,i )/τ e

− (ge · cos(θop
t,i − θop

t,j + σe) + be · sin(θop
t,i − θop

t,j + σe))·

V op
t,i · V op

t,j · (θΔt,i − θΔt,j)/τ e, ∀t, (e, i, j) ∈ ER

(2.7)

qVt,e≥
ge+gfr

e

τ 2
e

·(V Δ
t,i)

2− 2·ge

τ e
·cos(θop

t,i−θop
t,j−σe)·V Δ

t,i ·V Δ
t,j

+(ge+gto
e )·(V Δ

t,j)
2, ∀t, (e, i, j)∈E : ge>0 ∧ Λt,e (2.8.1)

qVt,e = 0, ∀t, (e, i, j) ∈ E : ge ≤ 0 ∨ ¬Λt,e (2.8.2)

ĉost,i,j ≤ 1−
(θΔt,i − θΔt,j)

2

2
, ∀t, (i, j) ∈ NP : Γt,i,j

(2.9.1)

ĉost,i,j = 1, ∀t, (i, j) ∈ NP : ¬Γt,i,j (2.9.2)

P g
k · xt,k ≤ P g

t,k ≤ P
g
k · xt,k, ∀t, k (2.10)

Qg
k
· xt,k ≤ Qg

t,k ≤ Q
g
k · xt,k, ∀t, k (2.11)

P 2
t,e,i,j+Q2

t,e,i,j≤S
2
e, ∀t, (e, i, j)∈E ∪ ER :∃Se (2.12)

θop
t,i + θΔt,i = 0, ∀t, i ∈ R (2.13)

V i ≤ V op
t,i + V Δ

t,i ≤ V i, ∀t, i (2.14)

θi,j≤(θop
t,i +θΔt,i)−(θop

t,j+θΔt,j)≤θi,j , ∀t,(i, j)∈NP (2.15)

RDk ≤ P g
t,k − P g

t−1,k ≤ RUk, ∀t, k (2.16)

yt,k − zt,k = xt,k − xt−1,k, ∀t, k (2.17)

yt,k + zt,k ≤ 1, ∀t, k (2.18)

t∑

h=t−MUk+1

yh,k ≤ xt,k, ∀t, k (2.19)

t∑

h=t−MDk+1

zh,k ≤ 1− xt,k, ∀t, k (2.20)

III. CASE STUDY

A. Description and Set-Up

Although the main case study is elaborated in SubSection
III-C, where we demonstrate the effectiveness of the proposed
model, we start by applying the model on a number of OPF
problems to show convergence speed and accuracy of the model.
In all cases we compare the obtained results, both in terms of
accuracy and computational effort, to the exact nonlinear polar
model [24], i.e. based on constraints (1.1) and (1.2), which serves
as a reference. Additionally, in the unit commitment case study,
our results are compared with the LPAC approximation in the
warm-start and the quadratic implementation [17], [18] and with
the QC relaxation [20]. Our implementations of the existing

Algorithm 1: Convergence and Accuracy Demonstration.
1: Run exact polar model � results in Table II
2: V op

t,i ← 1 p.u.; θop
t,i ← 0 rad

3: repeat
4: Run nonconvex model
5: Select constraints by evaluating marginals
6: Run convex model � results in Table II
7: Update operating point
8: until | ∗ |gap < 0.005% � gap to exact polar

models were verified in a side-by-side comparison to match the
PowerModels [18] implementation.

In SubSection III-B all models were solved using IPOPT
solver that has proven to be numerically highly robust and was set
up to run with the HSL linear MA27 and scaling MC19 modules,
option to always apply scaling and at most 500 solver iterations.
In SubSection III-C the convex MIQCQP/MISOCP models were
solved using Gurobi 9.0.2, while all the other models using
Knitro 11.1. Both Gurobi and Knitro were run under the default
settings on Intel i5 7600 CPU on 4 threads on a machine with
16 GB of RAM, while IPOPT was run on only one thread since
it showed no performance scaling using additional threads. The
solvers were instructed to compute to full optimality, unless
the time limit of 1 h is reached. GAMS 31.1.1 was used as a
modelling language and all continuous variables were declared
as free variables. In the SubSection III-B, variable start values
used to generate the model’s Jacobian and Hessian matrices
for the nonlinear solvers were reset to flat start assumptions
after every computation. The specifics on bounds and variable
starting values are important since they affect nonlinear solvers.
All variable and parameter units are in p.u. or dimensionless.

B. Convergence and Accuracy Demonstration

This section demonstrates the accuracy of the model using
OPF under assumption that the constraint type selection is
known, i.e. determined by steps 4 and 5 in Algorithm 1. In an
iterative procedure, the model is first run in its nonconvex form
in which constraints (2.8.1) and (2.9.1) are equalities. Signs of
their marginal values determine which constraints would deviate
from the inequality boundary if they were relaxed. Subsequently,
the model is rerun but in its convex form with selected quadratic
or linear constraints to avoid constraint relaxation errors due to
convexifications. The convex model updates the operating point
voltage and angle parameters initially set to 1 p.u. and 0 rd. The
procedure continues until fully converged in comparison to the
exact nonlinear polar model [24], as described in Algorithm 1.
The purpose of this case study is purely to explore the model’s
behavior on a large number of cases and not to solve an OPF
as there are better existing options for problems with no integer
variables, e.g. using the exact nonlinear models.

A well-established power grid model benchmark PGLib-OPF
v19.05 [29] is used to perform a single time step optimization.
Thus, the unit commitment and ramping constraints (2.16)–
(2.20) as well as the unit commitment binary variables are
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TABLE II
MODEL CONVERGENCE AND ACCURACY DEMONSTRATION BASED ON PGLIB-OPF TYPICAL CASES BENCHMARK [29]

removed. The resulting convex and nonconvex models min-
imize (2.1) subject to (2.2)–(2.15) over variables Ξ = {P g

t,k,

Qg
t,k, Pt,e,i,j , Qt,e,i,j , V Δ

t,i , θ
Δ
t,i, ĉost,i,j , qVt,e}. The nonconvex

model has only constraints (2.8.1) and (2.9.1) in the equal-
ity form, while the convex one has both linear and relaxed
quadratic forms of constraints determined by the nonconvex
presolve.

Results of the described iterative procedure for the convex
step 6 in Algorithm 1 are shown in Table II. The iteration gap
is defined as a percentage deviation from the exact nonlinear
polar solution. Other metrics used are the computation time, the
number of linear voltage constraints (2.8.2) with positive ge, the
number of linear cosine constraints (2.9.2) and the number of
quadratic constraints (2.8.1) and (2.9.1) that deviated from the
inequality boundary. Total number of voltage linear constraints
is equal to the number of branches with nonpositive ge plus
those decided to be replaced by the iteration’s presolve. For a
better overview of the grids’ sizes, there are also columns with
number of branches and bus-pairs, while the grid names contain
the number of buses.

The model converges fully on all grids within three iterations
from the first feasible iteration step. Full convergence results
in 0.00% approximation error since the Taylor expansion is
exact at the expansion point and there are no relaxation errors
related to constraints (2.8.1) and (2.9.1), as displayed in Table II.
This is because the presolve removes those relaxed quadratic
constraints that would deviate from the inequality boundary
with their linear equality alternatives. However, the flat start
operating point assumption at the first iteration is not good
enough for the model to provide a feasible solution in all cases.

The solver usually does not recognise infeasible models, but
reaches iteration limit marked by “it/inf” in the gap column.
Despite being infeasible, a solution is returned by the solver
and used to update the operating point for the next iteration.
The only two grids that did not converge within four iterations
are 6468_rte and 6495_rte. Very similar grids, 6470_rte and
6515_rte, did converge because they got updated with more
favorable operating points quicker than the former two grids.
It took seven iterations for 6468_rte and 6495_rte grids to fully
converge as their first feasible solution was reached in the fifth
iteration. Fast convergence indicates that very high accuracy can
be achieved if the model is warm-started with a reasonably good
operating point and constraints to be linearized selected by the
presolve, which is pivotal for SubSection III-C.

The model’s working principle can be well described on the
3_lmbd grid, which is small but congested. The second-order
voltage approximation variable seldom deviates from the
inequality boundary in (2.8.1) since such deviation would
only increase active power losses at both branch ends. Cosine
variable deviation from its bound in quadratic constraint (2.9.1)
causes much higher reactive power losses than the active
power losses due to branch susceptance being much higher
than conductance. In 3_lmbd grid the ratio be/ge is −30 for
the branch with (2.9.2) applied. That branch in the optimal
solution is congested and also producing reactive power. Thus,
reactive power losses are favorable as they enable greater
transfer of active power. To prevent false losses by the cosine
approximation constraint relaxation, the presolve determined
that the linear equality constraint should be applied. However,
congestion is not a necessary condition for potential cosine
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Algorithm 2: Unit Commitment (UC).
1: Run exact polar model using relaxed binary variables

to determine operating point (NLP) � comp. time tA

2: Run nonconvex quadratic presolve using fixed binary
variables and operating point from the previous solve
to select constrains for the main UC computation by
evaluating constraint marginals (nonconvex
QCQP)

� comp. time tB

3: Run the UC (MIQCQP) � comp. time tC

4: Run exact polar model with fixed binary variables to
UC solution to determine approximation error (NLP)

� comp. time tD

variable relaxation errors. Some branches simply operate at
such state that a deviation is favorable even without congestion.
That occurs more commonly with high negative be/ge ratios.

Iterations that were infeasible or reached the iteration limit
have an unrealistic number of linear constraints due to equivocal
information from the proposed nonconvex presolve that is also
infeasible. It is important that the network data contains entries
for branch conductances as otherwise the model would contain
only linear voltage constraints (2.8.2), making it insufficiently
quadratically constrained for convergence and warm-start accu-
racy. This case study demonstrates, however, that even with par-
tial conductance data, the model operates well as grid 179_goc
has 27% of all branches with null conductances.

C. Unit Commitment

We use a 24-hour network-constrained unit commitment to
evaluate accuracy and computational performance of the model.
Due to availability of a limited amount of unit commitment
network data, grids from the OPF benchmark [29] are adapted for
unit commitment purposes using generic ramp limits, start-up
costs, minimum up- and down-times, load curve and generator
costs. Ramp limits are set so the mean of the allowed pro-
duction range can be reached within a single time period, i.e.
(|P g

k |+ |P g
k |)/2, start-up costs are set to 1500 cost units for all

generators, minimum up- and down-times are set to 2 hours for
generators with ≤1 p.u. (100 MW) and 4 hours for larger ones,
generator fixed costs ck are modified to 10% of the linear costs
ċk if their original value is zero. Loads use scaling factors for
the winter weekday periods from IEEE RTS-96 [30].

The proposed quadratic approximation model is designed to
operate well in the vicinity of the operating point parameters
V op

t,i and θop
t,i . Thus, the first step is to provide a good operating

point by solving the continuous exact nonlinear model with
relaxed binary variables. The next step is to run the nonconvex
continuous quadratic presolve, i.e. with (2.8.1) and (2.9.1) as
equalities, using fixed (replaced with a parameter) binary vari-
ables and around the operating point computed in the previous
solve. The fixed binary variables inherit relaxed, i.e. continuous,
values. Its solution is the same as in the first step, but it returns
the constraints’ marginal values whose sign determines the

constraint type (linear or quadratic) for every branch and bus
pair of the main unit commitment solve. The third step is to run
the mixed-integer unit commitment. The last, fourth step is to
determine the approximation error by running the exact contin-
uous polar formulation [24], but with binary variables fixed to
the solution of the mixed-integer unit commitment run from the
previous step. Inexact models may return binary variable values
for which no solution is possible. In that case the approximation
error is marked with “inf” in Table III. Compared to the existing
LPAC, the proposed model has an additional, but easy to solve,
second step to select constraints to be linearized. The described
procedure is itemized in Algorithm 2. Optimization source code
is provided on GitHub [31].

The simulation results are provided in Table III. Convex
nature of the presented model allows for the use of traditional
solvers typically used to solve MILP problems as they handle
binary variables more efficiently than MINLP solvers. Thus, the
presented model outperforms the exact polar MINLP in all but
one test case, with computation times up to 77 times faster for
39_epri grid. Test cases 24_ieee_rts and 73_ieee_rts are difficult
due to a large number of generators resulting in a large num-
ber of binary variables, which severely impacts computational
tractability. It was found that in these two test cases the other
solvers outperformed Gurobi. For the proposed MIQCQP model
applied to 24_ieee_rts, CPLEX 12.10 reached 0.09% MIP gap as
compared to 1.26% achieved by Gurobi. The best performance
on 73_ieee_rts was achieved with Xpress 8.8, which reached
2.78% MIP gap, while Gurobi did not find a feasible solution.
Furthermore, this MIP gap is much lower than the 10.29% gap
obtained using Knitro 11.1 with the exact polar MINLP model.
Both grids at the solution point had 0.00% objective function
approximation errors. Test cases 162_ieee_dtc and 179_goc
were infeasible even for the QC relaxation and were eliminated
from the study, as well as networks larger than 200_tamu as they
are too difficult to solve.

The most significant result of the study is very low, almost
nonexistent, approximation error. For 13 test cases, the highest
objective function error is−0.02%. The presented model is very
accurate around a broad vicinity of the operating point, which
can be sufficiently well estimated by solving the model with
relaxed binary variables. Furthermore, at the operating point the
quadratic constraints that can cause large errors by deviating
from the inequality bounds are replaced with the linear ones.
Quadratic constraints that finally do deviate from the inequality
bound in the unit commitment solve cause a very small relax-
ation error. If this error was larger, quadratic constraints would
deviate at the operating point and thus be replaced with linear
ones. Furthermore, we evaluate the approximation errors of the
individual variables using average and maximum normalized
distance of solution variables [32]. Normalization is carried out
by dividing the absolute variable error value by the variable
feasible range. ForPt,e,i,j andQt,e,i,j , the feasible range is 2Se,
for Vt,i it is V i − V i and for the branch angle difference θt,i,j it
is θi,j − θi,j . The results are displayed in Table IV. The highest
average active power flow variable distance is 0.06%, reactive
power flow distance 0.14%, voltage distance 1.42% and branch
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ŠEPETANC AND PANDŽIĆ: CONVEX POLAR SECOND-ORDER TAYLOR APPROXIMATION 3593

TABLE III
UNIT COMMITMENT BENCHMARK RESULTS

TABLE IV
NORMALIZED DISTANCE OF THE SOLUTION VARIABLES (IN [%])

angle distance 0.02%, which is significantly lower than what can
be expected from the competing QC and even Shor’s model that
normally achieve overall average distances in the range from 5 to
10% (see Fig. 3 in [32]). The approximation errors can be even
further reduced by iteratively running the unit commitment solve
by updating the operating point and retesting the constraints
for that new operating point. However, as an alternative, due to
a low objective function approximation error, we recommend
using the verified solution, i.e. Algorithm’s 2 step 4, as the final
solution to the unit commitment problem.

Achieving great accuracy in unit commitment is important
for two reasons: a) active power losses are only about 2% of
the total production, thus the accuracy needs to be far greater
than 2% to account for them properly; b) inaccurate solutions
can result in infeasible decisions for generator activity status,
i.e. binary variables. The LPAC model in its more accurate
quadratic variant, despite being warm-started similarly like the
proposed model, has the highest approximation errors−0.72%,
−0.39% and−0.33% and three out of 13 cases are infeasible. QC
relaxation, despite proven to be tighter than the Jabr’s relaxation,
is still overly optimistic and thus results in 7 infeasible cases,
while the greatest error of feasible models is −0.56%. These
results highlight the importance of quadratically constraining the
voltage in combination with the constraint type selection proce-
dure. Computation-time-wise, the proposed MIQCQP model is
in between the faster LPAC approximation and the slower QC
approximation.

IV. CONCLUSION

The presented case studies demonstrate that the proposed
MIQCQP model is moderately accurate assuming flat start op-
erating point parameters, but almost perfectly accurate if the
assumed operating point is in a broader vicinity of the optimal
solution. Accuracy is achieved by having both the voltage mag-
nitude and the angle quadratically constrained and by replacing
some of the quadratic inequality constraints with linear equality
constraints to avoid constraint relaxation errors due to convex-
ification as determined by the presolve. Meshed transmission
network structure acts favourably to further constrain the model
so it can withstand the replacement of some quadratic constraints
with linear ones and stay accurate and convergent.

Since the model’s power-flow-related constraints are con-
vex quadratic, the model supports solvers that handle binary
variables more efficiently than the MINLP solvers. The pro-
posed model displays average computational tractability for the
MIQCQP/MISOCP problem class, which means it is slightly
slower than the quadratic implementation of the LPAC approx-
imation [17], [18] and quicker than the QC relaxation [20].
Accuracy of the existing quadratic models is insufficient for
network-constrained unit commitment leading to frequent infea-
sible decisions for binary variables or significant approximation
or relaxation errors.
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Solving Bilevel AC OPF Problems by Smoothing
the Complementary Conditions – Part I: Model

Description and the Algorithm
K. Šepetanc, Student Member, IEEE, H. Pandžić, Senior Member, IEEE and T. Capuder, Member, IEEE

Abstract—The existing research on market price-affecting
agents, i.e. price makers, neglects or simplifies the nature of AC
power flows in the power system as it predominantly relies on
DC power flows. This paper proposes a novel bilevel formulation
based on the smoothing technique, where any price-affecting
strategic player can be modelled in the upper level, while
the market clearing problem in the lower level uses convex
quadratic transmission AC optimal power flow (AC OPF), with
the goal of achieving accuracy close to the one of the exact
nonlinear formulations. Achieving convexity in the lower level
is the foundation for bilevel modeling since traditional single-
level reduction techniques do not hold for nonconvex models.
The bilevel market participation problem with the AC OPF
formulation in the lower level is transformed into a single-level
problem and solved using multiple techniques such as the primal-
dual counterpart, the strong duality theorem, the McCormick
envelopes, the complementary slackness, the penalty factor, the
interaction discretization as well as the proposed smoothing
techniques.

Due to an extensive amount of information and descriptions,
the overall work is presented as a two-part paper. This first
part provides a literature overview, positions the work and
presents the model and the solution algorithm, while the solution
techniques and case studies are provided in the accompanying
paper.

Index Terms—Bilevel models, AC OPF, complementary condi-
tion smoothing functions.

NOMENCLATURE

A. Abbreviations

OPFOptimal power flow.
SOCSecond-order cone.
SOCPSecond-order cone programming.
QCQuadraticaly constrained.
SDPSemidefinite programming.
IVCurrent-voltage.
LPACLinear programming AC.
QPACQuadratic programming AC.
ESEnergy storage.
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CPSOTAConvex polar second-order Taylor approximation.
KKTKarush–Kuhn–Tucker.
NLPNonlinear programming.
OPOperating point.
NCNonconvex.
LLLower level.

B. Sets and Indices

N Set of buses, indexed by i and j.
β ES’s bus location singleton, indexed by i.
R Singleton set containing reference bus, indexed by i.
E,ER Tuple set of branches, forward and reverse orientation,

indexed by pe, i, jq.
NP, NPR Tuple set of paired buses aligned with branch E

and ER orientations, indexed by pi, jq.
G,Gi Set of all generators and array of sets of generators at

bus i, indexed by k.
Li Array of sets of loads at bus i, indexed by l.
Si Array of sets of shunts at bus i, indexed by s.
τ Set of time steps, indexed by t and h.
Ξr¨s Set of decision variables.

C. Parameters

:ck, 9ck, ck Generator cost coefficients.
P d

t,l,Q
d
t,l Active and reactive power load.

gsh
s , bshs Bus shunt conductance and susceptance.

ge, g
fr
e , g

to
e Branch π-section conductances.

be, b
fr
e , b

to
e Branch π-section susceptances.

τe,σe Branch tap magnitude and shift angle.
P g

k ,P
g

k Generator minimum and maximum active power
production.

Qg

k
,Q

g

k Generator minimum and maximum reactive
power production.

Se Branch maximum apparent power.
V i,V i Bus minimum and maximum voltage magnitude.
V op
t,i ,θ

op
t,i Assumed bus voltage magnitude and angle op-

erating points.
Λt,e,Γt,i,j Boolean parameters which indicate whether to

use the quadratic form of the voltage and the
cosine representations, respectively.

Φt,e,i,j Boolean parameter indicating if the branch
power limit is imposed.

SoE Energy storage capacity.
ses Energy storage maximum power.
ηch,ηdis Energy storage (dis)charging efficiency.
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D. Variables

Continuous variables
P g
t,k, Q

g
t,k Generator active and reactive power production.

Pt,e,i,j , Qt,e,i,j Branch active and reactive power flow.
V ∆
t,i , θ

∆
t,i Bus voltage magnitude and angle change.

xcost,i,j Cosine approximation.
qVt,e Second-order Taylor series voltage magnitude

term approximation.
SoEt Energy storage state-of-energy.
pest , q

es
t Energy storage active and reactive power.

pcht , p
dis
t Energy storage (dis)charging active power.

Binary variables
xpt Disables simultaneous charging and discharging

of energy storage.

I. INTRODUCTION

Increasing the integration of renewable energy resources,
as well as the electrification trends in the context of the zero-
carbon energy future, pushes the power system operation to its
technical limits. Operational challenges and increased needs
for system flexibility require advances towards new, close
to real-time, market products. However, the existing market
bidding models do not adequately model the relevant technical
aspects, such as voltage magnitudes, node angles and loses, as
they rely on simplifications or approximations in the optimal
power flow models. Although market designs both in Europe
and the US still employ the DC optimal power flow (DC OPF)
to perform market clearing, there is a growing interest for
using AC optimal power flow (AC OPF), primarily to gain a
more accurate insight into the network state and enable a more
complete market design that accounts for ancillary services,
see e.g. [1] and [2].

Due to the interest of the power industry, there has been a
growing interest for development of tractable and accurate AC
OPF models. Unlike the linear DC OPF problem, where linear-
ity of the power flow approximation results in good numerical
computability even with many binary variables, the non-
convexity of the AC OPF problem makes it computationally
challenging. The AC OPF models can be grouped into three
categories: exact models, relaxations and approximations.

Exact OPF models are based on an exact power flow
function, most commonly expressed either using rectangular
coordinates [3], as a nonconvex quadratic optimization prob-
lem, or polar coordinates [4], as a nonlinear function. There
is also the IV (current-voltage) rectangular formulation [5],
typically used for modeling loads with irregular power-voltage
curves, also known as ZIP loads. On the other hand, relaxation
models provide an upper bound to the objective function value
of the exact models. Thus, if an exact optimization achieves
the same objective function value a relaxation model, then
this solution is necessarily the global one. Otherwise, global
optimality can not be guaranteed.

One of the first relaxation models, which was developed
by Jabr [6], is based on the second-order cone relaxation
(SOCP), which can be used to relax any nonconvex quadratic
formulation. It achieves good results in radial distribution

networks due to the absence of the closed loop angle con-
sistency criterion. However, when applied to the transmission
network, it results in objective function errors of app. 2% [7],
which is comparable to the total transmission network losses.
An extension of the Jabr’s model, developed by Coffrin, and
called quadratically constrained relaxation (QC) [8], utilizes
the McCormick envelopes to tighten the feasibility area based
on maximum bus voltage angle differences. The QC model is
at least as tight relaxation as the SOCP relaxation [9]. Shor’s
semidefinite relaxation (SDP) [10] is numerically the most
demanding out of the commonly used models. It is also at least
as tight as the SOCP relaxation [9] and usually more accurate
than the QC relaxation. The QC model is not considered in
this paper since it normally results in similar accuracy as the
Jabr’s model, but at an increased computation time [9]. Shor’s
SDP model is also not considered, as there are no solvers that
can solve a combination of nonlinear and SDP optimizations
incurred by the solution techniques presented in the Part II
paper.

In approximations, unlike relaxations, the objective function
can deviate both positively and negatively from the global
optimum. The commonly used DC model, a linear model,
also belongs to this category. Linear models in general have
difficulties with modeling active power losses since they are
in quadratic dependence on the voltage magnitude difference.
To prevent negative active power losses, the linear model
from [11] uses penalty factors in the objective function. The
model from [12] approaches the problem of quadratic losses
by introducing nonconvex piecewise linear losses, but at an
expense of binary and integer variables. Similar approaches
are also published in [13] and [14]. On the other hand, the
linear AC model (LPAC) from [15] approximates the quadratic
function with a series of linear inequalities that form a convex
space and, thus, do not require binary variables. Except the ap-
proximation errors, this model also exhibits relaxations errors
due to inequality constraints that replace the intended equality
bound. The convex quadratic model (QPAC) was published in
2013 as a still active patent [16]. If there are no errors due to
deviation from the inequality bounds, this model approximates
the power flows well. However, occurrence of these errors
depends on the system state and network configuration.

From the reviewed models, only LPAC can potentially
increase its accuracy by using a presolve to approximate the
operating point data. Unfortunately, it does not fully use this
potential and sometimes it is even more accurate when using
the cold start assumptions. This is in detailed discussed in our
previous work [17], demonstrating the benefits of warm start
information. In this paper we extend that model by applying
it to applicability to the bilevel problems with AC OPF in the
lower level. Convex polar second-order Taylor approximation
of AC power flows (CPSOTA) from [17] achieves high accu-
racy by incorporating both the voltage magnitude and the angle
second-order Taylor components and by replacing some of the
quadratic inequality constraints with linear equality constraints
to avoid constraint relaxation errors due to convexification. The
replacement is determined by the presolve also developed in
[17]. CPSOTA acts as a local AC OPF approximation at a
reference operating point which can be well estimated in a
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agent

Market clearing using
AC OPF network 
representation

Prices or
social welfare

Bidding or
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Fig. 1: Visualization of the upper-level and lower-level interaction in bilevel
problems with market clearing based on AC OPF in the lower level.

bilevel optimization by simply assuming no market influence
of the strategic market player. Good numerical tractability of
the proposed method is, however, a result of the smoothing
techniques presented in Part II, Section II.G.

Convex optimal power flow formulations are a foundation
for strategic bidding models relying on bilevel optimization.
Generally, in such models the upper-level problem determines
the optimal bidding strategy of a strategic player, i.e. the
player whose bidding decisions can affect market prices. This
player’s bidding prices or quantities affect the power flows and
market prices. The lower level is used to simulate the market
outcome pertaining to the strategic player’s bidding actions,
as visualized in Figure 1. Examples of such bilevel models
are bidding of large consumers [18], generators [19], energy
storage [20] and aggregators [21]. The considered markets may
range from the day-ahead market, such as in [18]– [21], to a
number of markets, such as in [22], where the strategic agent
takes part in the day-ahead as well as in the reserve/balancing
market. Bilevel models can also be used to determine an
optimal investment by considering a number of representative
market clearing days within a year. As an example, in [23] the
authors seek an optimal generation investment considering the
expected market-clearing conditions.

Strategic agents are not the only ones that use bilevel
problems with market clearing in the lower level. The system
operators could be interested in increasing the social welfare
by investing in new transmission lines [24]. As an example,
in [25] and [26] the authors consider transmission expansion
planning where the SOCP relaxation of the AC OPF is
formulated in the lower level. Both papers compare the results
only to the option where the lower-level model is replaced with
the DC OPF approximation and do not discuss the aspects of
achieving accuracy of the exact formulations. More complex
models include three levels, one considering the independent
agent investments, another considering the system operator
investments, and the final one to simulate market outcomes.
For example, [27] formulates a trilevel model where the upper-
level problem optimizes the system operator’s transmission
line and energy storage investments, the middle-level problem
determines the merchant energy storage investment decisions,
and the lower-level problem simulates a market clearing pro-
cess for representative days using DC OPF. There are multiple
ways of solving trilevel problems, but the first step is always to

merge the middle- and lower-level problem into a single-level
equivalent.

For conciseness, in this paper we consider a bilevel struc-
ture, however, the described procedure can be employed to
trilevel problems as well. Also for brevity reasons, we choose a
simple energy storage bidding model in the day-ahead market
as the upper-level problem and focus on the AC OPF in the
lower-level problem and on effectively converting and solving
the initial problem.

For a strategic player (or a system operator) to solve a
bilevel problem, it needs to first convert it into a single-
level equivalent. However, the conversion techniques do not
hold for nonconvex models. An excellent review of bilevel
optimization approaches can be found in [28] and [29], where
different techniques, later applied for solving the problem
described in this paper, are explained in detail. Traditionally,
the reduction techniques of transforming a bilevel problem
into a single-level one are based on the primal-dual theory
and the Karush–Kuhn–Tucker optimality conditions [30]. Both
techniques follow the idea of replacing the lower-level problem
with a set of equations and inequalities that have the same
solution as the original lower-level problem. This set of
equations is then added as a set of constraints to the upper-level
problem, finally forming a single-level problem equivalent to
the initial bilevel problem.

The main obstacle in the AC OPF formulations for strategic
bidding are complementarity condition constraints, which are
difficult for any interior point solver since they do not satisfy
the Mangasarian-Fromovitz constraint qualification, meaning
there is no strictly feasible point, making the nonlinear pro-
gramming numerically unstable [31]. This aspect is one of
the reasons why, to the best of the authors’ knowledge,
all existing bilevel market models rely either on the DC
approximation [32] or linearized AC models [33]. This is
because in these cases the complementary conditions can be
reshaped into a mixed-integer linear form and solved using the
branch-and-bound method. We found only two publications
that either explicitly address or can be generalized to bilevel
formulations and include exact, relaxed or approximate AC
OPF formulations in the lower-level problem. The authors
of [34] propose a bilevel problem of the worst contingency
under attack, where they address the nonlinearities of the AC
model as convex SOCP and SDP relaxations. However, this
single-level reduction approach is applicable only because the
interaction variable between the upper level and the lower
level is binary, thus allowing for an exact reformulation of
the resulting bilinear terms using the McCormick envelopes.
In the second one [1], the authors propose a successive linear
algorithm based on the dual form of a linear Taylor expansion
of the IV-ACOPF model to solve the AC OPF. Their approach
can be expanded to bilevel modeling with AC OPF-constrained
market clearing in the lower level, however, their algorithm
on the presented 14 ieee network does not converge. After
six iterations and a DC OPF-based starting point, the LMP
oscillations are at 0.20%. If the upper level is added to the
model, its interaction with the lower level could potentially
further destabilise convergency. It also uses generally non-
trivial constraint violation penalties and constrains maximum
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deviations of the Taylor delta variables.
Besides the techniques listed above, there are some interest-

ing mathematical tools whose applicability has not yet been
explored in the power systems community. In paper [35], the
authors examine the Lipschitzian and differential properties
of smoothing functions and their application to optimization
with SOC complementarity constraints. Application of the
smoothing techniques still results in nonlinear expressions,
however, much easier to solve since they have all derivations
in every point of the function. An example of smoothing a
linear complementary condition is shown in Figure 2. The
perpendicular lines represent the following three constraints
x ě 0, y ě 0 and x ¨ y “ 0, while the corresponding
smooth curve is represented by only a single smooth con-
straint x ` y ´a

x2 ` y2 ` 2ϵ2 “ 0. Despite the promising
theoretical foundations of the reformulated smooth constraints
to achieve good numerical tractability with interior point based
solvers, the technique has not yet been practically used or
demonstrated. In this paper we employ the novel smoothing
techniques, first proposed and developed in [35], to tractably
solve bilevel problems with AC OPF in the lower level. This
allows us to avoid model linearization and use any AC OPF
formulation of continuous SOCP class or simpler. Smoothing
technique implementation details are explained in Section II.G
of Part II of this work.

Based on the above, the paper brings the following original
contribution:

‚ For the first time we develop and present a mathematical
formulation of a bilevel problem based on the smoothing
techniques, where a strategic player’s profit maximization
is in the upper level, while the AC OPF problem is
the lower level. For demonstration purposes, we choose
energy storage (ES) as the strategic player making the
bidding decisions in the upper-level problem. However
any other strategic player, e.g. generator, demand re-
sponse, aggregator of different flexibility sources, or a
system operator can be plugged into the upper level.
Furthermore, the model can be easily expanded into an
investment model that considers multiple representative
days.

‚ The bilevel problem is reduced to a single-level prob-
lem using the known techniques, i.e. primal-dual coun-
terpart, strong duality theorem, McCormick envelopes,
complementary slackness, penalty factor and interaction
discretization. For all these techniques the computational
tractability, effort and accuracy are analyzed and issues
are detected and elaborated.

‚ All the developed models and codes are made available
as open access to the scientific community at [36].

Rest of the paper is structured as follows. Section II
mathematically states the proposed model. It is divided into
two parts: Subsection II-A presents the initial model, which
is reformulated into its SOC form in Subsection II-B. Section
III introduces the algorithm and presolve to obtain the model’s
prerequisites and verifies the accuracy of the obtained solution.
Solution techniques and the case studies are presented in the
companion paper.
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Fig. 2: Smoothing example of the perpendicular relation.

II. MATHEMATICAL MODEL

The presented bilevel optimization model consists of a
simple ES active and reactive power bidding model in the
upper level and the AC OPF in the lower level. Mathematical
focus is on demonstrating an accurate and computationally
tractable bilevel AC OPF solution.

A. Initial Model

1) Upper Level:
The upper level considers a large ES unit located at bus

i P β. The objective function (1.1) maximizes its profit by
performing the day-ahead energy and reactive power market
arbitrage while its impact on the prices is acknowledged by
the dual variables λ1,t,i for active power and λ2,t,i for reactive.
Constraint (1.2) models the storage (dis)charging process
considering its efficiency, while (1.3)–(1.5) limit the maximum
ES capacity, charging and discharging rates. Constraint (1.6)
combines the charged and discharged energy into a cumulative
quantity pest . Binary variable xpt disables simultaneous charg-
ing and discharging which could otherwise occur in periods
with negative prices. However, in many cases in the case study
xpt is dropped-out to evaluate the performance of the solution
techniques on a fully continuous model. When xpt is dropped
out, constraints (1.4) and (1.5) are conceptually not needed
due to constraint (1.7) which limits ES the apparent power.

Max
Ξul

ÿ

t,iPβ
ppest ¨ λ1,t,i ` qest ¨ λ2,t,iq (1.1)

SoEt “ SoEt´1 ` pcht ¨ ηch ´ pdist {ηdis, @t (1.2)

0 ď SoEt ď SoE, @t (1.3)

0 ď pcht ď ses ¨ xpt , @t (1.4)

0 ď pdist ď ses ¨ p1´ xpt q, @t (1.5)

pest “ pcht ´ pdist , @t (1.6)

ppest q2 ` pqest q2 ď psesq2, @t (1.7)

The upper-level set of variables is Ξul “
tpest , pcht , pdist , qest , SoEt, x

p
t u. xpt is an optional binary

variable that can be neglected in case of nonnegative market
prices.
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2) Lower Level:
Transmission-constrained electricity markets perform mar-

ket clearing by running an OPF optimization. Here we model
the network using the CPSOTA [17]. The CPSOTA model
is chosen due to convexity which is needed to satisfy the
single-level reduction regularity conditions and due to superb
warm-start transmission system OPF accuracy as demonstrated
in [17] as well as in the case study of the second part
of this paper. The CPSOTA model is designed to exploit
a meshed network structure to achieve accuracy and should
not be used with radial networks. Both the loads’ and ES
bids are considered inelastic, meaning they will always be
cleared. This assumption holds if the loads (including the ES
when buying) bid very high prices and the ES bids very low
price when selling energy. Thus, both the loads and the ES
(dis)charged energy pest are modeled as parameters in the lower
level. This simplification is introduced to shorten the upper-
level objective function convexification (4.1) and its follow-up
versions appearing in the Part II paper.

The lower level minimizes the quadratic production costs in
its objective function (2.1). It is assumed that generators bid
reactive power at zero prices. Bus power balance is imposed in
(2.2) and (2.3). The upper-level variables pest and qest appear
in constraints (2.2) and (2.3) only for the bus at which the
ES is located, i.e. when condition : iPβ under the variable is
true. Our constraint writing style also assumes that summation
indices are first fixed by the outer for all statement and then the
summation rolls over to the remaining unfixed indices. This
way

ř
pe,i,jqPEYER Pt,e,i,j , @t, i sums the active powers from

all branches originating from bus i. Constraints (2.4)–(2.7) are
active and reactive power flow equations. Since these are based
on the Taylor expansion, the computed voltage magnitude is
equal to the assumed operating point value V op

t,i plus deviation
V ∆
t,i . Similarly, the computed voltage angle is θop

t,i ` θ∆t,i. To
shorten the expressions, parameters cpst,e,i,j and cmst,e,i,j
are defined over the other basic parameters, i.e. the ones
present in the nomenclature, as introduced in the Appendix
(A.1.1)–(A.2.2). Constraints (2.8.1) and (2.9.1) are second-
order Taylor voltage magnitude and angle approximations,
respectively, whose variables qVt,e and xcost,i,j also appear
in the power flow equations. To achieve convexity, these
constraints are inequalities as no quadratic equality is convex.
At the solution point, it is intended that these constraints are
binding so that no errors occur due to a swap of the equality
sign with inequality. To achieve this, there is a presolve
step in the optimization, as described in Section III, which
decides on swapping the quadratic inequality constraints that
are likely to diverge from the inequality boundary with simple
linear equality constraints (2.8.2) and (2.9.2), thus avoiding
gross errors. Applying the linear equality constraint variants
disregards the second-order part of the Taylor. Even the zero-
order Taylor expansion is exact at the expansion point, so
disregarding a few second-order terms on per-branch or per-
bus pair basis does not worsen the solution significantly in the
vicinity of the expansion point. Constraints (2.10) and (2.11)
limit the generators’ production capabilities. Constraint (2.12)
limits the maximum branch apparent power. Since (2.12)
is a major source of computationally demanding quadratic

equations, the presolve reduces their number for the main
solve using a preset threshold at the initial operating point.
More on the multi-step presolve procedure which finds an
approximate operating point V op

t,i , θop
t,i and decides on the

use of quadratic constraints, i.e. determines the values of the
Boolean parameters Λt,e, Γt,i,j and Φt,e,i,j , can be found in
Section III. Finally, constraint (2.13) sets the reference bus
angle to zero and constraint (2.14) sets the voltage magnitude
bounds.

Min
Ξll

Ωp :“
ÿ

t,k

p:ck ¨ pP g
t,kq2 ` 9ck ¨ P g

t,k ` ckq (2.1)

ÿ

kPGi

P g
t,k ´

ÿ

lPLi

P d
t,l ´

ÿ

pe,i,jqPEYER

Pt,e,i,j ´ pest
:iPβ

´ ppV op
t,i q2`2¨V op

t,i ¨V ∆
t,iq ¨

ÿ

sPSi

gsh
s “0, @t, i : λ1,t,i

(2.2)

ÿ

kPGi

Qg
t,k ´

ÿ

lPLi

Qd
t,l ´

ÿ

pe,i,jqPEYER

Qt,e,i,j ´ qest
:iPβ

` ppV op
t,i q2`2¨V op

t,i ¨V ∆
t,iq ¨

ÿ

sPSi

bshs “0, @t, i : λ2,t,i

(2.3)

Pt,e,i,j “ ppV op
t,i q2`2¨V op

t,i ¨V ∆
t,iq¨pge`gfr

e q{τ 2
e ` qVt,e{2

´cpst,e,i,j ¨pV op
t,i ¨V op

t,j ¨xcost,i,j`V ∆
t,i ¨V op

t,j `V ∆
t,j ¨V op

t,i q{τe
´cmst,e,i,j V̈

op
t,i ¨V op

t,j ¨pθ∆t,i´θ∆t,jq{τe,
@t, pe, i, jq P E : λ3,t,e,i,j (2.4)

Pt,e,i,j “ ppV op
t,i q2`2¨V op

t,i ¨V ∆
t,iq¨pge`gto

e q` qVt,e{2
´cpst,e,i,j ¨pV op

t,i ¨V op
t,j ¨xcost,j,i`V ∆

t,i ¨V op
t,j `V ∆

t,j ¨V op
t,i q{τe

´cmst,e,i,j V̈
op
t,i ¨V op

t,j ¨pθ∆t,i´θ∆t,jq{τe,
@t, pe, i, jq P ER : λ4,t,e,i,j (2.5)

Qt,e,i,j “ ´ppV op
t,i q2`2¨V op

t,i ¨V ∆
t,iq¨pbe`bfre q{τ 2

e

`cmst,e,i,j ¨pV op
t,i ¨V op

t,j ¨xcost,i,j`V ∆
t,i ¨V op

t,j `V ∆
t,j ¨V op

t,i q{τe
´cpst,e,i,j ¨V op

t,i ¨V op
t,j ¨pθ∆t,i´θ∆t,jq{τe,

@t, pe, i, jq P E : λ5,t,e,i,j (2.6)

Qt,e,i,j “ ´ppV op
t,i q2`2¨V op

t,i ¨V ∆
t,iq¨pbe`btoe q

`cmst,e,i,j ¨pV op
t,i ¨V op

t,j ¨xcost,j,i`V ∆
t,i ¨V op

t,j `V ∆
t,j ¨V op

t,i q{τe
´cpst,e,i,j ¨V op

t,i ¨V op
t,j ¨pθ∆t,i´θ∆t,jq{τe,

@t, pe, i, jq P ER : λ6,t,e,i,j (2.7)

qVt,eěpgè gfr
e q¨pV ∆

t,iq2{τ 2
e 2́¨gë cospθop

t,i´θop
t,j´σeq V̈ ∆

t,i V̈
∆
t,j{τe

`pge`gto
e q¨pV ∆

t,jq2, @t, pe, i, jqPE : Λt,e (2.8.1)

qVt,e “ 0, @t,pe, i, jqPE : ␣Λt,e : λ10,t,e,i,j (2.8.2)

xcost,i,j ď 1´pθ∆t,i´θ∆t,jq2{2, @t, pi, jq P NP : Γt,i,j (2.9.1)

xcost,i,j “ 1, @t, pi, jq P NP : ␣Γt,i,j : λ13,t,i,j (2.9.2)

P g
kď P g

t,k ď P
g

k , @t, k : µ
3,t,k

, µ3,t,k (2.10)
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Qg

k
ď Qg

t,k ď Q
g

k , @t, k : µ
4,t,k

, µ4,t,k (2.11)

P 2
t,e,i,j`Q2

t,e,i,jďS2

e, @t,pe, i, jqPEYER : Φt,e,i,j ,

: λ14,t,e,i,j , λ15,t,e,i,j , µ5,t,e,i,j

(2.12)

θop
t,i ` θ∆t,i “ 0, @t, i P R : λ16,t,i (2.13)

V i ď V op
t,i ` V ∆

t,i ď V i, @t, i : µ
6,t,i

, µ6,t,i (2.14)

Lower level set of primal variables: Ξll “ tθ∆t,i, V ∆
t,i , Pt,e,i,j ,

Qt,e,i,j , P
g
t,k, Q

g
t,k xcost,i,j , qVt,eu.

B. SOC Constraint Reformulation

To derive the dual problem needed for a single-level re-
duction, quadratic primal constraints are first converted into
their equivalent SOC form. Otherwise, the direct conversion
would result in a general nonlinear formulation provided in
[37], as opposed to our SOCP dual. Thus, this conversion is
essential for solution techniques reliant on the SOCP form,
i.e. primal-dual counterpart, McCormick envelopes, interac-
tion discretization and smoothing techniques from the Part
II paper. A SOC constraint conversion is nontrivial because
there exist infinitely many SOC formulations of the same
convex quadratic constraint. On the other hand, there also
exists a formula with a unique positive semidefinite solution
for conversion of the convex quadratic constraints to the SOC
form [38]. However, we decided to manually choose our own
SOC form since the general formula can result in a form with
more than minimum possible number of cone variables and
extensively complicated coefficients.

The resulting basic cone constraints are (3.1.1) and (3.2.1).
Together with the substitution defining (3.1.2)–(3.1.5) and
(3.2.2)–(3.2.4), they are equivalent to the initial quadratic
voltage magnitude (2.8.1) and angle (2.9.1) constraints, respec-
tively. To shorten the expressions, coefficients, i.e. parameters,
p1,t,e,i,j , p2,t,e and p3,t,e,i,j are defined in the Appendix
(A.3)–(A.5). Also, it is useful to note that the basic cone
constraints share the same dual variable with their right-hand-
side substitution constraint.

The remaining quadratic parts of the model are the branch
apparent power limit constraint (2.12), which is already in the
SOC form, and the objective function (2.1). To derive the dual,
we recognize three ways of dealing with a quadratic objective
function:
‚ apply the QP duality theory;
‚ transform it into a single large (multidimensional) SOC

constraint;
‚ transform it into multiple three dimensional SOC con-

straints.
In this work we apply the QP duality theory to the ob-

jective function, while the rest of the model is converted
into the dual using the SOCP procedure. By the QP duality
theory, a dual is derived by writing the Karush–Kuhn–Tucker
(KKT) conditions and then eliminating the remaining primal
variables, which remain after derivations due to the squares
in the primal objective function, by substituting them from
the KKTs into the Lagrange function as described in lecture
[39]. The SOC constraints are converted into the dual by

using the mathematical theorem that states that the basic
cones are self-dual [40], i.e. for every primal basic SOC
constraint there is a dual basic SOC constraint (see primal-
dual constraint pair (4.10) and (4.11) from Part II paper). Other
constraints are linear and their KKT conditions can be used
to derive the dual. This way the dual model is of the same
optimization class as the primal, i.e. the objective function
is convex quadratic and the constraints are SOC. The write-
out of the dual is available in the Appendix. The two other
objective function transformation approaches are not preferred
over the QP procedure since they enlarge both the primal and
dual models and, since the SOC constraints are inequalities,
introduce additional complementary slackness conditions.

w2
1,t,e,i,j`w2

2,t,e,i,j`w2
3,t,e,i,jďw2

0,t,e,i,j , @t,pe, i, jqPE :Λt,e

(3.1.1)

w1,t,e,i,j“p1´ qVt,eq{2, @t,pe, i, jqPE : Λt,e : λ7,t,e,i,j
(3.1.2)

w2,t,e,i,j“p1,t,e,i,j ¨ V ∆
t,i ´ p2,t,e ¨ V ∆

t,j ,

@t, pe, i, jqPE : Λt,e : λ8,t,e,i,j
(3.1.3)

w3,t,e,i,j“p3,t,e,i,j ¨ V ∆
t,i , @t, pe, i, jqPE : Λt,e : λ9,t,e,i,j

(3.1.4)

w0,t,e,i,j“p1` qVt,eq{2, @t, pe, i, jqPE : Λt,e : µ1,t,e,i,j

(3.1.5)

f21,t,i,j`f22,t,i,jďf20,t,i,j , @t, pi, jqPNP :Γt,i,j (3.2.1)

f1,t,i,j“pθ∆t,í θ∆t,jq{
?
2, @t,pi, jqPNP :Γt,i,j :λ11,t,i,j (3.2.2)

f2,t,i,j“ xcost,i,j´3{4, @t, pi, jqPNP :Γt,i,j :λ12,t,i,j (3.2.3)

f0,t,i,j“´xcost,i,j ` 5{4, @t, pi, jqPNP :Γt,i,j :µ2,t,i,j (3.2.4)

The reformulated lower-level set of variables is Ξr “ Ξll Y
tw0,t,e,i,j , w1,t,e,i,j , w2,t,e,i,j , w3,t,e,i,j , f0,t,i,j , f1,t,i,j , f2,t,i,ju.

III. ALGORITHM AND PRESOLVE

The presented bilevel model requires as an input both
the numerical and the Boolean parameters that need to be
determined beforehand. This section introduces the algorithm
to obtain prerequisites and verify the accuracy of the obtained
solution.

The lower-level problem consists of an AC OPF model
based on a Taylor expansion and thus requires an approximate
operating point for voltage magnitude V op

t,i and angle θop
t,i

as inputs. The first step in the Algorithm is to compute it
using the exact polar model. The computation is based on
the assumption that the strategic player in the upper-level
problem is passive, i.e. the energy storage is neither charging
nor discharging. Thus, the optimization is a typical, single-
level AC OPF. To reduce the computational burden of the
main bilevel optimization, the first step determines on which
lines in the forthcoming steps the power limits will not be
imposed, controlled with Boolean parameter Φt,e,i,j , using a
preset threshold. In case the final solution overloads some of
the lines, the threshold can be changed.

The second step is the presolve, aimed to drastically im-
prove the AC OPF approximation model accuracy. The main
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potential inaccuracy source is the relaxation of the equality
sign in constraints (2.8.1) and (2.9.1) into the inequality sign
to achieve convexity. To prevent relaxation errors in the forth-
coming steps, this step marks all the constraints that would at
the operating point deviate from the inequality boundary and
replaces them with their linear equality variants (2.8.2) and
(2.9.2) controlled with Boolean parameters Λt,e and Γt,i,j .
This step itself is nonconvex. It reruns the operating point us-
ing CPSOTA, but uses exclusively (2.8.1) and (2.9.1) quadratic
constraints as equalities, thus not susceptible to relaxation
errors and not requiring any information about the Λt,e and
Γt,i,j parameters which it determines for the forthcoming
steps. The selection of constraints for the forthcoming steps is
based on their marginal value, computed by default by many
solvers, e.g. IPOPT and Knitro. A constraint marginal is a
sensitivity of the primal objective function on adding a small
positive constant to the right-hand side of the constraint and
thus its sign indicates whether an equality constraint would
be binding if it were relaxed into inequality. In case of the
voltage constraint (2.8.1), it would be binding if the marginal
is positive and thus Λt,e is true. The cosine constraint (2.9.1)
it would be binding if the marginal is negative and thus
Γt,i,j is true. This step has the same solution as the first one
and all delta variables V ∆

t,i and θ∆t,i are zero. The described
presolve working principle is further explained in [17]. It
minimizes (2.1) subject to (2.2)–(2.14) with (2.8.1) and (2.9.1)
as equalities, without (2.8.2) and (2.9.2), with respect to the
variables set Ξll.

The third and fourth steps are convex and simply resolve
the primal and dual problems at the determined operating point
(V op

t,i and θop
t,i ) for the selected constraints (Λt,e, Γt,i,j and

Φt,e,i,j) to supply the variables with their warm start values for
the bilevel solve. Warm start values initialize the interior-point-
based solvers, e.g. initializing Jacobian and Hessian matrices,
enhancing the numerical tractability. The strategic player is
still considered passive and, at the solution, the objective
function values are the same as in the previous steps. The third
step solves the SOCP version of the lower-level problem and
the fourth step solves the SOCP dual. Specifically, third step
minimizes (2.1) subject to (2.2)–(2.14), excluding (2.8.1) and
(2.9.1) in favor of (3.1.1)–(3.2.4) with respect to the variables
set Ξr and the forth step maximizes (B.1) subject to (B.2)–
(B.12) with respect to the variables set Ξdu.

The sixth step, which comes after the bilevel solve step five,
verifies the solution accuracy. It solves the exact polar AC
OPF with fixed (dis)charging decisions to the bilevel solve.
It determines the actual system expenses and the upper-level
profit for decisions from the bilevel problem. For computing
the upper-level profit, nodal prices are obtained from the nodal
power balance constraint marginal. The described procedure is
itemized in Algorithm 1.

The proposed Algorithm is conceptually iterable to improve
accuracy. Steps 1–6 can be run in a loop where the first step
computes a new operating point assuming fixed (dis)charging
decisions from the last bilevel solve. When looping, Steps 1
and 6 solve the same problem and can be performed in a single
optimization. The described Algorithm is visually presented in
Figure 3.

Algorithm 1 Bilevel optimization

1: Run exact polar model Ź NLP; determine OP, Φt,e,i,j

2: Run presolve Ź NC-QCQP; determine Λt,e, Γt,i,j

3: Run LL-primal Ź SOCP; warm start solver
4: Run LL-dual Ź SOCP; warm start solver
5: Run bilevel optimization ŹOpt. class varies; deter. pest , qest
6: Run exact polar model Ź NLP; verify solution

IV. CONCLUSION

This paper presented the mathematical model of a strategic
energy storage acting in the day-ahead market with the market
clearing based on the AC OPF in the lower level. It presents
the SOC constraint reformulation and proposes an algorithm
to accurately solve such complex structure in a time-efficient
manner. The solution techniques as well as the case studies
are presented in the accompanying paper.

APPENDIX

A. Parameters

The following parameters are defined over parameters from
the nomenclature and are used to shorten the model for-
mulation. Parameters defined in (A.1.1)–(A.2.2) are used in
the lower-level primal problem for power flow constraints
(2.4)–(2.7) and subsequently in the dual problem. The naming
scheme is inspired by the parameters definition, i.e. cps stands
for cosine-plus-sine and cms stands for cosine-minus-sine. The
other three parameters defined in (A.3)–(A.5) are used to
shorten the SOC constraint reformulation from Subsection II-B
and, subsequently, in the dual problem.

cpst,e,i,j :“ge ¨cospθop
t,i ´θop

t,j´σeq`be ¨sinpθop
t,i ´θop

t,j´σeq,
@t, pe, i, jq P E (A.1.1)

cpst,e,i,j :“ge ¨cospθop
t,i ´θop

t,j`σeq`be ¨sinpθop
t,i ´θop

t,j`σeq,
@t, pe, i, jq P ER (A.1.2)

cmst,e,i,j :“be¨cospθop
t,i ´θop

t,j´σeq´ge¨sinpθop
t,i ´θop

t,j´σeq,
@t, pe, i, jq P E (A.2.1)

cmst,e,i,j :“be¨cospθop
t,i ´θop

t,j`σeq´ge¨sinpθop
t,i ´θop

t,j`σeq,
@t, pe, i, jq P ER (A.2.2)

p1,t,e,i,j :“
´ge ¨cospθop

t,i ´θop
t,j´σeqa

ge ` gto
e ¨ τe

, @t, pe, i, jq P E
(A.3)

p2,t,e :“
b
ge ` gfr

e , @t, e (A.4)

p3,t,e,i,j :“
d

g2
e ¨sin2pθop

t,i´θop
t,j´σeq g̀e¨pgfr

e `gto
e q`gfr

e ¨gto
e

ge`gfr
e

,

@t, pe, i, jq P E (A.5)
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Network and 
bid data

Exact polar Presolve

LL – primal

LL – dual

Bilevel 
optimization Exact polar

OP, Φ𝑡𝑡,𝑒𝑒,𝑖𝑖,𝑗𝑗
Λ𝑡𝑡,𝑒𝑒, Γ𝑡𝑡,𝑖𝑖,𝑗𝑗

warm start
𝑝𝑝𝑡𝑡𝑒𝑒𝑒𝑒, 𝑞𝑞𝑡𝑡𝑒𝑒𝑒𝑒

Optional looping

𝑝𝑝𝑡𝑡𝑒𝑒𝑒𝑒, 𝑞𝑞𝑡𝑡𝑒𝑒𝑒𝑒

Fig. 3: Visualization of the Algorithm 1 and input data.

B. Dual

The dual objective function (B.1) is followed by constraints
(B.2)–(B.9), obtained by derivation of the primal problem in
variable order as appearing in the Ξll set from Subsection
II-A. The next three constraints (B.10)–(B.12) are the dual
SOC constraints of (3.1.1), (3.2.1) and (2.12), respectively
(due to the self-duality principle of the basic cones). The
last constraint (B.13) is a nonnegativity condition for the dual
variables associated to the primal inequality constraints.

´λ1,t,i`λ3,t,e,i,j
:pe,i,jqPE

`λ4,t,e,i,j
:pe,i,jqPEŔ

λ14,t,e,i,j
:Φt,e,i,j

“0, @t,pe, i, jqPEYER

(B.4)

´λ2,t,i`λ5,t,e,i,j
:pe,i,jqPE

`λ6,t,e,i,j
:pe,i,jqPEŔ

λ15,t,e,i,j
:Φt,e,i,j

“0, @t,pe, i, jqPEYER

(B.5)

9ck ` µ3,t,k ´ µ3,t,k
`

ÿ

i
:kPGi

λ1,t,i“0, @t, k : :ck “ 0 (B.6)

µ4,t,k ´ µ4,t,k
`

ÿ

i
:kPGi

λ2,t,i“0, @t, k (B.7)

µ2,t,i,j
:Γt,i,j

´λ12,t,i,j
:Γt,i,j

`λ13,t,i,j
:␣Γt,i,j

`V op
t,i ¨V op

t,j ¨
ÿ

pe,i,jqPE
pcpst,e,i,j ¨λ3,t,e,i,j

`cpst,e,j,i ¨λ4,t,e,j,i´cmst,e,i,j ¨λ5,t,e,i,j
´cmst,e,j,i ¨λ6,t,e,j,iq{τe“0, @t, pi, jq P NP (B.8)

p´λ3,t,e,i,j´λ4,t,e,j,i`λ7,t,e,i,j
:Λt,e

µ́1,t,e,i,j
:Λt,e

q{2`λ10,t,e,i,j
:␣Λt,e

“0,

@t, pe, i, jq P E (B.9)

λ27,t,e,i,j`λ28,t,e,i,j`λ29,t,e,i,jďµ2
1,t,e,i,j ,

@t, pe, i, jq P E : Λt,e

(B.10)

λ211,t,i,j`λ212,t,i,jďµ2
2,t,i,j , @t, pi, jq P NP : Γt,i,j (B.11)

λ214,t,e,i,j λ̀215,t,e,i,jďµ2
5,t,e,i,j , @t,pe, i, jqPE :Φt,e,i,j (B.12)

µ ě 0 (B.13)

Max
Ξdu

Ωd :“
ÿ

t,k

pck´P
g

k ¨µ3,t,k`P g
k ¨µ3,t,k

´Q
g

k ¨µ4,t,k`Qg

k
¨µ

4,t,k
q ´

ÿ

t,k
::cką0

p 9ck`µ3,t,k´µ3,t,k
`

ÿ

i
:kPGi

λ1,t,iq2{p4¨:ckq

`
ÿ

t,i

´
pV op

t,i ´V iq ¨ µ6,t,i ` pV i´V op
t,i q ¨ µ6,t,i

¯
´

ÿ

t,i

ÿ

lPLi

pP d
t,l ¨λ1,t,i`Qd

t,l ¨λ2,t,iq ´
ÿ

t,i

ÿ

sPSi

pgsh
s ¨λ1,t,i´bshs ¨λ2,t,iq´

ÿ

t,pi,jqPNP

:␣Γt,i,j

λ13,t,i,j

`
ÿ

t,pi,jqPNP

:Γt,i,j

p3{4¨λ12,t,i,j´5{4¨µ2,t,i,jq´
ÿ

t,pe,i,jqPE
:Λt,e

pλ7,t,e,i,j`µ1,t,e,i,jq{2`
ÿ

t,iPR
θop
t,i ¨λ16,t,i´

ÿ

t,iPβ
pest ¨λ1,t,i´

ÿ

t,iPβ
qest ¨λ2,t,i´

ÿ

t,pe,i,jqPEYER

:Φt,e,i,j

Se¨µ5,t,e,i,j

´
ÿ

t,pe,i,jqPE

`pge`gfr
e q¨λ3,t,e,i,j´pbe`bfre q¨λ5,t,e,i,j

˘¨pV op
t,i q2{τ 2

e ´
ÿ

t,pe,i,jqPER

`pgè gto
e q¨λ4,t,e,i,j´pbe`btoe q¨λ6,t,e,i,j

˘¨pV op
t,i q2 (B.1)

V op
t,i ¨

ÿ

pe,i,jqPE
V op
t,j ¨ pcmst,e,i,j ¨λ3,t,e,i,j´cmst,e,j,i ¨λ4,t,e,j,i`cpst,e,i,j ¨λ5,t,e,i,j´cpst,e,j,i ¨λ6,t,e,j,iq{τe

´V op
t,i ¨

ÿ

pe,i,jqPER

V op
t,j ¨pcmst,e,j,i ¨λ3,t,e,j,i´cmst,e,i,j ¨λ4,t,e,i,j`cpst,e,j,i ¨λ5,t,e,j,i´cpst,e,i,j ¨λ6,t,e,i,jq{τe

`λ16,t,i
:iPR

´
ÿ

pi,jqPNP

:Γt,i,j

λ11,t,i,j{
?
2`

ÿ

pi,jqPNPR

:Γt,j,i

λ11,t,j,i{
?
2“0, @t, i

(B.2)
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µ6,t,i´µ6,t,i
`2¨V op

t,i ¨ pλ2,t,i ¨
ÿ

sPSi

bshs ´λ1,t,i ¨
ÿ

sPSi

gsh
s q `

ÿ

pe,i,jqPER

:Λt,e

p2,t,e ¨λ8,t,e,j,i ´
ÿ

pe,i,jqPE
:Λt,e

pp1,t,e,i,j ¨λ8,t,e,i,j`p3,t,e,i,j ¨λ9,t,e,i,jq

`
ÿ

pe,i,jqPE

“ `´2¨pge`gfr
e q¨V op

t,i {τ 2
e `V op

t,j ¨cpst,e,i,j{τe
˘¨λ3,t,e,i,j `

`
2¨pbe`bfre q¨V op

t,i {τ 2
e ´V op

t,j ¨cmst,e,i,j{τe
˘¨λ5,t,e,i,j

`V op
t,j ¨ pcpst,e,j,i ¨λ4,t,e,j,i ´ cmst,e,j,i ¨ λ6,t,e,j,iq{τe

‰

`
ÿ

pe,i,jqPER

“ `´2¨pge`gto
e q¨V op

t,i `V op
t,j ¨cpst,e,i,j{τe

˘¨λ4,t,e,i,j `
`
2¨pbe`btoe q¨V op

t,i ´V op
t,j ¨cmst,e,i,j{τe

˘¨λ6,t,e,i,j

`V op
t,j ¨ pcpst,e,j,i ¨λ3,t,e,j,i ´ cmst,e,j,i ¨ λ5,t,e,j,iq{τe

‰“0, @t, i (B.3)

Set of dual variables Ξdu contains all λ and µ variables.
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[36]K. Šepetanc and H. Pandžić, Bilevel-AC-OPF, GitHub, June. 11,
2021. Accessed on: June 11, 2021. [Online] Available at: github.com/
KSepetanc/Bilevel-AC-OPF
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Solving Bilevel AC OPF Problems by Smoothing
the Complementary Conditions – Part II: Solution

Techniques and Case Study
K. Šepetanc, Student Member, IEEE, H. Pandžić, Senior Member, IEEE and T. Capuder, Member, IEEE

Abstract—This is a second part of the research on AC optimal
power flow being used in the lower level of the bilevel strategic
bidding or investment models. As an example of a suitable
upper-level problem, we observe a strategic bidding of energy
storage and propose a novel formulation based on the smoothing
technique.

After presenting the idea and scope of our work, as well as the
model itself and the solution algorithm in the companion paper
(Part I), this paper presents a number of existing solution tech-
niques and the proposed one based on smoothing the complemen-
tary conditions. The superiority of the proposed algorithm and
smoothing techniques is demonstrated in terms of accuracy and
computational tractability over multiple transmission networks
of different sizes and different OPF models. The results indicate
that the proposed approach outperforms all other options in both
metrics by a significant margin. This is especially noticeable in
the metric of accuracy where out of total 422 optimizations over
9 meshed networks the greatest AC OPF error is 0.023% that
is further reduced to 3.3e-4% in the second iteration of our
algorithm.

Index Terms—Bilevel models, AC OPF, complementary condi-
tion smoothing functions.

I. INTRODUCTION

In the Part I of this work, we develop and present a
mathematical formulation of a bilevel problem based on the
smoothing techniques, where a strategic player’s profit maxi-
mization is in the upper level and the AC OPF approximation
in the lower level. Building upon Algorithm I presented in the
Part I paper, in this paper we present a number of solution
techniques that can be used to solve the bilevel strategic
bidding problem at hand, as well as any other bilevel problem
with the AC optimal power flow (AC OPF)-based market clear-
ing algorithm in the lower level. These solution techniques,
described in Section II of this paper, act as a baseline to which
we compare the proposed smoothing techniques which differ
in the smoothing function. The case study Section III consists
of three main parts: the description and set-up Subsection
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and the University of Zagreb Faculty of Electrical Engineering and
Computing (e-mails: karlo.sepetanc@fer.hr; hrvoje.pandzic@fer.hr; tomis-
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2020 research and innovation programme under grant agreement No 864298
(project ATTEST). The sole responsibility for the content of this document lies
with the authors. It does not necessarily reflect the opinion of the Innovation
and Networks Executive Agency (INEA) or the European Commission (EC).
INEA or the EC are not responsible for any use that may be made of the
information contained therein.

III-A; and the two case studies. The first case study described
in III-B demonstrates the model’s accuracy, while the second
one in III-D presents an in-depth solution techniques analysis.
The final Section IV provides conclusive remarks.

II. SOLUTION TECHNIQUES

In this work we consider all classical techniques to solve a
single-level reduced bilevel optimization problem, i.e. Step 5
of the Algorithm 1 from the Part I paper. The techniques differ
in how well they close the duality gap, numerical tractability
and ease of finding or converging to the global optimality
as opposed to a local one. In the following subsections
we first present the classical techniques, i.e. the primal-dual
counterpart, the strong duality, the McCormic envelopes, the
complementarity slackness, the penalty factor, the interaction
discretization, followed by the proposed smoothing techniques,
Chen-Harker-Kanzow-Smale and Kanzow.

A. Primal-dual counterpart

1) Primal-dual (PD):
This technique relies on the convexified objective func-

tion (4.1) to act as a penalty factor and does not enforce
closure of the duality gap in any other way. One of the
first such convexifications is presented in [1]. The resulting
model simply consists of the lower-level primal and dual
constraints as well as the upper-level constraints and the
convexified quadratic objective function. Using this technique,
the problem belongs to the second-order cone programming
(SOCP) optimization class (with convex quadratic objective
function). Dual constraints are available in the Appendix of
the Part I paper.

The upper-level objective function is convexified by adding
the term Ωd ´ Ωp. This way, the bilinear terms that cause
nonconvexity, pest ¨λ1,t,i and qest ¨λ2,t,i, are canceled since they
also appear in the dual objective function Ωd. The convexified
objective function is equivalent to the original one if zero
duality gap is ensured by the solution technique, i.e. Ωd “ Ωp.

Max
ÿ

t,iPβ
ppest ¨λ1,t,i`qest ¨λ2,t,iq ` Ωd ´ Ωp (4.1)

The problem maximizes (4.1) subject to constraints (1.2)–
(1.7), (2.2)–(2.14), excluding (2.8.1) and (2.9.1) in favor of
(3.1.1)–(3.2.4) and (B.2)–(B.13), with respect to the variables
set Ξul Y Ξr Y Ξdu. Note that equations (1)–(3) and (B)
are from the Part I paper, where (1) denote the upper-level
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constraints, constraints (2) lower-level primal constraints (pri-
mal feasibility KKT conditions), (3) are reformulated lower-
level SOC constraints, i.e. reformulated constraints (2), while
(B) are lower-level dual constraints, i.e. stationarity and dual
feasibility KKT conditions.

2) Strengthened primal-dual (PD-S):
This technique applies an additional linear constraint (4.2)

on top of the regular primal-dual technique. This constraint is
obtained by writing the Karush–Kuhn–Tucker (KKT) station-
arity conditions for P g

t,k. Otherwise, it is used to derive the
dual as a part of dealing with the objective function convex
quadraticity by substituting P g

t,k from the Langrange function.
Therefore, this constraint is not directly a part of the dual
model, but it closes the duality gap since it connects both
the primal and the dual variables. This technique is applicable
only if there are generators with square cost bids (:ck ą 0).
The optimization class is SOCP.

9ck`µ3,t,k´µ3,t,k
`

ÿ

i
:kPGi

λ1,t,i`2¨:ck ¨P g
t,k “ 0, @t, k : :ck ą 0

(4.2)
The problem maximizes (4.1) subject to constraints (1.2)–

(1.7), (2.2)–(2.14), excluding (2.8.1) and (2.9.1) in favor of
(3.1.1)–(3.2.4), (B.2)–(B.13) and (4.2), with respect to the
variables set Ξul Y Ξr Y Ξdu.

B. Strong Duality

1) Strong Duality (SD):
Strong duality technique directly enforces zero duality gap

by enforcing constraint (4.3), as explained in [2]. The for-
mulation is nonconvex quadratic due to the equality sign and
bilinear pest ¨ λ1,t,i and qest ¨ λ2,t,i terms in eq. (4.3).

Ωp “ Ωd (4.3)

The problem maximizes (4.1) subject to constraints (1.2)–
(1.7), (2.2)–(2.14), excluding (2.8.1) and (2.9.1) in favor of
(3.1.1)–(3.2.4), (B.2)–(B.13) and (4.3), with respect to the
variables set Ξul Y Ξr Y Ξdu.

2) Relaxed Strong Duality (SD-R):
To potentially improve numerical stability, the strong duality

constraint can be relaxed so that small gaps are allowed. For
any primal-dual optimization problem pair that has a finite
solution, assuming that the goal of the primal is minimization,
Ωp ě Ωd weak duality holds even without such constraint in
the model. Thus, it is sufficient to add a constraint with an
opposite inequality sign to close the duality gap. Constraint
(4.4) allows an absolute duality gap ϵ, where ϵ is a small
positive constant. The formulation is nonconvex quadratic due
to bilinear pest ¨ λ1,t,i and qest ¨ λ2,t,i terms in constraint (4.4).

Ωp ď Ωd ` ϵ (4.4)

The problem maximizes (4.1) subject to constraints (1.2)–
(1.7), (2.2)–(2.14), excluding (2.8.1) and (2.9.1) in favor of
(3.1.1)–(3.2.4), (B.2)–(B.13) and (4.4), with respect to the
variables set Ξul Y Ξr Y Ξdu.

C. McCormick Envelopes (MC)

McCormick envelopes [3] relax a bilinear term into a plane-
bounded region. The technique requires an assumption on the
bounds of the electricity price, i.e. λ1,t,i, λ2,t,i for the lower
bound and λ1,t,i, λ2,t,i for the upper bound. Values of these
parameters can be estimated from the obtained operating point
in Step 1 of Algorithm 1, e.g. using fixed intervals around the
computed prices. Variables wp

t and wq
t represent relaxations

of pest ¨λ1,t,i and qest ¨λ2,t,i respectively. Constraint (4.5) is the
strong duality constraint in the inequality form. `pest ¨ λ1,t,i
and `qest ¨ λ2,t,i terms from (4.5) cancel the original negative
terms from Ωd, which are replaced with ´wp

t and ´wq
t . Con-

straints (4.6) and (4.7) are McCormick underestimator planes,
while constraints (4.8) and (4.9) are McCormick overestimator
planes. Together, they form a relaxed convex feasible space.
To shorten the formulation, they are written in the matrix form.
The formulation belongs to the SOCP optimization class.

Ωp ď Ωd`
ÿ

t,iPβ
pest λ̈1,t,i`

ÿ

t,iPβ
qest λ̈2,t,i´

ÿ

t

wp
t ´

ÿ

t

wq
t (4.5)

`
wp

t w
q
t

˘⊺ě´ses ¨`λ1,t,i λ2,t,i
˘⊺``

pest qest
˘⊺ ¨`λ1,t,i λ2,t,i

˘

`ses ¨`λ1,t,i λ2,t,i

˘⊺
, @t, i P β (4.6)

`
wp

t w
q
t

˘⊺ěses ¨`λ1,t,i λ2,t,i
˘⊺``

pest qest
˘⊺ ¨`λ1,t,i λ2,t,i

˘

´ses ¨`λ1,t,i λ2,t,i

˘⊺
, @t, i P β (4.7)

`
wp

t w
q
t

˘⊺ďses ¨`λ1,t,i λ2,t,i
˘⊺``

pest qest
˘⊺ ¨`λ1,t,i λ2,t,i

˘

´ses ¨`λ1,t,i λ2,t,i

˘⊺
, @t, i P β (4.8)

`
wp

t w
q
t

˘⊺ď´ ses ¨`λ1,t,i λ2,t,i
˘⊺``

pest qest
˘⊺ ¨`λ1,t,i λ2,t,i

˘

` ses ¨`λ1,t,i λ2,t,i

˘⊺
, @t, i P β (4.9)

The problem maximizes (4.1) subject to constraints (1.2)–
(1.7), (2.2)–(2.14), excluding (2.8.1) and (2.9.1) in favor of
(3.1.1)–(3.2.4), (B.2)–(B.13) and (4.5)–(4.9), with respect to
the variables set Ξul Y Ξr Y Ξdu Y twp

t , w
q
t u.

D. Complementary Slackness

1) Complementary Slackness (CS):
For any given basic SOC primal-dual constraint inequality

pair (4.10) and (4.11), assuming primal vector variable x “`
x0 x

˘
, where x“ `

x1 x2 x3 ...
˘
, and analogous dual

vector variable y, there is a complementary slackness condition
(4.12). In case of linear inequalities, x is an empty vector.
Thus, for linear inequalities, constraints (4.10)–(4.12) take the
following forms respectively: 0ď x0, 0ď y0 and x0 ¨y0 “ 0.
Normally, complementary slackness conditions fully close the
duality gap. However, due to applying the QP duality theory
to deal with a quadratic objective function of the lower-level
(2.1) to derive the dual, as explained in the Part I paper, Section
2.B, constraint (4.2) is also required to obtain zero duality gap.
The resulting formulation is nonconvex quadratic.

x21 ` x22 ` x23 ` ... ď x20 (4.10)

y21 ` y22 ` y23 ` ... ď y20 (4.11)

x0 ¨ y0 ` x1 ¨ y1 ` x2 ¨ y2 ` x3 ¨ y3 ` ... “ 0 (4.12)
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The problem maximizes (4.1) subject to constraints (1.2)–
(1.7), (2.2)–(2.14), excluding (2.8.1) and (2.9.1) in favor of
(3.1.1)–(3.2.4), (B.2)–(B.13), (4.2) and constraints based on
(4.12) (one for every primal-dual inequality pair), with respect
to the variables set Ξul Y Ξr Y Ξdu.

2) Relaxed Complementary Slackness (CS-R):
The relaxed complementary slackness technique enhances

numerical tractability by allowing a small deviance of the
complementary slackness conditions, as in constraint (4.13)
and shown in Section 12.3.1.1 in [5]. The constraint is only
bounded from the upper side since the left-hand side is always
nonnegative due to SOC constraints from the primal and the
dual. The resulting formulation is nonconvex quadratic.

x0 ¨ y0 ` x1 ¨ y1 ` x2 ¨ y2 ` x3 ¨ y3 ` ... ď ϵ (4.13)

The problem maximizes (4.1) subject to constraints (1.2)–
(1.7), (2.2)–(2.14), excluding (2.8.1) and (2.9.1) in favor of
(3.1.1)–(3.2.4), (B.2)–(B.13), (4.2) and constraints based on
(4.13) (one for every primal-dual inequality pair), with respect
to the variables set Ξul Y Ξr Y Ξdu.

3) Aggregated Complementary Slackness (CS-A):
Since x⊺y is always nonnegative due to the primal and

dual SOC constraints, complementary conditions can also be
aggregated into a single large constraint as in (4.14) which
sums over all primal and dual vector variable pairs x and
y from set ξ. The resulting formulation is also nonconvex
quadratic.

ÿ

px,yqPξ
x⊺y “ 0 (4.14)

The problem maximizes (4.1) subject to constraints (1.2)–
(1.7), (2.2)–(2.14), excluding (2.8.1) and (2.9.1) in favor of
(3.1.1)–(3.2.4), (B.2)–(B.13), (4.2) and the constraint based
on (4.14), with respect to the variables set Ξul Y Ξr Y Ξdu.

4) Relaxed Aggregated Complementary Slackness (CS-AR):
The same way the individual complementary slackness

conditions can be relaxed to potentially improve numerical
tractability, the aggregated constraint can be relaxed as well.
To make an easier comparison to the nonaggregated version,
ϵ parameter is enlarged for every primal-dual inequality pair.
The resulting formulation is nonconvex quadratic.

ÿ

px,yqPξ
x⊺y ď

ÿ

px,yqPξ
ϵ (4.15)

The problem maximizes (4.1) subject to constraints (1.2)–
(1.7), (2.2)–(2.14), excluding (2.8.1) and (2.9.1) in favor of
(3.1.1)–(3.2.4), (B.2)–(B.13), (4.2) and constraint based on
(4.15), with respect to the variables set Ξul Y Ξr Y Ξdu.

E. Penalty Factor

1) Penalty Factor – Strong Duality (PF-SD):
The penalty factor technique closes the duality gap by penal-

izing it in the main objective function (4.16). Conceptually, as
the penalty factor π goes to infinity, the duality gap closes to
zero. However, the formulation is nonconvex due to a bilinear
term in the objective function and thus the global optimality
can not be guaranteed and numerical issues may occur for high

penalty factors. Properties of the penalty factor techniques are
discused in [4].

Max
ÿ

t,iPβ
pest ¨λ1,t,i`

ÿ

t,iPβ
qest ¨λ2,t,i`p1`πq¨pΩd´Ωpq (4.16)

The problem maximizes (4.16) subject to constraints (1.2)–
(1.7), (2.2)–(2.14), excluding (2.8.1) and (2.9.1) in favor of
(3.1.1)–(3.2.4) and (B.2)–(B.13), with respect to the variables
set Ξul Y Ξr Y Ξdu.

2) Penalty Factor – Complementary Slackness (PF-CS):
Duality gap can also be closed by penalizing the deviance

of complementary slackness from zero. The same as the strong
duality version, this version is also nonconvex.

Max
ÿ

t,iPβ
pest ¨λ1,t,i`

ÿ

t,iPβ
qest ¨λ2,t,i`pΩd´Ωpq´π¨

ÿ

px,yqPξ
x⊺y (4.17)

The problem maximizes (4.17) subject to constraints (1.2)–
(1.7), (2.2)–(2.14), excluding (2.8.1) and (2.9.1) in favor of
(3.1.1)–(3.2.4), (B.2)–(B.13) and (4.2), with respect to the
variables set Ξul Y Ξr Y Ξdu.

F. Interaction Discretization

For this group of techniques we define additional sets. B is
a set of binary variables for binary expansion variables indexed
with letter b (i.e. {1,2,...,rlog2Ds}), and U is a set of binary
variables for unary expansion indexed by u (i.e. {1,2,...,D}),
where D is a number of discretization steps. This technique
discretizeses the allowed charging pcht and discharging pdist

quantity values so that the bilinear term pest ¨ λ1,t,i from
the strong duality can be reformulated into a mixed-integer
linear one. Analogous discretizations also need to be done for
reactive power. Thus, we introduce variables for consumed and
produced reactive powers qcht and qdist , respectively, and the
binary variable xqt that prevents simultaneous power exchange
in both directions. Their values are defined in constraints
(4.18)–(4.20) in analogous way as in constraints (1.4)–(1.6).
The technique can use either the strong duality constraint (in
the inequality form) or the complementary-slackness-penalized
objective function. Since interaction discretization techniques
linearize the bilinear terms, which are the only source of
nonconvexity except for the introduced discrete variables, the
formulations are of mixed-integer SOCP (MISOCP) class.
Techniques belonging to this group can theoretically find
proven optimal solution with zero duality gap (assuming high
penalty factor for penalty version). General formulation of the
expansions can be found in [6]. The following constraints split
the positive and negative ES reactive power in two variables
since they are used separately in the following subsections.

0 ď qcht ď ses ¨ xqt , @t (4.18)

0 ď qdist ď ses ¨ p1´ xqt q, @t (4.19)

qest “ qcht ´ qdist , @t (4.20)
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1) Binary Expansion – Strong Duality (BE-SD):
Discretization by binary expansion uses binary variables

with exponentially increasing (base 2) assigned weights to
denote an integer number. The obtained integer number di-
vided by a maximum achievable integer number represents
the value the continuous variable will take. If the ratio is 1,
the continuous variable takes the upper bound value, and for
ratio 0 it takes the lower bound value. The other discrete
states are spread evenly. The number of binary variables
grows logarithmically with the number of discrete states. The
introduced variables are ypt , y

q
t , integer variables, xp,bet,b , xq,bet,b

binary variables with assigned weights, and auxiliary variables
wp,be

t,b , wq,be
t,b wp,ch

t , wp,dis
t , wq,ch

t , wq,dis
t . Using this technique,

the strong duality constraint (4.21) takes a convex form
since bilinear terms cancel out each other and are effectively
replaced by terms wp,ch

t , wp,dis
t , wq,ch

t , wq,dis
t .

ΩpďΩd`
ÿ

t,iPβ
ppest λ̈1,t,ì qest λ̈2,t,iq´

ÿ

t

pwp,ch
t ´wp,dis

t `wq,ch
t ´wq,dis

t q
(4.21)

0 ď `
ypt y

q
t

˘ ď 2|B| ´ 1, @t (4.22)
`
ypt y

q
t

˘ “
ÿ

bPB
2b´1 ¨

´
xp,bet,b xq,bet,b

¯
, @t (4.23)

`
pcht qcht

˘{ses``
pdist qdist

˘{ses“`
ypt y

q
t

˘{p2|B |́ 1q, @t (4.24)
`
wp,ch

t wq,ch
t

˘{ses``
wp,dis

t wq,dis
t

˘{ses“
ÿ

bPB
2b´1¨

´
wp,be

t,b wq,be
t,b

¯
{p2|B| ´ 1q, @t (4.25)

`
λ1,t,i λ2,t,i

˘⊺¨`xpt xqt
˘¨sesď`

wp,ch
t wq,ch

t

˘ď
`
λ1,t,i λ2,t,i

˘⊺¨`xpt xqt
˘¨ses, @t (4.26)

`
λ1,t,i λ2,t,i

˘⊺¨`1´ xpt 1´ xqt
˘¨sesď`

wp,dis
t wq,dis

t

˘⊺ď
`
λ1,t,i λ2,t,i

˘⊺¨`1´ xpt 1´ xqt
˘¨ses, @t (4.27)

´
xp,bet,b xq,bet,b

¯⊺¨ `λ1,t,i λ2,t,i

˘ď
´
wp,be

t,b wq,be
t,b

¯⊺ď
´
xp,bet,b xq,bet,b

¯⊺¨ `λ1,t,i λ2,t,i

˘
, @t,iPβ,bPB

(4.28)

`
λ1,t,i λ2,t,i

⊺̆`
´
xp,bet,b xq,bet,b

⊺̄¨`λ1,t,i λ2,t,i

˘´`
λ1,t,i λ2,t,i

⊺̆ď
´
wp,be

t,b wq,be
t,b

¯⊺ď`
λ1,t,i λ2,t,i

⊺̆`
´
xp,bet,b xq,bet,b

¯⊺¨`λ1,t,i λ2,t,i

˘

´ `
λ1,t,i λ2,t,i

˘⊺
, @t,iPβ,bPB (4.29)

The problem maximizes (4.1) subject to constraints
(1.2)–(1.7), (2.2)–(2.14), excluding (2.8.1) and (2.9.1)
in favor of (3.1.1)–(3.2.4), (B.2)–(B.13), (4.18)–(4.29),
with respect to the variables set Ξul Y Ξr Y Ξdu Y
twp,ch

t , wq,ch
t , wp,dis

t , wq,dis
t , wp,be

t,b , w
q,be
t,b , y

p
t , y

q
t , x

p,be
t,b , x

q,be
t,b u.

2) Binary Expansion – Penalty Factor (BE-PF):
The binary expansion technique can also be applied to the

bilinear term pest ¨ λ1,t,i and its reactive power counterpart
appearing in the objective function which penalizes the duality
gap (4.16). In the resulting objective function (4.30), the
bilinear terms from Ωd ´ Ωp are first canceled out with
an explicit addition of itself and then replaced with their
equivalent linear expression wp,ch

t ´ wp,dis
t ` wq,ch

t ´ wp,dis
t .

Except for the lack of the strong duality constraint, the other
constraints are the same as for the strong duality version of
this technique.

Max
ÿ

t,iPβ
p1` πq¨ppest ¨λ1,t,i`qest ¨λ2,t,iq`p1`πq¨pΩd´ Ωpq

´ π ¨
ÿ

t

pwp,ch
t ´ wp,dis

t ` wq,ch
t ´ wp,dis

t q (4.30)

The problem maximizes (4.30) subject to constraints (1.2)–
(1.7), (2.2)–(2.14), excluding (2.8.1) and (2.9.1) in favor
of (3.1.1)–(3.2.4), (B.2)–(B.13), (4.18)–(4.20) and (4.22)–
(4.29), with respect to the variables set Ξul Y Ξr Y Ξdu Y
twp,ch

t , wq,ch
t , wp,dis

t , wq,dis
t , wp,be

t,b , w
q,be
t,b , y

p
t , y

q
t , x

p,be
t,b , x

q,be
t,b u.

3) Unary Expansion – Strong Duality (UE-SD):
Similarly to the binary expansion, the unary expansion uses

binary variables to represent an integer number. However,
the assigned weights in this technique increase linearly and
only up to one binary variable is allowed to take value
1. The number of binary variables grows linearly with the
number of discrete states. In addition to the variables from the
binary expansion, the introduced variables are binary variables
xp,uet,u , xq,uet,u and auxiliary variables wp,ue

t,u , wq,ue
t,u .

0 ď `
ypt y

q
t

˘ ď |U |, @t (4.31)
`
ypt y

q
t

˘ “
ÿ

uPU
u ¨ `xp,uet,u xq,uet,u

˘
, @t (4.32)

ÿ

uPU

`
xp,uet,u xq,uet,u

˘ ď 1, @t (4.33)

`
pcht qcht

˘{ses ` `
pdist qdist

˘{ses “ `
ypt y

q
t

˘{|U |, @t (4.34)
`
wp,ch

t wq,ch
t

˘{ses``
wp,dis

t wq,dis
t

˘{ses“
ÿ

uPU
u ¨wp,ue

t,u {|U |, @t
(4.35)

`
xp,uet,u xq,uet,u

˘⊺¨ `λ1,t,i λ2,t,i

˘ď `
wp,ue

t,u wq,ue
t,u

˘⊺ď`
xp,uet,u xq,uet,u

˘⊺¨ `λ1,t,i λ2,t,i

˘
, @t,iPβ,bPB (4.36)

`
λ1,t,i λ2,t,i

⊺̆``
xp,uet,u xq,uet,u

⊺̆¨`λ1,t,i λ2,t,i

˘´`
λ1,t,i λ2,t,i

⊺̆ď`
wp,ue

t,u wq,ue
t,u

˘⊺ď`
λ1,t,i λ2,t,i

⊺̆``
xp,uet,u xq,uet,u

˘⊺¨`λ1,t,i λ2,t,i

˘

´ `
λ1,t,i λ2,t,i

˘⊺
, @t,iPβ,bPB (4.37)

The problem maximizes (4.1) subject to constraints (1.2)–
(1.7), (2.2)–(2.14) excluding (2.8.1) and (2.9.1) in favor of
(3.1.1)–(3.2.4), (B.2)–(B.13), (4.18)–(4.21), (4.26), (4.27) and
(4.31)–(4.37) with respect to the variables set ΞulYΞrYΞduY
twp,ch

t , wq,ch
t wp,dis

t , wq,dis
t , wp,ue

t,u , wq,ue
t,u , ypt , y

q
t , x

p,ue
t,u , xq,uet,u u.

4) Unary Expansion – Penalty Factor (UE-PF):
The same as the binary expansion, the unary expansion

can also be applied to the penalized objective function (4.30).
Other constraints, except for the lack of the strong duality
constraint, are the same as for the strong duality version of
the unary expansion.

The problem maximizes (4.30) subject to constraints (1.2)–
(1.7), (2.2)–(2.14), excluding (2.8.1) and (2.9.1) in favor of
(3.1.1)–(3.2.4), (B.2)–(B.13), (4.18)–(4.20), (4.26), (4.27) and
(4.31)–(4.37), with respect to the variables set ΞulYΞrYΞduY
twp,ch

t , wq,ch
t , wp,dis

t , wq,dis
t , wp,ue

t,u , wq,ue
t,u , ypt , y

q
t , x

p,ue
t,u , xq,uet,u u.
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G. Smoothing techniques

In this section we consider smoothing of the complementary
slackness conditions. Smoothing techniques are presented in
[7], where they are generalized from smoothing the linear com-
plementary conditions to smoothing the SOCP complementary
conditions. The resulting equality constraints replace both the
primal-dual inequality pair and the complementary slackness
conditions (4.10)–(4.12) for SOC and linear inequalities. The
only inequality constraints left in the model are those from the
upper-level problem. Smoothing techniques become exact as
ϵ parameter approaches zero from the positive side. Formula-
tions using the smoothing techniques belong to the nonconvex
nonlinear class.

1) Chen–Harker–Kanzow–Smale (SM1):
This complementary slackness conditions smoothing tech-

nique is a special case of the Chen-Mangasarian smoothing
functions. Only the vector constraint (4.38) is directly part of
the optimization problem. Formulas (4.39)–(4.41) only define
parts for substitution of constraint (4.38). Specifically, (4.39)
defines a function, (4.40) defines a numerical expression and
(4.41) defines a vector.

x´ ϵ ¨ pF pψ1{ϵq ¨ u1 ` F pψ2{ϵq ¨ u2q “ 0 (4.38)

F pαq “ p
a
α2 ` 4` αq{2 (4.39)

ψn “ x0 ´ y0 ` p´1qn ¨ ∥x´ y∥ (4.40)

un “
´
1{2 1{2 ¨ p´1qn ¨ x´y

∥x´y∥

¯
(4.41)

The problem maximizes (4.1) subject to constraints (1.2)–
(1.7), (2.2)–(2.7), (2.8.2), (2.9.2), (2.13), (3.1.2)–(3.1.5),
(3.2.2)–(3.2.4), (B.2)–(B.9), (4.2) and constraints based on
(4.38) (one vector constraint for every primal-dual inequality
and complementary condition pair), whose parts are defined in
(4.39)–(4.41), with respect to the variables set ΞulYΞrYΞdu.

2) Kanzow (SM2):
This smoothing function is a variation of the Fischer-

Burmeister function. Analogous to the previous smoothing
technique, (4.42) is a vector constraint, while (4.43) and (4.44)
are only used to define parts of (4.42).

x` y ´ paψ1 ¨ u1 `
a
ψ2 ¨ u2q “ 0 (4.42)

ψn “ ∥x∥2 ` ∥y∥2 ` 2¨ϵ2 ` 2¨p´1qn ¨∥x0 ¨x` y0 ¨y∥ (4.43)

un “
´
1{2 1{2¨p´1qn ¨ x0̈x`y0̈y

∥x0̈x`y0̈y∥

¯
(4.44)

The problem maximizes (4.1) subject to constraints (1.2)–
(1.7), (2.2)–(2.7), (2.8.2), (2.9.2), (2.13), (3.1.2)–(3.1.5),
(3.2.2)–(3.2.4), (B.2)–(B.9), (4.2) and constraints based on
(4.42) (one vector constraint for every primal-dual inequality
and complementary condition pair), whose parts are defined
in (4.43) and (4.44), with respect to the variables set Ξul Y
Ξr Y Ξdu.

III. CASE STUDY

A. Description and Set-Up

The case study consists of three parts. The first one
demonstrates the accuracy of our convex polar second-order
Taylor approximation (CPSOTA) model [8] in comparison to
implementations that use the existing convex OPF formu-
lations in the lower level, i.e. Jabr and DC. The accuracy
comparison is based on the smoothing solution technique that
effectively ensures strong duality (Ωp“Ωd). The second case
study shows economic benefits for the ES and the system by
comparing profits with only active power bids from the ES
and both reactive and active power bids. The third case study
evaluates different solution techniques with focus on accuracy,
i.e. duality gap and objective function value, and numerical
tractability.

The case study considers a large energy storage unit with
100 MWh capacity (1 p.u.), 60 MW (0.6 p.u.) maximum
(dis)charging rate and 0.9 (dis)charging efficiency. The initial
state-of-energy is set to 50% and the storage is allowed to end
a day at any state-of-energy. All variable and parameter units
are in p.u. or dimensionless.

Transmission system meshed networks were taken from the
PGLib-OPF v19.05 [9] database. A 24-hour time horizon was
added by scaling the loads with winter weekday profile factors
from IEEE RTS-96 [10].

All problems were solved on a desktop PC (i7 9700; 32
GB, 2.67 GHz RAM) in AMPL. Convex and mixed-integer
convex problems were solved in Xpress 8.10.1, while all
other problems in KNITRO 12.3. The default solver settings
were used, except for the Algorithm 1 step 5 (see Part I) for
which the settings are stated individually in the case studies.
Algorithms 1 steps 1–4 and 6 are single-level continuous
optimizations and thus easy to solve. Their run times are less
than a second even for the largest considered network with
57 buses. The threshold for imposing the line thermal power
limits, controlled with Boolean parameter Φt,e,i,j , was set to
85% and no final solution violated the thermal limits.

B. Case Study I: Model Accuracy

Accuracy of the considered bilevel model mostly depends
on the accuracy of the OPF in its lower level and the technique
applied to ensure that the strong duality holds at the solution
point. Since convexity of OPF is a requirement for strong
duality, this case study compares our proposed model with
the models based on commonly used convex OPFs: Jabr’s
[11] and DC. In addition, the bilevel approach is compared to
two single-level simplifications. One assumes constant prices
in the lower level regardless of the energy storage bidding
strategy, and the other, centralized, models the ES as if it
were owned by the system operator who minimizes the system
costs. Prices for the first simplification are obtained in a pre-
run by considering an idle energy storage, thus preventing
its impact on market prices. For bilevel models, the strong
duality is ensured with Chen–Harker–Kanzow–Smale (SM1)
smoothing technique, described in Subsection II-G1. This
technique’s defining parameter ϵ was set to 1e-3, which in
practice ensures a duality gap of 1e-5% or better. To make
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TABLE I
MODEL ACCURACY TESTED ON 3 LMBD NETWORK (IP – INTERIOR POINT, S – SIMPLEX)

ES at bus 1 ES at bus 2 ES at bus 3
ES profit System expenses ES profit System expenses ES profit System expenses

ES active-power-only bids

Model Actual Computed Diff
[%] Actual Computed Diff

[%] Actual Computed Diff
[%] Actual Computed Diff

[%] Actual Computed Diff
[%] Actual Computed Diff

[%]
CPSOTA 1818.65 1818.56 -4.9e-3 98827.27 98827.34 7.1e-5 1359.88 1359.80 -5.9e-3 99342.16 99342.20 4.0e-5 2016.85 2017.79 0.047 98496.77 98496.94 1.7e-4
Jabr’s [11] 1817.61 1641.17 -9.7 98821.80 98443.00 -0.38 1327.67 1582.75 19.2 99327.24 98506.39 -0.83 2007.06 1754.30 -13 98486.16 98304.91 -0.18
DC 1818.35 1757.64 -3.3 98824.47 97319.61 -1.5 1359.04 1364.71 0.42 99341.82 97774.13 -1.6 1986.50 1729.57 -13 98531.12 97236.05 -1.3
Centralized 1795.61 98811.38 1347.65 99317.95 1988.96 98481.34
Fixed prices – IP 1329.03 2224.99 67 99013.29 98529.70 -0.49 719.18 1560.60 117 99614.43 99194.09 -0.42 1138.13 2915.78 156 98966.00 97838.91 -1.1
Fixed prices – S 1122.16 2224.99 98 99122.00 98529.70 -0.60 490.31 1560.60 218 99729.13 99194.09 -0.54 -150.98 2915.78 -2031 99345.15 97838.91 -1.5

the comparison easier, but without the loss of accuracy due
to positive prices, i.e. simultaneous charging and discharging
does not occur, models were run without the binary variable
xpt for energy storage (ES) (dis)charging, otherwise present
in constraints (1.4) and (1.5) in the Part I paper. Since the
final model (Algorithm 1 step 5) is nonconvex-nonlinear,
KNITRO multistart feature (16 starting points, ˘0.6 variable
perturbations) was used to the increase chances of finding
a global optimal solution. Numerical stability was increased
by tightening the solver default convergence and infeasibility
tolerances by a factor of 100 and by enabling the solver’s warm
start option. To better differentiate between active and reactive
power accuracy, the case study contains separate analysis for
the cases when ES can bid only active power and when it
can bid both active and reactive power. The exception are the
buses with were zero reactive power prices observed at the
assumed operating point (Algorithm 1 Step 1) as in that case
the two solutions are the same.

Accuracy comparison for three- and five-bus networks are
presented in Tables I and II. The analysis is performed for an
ES placed at each bus individually. Table data columns include
actual ES profits and system expenses, i.e. verified quantities
using Algorithm 1 Step 6, computed profits or expenses, using
Algorithm 1 Step 5, and the percentage difference between the
actual and the computed profits. The rows include considered
models: CPSOTA, Jabr’s [11], DC, centralized and fixed-price
models solved using two different solver methods (interior
point – IP and simplex – S). The tree-bus network table
does not include active and reactive power bids data since the
reactive power prices at all buses are zero. Similarly, the five-
bus network table does not include data for active and reactive
power bids at buses 4 and 5 due to zero reactive power prices.
In the case of zero reactive power prices, the results are the
same as in the case of active-power-only bids.

The results in Table I indicate that, despite the signifi-
cant inaccuracy (actual vs. computed columns), all bilevel
approaches still make generally good decisions for an ES
bidding active power. For example, for ES at bus 1, Jabr’s
model underestimates the ES profit at only 1641.17 (10%
underestimated), while the actual profit 1817.61 is very close
to the best achieved actual profit of 1818.65. On the other
hand, for the ES located at bus 2, the Jabr’s model greatly
overestimates the computed profit at 1582.75 (16% overesti-
mated), while the actual profit is only 2.4% away from the
best actual value, achieve by CPSOTA. For the ES at bus
3, the Jabr’s model again underestimates the profit. For the

DC model, when the ES is located at buses 1 or 2, the
computed and actual ES profits are quite close, indicating that
the model provides good estimates of the ES profit regardless
on the lossless network representation. However, when the ES
is at bus 3, which is the bus without generators capable of
producing active power and is under the effect of congestion
during multiple hours, the DC model underperforms. The
centralized model achieves the lowest system expenses in all
cases. However, the ES profits are worse then with the DC
model at first two buses and better at the third. The fixed
price approaches are inadequate for the considered systems.
The actual profits are unfavourable and much lower than
the computed ones. These severe differences between the
computed and the actual profits when neglecting the impact
of being a strategic player is in line with findings in [12].
Results of the fixed price approaches are also very susceptible
to the solver method. The interior point method, as opposed to
the simplex method, has a tendency of finding solutions with
intermediate variable values, balancing the ES (dis)charging
during low- or high-price periods since there are multiple
hours with the same prices. A more even charging across
multiple hours results in more favourable actual profits, despite
the identical computed profits for both fixed-prices methods.
In contrast, the proposed bilevel model based on CPSOTA AC
OPF almost perfectly matches the computed and the verified
values regardless of the considered ES bus placement. The
CPSOTA’s accuracy, being a Taylor expansion-based model,
can be iteratively even further enhanced by reevaluating the
operating point parameters V OP

t,i and θOP
t,i . Regarding the

system expenses, i.e. the lower-level objective function value,
the Jabr’s model consistently underestimates it, as the model is
a relaxation. The same goes for the DC model since it does not
consider network losses. The fixed-prices system expenses are
computed assuming that they increase at marginal prices from
a base point, i.e. systems expenses without the ES performing
arbitrage. These as well underestimate the verified system
expenses. Finally, the CPSOTA model results in negligible
system expenses inaccuracy, indicating that the model almost
perfectly computes the AC OPF.

Model accuracy is further examined on the 5 pjm network,
whose results are displayed in Table II. Comparing the active
power only bids, the Jabr’s model highly overestimates the
ES profit when connected to buses 1, 2 and 5. On the other
hand, it underestimates the ES profit when connected to bus
4, while for the ES at bus 3 it accurately computes the ES
profit. The reason for such diverse ES profit accuracy is
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TABLE II
MODELS’ ACCURACY TESTED ON 5 PJM NETWORK (IP – INTERIOR POINT, S – SIMPLEX)

ES at bus 1 ES at bus 2 ES at bus 3 ES at bus 4 ES at bus 5

Model Actual Computed Diff
[%] Actual Computed Diff

[%] Actual Computed Diff
[%] Actual Computed Diff

[%] Actual Computed Diff
[%]

ES active-power-only bids

CPSOTA ES profit 804.94 804.94 1.5e-4 1648.09 1648.07 -7.7e-4 1958.23 1958.22 -5.4e-4 2833.07 2833.10 9.5e-4 696.45 696.38 -0.010
System expenses 295944.24 295944.23 -1.0e-6 295100.82 295100.82 1.4e-6 294790.81 294790.81 -2.8e-7 293915.06 293915.04 -6.5e-6 296050.47 296050.49 -5.9e-6

Jabr’s [11] ES profit 792.26 1923.73 143 1648.07 1956.98 19 1958.23 1958.22 5.1e-4 2833.06 1950.47 -31 171.65 1916.34 1016
System expenses 295956.89 257518.89 -13 295100.80 257485.69 -13 294790.81 257484.66 -13 293915.01 257491.99 -12 296577.55 257526.16 -13

DC ES profit 755.19 839.01 11 1590.18 1676.82 5.4 1901.61 2002.22 5.3 2761.95 2897.07 4.9 655.15 695.08 6.1
System expenses 295947.22 294248.75 -0.57 295106.07 293410.94 -0.57 294795.54 293085.54 -0.58 293930.42 292190.70 -0.59 296066.12 294392.69 -0.57

Centralized ES profit 761.87 1601.78 1911.97 2786.38 627.35
System expenses 295944.21 295100.67 294790.66 293914.75 296049.57

Fixed prices – IP ES profit 486.53 1083.59 123 1336.49 1945.05 46 1647.12 2255.19 37 2468.82 3131.36 27 -149.81 864.25 -677
System expenses 296089.10 295665.66 -0.14 295236.83 294804.20 -0.15 294926.79 294494.06 -0.15 294051.53 293617.89 -0.15 296622.61 295885.00 -0.25

Fixed prices – S ES profit 486.43 1083.59 123 1336.29 1945.05 46 1647.11 2255.19 37 2191.22 3131.36 43 -183.87 864.25 -570
System expenses 296089.15 295665.66 -0.14 295236.93 294804.20 -0.15 294926.79 294494.06 -0.15 294055.85 293617.89 -0.15 296610.75 295885.00 -0.24

ES active and reactive power bids

CPSOTA ES profit 1170.06 1169.34 -0.061 1999.66 1989.00 -0.53 2016.55 2008.37 -0.41
System expenses 295575.18 295575.52 1.2e-4 294728.23 294733.50 1.8e-3 294711.51 294715.58 1.4e-3

Jabr’s [11] ES profit 951.65 1923.73 102 1982.75 1980.23 -0.13 1958.22 1966.43 0.42
System expenses 295796.91 257518.89 -13 294747.12 257462.46 -13 294782.46 257484.66 -13

Centralized ES profit 1127.21 1952.71 1970.94
System expenses 295575.17 294727.43 294708.75

that due to large AC OPF relaxation errors observed in the
computed system expenses, wrong generators can be claimed
as marginal ones, thus largely impacting the prices. This effect
is very pronounced since the 5 pjm network only has linear
generator cost curves. The DC model is again relatively accu-
rate, but overestimating the ES profit at all buses by 4-11%.
The centralized model again achieves similarly favourable ES
profits as the DC model, i.e. slightly better at four busses and
slightly worse at bus 5, but always achieves the lowest system
expenses. Both fixed-price models also highly overestimate the
ES profits, regardless on the ES position. This is because these
models do not consider the effect the ES bidding strategy has
on market prices. Namely, the ES tends to increase market
prices when purchasing energy and reduce them when selling
energy. The verified profits when the ES is located at bus 5 are
actually negative for both fixed-price models, which is a result
of ignoring the price changes by the ES’s bidding actions.
The proposed CPSOTA model results in almost perfect ES
profit accuracy at all buses. The proposed model also results
in almost identical computed and verified system expenses.
Again, both the Jabr’s and the DC models, as well as the
fixed-price models, underestimate the actual system expenses.

Table II also includes the results when the ES bids both
active and reactive power. These results generally show lower
accuracy than in the case when only active power is bid. Reac-
tive power is generally more difficult to accurately model with
typically a few times greater power flow inaccuracy than for
active power [13]. The Jabr’s model again highly overestimates
the ES profit at bus 1. At buses 2 and 3 the computed values are
close to the actual ones, however, the actual profits are farther
from the highest achieved with CPSOTA as compared to the
active-power-only bidding. CPSOTA still achieves the highest
actual ES profits. On the other hand, the centralized model is
more consistent in terms of accuracy than the Jabr’s model due
to the use of an exact AC OPF, but has 2-4% lower ES profits
than CPSOTA due to lack of bilevel optimization structure.
The actual profit increase due to reactive power bidding highly
depends on the ES placement. At bus 1 the increase is 365.66

(45.4%), at bus 2 it is 351.57 (21.3%), at bus 3 it is 58.32
(3.0%) and no increase at buses 4 and 5 due to zero reactive
power prices.

Since the proposed CPSOTA model resulted in higher than
normal inaccuracy on the 3 lmbd network for active-power-
only bids for ES placed at bus 3 (however, this inaccuracy is
still extremely low, less than 0.05%) and at buses 2 and 3 for
active and reactive power bids on the 5 pjm network (0.54%
and 0.41% error, respectively), we ran the second iteration
of the Algorithm 1 (presented in the Part I paper), whose
results are presented in Table III. The second iteration basi-
cally eliminates the remaining errors, displaying fast iterative
convergency of the proposed algorithm. Thus, if an extremely
high accuracy is required, this can be achieved by running the
second iteration, which brings the error virtually to zero since
the greatest remaining ES profit error is less than 0.02%.

Statistical data for larger networks obtained by running the
CPSOTA-based model for ES at each bus is presented in
Table IV. Buses with zero reactive power prices are excluded
from the statistics for bidding both the active and reactive
power. This makes for a total of 422 optimizations, 232 for
active-power-only bids and 190 for active and reactive power
bids. The shown errors are computed as a percentage relative
difference between the actual and the computed values. As
the optimization is run for the ES placement at each bus,
the median, the mean and the maximum (Max) errors are
listed in Table IV. The median errors better represent the
most common error values than the mean errors since mean
are significantly influenced by the outliers. The active power
bidding median, as well as the mean ES profit errors, are

TABLE III
CPSOTA MODEL ACCURACY IN THE SECOND ITERATION

ES profit System expenses

Network ES at bus Actual Computed Diff
[%] Actual Computed Diff

[%]
ES active-power-only bids

3 lmbd 3 2016.876 2016.884 4.0e-4 98497.667 98497.666 -1.0e-6
ES active and reactive power bids

5 pjm 2 1999.662 1999.651 -5.5e-4 294728.228 294728.227 -3.4e-7
3 2017.189 2016.792 -0.020 294708.966 294708.974 2.7e-6
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TABLE IV
STATISTICS ON CPSOTA BILEVEL ACCURACY IN THE FIRST ITERATION

ES profit
errors (%)

System expenses
errors (%)

Network Median Mean Max Median Mean Max
ES active-power-only bids

3 lmbd 5.8e-3 0.019 0.047 7.1e-5 9.3e-5 1.7e-4
5 pjm 9.5e-4 2.6e-3 0.010 1.3e-6 3.0e-6 6.5e-6
14 ieee 5.7e-4 8.5e-4 3.3e-3 2.4e-6 4.4e-6 1.7e-5
24 ieee rts 1.9e-3 2.3e-3 8.3e-3 2.7e-6 3.2e-6 1.1e-5
30 as 2.6e-3 4.9e-3 0.033 8.8e-6 1.2e-5 6.4e-5
30 fsr 2.7e-3 4.6e-3 0.026 7.1e-6 1.2e-5 5.1e-5
30 ieee 0.014 0.025 0.19 1.4e-4 2.5e-4 1.7e-3
39 epri 1.3e-3 3.7e-3 0.024 4.1e-7 9.5e-7 6.5e-6
57 ieee 3.2e-3 5.9e-3 0.027 2.9e-6 8.7e-6 6.0e-5

ES active and reactive power bids
5 pjm 0.41 0.33 0.53 1.4e-3 1.1e-3 1.8e-3
14 ieee 4.4e-3 0.10 0.88 4.2e-5 2.4e-4 1.8e-3
24 ieee rts 3.7e-3 8.5e-3 0.072 1.0e-5 4.5e-5 3.3e-4
30 as 2.6e-3 7.2e-3 0.043 2.3e-5 3.2e-5 1.1e-4
30 fsr 6.1e-3 0.22 3.97 4.9e-5 1.3e-3 0.023
30 ieee 0.034 0.13 1.68 8.8e-4 1.5e-3 1.6e-3
39 epri 0.017 0.064 1.12 4.3e-6 2.9e-5 5.1e-4
57 ieee 0.087 0.18 1.28 1.4e-4 2.5e-4 1.3e-3

mainly in the range 0.01%–1e-3% and the system expenses
median and mean errors, i.e. AC OPF errors, are in the range
1e-4%–1e-6%. The maximum errors, which occurred at the
same bus and network, when the ES is bidding only active
power are 0.19% for the ES profit and 1.7e-3% for the system
expenses, which reduces to 4.0e-3% and 1.5e-7% in the second
iteration of Algorithm 1. Errors when the ES bids both active
and reactive powers are higher. The median and mean ES
profit errors mainly range from 0.10% to 1e-3% and system
expenses mean and median errors are in the range 1e-3–1e-
5%. However, the maximum ES profit errors are significant
(ě 1%) on four networks, reaching 3.97% at bus 9 of the
30 fsr network. We run the second iteration of Algorithm 1 for
that case and the error was reduced to 0.035%. The maximum
system expense error, which also occurred at the same bus
and network as the maximum ES profit error, is 0.023%. In
the second iteration it is reduced to 3.3e-4%.

C. Case Study II: Economical Benefits of ES Reactive Power
Bids

Reactive power bids provide both the financial opportunity
for the ES and benefit for the system. Reactive power prices
are commonly 10 to 100 times lower than active power prices
since generators can produce them without costs, leaving only
indirect active power savings to influence the price. However,
since the reactive power does not consume the ES state-of-
energy, but only its power capacity, it can bid it in large
quantities. 3 lmbd network is dropped from the following
analysis since it has zero reactive power prices at all buses
and time periods so the ES profit increase and the system
savings are 0. Figure 1 shows the percentage profit increase
for the ES due to reactive power bids sorted in a descending
order. The profit increase significantly depends on the network
and ES placement. At 5 pjm, 39 epri and 57 ieee networks
the highest ES profit increases are in the range 26%–47% with
one outlining profit increase of 731% at bus 30 of the 39 epri
network. This large relative increase is a result of a low active
power profit due to the constant active power marginal prices at

TABLE V
AVERAGE ABSOLUTE SYSTEM EXPENSE SAVINGS TO AVERAGE ES PROFIT

INCREASE RATIO DUE TO REACTIVE POWER BIDS

Network 5 pjm 14 ieee 24 ieee rts 30 as 30 fsr 30 ieee 39 epri 57 ieee
Ratio 1.06 1.59 1.48 1.53 1.57 1.44 1.36 1.50

this bus caused by a large generator, i.e. the ES just discharges
all the stored energy and performs no other arbitrage. On the
other hand, high locational reactive power prices are a result
of a large generator with high minimum reactive power output
connected to bus 30. At most of the other buses and considered
networks, the profit increases are much lower and range from
0% to 5% as shown in the Figure 1.

As the dual lower-level objective function Ωd, i.e. system
expenses, contains the upper-level profit term with a negative
sign, ´ř

t,iPβppest ¨ λ1,t,i ` qest ¨ λ2,t,iq, the upper-level profit
increase normally results in system savings, thus the interests
of the ES and the system generally align. In Figure 2 we
see that the savings are of similar distribution as the profit
increases from Figure 1. However, ES savings on average
result in even grater system savings, as shown in Table V. The
ratio of absolute savings and profit increase also depends on
the network, however, it mostly ranges from 1.4 to 1.6. On rare
cases, the ES reactive power bids can be counter productive
for the system. Figure 1 shows that at three buses at 30 fsr
network, the system expenses have increased. The magnitude
of the increase is, however, too low to be of significance (note
that Figure 2 contains absolute values and not percentages).

D. Case Study III: Solution Techniques Study

This case study evaluates effectiveness of all solution tech-
niques from Section II on two networks. A broad analysis
allowing for both the ES active and reative power bids is
performed on a small 3 lmbd network consisting of only three
buses to identify viable techniques. The results of this analysis
are presented in Table VI. Only the select techniques are
applied to the 24 ieee rts network for ES at bus 3. We selected
the 24 bus network as it is the first larger network from the
benchmark library [9] that has quadratic generators bid curves
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Fig. 1: Relative profit increase due to reactive power bids, in descending order.
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Fig. 2: Absolute system expense savings due to ES reactive power bids, in
descending order.

and bus 3 since it is the first bus with non zero reactive power
prices. The results of this analysis are displayed in Table VII
and show the techniques performance when the ES bids only
active power and both the active and reactive powers. All the
simulations, except for those referring to the interaction dis-
cretization techniques, do not have binary variables to forbid
simultaneous charging and discharging. Leaving out binary
variables from optimization does not impact the solutions due
to nonnegative energy prices. Finally, Table VIII presents an
analysis for the most reduced and the best-performing set of
solution techniques to solve the problem considering also the
ES (dis)charging binary variables.

As displayed in Table VI, the primal-dual counterpart (PD)
and its straightened variant (PD-S) are the easiest to compute
since they belong to the convex SOCP optimization class.
However, they leave large duality gaps and the straightened
variant is only applicable when using the generators’ quadratic
bid curves. The best performing techniques (observing both
the accuracy and numerical tractability) are SM1 with ϵ=1e-
4, SM2 with ϵ=1e-4, CS-R with ϵ=0.01, PF-SD with π=100
and PF-CS with π=10. They converge in 0.1–0.2 seconds and
require only 21–42 iterations, achieving small duality gaps
of 8.6e-9%, 5.3e-9%, 1.2e-3%, 2.3e-5% and 6.3e-4%, respec-
tively. Other defacto exact techniques are strong duality (SD),
discretization techniques (BE and UE) and complementary
slackness (CS and CS-A). However, a significant numerical
tractability issues are observed. They manifest either as a
large number of solver iterations to achieve convergence or an
inability to adequately close the mixed-integer programming
(MIP) gap (in the case of discretization techniques). Solvers
using discretization techniques also fail to adequately set the
best bound, with the strong duality version setting it to the so-
lution of the PD technique and with the penalty factor version
setting it to the effective infinity, which leaves large MIP gaps.
With these techniques we used 32 discretization segments.
The PF-SD technique with high penalty factor (π=300 and
1000) converges to a suboptimal solution as can occur with
nonconvex formulations, while the complementary slackness

TABLE VI
TECHNIQUES COMPARISON ON 3 LMBD NETWORK

ES at bus 3

ES profit System
expenses Numerical tractability

Technique Actual Computed Diff
[%]

Duality
gap [%] Time [s] Iterations /

MIP gap
PD 1988.07 2273.58 14 0.33 0.08 33
PD-S 2013.94 2094.55 4.0 8.6e-2 0.06 20
MC 1988.06 2273.58 14 0.33 0.09 35
SD 2016.84 2019.07 0.11 5.2E-13 2.0 440
SD-R ϵ=0.1 Converged to infeas. point 11 1734
SD-R ϵ=1 2016.75 2046.98 1.5 1.0E-03 2.3 396
SD-R ϵ=10 2016.18 2103.68 4.3 0.010 0.34 76
BE-SD 1484.62 1519.93 2.4 2.1E-04 1800 51.93%
UE-SD No solution found 1800 -
BE-PF π=100 1250.53 1291.77 3.3 2.9E-05 1800 (2.8e+5)%
UE-PF π=100 -379.88 -361.00 -5.0 4.7E-05 1800 (1.2e+6)%
PF-SD π=10 2016.69 2038.54 1.1 1.9E-03 0.17 40
PF-SD π=30 2016.81 2025.13 0.41 2.4E-04 0.21 50
PF-SD π=100 2016.82 2020.00 0.16 2.3E-05 0.10 35
PF-SD π=300 1958.59 1958.50 -4.6e-3 7.8E-06 1.5 238
PF-SD π=1000 2015.15 2015.93 0.039 5.5E-07 2.4 334
PF-CS π=3 2016.72 2036.52 0.98 4.8E-03 0.21 40
PF-CS π=10 2016.81 2024.56 0.38 6.3E-04 0.16 42
PF-CS π=30 2016.83 2020.18 0.17 7.9E-05 0.65 134
PF-CS π=100 2016.84 2018.52 0.083 7.4E-06 0.36 77
PF-CS π=300 1915.59 1916.60 0.053 3.9E-06 0.55 109
CS Converged to infeas. point 20 1152
CS-R ϵ=1e-4 2016.84 2018.97 0.11 1.4E-05 8.6 864
CS-R ϵ=1e-3 2016.84 2021.72 0.24 1.2E-04 0.26 55
CS-R ϵ=0.01 2016.83 2029.56 0.63 1.2E-03 0.12 28
CS-R ϵ=0.1 2016.73 2049.16 1.6 9.6E-03 0.12 28
CS-A 2016.84 2017.86 0.051 1.6E-12 5.2 974
CS-AR ϵ=1e-4 1798.02 1802.96 0.27 6.2E-05 0.79 172
CS-AR ϵ=1e-3 2016.81 2030.67 0.69 6.2E-04 0.82 186
CS-AR ϵ=0.01 2016.69 2054.46 1.9 6.2E-03 0.56 128
CS-AR ϵ=0.1 2015.52 2093.16 3.9 6.2E-02 0.07 17
SM1 ϵ=1e-4 2016.84 2017.78 0.047 8.6E-09 0.11 22
SM1 ϵ=1e-3 2016.84 2017.78 0.047 5.7E-07 0.43 69
SM1 ϵ=0.01 2016.84 2017.75 0.045 3.4E-05 0.14 32
SM1 ϵ=0.1 2016.85 2012.52 -0.21 5.7E-03 0.22 45
SM1 ϵ=1 2016.84 1487.22 -26 0.57 0.09 22
SM2 ϵ=1e-4 2016.84 2017.78 0.047 5.3E-09 0.12 21
SM2 ϵ=1e-3 2016.84 2017.78 0.047 4.9E-07 0.55 74
SM2 ϵ=0.01 2016.84 2017.74 0.045 4.6E-05 0.10 21
SM2 ϵ=0.1 2016.85 2012.52 -0.21 5.7E-03 0.13 26
SM2 ϵ=1 2016.84 1487.22 -26 0.57 0.12 27

technique fails to find any solution. Relaxing the techniques or
reducing the penalty factor enhances the numerical tractability
(for SD-R, PF-SD, PF-CS, CS-R and CS-AR), but also reduces
accuracy. The McCormick technique (MC), which relaxes the
bilinear terms in the strong duality, achieves the same solution
as if there was no relaxed strong duality constraint which
means that the relaxation is too strong to be useful. For MC
we used fixed envelope bounds around the operating point of
˘ 1000 [1/p.u.] (i.e. 10 per MW) for active power and ˘ 300
[1/p.u.] (i.e. 3 per MW) for reactive power price.

The select versions of the primal-dual, strong duality,
penalty factor, complementary slackness and the two smooth-
ing techniques are tested on a larger network with results
displayed in Table VII. The previously well performing tech-
niques PF-SD and PF-CS (see Table VI) did not perform well.
In the case of bidding both the active and reactive powers it
took 62 and 85 second to compute them, which is about 6
times longer than for the two smoothing techniques and about
3 times longer when only active power bidding is allowed. CS-
R also takes 6 times longer to compute than the smoothing
techniques in case of bidding both the active and reactive
powers, but it finishes slightly faster then the smoothing
techniques when only active power bidding is allowed. It
closes the duality gap only moderately well with 5.6e-4% in
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TABLE VII
COMPARISON OF SELECT TECHNIQUES ON 24 IEEE RTS NETWORK

ES at bus 3

ES profit System
expenses Numerical tractability

Technique Actual Computed Diff
[%]

Duality
gap [%] Time [s] Iterations

ES active-power-only bids
PD 4841.37 4921.32 1.7 4.3e-3 0.86 45
PD-S 4841.11 4902.15 1.3 3.3e-3 0.83 42
SD -10452.73 -10444.28 -0.081 3.5e-11 199 2563
SD-R ϵ=10 4843.38 4901.84 1.2 8.1e-4 948 8102
PF-SD π=10 4848.66 4860.68 0.25 7.8e-5 36 139
PF-CS π=10 4848.81 4854.19 0.11 8.4e-5 14 134
CS Converged to infeas. point 475 852
CS-R ϵ=0.1 4848.79 4880.99 0.66 9.3e-4 4.0 67
CS-A Converged to infeas. point 400 3296
CS-AR ϵ=0.01 4841.10 4902.14 1.3 3.3e-3 2.8 46
SM1 ϵ=1e-4 4848.98 4848.88 -2.1e-3 1.2e-6 10 93
SM2 ϵ=1e-4 4848.89 4848.97 1.6e-3 4.2e-9 5.5 55

ES active and reactive power bids
PD 4989.28 5271.89 5.7 2.2e-2 0.91 49
PD-S 4988.72 5251.51 5.3 2.1e-2 0.83 43
SD Converged to infeas. point 367 4870
SD-R ϵ=10 5031.49 5118.21 1.7 8.1e-4 104 276
PF-SD π=10 5034.90 5056.21 0.42 1.5e-4 62 105
PF-CS π=10 5035.12 5051.37 0.32 1.2e-4 85 138
CS Converged to infeas. point 682 138
CS-R ϵ=0.1 5034.79 5070.47 0.71 5.6e-4 72 743
CS-A 5035.14 5053.21 0.36 3.9e-10 599 5329
CS-AR ϵ=0.1 4988.77 5251.44 5.3 2.1e-2 40 180
SM1 ϵ=1e-4 5035.02 5035.54 0.010 5.1e-9 10 95
SM2 ϵ=1e-4 5035.02 5035.54 0.010 4.4e-9 13 112

TABLE VIII
PERFORMANCE IN DISCRETE OPTIMIZATION

ES profit System
expenses Numerical tractability

Network Technique Actual Computed Diff
[%]

Duality
gap [%] Time [s] Nodes

ES active-power-only bids
24 ieee rts
(bus 3)

SM1 ϵ=1e-4 4848.98 4850.73 0.036 1.4e-4 31 1
SM2 ϵ=1e-4 4848.85 4848.97 2.5e-3 6.9e-9 15 1

ES active and reactive power bids
3 lmbd
(bus 3)

SM1 ϵ=1e-4 2016.89 2017.78 0.044 5.7e-9 1.3 3
SM2 ϵ=1e-4 2016.89 2017.78 0.044 5.7e-9 0.19 1

24 ieee rts
(bus 3)

SM1 ϵ=1e-4 5035.02 5035.54 0.010 4.7e-9 93 3
SM2 ϵ=1e-4 5035.05 5036.23 0.023 5.5e-5 71 3

first case and 9.3e-4% in the latter. CS-AR performs similar
to CS-R, with CS-AR being somewhat faster, but also with
larger duality gaps. The primal-dual counterpart techniques
still offer the best tractability, but also low accuracy due to high
duality gaps (ES profit errors are approximately 5% for active
and reactive power bids and 2% for active-power-only bids).
The two smoothing techniques perform reasonably tractable
in both cases finishing in 10 seconds and taking 89 iterations
on average. Meanwhile, they achieve close to zero (order of
magnitude 1e-8%) duality gaps. The remaining techniques SD,
CS and CS-A all either converge to an infeasible point or
display serious numerical tractability issues.

This case study is completed by evaluating the performance
of the two smoothing techniques with included binary vari-
ables that forbid simultaneous ES charging and discharging,
as displayed in Table VIII. Both smoothing techniques achieve
comparable and high accuracy. The displayed tractability of
SM2 technique is marginally better.

IV. CONCLUSION

The approach presented in Part I and Part II papers avoids
the lower level linearization and can be used to effectively

solve a strategic energy storage bilevel transmission-network-
constrained market participation problem. Both active and
reactive power bids are considered. The model utilises a
convex polar second-order Taylor approximation [8] of AC
OPF in the lower level thanks to which the KKT-based single-
level reduction is possible while achieving extremely high
AC OPF accuracy. The resulting complementary conditions
are transformed using the smoothing technique to achieve
numerical tractability.

Results indicate very high and consistent model accuracy
tested on eight meshed transmission system networks for ES
placement at every bus. For active-power-only bids, the mean
and median upper-level profit errors are mainly in the range
0.01%–1e-3% with the maximum observed error of 0.19%
within 232 optimizations. However, this error is reduced to
4.0e-3% in the second iteration of the Algorithm 1. When both
the active and reactive power bids are considered, the upper-
level profit errors are slightly higher, but still very low and
mainly in the range 0.10%–1e-3% with the maximum observed
error 3.97% within 190 optimizations. Again, the high errors
can be further reduced by iteratively running the algorithm.
Already the second iteration reduces the 3.97% error down to
0.035%. The lower-level objective function mean and median
errors (AC OPF errors) are mainly in range the 1e-3%–1e-6%.

Economical benefits of ES reactive power bids significantly
depend on the network and ES bus placement. The highest
ES profit increases are in between 26%–47%, while for the
majority of cases up to 5%. ES profit increase normally also
reduces the system expenses, but at a greater amount. The
average ES profit increase and average system savings ratio
mostly ranges from 1.4–1.6.

The smoothing techniques achieve close-to-zero duality
gaps, i.e. in the range 1e-6%–1e-8%, while outperforming in
terms of tractability all other classical KKT-based single-level
duality gap closure-enforcing reduction techniques.

The presented approach is also applicable to the various
upper-level problems, e.g. generator, load or aggregator bid-
ding or investment problems. It is also applicable for bilevel
reserve procurement problems considering reactive power. Fi-
nally, it should benefit the system operators to assess the effect
of their network investments, e.g. lines or energy storage, on
the social welfare. Thus, utilization of this tool may benefit
the market operators to achieve a revenue adequate and a more
complete and fair market design.
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[12]K. Pand žić, H. Pandžić and I. Kuzle, “Virtual storage plant offering
strategy in the day-ahead electricity market,” International Journal of
Electrical Power & Energy Systems, vol. 104, pp. 401–413, Jan. 2019.

[13]A. Venzke, S. Chatzivasileiadis and D. K. Molzahn, “Inexact convex
relaxations for AC optimal power flow: Towards AC feasibility,“ Electric
Power Systems Research, vol. 187, Oct. 2020.

This article has been accepted for publication in IEEE Transactions on Power Systems. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2022.3207097

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Zagreb. Downloaded on October 10,2022 at 14:49:00 UTC from IEEE Xplore.  Restrictions apply. 



IEEE SYSTEMS JOURNAL 1

Solving Bilevel Optimal Bidding Problems Using
Deep Convolutional Neural Networks

Domagoj Vlah , Karlo Šepetanc , Student Member, IEEE, and Hrvoje Pandžić , Senior Member, IEEE

Abstract—Current state-of-the-art solution techniques for solv-
ing bilevel optimization problems either assume strong problem
regularity criteria or are computationally intractable. In this arti-
cle, we address power system problems of bilevel structure, com-
monly arising after the deregulation of the power industry. Such
problems are predominantly solved by converting the lower level
problem into a set of equivalent constraints using the Karush–
Kuhn–Tucker optimality conditions at an expense of binary vari-
ables. Furthermore, in case the lower level problem is nonconvex,
the strong duality does not hold rendering the single-level reduction
techniques inapplicable. To overcome this, we propose an effective
numerical scheme based on bypassing the lower level completely
using an approximation function that replicates the relevant lower
level effect on the upper level. The approximation function is
constructed by training a deep convolutional neural network. The
numerical procedure is run iteratively to enhance the accuracy.
As a case study, the proposed method is applied to a price-maker
energy storage optimal bidding problem that considers an ac power
flow-based market clearing in the lower level. The results indicate
that greater actual profits are achieved as compared to the less
accurate dc market representation.

Index Terms—Bilevel optimization, deep convolutional neural
network, optimal power flow.

I. INTRODUCTION

A. Background and Article Scope

D EREGULATION and liberalization of the power sector
worldwide dislodged large monopolistic power utilities,

allowing for private companies to become important players in
the sector. However, each of the newly created entities have
their own goal, e.g., generating companies want to maximize
their profit, system operators maximize the security of supply,
while market operators maximize social welfare. Because of
the increased number of players with conflicting objectives,
they need to consider each other’s goals and objective functions
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when optimizing their own utility. To accommodate the inter-
action between own and other player’s actions, the researchers
commonly resort to bilevel models, where own optimization
problem [the upper level (UL) problem] is constrained by an-
other optimization problem [the lower level (LL) problem]. This
setting assumes that the lower level behavior is known, which
is the case when considering the market operator conducting
its market-clearing procedure or any other regulated entity that
behaves according to some widely known rules.

As of October 5, 2021, the IEEE Xplore database [1] indicates
that three flagship IEEE Power and Energy Society journals
published 182 journals with word bilevel in the title (115 such
papers in IEEE TRANSACTIONS ON POWER SYSTEMS, 45 in IEEE
TRANSACTIONS ON SMART GRID and 22 in IEEE TRANSACTIONS
ON SUSTAINABLE ENERGY). These papers cover a wide range
of bilevel problems. Some of the most common topics include
protection of a power system against a terrorist attack, e.g., [2],
pricing schemes, e.g., [3], maintenance scheduling, e.g., [4],
expansion planning, e.g., [5], or optimal bidding in one or more
energy [6], or financial markets [7].

Although bilevel models have been used extensively in the
literature, they often suffer from two drawbacks. The first one is
related to linearization, as commonly one or more variables from
the lower level problem appear multiply an upper level variable
in the upper level objective function. Although in many cases
this can be linearized using the strong duality theorem and some
of the Karush–Kuhn–Tucker (KKT) optimality conditions [8],
see e.g., [9], in some cases this is not possible. In such cases the
authors commonly resort to the binary expansion method (see
[6, Appendix B]). However, besides being an approximation, this
method can result in intolerable computational times, bringing
us to the second drawback, i.e., computational (in)tractability.
Issues with tractability often arise when the lower level problem
is stochastic or has many inequality constraints, resulting in
a large number of binary variables. Some authors thus resort
to an iterative procedure that considers the complicating dual
variables in the problematic bilinear terms as parameters, and
updating their values in the following iteration [10].

The aim of this article is to present a numerical scheme
based on deep convolutional neural networks (NN) paired with
state-of-the-art training procedure for solving complex bilevel
problems arising in the power systems community. As a rep-
resentative of such problems, we solve a bilevel problem of
optimal participation of an energy storage in the day-ahead
energy market. We assume an ac-optimal power flow (OPF)-
based market clearing algorithm in the lower level. AC OPF is
a challenging problem with numerous simplification attempts,
e.g., by convexification [11]. However, to this date there is still
no known exact finite convex ac OPF formulation that classical
approaches could solve to optimality.

1937-9234 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
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Fig. 1. Classification of the bilevel problem solution techniques.

Optimal bidding problems consist of two interlinked opti-
mizations. The first problem, also called the leader or the upper
level problem, represents the market participant that maximizes
the agent’s profit due to arbitrage, while the second problem,
also called the follower or the lower level problem, is the market
clearing that maximizes the social welfare and determines the
electricity prices that depend on the bids from the upper level
problem. The described bilevel optimization can not be directly
solved using commercial off-the-shelf solvers, thus they are
usually converted into a single-level equivalent optimization
problem. However, such conversion is difficult since the exact ac
OPF models, that appear in the lower level, are nonconvex and
thus render many existing techniques inapplicable. The authors
of this article have already explored the single-level reduction
approach in a two-part paper [12] and [13], where ac OPF
is modeled using a convex quadratically constrained quadratic
approximation [11], but even the most computationally efficient
solution techniques start diverging for large systems, i.e., sys-
tems with over 70 buses. Here, we explore a NN metamodeling
approach that is known to require significant computational
time and resources, but can compute for large systems and
even allows for discrete variables in the lower level (at even
greater computational cost). On the other hand, the KKT-based
single-level reduction techniques solve the upper and the lower
level simultaneously so the solution process can diverge for large
systems.

Proving the global optimality of solution is not within the
scope of this article. Generally, numerical optimization methods
that can find global optimal solutions require much stronger
conditions on the optimizing goal function and domain of opti-
mization, for instance, in the case of optimizing a linear function
on a convex domain. Our method is general in a sense that it
imposes no mathematical conditions on the class of the lower
level problem except that, using reasonable time and resources,
the lower level can be evaluated a number of times to create a
dataset for the NN training.

B. Literature Review

As depicted in Fig. 1, the existing literature on bilevel solu-
tion techniques branches out in two main directions: classical
and evolutionary approaches. Due to computational difficulty
of bilevel problems, the classical approaches can only tackle

well-behaved problems with strong assumptions, such as lin-
earity or convex quadraticity and continuity of the lower level
problem, as strong duality generally does not hold for other
types of problems. By far the most common classical approach
is a single-level reduction based on the KKT conditions and
the duality theory. It has been widely used to solve bilevel
problems with linear constraints and either linear [14] or convex
quadratic [15] objective functions, as well as problems with
convex quadratic constraints when the interaction between the
two levels is discrete [16]. The resulting formulations contain
complementarity constraints which are combinatorial in their
nature and thus can be modeled using binary variables making
the final problems mixed-integer linear (MILP) or mixed-integer
quadratic (MIQP). The existing state-of-the-art solvers generally
handle well these types of optimizations using the branch-and-
bound method for binary search tree and simplex for search-tree
node subproblems, despite the exponential complexity in the
worst case. The single-level reduction technique has also been
successfully applied to a case where the lower level is a convex
quadratically constrained quadratic problem (QCQP), as in [17].
Other classical approaches are the descent method, the penalty
function method, the trust-region method, and the parametric
programming method. The descent method determines the most
favorable variable change for the objective function, as demon-
strated in [18], so the model stays feasible. However, since the
model is feasible only when the lower level is optimal, finding the
descent direction is very difficult. The penalty function method
replaces the lower level [19] or both-level [20] constraints
with penalty terms for constraint violations in the objective
function. The trust region algorithms iteratively approximate
the lower level around the operating point with linear problem
(LP) or quadratic problem (QP) [21]. Both the penalty and
the trust-region methods as the next step apply a KKT-based
single-level reduction to the lower level and thus inherit the
same applicability limits. A recent research thrust in parametric
programming has resulted in an alternative approach to solving
bilevel programs to global optimality by exploiting the notion
of critical regions. To this point, solution approaches based on
parametric programming have been proposed to handle bilevel
programs with LP [22], QP [23], MILP, and MIQP [24] lower
levels.

As opposed to the classical ones, the evolutionary approaches
are inspired by the biological evolution principle where can-
didate solutions are evaluated using a fitness function, e.g.,
objective function, to form the next generation of candidate
solutions by reproducing, mutating, recombining, and selecting
processes. Evolutionary approaches are very effective at find-
ing good approximate solutions of numerically very difficult
problems with fewer regularity assumptions than the classical
approaches. For bilevel problems, the evolution is commonly
applied in a nested form where the lower level needs to be
solved separately for every upper level solution candidate, as
explained and analyzed in [25]. The upper level solution can-
didates are obtained using an evolution, e.g., particle swarm
optimization [26] or differential evolution [27], while the lower
level can be solved using classical approaches such as interior
point method [28] or as well using an evolution, as in [27].
Despite applicability to nonconvex problems, where classical
approaches do not hold, the nested evolutionary method does
not scale well with the number of upper level variables as they
exponentially increase the number of lower level optimizations
that need to be performed. A single-level reduction technique
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can also be utilized in the context of evolutionary approaches
where numerical evolution concept is applied to the reduced
formulation. Due to KKT conditions, this technique inherits
regularity assumptions of the classical approaches for the lower
level problem, but allows a more irregular upper level. The
work ofHejazi et al. [29] is one of the first works where this
technique was employed. Evolutionary approaches can also be
applied in tandem with the metamodeling method. Metamodel,
or surrogate model, is an easy to evaluate, typically iteratively
enhanceable, approximation of the original model. For bilevel
modeling, the lower level can be metamodeled using the reaction
set mapping, optimal lower level value function, by bypassing
the lower level problem completely and by using an auxiliary
bilevel metamodel. The reaction set method maps the lower
level variable values as a response to the upper level variables,
as demonstrated in [30]. On the other hand, the optimal lower
level function method replaces the lower objective statement
of minimization or maximization with a constraint requiring
that the objective is at least as good as the optimal lower
level function [31]. Both the reaction set map and the optimal
lower level function are generally difficult to obtain even in an
approximated form. Bypassing the lower level completely is
based on the principle that the lower level variables are basically
functions of the upper level variables, which allows for the
upper level reformulation not to include the lower level. Similar
to the trust-region method, bilevel problems can be replaced
with auxiliary metamodels. As of current, we are not aware
of any works based on bypassing the lower level problem or
the auxiliary metamodels methods. A broader bilevel solution
techniques research field review, for both the classical and the
evolutionary approaches, can be found in [32].

The approach presented in this article can be classified as
an evolutionary metamodeling method that bypasses the lower
level problem completely, as given by [32]. This bypassing of
the lower level problem is achieved by approximating the solu-
tion of the lower level, which depends only on the upper-level
variables, using a carefully designed NN, see [33] and [34].
As a NN is simply a function composed of elementary func-
tions, it can be substituted directly into the upper-level ob-
jective function. This way, the original bilevel optimization
problem is reduced into a single-level optimization problem,
which approximates the solution of the original problem. The
main difficulty of our framework is the design and training of a
NN that efficiently and accurately approximates the lower level
problem.

C. Contribution

In this work, we develop a general numerical solution tech-
nique for bilevel problems and apply it to the energy storage (ES)
bidding problem on an AC-OPF-constrained energy market. The
technique is applicable to any other upper level subject, but we
chose the ES due to modeling simplicity and clarity of presen-
tation. The numerical and mathematical difficulty of solving the
considered bilevel optimization arises from insufficient problem
regularity due to nonconvexity of the exact ac OPF formulations.
Current modeling practice is to avoid the difficulties by using
a simpler linear dc OPF [35] network representation as in [36].
To the authors knowledge, there are very few attempts to solve
bilevel problems with an ac OPF in the lower level. We have
not found any with the exact ac OPF, thus we single out two
papers with ac OPF relaxations, [16] and [17]. Scalability and

tractability issues are not discussed in these papers which is also
one of the important points of this work.

The contribution of this article consists of the following.
1) We introduce a novel numerical scheme for solving bilevel

optimization problems based on deep convolutional NNs.
It is an evolutionary metamodeling method that com-
pletely bypasses the lower level problem. Our method
successfully works with previously intractable, i.e., non-
convex, classes of the lower level problems. As opposed
to the existing techniques, solution times are basically
independent on the upper level problem size and scale
well with the lower level problem size.

2) We demonstrate the solution technique effectiveness
by solving a price-maker energy storage AC-OPF-
constrained market bidding problem. The results demon-
strate higher achieved profits than with the dc market
representation.

The article is organized as follows. Section II provides math-
ematical foundation of the work and is divided in six sections.
Section II-A states the optimization problem, Section II-B ex-
plains how to approximate the lower level using a NN, Section
II-C describes the concept of fully connected NNs, Section II-D
explains the advantages, concept, and our choice of hyperparam-
eters of the used convolutional NN, Section II-E describes the
NN training algorithm and Section II-F explains our iterative
numerical scheme to solve the optimization problem at hand.
The case study is presented in Section III with implementation
details stated in Section III-A and results in Section III-B. The
final Section IV concludes the article.

II. MATHEMATICAL MODELING

A. Optimization Model

In the following model, we solve optimal ES bidding prob-
lem in the ac OPF network-constrained electricity market. The
problem is of bilevel structure, i.e., the upper level maximizes
the ES profit while the lower level maximizes social welfare
due to supply and demand market bids. In the lower level,
we consider an exact nonconvex quadratic ac OPF formulation
based on rectangular coordinates [37] notation written out in
the Appendix, however, other notations such as polar [37] or
current–voltage [38] are also applicable.

The upper level problem consists of objective function (1),
where λt is the electricity price in each hour indexed by t,
and pES

t is the average ES power during 1 h, i.e., energy, at the
interface. Constraint (2) models the ES (dis)charging process,
i.e., change in its state-of-energySoEt considering charging and
discharging efficiencies ηch and ηdis. Constraint (3) sets limits
to the state-of-energy (SoE), with SoE being the maximum
value. Constraints (4) and (5) limit the ES (dis)charged energy
to qch for charging and qdis for discharging. Binary variable
xch
t disables simultaneous charging and discharging. Finally, (6)

combines charging and discharging into a single variable pES
t .

Optimization variables are written in formulas in normal font
and contained in the variables set Ξ, while the parameters are
written in bold font.

Max
Ξ

−
∑

t

pES
t × λt (1)

SoEt = SoEt−1 + pch
t × ηch − pdis

t /ηdis ∀t (2)
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0 ≤ SoEt ≤ SoE, ∀t (3)

0 ≤ pch
t ≤ qch × xch

t ∀t (4)

0 ≤ pdis
t ≤ qdis × (1− xch

t ) ∀t (5)

pES
t = pch

t − pdis
t ∀t (6)

The lower level is only textually explained and not written
here since we are bypassing it completely. The rectangular ac
OPF consists of the objective function, the bus power balance
constraints, the power flow equations, the line apparent power
limits, the bus voltage limits, the generator production limits,
and the reference bus constraints. Mathematically challenging
are the power flow equations and the lower bus voltage limit
constraints, which do not conform to the traditional single-level
reduction technique as they are nonconvex. Moreover, there are
two additional convex, but nonlinear parts of the formulation.
The considered objective function has quadratic cost coefficients
and line apparent power limit constraints are of second-order
cone form. Broader insights of different ac OPF formulations
can be found in tutorial works such as [37].

Bypassing the lower level is based on the fact that the lo-
cational marginal prices λt are essentially a function of the
upper level pES

t variables, i.e., the objective can be expressed as
F (pES

1 , pES
2 , . . . , pES

|τ |), where |τ | is cardinality of the time steps
set τ . However, F can not be expressed explicitly, so we replace
the objective functionF with the approximation F̂ from (7). The
approximating function F̂ is given as the feed-forward NN, so it
can be expressed explicitly in terms of elementary mathematical
functions. Essentially, we are solving a single-level optimization
metamodel that maximizes (7) subject to constraints (2)–(6).

Max
Ξ

F̂
(
pES
1 , pES

2 , . . . , pES
|τ |

)
(7)

The problem belongs to the mixed-integer nonlinear optimiza-
tion class due to the nonlinear NN function F̂ and due to xch

t
being binary variables.

B. Lower Level Approximation Using Neural Networks

For any function f : U ⊆ Rn → Rm, there exists a NN that
uniformly approximates the given function, see [39] and [40].
Typically, it is unknown how exactly to construct a specific NN,
approximating the function f to the desired accuracy, and using
the smallest possible number of neurons. The first problem we
encountered is the limited size of dataset used to train such NN.
More precisely, each element in the dataset must be constructed
by solving a single instance of the lower level optimization
problem for chosen values of the upper level variables. Solving
too many instances of the lower level problem would take
too long. On the other hand, the size of the dataset limits the
maximum network size (the number of neurons), by limiting
the number of parameters that define that particular network.
NNs trained on a dataset that is small compared to the number
of network parameters tend to overfit the training data and are
poor in generalization on unseen data. In our case that would lead
to lower accuracy of approximation of the lower level problem
solutions. Basically, the size of the dataset limits the accuracy
of the NN approximation.

The second issue is in determining an optimal topology of
a NN for a given network size, in order to achieve the great-
est possible approximation accuracy. The optimal topology is

Fig. 2. Example of a fully connected NN.

dependent on an unknown function, which we are trying to
approximate. Our first approach, using fully connected NN with
only few hidden layers, led to poor approximation accuracy. By
carefully analyzing the properties of the lower level optimization
problem, the choice of a network topology was settled on a con-
volutional neural network (CNN) [41]. As the CNN architecture
shares the same values of parameters between different parts
of the network, the cumulative number of parameters is much
smaller for the network of the same size, so the CNN archi-
tecture can be trained to approximate the original optimization
problem to a higher accuracy. The first big success of the CNN
architecture was in the area of computer vision, in the image
classification problems [42].

The third obstacle we encountered was the generation of a
dataset for the CNN training. Our first idea was to generate the
dataset by uniform random sampling of the independent upper
level variables, only in intervals of their permissible values.
Then for each sample, we solved the associated lower level
optimization problem. This strategy proved to be inefficient
as the near-optimal values of the upper level variables, which
solve our bilevel optimization problem, are poorly represented
by sampling these variables independently from the uniform
distribution. It resulted in much higher approximation error of
the CNN on the optimal solution than on the generated dataset.
The solution proved to be in iterative refining of the generated
dataset. In the first iteration, we generate a uniform dataset on the
whole permissible domain and find the solution of the approxi-
mation for the bilevel optimization problem. In each additional
iteration, we restrict the domain to an even smaller neighborhood
around the approximated solution from the previous iteration.
Then, we generate a new uniform dataset on this smaller domain,
train a new instance of the CNN, and using this new trained
network, we again find a solution of the approximating problem.
In each iteration, we verify the quality of the current solution
by computing the upper level objective function exactly on
optimal variables approximate problem values. We stop iterating
when the actual value of the upper-level objective function stops
improving.

C. Feed-Forward Fully Connected NNs

A feed-forward fully connected NN (see Fig. 2) consists of K
layers, where each layer consists of a number of neurons [43].
The first layer is referred to as the input layer, the last layer as
the output layer, while the intermediate layers are called hidden
layers. Neurons in each layer are connected only to the neurons
in the neighboring layers. Feed-forward means that the data
flows from the input layer to the output layer, strictly from one
layer to the next one and in only one direction. Fully connected
means that each neuron is connected to every neuron in the
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Fig. 3. Softplus and RELU plot.

neighboring layers. Finally, each neuron in every hidden layer
performs a nonlinear transformation on the data by applying
the so-called activation function. More precisely, a feed-forward
fully connected NN is a functionF : RN1 → RNK , whereN1 is
the number of neurons in the input layer, and NK is the number
of neurons in the output layer. FunctionF is a composition of the
alternating affine maps Ak : RNk−1 → RNk , k = 2, . . . ,K and
the elementwise nonlinear activation functions Nk : RNk →
RNk , k = 2, . . . ,K − 1, such that

F = AK ◦ NK−1 ◦ AK−1 ◦ · · · ◦ N3 ◦ A3 ◦ N2 ◦ A2

where Nk is the number of neurons in the kth layer.
Affine map Ak can be written in a matrix form as

ẑk := Ak(zk−1) = Wkzk−1 + bk ∀k = 1, . . . ,K

where weight matrix Wk has dimension Nk ×Nk−1 and bias
vector bk has dimension Nk.

For the activation functions, we elementwise use the Softplus
function

zik := N i
k(ẑk) =

ln(1 + exp(β × ẑik))

β

∀k = 1, . . . ,K
∀i = 1, . . . , Nk

where ẑik is the ith component of vector ẑk and β is the hyperpa-
rameter of the Softplus function. Notice that for large values of
β, Softplus uniformly converges to a rectified linear unit (ReLU)
activation function (see Fig. 3), which is given elementwise by

zik = max(ẑik, 0) ∀k = 1, . . . ,K ∀i = 1, . . . , Nk.

ReLU activation function is commonly used in recent NN ap-
plications. The reason why we decided to use Softplus will be
become clear in Section II-F.

D. Convolutional Neural Networks

A CNN can be regarded as a subtype of a feedforward NN. It
is generally not fully connected, and a large number of weight
and bias elements of matrices Wk and vectors bk share the
same values, as affine maps Ak are defined using the operation
of matrix convolution [41].

Fig. 4 depicts a deep CNN, describing the exact NN topology
used in approximating function F̂ of our problem. The structure
of the NN is determined by an educated guess of the authors
and by experimentation. Besides the input and output layers,
we have six additional hidden layers. Unlike in a general NN,
each layer in our CNN is described using the layer length Lk

and the number of channels Ck. The number of neurons in each
layer is given by Nk = Lk × Ck and neurons are grouped in Lk

groups of size Ck. In Fig. 4, a single square depicts one group
of neurons. The exact number of neurons within each group

(the number of channels Ck) is written inside each square. The
number of groups in each layer is given by a number written just
below each layer. For instance, the total number of neurons in
the second layer is equal to 24× 32 = 768.

To define affine mapAk, each layer in a CNN has an additional
integer hyperparameter called the kernel size Sk. In Fig. 4, only
the first (input) layer and the last of the hidden layers have kernel
sizesS1 = 1 andS7 = 1. All the other hidden layers have kernel
size equal to 3. Notice that the kernel size is not applicable to
the output layer, as the output layer only collects the output
of the last hidden layer and is not applying any further affine
maps. All kernels are depicted by a number of empty squares
equal to the kernel size Sk. A downward arrow indicates that a
kernel window is sliding over the layer in steps, performing a
computation of the affine map. This means that the convolution
operation can be in each step regarded as a smaller affine map Âk

that is defined only between the neurons in the groups covered
by the kernel window in layer k − 1 and the neurons in the single
output group in layer k. In each step of the convolution operation
on layer k − 1 we use the same map Âk.

Each convolution layer has two additional integer hyperpa-
rameters called a stride and a padding size. The stride is the
number of groups by which each kernel window moves in
every step of the computing convolution operation. The first
and second layers have the stride equal to 1 and the third to
fifth layers have the stride equal to 2. This is the reason why the
lengths Lk of the fourth to sixth layer are decreasing by a factor
of 2. For the sixth and seventh layers, the stride is not applicable
as the convolution operation is trivially performed only in the
single possible position. The padding controls whether the kernel
window can slide over the side of the layer or not. If we let the
kernel windows slide over the side of the layer, as for the second
to fifth layer, the padding is equal to 1 and we substitute zeros for
the input in the convolution operation in place of the nonexisting
data. For the first, sixth, and seventh layer, the padding is equal
to 0, which means we do not let the kernel window slide over
the side of the layer.

In matrix representation Wk of affine map Ak, lot of matrix
components are equal to zero and lot of other nonzero matrix
components share the same values. We actually have, for the
kernel size equal to 1 the block diagonal matrix Wk, and for the
kernel size equal to 3 the block tridiagonal matrix Wk, see Fig.
5. Every block is of size Ck × Ck−1. For the kernel size equal
to 1, every block in the block diagonal matrix Wk representing
affine map Ak is exactly the same block. For the kernel size
equal to 3, every 3 vertical blocks in the block tridiagonal matrix
representation are exactly the same blocks. The bias vector bk

also has repeating components. Regardless on the kernel size,
components of bk repeat every Ck entries, which means each
neuron group in a single layer shares the same biases.

Notice that a CNN, for the same number of neurons, typically
has much lower number of parameters defining affine maps Ak,
than a fully connected NN. For instance, in our case the num-
ber of parameters defining map A3 is C2S2C3 + C3 = 3104,
whether the number of parameters defining map A3 in a fully
connected NN with the same number of neurons would be
N2N3 +N3 = 590592.

E. Training Feed-Forward NNs

To train a NN simply means to optimize matrices Wk and
vectors bk in order to minimize a chosen loss function over a
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Fig. 4. Deep convolutional NN structure.

Fig. 5. Block matrices. (a) Diagonal. (b) Tridiagonal.

Fig. 6. Normalized profits with different approaches over four different
transmission system meshed networks.

Fig. 7. Charging profile for 3_lmbd network at bus 3.

Fig. 8. Charging profile for 57_ieee network at bus 1.

dataset. Since we use CNNs, we must respect the block diagonal
or tridiagonal structure of matrices Wk having many shared
values, as discussed in Section II-D.

The dataset is generated by solving a number of instances
of the lower level optimization problem, for as many ran-
dom samples of vector (pES

1 , pES
2 , . . . , pES

|τ |), and subsequently

evaluating value of the target objective function (1), i.e.,
F (pES

1 , pES
2 , . . . , pES

|τ |).
The loss function is the mean squared error between the NN

computed value F̂ (pES
1 , pES

2 , . . . , pES
|τ |) and the lower level exact

solution F (pES
1 , pES

2 , . . . , pES
|τ |).

As customary in NN training, the optimization of Wk and
bk is performed using a variant of a gradient descent optimizer.
The dataset is split into training and validation datasets, using
80 : 20 percent split ratio. The optimization is done in multiple
epochs over the training dataset, where gradients are computed
using backpropagation [44] and automatic differentiation [45]
of NN. The validation dataset is used only for evaluating the
loss function after every epoch of training and not for a gradi-
ent computation. Computed values of the loss function on the
validation dataset are used to asses numerical viability of the
training process and to select the best trained network, having
the lowest value of the validation loss. Before the start of the first
epoch of training, Wk and bk are initialized to random values.

More details about our exact training procedure, together with
all optimizer and training hyperparameter values are given in
Section III-A.

F. Metaoptimization Numerical Scheme

We devised an iterative numerical scheme for computing a
sequence of CNN approximations F̂i of the otherwise intractable
objective functionF . In each iteration i, we first generate dataset
Di of random sampled vectors (pES

1,i, p
ES
2,i, . . . , p

ES
|τ |,i). For each

t ∈ τ , values of pES
t,i are independently and uniformly random

sampled from the interval centered around pES,cnt
t,i of length at

most 2pES,rad
t,i , respecting the condition −pdis

t ≤ pES
t,i ≤ pch

t . In

the first iteration, we set pES,cnt
t,i equal to zero and pES,rad

t,i such
that it allows all permissible values of pES

t , i.e., −pdis
t ≤ pES

t,i ≤
pch
t .
In practice, we noticed that our numerical scheme runs better

if we introduce an additional small relative tolerance ε > 0
on the dataset creation. Thus, for the maximum length of the
sampling interval we actually use 2pES,rad

t,i (1 + ε) and allow all
permissible values of pES

t to be from the interval −pdis
t (1 + ε) ≤

pES
t,i ≤ pch

t (1 + ε). The intuition behind introducing the tolerance
is that our CNN would better approximate objective function F
for parameter values pES

t,i near the boundary values−pdis
t and pch

t ,
if the dataset is allowed to include values pES

t,i a bit outside the
interval [−pdis

t , pch
t ].
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Fig. 9. Charging profile for 73_ieee_rts network at bus 101.

Fig. 10. Charging profile for 300_ieee network at bus 1.

Each element in dataset Di is now a pair of random vector
(pES

1,i, p
ES
2,i, . . . , p

ES
|τ |,i) and a value F (pES

1,i, p
ES
2,i, . . . , p

ES
|τ |,i) of the

target objective function (1), computed by solving a single
instance of the lower level problem.

Next, in each iteration we separately train a number of CNNs,
F̂i,n indexed by n ∈ {1, . . . ,M}, to approximate function F .
For every additional training on the same dataset Di, we obtain
a subtly different CNN, as the training process is intrinsically
stochastic (random initialized network weights and random
sampled stochastic gradient descent mini batches).

Now, as every trained CNN is a function F̂i,n, we symboli-
cally insert function F̂i,n into the upper level problem objective
function. For this, we use our modeling environment’s, which is
AMPL, defining variables feature. Defining variables are a type
of variables that are substituted out, potentially in a nested way,
by their declaration expression before reaching the solver. This
results in solving a single-level optimization metamodel which
maximizes

Max
Ξ

F̂i,n

(
pES
1,i, p

ES
2,i, . . . , p

ES
|τ |,i

)
(8)

subject to constraints (2)–(3) and

0 ≤ pch
t,i ≤ qch × xch

t,i ∀t (9)

0 ≤ pdis
t,i ≤ qdis × (1− xch

t,i) ∀t (10)

pES
t,i = pch

t,i − pdis
t,i ∀t (11)

pES,cnt
t,i − pES,rad

t,i ≤ pES
t,i ≤ pES,cnt

t,i + pES,rad
t,i ∀t

(12)

for every trained CNN indexed by n. The additional constraint
(12) is used to respect that dataset Di is created centered around
pES,cnt
t,i using an interval length at most 2pES,rad

t,i .
Notice, as we used the differentiable Softplus activation

function in our CNN, and as a CNN is just a composition of
affine maps and elementwise activation functions, that F̂i,n are
differentiable functions. In case of using a ReLU activation
function, the resulting F̂i,n would not be differentiable. We

experimentally established that lower values of the Softplus
hyperparameter β result in lower overall NN approximation
accuracy, and higher values give rise to solver instabilities in
the single-level metamodel optimization step. We also tried to
use ReLU instead of Softplus, but we were plagued with solver
instabilities and slowdown. Using Softplus showed to be much
more efficient.

For every trained CNN, we now have the computed
profit Ci,n = Max

Ξ
F̂i,n(p

ES
t,i) and the computed optimal ES

(dis)charged energy (pES
1,i,n, p

ES
2,i,n, . . . , p

ES
|τ |,i,n). Now we can

verify what are the actual profits obtained for the computed
optimal ES (dis)charging schedule. This is done by optimizing
the lower level problem independently of the upper level with
fixed ES (dis)charging schedule. The actual profit is determined
as Vi,n = Max

Ξ
−∑

t p
ES
t,i,n × λt, where λt is in this case the

bus balance constraint marginal, computed by default by many
interior point solvers.

Additionally, we compute mean optimal ES energy exchange
quantities

pES
t,i =

1

M

M∑

n=1

pES
t,i,n ∀t ∈ τ

and for the computed mean vector (pES
1,i, p

ES
2,i, . . . , p

ES
|τ |,i) we

again optimize the lower level problem with fixed ES charging
values to the obtained mean optimal vector, arriving at the
mean actual profit Vi=−∑

t p
ES

t,i×λt. Considering the
mean actual profit is justified, because averaging over optimal
solutions of many different CNN models F̂i,n, each one
approximating an intractable objective function F , it can
result in a better mean solution. By looking at the actual test
results (i.e., Tables III and IV), we see that this approach
is justified in practice, i.e., in some iterations the mean
actual profit Vi can be higher than any of the actual profits
Vi,n.

Finally, we have to choose values of pES,cnt
t,i+1 and pES,rad

t,i+1
for a next iteration of the metaoptimization scheme. For
pES,cnt
t,i+1 , we either chose the optimal ES (dis)charging quantities

(pES
1,i,n, p

ES
2,i,n, . . . , p

ES
|τ |,i,n) from CNN that achieved the highest

actual profit Vi,n, or in the case Vi is the highest profit,
we chose the mean optimal ES (dis)charging quantities
(pES

1,i, p
ES
2,i, . . . , p

ES
|τ |,i).

To choose pES,rad
t,i+1 , we first compute the maximum

over all t ∈ τ of the standard deviations of samples
{pES

t,i,n : 1 ≤ n ≤ M}. More precisely, we compute

σi := Max
t∈τ

std
{
pES
t,i,n : 1 ≤ n ≤ M

}
.

For the next iteration, we take a smaller value between the
current pES,rad

t,i and a new estimate

pES,rad
t,i+1 := Min{pES,rad

t,i , γ × σi}

for every t ∈ τ , where γ is a hyperparameter. Note that pES,rad
t,i+1

does not depend on t. It has the same value for every t.
For the next iteration of our metaoptimization scheme, dataset

Di+1 is created around pES,cnt
t,i+1 , which is the best optimal ES

(dis)charging schedule computed in the current iteration, i.e.,
ES charging and discharging energy quantities that produce the
highest profit. The dataset width, which is decided by pES,rad

t,i+1 ,
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Fig. 11. Network topologies. (a) 57 bus system [59]. (b) 73 bus system [58]. (c) 300 bus system [59].

is influenced by how close together are optimal ES schedules
predicted by different CNNs trained in the current iteration.
In case different CNNs produce relatively close optimums, the
computed standard deviation σi is relatively small, and a next
iteration dataset is going to be concentrated around a smaller
neighborhood of pES,cnt

t,i+1 . On the contrary, in case different
CNNs produce optimums that are more apart, the computed
standard deviation σi is relatively large, and a next iteration
dataset is going to span over a bigger neighborhood of pES,cnt

t,i+1 .

Notice that pES,rad
t,i is nonincreasing between iterations.

In the end, we have to prescribe a stopping criterion for our
metaoptimization scheme. We choose to stop further iterations
if there is no improvement in the actual profit of the current
iteration compared to the previous one. We empirically conclude
(see Section III-B) that the convergence of our metaoptimization
scheme is achieved in few iterations (see Tables III–V). An
overview of the numerical optimization scheme is provided in
Algorithm 1.

III. CASE STUDY

A. Implementation Details

For the dataset creation, each instance of the lower level
problem, one for every dataset entry, was solved using AMPL

Algorithm 1: Numerical Optimization Scheme.
1: repeat
2: Generate a new random dataset (105 entries)
3: Evaluate LL response for the dataset
4: Train 60 NNs to approximate LL response
5: Optimize the ULs with inserted NNs into objective

function
6: Determine actual profits by optimizing LL with fixed

ES (dis)charging schedule
7: Select the best actual solution out of:

• the best direct result;
• the result obtained averaging decisions from all
optimized NNs;

8: For the next iteration, reduce and concentrate the
dataset spatial size in the neighborhood of the best
solution found from this iteration

9: until The best solution is worse than in the preceding
iteration

running KNITRO 12.3 solver. A single dataset entry consists of
a 24-D floating point vector (pES

1 , pES
2 , . . . , pES

|τ |) as an input and
a single floating point value as an output, which corresponds
to the computed upper-level profit for given (pES

1 , pES
2 , . . . , pES

|τ |)
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TABLE I
VALUES OF pES,rad

t,i FOR DIFFERENT TRANSMISSION NETWORKS

AND ITERATIONS

values (computed as −∑
t p

ES
t × λt, where λt is the marginal

of an active power bus balance constraint at the ES location). In
total, we used 105 dataset entries and thus the same number of
independent lower levels to be solved. To reduce the computation
time, computations were carried out in parallel running on a dual
Intel Xeon CPU computer system over a total of 40 physical
cores.

We implemented the CNN depicted in Fig. 4 in Python using
PyTorch library [46]. CNN hyperparameters are described in
Section II-D, and the hyperparameterβ of the Softplus activation
function is set to 50.

Training of the CNN was implemented using the fast.ai
library [47] using training procedure similar as in [48]. We
used the Ranger algorithm [49], employing the RAdam opti-
mizer [50], the parameter lookahead [51], and the flat-cosine
one-cycle policy [52]. After experimenting with training thou-
sands of models, we set RAdam hyperparameters to the follow-
ing values: the number of training epochs to 500, the maximum
learning rate to 0.003, the training batch size to 128, the weight
decay factor to 0.01, and the exponential decay rates of the first
and second moments to values 0.95 and 0.85.

In every iteration of the metaoptimization scheme, we trained
a total of M = 60 CNNs on the same dataset. Our computer
system was equipped with 6 Nvidia Quadro RTX 6000 GPUs,
each having 16 GB of RAM, so we could train all CNNs in
parallel, training 10 CNNs per GPU.

In the metaoptimization scheme, there are two hyperparame-
ters to consider. After experimenting with different values, for
the relative tolerance of the dataset creation we take ε = 0.1,
and for the other hyperparameter we take γ = 5. A value of
hyperparameter γ influences the decreasing rate of pES,rad

t,i
through subsequent iterations. Using lower values of γ produces
lower values of pES,rad

t,i in later iterations, which can lead to a
suboptimal optimization result in the end, and a higher value
tends to slow down the speed of convergence. Table I shows
that pES,rad

t,i decreases throughout all iterations from the case

study. Notice the difference in speed and intensity of pES,rad
t,i

decrease in different transmission networks. More significant
and faster decrease, as seen in, e.g., 3_lmbd, suggests that all 60
trained CNNs yield closer optimums, which can be explained
by inherently tamer underlying optimization landscape. On the
contrary, much less significant decrease in pES,rad

t,i , as seen in,
e.g., 73_ieee_rts, suggests that CNNs are struggling more to
approximate the optimums, which is probably induced by more
demanding optimization landscape.

B. Results

We tested our method on four separate transmission sys-
tem meshed networks from PGLib-OPF [53] library: 3_lmbd,

TABLE II
AVERAGE PROCESSING TIME IN SECONDS PER SINGLE ITERATION OF THE

METAOPTIMIZATION SCHEME

57_ieee, 73_ieee_rts, and 300_ieee. Topologies of the three large
networks are provided in Fig. 11. The three-bus network is of
typical triangle topology. A time dimension was added to the data
by applying the load scaling factors for winter workdays avail-
able from IEEE RTS-96 [54]. Set of time steps τ has 24 elements
for different hours in a single day. In case of 73_ieee_rts network,
we also applied 0.85 scaling factor to the transmission lines
capacities to induce congestion. The networks were otherwise
unmodified. For an ES to have an impact on the energy market
prices, a feature for which the bilevel modeling is used for, it
has to be very large. Thus, we model the ES with 100 MWh (1
p.u.) capacity. Charging and discharging efficiencies were both
set to 90% and maximum ES (dis)charging power to 60 MW.

Table II presents an average wall time per iteration for each
step of the proposed metaoptimization scheme. Dataset creation
is a cumulative time for three substeps: generation of 105 random
vectors of pES

t , solving lower level problems for every dataset
entry, and data format postprocessing of the generated dataset,
which mostly include disk input–output (IO) operations. Most
of the time is consumed for solving 105 lower level problems.
Notice that larger transmission system networks require more
solver time. NN training is the time consumed for parallel CNN
models training. This time does not depend on the transmission
system network size, as it depends solely on the CNN and train-
ing hyperparameters. The last step is solving the metamodels,
which is performed sequentially for all 60 trained CNNs. A
possible speedup of using parallel computations in this step
would not be significant compared to the total time used per
iteration. Time for solving the metamodels can vary greatly
between different CNNs and different iterations. We consider
this to be a normal solver behavior due to binary variables xch

t .
For the dataset creation and the NN training the average wall
time is pretty much unchanged between different iterations, so
we supply only the mean times without the standard deviation.
Component total time is a sum of the dataset creation time, the
NN training time, and the mean time for solving meta-models.
Our model is highly scalable as long as the lower level problem
can be evaluated a number of times under reasonable time and
resources. An alternative method from our two-part paper [12]
and [13] has scalability issues when using lower levels with
larger networks since it computes the lower and the upper level
simultaneously so the solution process can diverge. Table II
indicates that our method scales reasonably even for 73 and
300 bus systems.

Tables III–VI present optimization results in terms of the
ES computed and actual profits acquired in four different trans-
mission systems. Actual profits are obtained in the verification
Step 6 of Algorithm 1 by optimizing the lower level with fixed
ES charging decisions as explained in Section II-F. We also
compare actual profits achieved by our method to actual profits
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TABLE III
PROFITS FOR 3_LMBD NETWORK (ES AT BUS 3)

TABLE IV
PROFITS FOR 57_IEEE NETWORK (ES AT BUS 1)

TABLE V
PROFITS FOR 73_IEEE_RTS NETWORK (ES AT BUS 101)

TABLE VI
PROFITS FOR 300_IEEE NETWORK (ES AT BUS 1)

achieved by solving a bilevel ES market optimal bidding using 1)
the ac OPF model and single-level reduction approach from the
two-part paper [12] and [13] and 2) a standard dc OPF [35] model
in the lower level. AC OPF single-level reduction approach
results in slightly higher actual profits compared to the NN
approach, but its solution process fails to converge for 73- and
300-bus networks. Actual dc OPF profits are profits that would
occur in the ac OPF market, but by using bidding decisions
from the dc OPF bilevel model. In our tables, the best NN
computed profit is the maximum value of Ci,n over all 60 NNs,
the best NN actual profit is the maximum value of Vi,n over
all 60 NNs, and the mean pES

t actual profit is Vi, where i is
the iteration number and NNs are indexed by n. By design,
the best profit is always achieved in the penultimate iteration
of our method, as a worse profit in the last iteration actually
triggers the stopping criterion. The number of required iterations
differs between the transmission systems and ranges from 2 to 6.
Tables III–VI demonstrate we also achieved a high first iteration
accuracy, since the greatest second iteration improvement of

the actual profit is only 0.03%. Note that the total time per
iteration presented is somewhat higher than a component total
time in Table II, as it includes an additional overhead for some
data reformatting and IO disk operations. Also, note that we
decided to present profits using up to four decimal places,
so that small improvements between subsequent iterations in
Table III become visible, which also reaffirms the optimality
of the first iteration result. Relative differences in profits using
all three approaches (single-level reduction, NN, and bilevel dc
OPF) are clearly presented in Fig. 6 where the highest profits
are normalized to 100%. On 3- and 57-bus networks, the NN
approach achieved 99.9987% and 99.9848% of ES profits of the
single-level reduction. Profit increase over the dc OPF model
was 1.5% for 3_lmbd, 1.5% for 57_ieee, 10.5% for 73_ieee
network, and 16.4% for 300_ieee network.

Figs. 7–10 present ES (dis)charging profiles for all four
test cases. The 3-bus network is characterized with relatively
small charging and discharging powers (up to 10 MW). In such
small network, the ES (dis)charging would change the marginal
producer, thus significantly affecting the market prices. In the
57-bus network the dc model discharges at over 40 MW in
hour 12. Since it is a lossless model, it does not predict any
price change due to ES arbitrage. On the other hand, the ac
model captures price changes incurred by the ES and charges
more evenly throughout the day. The 73-bus network features
high price volatility, thus the ES makes the most cycles. In the
300-bus network, the dc model also assumes no price impact by
its actions, which is incorrect, while the NN approach, which
better captures the price changes due to the ES (dis)charging, is
more conservative and discharges at low power in ours 17-19.
Figs. 7–8 also show that the NN approach produces almost iden-
tical ES charging profile as the single-level reduction approach
from [12] and [13].

IV. CONCLUSION

This article presents a novel numerical method, which uti-
lizes deep convolutional NNs to efficiently solve a wide class
of bilevel optimization problems arising in deregulated power
systems. The method uses evolutionary metamodeling to bypass
the lower level problem, thus it is insensitive to the lower
level complexity, which is the main culprit in rendering bilevel
optimization problems intractable. The model successfully deals
with nonlinear nonconvex lower levels that include binary vari-
ables, as long as the lower level can be efficiently solved as
a single-level problem by treating all upper level variables as
parameters. We demonstrate the application of the method to
solve the ES market participation problem using ac OPF in
the lower level, which enables electricity market operators to
perform highly accurate market clearing procedure. However,
the proposed framework is generally applicable for any other
bilevel optimization problem in the power systems domain.

Additionally, our method is scalable in terms of the required
precision versus the run time. Using larger training datasets, we
could train an NN having more parameters than we used here. We
would obtain more accurate optimums, but would also require
longer run time. On the other hand, if we are satisfied with lower
precision, we could use a smaller dataset for training a smaller
NN, and our method would run faster.

Finally, we note that this procedure can be easily implemented
to trilevel models, as they are generally solved by first merging
the middle- and the lower level problems into a mixed-integer

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: University of Zagreb. Downloaded on January 13,2023 at 13:58:43 UTC from IEEE Xplore.  Restrictions apply. 



VLAH et al.: SOLVING BILEVEL OPTIMAL BIDDING PROBLEMS USING DEEP CONVOLUTIONAL NEURAL NETWORKS 11

problem with equilibrium constraints, see, e.g., [55], which is
a direct application of our proposed procedure. The obtained
single-level problem then acts as a lower level problem to the
original upper level problem. The resulting bilevel structure is
commonly iteratively solved using a cutting plane algorithm.
However, a direct implementation of our procedure to trilevel
problems will be explored in future.
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APPENDIX

LOWER LEVEL

This section includes the formulation of the lower level, i.e.,
the exact ac OPF in the rectangular coordinates. Objective func-
tion (A.1) minimizes production costs, (A.2) and (A.3) are bus
balances, (A.4)–(A.7) are power flow equations, (A.8) and (A.9)
are generator production limits, (A.10) is line thermal limit,
(A.11) is voltage limit, and (A.12) is reference bus constraint.
V r
t,i and V i

t,i, τ
r
e and τ i

e are real and imaginary parts of voltage
magnitude and transformer tap ratio, respectively. All other
notations are the same as in our previous paper [11]. The sim-
ulated bidding process assumes the strategic market participant
is the one in the upper level, while bids of all other participants
are deterministic. Such modeling is a common practice and is
described in detail in [56]. In reality, sufficient historical offering
data to derive other participants’ offering curves are available in
some markets, e.g., see [57] for the Alberta market.

Min
Ξll

∑

t,k

(c̈k × (P g
t,k)

2 + ċk × P g
t,k + ck) (A.1)

∑

k∈Gi

P g
t,k −

∑

l∈Li

P d
t,l −

∑

(e,i,j)∈E∪ER

Pt,e,i,j − pES
t

:i∈β

− ((V r
t,i)

2 + (V i
t,i)

2)×
∑

s∈Si

gsh
s =0 ∀t, i : λt,i (A.2)

∑

k∈Gi

Qg
t,k −

∑

l∈Li

Qd
t,l −

∑

(e,i,j)∈E∪ER

Qt,e,i,j

+ ((V r
t,i)

2 + (V i
t,i)

2)×
∑

s∈Si

bshs =0 ∀t, i (A.3)

Pt,e,i,j = ((V r
t,i)

2 + (V i
t,i)

2)×(ge + gfr
e )/τ

2
e

+ ((−ge×τ r
e + be×τ i

e)×(V r
t,i×V r

t,j + V i
t,i×V i

t,j)

+ (be×τ r
e + ge×τ i

e)×(V r
t,i×V i

t,j − V i
t,i×V r

t,j))/τ
2
e,

∀t, (e, i, j) ∈ E (A.4)

Pt,e,i,j = ((V r
t,i)

2 + (V i
t,i)

2)×(ge + gto
e )+

((−ge×τ r
e − be×τ i

e)×(V r
t,i×V r

t,j + V i
t,i×V i

t,j)

+ (be×τ r
e − ge×τ i

e)×(V r
t,i×V i

t,j − V i
t,i×V r

t,j))/τ
2
e,

∀t, (e, i, j) ∈ ER (A.5)

Qt,e,i,j = −((V r
t,i)

2 + (V i
t,i)

2)×(be + bfre )/τ
2
e

+ ((be×τ r
e + ge×τ i

e)×(V r
t,i×V r

t,j + V i
t,i×V i

t,j)

+ (ge×τ r
e − be×τ i

e)×(V r
t,i×V i

t,j − V i
t,i×V r

t,j))/τ
2
e,

∀t, (e, i, j) ∈ E (A.6)

Qt,e,i,j = −((V r
t,i)

2 + (V i
t,i)

2)×(be + bfre )/τ
2
e

+ ((be×τ r
e + ge×τ i

e)×(V r
t,i×V r

t,j + V i
t,i×V i

t,j)

+ (ge×τ r
e − be×τ i

e)×(V r
t,i×V i

t,j − V i
t,i×V r

t,j))/τ
2
e,

∀t, (e, i, j) ∈ E (A.7)

P g
k≤ P g

t,k ≤ P
g
k ∀t, k (A.8)

Qg
k
≤ Qg

t,k ≤ Q
g
k ∀t, k (A.9)

P 2
t,e,i,j+Q2

t,e,i,j≤ S2
e ∀t,(e, i, j)∈E∪ER (A.10)

V 2
i ≤ (V r

t,i)
2 + (V i

t,i)
2 ≤ V

2
i ∀t, i (A.11)

V r
t,i ≥ 0, V i

t,i = 0 ∀t, i ∈ R (A.12)
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battery storage in joint energy-reserve markets,” IEEE Trans. Power Syst.,
vol. 36, no. 5, pp. 4355–4365, Sep. 2021.
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Abstract—The objective of transmission network expansion
planning is to find the optimal strategy that balances the
investment and the operating costs, considering all generation
and transmission constraints. Attempts to address this problem
in a tractable manner have led researchers to develop different
convex relaxations and approximations. Due to the constant
power grid evolution, new and improved approximation models
are required to successfully handle the upcoming challenges.
In this paper, we present a comprehensive approach to handle
this highly complex problem both tractably and accurately.
The model is based on a convex polar second-order Taylor
expansion approximation of the AC power flows where both the
voltage magnitudes and angles are quadratically constrained. The
proposed approach achieves high accuracy due to the elimination
of constraint relaxation errors, as determined by the presolve,
which can occur due to the convexification process. The model
demonstrated superior accuracy and similar computation times
as the existing approximation models. In comparison to the exact
formulations, our model shows similar accuracy while improving
the computation time.

Index Terms—Optimal power flow approximation, transmis-
sion expansion planning, mixed-integer quadratically constrained
quadratic program

NOMENCLATURE

A. Sets and Indices
N Set of buses, indexed by i and j.
NP Tuple set of paired buses aligned with branch E

orientation, indexed by pi, jq.
R Set of reference buses, indexed by i.
E,ER Tuple set of branches, forward and reverse orien-

tation, indexed by pe, i, jq.
Ei, E

R
i Array of tuple sets of branches at bus i, forward

and reverse orientation, indexed by pe, i, jq.
E`, ER` Tuple set of prospective expansion branches, for-

ward and reverse orientation, indexed by pe, i, jq.
Ei
`, ER

i
` Array of tuple sets of prospective expansion

branches at bus i, forward and reverse orientation,
indexed by pe, i, jq.

G,Gi Set of all generators and array of sets of genera-
tors at bus i, indexed by k.

Li Array of sets of loads at bus i, indexed by l.
Si Array of sets of shunts at bus i, indexed by s.

τ Set of time steps, indexed by t.
Ω,Ωi Set of all wind generators and array of sets of

wind generators at bus i, indexed by w.
Ξ Set of decision variables.

B. Parameters
:ck, 9ck, ck Generator cost coefficients.
P d

t,l,Q
d
t,l Active and reactive power load.

gsh
s , bshs Bus shunt conductance and susceptance.

ge, g
fr
e , g

to
e Branch π-section conductances.

be, b
fr
e , b

to
e Branch π-section susceptances.

τe,σe Branch tap magnitude and shift angle.
P g

k ,P
g

k Generator minimum and maximum active power
output.

Qg

k
,Q

g

k Generator minimum and maximum reactive power
output.

P
ω

w Wind generator maximum active power output.
Se Branch maximum apparent power.
θi,j ,θi,j Bus-pair minimum and maximum voltage angle

difference.
V i,V i Bus minimum and maximum voltage magnitude.
V op
t,i ,θ

op
t,i Assumed bus voltage magnitude and angle oper-

ating points.
Λt,e,Γt,i,j Boolean parameters which indicate whether to use

quadratic form of voltage and cosine representa-
tion respectively.

M Disjunctive factor, a large positive number.
coste Expansion cost coefficient.

C. Variables
P g
t,k, Q

g
t,k Generator active and reactive power production.

Pω
t,w Wind generator active power production.
Pt,e,i,j , Qt,e,i,j Branch active and reactive power flow.
V ∆
t,i , θ

∆
t,i Bus voltage magnitude and angle change.

Vt,i, θt,i Bus voltage and magnitude.
xcost,i,j Cosine approximation.
qVt,e Second order Taylor series voltage magnitude

term approximation.
ze Binary decision variable for a prospective line.
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1 . INTRODUCTION

A. Motivation and background

Transmission expansion planning (TEP) represents an im-
portant research area in the field of power systems. TEP
determines the location and number of new lines that need
to be installed to achieve certain goals in the transmission of
electrical power. An optimal TEP solution usually consists of
several targets, such as increasing reliability and ensuring the
security of supply, minimizing the investment and operating
costs, reducing power losses, and avoiding potential conges-
tion. With the continuous increase in demand levels, more lines
will become congested in the near future and for that reason,
it is important to identify and improve potential weak spots
in the transmission system to ensure system security and to
maximize social welfare.

The nonlinear and non-convex nature of the exact AC TEP
problem makes the computation of the globally optimal solu-
tion, in a reasonable time, difficult to achieve, especially when
large-scale networks are considered. The TEP problem has
been solved using mathematical optimization approximation
and relaxation models [1] – [11] and heuristic optimization
methods [12] – [14]. Paper [15] presents a comprehensive
review and classification of available publications and models
on the TEP problem. Heuristic methods, based on the power
flow results, incrementally select expansion line that removes
congestion in a selected part of the network. Considering the
added line, power flow analysis is recalculated and the process
continues step-by-step until there is no more congestion in
the network. Heuristic methods rarely achieve global opti-
mality and do not provide any optimality estimates. On the
other hand, convex mathematical optimization models pro-
vide model’s solution optimality guarantees, but no feasibility
guarantees due to reduced accuracy due to applied relaxations
or approximations. Several methods have been proposed for
the TEP problem and they mostly use classical optimization
techniques, such as linear programming [3] – [5], non-linear
programming [6] and mixed-integer programming [7] – [8].

B. Literature review

Due to the high computational complexity of TEP, using one
of the exact AC network models is not a popular approach de-
spite the ultimate accuracy of the obtained solution. Thus, [12]
presented a mixed-integer nonlinear programming (MINLP)
approach for solving TEP for an AC network model using
heuristic algorithms and interior point method which obtained
a quality solution for the presented problem. For mathematical
optimization programming, approximations such as linear DC
model [10], piecewise-linearized AC model [1] and linear-
programming of AC power flows (LPAC) [9] are commonly
used to approximate the exact AC power flow equations.

The DC model approximation has the fastest computation
time compared to any other approach, but in terms of accuracy,
it results in a suboptimal and frequently infeasible solution in
reality. Accuracy gap of the linear DC model compared to the
exact one arises from simplifications made when neglecting

reactive power flows, active power losses, and voltage drops
in network optimization modeling [2], [12], [14]. Piecewise
linearization of AC power flows (LACTEP) was introduced in
[1], where reactive power flows, active power losses, and off-
nominal bus voltage magnitudes were retained. Linearization
is based on the first-order Taylor series expansion and is
used to separately model network losses initially defined as
non-convex constraints. The optimal solution and computation
time highly correlate with the number of linear blocks used
in the piecewise linearization process. The objective function
in this approach varies with the number of linear blocks. To
obtain the best solution, it is necessary to perform an iterative
sensitivity analysis with different number of linear blocks,
which results in a prolonged computation time. [9] proposes a
linear approximation of the AC power flow equations (LPAC)
that, contrary to the DC model, captures reactive power flows
and voltage magnitudes, as well as active and reactive power
losses, which means they do not have to be modeled separately
as in [1]. The linearity of power flow equations in the LPAC
model is highly desirable in terms of computational tractabil-
ity. However, for the TEP process, the cosine approximation is
modeled in its quadratically constrained formulation to better
capture the voltage angle variable, thus the LPAC model in this
paper is presented as a mixed-integer quadratically constrained
quadratic programming (MIQCQP) model.

However, all of the previously mentioned popular approx-
imations tend to have certain accuracy disadvantages when
it comes to modeling of reactive power flows, voltage mag-
nitudes, and losses, and thus often result in a suboptimal or
even infeasible solutions. On the other hand, convex quadratic
approaches of the AC power flows can achieve high accuracy
when there are no constraint relaxation errors due to the
convexification process. A new ACOPF approximation ap-
proach [16] is based on the convex polar second-order Taylor
approximation (CPSOTA) of AC power flows, where the
relaxed quadratic constraints that would likely cause relaxation
errors are identified in the presolve process. The identified
quadratic inequalities are substituted with linear equality con-
straints, significantly improving model’s accuracy. Our work
builds upon the CPSOTA approximation by introducing new
constraints necessary for TEP.

C. Paper contribution and structure

Contribution of the paper consists of the following:
‚ We present new model for TEP process based on the

Taylor series that approximates second-order voltage vari-
ables.

‚ Presolve technique is used to decide whether to use the
quadratic or the linear form of power flow constraints to
avoid constraint relaxation errors due to the convexifica-
tion process.

‚ The resulting MIQCQP solution is obtained much quicker
than the MINLP solution, while maintaining high accu-
racy

Rest of the paper is structured as follows: Section 2 presents
our mathematical model for TEP problem. Subsection 2 -A in-
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troduces the presolve technique and Subsection 2 -B presents
model components. Case study is presented in Section 3 . It
presents description and set-up of test cases, and algorithm that
describes four step procedure of our TEP model. Section 4
provides relevant conclusions and guidelines for future work.

2 . MATHEMATICAL MODEL

Our model is based on the convex polar second-order
Taylor approximation of AC power flows where both the
voltage magnitudes and angles are quadratically constrained.
The proposed approach achieves high accuracy due to the
elimination of constraint relaxation errors, as determined in the
presolve process, which can occur due to the convexification
process. Detailed algorithmic implementation of the presented
model is defined in Section 3 .

A. Presolve technique

The convex quadratic approach can achieve high accuracy
when there are no constraint relaxation errors that result from
the convexification process. The presolve process identifies
constraints that would likely cause relaxation errors and de-
cides whether to use the quadratic or the linear form of power
flow constraints to avoid relaxation errors.

qVt,e“ ge`gfr
e

τ 2
e

¨pV ∆
t,iq2´

2¨ge
τe

¨cospθop
t,i´θop

t,j´σeq¨V ∆
t,i ¨V ∆

t,j

`pge`gto
e q¨pV ∆

t,jq2, @t, pe, i, jqPE (1.1)

xcost,i,j “ 1´ pθ
∆
t,i ´ θ∆t,jq2

2
, @t, pi, jq P NP (1.2)

Swapping the inequality constraints in equations (2.8) and
(2.10) with their linear alternative in equations (2.9) and
(2.11) avoids constraint relaxation errors due to convexification
process. The decision for swapping inequality constraints with
their linear alternative is based on the marginal value of
equations (1.1) and (1.2), which are defined as quadratic equal-
ity constraints in the presolve process. Constraints’ marginal
values represent the sensitivity of the objective function on
these constraints and they are computed by default by many
solvers, e.g. IPOPT. For constraint (2.8) to be binding, due
to its greater-or-equal sign, qVt,e should have the tendency to
be as small as possible, i.e. marginal value of (1.1) needs to
be positive. Oppositely, for constraint (2.10) to be binding,
due to its less-or-equal sign, marginal value of (1.2) needs
to be negative. Therefore, the quadratic form of constraint
qVt,e is used only if the Boolean parameter Λt,e is true and
conductance ge is positive, and quadratic form of constraint
xcost,i,j is used only in the Boolean parameter Γt,i,j is true.

B. Optimization model

This subsection presents the whole network-constrained
TEP model.

Minp
ÿ

t,k

p:ck ¨ pP g
t,kq2 ` 9ck ¨ P g

t,k ` ckq `
ÿ

ePE`
ze ¨ costeq (2.1)

ÿ

kPGi

P g
t,k ´

ÿ

lPLi

P d
t,l ´

ÿ

pe,i,jqPEiYER
i

Pt,e,i,j ´
ÿ

pe,i,jqPpE`
i YER`

i q
Pt,e,i,j

´ppV op
t,i q2 ` 2 ¨ V op

t,i ¨ V ∆
t,iq ¨

ÿ

sPSi

gsh
s `

ÿ

wPΩ
Pω
t,w “ 0,@t, i

(2.2)
ÿ

kPGi

Qg
t,k ´

ÿ

lPLi

Qd
t,l ´

ÿ

pe,i,jqPEiYER
i

Qt,e,i,j ´
ÿ

pe,i,jqPpE`
i YER`

i q
Qt,e,i,j

`ppV op
t,i q2 ` 2 ¨ V op

t,i ¨ V ∆
t,iq ¨

ÿ

sPSi

bshs “ 0, @t, i
(2.3)

Pt,e,i,j “
ppV op

t,i q2 ` 2 ¨ V op
t,i ¨ V ∆

t,iq ¨ pge ` gfr
e q

τ 2
e

`
qVt,e
2

´pge ¨ cospθop
t,i ´ θop

t,j ´ σeq ` be ¨ sinpθop
t,i ´ θop

t,j ´ σeqq¨
pV op

t,i ¨ V op
t,j ¨ xcost,i,j ` V ∆

t,i ¨ V op
t,j ` V ∆

t,j ¨ V op
t,i q{τe

´pbe ¨ cospθop
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V op
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t,iq ¨ pge ` gto

e q `
qVt,e
2

´pge ¨ cospθop
t,i ´ θop
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pV op

t,i ¨ V op
t,j ¨ xcost,j,i ` V ∆

t,i ¨ V op
t,j ` V ∆

t,j ¨ V op
t,i q{τe

´pbe ¨ cospθop
t,i ´ θop

t,j ` σeq ´ ge ¨ sinpθop
t,i ´ θop

t,j ` σeqq¨
V op
t,i ¨ V op

t,j ¨ pθ∆t,i ´ θ∆t,jq{τe, @t, pe, i, jq P ER (2.5)

Qt,e,i,j “ ´
ppV op

t,i q2 ` 2 ¨ V op
t,i ¨ V ∆

t,iq ¨ pbe ` bfre q
τ 2
e

`pbe ¨ cospθop
t,i ´ θop

t,j ´ σeq ´ ge ¨ sinpθop
t,i ´ θop

t,j ´ σeqq¨
pV op

t,i ¨ V op
t,j ¨ xcost,i,j ` V ∆

t,i ¨ V op
t,j ` V ∆

t,j ¨ V op
t,i q{τe

´pge ¨ cospθop
t,i ´ θop

t,j ´ σeq ` be ¨ sinpθop
t,i ´ θop

t,j ´ σeqq¨
V op
t,i ¨ V op

t,j ¨ pθ∆t,i ´ θ∆t,jq{τe, @t, pe, i, jq P E
(2.6)

Qt,e,i,j “ ´ppV op
t,i q2 ` 2 ¨ V op

t,i ¨ V ∆
t,iq ¨ pbe ` btoe q

`pbe ¨ cospθop
t,i ´ θop

t,j ` σeq ´ ge ¨ sinpθop
t,i ´ θop

t,j ` σeqq¨
pV op

t,i ¨ V op
t,j ¨ xcost,j,i ` V ∆

t,i ¨ V op
t,j ` V ∆

t,j ¨ V op
t,i q{τe

´pge ¨ cospθop
t,i ´ θop

t,j ` σeq ` be ¨ sinpθop
t,i ´ θop

t,j ` σeqq¨
V op
t,i ¨ V op

t,j ¨ pθ∆t,i ´ θ∆t,jq{τe, @t, pe, i, jq P ER
(2.7)

qVt,eě ge`gfr
e

τ 2
e

¨pV ∆
t,iq2´

2¨ge
τe

¨cospθop
t,i´θop

t,j´σeq¨V ∆
t,i ¨V ∆

t,j

`pge`gto
e q¨pV ∆

t,jq2, @t, pe, i, jqPpEYE`q : geą0^ Λt,e

(2.8)

qVt,e “ 0, @t, pe, i, jq P pE Y E`q : ge ď 0_ Λt,e (2.9)

xcost,i,j ď 1´ pθ
∆
t,i ´ θ∆t,jq2

2
, @t, pi, jq P NP : Γt,i,j (2.10)

xcost,i,j “ 1, @t, pi, jq P NP :  Γt,i,j (2.11)

0 ď Pω
t,w ď P

ω

w, @t, w (2.12)

P g
k ď P g

t,k ď P
g

k , @t, k (2.13)
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Qg

k
ď Qg

t,k ď Q
g

k , @t, k (2.14)

P 2
t,e,i,j`Q2

t,e,i,jďS
2

e, @t, pe, i, jqPpE Y ERq :DSe (2.15)

θop
t,i ` θ∆t,i “ 0, @t, i P R (2.16)

V i ď V op
t,i ` V ∆

t,i ď V i, @t, i (2.17)

θi,jď pθop
t,i`θ∆t,iq´pθop

t,j´θ∆t,jqď θi,j ,@t, pi, jq P NP (2.18)

pze´1q¨M ď Pt,e,i,j´pf pψq ď p1´zeq¨M,@e P E` (2.19)

pze´1q¨M ď Pt,e,i,j´ptpψq ď p1´zeq¨M,@e P ER` (2.20)

pze´1q¨M ď Qt,e,i,j´qf pψq ď p1´zeq¨M,@e P E` (2.21)

pze´1q¨M ď Qt,e,i,j´qtpψq ď p1´zeq¨M,@e P ER` (2.22)

P 2
t,e,i,j `Q2

t,e,i,j ď S
2

e ¨ ze,@t, pe, i, jq P pE` Y ER`q : DSe

(2.23)
The objective function (2.1) minimizes total operating and in-
vestment cost over defined time period. For operating cost we
use quadratic cost curve. Equations (2.2) and (2.3) represent
bus balance constraints for active and reactive power. Con-
straints (2.4)–(2.7) represent power flow equations for existing
lines which also contain second-order term approximation
variables qVt,e and θop

t,i that are defined from (2.8) - (2.11).
Wind generators output is limited by its maximum generating
capacity as defined in (2.12), and output limits of active and
reactive power for conventional generators are set in (2.13) and
(2.14). Constraint (2.15) defines maximum branch apparent
power flow in both directions. Equation (2.16) defines the ref-
erence bus angle value. Voltage magnitude and bus-pair angle
constraints are defined in (2.17) and (2.18). Constraints (2.19)–
(2.22) represent power flow equations for prospective lines,
where pf pψq, ptpψq, qf pψq, qtpψq are sequentially defined as
the right-hand side of equations (2.4)–(2.7). Equation (2.23) is
used to force the power flow on prospective lines to be equal
to zero it the prospective line is not selected for the expansion
process.

3 . CASE STUDY

We demonstrate the accuracy of our model on the IEEE
24-bus and the IEEE 73-bus (RTS96) systems from the OPF
benchmark [17]. Due to the limited amount of available
network data for transmission network expansion planning, the
presented grids are modified to capture different time intervals
during the operating horizon. Wind power generation units
are included in the system, and their active power production
limits are defined for each time step, which have assigned
occurrence frequency throughout the target years. Detailed
input data on these modified power systems can be found in
[18]. To incur congestion, conventional generator’s minimum
production limits are reduced by the factor of 50% and the line
ratings are reduced by the factor of 20% as compared to the
original values defined in [17]. Different time segments are
used to account for different branch power flows that occur
as a result of variable output of wind generator active power
production at each time period. Therefore, during the different
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Fig. 1: IEEE 24-bus system for TEP.

time segments, different lines are identified as prospective
candidates for the expansion of the transmission network. For
the IEEE 24-bus system, the number of representative time
steps is set to 7, and for the IEEE 73-bus (RTS96) system
it is set to 5. The IEEE 73-bus (RTS96) system with 120
branches is a complex network by itself. To capture a compu-
tationally complex, yet time feasible case study, the number
of prospective candidate lines for the IEEE 24-bus system
with 38 branches has to be greater than for the IEEE 73-bus
(RTS96) system. Set of prospective expansion branches Ei

`
is determined after the first step of our model where the lines
with the apparent flow greater than 70% of their capacity, for
the IEEE 24-bus system, are defined as prospective candidates.
For the IEEE 73-bus (RTS96) system, lines with the apparent
flow value greater than 90% of their capacity are chosen as
prospective candidates. It is assumed that at most one line
is allowed to be added in each transmission corridor in the
TEP process. The IEEE 24-bus system with prospective and
constructed lines is visualized in Fig. 1.

The accuracy of the presented model is obtained through a
four-step process. Our computation procedure starts with the
exact AC polar model where the network expansion binary
variables are excluded. This step provides a good Taylor
expansion operating point of both the voltage magnitude and
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angle, which are then used in the second step. The second step
is defined as a presolve where the non-convex form of our
model is run, but also without the computationally demanding
binary variables. In the non-convex form, quadratic inequality
constraints (2.8) and (2.10) are applied as quadratic equality
constraints (1.1) and (1.2) whose marginal value signs we use
to determine if the constraint would be binding if relaxed, as
described in Subsection 2 -A. The third step is to run the main,
full mixed-integer AC TEP using the convex approximation
around the previously computed operating point, with binary
variables and constraints defined in the presolve. The last step
is to run the exact polar model where binary variables are
considered as parameters whose values are defined in the pre-
vious step. Results of this step will determine approximation
errors that were made in this model. The described procedure
is itemized in Algorithm 1.

Algorithm 1 Transmission expansion planning (TEP)
1: Run exact polar model without binary variables for transmission

expansion (NLP)
2: Run non-convex presolve using the operating point from the

previous step, also without binary variables for transmission
expansion (non-convex QCQP)
{In this step the presolve selects constraints for the main TEP
computation by evaluating the constraints’ marginal value}

3: Run the main TEP model around the previously computed
operating point with binary variables for transmission expansion
(MIQCQP)

4: Run the exact polar model with fixed binary variables to TEP
solution in step 3 to determine approximation error (NLP)

Simulation results are provided in Table I and Table II, and
their visual representation is provided in Fig 2. and Fig 3.

Our convex approximation (CPSOTA) is compared with
the exact AC polar model, linearized AC model (LPAC) [9],
linear DC model, Jabr’s relaxed second-order cone program-
ming model (JABR) [19] and piecewise-linearized AC model
(LACTEP) [1].

In both test cases, the presented model by far outperforms
other approximations in terms of the objective function value
error and, more importantly, it is the only one that yields the
correct expansion plan. Construction of the new transmission

TABLE I
TEP RESULT COMPARISON FOR THE IEEE 24-BUS SYSTEM

Model Time [s] Expansion plan Total cost Error [%]

POLAR
(MINLP)

2730 L7, L13, L23 4.0359299 E+09 0

LPAC
(MIQCQP)

240
L7, L12, L13

L21, L22, L23, L28
3.9130797 E+09 -3.044

DC
(MILP)

70 L12, L22, L23, L28 3.7468042 E+09 -7.164

JABR’s
(MISOCP)

130
L7, L12, L13

L21, L22, L23, L28
3.9138228 E+09 -3.026

LACTEP
(MILP)

370
L7, L11, L12, L13

L21, L22, L23, L28
3.9116847 E+09 -3.078

CPSOTA
(MIQCQP)

340 L7, L13, L23 4.0361073 E+09 0.004
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Fig. 2: Visualization of different TEP models accuracy for the IEEE 24-bus
system test case.
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Fig. 3: Visualization of different TEP models accuracy for the IEEE 73-bus
system test case.

power lines shifts the cost from operation to investment, but
eventually, TEP process provides saving in total costs. Due
to imprecise modeling of the reactive power flows, voltage
magnitudes and power losses, the LPAC, JABR, and LACTEP
models do not accurately reflect the actual solution, thus
those models in both test cases result in expansion plans
that consists of larger sets of newly erected lines than the
exact AC polar model. The larger expansion plan of those
models results in lower, realistically imprecise, total costs.
Consequently, the approximation error of those models is
greater than of the proposed CPSOTA model that captures
the same expansion plan as the exact AC polar model. The

TABLE II
TEP RESULT COMPARISON FOR THE IEEE 73-BUS (RTS96) SYSTEM

Model Time [s] Expansion plan Total cost Error [%]

POLAR
(MINLP)

1260 L30, L90 1.390911 E+10 0

LPAC
(MIQCQP)

530 L25, L53, L91, L102 1.334429 E+10 -4.061

DC
(MILP)

310 L53 1.265998 E+10 -8.981

JABR’s
(MISOCP)

610
L30, L53

L69, L90, L91
1.267801 E+10 -8.851

LACTEP
(MILP)

1800
L25, L53

L69, L90, L91
1.335497 E+10 -3.984

CPSOTA
(MIQCQP)

710 L30, L90 1.390794 E+10 -0.008
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DC model determines a larger set of required lines than
the exact AC polar model for the expansion process of the
IEEE 24-bus system, which has a large set of prospective
candidates. On the other hand, the DC model for the IEEE
73-bus (RTS96) system captures a smaller set of required
lines than the exact AC polar model. As expected, in both
test cases the linear DC model has the highest approximation
error. Computation-time-wise, the presented CPSOTA model is
faster than LACTEP approximation and slower than JABR’s
relaxation, and DC and LPAC approximations for both test
cases. The highest objective function approximation error of
the CPSOTA model, in both test cases, is -0.008% as compared
to the exact AC polar model. In terms of the total computation
time, the CPSOTA model is 87% faster than the exact AC
polar model for the IEEE 24-bus system with a larger set of
prospective lines. For the IEEE 73-bus (RTS96) system, with a
smaller set of prospective lines, the CPSOTA model achieves
43% faster total computation time than the exact AC polar
model. The presented model is accurate around the operating
point estimated by solving the exact AC polar model without
binary variables for transmission expansion. The advantage
of this approach is the possibility to iteratively run the main
TEP model by updating the operating point and retesting the
constraints in step 2 of Algorithm 1 for that new operating
point. This way the approximation errors reduce even further.

4 . CONCLUSION

This paper utilizes the recently published convex polar
second-order Taylor approximation of AC power flows [16]
to deliver high modeling accuracy and tractability to the TEP.
Model’s accuracy is achieved by utilization of quadratically
constrained voltage magnitudes and angles. In the presolve
process quadratic inequality constraints, which could cause
relaxation errors due to the convexification process, are identi-
fied and replaced by their linear equality constraint alternative.
The method is evaluated on two modified test cases based
on the PGLib-OPF benchmark [17] and compared against the
existing models. The proposed model demonstrates superior
accuracy at no additional computation cost, as computation
times are similar to the ones achieved by using the existing
approximation models. In comparison to the exact AC power
flow formulations, our model shows similar accuracy and the
same realistic expansion planning results, while computation
time is significantly improved. The high accuracy of the
presented model is desirable for further applications in more
complex power systems with flexible devices, such as battery
energy storage systems (BESS). The BESS will have an
important role in congestion reduction, voltage control, and
transition to the sustainable and secure energy system based
on renewable sources. The BESS can be favorable at locations
where construction of new lines is not possible, and to reduce
power curtailment at locations where renewable energy sources
are installed. It is also possible to coordinate TEP with
the generation expansion planning (GEP) by allocating the
necessary expansion investments. However, the selection of
different generation units for the expansion process can affect

the TEP results. The relationship between TEP and GEP can
be investigated in the future work.
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