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Zagreb, 2023



FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA
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abstract

Autonomous vehicles have become commonplace in transportation. Due to material
imperfections, noisy sensors, and disobedient actuators, autonomous vehicles are prone to

accumulate drift. Luckily, drift can be eradicated if, during simultaneous localization and
mapping, the vehicle reappears in an already visited place and recognizes it. This act has

been dubbed as loop closing detection because reappearing in an already visited place means
traversing a loop-like trajectory that starts and ends in that place. In visual place recognition,
we aim to recognize such already visited places given their images. Ordinary phenomena of

everyday traffic, e.g., different viewpoints of the vehicle, various moving objects, changes

of seasons, different times of the day, precipitations, etc., are, surprisingly, negative factors

in visual place recognition. To assure robustness against these negative factors, we should

design our visual place recognition as viewpoint-invariant and condition-invariant.

Therefore, when designing a visual place recognition system, we should ask: how to

match a place and how to represent it? Exploiting the fact that images of places are captured

in a sequential manner, we can match a place not just according to its image but also

according to neighboring images. This is the idea sequence-based place matching methods
are based on, and in this thesis, we present one such method – NOSeqSLAM. Having a

capable place matching method, we should focus on how to robustly represent images that

are going to be matched with this method. Computer vision helps us in this objective – we

create robust image representations by using either handcrafted or learned image models.

Naturally, as they adapt to data distributions, learned imagemodels have better performance

in quantitative results. Accordingly, we propose how to improve image representations

obtained with such image models in the context of visual place recognition by using two

techniques: softmax regression andmutual information-based feature selection. Our proposed
sequence-based method, in conjunction with the proposed image representations, in terms

of place recognition quantitative evaluation, outperforms competitive sequence-based

methods and competitive image models. Also, in order for our system not to be an end in

itself, we have adapted and used it with two different SLAM implementations, a simulated

range sensor-based SLAM and a visual SLAM evaluated on a real-world dataset, that were

created specifically for its justification.

keywords: autonomous vehicle, traffic, drift, visual place recognition, machine learning,

image models, convolutional neural networks, factor graphs, simultaneous localization and

mapping, loop closing
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sažetak

ROBUSNO VIZUALNO PREPOZNAVANJE MJESTA UPORABOM DUBOKIH

REPREZENTACIJA I UPARIVANJA SLJEDOVA SLIKA

Donedavno znanstvena fantastika, a danas stvarnost – svjedoci smo sve većeg broja

autonomnih vozila. Bilo bi sjajno odvesti se na posao čitajući knjigu i pritom ne razmišljati

o prometu. I još bitnije, bilo bi sjajno da autonomna vozila jednoga dana smanje broj

prometnih nesreća te gužve. Vozila, kojima je nekoć upravljao isključivo čovjek, danas

sadrže mnoštvo senzora kako bi iskusili okolinu na način svojstven čovjeku. Golem broj

poluvodiča i linija koda pokušavaju interpretirati tako prikupljene podatke te poduzeti

radnje, također, na način svojstven čovjeku. Usprkos tome što čovjek lako savladava vožnju,

mnogo je teže taj cilj postići kod autonomnih vozila. Sam po sebi, čovjek razumije prostorno-

vremenski kontekst u prometu. Mogući je pristup pripojenja tog konteksta autonomnom

vozilu – pridružiti vozilu njegovu poziciju i orijentaciju kako bi ono znalo gdje se nalazi i

kamo treba krenuti. Također, ne bi niti imalo smisla govoriti o poziciji i orijentaciji kada ne

bismo imali referentni prostor u odnosu na koji bismo te veličine mogli izraziti, stoga je

nužno voditi računa i o tom prostoru, odnosno, okolini vozila.

Kada bi to bilo moguće, izračunali bismo poziciju i orijentaciju vozila na osnovu

odometrije. Nažalost, zbog nesavršenosti materijala, nepreciznih senzora i neposlušnih

aktuatora, zbog činjenice da su računala diskretni sustavi dok je stvarni svijet kontinuiran,

vozilo, gibajući se kroz okolinu, akumulira pogrešku izazvanu zanošenjem (eng. drift). Ko-

liko god kvalitetni senzori, aktuatori, materijali, elektroničke komponente i matematički

modeli, pogreška izazvana zanošenjem neće iščeznuti. Djelotvoran je pristup umanjivanju

te pogreške izgradnja karte prostora u kojoj se vozilo kreće, odnosno kartiranje prostora, i

istovremeno, procjena pozicije i orijentacije vozila u odnosu na prostorna obilježja, odnosno,

lokalizacija vozila. Radi se o poznatom i opširno istraživanom robotičkomproblemu zvanom

istovremena lokalizacija i kartiranje (eng. simultaneous localization and mapping, abbr.
SLAM), a on se ugrubo može razdvojiti na dva manja, ali i sama po sebi istraživačka prob-

lema: kartiranje te lokalizacija. U problemu kartiranja, nastojimo predstaviti stvarni svijet s

izgrađenom kartom, dok u problemu lokalizacije, s obziromna prostorna obilježja izgrađene

karte, nastojimo procijeniti gdje se vozilo nalazi. Prema [1, str. 282], SLAM se smatra tzv.

“kokoš i jaje” problemom – kako bismo izgradili preciznu kartu okoline, vozilo mora biti

precizno lokalizirano, i obrnuto, lokalizacija je precizna samo ako postoji precizna karta

prostora. Budući da je robotika međudisciplinarna grana više znanosti, istovremena se

lokalizacija i kartiranje, kao opširan robotički problem, može poboljšati na razne načine iz

različitih stajališta.
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Uspostavlja se da je moguće umanjiti pogrešku izazvanu zanošenjem ukoliko se vozilo

pojavi na otprije posjećenommjestu. Takva nam situacija odgovara jer težimo ka smanjenoj

pogrešci, što povlači i točnije kartiranje i lokalizaciju. Pojaviti se na otprije posjećenom

mjestu znači obići kružnu trajektoriju s početkom i krajem u istome mjestu. Stoga se, u

kontekstu SLAM-a, taj problem naziva detekcija zatvaranja petlje (eng. loop closing de-
tection, abbr. LCD) ili, još jednostavnije, prepoznavanje mjesta (eng. place recognition).
Prepoznavanje je mjesta, također, istraživački problem sam po sebi sa svojstvenim kvan-

titativnim mjerama. Ukoliko je senzorski modalitet SLAM sustava vizualan, npr., mono

ili stereo kamera, govorimo o vizualnom prepoznavanju mjesta (eng. visual place recog-
nition, abbr. VPR) u kojem obrađujemo slike mjesta koje je vozilo snimilo. U “offline”

vizualnom prepoznavanju mjesta, gdje su višestruki obilasci iste rute snimljeni unaprijed,

razlikujemo dva tipa slika mjesta – skup slika za upite𝒬 i referentni skup slika 𝒟. Za na-

jnovije snimljenu sliku iz baze upita, pretražujemo referentni skup kako bismo pronašli

uparivanje. Metodologiju je “offline” vizualnog prepoznavanja mjesta moguće prenijeti na

“online” vizualno prepoznavanje mjesta gdje pokušavamo prepoznati mjesto samo iz jednog

skupa slika. Također, metodologiju je vizualnog prepoznavanja mjesta moguće prenijeti

na druge oblike prepoznavanja mjesta, npr., prepoznavanje mjesta s obzirom na snimke

LiDAR senzora.

Ako više slika, ne previše nalik jedna drugoj, prikazuju isto mjesto, čovjeku nije problem

prepoznati tomjesto. U stvarnome je svijetu gotovo nemoguće imati više vizualno identičnih

slika koje prikazuju isto mjesto, čime bi to mjesto bilo trivijalno prepoznatljivo sustavom za

vizualno prepoznavanje mjesta. Dvije su kategorije čimbenika koji prouzrokuju vizualnu

različitost slike koja sadrži mjesto, a to su:

• različiti okolišni uvjeti i

• različita gledišta kamere.

Vizualno, mjesto je uvelike određeno statičnim objektima koji se u njemu nalaze – zgrade,

drveće, rasvjeta, itd. Ipak, moguće je, poglavito u svakodnevnom prometu, da se u sceni

nađu gibajući objekti koji zaklanjaju scenu, odnosno, ono što ju karakerizira. Jasno je kako

takvi objekti ne pridonose prepoznatljivosti mjesta. Različita doba dana također drastično

mijenjaju vizualni izgled mjesta, ne samo zbog svijetlog ili tamnog neba, već i zbog različitih

osvjetljenja i statičnih i gibajućih objekata. U jednakoj su mjeri kriva i različita godišnja

doba i vremenski uvjeti. Ekstremni bi primjer za to, koji se čak i pojavljuje u jednome

skupu podataka kojeg koristimo, bio snijeg. Čak i kada okolišni uvjeti ne odstupaju u

velikoj mjeri, npr., pri online vizualnom prepoznavanju mjesta u svrhu zatvaranja petlji u

istovremenoj lokalizaciji i kartiranju gdje je očekivano da se unutar nekoliko minuta uvjeti

neće značajno promijeniti, očekivano je kako će doći do odstupanja u gledištima kamere.

Htjeli bismo umanjiti utjecaj neprijatnih čimbenika ove dvije kategorije, stoga težimo da

naš sustav vizualnog prepoznavanja mjesta bude invarijantan na gledište i invarijantan
na okolišne uvjete. To polučuje točnije prepoznavanje mjesta, odnosno, točnije zatvaranje
petlji, što pak polučuje točniju procjenu pozicije i orijentacije te precizniju kartu prostora.

Komplementarno je ovim dvojim čimbenicima percepcijsko preklapanje (eng. perceptual
aliasing). Ono se odnosi na pojavu više geografski različitih mjesta koja su vizualno nalik
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jedno drugome. Percepcijsko nas preklapanje dovodi u opasnost netočnog zatvaranja petlje

što negativno utječe na kartiranje i lokalizaciju.

Kako bismo postigli invarijantnost okolišnih uvjeta i gledišta te neranjivost na percepci-

jsko preklapanje, pri razvoju se sustava za vizualno prepoznavanje mjesta trebamo osvrnuti

na dva aspekta dizajna takvog sustava:

• slikovnu reprezentaciju i

• uparivanje mjesta.

Iako crno-bijele ili slike u boji mogu biti korištene kao slikovne reprezentacije u vizualanom

prepoznavanju mjesta, kao što je to slučaj u [2, 3], takve “jednostavne” reprezentacije jednos-

tavno ne polučuju dobre rezultate. Naime, brojevne se vrijednosti u takvim reprezentacijama

mijenjaju drastično, čak i pri najmanjim pomacima gledišta kamere i pri malim promjenama

okolišnih uvjeta, čime je nemoguće međusobno uspoređivati slike. Bolje bi bilo pouzdati se

u postojeće tehnike računalnog vida. U ne tako davnoj prošlosti, tehnike lokalnih značajki

ručne izrade (eng. handcrafted) koristile su se kako bismo pronašli znamenitija područja
u slici. Uz lokalne značajke dolaze i lokalni opisnici koji nekom znamenitom području

pridužuju prepoznatljivu vektorsku vrijednost. Lokalne opisnike zatim agregiramo u glob-
alne opisnike slike. U novije se vrijeme ipak, kao slikovna reprezentacija, koriste mape

značajki izlučene iz dubokih modela slika – konvolucijskih neuronskih mreža. Kako bismo

uparili mjesta preko njihovih slika, jednom kada je odgovarajući model slika odabran,

možemo se poslužiti s činjenicom kako su slike, jer ih je snimilo vozilo, poredane u slijed.

Stoga se, pri uparivanju, nekoliko susjednih slika može uzeti u obzir. Na toj ideji počivaju

takozvane metode vizualnog prepoznavanja mjesta zasnovane na sljedovima slika koje

proučavamo ovdje.

Ova disertacija predstavlja tri izvorna znanstvena doprinosa za problem vizualnog pre-

poznavanjamjesta. Prema karakterizaciji problema, umogućnosti smo pridonijeti njegovom

rješavanju time što ćemo poboljšati uparivanje mjesta i njegovu slikovnu reprezentaciju.

Stoga se prvi i drugi izvorni znanstveni doprinosi odnose na takva poboljšanja. Kako

vizualno prepoznavanje mjesta ne bi bio problem sam za sebe, u trećem ćemo ga izvornom

znanstvenomdoprinosu koristiti pri istovremenoj lokalizaciji i kartiranju. Izvorni su znastveni

doprinosi:

#1 Metoda vizualnog uparivanja mjesta zasnovana na sljedovima slika koja koristi usm-

jerene acikličke grafove i najkraći put iz jednog izvora.

Predložena je metoda vizualnog uparivanja mjesta, NOSeqSLAM [4, 5], poopćenje

SeqSLAM-a [2], postojeće metode vizualnog uparivanja mjesta zasnovane na slje-

dovima slika. Time što je zasnovana na sljedovima slika, u mogućnosti je upariti

mjesto, ne samo na osnovu slike tog mjesta, već i na osnovu susjednih slika. Time

što je poopćenje, NOSeqSLAM nadmašuje SeqSLAM u kvantitativnoj evaluaciji.

Poopćenje je postignuto uporabom teorije grafova gdje prepoznavanje mjesta mod-

eliramo usmjerenim acikličkim grafovima. Oni imaju posebnu topološku strukturu,

pa uz predloženu metodu, predlažemo i po mjeri skrojen algoritam za pronalaženje

najkraćeg puta iz jednog izvora za topologiju takvih grafova.



sažetak xiv

#2 Metoda za robusno vizualno prepoznavanje mjesta dubokim reprezentacijama koja

koristi softmax regresiju i odabir značajki zasnovan na uzajamnom sadržaju informa-

cije.

U ovom smo izvornom znanstvenom doprinosu pokazali kako prilagoditi softmax

regresiju u kontekstu vizualanog prepoznavanja mjesta time što smo vizualno prepoz-

navanje mjesta sveli na problem višeklasne klasifikacije slika. Zatim smo provjerene

duboke modele slika optimizirali s predloženim pristupom te su oni, u sinergiji s

predloženom metodom prepoznavanja mjesta, postigli značajna poboljšanja u vidu

kvantitativnih rezultata. Na sličan smonačin prilagodili i provjerenumetodu za odabir

značajki zasnovanu na uzajamnom sadržaju informacije te su tako poboljšani mod-

eli, u sinergiji s predloženom metodom prepoznavanja mjesta, još jednom postigli

značajna poboljšanja.

#3 Postupak prilagodbe metode vizualnog prepoznavanja mjesta zasnovane na slje-

dovima slika za zatvaranje petlje u algoritmima istovremene lokalizacije i kartiranja.

Korištenjem programske paradigme vektorizacije, metoda je vizualnog uparivanja

mjesta postala još brža te ju je moguće izvršavati na grafičkoj kartici. Vektorizirana je

instanca predložene metode u mogućnosti detektirati zatvaranja petlje u stvarnome

vremenu. Ona se pokazala djelotvornom u čak dva različita sustava istovremene

lokalizacije i mapiranja. Jedan od njih koristi senzor udaljenosti, što upućuje da

predložena metoda nadilazi obim vizualnog prepoznavanja mjesta i primjeniva je

za prepoznavanje mjesta općenito. Drugi je sustav vizualan i evaluiran je na skupu

podataka koji su nastali u stvarnom trodimenzionalnom okruženju.

Svako od nadolazećih poglavlja ove disertacije odnosi se na jedan izvorni znanstveni

doprinos. Dodatno je dodano i zaključno poglavlje. U prvome poglavlju čitatelja uvodimo u

problem vizualnog prepoznavanja mjesta, dok drugo poglavlje opisuje taj problem u širem

obimu gdje započinjemo s općenitom formulacijom. Uparivanje sljedova slika započinjemo

s Bayesovom formulacijom, a zatim se osvrćemo na SeqSLAM, jer ta je metoda prepozna-

vanja mjesta uvelike utjecala na stvaranje predložene metode prepoznavanja mjesta. Zatim

pokazujemo na koji je to način NOSeqSLAM stvoren kao poopćenje SeqSLAM-a. Zatim

se osvrćemo na algoritme na grafovima koji su potrebni u našoj metodi i predstavljamo

algoritam koji efikasno pronalazi najkraći put iz jednog izvora, za topologiju usmjerenih

acikličkih grafova u NOSeqSLAM-u. Zaključujemo poglavlje s asimptotskom i empirijskom

analizom vremena izvršavanja SeqSLAM-a i NOSeqSLAM-a.

U početku trećeg poglavlja iznosimo opširan pregled uobičajenih tehnika zamodeliranje

slika unutar računalnog vida. Govorimo o tome što su to znamenita područja slike i na koji

ih način detektirati. U suštini, pregledavamo lokalne značajke i opisnike ručne izrade zasno-

vane na gradijentima – SIFT [6] and SURF [7]. Korištenjem tehnike nenadziranog strojnog

učenja, k-means grupiranja, pronalazimo vizualne riječi, odnosno, centre grupa dobivene
grupiranjem iz skupa lokalnih opisnika. Zatim agregiramo lokalne opisnike slike, ili s bag-
of-words tehnikom [8] ili s vektorima lokalno agregiranih opisnika [9], u globalne opisnike

slike. Dodatno, pregledavamo još jednu tehniku zasnovanu na gradijentima koja stvara

globalni opisnik slike – histogram orijentiranih gradijenata. Razlog zbog kojeg proučavamo
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pristupe računalnog vida ručne izrade jest što su oni računski nezahtjevni. Zatim iznosimo

pregled učenih modela slika, konvolucijskih neuronskih mreža, te njihova svojstva. Iako su

učeni modeli računski nešto zahtjevniji, zbog učenja se na podacima oni prilagođavaju dis-

tribucijama iz kojih podaci potječu. Imajući sustavan pregled učenih modela, predstavljamo

kako vizualno prepoznavanje mjesta svesti na višeklasnu klasifikaciju kako bismo duboki

model dodatno prilagodili korištenjem softmax regresije. Također, predstavljamo kako na

model primijeniti odabir značajki zasnovan na uzajamnom sadržaju informacije i tako

poboljšan model puštamo u rad unutar našeg sustava. Kvantitativna evaluacija pokazuje

kako modeli slika poboljšani softmax regresijom i odabirom značajki zasnovanom na uza-

jamnom sadržaju informacije u sinergiji s predloženommetodomNOSeqSLAM nadmašuju

ostale metode vizualnog uparivanja mjesta i ostale modele slika.

Četvrto se poglavlje odnosi na postupak prilagodbe predložene metode vizualnog pre-

poznavanja mjesta u algoritmima istovremene lokalizacije i kartiranja. Prvo se osvrćemo na

faktor grafove kojima modeliramo stohastičke postupke. Budući da se radi o stohastičkom
postupku, iznosimo kakomodelirati istovremenu lokalizaciju i kartiranje korištenjem faktor

grafova. Nakon toga, odjeljak posvećujemo vektorizaciji predložene metode prepoznavanja

mjesta kako bi se ona mogla izvršavati u stvarnome vremenu s dodatnom mogućnosti

izvršavanja na grafičkoj kartici. Zatim razvijamo SLAM No 1, simulirano okruženje za

istovremenu lokalizaciju i kartiranje gdje je korišten senzor udaljenosti i odometrija za-

snovana na iterativnom algoritmu najbliže točke (eng. iterative closest point, abbr. ICP)
kako bismo olakšali postupak prilagodbe i iskušali NOSeqSLAM u kontekstu SLAM-a.

Napokon, razvijamo i drugo okruženje, vizualni SLAM No 2. Ponovno iskušavamo vektor-

izirani NOSeqSLAM, ali ovog puta na skupu podataka koji je nastao u stvarnom okruženju.

Kvalitativna evaluacija u oba okruženja ukazuje na to kako NOSeqSLAM uspješno detektira

zatvaranja petlje. Drugim riječima, uz isključenu detekciju zatvaranja petlje, SLAM No 1 i

SLAM No 2 akumuliraju veću pogrešku izazvanu zanošenjem.

U zaključnom se poglavlju osvrćemo na sve doprinose koji su postignuti. Na kraju,

iznosimo nekoliko riječi o budućem istraživanju.

ključne riječi: autonomno vozilo, promet, greška uzrokovana zanošenjem, vizualno

prepoznavanje mjesta, strojno učenje, modeli slika, konvolucijske neuronske mreže, faktor

grafovi, istovremena lokalizacija i kartiranje, zatvaranje petlje
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1
Introduction

1.1motivation and problem statement

W
hat just yesterday looked like a science fiction story, today is a reality – we are

witnessing a tremendously increasing number of autonomous vehicles. Would not it

be great to read a book on our way to work without worrying about traffic? And most im-

portantly, autonomous vehicles, hopefully, one day may reduce the number of car accidents

and traffic jams. Vehicles, once exclusively human-controlled, today possess a multitude

of sensors in order to experience the world the way a human does. An unimaginably vast

number of transistors and lines of code try to interpret such obtained information and

take actions, too, the way a human does. Nevertheless, it is easy for a human to learn to

drive. It is much harder for an autonomous vehicle to “understand” the way in which traffic

moves on. A human inherently understands the spatio-temporal traffic context. A way to

incorporate this context into a vehicle’s onboard computer is to assign to the vehicle its pose

in order to know where it is and where it should go. It would be pointless to mention the

pose unless there is a referent space with respect to which the pose is expressed; therefore,

we also need to keep track of that space – the vehicle’s environment.

If it were possible, odometry itself would give us the precise pose of the vehicle. Un-

fortunately, due to imperfections in materials, noisy sensors, and “disobedient” actuators,

due to the fact that computers are discrete systems while the real world is continuous, the

vehicle, moving through an environment, accumulates the drift. Notwithstanding how

good sensors, actuators, materials, electronics, and mathematical models are, the drift will

remain. An effective approach to get rid of this drift is to simultaneously build a map of

an environment in which the vehicle is moving through and to estimate the vehicle’s pose

relative to the landmarks in that map, i.e., to localize the vehicle. This is an extensively

researched robotics problem called the simultaneous localization and mapping (abbr. SLAM)

that can be coarsely categorized into two research problems on their own –mapping and
localization. In mapping, we aim to represent the world accurately with a map, while in

localization, according to the landmarks of a map, we aim to infer where the vehicle is.

SLAM is also considered a chicken-and-egg problem [1, p. 282] – in order to capture a precise

map of an environment, the vehicle should be localized well, and vice versa, localization is

done right only if a precise map exists. Because robotics itself is an interdisciplinary branch

of multiple studies, simultaneous localization andmapping, being a comprehensive robotics

problem, can be tackled from multiple standpoints.

1
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Turns out, the drift in the simultaneous localization and mapping can be reduced if the

vehicle reappears in a place visited before. This situation suits us as we are aiming for the

smallest drift possible, which implicates better mapping and better localization. To reappear

at a place means that the vehicle traversed a circular trajectory that starts and ends in that

place. Therefore, in the context of SLAM, this problem is called the loop closure/closing
detection (abbr. LCD). Also, it is simply called place recognition. Place recognition is also
a research problem on its own with specific quantitative evaluation measures. If a sensor

modality of a SLAM system is visual, e.g., a mono or stereo camera, we are talking about

visual place recognition (abbr. VPR). In visual place recognition, we deal with images of
places visited by the vehicle. In the offline visual place recognition, a setup where we have

multiple traversals of the same route captured in advance, we distinguish between two types

of image streams – a query database𝒬 and a reference database 𝒟. For a newly obtained

query image, we look into the reference database in order to find a match. The knowledge

and insights obtained in offline visual place recognition are transferable to online visual

place recognition, where we aim to recognize a place having a single stream of images from

a single traversal. Many of the concepts are also transferable from visual place recognition

to other types of place recognition, e.g., to place recognition with LiDAR scans.

If multiple, not too different, images depict the same place it would not be hard for a

human to recognize it. In the real world, it is almost impossible to have multiple visually

identical images of the same place, what would implicate that such a place can be easily

recognized, so, visual place recognition would be trivial. Two categories of factors that cause

visual dissimilarity in an image that depicts a place are identified as

• different environmental conditions, and,

• different viewpoints of the camera.

A place is characterized mostly by its static objects – buildings, trees, streetlights, etc. Then

again, it is possible, especially in everyday traffic, that there is a lot of moving objects, also

called occlusions, that just happened to be in a scene. It is clear that these objects do not
contribute to the recognizability of a place. Also, different times of the day drastically affect

visual appearance, not only because of a blue or black sky, but also because of different

illumination of static and moving objects. Then, equal credit goes to different seasons and

weather conditions. An extreme example, that even appears in a dataset we will use, would

be snow. Even if environmental conditions are not that deviate, e.g., when performing

online visual place recognition for loop closing detection in simultaneous localization and

mapping where environmental conditions within a few minutes would not change the

visual appearance that much, it is expected that significant deviations in viewpoints of the

camera will occur. We want to undermine the impact of these two categories of unsuitable

factors; therefore, our visual place recognition system should be viewpoint-invariant and
condition-invariant. This, in turn, results in more accurate place recognition, i.e., in more

accurate loop closing detection, which implicates better pose estimation. Complementary

to viewpoint and condition variations is the problem of perceptual aliasing. It is possible

that there are multiple visually similar places that are located at wholly different locations

in a map. This put us in danger of loop closures being detected erroneously what, in turn,

negatively affects mapping and implicitly, localization in SLAM.
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Speaking of a visual place recognition system, in order to achieve condition and view-

point invariance, and invulnerability to perceptual aliasing, the design aspects of such a

system that should be considered are:

• image representation, and,

• place matching.

Although grayscale or RGB images can be used in visual place recognition [2, 3], such

“plain” representations simply do not achieve good results. Numerical values in plain image

representations change drastically even for the slightest viewpoint or environment change,

so it almost impossible to compare images with each other. A better option would be to

rely on existing computer vision techniques. In the not-too-distant past, handcrafted local
feature techniques based on image gradients have been used in order to find salient regions
within an image. Alongside local features, accompanied are local descriptors that assign a

distinguishable vector to a salient region. Then we aggregate these local descriptors into a

global image representation. In recent years, however, feature maps extracted from deep

imagemodels – convolutional neural networks – aremainly used as an image representation.

To match places that are captured as images, once a good image representation is picked,

we can take advantage of the fact that images, captured during the ride of a vehicle, are

sequential and temporally ordered. Therefore, when deciding how to match a place, i.e.,

when deciding if that place is already captured and being depicted by another image, a few

neighboring images can also be taken into account. This is the idea of sequence-based place
matching methods that are investigated here.

1.2original scientific contributions

The thesis presents three scientific contributions to the problem of visual place recognition.

According to the problem statement, we can improve visual place recognition by improving

place matching and image representation. Therefore, the first and the second contributions

deal with the above-mentioned design aspects. In order for visual place recognition not to

be an end in itself, in the third contribution, we use it within simultaneous localization and

mapping. The contributions are as follows:

#1 Sequence-based visual place matching method that uses directed acyclic graphs and

single source shortest path.

The proposed place matching method, NOSeqSLAM [4, 5], generalizes an exist-

ing sequence-based place matching method SeqSLAM [2]. Being a sequence-based

method, our method is able to match a place not only according to a single image

of that place, but also according to neighboring images. Being a generalization of

SeqSLAM, our method outperforms it quantitatively. This generalization is achieved

with graph theory, where we model place recognition with directed acyclic graphs.

These directed acyclic graphs have a specific topological structure; therefore, alongside

a novel sequence-based place matching method itself, an accompanying tailor-made

algorithm that finds single source shortest paths on such topologically sorted directed

acyclic graphs is proposed too.



1.3. Outline of the thesis 4

#2 Method for robust visual place recognition with deep representations that uses soft-

max regression and mutual information-based feature selection.

In this contribution, we showed how to adapt softmax regression in the context of

visual place recognition by casting visual place recognition as a multinomial classifi-

cation problem. Then, approved deep image models are optimized with the proposed

approach, and accordingly, such optimized image models coupled with the proposed

place matching method achieved significant improvements in quantitative results. In

similar fashion, we demonstrated how to adapt a proven mutual information-based

feature selection method for visual place recognition and justified this approach

quantitatively.

#3 Procedure for adapting sequence-based visual place recognition method for loop

closing in simultaneous localization and mapping algorithms.

Using the paradigm of vectorization, our proposed place matching method became

even faster and executable on a graphic processing unit. The vectorized instance of

our method is able to detect loop closures for simultaneous localization and mapping

in real-time. This procedure showed to be effective in two different simultaneous

localization and mapping implementations, one of them being a simulated LiDAR-

based SLAM (what also shows how our method goes beyond the scope of visual place

recognition and applies to place recognition in general), while another being a visual

SLAM evaluated on a real-world dataset.

1.3outline of the thesis

Each of the upcoming chapters deals with a single of the scientific contributions just men-

tioned. Additionally, we add the concluding chapter.

Ch 2 This chapter starts with the visual place recognition formulation in general. First, the

Bayesian formulation of the problem is provided. Then, the sequence-based place

matching method, SeqSLAM, is presented because it has strongly influenced our

proposed place matching method – NOSeqSLAM. We then show how NOSeqSLAM

has been designed as a generalization of SeqSLAM. Furthermore, we talk about

graph algorithms used in our method, and particularly, we present an algorithm that

easily finds single source shortest paths for the topology of directed acyclic graphs in

NOSeqSLAM. We conclude this chapter with the asymptotic and empirical running

time analysis of SeqSLAM and NOSeqSLAM.

Ch 3 Firstly, this chapter provides an extensive overview of standard computer vision

image models. It is described what good features in images are and how we detect

them. Essentially, gradient-based handcrafted local features and descriptors SIFT[6]

and SURF[7] are presented. An unsupervised machine learning technique, k-means

clustering, helps us to find visual words, i.e., cluster centers from a large set of local

descriptors. Then, we use aggregate local descriptors from an image, either with the

bag-of-words [8] or the vector of locally aggregated descriptors [9] techniques, into
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a global image descriptor. Additionally, we present a gradient-based global descrip-

tor – histogram of oriented gradients. We do consider handcrafted image models

because they are computationally undemanding. Then, we provide an overview of

learned image models, convolutional neural networks, alongside their various design

aspects. Unlike handcrafted image models, learned image models are more computa-

tionally demanding, however, they adapt to data distributions. Having a systematic

overview of learned image models, we overview softmax regression and how visual

place recognition can be formulated as a multinomial classification problem. We

also present a mutual information-based feature selection technique and deploy it

into our pipeline. Experimental sections reveal that image models enhanced with

softmax regression and feature selection coupled with our place matching method

NOSeqSLAM outperform other sequence-based place matching methods and rival

image models.

Ch 4 This chapter is about the problem of loop closing in the simultaneous localization and

mapping. First, we address factor graphs as an approach tomodel stochastic processes.

Being a stochastic process, we explain how simultaneous localization and mapping

can be conducted by means of factor graphs. Afterward, a section is dedicated to the

vectorization of NOSeqSLAM in order to execute it in real-time with the possibility

of running on a graphic processing unit. Then we create SLAM No 1, a simulated

SLAM environment with a range-based sensor and ICP-based odometry, in order

to adapt and try out the vectorized NOSeqSLAM in the context of SLAM. Finally,

we create SLAMNo 2, a visual odometry-based SLAM. Once again, we try out the

vectorized NOSeqSLAM, now on the real-world KITTI dataset [10]. For both SLAM

systems that have been implemented, the results obtained show how NOSeqSLAM

successfully detects loop closures. More precisely, without loop closing “turned on”,

SLAM No 1 and SLAM No 2 achieve higher absolute trajectory error measures.

Ch 5 In the concluding chapter, we are looking back at the scientific contributions that

have been achieved. In the end, we say a few words about future work.



2
Sequence-based visual place recognition

V
isual place recognition, as said in [11], “is a well-defined but extremely challenging

problem to solve in the general sense [. . . ]”. In visual place recognition, it has to be

decided whether a place, given an image of it, has already been seen, and if so, what place

it is. A place can be considered “[. . . ] as the abstraction of a region” where a region is a

subset of the environment [12]. That view of a place brings us to a topological map – a
collection of nodes that represent places as abstract regions that are connected via arcs that

represent travel paths [13]. Also mentioned in [13], a place has its signature, a set of features
that are maximized at that place. Complementary to topological maps are metric maps,

while there also exist blends of these two. A map, as a collection of places, is important in

the context of visual place recognition because we would like to compare a newly obtained

image with those places already contained in that map. Also, visual place recognition can

be seen as a specialization of the visual instance retrieval problem where “[. . . ] given a new

unlabeled query image, the task is to find the same object or scene as in the query.” [14]. By

looking at visual instance retrieval data, e.g., the Oxford5k [15] and Paris6k [16] datasets

that depict notable places of eponymous cities obtained from Flickr, it is characteristic how

there are no topological relations at all. Obviously, multiple images of, e.g., Arc de Triomphe

in Paris, uploaded from multiple sources, truly depict this place, but no relations, i.e., arcs,

exist between these images and images of, e.g., the Eiffel tower. In contrast, visual place

recognition data, to the best of our knowledge, are captured while the vehicle is driving.

This imposes additional relations between data, i.e., there is a preceding or succeeding place

for some place. Everything we have just said about maps in visual place recognition is neatly

summarized in [11, p. 6] where degrees of map abstraction are:

• pure image retrievalmaps without positional information between places,

• topologicalmaps that include positional information between places, and,

• topological-metricmaps that include both positional and metric information between
places.

In our opinion, once the metric information is included, we go beyond the scope of place

recognition into the scope of simultaneous localization and mapping, which lines up with

the mentioned fact of how place recognition can be used for loop closing detection, i.e., it

can be considered a SLAM subsystem.

6
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Accordingly, maps in visual place recognition are topological maps with sequentially

ordered images of places, albeit metric maps in simultaneous localization and mapping we

are accustomed to, are far richer in its content. Therefore, it is, to an extent, disorienting

talk about maps in visual place recognition at all. Preferably, we resort to the nomenclature

borrowed from [17] and themathematical notation borrowed from [18] that applies to offline
visual place recognition1. In offline visual place recognition, we have two or more sets of
images captured while driving around the same route. One set, referred to as a reference
database, denoted with

𝒟 = {Id1 , . . . , Id j , . . . , Id⋃︀𝒟⋃︀}, (2.1)

is a set of images against a single query image is compared. Another set, referred to as a
query database, denoted with

𝒬 = {Iq1 , . . . , Iq i , . . . , Iq⋃︀𝒬⋃︀} (2.2)

is a set of images for which, provided that they depict an already seen place, a candidate

from a reference database should be found. Having the notation of 𝒟 and 𝒬, we define

offline visual place recognition as a task in which, given a query image Iq i ∈ 𝒬, a respective
match Iq∗i ∈ 𝒟 should be found. An integral part of a visual place matching method, once

we have images at our disposal, should be the way they are represented. A comprehensive

consideration about this topic in provided in Chapter3. By using a specific image model,

it will map an RGB/grayscale image I ∈ 𝒬 ∪ 𝒟 into an alternative vector/matrix/tensor

image representation z ∈ Rn1×⋅⋅⋅×nd . Hopefully, this image representation should be resistant

to viewpoint variations, condition variations, and perceptual aliasing so that places are

matched correctly.

Evaluation criteria that qualitatively assess visual place recognition are borrowed from

information retrieval. Ultimately, we would like to correctly match all query images while

also being confident about these matches. We denote ground truth matches for a given
query image Iq i ∈ 𝒬 with 𝒢𝒯 (Iq i) ⊆ 𝒟. An example of ground truth matches shown as
an image can be seen in Figure3.19awhere the intersection of an i-th column and a j-th
row tells if Id j ∈ 𝒟 is a match for Iq i ∈ 𝒬 (yellow cell) or is not (purple cell). Reasonably,

images {Iq i} ∪ 𝒢𝒯 (Iq i) should depict a same place. A true positive match for Iq i is every
Id j ∈ 𝒢𝒯 (Iq i) that has been proposed by a visual place recognition method. A false negative
match for Iq i is Id j ∈ 𝒢𝒯 (Iq i) being discarded in a mistaken way due to a low confidence

measure. If a place recognition method suggests, with a sufficient confidence measure, that

Id j ∉ 𝒢𝒯 (Iq i) is a match for Iq i , we are talking about a false positive match. Let TP denote
the total number of true positives, FP the total number of false positives, and FN the total

number of false negatives. Then, we define precision with

Precision =
TP

TP + FP
, (2.3)

and interpret it as “[. . . ] a measure of how many of the identified places are actually correct

[. . . ]” [19] and recall as

Recall =
TP

TP + FN
, (2.4)

1 In Section4.3, we will also introduce the online place recognition notation.
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and interpret it as “[. . . ] a measure of how many of the correct places were found [. . . ]” [19].

An ultimate place recognition method would achieve 100% precision and 100% recall.

Usually, slight deviations from ground truth are tolerated and are collectively referred to as

the localization radius. The localization radius can be expressed either by the number of

frames as in [20] or by ameasure of distance (e.g., inmeters) as in [17]. Simultaneously having

a high recall and a high precision instructs us that there are not many places misclassified

and that we are confident about correct matches. By varying the threshold for a confidence

measure, i.e., the threshold between true positives and false negatives, a precision-recall curve
with precision on y axis against recall on x axis is created with an example in Figure2.1a.
An additional quantitative measure of performance for visual place recognition is obtained

by integrating the area under a precision-recall curve, and this measure is called the area

under a curve (abbr. AUC). Another frequently used qualitative measure is the maximum

recall at 100% precision (abbr. R@100%P) which indicates a good loop closing detection

performance as stated in [21]: “[. . . ] an excellent LCD method should detect as many loop

closing pairs as possible, which means the recall rate should be high. Therefore, when the

precision rate is 100%, the maximum recall rate is a significant index for evaluating the LCD

performance.”

2.1sequence-based visual place recognition

Given an image Iq i ∈ 𝒬, a naive approach to visual place recognition would be to find
its most similar counterpart Iq i∗ ∈ 𝒟 just according to a similarity measure s (e.g., cosine
similarity), i.e.,

Iq i∗ = argmax
Id j ∈𝒟

s(zq i , zd j), (2.5)

or a dissimilarity measure d (e.g., the Euclidean distance), i.e.,

Iq i∗ = argmin
Id j ∈𝒟

d(zq i , zd j). (2.6)

However, as noticed in [22], “matching images just according to the best similarity score

produces considerable (number of) false positives [. . . ]”. Just as the robot pose can be

estimated recursively by including the most recent measurement and control input [1,

Chapter 2], which essentially means that all measurements and control inputs by far have

been included in reaching the current state estimation, we can act in a similar way in visual

place recognition. Sequence-based place matching methods, as called by [23], exploit the
local neighborhood of a place monitored by the vehicle. The way neighboring places are

observed is defined by a sequence-based method.

2.1.1 FAB-MAP

Aprobabilistic approach to visual place recognition is used in FAB-MAP [24] where location

estimation is modeled via a recursive Bayes’ formula as

p(Li ⋃︀ 𝒵
k) =

p(𝒵 k ⋃︀ Li , 𝒵
k−1)p(Li ⋃︀ 𝒵

k−1)

p(𝒵 k ⋃︀ 𝒵 k−1)
. (2.7)
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(a) (b)

Figure 2.1: SeqSLAM [2] outperforms FAB-MAP [24], which can be displayed by showing (a) a

precision-recall curve and (b) true positive, false negative, and false positive matches in a

ground plan. Images taken from [2].

Li is an element of a topological map that contains disjoint and discrete locations, and 𝒵
k

are all measurements up to time k. For an image model, FAB-MAP uses local SIFT [6]

features in combination with bag-of-words [8]. Although supported by the theoretical

background of Bayes’ formula, this approach, unfortunately, is significantly outperformed

by the following method – SeqSLAM (Figure2.1).

2.1.2 SeqSLAM

SeqSLAM [2] is a sequence-based place matching method named after the characteristic

property of constructing sequences in order to find placematches.The aforementioned term

“local neighborhood” in the context of offline SeqSLAM refers to ⟨︀ ds
2
⧹︀ previously seen places

given a query image Iq i ∈ 𝒬 and ⟨︀
ds
2
⧹︀ upcoming places to be seen.The same is true for Id j ∈ 𝒟,

although the number of neighboring images is defined by the method’s hyperparameters.

Then, a value that measures how well Id j fits to Iq i is obtained by observing 2⟨︀
ds
2
⧹︀ + 1 places

from𝒬 and 2⟨︀ ds
2
⧹︀ + 1 places from 𝒟.

The main data structure SeqSLAM deals with is called the difference matrix D ∈ R⋃︀𝒟⋃︀×⋃︀𝒬⋃︀.
Let zq i ∈ Rn and zd j ∈ R

n denote some image representation2 of images Iq i ∈ 𝒬 and Id j ∈ 𝒟,

respectively. Then D is defined as

D(︀ j, i⌋︀ =
n

∑
k=1
⋃︀zq i (︀k⌋︀ − zd j(︀k⌋︀⋃︀. (2.8)

Additionally, a contrast-enhanced difference matrix D̂ ∈ R⋃︀𝒟⋃︀×⋃︀𝒬⋃︀ is obtained by performing
normalization on each column as described in [2]. Then the correspondence measure sq i ,d j

between Iq i and Id j is defined as

sq i ,d j =min
v

i+⟨︀ ds
2
⧹︀

∑

t=i−⟨︀ ds
2
⧹︀
D̂(︀ j + v(t − i), t⌋︀. (2.9)

2 Downsampled grayscale images used in the original work.
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Figure 2.2: By changing the velocity parameter vmin ≤ v ≤ vmax in SeqSLAM, we form different linear

sequences over the difference matrix. Then, we accumulate differences according to (2.9)

and pick an optimal one as in Figure2.5a.

What characterizes SeqSLAM is a sequence of indices (( j + v(t − i), t))i+⟨︀ds⇑2⧹︀t=i−⟨︀ds⇑2⧹︀ that

form linear segments over the difference matrix as illustrated in Figures2.2,2.3b. Having ds
fixed and evaluating sequences for each velocity vmin ≤ v ≤ vmax we pick such a velocity that
minimizes (2.9) what is illustrated in Figure2.5a. Note that the lesser sq i ,d j means Id j is the

better match for Iq i . Conversely, we can use any representation for images, and moreover
not to measure a difference, e.g., we could measure a similarity between images. Let denote

a matrix that measures similarities, say with the cosine distance, the association matrix A.
In such a setup we maximize (2.9) by v, while the greater sq i ,d j , the better. Therefore, we can

say that this algorithm, as well as the upcoming cone-based SeqSLAM and NOSeqSLAM,

are representation agnostic.

2.1.3 Cone-based SeqSLAM

In the space of admissible sequences defined by ds and vmin ≤ v ≤ vmax, also called a cone
(Figure2.3a), cone-based SeqSLAM [ 25] counts a portion of the most similar matches

between 𝒬 and 𝒟. If we fix some query image Iqt ∈ 𝒬, t ∈ {i − ⟨︀ ds2 ⧹︀, . . . , i + ⟨︀
ds
2
⧹︀}, we

check whether the index d∗t of the most similar/the least different Id∗t ∈ 𝒟 for Iqt is in
{ j+v(t− i) ∶ vmin ≤ v ≤ vmax}, which means that the best match (Iqt , Id∗t ) ∈ 𝒬×𝒟 resides in

a cone.Then, as illustrated in Figure2.3c, we count all such pairings and the correspondence

measure sq i ,d j is defined as

sq i ,d j =
1

ds

i+⟨︀ ds
2
⧹︀

∑

t=i−⟨︀ ds
2
⧹︀
1d∗t ∈{ j+v(t−i)∶vmin≤v≤vmax}. (2.10)
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(a) (b)

(c) (d) (e)

Figure 2.3: (a) The admissible search space in SeqSLAM and its derivatives is defined with hyperpa-

rameters ds , vmin, vmax and vstep. (b) In the original SeqSLAMmethod, we construct linear

sequences (( j + v(t − i), t))i+⟨︀ds⇑2⧹︀t=i−⟨︀ds⇑2⧹︀ for vmin ≤ v ≤ vmax that form linear segments over

the difference matrix. (c) The cone-based SeqSLAM counts a portion of the most similar

matches between 𝒬 and 𝒟 in a cone. (d) The hybrid method is a blend between the

original and cone-based SeqSLAMwhere those linear sequences that pass through global

best matches are evaluated. (e) Fast-SeqSLAM evaluates (2.9) for hypotheses obtained

with k nearest neighbor search with an additional hypothesis obtained according to an
optimal velocity one step before. Images (a), (b), (c), and (d) are taken from [25]. Image

(e) is taken from [26].

2.1.4 Other variants of SeqSLAM

A hybrid between the original and cone-based SeqSLAM, the hybrid method [25], for the
correspondence measure evaluates those linear sequences that pass through “global best

matches” and then picks an optimal (Figure2.3d). Fast-SeqSLAM [ 26] enhances SeqSLAM

by evaluating sequences for only k nearest neighbor reference images as match hypotheses
(darker cells in Figure2.3e). Additional match hypotheses for which sequences are evaluated

(red cells in Figure2.3e) are calculated by presuming that the vehicle has since then moved

with a previous-time-optimal velocity. Combining odometry, SMART[23] “eases” SeqSLAM

evaluation in a way that images are captured “. . . at constant distance intervals, rather than

constant time intervals.” The absence of odometry, where images cannot be captured at

constant distance intervals, imposes an issue for SeqSLAM and its derivatives mentioned by

far. A similar issue that yields the same effect is a significant difference in velocities between

multiple traversals of the same route. Luckily, our proposed method is able to account for

such a negative phenomenon as follows.

2.2noseqslam

The space of admissible sequences in NOSeqSLAM [4, 5] is defined by the sequence length

ds and the expansion rate η. Given (Iq i , Id j) ∈ 𝒬 × 𝒟, we build a directed acyclic graph
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G l
q i ,d j

Gr
q i ,d j

Figure 2.4: In order to account for nonlinear correlation in velocities between multiple traversals of

a route, instead of constructing linear sequences as in SeqSLAM, we construct the left

directed acyclic graph G l
q i ,d j

and the right directed acyclic graph Gr
q i ,d j

. Next, for both

graphs, we evaluate a single source shortest path algorithm from the root to leaves of

graphs and this way obtain a measure of correspondence between Iq i ∈ 𝒬 and Id j ∈ 𝒟.

G l
q i ,d j

such that (Iq i , Id j) is the root node that has η children {(Iq i−1 , Id j), . . . , (Iq i−1 , Id j−η+1)}.

Recursively, each (Iq i−1 ,Id j′ ) node has η children {(Iq i−2 , Id j′), . . . , (Iq i−2 , Id j′−η+1)} and so

on until the depth of ⟨︀ ds
2
⧹︀ is reached. Edges are directed from parent to children. This

graph is called the left subgraph (shown as the white graph in Figure2.4). Symmetrically,
we build the right subgraph Gr

q i ,d j
(shown as the cyan graph in Figure2.4) by expanding

{(Iq i+1 , Id j), . . . , (Iq i+1 , Id j+η)}. . . Then Gi , j = (𝒱i , j, ℰi , j,w) is defined as the union of these
two subgraphs while the weight function w ∶ ℰi , j → (︀0, 1⌋︀ is defined as

w((Iqk , Id l ), (Iqm , Idn)) = 1 − A(︀n,m⌋︀. (2.11)

Let l∗ denote the shortest path (in terms of accumulated weights) from ui , j to a leaf in

the left directed acyclic graph and r∗ denote the shortest path from ui , j to a leaf in the

right directed acyclic graph. Moreover, let Vl∗ and Vr∗ denote nodes of the corresponding

shortest paths respectively, and let V∗s.p. = Vl∗ ∪Vr∗ .Then, NOSeqSLAM gives a measure of

the similarity between Iq i ∈ 𝒬 and Id j ∈ 𝒟 as

sq i ,d j = ∑
uk , l ∈V∗s.p.

zTqkzd l
∏︁zqk∏︁∏︁zd l ∏︁

. (2.12)

NOSeqSLAM is the generalization of SeqSLAM because, by using shortest paths, se-

quences are not exclusively linear as in (2.9) where indices (( j + v(t − i), t))i+⟨︀ds⇑2⧹︀t=i−⟨︀ds⇑2⧹︀ are

used. This has a positive impact on results as NOSeqSLAM enables to capture nonlinear
correlation of acceleration between multiple traversals, i.e., when 𝒟 and afterward 𝒬 are

captured. On the other hand, SeqSLAM is capable of capturing only linear correlation, e.g.,

when a vehicle traverses both 𝒟 and𝒬 with equal velocities. However, real-world traffic

is significantly changeable; therefore, linear correlation in velocities is very unlikely. This

is visible in Figure2.5where multiple not that similar matches from a cone (dark squares
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(a) (b)

Figure 2.5: (a) SeqSLAM is unable to account for nonlinear correlation in velocities betweenmultiple

traversals – multiple dissimilar matches from a cone participate in the correspondence

measure. (b) Using a single source shortest path, NOSeqSLAM is able to capture nonlinear

correlation – only similar matches participate in the correspondence measure.

below linear sequence) participate in the correspondence measure for SeqSLAM. On the

other hand, NOSeqSLAM included only those matches that are really similar (no dark

squares show up below the union of shortest paths).

2.3tailored single source shortest path algorithm

There are numerous ways shortest paths in a graph can be found. In general, the wider the

category of graphs a shortest path algorithm can be applied to, the more asymptotic time it

takes. The Bellman-Ford algorithm [27] is a single source shortest path algorithm applicable

to the widest category of graphs – graphs that can have negative weights on its edges and

has the asymptotic running time of Θ(⋃︀𝒱⋃︀⋃︀ℰ⋃︀) where ⋃︀𝒱⋃︀ is the number of vertices and ⋃︀ℰ ⋃︀ is

the number of edges. An asymptotically better option for graphs with non-negative weights

where cycles are possible, although irrelevant because shortest paths cannot contain cycles,

is the famous Dijkstra algorithm [28] with the asymptotic running time of Θ(⋃︀𝒱⋃︀ lg ⋃︀𝒱⋃︀+ ⋃︀ℰ⋃︀).

Themost asymptotic-running-time acceptable algorithm, applicable only to directed acyclic

graphs, and therefore applicable to NOSeqSLAM, is to sort nodes topologically and then, in
topological order, do relaxation on edges. This procedure has the asymptotic running time

of Θ(⋃︀𝒱⋃︀ + ⋃︀ℰ⋃︀).

Relaxation is a mechanism used to maintain the best shortest path hypothesis for each

node starting from a source node s. Colloquially – if there is a better shortest path hypothesis
than a current one being detected, we use it instead. According to the notation from [29],

let w denote the weight function, let u.ad j denote nodes adjacent to u, let u.π denote the
predecessor in the shortest of a node u ∈ V , and let u.d denote an estimate for the shortest
path weight which will ultimately, when a shortest path algorithm terminate, become an

exact shortest path weight.This procedure is given in Algorithm1and takes Θ(1) asymptotic

running time.

A topological sort of a directed acyclic graph [30] is an ordering where, if the graph
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Algorithm 1 Relax
Input: (u, v) ∈ E
if v .d > u.d +w(u, v) then

v .d ← u.d +w(u, v)
v .π ← u

end if

Figure 2.6: An example of topological sort where nodes are listed in a way that, if (u, v) ∈ E, then u
appears before v. Times of nodes discovering/completion from the depth-first search al-

gorithm are displayed below nodes. Nodes are listed from left to right in descending order

with respect to their completion time in the depth-first search. Image taken from [29].

contains an edge (u, v), then u appears before v [29]. An illustrative example of a topologi-
cally sorted graph can be found in Figure2.6. Topological sort is established by evaluating

another popular graph algorithm – depth-first search. Depth-first search dates from the

19th century [31], while, in the modern-day graph theory, it has been recognized since the

publication of [32]. In depth-first search, we recursively examine undiscovered successors of

a certain node u ∈ V , then their successors, and so on. Whenever a new node is discovered,

we increase the counter value by one and assign this value as the time of its discovery.

When there are no more successors to discover, thus all undiscovered successors have been

found, we also increase the counter value by one and assign this value as the time when the

depth-first search for this node just ended. This description gives us an intuition for the

topological sort of a graph – the later the depth-first search for a node terminates, the sooner

this node should appear in order because its directed edges point to neighboring nodes

for which the depth-first search completed earlier. A recursive pseudocode for depth-first

search can be found in [29, p. 604], while a non-recursive pseudocode can be found in [31,

p. 50]. The pseudocode for topological sort is given in Algorithm2. Finally, it is easy to

define the single source shortest path algorithm for a topologically sortable directed acyclic

graph (Algorithm3).

Initially, Algorithm3has been used as a single source shortest path algorithm for

NOSeqSLAM. Unfortunately, for the Bonn dataset (Subsection3.3.3) with ⋃︀𝒬⋃︀ = 544 and

Algorithm 2 Topological sort
Input: Graph G = (V , E)
Output: Linked list L
Init linked list L
Run depth-first search for G
As soon depth-first search for u ∈ V is completed, prepend u to L
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Algorithm 3 Single source shortest path for directed acyclic graphs
Input: Graph G = (V , E), source node s ∈ V
u.π ← nul l ,∀u ∈ V
u.d ←∞,∀u ∈ V ∖ {s}
s.d ← 0

Sort G topologically with Algorithm2

for each u ∈ V taken in topologically sorted order do
for each v ∈ u.ad j do

Relax((u, v))
end for

end for

⋃︀𝒟⋃︀ = 488 images, it took a little over an hour for NOSeqSLAM to perform an offline

visual place recognition experiment given fixed hyperparameters. The cause is, in order

to evaluate Algorithm3, a new graph in memory has to be constructed. This is a time-

consuming operation because graphs, assuming the adjacency-list representation [29, p.
590], are nonlinear yet dynamically allocated structures. Being nonlinear, it is also time-

consuming to fetch properties of a graph frommemory, i.e., its nodes, edges, node attributes,

etc.Then, there is a burden of topological sort that requires depth-first search to be evaluated,

a linked list, also a nonlinear3 structure, to be allocated, etc. Notice how it is redundant

to, if a graph does not exist, to construct it, then topologically sort it in order to relax

its edges in order to find shortest paths. That premise, as it turned out, spared us from

redundant dynamic memory allocation and reduced running times drastically. We figured

out a way in which two nested loops themselves can traverse respective edges and nodes of

graphs G l
q i ,d j

and Gr
q i ,d j

in a topologically-sorted order, accounting boundary conditions,

and later on, it was easy to apply Algorithm1in order to find shortest paths. Edges and

nodes of G l
q i ,d j

and Gr
q i ,d j

are already contained in the association matrix A and can be

directly accessed with nested loops’ indices. This algorithm, called the on-the-fly relaxation,
is presented in our paper [5] and is given in Algorithm4. It can, therefore, be considered a

more efficient substitute of Algorithm3where an evaluation of Algorithm2is no longer

needed. Interestingly, these graphs are topologically sortable in two different directions –

one being defined with the outer loop while another being defined with the inner loop from

Algorithm4.

In Algorithm5we provide the NOSeqSLAM pseudocode in order to analyze its asymp-

totic running time. For the sake of clarity, let δ = ⟨︀ ds
2
⧹︀. The number of nodes both for G l

q i ,d j

and Gr
q i ,d j

given ds and η is

nnodes = (δ + 1) ⋅ (
(η − 1) ⋅ δ

2
+ 1), (2.13)

3 A linked list is a nonlinear structure in the way its elements are stored in memory, albeit it is a linear structure

in the way these elements are visited.
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Algorithm 4On-the-fly relaxation for NOSeqSLAM
Input: G l

q i ,d j
,Gr

q i ,d j
, ds , η

Output: all shortest paths from the root ui , j to leaves of G l
q i ,d j

and Gr
q i ,d j

for ioffset = 1 to ⟨︀ ds2 ⧹︀ do
for joffset = 0 to ioffset ⋅ (η − 1) do

i′l ← i − ioffset
j′l ← j − joffset
if 0 ≤ i′l ≤ ⋃︀𝒬⋃︀ − 1 and 0 ≤ j′l ≤ ⋃︀𝒟⋃︀ − 1 then

for each u ī , j̄ ∈ Predecessors(ui′l , j
′

l
) do

Relax((u ī , j̄, ui′l , j
′

l
))

end for
end if
i′r ← i + ioffset
j′r ← j + joffset
if 0 ≤ i′r ≤ ⋃︀𝒬⋃︀ − 1 and 0 ≤ j′r ≤ ⋃︀𝒟⋃︀ − 1 then

for each u ī , j̄ ∈ Predecessors(ui′r , j′r) do
Relax((u ī , j̄, ui′r , j′r))

end for
end if

end for
end for

Algorithm 5NOSeqSLAM
Input: A, ds, η
Output: sq i ,d j , ∀Iq i ∈ {Iq

⟨︀
ds
2
⧹︀+1

, . . . , Iq
⋃︀𝒬⋃︀−⟨︀

ds
2
⧹︀

}, ∀Id j ∈ 𝒟

for each Iq i ∈ 𝒬 do
for each Id j ∈ 𝒟 do

if 0 ≤ qi ≤ ⟨︀ ds2 ⧹︀ or ⋃︀𝒬⋃︀ − ⟨︀
ds
2
⧹︀ + 1 ≤ qi ≤ ⋃︀𝒬⋃︀ then

continue
end if
Calculate V∗s.p.
sq i ,d j = ∑

uk , l ∈V∗s.p

zTqk zdl
∏︁zqk ∏︁∏︁zdl ∏︁

end for
end for

while the number of edges for both graphs is

nedges = η ⋅ δ ⋅ (
(η − 1) ⋅ (δ − 1)

2
+ 1). (2.14)

If the Bellman-Ford algorithm is used in NOSeqSLAM, then its asymptotic running time

would be Θ(⋃︀𝒬⋃︀ ⋅ ⋃︀𝒟⋃︀ ⋅ δ4 ⋅ η3) = Θ(⋃︀𝒬⋃︀ ⋅ ⋃︀𝒟⋃︀ ⋅ d4
s ⋅ η3). If Dijkstra is used, NOSeqSLAM takes
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Figure 2.7: Running times with respect to sequence lengths and a number of image features for

SeqSLAM, cone-based SeqSLAM, and NOSeqSLAM on the Bonn dataset. Empirically,

NOSeqSLAM has better running times, while asymptotically, SeqSLAMs win. Image

taken from our paper [5].

Θ(⋃︀𝒬⋃︀ ⋅ ⋃︀𝒟⋃︀ ⋅ d2
s ⋅ η ⋅ (lg(d2

s ⋅ η) + η)). Asymptotic running times with both the standard
topological sort and on-the-fly relaxation are Θ(⋃︀𝒬⋃︀⋅⋃︀𝒟⋃︀⋅d2

s ⋅η2).The original and cone-based

SeqSLAMboth take Θ(⋃︀𝒬⋃︀⋅⋃︀𝒟⋃︀⋅ds ⋅⋃︀Vsteps⋃︀) asymptotically whereVsteps = {v ∶ vmin ≤ v ≤ vmax}
is a set of evenly spaced velocities.

Additionally, we have been observing empirical running times for the aforementioned

sequence-basedmethods on the Bonn dataset using a laptop with i7@2.8GHz processor.We

evaluated NOSeqSLAM (with Algorithm4), SeqSLAM and cone-based SeqSLAM changing

ds ∈ {5, 7, . . . , 51} and dimensionality of image representation dim(I) ranging from 27034

to 540672 features. This image representation with such a number of features is obtained

with a technique that will be presented in Section3.4. Running times needed to construct

an association matrix and then apply a sequence-based method with respect to sequence

length and a number of features are shown in Figure2.7. It is visible that NOSeqSLAM

has the lowest running times compared to SeqSLAM and cone-based SeqSLAM. Also, it

is visible that SeqSLAM methods have a better asymptotic running time, i.e., for a large

enough ds, these methods will become faster than NOSeqSLAM. However, these sequence

lengths are just sufficiently large to incorporate a local neighborhood. Another batch of

running time experiments will be presented in Section4.3.

2.4summary

In this chapter, one of the design aspects that constitute a visual place recognition system,

place matching, has been covered. First, we have reasoned how to model sequential vi-

sual place recognition data using sequence-based methods. Then, we have presented our
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approach to sequence modeling in place recognition that generalizes an existing sequence-

based method – NOSeqSLAM. Additionally, we have presented an efficient single source

shortest path algorithm applicable to a specific topological structure in our method. This

greatly, but not entirely, justifies the first scientific contribution: Sequence-based visual

place matching method that uses directed acyclic graphs and single source shortest path.

We say “not entirely” because we would also like to justify this contribution quantitatively.

Because both the aspects, place matching and image representation, are interdependent to

a great extent, in the upcoming chapter, we will systematically cover different image models.

Having both aspects covered, we can present the experiments that have been conducted

and, consequently, quantitative results.



3
On image models in the context of visual place

recognition

I
mage models are used whenever we have to make proper inferences about image data.

Image models specify how to create an image representation – a way to represent an
image in a computer program. In the previous chapter, we investigated how to match

places. Therefore, in this chapter, we investigate how to represent a place by using image

models. Given a raw image, either a grayscale one withW ×H intensity values from 0 to

255 (i.e.,W × H grayscale pixels) or an RGB image with 3 ×W × H intensity values (i.e.,

W ×H RGB pixels), we would like to map such raw image so that this mapped value fits a

specific computer vision task. Visual place recognition is, in particular, a computer vision

task too where we aim to find appropriate image models, so that good quantitative results

are obtained. Certainly, some image models are more suitable than others; therefore this

chapter provides a comprehensive explanation and evaluation of different image models

and how they fit in the context of visual place recognition. We cannot know which image

representations are better than others unless we evaluate different visual place recognition

methods quantitatively. In this chapter we will broadly divide image models into two

categories: handcrafted image models that will be examined in Section3.1and learned image
models examined in Section3.2. In Section3.3, we will present the proposed approach to
softmax regression in visual place recognition, while the proposed approach to feature

selection will be presented in Section3.4. In the experimental evaluation of these two

sections, different visual place recognition methods will be deployed in order to quantize

which image models are a good choice in visual place recognition and which are not.

3.1handcrafted image models

When we say that an image model is handcrafted, it means that such an image model is
not constructed by means of optimization. Rather, at least for models mentioned here,

we rely on the change of pixel intensity in a local region of an image. The fact that we

consider a local region of an image introduces another categorization in image models.

Somemodels, given a raw image, yield a variable-sized set of fixed-sized vectors that describe,

i.e., represent, such an image. These fixed-sized vectors are called local descriptors as they
describe significant local regions in an image – local features. On the other side, we have a
single vector/matrix/tensor that describes an image as a whole – a global descriptor. There

19
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(a) (b) (c)

Figure 3.1: The aperture problem. (a) For a location in a textureless area, it is not clear how to find

the corresponding location in another image. (b) It is possible to align two patches of an

edge by moving in the direction of edge normals. This indicates that an edge is a better

option for localization. (c) The localization of a patch is uniquely determined when the

change occurs in at least two substantially different directions, and such a patch is called

a corner. Images taken from [37].

exist scenarios where it is appropriate to create a global descriptor from a set of local

descriptors. Conversely, a global descriptor can be partitioned into a set of local descriptors

too. Ultimately, for sequence-based visual place recognition methods, global descriptors of

images are used.

3.1.1 Local features and descriptors

When compared to its spatial neighborhood, i.e., its neighboring pixels, a local feature is

a sufficiently distinctive region in an image. It depends from image to image, but in most

scenarios, there are “few” such regions, i.e., fewer local features than the number of pixels in

an image, so local features are frequently mentioned alongside the adjective “sparse”. There

are multiple use cases where local features are used. In this chapter, local features, i.e., their

corresponding descriptors, are aggregated together so that global image representations for
images are obtained. In the upcoming chapter, they contribute to visual odometry [33, 34, 35].
There is a wide array of other usages, e.g., for image stitching and alignment [36].

These traits lead to the formula that suggests if a spatial position in an image holds an

appropriate feature. Let I(x , y) = I(x) denote a pixel intensity at position (x , y) = x. A
specific position xi in an image I0, along with its corresponding local neighborhood, i.e., a
patch centered in xi , would not be recognizable at all in an image I1 if no change in intensity
occurs no matter what direction we move from xi . It is also said that such a feature cannot
be localized. This problem is called the aperture problem and is depicted in Figure3.1a. A

more discriminative patch would be an edge region because the change in pixel intensities

occurs alongside the edge in directions perpendicular to the edge – edge normals. Therefore,

it is possible to align two patches of an edge by moving in the direction of edge normals

(Figure3.1b). The localization of a patch is, however, not uniquely determined as long as

the change does not occur in at least two substantially different directions, as it the case

in Figure3.1c. For such feature, also called a corner for obvious reasons, there exists a
deterministic vector u = (u, v) that translates the feature between two images that contain
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it.

Given images I0 and I1 that presumptively hold amutual region, we can quantize whether
that region is a corner, i.e., whether there is a unique displacement u, by evaluating the
weighted sum of squared differences

EWSSD(u) = ∑
i
w(xi)(I1(xi + u) − I0(xi))

2

. (3.1)

Because it is unknown how features are displaced between two images, it is computationally

costly to evaluate (3.1) for each region in I0 and for each region in I1. Luckily, there is
another way to tell if a location contains a corner by modifying (3.1). Instead of an inter-

images displacement by u, we should observe a slight displacement by ∆u = (∆u, ∆v) in a
single image I = I0. Additionally, as images are prone to noise, and noise, in the context of
images, can be characterized as pixels with significantly different intensities with respect to

their neighbors, i.e., noisy pixels themselves could be erroneously characterized as corners,

we resort to removing such noise by smoothing an image. Image smoothing is done by

convolving an image with the symmetric Gaussian kernel

Gσ(x) =
1

2πσ2
exp(−

x2 + y2

2σ2
), (3.2)

where σ is the standard deviation parameter. This way, we obtain a noise-free (up to a

parameter σ) and smoothed image

Iσ(x) = Gσ ∗ I(x), (3.3)

where ∗ is the convolution operation. For more details confer [38, Chapter 4, 5]. Finally, the
auto-correlation function is defined as

EAC(∆u) = ∑
i
(Iσ(xi + ∆u) − Iσ(xi))

2

. (3.4)

When (3.4) is evaluated on a textureless region (e.g., the sky or a wall) no clear minimum

is noticeable (Figure3.2a). For an edge, evaluation of the auto-correlation formula yields

multiple minimal values alongside that edge (Figure3.2b). A strong single-point minimum

exists for regions that contain a corner (Figure3.2c). This goes hand in hand with the

aperture problem – no matter in which direction ∆u we move in a textureless area, strong
difference of pixel intensities does not exist. When we move for ∆u perpendicular to an
edge, the change is emphasized, but not alongside the edge. And finally, for a corner, i.e., a

good feature, the change is significant wherever we move.

In practice, the evaluation of (3.4) is further simplified by approximating it with the

second-order Taylor expansion around 0 because ∆u → 0. The derivative of a smoothed

image with respect to ∆u is the same as the derivative with respect to x because the compo-
nents of ∆u (∆u and ∆v, respectively) have the same directions as the components of x (x
and y, respectively) and therefore

dIσ(x)
d∆u

=
dIσ(x)
dx

= ∇Iσ(x). (3.5)
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(a) (b) (c)

Figure 3.2: Evaluation of the auto-correlation function (3.4) on (a) a textureless area, (b) an edge, and

(c) a corner. In a corner region, the auto-correlation possesses a strong local minimum.

Images taken from [37].

For the sake of clarity, let s = ∆u. Then, we approximate (3.4) as

EAC(s) ≈ EAC(0) +
dEAC(s)

ds
⨄︀
s=0

s +
1

2
sT
d2EAC(s)

ds2
⨄︀
s=0

s. (3.6)

It is easy to see that

EAC(0) = ∑
i
(Iσ(xi) − Iσ(xi))

2

= 0, (3.7)

dEAC(s)
ds

⨄︀
s=0
= ∑

i
2(Iσ(xi) − Iσ(xi))∇Iσ(xi) = 0, (3.8)

and therefore

EAC(s) ≈
1

2
sT
d2EAC(s)

ds2
⨄︀
s=0

s. (3.9)

By expanding and evaluating the second derivative term in (3.9), we obtain

d2EAC(s)
ds2

⨄︀
s=0
= ∑

i
2∇Iσ(xi)∇T Iσ(xi) +∑

i
2(Iσ(xi) − Iσ(xi))∇2Iσ(xi) (3.10)

= ∑
i
2∇Iσ(xi)∇T Iσ(xi). (3.11)

Finally, the approximation of (3.4) can be rewritten as

EAC(∆u) ≈ ∆uT(∑
i
∇Iσ(xi)∇T Iσ(xi))∆u (3.12)

= ∆uT

⎨
⎝
⎝
⎝
⎝
⎝
⎝
⎪

∑i(
∂Iσ(x)
∂x ⋂︀x=xi)

2

∑i(
∂Iσ(x)
∂x ⋅

∂Iσ(x)
∂y )⋂︀x=xi

∑i(
∂Iσ(x)
∂x ⋅

∂Iσ(x)
∂y )⋂︀x=xi ∑i(

∂Iσ(x)
∂y ⋂︀x=xi)

2

⎬
⎠
⎠
⎠
⎠
⎠
⎠
⎮

∆u (3.13)

= ∆uTA∆u (3.14)

= ∆uTR−1 ⌊︀λ1 0

0 λ2
}︀R∆u, (3.15)

while it is possible to diagonalize A because it is a real symmetric matrix. Its eigenvalues, λ1
and λ2, indicate whether the change in pixel intensities occurs in perpendicular directions.
Therefore, the problem of feature detection comes down to how we interpret the eigenvalues.

A broader analysis can be found in [37] and [38, Chapter 5], but the idea is that the larger
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an eigenvalue is, the greater the change of pixel intensity in the direction of its respective

eigenvector. We aim for the change of intensity in both directions, so if both λ1 and λ2 are
“large enough” (there is no stricter criteria), that area is considered a feature. If λ1 and λ2
are both “small”, no change occurs, and if only a single eigenvalue is large, then an edge is

present because the smaller eigenvalue, being “small”, indicates there is no change in the

direction of its eigenvector.

This discussion brings us to the popular quantitative measure that tells whether a region

is salient, the Harris corner detector [39], defined by

R = λ1λ2 − k(λ1 + λ2)2 = det(A) − k tr(A)2, k ∈ R+. (3.16)

It is easy to see that (3.16) will go over a lower-bound threshold once the eigenvalues are

substantially large. There exist additional approaches to corner detection by examining

eigenvalues of A, e.g., the Shi-Tomasi corner detector [40] that is defined as

R =min(λ1, λ2). (3.17)

Two desirable characteristics of corner detectors are invariance to orientation and scale.

Having strong gradients in different directions, thus having a corner that is being detected by

just discussed corner detectors, we can rotate such corner and it will be detected once again.

This, alongside being justified intuitively (no matter how a corner is rotated, it remains a

corner), was justified empirically too [41]. This suggests how corner detectors that rely on

(3.4) are rotation invariant. However, the same cannot be said for scale. Therefore, we resort

to testing a detector at different image scales in order to achieve scale invariance too.

Before we continue, we should reflect on the property for differentiation of a smoothed

image. Because differentiation is linear and shift invariant [38], it can be shown that

dIσ(x)
dx

=
d(Gσ ∗ I)(x)

dx
=
dGσ(x)

dx
∗ I(x). (3.18)

This property suggests that rather than smooth and then differentiate an image, we can

directly convolve it with the derivative of the Gaussian. Another option for corner detection

is to convolve an image with the Laplacian of the Gaussian

∇2Gσ(x) =
∂2Gσ(x)
∂x2

+
∂2Gσ(x)
∂y2

, (3.19)

e.g., to obtain the Laplacian of a smoothed image as

∇2Iσ(x) = ∇2(Gσ ∗ I)(x) = ∇2Gσ ∗ I(x). (3.20)

Several different derivative-based functions for corner detection, alongside the first deriva-

tive and the Laplacian, have been compared in [42] where the combination of the Harris

corner detector for a specific scale of an image alongside the Laplacian over multiple scales

for that image shown the best results. However, different authors [38] claim that the Harris

corner detector, although very accurate for estimation of the center of a corner, is not that

accurate for scale estimation. By contrast, the Laplacian of the Gaussian is less accurate for

centers but better for scale estimation.The Laplacian of the Gaussian-based scale estimation

is the foundation of the forthcoming scale-invariant feature detector.
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Figure 3.3: What seems to be an edge at a finer scale might be a corner at a coarser scale. In order to

achieve scale invariance, we have to observe features at multiple scales.

(a)

(b)

(c)

Figure 3.4: In SIFT, (a) the Laplacian of the Gaussians is approximated with the difference of Gaus-

sians. Then, (b) a local extremum among neighboring points in scale and space is consid-

ered a feature candidate. (c) Descriptors are created by dividing a local neighborhood

into smaller subblocks, then for each subblock, an 8-bin histogram of orientations is

calculated, and finally, histograms are stacked together forming a descriptor. Images

taken from [36].

The basic idea to achieve scale invariance is to find an optimal scale for a specific feature.

In other words, to find an optimal radius of a circular area around the feature at x such that
the response is maximized, i.e.,

r(x) = argmax
σ
∇2Iσ(x) = argmax

σ
∇2Gσ ∗ I(x). (3.21)

This is illustrated in Figure3.3. What seems to be an edge at a finer scale might be a corner at
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a coarser scale.Therefore, we tweak different scales in order to maximize the response. From

a practical point of view, (3.21) leads us to create, given an image, an image pyramid1 and

then apply the Laplacian of the Gaussian.The scale-invariant features (abbr. SIFT) [6] use
image pyramids for that purpose exactly. Although, for reasons of efficiency, the Laplacian

of the Gaussians is approximated with the difference of Gaussians. In SIFT, at a specific
scale, also called an octave, an image is blurred with Gaussian kernels of different standard
deviation parameters σ , kσ , k2σ , . . . , and such blurred images are further subtracted in
order to obtain differences of Gaussians (Figure3.4a). Among differences of Gaussians for

a specific octave, a local extremum over scale (9 points in the previous scale and 9 points

in the next scale) and space (8 neighboring points at exact scale) is considered a potential

keypoint (Figure3.4b).

Once keypoint locations are found, distinctive “signatures” that describe these keypoints,

descriptors, are constructed as illustrated in Figure3.4c. Say a keypoint region is a block

that consists of n × n cells (16 × 16 in the original paper, 8 × 8 in Figure3.4c). This block is

further divided into subblocks of size 4 × 4. Then, for a subblock, an 8-bins histogram that

accumulates weighted gradient orientations is constructed. Histograms are then stacked

together into a single vector (4 × 4 × 8-dimensional in the original paper, 2 × 2 × 8 in

Figure3.4c), first normalized, then thresholded, and once again normalized. This vector is a

SIFT descriptor. In Figure3.6, a subsequence of visual place recognition data is visualized

with detected SIFT features, where corresponding scale and orientations obtained after

histogramming are marked as oriented and variable-radius circular patches.

SURF: Speeded-up robust features [7] is another approach to achieve scale invariance

where the Laplacian of Gaussian is approximated with box filters. For a given image I, the
authors check whether a region located at x holds a feature at different scales by constructing
the Hessian matrix

ℋ(x, σ) = ⌊︀Lxx(x, σ) Lxy(x, σ)
Lxy(x, σ) Lyy(x, σ)

}︀ (3.22)

where

Lxx(x, σ) =
∂2(Gσ ∗ I)(x)

∂x2
=
∂2Gσ

∂x2
∗ I(x) (3.23)

is the second-order derivative of an image convolved with the Gaussian kernel with the

deviation σ with respect to x. Once again, we do not have to smooth an image and then
find the second-order derivatives, but we can convolve an image with the second-order

derivative of the Gaussian with respect to specified directions. Analogously are defined and

treated the second-order derivative with respect to y, Lyy, and the mixed derivative with

respect to x and y, Lxy. The second-order derivatives of Gaussians, first being cropped and

discretized (Figures3.5a,3.5b), are approximated with simpler and faster alternatives – box

filters (Figures3.5c,3.5d). In a similar manner to SIFT descriptors, SURF descriptors are

created by accumulating orientations that are obtained with Haar wavelets [43].

1 A sequence that consists of a single image being blurred and downsampled multiple times, usually by a factor

of 2.
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(a) (b) (c) (d)

Figure 3.5: Discretized and cropped second-order derivatives of the Gaussian with σ = 1.2 with

respect to (a) y2 and (b) x and y. In SURF, (a) and (b) are approximated with box filters
shown in (c) and (d). Images taken from [7].

3.1.2 Global descriptors

Besides it is possible to extract local features and calculate corresponding descriptors,

i.e., to represent an image I with a set of local descriptors, we can also opt for a global
vector/matrix/tensor representation. Among handcrafted image models that yield global

descriptors, in our experiments, we have tried those approaches that map a set of local

features into a global descriptor by using visual words. Also, we tried out an approach that
splits an image into subregions that are characterized by gradients – histogram of oriented
gradients.

g aggregating local features into global descriptors.It would be

inefficient to compare each local descriptor from one image to each local descriptor in

another image. Rather, there are mechanisms that map an indefinite-sized set of local

descriptors into a definite-sized global descriptor, be it either a vector, a matrix, or a tensor.

Then, by means of matrix operations, global descriptors of a definite size can be easily

compared. One of the key aspects of local features aggregation is to build a vocabulary of
words. This is the main idea in the bag-of-wordsmodel – a general discretization model used
in different studies including natural language processing, information retrieval, and also in
computer vision [8]. In computer vision, words are prefixed with the adjective visual, so
local features are quantized by a set of visual words. Technically, visual words are centers of

a clustered partition of a dataset that consists of a large number of local descriptors, so let us

first describe the problem of cluster analysis – k-means clustering – and how it corresponds

to the context of two global descriptor models: bag-of-words (abbr. BoW) and vector of

locally aggregated descriptors (abbr. VLAD).

Let ℐ ⊆ Rn be a set of n-dimensional features. In k-means clustering, we should split ℐ
into k disjoint subsets, clusters, so that elements inside a specific cluster are as similar as
possible, and also, elements of two different clusters are as different as possible. As defined

by [44], let Π ∈ 𝒫(ℐ , k) be a k-partition2 of the set ℐ where 𝒫(ℐ , k) is the set of all k-

2 Let𝒜 be a set of m ≥ 2 elements. A partition of the set𝒜 into 1 ≤ k ≤ m disjoint nonempty subsets π1 , . . . , πk

such that

(i)
k
⋃
j=1

π j = 𝒜,

(ii) πr ∩ πs = ∅, r ≠ s,

(iii) ⋃︀π j ⋃︀ ≥ 1,∀ j = 1, . . . , k
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Algorithm 6 Lloyd’s algorithm
Input: Dataset ℐ , number of clusters k
Output: Optimal k-partition Π∗

Initialize c j,∀ j = 1, . . . , k by picking a random element from ℐ

repeat
for each c j do

Reassign each element from ℐ to its closest center

Recalculate c j as the arithmetic mean of elements assigned
end for

until convergence

partitions for ℐ . Given a distance function d ∶ Rn ×Rn → R+ to each cluster π j ∈ Π, one can

assign its center c j in the following way:

c j ∈ argmin
x∈Rn

∑
l∈π j

d(x , l), ∀ j = 1, . . . , k. (3.24)

Then we search for the optimal k-partition Π∗ by solving the following global optimization

problem:

Π
∗ ∈ argmin

Π∈𝒫(ℐ ,k)

k

∑
j=1
∑
l∈π j

d(c j, l). (3.25)

Classic algorithms for solving (3.25) are the Lloyd’s algorithm [45] (Algorithm6) and the

quite similar MacQueen’s algorithm [46], while Yinyang K-means [47] is a state-of-the-art

approach with the GPU-ready library [48] that has also been used in our implementation.

In the context of computer vision, ℐ will hold a large number of local descriptors (be it

either SIFT descriptors, SURF descriptors, or any other local descriptors) from a large set

of images. Once (3.25) is solved, obtained values c j,∀ j = 1, . . . , k as defined in (3.24), will
represent k different visual words. Let 𝒞 = {c j ∶ j = 1, . . . , k} denote a set of all visual words,
also called a vocabulary. We build a vocabulary in advance, and once it is built, for a given

image I, we create its global BoW or VLAD descriptor.

g bag of words.Given a vocabulary 𝒞, an image I is mapped to a bag-of-words global
descriptor zBoWI ∈ R⋃︀𝒞⋃︀ first by extracting local descriptors ℒI = {lI,i ∶ i = 1, . . . , nI} ⊂ R

d

of I with a local feature detector and descriptors of choice. Then, for each cluster π j we

determine which local descriptors belong to this cluster, i.e., for each local descriptor lI,i we
determine its closest visual word in terms of a distance function d (the Euclidean distance
in our case). The number of corresponding local descriptors for a visual word c j will be
the j-th component of zBoWI . Additionally, we normalize zBoWI . All these steps are given in

Algorithm7. It is also possible to vectorize the given pseudocode, as we did in our code,

by copying each local descriptor as many times as there are visual words, also by copying

each visual words as many times as there are local descriptors, and then in a single matrix

operation to calculate residuals, then norms, etc.

is called a k-partition of the set𝒜 [44].
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Algorithm 7 Bag-of-words image model
Input: Vocabulary 𝒞, an image I
Output: Global descriptor zBoWI
Initialize zBoWI ∈ Rk with zeros

Get ℒI by using a local descriptors extractor

for each lI,i ∈ ℒI do
Find the nearest visual word c j
zBoWI, j ← zBoWI, j + 1

end for
zBoWI ← zBoWI ⇑∏︁zBoWI ∏︁2

The advantage of using bag-of-words as an image model is that resulting descriptors

are only k-dimensional; therefore, it is blazingly fast to compare them with each other.

However, the bag-of-words model, due to its dimensionality, has a limited capacity to

represent complex image data. Notice how local descriptors themselves are not encoded

in a global descriptor. Rather, zBoWI only bears the information about the occurrences of

visual words; therefore, a considerable amount of information is lost. As follows, there is an

approach designed to resolve this issue.

g vector of locally aggregated descriptors.Vector of locally aggregated

descriptors [9] is a local descriptors aggregation approach where, instead of frequencies,

residuals for each visual word and its corresponding local descriptors are encoded. As in

the bag-of-words model, a vocabulary of visual words 𝒞 should be provided in advance,

and local descriptors ℒI for a given image I should be extracted first. The result is a global

descriptor zVLADI ∈ Rk×d where the j-th row is defined as

zVLADI (︀ j, ∶⌋︀ = ∑
lI , i∈ℒi

1{lI,i ∈ π j}(lI,i − c j). (3.26)

In the end, we additionally flatten zVLADI into a single-axis k ⋅ d-dimensional vector and
normalize it. The procedure that maps an image I into zVLADI is given in Algorithm8. This

algorithm can also be vectorized in the same fashion BoW is vectorized.

Notice how both BoW and VLAD are pretty similar image models, up to the way local

descriptors are encoded. For a given image, VLAD descriptor bears more information than

its BoW counterpart – being k ⋅ d-dimensional, instead of k-dimensional, VLAD is a more

capacitated image model what has a positive impact on quantitative results. Nevertheless,

there is a severe shortcoming – once local features are detected and descriptors extracted,

locations of features are no further used; thus, spatial information is lost. This is also the

case for BoW. To overcome this shortcoming, we do not have to use local descriptors at all

and then aggregate them, but instead, we can encode every bit of information in an image

in its respective local histogram with a known spatial position as it is done in histogram of
oriented gradients.
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Algorithm 8 Vector of locally aggregated descriptors
Input: Vocabulary 𝒞, an image I
Output: Global descriptor zVLADI
Initialize zVLADI ∈ Rk×d with zeros

Get ℒI by using a local descriptors extractor

for each lI,i ∈ ℒI do
Find the nearest visual word c j
zVLADI,( j,∶) ← zVLADI,( j,∶) + lI,i − c j

end for
zVLADI = flatten(zVLADI )

zVLADI ← zVLADI ⇑∏︁zVLADI ∏︁2

g histogram of oriented gradients.Histogram of oriented gradients [ 49]

(abbr. HOG) is an image model that relies on image gradients in the way other local

features discussed above do. However, in contrast to the mentioned local features, this

model produces a dense map of features distributed uniformly on a grid that divides

an image into rectangular or circular regions. HOG has been used for human detection

providing a compact representation of an image further used in machine learning tasks [50].

By quantizing image gradients, not only compactness is achieved, but also robustness to

noise.

To obtain a global HOG descriptor zHOGI , a given image I is first preprocessed as de-
scribed in [51]. Then, it is divided into n × n-pixel cells (e.g., 8 × 8 as in [50]). Horizontal
and vertical gradients gx,x and gx,y for a pixel at position x are calculated by using simple
gradient operators )︀−1 0 1⌈︀ and )︀−1 0 1⌈︀

T
. Then, for each pixel, its gradient magnitude

mx and gradient orientation θx are calculated as:

mx =
⌉︂

g2x,x + g2x,y , (3.27)

θx = arctan
gx,y
gx,x

. (3.28)

For each cell, a histogram with m bins that counts weighted orientations is initialized.

Orientations are either unsigned (take values from (︀0○, 180○)) or signed (take values from

(︀0○, 360○)). It was shown empirically that unsigned orientations with 9-bin histograms

work best. Each orientation θx in a cell is assigned to an appropriate bin and is scaled by its
accompanying magnitude mx. Histograms are additionally normalized, not individually,

but according to another hyperparameter – the block size. The block size of 2 × 2 cells,

i.e., 4 histograms stacked together and then normalized, achieved the best results. Finally,

all histograms stacked together constitute a global descriptor. How histogram of oriented

gradients responds to a subsequence of images visual place recognition data is visualized

in the second column of Figure3.6. Notice how, when containing an edge, histogram

orientations are mostly accumulated into bins perpendicular to that edge. Likewise, those

cells positioned in textureless areas contain histograms without dominant orientations and

strong magnitudes.
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Figure 3.6: Visualization of (left column) SIFT local descriptors and (right column) HoG global

descriptors on a subsequence of visual place recognition data (the Freiburg dataset [52]).

3.2learned image models

Learned image models are obtained by solving an optimization criterium on a large amount

of data. On a regular basis, learned image models outperform handcrafted models. There

exist learned image models that detect corners, such as features from accelerated segment
test (abbr. FAST) [53, 54], but in recent years, neural networks are pretty much the unique
method of choice, not only for images but also for text, audio and video data.

3.2.1 Neural networks

Neural networks (abbr. NN) are biologically inspired systems that, according to a spec-
ified task, map high-dimensional inputs, e.g., images, audio, or video files, into either
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low-dimensional or high-dimensional outputs. Neural networks initially intended to model

neurons, but since then “[. . . ] become a matter of engineering [. . . ]” that achieve good

results in machine learning [55]. A neuron is the basic computational unit of the brain

connected with other neurons. In the process of neurotransmission, impulses are exchanged
between neurons via synapses. A neuron receives multiple impulses from other neurons, its

inputs, via dendrites. Then, these multiple impulses are “processed” together in the neuron’s

body and further transmitted to the axon. The axon splits up into multiple branches of axon

terminals so that a single neuron output can be used as an input for other neurons. This is

depicted in Figure3.7a.

This biological process is simulated with the simplest neural network, also the basic

building blocks for more complex neural networks – the composition of a nonlinear activa-

tion function f ∶ R→ R applied component-wise to an output of an affine map g ∶ Rn → Rm

that, for a given input x ∈ Rn, is defined as

g(x) =Wx + b, (3.29)

whereW ∈ Rm×n and b ∈ Rm. In Figure3.7bit is shown how

y = ( f ○ g)(x) (3.30)

relates to neurotransmission. Figuratively, multiple input cells/nodes that bear information,
i.e., the components x(︀i⌋︀ of a vector x, are glued together into a new output cell y(︀ j⌋︀ that is
a component of y defined with (3.30).

In the context of neural networks, the combination of a nonlinear activation function

and (3.29) is also called a single-layer perceptron/a single-layer feedforward network. No-
tice how we can easily generalize single-layer perceptron, simultaneously increasing the

representational capacity of a model, by composing multiple affine transformations and

nonlinear functions alternately and this way obtain a multi-layer perceptron (abbr. MLP)

defined as

MLP(x;W1, b1,W2, b2, . . . ,Wk , bk) = fk(Wk(. . . f2(W2 f1(W1x +b1)+b2) . . . )+bk). (3.31)

The arguments after ; denote parameters/weights of a model rather than input data, and
we should optimize (3.31) with respect to these learnable parameters. Composing multiple

layers of affine and nonlinear functions together is what makes a neural network deep, and
therefore the name deep neural networks. Those layers stacked between the input and the

output layer are called hidden layers. We can design a neural network, i.e., its topology,
whatever suits us – the input dimensionality, the output dimensionality, the number of

hidden layers and their dimensionality, a specific nonlinear activation function, etc. Two

examples of neural network topologies are shown in Figure3.9. Stacking all weights together

into a tensorW, let us denote a neural network as a function fNN( ⋅ ;W) ∶ Rn → Rm.

Deep neural networks, i.e., multi-layer perceptrons, are especially powerful because

there exists a theoretical guarantee, the universal approximation theorem, presented in the
paper “Multilayer feedforward networks are universal approximators” [56] whose name

speaks for itself. According to this theorem, there exists a neural network with a linear

output layer and at least one hidden layer that can approximate any continuous function on
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Figure 3.7: (a) A neuron receives multiple inputs via its dendrites and produces a single output being

used as an input in multiple other neurons. (b) This is mimicked with the composition of

a nonlinear activation function and an affine map. Image (a) taken from [55] and image

(b) based on an image from [55].

a closed and bounded subset of Rn. Also, it is not known how many parameters a model

should have in order to approximate a desired function, but if we stay on a single hidden

layer, such a model could be infeasibly large and hard to train. Even if we manage to train

it, it may be prone to overfitting [57, p. 195]. Rather than “wide” and single-layer, we prefer
deep, multi-layer models that are easier to train, have significantly less parameters, and

generalize well.
If we deliberately omit nonlinear activation functions f1, f2, . . . , fk from (3.31), the com-

position of affine functions would be an affine function, and such model would not be

able to account for nonlinearities of complex data. This justifies why a nonlinear activation

is used. Among popular choices for nonlinear activation is the rectified linear unit (abbr.
ReLU) defined as

ReLU(x) =max{0, x}. (3.32)

It is the default recommendation for a nonlinear activation function as claimed in [57, p.

169]: “Because rectified linear units are nearly linear, they preserve many properties that

make linear models easy to optimize with gradient-based methods.” According to [55],
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Figure 3.8: Various nonlinear activation functions used in learned image models in order to account

for nonlinearities in data.

advisable alternatives to ReLU include Leaky ReLU [58] and tanh. How these functions

map an input is shown in Figure3.8.

(a) (b)

Figure 3.9: (a) The example of a single-layer perceptron that maps an input x ∈ R4
(cyan nodes) into

an output y ∈ R4
(red nodes). (b) The example of a multi-layer perceptron that maps

x ∈ R4
into y ∈ R2

via two hidden layers (gray nodes).

3.2.2 Optimization of neural networks

In classic optimization, optimization is a goal in itself. In machine learning, which includes

neural networks too, the ultimate goal would be to learn amodel so that it works satisfactorily

on unseen test data. Therefore, we optimize, i.e., we train a neural network by using data
available in advance – training data. Although the optimization of neural networks is not a

convex optimization problem, when we train a network, training error should diminish,

and, in most scenarios, it is not that hard to achieve this objective. Much harder is to attain

a low test error – due to the representational capacity of a model, depending mostly on the

number of parameters and their configuration, it takes a lot of data to achieve satisfactory

test performances.
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Let L(xi , yi ,W) denote the per-example loss, a function that dictates how a network

fNN should be optimized given an input xi , its corresponding label yi and the network
parametersW. It is usually defined as the negative log-likelihood

L(xi , yi ,W) = − log p(yi ⋃︀ xi ,W) (3.33)

where p(y ⋃︀ x ,W) is the conditional probability thatmodels an output y given an input x and
the weightsW. The optimization of fNN(⋅ ,W) on a large number of training examples {xi}
with corresponding labels {yi} according to a specified criteria/loss L can be formulated as

min
W

E(x ,y)∼pdata(︀L(x , y,W)⌋︀ =min
W

1

m

m

∑
i=1

L(xi , yi ,W). (3.34)

We can conduct the optimization defined with (3.34) by using the gradient descent, an
optimization method that will updateW in the following way:

W←W − є∇E(x ,y)∼pdata(︀L(x , y,W)⌋︀, є ∈ R
+
, (3.35)

where

∇E(x ,y)∼pdata(︀L(x , y,W)⌋︀ =
1

m

m

∑
i=1
∇L(xi , yi ,W). (3.36)

Although it is easy to formulate training of neural networks in a mathematical notation,

evaluating (3.36) would take up too much time and memory. Instead, with the stochastic
gradient descent method (abbr. SGD), we update the weights “piece by piece” on a subset
{xi′}, uniformly sampled from {xi}, where ⋃︀{xi′}⋃︀ = m′ << m = ⋃︀{xi}⋃︀. In other words, we
approximate (3.36) with

∇Ẽ(x ,y)∼pdata(︀L(x , y,W)⌋︀ =
1

m′∑i′
∇L(xi′ , yi′ ,W) (3.37)

and perform the update step as

W←W − є∇Ẽ(x ,y)∼pdata(︀L(x , y,W)⌋︀. (3.38)

as given in Algorithm9. Additional improvements of stochastic gradient descent exist.

Among others, the momentum algorithm [59] is used in this chapter, where the update of

weights is defined as a moving average, i.e.,

v ← αv −
є
m′∑i′

∇L(xi′ , yi′ ,W), α ∈ R+ (3.39)

W←W + v . (3.40)

There are also methods that adapt learning rates. For a more comprehensive overview of

approaches that optimize neural networks, see [57, Chapter 8].

As already mentioned at the beginning of this subsection, it is not that hard to optimize

a network given training data. Actually, it is hard to achieve generalization, i.e., a low test

error given test data. To an extent counterintuitive, this objective is achieved by a process

called regularization, where we deliberately increase the training error in favor of decreasing
the test error. A classic approach to regularization is parameter norm penalty such as L1 and
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Algorithm 9 Stochastic gradient descent
Input: Training data {(xi , yi)}, learning rate є, initialized weightsW
Output: Optimized weightsW∗

repeat
Uniformly sample {(xi′ , yi′)} ⊂ {(xi , yi)}
Compute ∇Ẽ(x ,y)∼pdata(︀L(x , y,W)⌋︀ with (3.37)
W←W − є∇Ẽ(x ,y)∼pdata(︀L(x , y,W)⌋︀

until convergence

L2 regularization. The idea is to add a regularization term ∏︁W∏︁1 or ∏︁W∏︁2 to the objective
function (3.34) in order to keep theweights close to zero (more about this topic in Section3.4).

A recently introduced regularization technique, dropout [60], is a simple yet powerful way

to regularize a net such that connections between nodes are randomly removed with the

probability p. This way, the weights are adapted to work on an ensamble [57, p. 252] of

truncated networks. In other words, during training, we sample a sub-network from the full

one [55]. Additionally, regularization can be achieved with adversarial examples [61] (more

about this topic in Subsubsection3.2.4). For a more comprehensive overview of approaches

that regularize neural networks, see [57, Chapter 7].

3.2.3 Convolutional neural networks

Convolutional neural networks (abbr. CNNs) are neural networks where affine maps are
replaced with convolutions. This proved to be a winning ticket in the computer vision

field, and over the last few years, convolutional neural networks have achieved state-of-

the-art results, starting with a notable architecture AlexNet [62]. Convolutional neural

networks are used for classification [62, 63, 64, 65], semantic segmentation [66, 67, 68], object
detection [69, 70, 71], etc.The central concept of convolutional neural networks is to convolve

a discrete image with a discrete convolution kernel, i.e.

S(i , j) = (I ∗ K)(i , j) = ∑
m
∑
n
I(m, n)K(i −m, j − n) (3.41)

= (K ∗ I)(i , j) = ∑
m
∑
n
I(i −m, j − n)K(m, n), (3.42)

although it is also possible to apply the cross-correlation

S = (I ⋆ K)(i , j) = ∑
m
∑
n
I(i +m, j + n)K(m, n) (3.43)

as some deep learning libraries do3, “which is the same as convolution but without flipping

the kernel” [57, p. 324]. It does not matter which operation we are going to pick as long as we

stick to that one.The visualization of convolving a 3×3 kernelK over 5×5 image I that results
in an output S can be seen in Figure3.10. Alongside affine maps that are appended atop of
convolutional layersmostly to perform classification tasks, in convolutional neural networks,

3 In PyTorch [72], classes torch.nn.Conv1d and torch.nn.Conv2d apply the cross-correlation operator

over an input signal.

https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html
https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html
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Figure 3.10: Convolution of a 5 × 5 image I (cyan grid) with a 3 × 3 kernel K(transparent gray grid)
with padding of 1 pixel and stride of 2 pixels that results in a new output S (red grid).
Images created with [73].

weights are mostly convolutional kernels. If a network has affine layers parametrized with

{(Wi , bi)} and kernels {K j} then, once again, we can denote all such weights with W
and denote the network as a function fCNN(⋅ ,W). According to [57], concepts that make
convolutional neural networks stand out among neural networks are

• sparse interactions,

• parameter sharing and

• equivariant representations.

All these qualities are implications of using a convolutional operation rather than matrix

multiplication.

Sparse interactions refer to the way network nodes are connected. First, let us focus

on a node from its input perspective (be it an input node/a hidden layer node). In a non-

convolutional deep neural network, a node would participate as an information transferor

(i.e., in combination with the corresponding weights, it would be an addend in the scalar

product) for each node in a successive layer. The same reasoning applies to the output
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perspective of a hidden layer node/an output node – such node summarises information

of a few, rather than all, nodes from a previous layer. Dense connections of such neural

networks result in an unnecessarily large number of paths from input to output nodes

(Figure3.11a). In contrast to ordinary affine-map-based neural networks, interactions in

convolutional neural networks are sparse, meaning just a few nodes transfer information to

a successive layer’s node. We should carefully design a convolutional neural network so that

there are just enough connections to propagate information from each input cell to each

output cell (Figure3.11b), i.e., to maintain an optimal receptive field.
A specific matrix cell has been used only once when calculating the output for the

next layer in a non-convolutional neural network. By using convolutional kernels, a single

kernel is spatially applied to designated input cells repeatedly. This concept is known as

parameter sharing and results in a reduced number of network weights. Closely related

to this is the concept of equivariant representation. Say we are convolving with a kernel

that detects edges. As the kernel is applied throughout the entire spatial region, an edge

can be detected anywhere. More formally, let f denote a convolution applied to an image
I and let g denote a function that spatially translates I. It is said that f is equivariant to g
if ( f ○ g)(I) = (g ○ f )(I). Therefore, if we spatially move a specific visual entity, “[. . . ] its

representation will move the same amount in the output.” [57, p. 330]

(a) (b)

Figure 3.11: (a) In ordinary non-convolutional neural networks, connections are dense.This results in

an unnecessarily large number of paths from input to output nodes. (b) In convolutional

neural networks, connections are sparse. Notice how there is just enough connections to

propagate an information from each input cell to each output cell.

Alongside the convolution and the activation function, an additional operation used

in convolutional neural networks is called pooling. Pooling is a fancy name for taking a
descriptive statistic of a spatial region, mostly substantially smaller in its size than a spatial

region being affected by a kernel. A popular pooling choice ismax pooling, i.e., selecting
the maximum value in a region (usually a few cells, e.g., 3 × 3) made out of successive

spatial convolutions and activations. Another popular choice is average pooling, where
we are averaging a region. It is clear that, according to these use cases, pooling is used to

downsample an output. Another, not that straightforward but useful, implication of applying
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Figure 3.12: The LeNet-5 architecture. Image taken from [63].

a pooling operation is invariance to local translation [57, p. 331] – as we are taking descriptive
statistic of a region, say we average it into a single pixel, small shifts will introduce small

number of new values and the result should not deviate that much.These three components

– a convolution layer, a nonlinear activation layer, and a pooling layer – constitute the basic

building block of a convolutional neural network. Then we stack multiple such blocks in

order to map a “grid-like” input into a “stick-like” output.

Among additional “bells and whistles” that enhance convolutional neural networks

are padding and stride. Padding is a concept inherited from classic computer vision where,

convolving an image n × n with a convolution of size m ×m where m = 2k + 1, k ∈ N, the
result will have the dimension of (n −m + 1) × (n −m + 1). So we deliberately “surround”
an image with zeros around it (there are other possible values too [74]) in order to keep an

input and an output equally sized, e.g., in Figure3.10we add a padding of p = 1 zero pixels
(dashed transparent rectangles around cyan rectangles). Then again, we can deliberately

downsample an output size by introducing the number of steps between centers of two

successive convolutions s, e.g., the stride s = 2 used in Figure3.10.

g notable cnn architectures.One of the pioneering convolutional neural net-

works is LeNet-5 [63] used for optical character recognition (abbr. OCR) where handwritten
digits were classified. Its architecture is shown in Figure3.12. Since then, things did not

change that much – more recent convolutional neural networks used for classification

also have similar topologies, i.e., they have several convolutional layers followed by a few

fully-connected layers.

A major breakthrough came in 2012 when AlexNet [62] wonThe ImageNet Large Scale
Visual Recognition Challenge (abbr. ILSVRC) [75] becoming the first deep convolutional
neural network to do so. AlexNet achieved a top-5 error rate of 16.4%, more than 10% less

then the second-best image model. Among the factors responsible for success of AlexNet

are, first its topology that consists of 5 convolutional and 3 fully connected layers with

approximately 60 million parameters what results in a sufficient representational capacity.

Also, ReLU has been used as an activation function because, as reported by the AlexNet

creators, “networks with ReLUs consistently learn several times faster than equivalents

with saturating neurons”[62]. Additionally, dropout [60] has been used as a regularization

technique.

The second-best contestant of ILSVRC 2014, the VGG network architecture [76] took a

huge leap in terms of top-5 error by achieving an error rate of 7.3%. The idea behind the
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(a) (b)

Figure 3.13: (a) The deeper a network is, the more it takes to learn it, i.e., the same number of epochs

yields smaller training errors for shallow models and, implicitly, smaller test errors. (b)

By exploiting residual learning, as ResNet models do, the degradation problem is no

longer a concern. Images taken from [65].

VGG network was to increase the number of layers, either 16 (VGG16) or 19 (VGG19). In

order to restrain the number of parameters, only 3 × 3 convolutions are applied with the

padding p = 1 and the stride s = 1. It was substantiated that a stack of three 3×3 convolutions
has the same effective receptive field as a single 7× 7 convolution, which results in a smaller

number of parameters – for a three 3×3 convolutions, it is 3 ⋅3 ⋅3 = 27 parameters in contrast

to 7 ⋅ 7 = 49 parameters for a 7 × 7 convolution. Still, the total number of parameters for the

smaller variant of VGG, VGG16, is approximately 138 million parameters which is pretty

large. The 22 layers deep GoogLeNet [64] has convincingly won the first place in ILSVRC

2014 with a top-5 error rate of 6.7% by having 5 million parameters only. The credit belongs

to an effective block this network is composed of – the inception module.
Naturally, deeper models have better representational capacity due to a larger number of

parameters, but then again, the deeper amodel is, the harder it is to optimize it (Figure3.13a).

Shallow models, as visible in this figure, are easier to optimize and implicitly, for the same

number of epochs, mostly have smaller test errors too. In order to resolve this negative

phenomenon, called the degradation problem, the authors of the ResNet architecture hypoth-
esized that “if the added layers can be constructed as identity mappings, a deeper model

should have training error no greater than its shallower counterpart.” [65] If H(x) is a
“complicated” mapping a network should learn, then this network is also capable to learn the

residual of that mapping and an input, i.e., to learn F(x) = H(x) − x. ResNet is composed
of multiple such blocks that learn residuals. Identity mappings in layers were achieved with

the utilization of skip connections (Figure3.14). Then, by increasing the number of layers,

there is no concern that a deeper network will be harder to train, and as expected, better

test performances will be achieved. (Figure3.13b). The 152 layers deep ResNet is the winner

of ILSVRC 2015 with a top-5 error of an astounding 3.57%.

g cnns in visual place recognition.In recent years, feature maps extracted
from deep convolutional neural networks have been used in favor of handcrafted image

models in visual place recognition. In [77] authors concluded that feature maps extracted

from the 3rd and 4th convolutional layers of the AlexNet architecture [62] perform well,
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conv ReLU(x) conv ⊕

F(x) + x

ReLU(x)x

skip connection

x

F(x)

Figure 3.14: The diagram of the residual block used in the ResNet architecture [65]. Skip connection

acts as an identity map of an input x, so than a residual F(x) = H(x)− x can be learned.

while additionally fine-tuned architecture on Places205 dataset [78] achieves even better

performance. Other architectures, such as OverFeat [79] and GoogLeNet [64], were used

as feature maps extractors too [52, 80, 22]. In NetVLAD [81], a differentiable variant of

VLAD [9], authors replaced the indicator function with the softmax function in order to

perform end-to-end training for place recognition by minimizing the triplet loss. Similarly,
in [82] authors used the contrastive loss function in order to optimize ResNet [65] and
VGG [76] architectures. In a similar fashion to NetVLAD, LoST [17] aggregates semantic

classes in an image by using semantic segmentation.Object proposal system was used in [83]

in order to extract more significant regions that are later forward-propagated through

a neural network. A compact neural network from [84] was proposed especially for the

purpose of visual place recognition where atop of it a recurrent neural network layer was
attached since it is capable of capturing temporal information (i.e., local neighborhood
of a place). In [85], a large dataset for place recognition is proposed, and the HybridNet

architecture is obtained by performing softmax regression.

3.2.4 Adversities in neural networks

Adversarial examples are deceitfully constructed in order to bemisclassified.This is achieved

by adding a carefully designed noise to an uncorrupted image. To a human, that noise added

to the original image seems just like every other image noise. The sum of the original

image to be corrupted and noise – an adversarial example – seems almost identical to the
original, such that a human can not tell the difference between them (Figure3.15). Another

disturbing fact is that, under an adversarial attack, a network can be really confident about

its predictions on adversarial examples as shown in Figure3.15.

The technical detail of pixels being represented with values from 0 to 255, and at the

same time, neural networks expect inputs to be represented usually in the 32-bit floating

point representation, leaves the door open for an adversary. By adding a tiny shift to each

component of a 32-bit representation of the input, no larger than some є > 0, the outcome,
when converted back to 0−255 pixel intensities, possess invisible or barely visible changes [55,

Lecture 16]. The idea of constructing an adversarial example x̃ is, given an original input x
with the corresponding label y, to find a perturbation ∆x = x̃ − x so that the per-example
loss L(x̃ , y,W) is maximized. By approximating L(x̃ , y,W) with the first-order Taylor
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Figure 3.15: Adversarial examples are deceitfully constructed in order to bemisclassified. To a human,

the adversarially-perturbed image may seem indistinguishable from the original. Image

taken from [61].

expansion of L(x̃ , y,W) around x, i.e.,

L(x̃ , y,W) ≈ L(x , y,W) + (x̃ − x)T∇xL(x , y,W), (3.44)

we obtain the objective function of the constrained optimization problem

max
x̃

L(x , y,W) + (x̃ − x)T∇xL(x , y,W), (3.45)

s.t. ∏︁x̃ − x∏︁∞ ≤ є. (3.46)

We add the constraint (3.46) because this is exactly what we want with each component of

the input – to perturb it to a maximal extent of є – so the perturbation is not visible to a
human eye. The solution to (3.45), called the fast gradient sign method (abbr. FGSM)[61], is

x̃ = x + є sign∇xL(x , y,W). (3.47)

It was shown in [61] that trainingwith the combination of the conventional and “adversarially-

perturbed” per-example loss

αL(x , y,W) + (1 − α)L(x + є sign∇xL(x , y,W), y,W), α ∈ (︀0, 1⌋︀, (3.48)

was an effective regularizer - we can regard training with adversarial examples, adversarial
training, as a data augmentation technique that will make networks resistant to adversities.

Formally, adversarial training of a neural network fNN( ⋅ ;W)with the per-example loss
L(x , y,W) can be formulated as the saddle point problem

min
W

E(x ,y)∼pdata[︀max
∆x∈𝒮

L(x + ∆x , y,W)⌉︀ (3.49)

where 𝒮 ⊆ Rn is a region of allowed perturbations. In [86], a multi-step and more powerful

variant of (3.47), called projected gradient descent (abbr. PGD), is defined as

x t+1 = Πx+𝒮(x t + α sign∇xL(x , y,W)), (3.50)
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Algorithm 10 Interpolated adversarial training
Input: Training data {(xi , yi)}, learning rate є, initialized weightsW
Output: Optimal weightsW∗

repeat
Sample {((xi , yi), (x j, y j))} from {(xi , yi)} × {(xi , yi)}
Compute x̃i and x̃ j with (3.47) or (3.50)

Compute xi , j and x̃i , j with (3.51)
Compute Lint.(xi , j, yi , y j,W) and Lint.(x̃i , j, yi , y j,W) with (3.52)
W←W − є∇ L(x i , j ,y i ,y j ,W)+L(x̃ i , j ,y i ,y j ,W)

2

until convergence

where Πx+𝒮 is a projection operator that keeps the output within the region 𝒮 around the

original input x0 ∶= x. The same authors report how both (3.47) and (3.50) “[. . . ] can be

viewed as specific attempts to solve the inner maximization problem in (3.49)” [86]. Also,

it was reported that the generalization performance of a network trained with (3.48) is

reduced for non-adversarial data, i.e., after additionally performing adversarial training, a

standard test error would increase.

To tackle this issue, in [87], the authors propose the interpolated adversarial training, a
mix of interpolated and adversarial training.The idea is to blend the loss on non-adversarial

interpolated data with the loss on adversarially-perturbed interpolated data and optimize

weights according to that combination of losses. Interpolation is achieved with the mixup
technique[88] where we randomly draw samples (xi , yi) ∼ pdata and (x j, y j) ∼ pdata. Then,

the interpolated input xi , j, i.e., the linear combination in input space, is defined as

xi , j = λxi + (1 − λ)x j, λ ∼ B(α, β), (3.51)

where B denotes the Beta probability distribution parametrized with α, β ∈ R+. Additionally,
the per-example linear interpolation loss for a specified per-example loss L is defined as

Lint.(xi , j, yi , y j,W) = λL(xi , j, yi ,W) + (1 − λ)L(xi , j, y j,W), λ ∼ B(α, β). (3.52)

The adversarially-perturbed data (x̃i , yi) and (x̃ j, y j) (with x̃i and x̃ j obtained either with

(3.47) or (3.50)) is interpolated analogously into the interpolated input x̃i , j with the corre-
sponding interpolated loss Lint.(x̃i , j, yi , y j,W).The interpolated adversarial training is given

in Algorithm10. In the experimental evaluation of the forthcoming section, we perform

numerous adversarial trainings, either with PGD-perturbed examples or with the interpo-

lated adversarial training to see how visual place recognition performances are affected, i.e.,

whether performances for such trained networks improved on non-adversarial inputs and

how adversarially-perturbed data affect the results.

3.3 enhancing visual place recognition on sequential data with

softmax regression

In this section, we propose to use softmax regression for visual place recognition on sequen-

tially captured images. This enables us to adapt the image representation even further and
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Association matrix A Sequence-based method

→

(Xtrain , y)
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Fine-tuned DCNN fCNN(⋅ ,W) by the softmax regression

Global descriptors

∀I ∈ 𝒬test ∪ 𝒟test

Figure 3.16: The pipeline of the proposed visual place recognition enhanced with the softmax regres-

sion. Images from𝒬train and𝒟train are preprocessed and (Xtrain, y) is obtained. Then,

softmax regression training is performed in order to fine-tune fCNN(⋅ ,W). Such fine-
tuned network is used as a feature maps extractor for test data𝒬test and𝒟test. Extracted

feature maps, used as global descriptors of images, are further used in a place matching

method.

with it to increase the similarity between images representing the same place, and vice-versa,

increase the dissimilarity with other images. The pipeline of our approach to visual place

recognition enhanced with the softmax regression is depicted in Fig.3.16. For training,

preprocessed images from𝒬train and 𝒟train are coupled together into an appropriate data

format for the softmax regression, which is then performed in order to fine-tune a deep

convolutional neural network. We experimented with the most commonly used DCNN

architectures – AlexNet [62], VGG16 [76], and ResNet50 [65] – all previously trained for

visual tasks. In terms of quantitative performance, AlexNet and VGG16 did not perform as

well as ResNet50 – we believe that previously trained AlexNet and VGG16 were not a good

starting point for additional fine-tuning and optimization got stuck in a local minimum.

Nevertheless, the formulation in following paragraphs is generic and can be applied on an

arbitrary architecture.

3.3.1 Softmax regression

Softmax regression is the generalization of binomial logistic regression. In binomial logistic

regression, we aim to obtain the probability distribution

p(yi ⋃︀ xi ; θ), θ ∈ Rn
(3.53)

that models whether xi ∈ Rn belongs to a specific category (yi = 1) or does not (yi = 0). It is
achieved by using the dot product θTxi combined with the sigmoid function σ ∶ R→ (︀0, 1⌋︀
defined as

σ(x) =
1

1 + e−x
. (3.54)

Thus, we can define (3.53) as

p(yi ⋃︀ xi ; θ) = (σ(θTxi))y i(1 − σ(θTxi))1−y i . (3.55)
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Given a set of independent and identically distributed (i.i.d.) data [57] whose elements
are stacked as rows in the matrix X = (︀x1T . . . xmT⌋︀T ∈ Rm×n and accompanying labels

y = (︀y1 . . . ym⌋︀T ∈ Rm×1, we find the optimal θ∗ by using the maximum log-likelihood
estimation

θ∗ = argmax
θ

m

∏
i=1

p(yi ⋃︀ xi ; θ) (3.56)

= argmax
θ

m

∑
i=1

log p(yi ⋃︀ xi ; θ). (3.57)

In contrast to the binomial case where either y = 0 or y = 1, in multinomial case we have
⋃︀𝒞⋃︀ different classes 𝒞 = {1, . . . , ⋃︀𝒞⋃︀}. Samples xi ,∀i remain n-dimensional, while labels yi ,∀i
are ⋃︀𝒞⋃︀-dimensional one-hot vectors. θ is replaced with Θ ∈ R⋃︀𝒞⋃︀×n, while the multinomial
variant of (3.54) uses the softmax function σ ∶ R⋃︀𝒞⋃︀ → R⋃︀𝒞⋃︀ defined as

σ(x)(︀c⌋︀ =
ex(︀c⌋︀

∑
j∈𝒞

ex(︀ j⌋︀
, ∀c ∈ 𝒞 (3.58)

that has probability properties, i.e., σ(x)(︀c⌋︀ ≥ 0,∀c ∈ 𝒞 and ∑
c∈𝒞

σ(x)(︀c⌋︀ = 1,∀x. The para-

metric probability distribution is then defined as

p(yi ⋃︀ xi ;Θ) =∏
c∈𝒞
(σ(Θ ⋅ xi)(︀c⌋︀)y i(︀c⌋︀, (3.59)

while the maximum log-likelihood estimation is defined as

Θ∗ = argmax
Θ

m

∏
i=1

p(yi ⋃︀ xi ;Θ) (3.60)

= argmax
Θ

m

∑
i=1

log p(yi ⋃︀ xi ;Θ) (3.61)

= argmax
Θ

m

∑
i=1

log∏
c∈𝒞
(σ(Θ ⋅ xi)(︀c⌋︀)y i(︀c⌋︀ (3.62)

= argmax
Θ

m

∑
i=1
∑
c∈𝒞

yi(︀c⌋︀ log σ(Θ ⋅ xi)(︀c⌋︀. (3.63)

Both (3.56) and (3.60) are convex optimization problems [89], meaning there is a theoretical
guarantee that optimization will converge. Although appealing due to convexity persever-

ance when combined with other convex functions [90], linear mappings are not capable

of capturing nonlinear manifolds where complex data reside [91]. Hence, we can replace
Θ ⋅ x in (3.59) with a nonlinear map f (⋅,W) ∶ Rn → R⋃︀𝒞⋃︀, e.g., with a convolutional neural

network fCNN.
It remains to consider how to cast visual place recognition data for softmax regression.

Because the relationship between data, at least in used datasets, ismany-to-many, i.e., each
Iq i ∈ 𝒬 has at least one corresponding ground truth match in 𝒟, and each Id j can be a

ground truth match for multiple elements of𝒬, we formulate samples X ∈ R(⋃︀𝒬⋃︀+⋃︀𝒟⋃︀)×n and
labels y ∈ R(⋃︀𝒬⋃︀+⋃︀𝒟⋃︀)×⋃︀𝒟⋃︀ as

X = )︀xq1 . . . xq⋃︀𝒬⋃︀xd1 . . . xd⋃︀𝒟⋃︀⌈︀
T
, (3.64)
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where xk = X(︀k, ∶⌋︀T ∈ Rn is a flattened n-dimensional vector obtained from W × H × 3-
dimensional preprocessed RGB representation of an image Ik , thus n =W ⋅H ⋅ 3. Referring
to (3.65), y(︀k, ∶⌋︀ tells which reference images correspond to the k-th image Ik. 𝒢𝒯 (Id j) is

a set of all query images that correspond to Id j . Each image from the reference dataset

corresponds solely to itself, as there is no information about images interconnection in the

ground truth file, therefore y(︀⋃︀𝒬⋃︀ + 1 ∶ ⋃︀𝒬⋃︀ + ⋃︀𝒟⋃︀, ∶⌋︀ = I ∈ R⋃︀𝒟⋃︀×⋃︀𝒟⋃︀.

3.3.2 Feature maps extraction

After a fine-tuned convolutional neural network fCNN(⋅ ,W) is obtained, fine-tuned on
training data 𝒬train and 𝒟train, feature maps extraction takes place for test data 𝒬test and

𝒟test. If we think of fCNN(⋅ ,W) ∶ Rn → R⋃︀𝒞⋃︀ as the composition of its convolutional layers

with its fully-connected layers4, i.e.

fCNN(⋅ ,W) = ff.c.( fconv.(⋅ ,Wconv.),Wf.c.), (3.66)

then, feature maps extraction is performed as

zi = fconv.(xi ,Wconv.),∀xi ∈ 𝒬test ∪𝒟test. (3.67)

Such obtained feature maps are further used for place matching, and we refer to them as

image representations.

3.3.3 Experimental results

In this subsection, we first review the datasets that we used for this evaluation.Then, we show

how the training of networks has been performed. Finally, we present quantitative results

measured with area under a curve (AUC) and recall at 100% precision (R@100%P) by com-

paring our representation, representation from [85] and handcrafted image representation

used with the mentioned sequence-based place matching methods.

g datasets.The Bonn and Freiburg datasets are accompanied by publicly available

implementation from [52]. Both datasets contain vehicle traversals through urban areas

of eponymous cities under different environmental conditions (Fig.3.17). In the Bonn

dataset, 𝒬 is captured on an overcast day while 𝒟 is captured during the night. In the

Freiburg dataset, 𝒬 is captured on a sunny day while 𝒟 is captured on a sunny winter

afternoon. Alongside illumination variation, the accumulated snow is persistent such that

4 For the sake of clarity, pooling and nonlinear layers are not explicitly mentioned.
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(a)𝒬 (b)𝒟 (c)𝒬 (d)𝒟

Figure 3.17: Condition variance in the Bonn dataset as (a)𝒬 is captured on an overcast day and (b)

𝒟 is captured during the night. In the Freiburg dataset (c)𝒬 is captured during a sunny

day while (d)𝒟 is captured on a sunny winter afternoon.

(a) (b) (c) (d)

Figure 3.18: The Nordland dataset used in visual place recognition experiments [11, 2]. The same

route has been traversed during different seasons of the year.

places that are deemed to be the same are even more dissimilar in the images. Alongside

serious condition variations, we observe that a slight viewpoint variance is persistent too,

e.g., in Fig.3.17ca vehicle is in the right lane of a road, while in Fig.3.17dit is in the left lane.

The common denominator of both datasets is that they are captured during “urban-area”

traversals. Therefore, in further experiments, either the Bonn dataset is used for softmax

regression training and such learned network fCNN(⋅,W) is used as a feature-maps extractor
for quantitative evaluation on the Freiburg dataset or vice versa.

Nordland is the third dataset that we have used both for training and evaluation. As it is

visible in Fig.3.18, it captures the same route traversed by a train in different seasons of the

year. Although viewpoint invariance does not exist as the train follows the same railway,

various environmental conditions are persistent exactly because of different seasons. We

picked the first 1000 places from test/*/section1 folders of Partitioned Nordland dataset
by [92]. For training, spring/section1 is used as 𝒬 while fall/section1 is used as

𝒟. For evaluation, winter/section1 is used as𝒬 while summer/section1 is used as 𝒟.

Although we can choose as many places as needed (up to the representational capacity of a

convolutional neural network), we picked 1000 places deliberately as the ResNet50 [65], an

architecture we fine-tune, is trained for a 1000-category classification.

g qualitative evaluation.In order to check if softmax regression is appropriate at

all in the context of visual place recognition, and whether optimization will give meaningful

outcomes, we conducted a simple experiment where we optimized a linear map Θ, instead
of exhaustive-to-optimize neural networks.The result of this experiment is published in our

paper [93]. Given𝒬 and𝒟 datasets of the Bonn dataset [52], we formulated the multinomial
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(a) (b)

Figure 3.19: (a) Intersection of an i-th column and a j-th row indicates whether an i-th query image
matches to a j-th reference image. (b) When Θ∗ ⋅ (X(︀1 ∶ ⋃︀𝒬⋃︀, 1 ∶ n⌋︀)T is visualized, it
truly reassembles the ground truth. Images taken from our paper [93].

classification data X and y with (3.64) and (3.65). Initially, we opted for CVXPY5 [94]
library in order to solve this problem which is a convex optimization problem [89, p.74]. In

order to run a CVXPY solver at all, it is necessary for formulation to pass the disciplined
convex programming test [90], which our formulation did. Unfortunately, even after 5
days of running and using entire 64 GB of RAM, the procedure did not converge. Then

we implemented this problem in PyTorch [72] where optimal parameters were obtained

with stochastic gradient descent. We conclude how softmax regression is an appropriate
optimization problem for visual place recognition because the optimal Θ∗ maps the query
data (X(︀1 ∶ ⋃︀𝒬⋃︀, 1 ∶ n⌋︀)T toΘ∗ ⋅ (X(︀1 ∶ ⋃︀𝒬⋃︀, 1 ∶ n⌋︀)T that reassembles the ground truth (Figure
3.19b).

g cnn training and features extraction.We optimized the ResNet50 ar-

chitecture [65] using stochastic gradient descent on a dedicated Titan V GPU. Multiple

trainings on the Bonn and Freiburg datasets, each 200 epochs long, have been performed

by tweaking optimization parameters: learning rate lr ∈ {0.0005, 0.00075, 0.001, 0.002},
momentum m ∈ {0.9, 0.95}, weight decay wd ∈ {0, 0.05, 0.1, 0.15, 0.2}, scheduler step
s ∈ {10, 20, 40} and scheduler gamma sγ = 0.1. For 500 epoch long Nordland training, we
examined: learning rate lr ∈ {0.0005, 0.0001}, momentum m ∈ {0.9, 0.95}, weight decay
wd ∈ {0.05, 0.1}, scheduler step s ∈ {20, 30} and scheduler gamma sγ = 0.1. Bonn and

Freiburg images are preprocessed, both for training and evaluation, by resizing smaller

size to 256 px resulting in 340 × 256 px images. Then, 224 × 224 px center crop from each

image is taken. Images from the Partitioned Nordland dataset are preprocessed the same

way beforehand. For a learned ResNet50 network, we extracted feature maps by forward

propagating original images up to, and including, the 49th convolutional layer of the network

(conv49). Such feature maps represent places and are used for quantitative evaluation. Also,

5 CVXPY is an optimization library specialized for convex optimization.
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for comparative purpose, by using publicly available Caffe implementation, we extracted

feature maps from conv3, conv4, conv5 and conv6 layers of HybridNet [85].

g local descriptors aggregation.Additionally, we extracted handcrafted

SIFT and SURF descriptors (Subsection3.1.1) and aggregated them into global descrip-

tors VLAD and BOW (Subsection3.1.2). First, for each image, all local features are ex-

tracted, and local descriptors are put into a set that is going to be clustered. We performed

k-means clustering by tweaking parameter k. With this step, we created vocabularies

vocabularyk,l ,∀k ∈ {50, 100, 150, 200, 250, 300},∀l ∈ {SIFT, SURF}. Finally, image rep-
resentations BoWSIFT, k, BoWSURF, k, VLADSIFT, k and VLADSURF, k, ∀k were created and
compared with above-mentioned feature maps from convolutional neural networks.

g quantitative evaluation.Finally, we present quantitative results measured

with the area under a curve (AUC) and recall at 100% precision (R@100%P) score by com-

paring our representation, representation from [85] and handcrafted image representation

used with the sequence-based place matching methods. To assess the performance of our

representations, we used the ImageNet-trained ResNet50 out of the box as a feature maps

extractor, and such extracted feature maps we call the original representation. Thereafter,

optimization was performed using softmax, and ultimately – fine-tuned representations
adapted especially for visual place recognition were obtained. For each sequence-based

algorithm in Tables3.1,3.2and3.3, we show the results of the best-performing fine-tuned

ResNet50 architectures where optimization parameters are given. The original ImageNet

pre-trained ResNet50 results are shown too. Additionally, the best-performing HybridNet

results and best-performing aggregated global descriptors results are also presented. Place

matching algorithms were evaluated for different sequence lengths ds ∈ {31, 51}. Localiza-
tion radius of ±3 indices is used for match proposal as in [80], while score thresholding [25]
is used for poor matches. Accompanying precision-recall plots for ds = 51 can be seen in
Fig3.20.

Considering matching algorithms, NOSeqSLAM has the best AUC performance on

both Bonn and Freiburg datasets for each sequence length. SeqSLAM follows it on the

Bonn dataset, while cone-based SeqSLAM showed better performance than the trajectory-

based SeqSLAM on the Freiburg dataset. Fine-tuning improved the result with respect

to the original representation in all cases. Moreover, for Bonn and Freiburg, fine-tuned

representations outperformed HybridNet-extracted feature maps. This is probably due to

the fact that HybridNet, although fine-tuned on a scene-centric dataset, was not fine-tuned
on road traffic scenes that were captured by a vehicle. Handcrafted features performed

subpar except for the Bonn dataset; however, a fine-tuned architecture still achieved the

best results. On the Nordland dataset, we can see how both HybridNet and our fine-tuned

representations achieve comparable performances.

As mentioned in [23], sequence-based algorithms are unable to achieve 100% recall

because the first ⟨︀ ds
2
⧹︀ and last ⟨︀ ds

2
⧹︀ query images cannot be paired. This effect can be dimin-

ished when ⋃︀𝒬⋃︀ → ∞. Then, a portion of unpaired queries is negligible, i.e., 2⟨︀ ds
2
⧹︀⇑⋃︀𝒬⋃︀ → 0.

Invariant to this issue is recall at 100% precision measure. Therefore, in Tables3.4,3.5and

3.6we present R@ 100%P results for the Bonn, Freiburg and Nordland datasets. For almost
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(a) Bonn

(b) Freiburg

(c) Nordland

Figure 3.20: Precision recall curves for (a) the Bonn, (b) Freiburg, and (c) Nordland datasets. For

each sequence-based algorithm, ds = 51, the best fine-tuned representation, original
representation, and HybridNet [85] representation are shown.
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Table 3.1: AUC of NOSeqSLAM [5] (ours), SeqSLAM [2] and cone-based SeqSLAM [25] for the

Bonn dataset using feature maps from the original ResNet50 [65], fine-tuned ResNet50

(ours), and HybridNet [85].

ds Method Image model lr,m,wd , s, sγ Score

31

SeqSLAM (cone) ResNet50 (conv49) − 0.71955

SeqSLAM ResNet50 (conv49) − 0.80589

SeqSLAM (cone) ResNet50 (conv49) 0.0005, 0.95, 0.10, 10, 0.1 0.82306

SeqSLAM (cone) HybridNet (conv4) − 0.83792

NOSeqSLAM, η = 2 ResNet50 (conv49) − 0.84212

SeqSLAM HybridNet (conv6) − 0.86103

SeqSLAM VLADSIFT, 150 − 0.88893

SeqSLAM ResNet50 (conv49) 0.0005, 0.95, 0.10, 20, 0.1 0.91075

NOSeqSLAM, η = 2 HybridNet (conv6) − 0.91255

NOSeqSLAM, η = 2 VLADSIFT, 200 − 0.91658

NOSeqSLAM, η = 2 ResNet50 (conv49) 0.00075, 0.90, 0.10, 10, 0.1 0.93242

51

SeqSLAM (cone) ResNet50 (conv49) − 0.69520

SeqSLAM ResNet50 (conv49) − 0.77568

SeqSLAM (cone) HybridNet (conv6) − 0.80746

SeqSLAM (cone) ResNet50 (conv49) 0.001, 0.90, 0.10, 10, 0.1 0.80871

SeqSLAM HybridNet (conv3) − 0.81251

SeqSLAM VLADSURF, 100 − 0.83366

NOSeqSLAM, η = 2 ResNet50 (conv49) − 0.84421

SeqSLAM ResNet50 (conv49) 0.001, 0.95, 0.05, 10, 0.1 0.86210

NOSeqSLAM, η = 2 VLADSIFT, 250 − 0.88194

NOSeqSLAM, η = 2 HybridNet (conv5) − 0.88487

NOSeqSLAM, η = 2 ResNet50 (conv49) 0.001, 0.90, 0.00, 40, 0.1 0.90119

every sequence on Bonn and Freiburg (except Freiburg, ds = 31) NOSeqSLAM achieved

the best result. Moreover, the difference between the best and the second-best results is

quite noticeable as is the difference between the fine-tuned and original representations.

Once again, our fine-tuned representations outperformed HybridNet, probably due to the

aforementioned reason. Although comparable, HybridNet performed slightly better on the

Nordland dataset in terms of the R@100%P measure. Handcrafted features, as in the case of

AUC performance, achieved poor results except for the Bonn dataset.

3.3.4 Adversarial training and adversarial examples

We have conducted an additional batch of experiments that examine adversaries in this

context. We were wondering if an adversarial training has a positive impact on quantitative

results, i.e., is an adversarial training a good regularizer. Also, we tried to attack different

ResNet50 architectures fine-tuned either with an adversarial or standard training to see if

they are resistant to adversarial examples. For the sake of economy, we conducted 100 epoch

long trainings where we tweaked standard neural network learning hyperparameters: lr ∈
{0.0005, 0.001},m = 0.9,wd ∈ {0.0, 0.1}, s ∈ {10, 40}, sγ = 0.1 and hyperparameters related
to adversarial training: α ∈ {0.01, 0.1}, є ∈ {0.1, 1}. Same αs and єs have been used to create
adversarial examples. In terms of training, i.e., fine-tuning, we performed either standard
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Table 3.2: AUC of NOSeqSLAM [5] (ours), SeqSLAM [2] and cone-based SeqSLAM [25] for the

Freiburg dataset using feature maps from the original ResNet50 [65], fine-tuned ResNet50

(ours), and HybridNet [85].

ds Method Image model lr,m,wd , s, sγ Score

31

SeqSLAM VLADSIFT, 300 − 0.11587

SeqSLAM (cone) ResNet50 (conv49) − 0.12142

SeqSLAM ResNet50 (conv49) − 0.12992

NOSeqSLAM, η = 3 VLADSIFT, 50 − 0.16526

NOSeqSLAM, η = 3 ResNet50 (conv49) − 0.32193

SeqSLAM (cone) HybridNet (conv4) − 0.35708

NOSeqSLAM, η = 3 HybridNet (conv4) − 0.59822

SeqSLAM HybridNet (conv4) − 0.60882

SeqSLAM (cone) ResNet50 (conv49) 0.00075, 0.90, 0.00, 40, 0.1 0.83686

SeqSLAM ResNet50 (conv49) 0.001, 0.95, 0.05, 10, 0.1 0.87894

NOSeqSLAM, η = 3 ResNet50 (conv49) 0.001, 0.95, 0.05, 10, 0.1 0.91824

51

SeqSLAM (cone) ResNet50 (conv49) − 0.08139

SeqSLAM VLADSIFT, 50 − 0.09686

SeqSLAM ResNet50 (conv49) − 0.10346

NOSeqSLAM, η = 3 VLADSIFT, 200 − 0.16896

SeqSLAM (cone) HybridNet (conv4) − 0.32125

NOSeqSLAM, η = 3 ResNet50 (conv49) − 0.39966

SeqSLAM HybridNet (conv4) − 0.54489

NOSeqSLAM, η = 2 HybridNet (conv4) − 0.57299

SeqSLAM ResNet50 (conv49) 0.001, 0.95, 0.05, 10, 0.1 0.81213

SeqSLAM (cone) ResNet50 (conv49) 0.00075, 0.90, 0.00, 40, 0.1 0.84745

NOSeqSLAM, η = 2 ResNet50 (conv49) 0.001, 0.95, 0.05, 10, 0.1 0.91829

training, or an adversarial training with PGD-enhanced inputs or interpolated adversarial

training. For every kind of training, we extracted feature maps, either uncorrupted or

corrupted with PGD. First of all, our pipeline is not a standard deep learning pipeline where

the same criterium is used both for training and testing. However, several conclusions can

be drawn from Tables3.7,3.8,3.9.

Unsurprisingly, for every dataset, standard training with uncorrupted feature maps

achieved the best AUC performances. Once again, NOSeqSLAM outperformed SeqSLAM

in every situation. Also, interpolated adversarial training achieved better performances

with regard to PGD-enhanced training no matter what sequence-based method and ad-

versary has been used in the evaluation. Interestingly enough, IAT-fine-tuned models

outperform standard-fine-tuning models on the Freiburg and Nordland datasets. PGD-

enhanced training, however, did not show any promising results no matter what dataset

and hyperparameters were used. In terms of adversarial attacks, uncorrupted feature maps,

naturally, obtained better AUC results, and inversely, corrupted adversarial feature maps

deteriorate performances (except for the Nordland dataset). When adversarially-corrupted

feature maps are used, IAT-fine-tuned networks outperform both standard and PGD-fine-

tuned models, which suggests that interpolated adversarial training can be effective against

adversarial attacks in our visual place recognition pipeline.
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Table 3.3: AUC of NOSeqSLAM [5] (ours), SeqSLAM [2] and cone-based SeqSLAM [25] for the

Nordland dataset using feature maps from the original ResNet50 [65], fine-tuned ResNet50

(ours), and HybridNet [85].

ds Method Image model lr,m,wd , s, sγ Score

31

SeqSLAM (cone) ResNet50 (conv49) − 0.71579

SeqSLAM VLADSIFT, 250 − 0.77105

NOSeqSLAM, η = 3 VLADSIFT, 250 − 0.79346

SeqSLAM ResNet50 (conv49) − 0.81860

NOSeqSLAM, η = 3 ResNet50 (conv49) − 0.89138

SeqSLAM (cone) ResNet50 (conv49) 0.0005, 0.95, 0.10, 20, 0.1 0.92657

SeqSLAM (cone) HybridNet (conv3) − 0.96638

NOSeqSLAM, η = 3 ResNet50 (conv49) 0.0005, 0.95, 0.05, 30, 0.1 0.96639

SeqSLAM ResNet50 (conv49) 0.0001, 0.95, 0.10, 20, 0.1 0.96806

SeqSLAM HybridNet (conv3) − 0.97000
NOSeqSLAM, η = 2 HybridNet (conv3) − 0.97000

51

SeqSLAM (cone) ResNet50 (conv49) − 0.82994

NOSeqSLAM, η = 3 VLADSIFT, 250 − 0.85677

SeqSLAM VLADSIFT, 250 − 0.87603

SeqSLAM ResNet50 (conv49) − 0.88513

NOSeqSLAM, η = 3 ResNet50 (conv49) − 0.90424

SeqSLAM (cone) ResNet50 (conv49) 0.0005, 0.95, 0.05, 20, 0.1 0.94608

SeqSLAM (cone) HybridNet (conv3) − 0.95000
SeqSLAM HybridNet (conv6) − 0.95000
SeqSLAM ResNet50 (conv49) 0.0005, 0.95, 0.05, 30, 0.1 0.95000
NOSeqSLAM, η = 3 HybridNet (conv4) − 0.95000
NOSeqSLAM, η = 2 ResNet50 (conv49) 0.0001, 0.95, 0.05, 30, 0.1 0.95000

3.4 mutual information-based feature selection for visual place

recognition

The act of appending the norm of optimizable parameters to an objective function, referred

in Subsection3.2.2as “parameter norm penalties”, traces its roots from constrained linear

regression where it is also called feature selection. Feature selection, the self-explanatory
term, refers to a process of selecting “better” among features of given inputs in order to

enhance performances. As reported in our paper [93], in linear regression we optimize a

linear map θ ∈ Rn in order to predict a continuous variable ŷ ∈ R given an input vector
x ∈ Rn, i.e.,

ŷ = θTx . (3.68)
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Table 3.4: R@100%P of NOSeqSLAM [5] (ours), SeqSLAM [2] and cone-based SeqSLAM [25] for

the Bonn dataset using feature maps from the original ResNet50 [65], fine-tuned ResNet50

(ours), and HybridNet [85].

ds Method Image model lr,m,wd , s, sγ Score

31

SeqSLAM ResNet50 (conv49) − 0.00000

NOSeqSLAM, η = 2 ResNet50 (conv49) − 0.00184

SeqSLAM (cone) ResNet50 (conv49) − 0.00368

SeqSLAM HybridNet (conv6) − 0.05147

NOSeqSLAM, η = 2 HybridNet (conv6) − 0.05515

SeqSLAM (cone) HybridNet (conv5) − 0.08640

SeqSLAM (cone) ResNet50 (conv49) 0.0005, 0.95, 0.10, 40, 0.1 0.14154

NOSeqSLAM, η = 2 VLADSURF, 300 − 0.37500

SeqSLAM ResNet50 (conv49) 0.002, 0.90, 0.00, 20, 0.1 0.43566

SeqSLAM VLADSURF, 300 − 0.476103

NOSeqSLAM, η = 2 ResNet50 (conv49) 0.00075, 0.90, 0.05, 20, 0.1 0.50552

51

NOSeqSLAM, η = 2 ResNet50 (conv49) − 0.00184

SeqSLAM (cone) ResNet50 (conv49) − 0.05147

SeqSLAM HybridNet (conv6) − 0.06802

SeqSLAM (cone) HybridNet (conv5) − 0.09375

SeqSLAM ResNet50 (conv49) − 0.13787

SeqSLAM (cone) ResNet50 (conv49) 0.00075, 0.90, 0.00, 40, 0.1 0.14154

SeqSLAM VLADSIFT, 300 − 0.16360

NOSeqSLAM, η = 3 HybridNet (conv3) − 0.19485

SeqSLAM ResNet50 (conv49) 0.0005, 0.90, 0.05, 40, 0.1 0.32353

NOSeqSLAM, η = 2 VLADSURF, 150 − 0.46691

NOSeqSLAM, η = 2 ResNet50 (conv49) 0.0005, 0.95, 0.20, 10, 0.1 0.61029

Let y = (︀y1 . . . ym⌋︀T ∈ Rm and X = (︀x1 . . . xm⌋︀T ∈ Rm×n denote data stacked as a vector and

matrix respectively. The optimal map θ∗ is given with

θ∗ = argmin
θ

m

∑
i=1
(yi − ŷi)2 (3.69)

= argmin
θ

m

∑
i=1
(yi − θTxi)2 (3.70)

= argmin
θ
∏︁y −Xθ∏︁22. (3.71)

Then, feature selection for linear regression is defined as a constrained variant of (3.71), i.e.,

min
θ
∏︁y −Xθ∏︁22

s.t. ∏︁θ∏︁0 = k.
(3.72)

However, due to the NP-hardness of optimizing with the zero norm constraint, more relaxed

variants of this constrained optimization problem (abbr. COP) exist – lasso regression defined
as

min
θ
∏︁y − Xθ∏︁22 + λ∏︁θ∏︁1, λ ∈ R+, (3.73)
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Table 3.5: R@100%P of NOSeqSLAM [5] (ours), SeqSLAM [2] and cone-based SeqSLAM [25] for the

Freiburg dataset using feature maps from the original ResNet50 [65], fine-tuned ResNet50

(ours), and HybridNet [85].

ds Method Image model lr,m,wd , s, sγ Score

31

SeqSLAM (cone) ResNet50 (conv49) − 0.00000

SeqSLAM ResNet50 (conv49) − 0.00148

SeqSLAM (cone) HybridNet (conv3) − 0.00175

SeqSLAM HybridNet (conv6) − 0.00740

SeqSLAM VLADSIFT, 300 − 0.01036

NOSeqSLAM, η = 3 ResNet50 (conv49) − 0.01479

NOSeqSLAM, η = 3 VLADSIFT, 250 − 0.01923

NOSeqSLAM, η = 3 HybridNet (conv6) − 0.03846

SeqSLAM ResNet50 (conv49) 0.001, 0.90, 0.05, 20, 0.1 0.19231

NOSeqSLAM, η = 2 ResNet50 (conv49) 0.001, 0.90, 0.05, 20, 0.1 0.30917

SeqSLAM (cone) ResNet50 (conv49) 0.001, 0.95, 0.05, 10, 0.1 0.35503

51

NOSeqSLAM, η = 2 ResNet50 (conv49) − 0.00000

SeqSLAM (cone) ResNet50 (conv49) − 0.00000

SeqSLAM (cone) HybridNet (conv3) − 0.00000

SeqSLAM ResNet50 (conv49) − 0.00000

SeqSLAM VLADSIFT, 300 − 0.00740

NOSeqSLAM, η = 3 VLADSIFT, 300 − 0.03107

NOSeqSLAM, η = 3 HybridNet (conv6) − 0.04586

SeqSLAM HybridNet (conv4) − 0.14349

SeqSLAM ResNet50 (conv49) 0.001, 0.90, 0.05, 20, 0.1 0.19823

SeqSLAM (cone) ResNet50 (conv49) 0.001, 0.95, 0.05, 10, 0.1 0.35947

NOSeqSLAM, η = 2 ResNet50 (conv49) 0.001, 0.95, 0.05, 10, 0.1 0.52515

and ridge regression defined as

min
θ
∏︁y − Xθ∏︁22 + λ∏︁θ∏︁22, λ ∈ R+. (3.74)

The role of regularization terms λ∏︁θ∏︁1 and λ∏︁θ∏︁2
2
is to assure sparsity [94] what can be seen

in Figure3.21. The more we increase λ, the more and more features diminish, while those
that are significant remain.

The combination of lasso and ridge regression is called elastic net regression. By incorpo-
rating information theory, the authors of [95] enhance elastic net regression. Theirmutual
information-based feature selection is defined as

min
θ

1

2
∏︁y − Xθ∏︁22 + λ1∏︁θ∏︁1 + λ2∏︁θ∏︁22 − λ3θ

TWθ , λi ∈ R+, (3.75)

whereW is called the feature informativeness matrix that encodes how one feature relate to

another by using feature similarities based on the Jensen-Shannon divergence. In one of the

authors’ previous paper [96], it is defined how to evaluate this relation between features

with the following formulation. Given a set of features

ℱ = { f (1), . . . , f (m)} ∈ Rn
, (3.76)
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Table 3.6: R@100%P of NOSeqSLAM [5] (ours), SeqSLAM [2] and cone-based SeqSLAM [25] for the

Nordland dataset using feature maps from the original ResNet50 [65], fine-tuned ResNet50

(ours), and HybridNet [85].

ds Method Image model lr,m,wd , s, sγ Score

31

SeqSLAM (cone) ResNet50 (conv49) − 0.00700

SeqSLAM ResNet50 (conv49) − 0.05700

NOSeqSLAM, η = 3 VLADSIFT, 250 − 0.07700

SeqSLAM VLADSIFT, 250 − 0.12600

NOSeqSLAM, η = 3 ResNet50 (conv49) − 0.14700

SeqSLAM (cone) ResNet50 (conv49) 0.0005, 0.95, 0.10, 20, 0.1 0.19500

NOSeqSLAM, η = 3 ResNet50 (conv49) 0.0005, 0.90, 0.10, 20, 0.1 0.68300

SeqSLAM ResNet50 (conv49) 0.0005, 0.95, 0.05, 30, 0.1 0.85300

SeqSLAM (cone) HybridNet (conv5) − 0.96800

SeqSLAM HybridNet (conv3) − 0.97000
NOSeqSLAM, η = 2 HybridNet (conv3) − 0.97000

51

SeqSLAM (cone) ResNet50 (conv49) − 0.10300

NOSeqSLAM, η = 2 ResNet50 (conv49) − 0.13600

NOSeqSLAM, η = 3 VLADSIFT, 250 − 0.15700

SeqSLAM ResNet50 (conv49) − 0.23100

SeqSLAM VLADSIFT, 200 − 0.26700

SeqSLAM (cone) ResNet50 (conv49) 0.0005, 0.95, 0.05, 20, 0.1 0.54100

SeqSLAM HybridNet (conv3) − 0.95000
SeqSLAM ResNet50 (conv49) 0.0001, 0.95, 0.05, 30, 0.1 0.95000
SeqSLAM (cone) HybridNet (conv3) − 0.95000
NOSeqSLAM, η = 2 HybridNet (conv3) − 0.95000
NOSeqSLAM, η = 2 ResNet50 (conv49) 0.0001, 0.95, 0.05, 30, 0.1 0.95000

(a) (b)

Figure 3.21: The effect of (a) lasso and (b) ridge regression, relaxed variants of linear regression

constrained with ∏︁ ⋅ ∏︁0. As λ increases, more and more features diminish. Images taken
from our paper [93].
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Table 3.7: AUC of NOSeqSLAM [5] (ours) and SeqSLAM [2] for the Bonn dataset using uncorrupted

and adversarially-corrupted featuresmaps fromResNet50 fine-tunedwith either a standard

or an adversarial training.

ds Method Training α, є Adversary Score

31

SeqSLAM PGD 0.1, 0.1 PGD 0.33080

NOSeqSLAM PGD 0.1, 0.1 PGD 0.39810

SeqSLAM Standard − PGD 0.45561

NOSeqSLAM Standard − PGD 0.60700

SeqSLAM IAT 0.1, 0.1 PGD 0.73746

SeqSLAM PGD 0.1, 0.01 − 0.80703

NOSeqSLAM IAT 0.1, 0.01 PGD 0.84721

SeqSLAM IAT 1, 0.01 − 0.86151

NOSeqSLAM PGD 0.1, 0.01 − 0.87113

SeqSLAM Standard − − 0.87468

NOSeqSLAM IAT 1, 0.01 − 0.90393

NOSeqSLAM Standard − − 0.91833

51

SeqSLAM PGD 0.1, 0.1 PGD 0.28232

SeqSLAM Standard − PGD 0.35572

NOSeqSLAM PGD 0.1, 0.1 PGD 0.37032

SeqSLAM IAT 0.1, 0.01 PGD 0.59642

NOSeqSLAM Standard − PGD 0.66347

SeqSLAM PGD 0.1, 0.01 − 0.71219

SeqSLAM IAT 1, 0.01 − 0.79825

NOSeqSLAM IAT 0.1, 0.01 PGD 0.80554

SeqSLAM Standard − − 0.83271

NOSeqSLAM PGD 0.1, 0.01 − 0.85369

NOSeqSLAM IAT 1, 0.01 − 0.87438

NOSeqSLAM Standard − − 0.90244

the respective set of probability distributions for each feature is obtained in order to evaluate

features with the Shannon entropy. First, for f (k), a related undirected graph

G f (k) = (Vf (k) , E f (k)) (3.77)

is defined with nodes Vf (k) assigned to each component of the feature. Then, the weight

function w ∶ E f (k) → R+
0
from v(k)l ∈ Vf (k) to v

(k)
m ∈ Vf (k) is defined as

w(v(k)l , v(k)m ) =
⌈︂
( f (k)(︀l⌋︀ − f (k)(︀m⌋︀)2. (3.78)

Finally, a probability distribution p is assigned to f (k) by using the steady state random walk
procedure[97]. For each node v(k)l ∈ Vf (k) , its probability is defined as

p(v(k)l ) =
deg(v(k)l )

∑
v(k)m ∈Vf (k)

deg(v(k)m )
, (3.79)
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Table 3.8: AUC of NOSeqSLAM [5] (ours) and SeqSLAM [2] for the Freiburg dataset using uncor-

rupted and adversarially-corrupted features maps from ResNet50 fine-tuned with either a

standard or an adversarial training.

ds Method Training α, є Adversary Score

31

SeqSLAM Standard − PGD 0.11498

NOSeqSLAM Standard − PGD 0.15109

NOSeqSLAM PGD 1, 0.01 PGD 0.32262

SeqSLAM PGD 1, 0.01 PGD 0.32439

NOSeqSLAM PGD 0.1, 0.01 − 0.47250

SeqSLAM PGD 0.1, 0.01 − 0.50085

SeqSLAM Standard − − 0.63290

SeqSLAM IAT 1, 0.01 PGD 0.66515

NOSeqSLAM IAT 1, 0.01 PGD 0.69967

SeqSLAM IAT 0.1, 0.1 − 0.75217

NOSeqSLAM Standard − − 0.76551

NOSeqSLAM IAT 0.1, 0.1 − 0.78083

51

SeqSLAM Standard − PGD 0.09232

NOSeqSLAM Standard − PGD 0.12559

SeqSLAM PGD 1, 0.01 PGD 0.37506

NOSeqSLAM PGD 1, 0.01 PGD 0.39314

SeqSLAM PGD 0.1, 0.01 − 0.46996

NOSeqSLAM PGD 0.1, 0.01 − 0.51407

SeqSLAM IAT 1, 0.01 PGD 0.64731

SeqSLAM Standard − − 0.65978

NOSeqSLAM IAT 1, 0.01 PGD 0.70099

SeqSLAM IAT 0.1, 0.1 − 0.76150

NOSeqSLAM Standard − − 0.77304

NOSeqSLAM IAT 0.1, 0.1 − 0.77913

where

deg(v(k)l ) = ∑

v(k)m ∈Vf (k)

w(v(k)l , v(k)m ). (3.80)

The Jensen-Shannon divergence, a method that measures the similarity between probability

distributions, is defined for respective probabilities of f (k) ∈ ℱ and f (l) ∈ ℱ as

JSD(p( f (k)), p( f (l))) =HS (
p( f (k)) + p( f (l))

2
) −

HS(p( f (k))) +HS(p( f (l))))
2

, (3.81)

where

HS(p( f (k))) = − ∑

v(k)m ∈Vf (k)

p(v(k)m ) log p(v
(k)
m ) (3.82)

is the Shannon entropy. Finally, the similarity between f (k) ∈ ℱ and f (l) ∈ ℱ is defined as

IS(p( f (k)), p( f (l))) = exp(−JSD(p( f (k)), p( f (l)))). (3.83)
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Table 3.9: AUC of NOSeqSLAM [5] (ours) and SeqSLAM [2] for the Nordland dataset using uncor-

rupted and adversarially-corrupted features maps from ResNet50 fine-tuned with either a

standard or an adversarial training.

ds Method Training α, є Adversary Score

31

NOSeqSLAM Standard − PGD 0.90464

SeqSLAM Standard − PGD 0.90690

NOSeqSLAM PGD 0.1, 0.01 − 0.94245

SeqSLAM PGD 0.1, 0.1 PGD 0.94581

SeqSLAM PGD 0.1, 0.01 − 0.94807

NOSeqSLAM PGD 0.1, 0.1 PGD 0.94928

NOSeqSLAM Standard − − 0.96785

SeqSLAM IAT 0.1, 0.01 PGD 0.96837

NOSeqSLAM IAT 0.1, 0.01 PGD 0.96942

SeqSLAM Standard − − 0.97000

SeqSLAM IAT 0.1, 0.01 − 0.97000

NOSeqSLAM IAT 0.1, 0.01 − 0.97000

51

NOSeqSLAM PGD 0.1, 0.01 − 0.93302

NOSeqSLAM PGD 0.1, 0.1 PGD 0.93392

SeqSLAM PGD 0.1, 0.01 − 0.93730

NOSeqSLAM Standard − PGD 0.93878

SeqSLAM PGD 0.1, 0.1 PGD 0.93883

SeqSLAM Standard − PGD 0.94187

SeqSLAM IAT 0.1, 0.1 PGD 0.94900

NOSeqSLAM Standard − − 0.94900

SeqSLAM IAT 0.1, 0.1 − 0.95000

SeqSLAM Standard − − 0.95000

NOSeqSLAM IAT 1, 0.1 − 0.95000

NOSeqSLAM IAT 0.1, 0.01 PGD 0.95000

3.4.1 Feature selection for visual place recognition

According to the formulation stated above, we will briefly mention how to formulate feature

selection for visual place recognition data – 𝒬 and 𝒟 datasets. More information can

be found in our paper [5]. First, images Ii ∈ 𝒬 ∪ 𝒟 are mapped to appropriate image

representations zi ∈ Rn. Then, we stack query images as the rows of the matrix𝒬M ∈ R
⋃︀𝒬⋃︀×n

that is defined as

𝒬M =

⎨
⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎪

zq1
zq2
⋮

zq
⋃︀𝒬⋃︀

⎬
⎠
⎠
⎠
⎠
⎠
⎠
⎠
⎠
⎮

. (3.84)

We exploit the fact, at least in datasets that we use, that for each query image Iq i ∈ 𝒬, there
exists at least one reference image Id j ∈ 𝒟. In order to have the same dimension, we build
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the matrix 𝒟M ∈ R
⋃︀𝒬⋃︀×n as

𝒟M =

⎨
⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎪

zd1∗
zd2∗
⋮

zd
⋃︀𝒬⋃︀
∗

⎬
⎠
⎠
⎠
⎠
⎠
⎠
⎠
⎠
⎮

, (3.85)

with zd i∗ chosen such that
zd i∗ = argmax

Id j ∈𝒢𝒯 (Iqi )
szqi ,zd j , (3.86)

i.e., such that the i-th row of 𝒟M is the most similar representation of images from 𝒟 for

the i-th image from𝒬.
Then, we can define features according to the formulation from [96] as columns of𝒬M

and 𝒟M , respectively, i.e., we define the k-th feature of𝒬M and the k-th feature of 𝒟M as

f (k)𝒬 = 𝒬M(︀∶, k⌋︀, f (k)𝒟 = 𝒟M(︀∶, k⌋︀. (3.87)

A good feature should be similar when occurs in both𝒬 and 𝒟 so we measure the quality
of the k-th feature as

q(k) = IS(p( f
(k)
𝒬 ), p( f

(k)
𝒟 )), (3.88)

and dismiss all those features below a specified threshold.

3.4.2 Experimental results

As in the previous batch of experiments with softmax regression, here we also used Bonn

and Freiburg datasets (Subsubsection3.3.3.1). Regarding handcrafted image models, we ex-

perimented with histogram of oriented gradients (Subsubsection3.1.2.4). Regarding learned

image models, we extracted feature maps from AlexNet including the 3rd convolutional

layer (conv3), feature maps from AlexNet including the 4th convolutional layer (conv4),

feature maps from ResNet18 and ResNet50 including their last convolutional layers (conv17

and conv49, respectively), and, already included with the datasets, feature maps from the

OverFeat architecture [98]. AlexNet and ResNet instances were either trained on the Ima-

geNet or the Places365 dataset [78]. Also, we tried to select features for the best-performing

fine-tuned architectures from Section3.3, but no improvements have been observed. This

suggests that softmax regression already fine-tuned stock ImageNet-trained architectures

well. Therefore, in this section, we were focused solely on non-fine-tuned convolutional

neural networks. We compared sequence-based methods discussed earlier, and additionaly,

a non-sequence-based method by [52]. This method does not depend on ds so we omit its
results from tables.

We constructed features and evaluated (3.88) on the Freiburg dataset in order to obtain

feature qualities q(k),∀k. Then we performed feature selection on the Bonn dataset for

different percentiles qi ,∀i of feature qualities where those features that fall below a threshold
equal to a specified percentile qi were removed. According to specified percentiles, we
conducted multiple visual place recognition experiments using different sequence-based

methods. In the same manner, we evaluated (3.88) on the Bonn dataset and obtained feature

qualities further used for visual place recognition evaluation on the Freiburg dataset.
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(a) (b)

Figure 3.22: Precision recall curves for (a) the Bonn and (b) the Freiburg datasets. For each sequence-

based algorithm, ds = 51, the best-performing image model with feature selection and
its no-feature-selection counterpart are shown. Images taken from our paper [5].

In Tables3.10,3.12AUC results are reported. For sequence lengths ds ∈ {31, 43, 51},
for each sequence-based method, we picked its best-performing image model where no

feature selection is conducted and its best-performing image model where feature selection

is conducted. It is visible how the proposed feature selection technique is effective as image

models with their features selected achieved better results for each sequence length. ResNet

architectures have proven to be more effective for the Bonn dataset, while AlexNet was a

better option for the Freiburg dataset. Also, our NOSeqSLAMmethod outperformed other

sequence-based methods. In Figure3.22we see the corresponding precision-recall curves.

The method by [52] achieved the AUC of 0.94309 for the Bonn dataset and 0.97471 for the

Freiburg dataset, respectively. This is better than sequence-based methods because these

methods cannot match the first ⟨︀ ds
2
⧹︀ and last ⟨︀ ds

2
⧹︀ images as already discussed (Subsubsec-

tion3.3.3.5). This is also visible in Figure3.22where the corresponding curve of [ 52], for

this reason, reaches 1 on x-axis. Accordingly, we also report R@100%P results for the same
datasets and place recognition methods. Once again, the proposed feature selection with

the proposed sequence-based method, NOSeqSLAM, achieved the best results. The method

by [52] performed poorly – 0.06250 for the Bonn dataset and 0.07396 for the Freiburg

dataset, respectively.

3.5summary

In this comprehensive chapter on image models in visual place recognition, multiple image

models have been covered. First, we reviewed handcrafted gradient-based imagemodels and

then ubiquitous learned models – convolutional neural networks – that are state-of-the-art

image models. We have shown how to adapt softmax regression and mutual information-

based feature selection for image models in the context of visual place recognition. The
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Table 3.10: AUC of NOSeqSLAM [5] (ours), SeqSLAM [2] and cone-based SeqSLAM [25] for the

Bonn dataset using image models with proposed feature selection (qi column with value)
and without feature selection (qi column with −).

ds Method Image model Dim. η qi Score

31

SeqSLAM (cone) OverFeat (conv10) 153600 − − 0.83521

SeqSLAM (cone) OverFeat (conv10) 46080 − 0.7 0.83683

SeqSLAM ResNet18 (conv17) 200192 − − 0.89153

SeqSLAM ResNet18 (conv17) 140134 − 0.3 0.90005

NOSeqSLAM ResNet50 (conv49) 800768 2 − 0.91501

NOSeqSLAM ResNet50 (conv49) 680653 2 0.15 0.91890

43

SeqSLAM (cone) ResNet18 (conv17, Places365) 200192 − − 0.81094

SeqSLAM (cone) ResNet18 (conv17, Places365) 190182 − 0.05 0.81692

SeqSLAM ResNet50 (conv49) 800768 − − 0.87506

SeqSLAM ResNet50 (conv49) 40038 − 0.95 0.88787

NOSeqSLAM ResNet50 (conv49) 800768 2 − 0.89647

NOSeqSLAM ResNet50 (conv49) 120116 2 0.85 0.89798

51

SeqSLAM (cone) ResNet18 (conv17, Places365) 200192 − − 0.78836

SeqSLAM (cone) ResNet18 (conv17, Places365) 180172 − 0.1 0.79570

SeqSLAM ResNet50 (conv49) 800768 − − 0.82185

SeqSLAM ResNet50 (conv49) 600576 − 0.25 0.83078

NOSeqSLAM ResNet50 (conv49) 800768 2 − 0.88189

NOSeqSLAM ResNet50 (conv49) 440424 2 0.45 0.88592

Table 3.11: R@100%P of NOSeqSLAM [5] (ours), SeqSLAM [2] and cone-based SeqSLAM [25] for

the Bonn dataset using image models with proposed feature selection (qi column with
value) and without feature selection (qi column with −).

ds Method Image model Dim. η qi Score

31

NOSeqSLAM AlexNet (conv4) 360448 2 − 0.01103

SeqSLAM ResNet18 (conv17) 200192 − − 0.10846

SeqSLAM ResNet18 (conv17) 140134 − 0.3 0.13419

SeqSLAM (cone) ResNet50 (conv49, Places365) 800768 − − 0.13603

SeqSLAM (cone) ResNet50 (conv49, Places365) 360347 − 0.55 0.14522

NOSeqSLAM AlexNet (conv4) 36045 2 0.9 0.14706

43

SeqSLAM AlexNet (conv4) 360448 − − 0.01103

NOSeqSLAM AlexNet (conv4) 360448 2 − 0.04044

SeqSLAM (cone) ResNet18 (conv17) 200192 − − 0.11029

SeqSLAM AlexNet (conv4) 54068 − 0.85 0.12684

SeqSLAM (cone) ResNet18 (conv17) 120116 − 0.4 0.12868

NOSeqSLAM AlexNet (conv4) 126157 2 0.65 0.17647

51

NOSeqSLAM AlexNet (conv4) 360448 3 − 0.00000

SeqSLAM AlexNet (conv4) 360448 − − 0.01654

SeqSLAM (cone) ResNet18 (conv17) 200192 − − 0.11397

SeqSLAM (cone) ResNet18 (conv17) 150144 − 0.25 0.13603

SeqSLAM AlexNet (conv4) 54068 − 0.85 0.15257

NOSeqSLAM AlexNet (conv4) 36045 3 0.9 0.17647
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Table 3.12: AUC of NOSeqSLAM [5] (ours), SeqSLAM [2] and cone-based SeqSLAM [25] for the

Freiburg dataset using image models with proposed feature selection (qi column with
value) and without feature selection (qi column with −).

ds Method Image model Dim. η qi Score

31

SeqSLAM (cone) AlexNet (conv4, Places365) 360448 − − 0.63907

SeqSLAM (cone) AlexNet (conv4, Places365) 216268 − 0.4 0.85604

SeqSLAM AlexNet (conv4, Places365) 360448 − − 0.87314

SeqSLAM AlexNet (conv4, Places365) 216268 − 0.4 0.88080

NOSeqSLAM AlexNet (conv4, Places365) 360448 3 − 0.92429

NOSeqSLAM AlexNet (conv4, Places365) 216268 3 0.4 0.93119

43

SeqSLAM (cone) AlexNet (conv4, Places365) 360448 − − 0.66569

SeqSLAM AlexNet (conv4, Places365) 360448 − − 0.86373

SeqSLAM AlexNet (conv4, Places365) 216268 − 0.4 0.86775

SeqSLAM (cone) AlexNet (conv4, Places365) 216268 − 0.4 0.87361

NOSeqSLAM AlexNet (conv4, Places365) 360448 3 − 0.91016

NOSeqSLAM AlexNet (conv4, Places365) 216268 3 0.4 0.92177

51

SeqSLAM (cone) AlexNet (conv4, Places365) 360448 − − 0.67670

SeqSLAM AlexNet (conv4, Places365) 360448 − − 0.84598

SeqSLAM AlexNet (conv4, Places365) 216268 − 0.4 0.85850

SeqSLAM (cone) AlexNet (conv4, Places365) 216268 − 0.4 0.87534

NOSeqSLAM AlexNet (conv4, Places365) 360448 3 − 0.89907

NOSeqSLAM AlexNet (conv4, Places365) 216268 3 0.4 0.91346

Table 3.13: R@100%P of NOSeqSLAM [5] (ours), SeqSLAM [2] and cone-based SeqSLAM [25] for

the Freiburg dataset using image models with proposed feature selection (qi column with
value) and without feature selection (qi column with −).

ds Method Image model Dim. η qi Score

31

SeqSLAM ResNet50 (conv49) 800768 − − 0.10207

SeqSLAM (cone) AlexNet (conv4, Places365) 360448 − − 0.23669

SeqSLAM ResNet50 (conv49) 520499 − 0.35 0.41864

SeqSLAM (cone) AlexNet (conv4, Places365) 216268 − 0.4 0.57101

NOSeqSLAM ResNet50 (conv49, Places365) 800768 3 − 0.62574

NOSeqSLAM ResNet50 (conv49, Places365) 480459 3 0.4 0.63166

43

SeqSLAM AlexNet (conv4, Places365) 360448 − − 0.05917

SeqSLAM (cone) AlexNet (conv4, Places365) 360448 − − 0.26036

SeqSLAM AlexNet (conv4, Places365) 18023 − 0.95 0.28107

NOSeqSLAM AlexNet (conv4, Places365) 360448 3 − 0.30325

SeqSLAM (cone) AlexNet (conv4, Places365) 216268 − 0.4 0.58432

NOSeqSLAM AlexNet (conv4, Places365) 180224 3 0.5 0.69822

51

SeqSLAM AlexNet (conv4, Places365) 360448 − − 0.11243

SeqSLAM (cone) AlexNet (conv4, Places365) 360448 − − 0.24852

NOSeqSLAM AlexNet (conv4, Places365) 360448 3 − 0.28698

SeqSLAM AlexNet (conv4, Places365) 36045 − 0.9 0.32101

SeqSLAM (cone) AlexNet (conv4, Places365) 216268 − 0.4 0.61982

NOSeqSLAM AlexNet (conv4, Places365) 162202 3 0.55 0.74112
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extensive evaluation shows that such obtained image models outperform original non-

fine-tuned models and models where no features are selected, which justifies the second

contribution of the thesis: Method for robust visual place recognition with deep repre-

sentations that uses softmax regression and mutual information-based feature selection.

Additionally, powered by our image models, our sequence-based method NOSeqSLAM

outperformed SeqSLAM and cone-based SeqSLAM, so the first contribution is, as foreshad-

owed in Section2.4, justified quantitatively too.



4
Closing the loop in simultaneous localization and

mapping

I
n the final chapter of the thesis, we will introduce factor graphs (Section4.1), a powerful

tool for estimation. So far, visual place recognition has been a standalone research

topic, but from now on, we will use it within simultaneous localization and mapping

(Section4.2), another research topic on its own. Further, in Section4.3, we will present

how our place matching method, NOSeqSLAM, is adapted in order to fit into the SLAM

pipeline, i.e., how we made it an online place matching method. Finally, we will present two

fundamentally different SLAM implementations, one being two-dimensional and range

sensor-based (Section4.4) and the other being three-dimensional and based on visual

sensors (Section4.5). In both of these implementations, we will check how place matching

performs in order to detect loops, which in turn improves estimation results. Through

this chapter, we will use the terms “place recognition”, “place matching” and “loop closing

detection” interchangeably, as these terms are synonyms – to recognize an already seen

place is to match it with its previous measurement/image/scan which is a way to tell a

SLAM system that an additional constraint, a loop closure, can be incorporated into a set of

constraints that make the estimation more accurate.

4.1factor graphs

Factor graphs are topological structures used to estimate stochastic processes that consist

of multiple states, measurements and, optionally, control inputs. They provide a convenient

interface for the optimization of such processes, which means that by using factor graphs

we factorize an objective function and optimize it with respect to variables we would like to

estimate. This way, an error is diminished and an optimal guess of the state of a process is

obtained.

As described in [99], a factor graph F = (𝒰 ∪ 𝒱 , ℰ) 1 is a bipartite graph 2 comprising
nodes 𝒰 ∪𝒱 and edges ℰ . Nodes in 𝒰 are called factors while nodes in 𝒱 are called variables.
Each factor ϕi ∈ 𝒰 is parametrized by Xi ⊆ 𝒱 , thus ϕi ∶= ϕi(Xi). An edge ei ,l ∈ ℰ holds an
information whether xl ∈ 𝒱 parametrizes ϕi , i.e., whether xl is contained in Xi . In other

1 In [99], F is defined as (𝒰 ,𝒱 , ℰ). To define a graph, we use an ordered pair rather than an ordered triple.
2 A bipartite graph is an undirected graph G = (𝒱 , ℰ) in which 𝒱 can be partitioned into disjoint 𝒱1 and 𝒱2
such that {u, v} ∈ ℰ implies either u ∈ 𝒱1 and v ∈ 𝒱2 or u ∈ 𝒱2 and v ∈ 𝒱1 [29, p. 1172].

64
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words, ei ,l = {ϕi , xl} ∈ ℰ ⇔ xl ∈ Xi ⊆ 𝒱 . Altogether, the factorization by F is defined as

ϕ(𝒱) =∏
i
ϕi(Xi), (4.1)

while the optimal estimate, called the maximum a posteriori estimate is

𝒱∗ = argmax
𝒱

ϕ(𝒱). (4.2)

What an estimate of variables Xi is and what, after the optimization, this estimate should

be, is incorporated within factor ϕi defined as

ϕi(Xi) ∝ exp{−
1

2
∏︁hi(Xi) − zi∏︁2Σ i

}, (4.3)

where hi is a nonlinear model for variables Xi that should correspond to a real measurement

zi that has a zero-centered Gaussian noise with covariance Σi . Notice how (4.2) is a nonlinear
least-squares problem that can be rewritten as

𝒱∗ = argmax
𝒱
∏
i
ϕi(Xi) (4.4)

= argmax
𝒱
∑
i
log(ϕi(Xi)) (4.5)

= argmin
𝒱
∑
i
∏︁hi(Xi) − zi∏︁2Σ i

(4.6)

and can be solved with methods like the Gauss-Newton algorithm [100] and the Levenberg-

Marquardt algorithm [101].

The generalized notation of factor graphs (4.1) covers numerous usage scenarios, the sim-

plest one being tracking. In tracking, we estimate the trajectory X given the measurements

Z. More precisely, we model a conditional probability with

p(X ⋃︀Z) ∝ p(x1)p(z1⋃︀x1)∏
i>1

p(xi ⋃︀ xi−1)p(zi ⋃︀ xi), (4.7)

where p(x1) is the prior, p(xi ⋃︀ xi−1) is the motion model and p(zi ⋃︀ xi) is the measurement
model. The factor graph for tracking has a topology depicted in Figure4.1a.

Then, a slight upgrade to the tracking problem is a switching system as depicted in

Figure4.1b. In it, we distinguish between multiple variable types. This way a more com-

plex probabilistic modeling is achieved – e.g., we can define a conditional probability

p(xi ⋃︀ xi−1, yi−1) where xi is, alongside xi−1, conditioned on yi−1 too. Pose graph optimization
(abbr. PGO) (Figure4.1c) is an instance of the tracking problem where both variables and

measurements that impose factor constraints (i.e., zi in (4.3)) are members of the special
Euclidean group SE(n), n ∈ {2, 3}. Additionally, PGO in combination with other type of

variables – landmarks – form the simultaneous localization and mapping problem (abbr.

SLAM). We will address the theoretical aspect of SLAMmore thoroughly in Section4.2,

while additional, rather practical aspects of SLAM are considered in further sections of this

chapter.
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Figure 4.1: Factor graph examples. In a simple tracking graph (a) we have one type of variables

connected via factors. The switching system shown in (b) is a generalization where

multiple types of variables exist. Pose graph optimization (PGO) shown in (c) is a variant

of tracking where factors are from SE(n). A generalization to PGO is simultaneous

localization and mapping (SLAM) shown in (d) where, alongside poses, landmarks are

modeled too.

4.2simultaneous localization and mapping

Simultaneous localization and mapping is a robotic problem where, as the robot progresses

through its environment, we would like to infer the robot’s pose according to the most

recent knowledge about the environment that is materialized in a map, and also, to upgrade

that map if there are better pose estimates or new measurements. SLAM is one of the most

challenging robotics problems. Truly, if there is no noise in measurements and motion, by

means of forward kinematics, i.e., by mapping applied wheel velocities into the robot’s local

pose derivation and then accumulating it into the robot’s global pose, localization would

be completely trivial. Implicitly, the map would be trivially built by spatially transforming

measured features of the environment (e.g., LiDAR scans) according to the perfectly restored

poses. This realistically unattainable scenario is methodologically disassembled into two

slightly harder problems: mapping (under the assumption of a perfect localization) and
localization (under the assumption of a perfectly built map). Both of these are research
problems on their own. Occupancy grid mapping [1, Chapter 6] is an approach to mapping

where a volumetric representation3 of a place is built.Gaussian andMonte Carlo (i.e., particle
filter) localization [1, Chapters 7 & 8] are two popular localization approaches. We can

combine various mapping and localization approaches in order to define a SLAM system.

Historical overview and classification of different SLAM paradigms can be found in

[102, Chapter 46], where a SLAM system can be classified into three classes listed below:

• an extended Kalman filter-based SLAM,

3 Which means that each point in the space has its label.
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(a) (b)

Figure 4.2: Mapping and localization in a simulated environment where the ground truth map has

red borders. (a) Occupancy grid mapping under the assumption of perfect localization.

(b)Monte Carlo, i.e., a particle filter-based localization under the assumption of a perfectly
built map. Sensor beams may seem incorrect because errors defined in the beam model
for range finder [1, p. 153] were sampled and deliberately added to actual measurements.

• a particle filter-based SLAM,

• a factor graph-based SLAM.

The first two types are a generalization of respective localization-only approaches (Gaussian

and Monte Carlo localization) – e.g., in the particle filter-based FastSLAM [103] both poses

and landmarks are modeled via particles. Due to versatility and convenience that factor

graphs offer for stochastic optimization, much of which can be attributed to excellent open-

source factor graphs software libraries such as GTSAM[104], factor graph-based approaches

are prevailing today.

4.2.1 Odometry

From a factor-graphs point of view, pose graph optimization is a SLAM subset. Within

SLAM, pose graph optimization is the way we should maintain localization. As can be said

that SLAM = Localization + Mapping, it can be said that PGO = Odometry + Loop Closing.

Before we explain how to incorporate loop closing with odometry, which is essentially the

main contribution of this chapter, we will briefly address odometry. Odometry is composed

of the Greek words ὁδός (pronounced as “odos”, eng. path) and µέτρον (pronounced as

“metron”, eng. measure).Thus, odometry is the process that, in the form of a specific quantity

(e.g., the angular velocity of a wheel or translational and angular velocity in 3D), tells how

much of a route has been crossed and at which rate. Technically speaking, an odometry

sensor gives us the rate of change (i.e., the derivative) of a path crossed rather than an

accumulated quantity. This imposes a serious flaw as we have to integrate all to-some-extent-
precise rates of change, meaning that errors will be integrated as time elapses.
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No matter how good a particular odometry sensor is, the deviation from an actual pose

– the odometry drift – will show up eventually. As expected, better odometry sensors yield a

lower drift, and vice versa, with lower quality odometry sensors, e.g., a pair of cheap wheel

encoders, drift is more pronounced. Drift, in general, is illustrated in Figure4.3a. Say an

aerial vehicle moves along a regular circular path from the pose T1 ∈ SE(3). Moreover, let
us assume it is known that the initial pose estimation T1′ ∈ SE(3) is aligned with T1 and that

the vehicle will actually end up in the pose T6 ∈ SE(3) aligned with T1. The first odometry

measurement, the transformation from T1 to T2, will bear a small odometry drift so that

the estimated pose T2′ has just slightly drifted from the actual position T2. As the vehicle is

moving further, more andmore drift is going to be accumulated, hence, in the end, resulting

in a notable error between the actual pose T6 and its estimate T6′ ∈ SE(3).
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Figure 4.3: Factor graph for pose graph optimization (a) before and (b) after loop closing. In (a) we see
how the odometry drift increases with each new odometry measurement. Then, we can

add a loop closing factor (the purple dashed line) and figuratively think of it as an elastic

bond that will, after the optimization takes place, reconfigure variables more closely to

the actual state as illustrated in (b).

Without odometry, no pose graph optimization is possible, i.e., a loop-closing-only

system would be useless as its outcome would not be further used. This cannot be said

for an odometry-only system, as its outcome, no matter how erroneous, is useful on its

own and gives us spatial transformations. So let’s examine how to incorporate odometry

measurements into factor graphs before loop closing is incorporated too.

Usually, for the sake of simplicity, in wheeled mobile robotics, we model the pose (i.e.,

the position and the orientation) of a robot, as well as spatial transformations between

poses, with a two-dimensional point (x , y) ∈ R2 for the position and a scalar value θ ∈ R
for the orientation. This can be compactly represented as a homogeneous transformation
matrix T ∈ SE(2) ⊂ R3×3. In three-dimensional space, we can represent poses and transfor-

mation between poses with a six-dimensional vector, although, at-least-seven-dimensional
parametrization is used in order to avoid singularities. Singularity-free three-dimensional
spatial poses and transformations between poses are represented with T ∈ SE(3) ⊂ R4×4.

Alternatively, we can use other over-parametrized representations equivalent to SE(3), e.g.,
a three-dimensional spatial position vector in combination with either a four-dimensional
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unit quaternion or a four-dimensional angle-axis orientation representation. For a detailed
examination confer [102] or [105, Chapter 3]. Therefore, in an odometry-at-least factor

graph, a factor node ϕod.(Ti , Ti+1) with an actual measurement zi ,i+1 ∈ SE(n)models the
odometry between successive poses Ti ∈ SE(n) and Ti+1 ∈ SE(n).

Odometry sensor modalities are chosen according to the application. In planar4 mobile

robotics, either wheel encoders and/or an inertial measurement unit (abbr. IMU) and/or

two-dimensional range sensor can be used. In a three-dimensional space, IMUs and range

sensors are used too (e.g., the iterative closest point algorithm (abbr. ICP) [106], as used by

[107, 108], can find relative pose transformations between range scans). On the other side

of the sensor modalities spectrum, we have visual odometry (abbr. VO) accomplished via
a stream of mono/stereo/RGB-D images (e.g., Direct Sparse Odometry (abbr. DSO) [33],
and the neural network-based DeepVO [109] are mono approaches to VO, while among

prominent stereo approaches are SOFT2 [35] and VISO2 [110]). It is also possible to use a

combination of odometry types (e.g., V-LOAM[111] is a visual and LiDAR-based odometry

system while a comprehensive overview of visual-inertial odometry can be found in [112]).

4.2.2 Loop closing

As already ascertained, more and more error will be accumulated as the vehicle moves

forward. Luckily, there exists a way this error could be diminished – by loop closing. To

“close a loop” means to recognize a previously seen place, find the relative transformation

between a currently seen and a previously seen place, add a loop closing factor in a factor

graph and then the optimization (4.2) will do the rest. This is illustrated in Figure4.3. First,

at the currently estimated pose T6′ , the loop closing system recognizes an already seen

place associated with T1′ . Then, either with visual odometry or ICP, we find the relative

transformation between T6′ and T1′ and add it as a loop closing factor ϕl.c.(T6′ , T1′). We can

figuratively think of ϕl.c.(T6′ , T1′) as an elastic bond5 (the dashed purple line in Figure4.3a)

that will, after the optimization takes place, force the estimated poses closer to the true poses

so that Ti ≈ Ti′ , ∀i (Figure4.3b). Technically, a loop closing factor ϕl.c. is indistinguishable
from an odometry factor ϕod. - i.e., both measurements for respective factors are from
SE(n) and both share the same model hi from (4.3). In terms of programming language

implementation, both factors are instances of the same object-oriented programming class 6.
In fact, the only thing that distinguishes these two is the temporal order of variables within

a factor – for an odometry factor, it is the i-th and the (i + 1)-th variable, while for loop
closing, it is the j-th and the i-th variable.

In contrast to the systematic categorization of odometry approaches, it is not that easy to

categorize loop closing approaches (except for, to the best of our knowledge, sequence-based

visual place recognition approaches). An individual approach is, presumably, constructed so

that it fits a SLAM system’s constraints, e.g.,ORB-SLAM2 [114] is a state-of-the-art approach

to mono/stereo/RGB-D SLAM that uses oriented FAST and rotated BRIEF (ORB) features

4 i.e., modeled in a two-dimensional space.

5 The idea for this phrase came from [113] where a loop closing constraint is called “a rubber bar”.

6 At least in GTSAM [104] where gtsam::BetweenFactor<gtsam::Pose2> is a class for factors with SE(2)
measurements and gtsam::BetweenFactor<gtsam::Pose3> is a class for factors with SE(3) measure-
ments.



4.2. Simultaneous localization and mapping 70

Figure 4.4: In Data-Efficient Decentralized Visual SLAMmultiple robots perform visual odometry

on their own. Then, these locally built pose graphs are merged via a NetVLAD-based

place recognition into a single global graph. Image is taken from [117].

[115] as its local image features. Its loop closing detection system is built atop DBoW2

[116], also an ORB-based place recognition system from the same research group. On the

other hand, Data-Efficient Decentralized Visual SLAM [117] is an interesting and eclectic

use-case of loop closing in a decentralized visual SLAM where multiple robots perform

visual odometry each. A NetVLAD-based [81] place recognition system then finds matches,

i.e., closes loops, between locally obtained (i.e., obtained by a single robot) graphs into a

single global graph as depicted in Figure4.4.

4.2.3 Mapping

A map that consists of landmarks in the environment is built dynamically. Not only it

means that new landmarks, once the robot senses them, are here to stay, but also, landmarks

can dynamically be updated according to their relations with poses. The relation between

landmarks and poses is many-to-many. A landmark can be visible from multiple poses,

and inversely, in a particular pose, multiple landmarks can be observed. These relations

are modeled with another type of factor – a bearing-range factor φb.r. (Figure4.1d). It
stochastically models the orientation (bearing) and the Euclidean distance (range) between

a pose Ti ∈ SE(n) and a landmark l j ∈ Rn. How these factors and landmarks are added into

a SLAM system is application-specific.

The better the localization, the better the mapping, and vice versa. However, notice that

landmarks, regarded as a factor graph’s variables, are not connected to loop closing factors.

Rather, loop closing factors interconnect pose variables only. In terms of both definition

and implementation, this means that a loop closing subsystem should be invariant of a

mapping subsystem.
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4.3adapting noseqslam for loop closing in slam

By far, the NOSeqSLAMmethod presented in Chapter2worked in an offline fashion exclu-

sively as an l’art pour l’art visual place recognition system. It has been evaluated on typical
“visual place recognition” datasets, and its performance we have measured quantitatively

with the standard VPR measures – the area under a curve and the recall at 100% precision.

In such a setup we had two different sequences of images – 𝒬 and 𝒟. The questions are:

how to adapt this pipeline so it fits in a SLAM system and how to quantitatively measure its

performance?

The latter question is rather easy to answer. The better the quantitative performance

of a SLAM system that is being evaluated, the better its loop closing subsystem is. This

specificallymeans that a particular SLAM system evaluated on a dataset that has loops, under

the assumption that loops are detected correctly, should perform better when odometry

alongside loop closing is used than its odometry-only subsystem. On the other hand, even a

single wrongly detected loop totally corrupts estimated poses – a SLAM systemwith wrongly

detected loops has a subpar estimation performance when compared to an odometry-only

estimation. Simply put, it is expected that an odometry + loop closing system should achieve

better estimation than an odometry-only system.

There exist two standard SLAM performance measures: the absolute trajectory error
(abbr. ATE) and the relative error (abbr. RE) [118]. Through our experiments in this chapter,

we will use the absolute trajectory error. Given ground truth poses Ti ∈ SE(n), ∀i = 1 . . .N ,
i.e., their corresponding rotation matrices7 and position vectors (Ri , pi) ∈ SO(n) × Rn , ∀i,
and aligned8 estimated poses Ti′ ∈ SE(n), ∀i = 1 . . .N , i.e., (Ri′ , pi′) ∈ SO(n) × Rn , ∀i, we
measure the position part ATEpos. of the absolute trajectory error as

ATEpos. = (
1

N

N

∑
i=1
∏︁∆pi∏︁2)

1

2

= (
1

N

N

∑
i=1
∏︁pi − pi′∏︁2)

1

2

(4.8)

and the orientation part ATErot. of the absolute trajectory error as

ATErot. = (
1

N

N

∑
i=1
∏︁∢(∆Ri) ∏︁

2)

1

2

= (
1

N

N

∑
i=1
∏︁∢(RiRT

i′) ∏︁
2)

1

2

, (4.9)

where∢(⋅)maps the rotation matrix to an angle of the angle-axis representation.

4.3.1 Problem-specific adaptation

When performing SLAM, there is a single stream of images and/or a single stream of

range scans. Let us denote this generic stream of measurements withℳ. The most recent

7 Just as transformationmatrices are members of SE(n), rotationmatrices are members of the special orthogonal
group SO(n) ⊂ Rn×n

, n ∈ {2, 3}. This guarantees that the product of multiplying two rotation matrices, hence

members of SO(n), will be a member of SO(n) too. Also, because of orthogonality, a rotation matrix’s inverse
is its transpose. For more information, confer [105, Chapter 3].

8 As claimed by [118], either all estimated poses or only one/few initial poses can be aligned with ground truth

poses. A popular method for trajectory alignment is defined by Umeyama [119]. In the first experiment in

Section4.4, the initial estimated pose is aligned with the ground truth, while for the experiment in Section

4.5we use Umeyama’s method.
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measurement should correspond towhat “a query image”means in the context of visual place

recognition. Additionally, the same reasoning can be applied to range-sensor measurements

without the presence of visual sensormodalities, meaning it alsomakes sense to consider not

only visual place recognition, but also place recognition in general. The reason for this is

simple – just as an image I can be representedwith a specific n-dimensional global descriptor
z ∈ Rn, so can a range scan s be represented with z ∈ Rn, and so can any measurement m
be represented with z ∈ Rn. Therefore, the expression “a query measurement” denotes a

generic measurement we would like to match.

As the newest measurement mi ∈ ℳ is obtained, we would like to detect whether

there is a loop. Notice how two consecutive measurements are largely similar. Even a few

consecutive measurements should be similar by a large amount. Also, it is difficult to expect

a loop will occur after only a few consecutive measurements, e.g., a typical situation for loop

closing in SLAM would be to once again arrive at the crossroad of a circular residential area

and a substantial amount of measurements will be obtained on such a detour until we arrive

at the same crossroad. These facts motivate us to introduce an additional place matching

hyperparameter: α. It is the number that tells how many of the most recent measurements,

excluding mi , are not going to be compared with qi for place matching 9 . We dubbed α
the dismissal rate. So, for a fixed query measurement mi , we will not consider α previously
recorded measurements, meaning a particular mi will have

𝒟i = {m0,m1, . . . ,mi−α−2,mi−α−1} ⊂ℳ (4.10)

as its reference dataset. It would be redundant to introduce the query dataset notation

because in the current scenario, there are no two different-in-time-and-appearance streams

of images. Hence we only reason about the newest measurement of a place mi and how

to compare it with 𝒟i in order to recognize an already experienced place and, in turn, to

close the loop. However, this does not mean that mi−1,mi−2,mi−3 . . . will be useless. Recall

how, in order to incorporate sequentiality of data, we used a query image Iq i ∈ 𝒬 and its

temporal neighbors and compare them with Id j ∈ 𝒟 and its temporal neighbors.

If we perform SLAMonline, we will not have future measurements at disposal10. So ifmi

is the most recent measurement, i.e.,ℳ= {m0,m1, . . . ,mi−1,mi}, temporal neighborhood

of mi are previous measurements mi−1,mi−2,mi−3 . . . In this fashion we will construct

the online NOSeqSLAM method. In the offline NOSeqSLAM, for a fixed pair of images

(Iq i , Id j) ∈ 𝒬 × 𝒟, we built the left DAG G l
q i ,d j

and the right DAG Gr
q i ,d j

. G l
q i ,d j

models a

similarity between pair (Iq i , Id j) and similarities between Iq i ’s temporal predecessors and
Id j ’s temporal predecessors. Similarly, Gr

q i ,d j
models a similarity of a fixed pair and temporal

successors. This means that in the online NOSeqSLAM, we only build the left DAG. From

now on, we will refer to this left DAG as “DAG” and omit the l superscript. Moreover, as
we do not distinguish between𝒬 and 𝒟, subscripts i , j are sufficient (instead of qi , d j).

In accordance with the new notation, let mi ∈ ℳ denote the most recent measurement

and let 𝒟i denote its reference dataset. To measure the correspondence between mi and

m j ∈ 𝒟i , we first build a DAG Gi , j = (𝒱i , j, ℰi , j). Its root node ui , j is the parent to η nodes
{ui−1, j, . . . , ui−1, j−η+1}. Each node ui−1, j′ is the parent to η nodes {ui−2, j′ , . . . , ui−2, j′−η+1}. We

9 α is the first letter of the Greek word ἀπόπεµπτος (pronounced as “apopemptos”, eng. dismissed).
10Unless we perform time series forecasting, which can be considered as a subject for future research.
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repeat this building procedure recursively until the depth of Gi , j is ds − 1. Note how such

depth accompanied with the root node will yield a sequence of length ds−1+1 = ds, just as, in
the offline NOSeqSLAM, the union on the left DAG and the right DAG, both of depth ⟨︀ ds

2
⧹︀,

will yield a sequence of length ⟨︀ ds
2
⧹︀ + ⟨︀ ds

2
⧹︀ + 1 = ds11. The weight function wi , j ∶ ℰi , j → (︀0, 1⌋︀

for Gi , j is also defined as in the case of the offline NOSeqSLAM, i.e.

wi , j((uk,l , um,n)) = 1 −
zTmzn
∏︁zm∏︁∏︁zn∏︁

. (4.11)

Then the correspondence is measured as

si , j = ∑
uk , l ∈V∗s.p.

zTk zl
∏︁zk∏︁∏︁zl∏︁

(4.12)

where V∗s.p. are vertices of the shortest among all shortest paths from the root to leaves of

Gi , j. The way the online NOSeqSLAM differs from the offline NOSeqSLAM is illustrated

in Fig.4.5. All shortest paths from the root can be found by using the Algorithm11. The

difference between this algorithm and its offline variant is that the boundaries now also

include the dismissal rate α while here, we only move in the direction of previous temporal
measurements (i′ = i − ioffset and j′ = j − joffset).

G l
q i ,d j

Gr
q i ,d j

sq i ,d j = ∑
uk , l ∈V∗s.p.

zTqk zdl
∏︁zqk ∏︁∏︁zdl ∏︁

(a)

Gi , j

si , j = ∑
uk , l ∈V∗s.p

zTk z l
∏︁zk∏︁∏︁z l ∏︁

(b)

Figure 4.5: (a) In the offline NOSeqSLAM method, we build the left directed acyclic subgraph

G l
q i ,d j

and the right directed acyclic subgraph Gr
q i ,d j

. G l
q i ,d j

encodes similarities between

previously seen places, while Gr
q i ,d j

encodes similarities of places yet to be seen w.r.t.

(Iq i , Id j) ∈ 𝒬 × 𝒟. (b) It is impossible for an online system to foresee future places’

measurements (either images or range scans), so we model the online place recognition

viaNOSeqSLAMby using only a fixed pair ofmeasurements (mi ,m j) and their respective

previous temporal neighbors which means the single graph Gi , j will be built.

4.3.2 Optimization of the execution time

Recall how the topological sort-based implementation, long ago discarded, took more

than an hour of execution time to perform an offline VPR experiment on a tiny dataset

11Presumably, in the offline NOSeqSLAM, ds is an odd number, so such equation holds.
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Algorithm 11On-the-fly relaxation for the online NOSeqSLAM
Input: Gi , j = (𝒱i , j, ℰi , j), ds, η, α
Output: all shortest paths from the root ui , j to leaves

for ioffset = 1 to ds do
for joffset = 0 to ioffset ⋅ (η − 1) do

i′ = i − ioffset
j′ = j − joffset
if i′ > j′ + α and i′ ≥ 0 and j′ ≥ 0 then

for each u ī , j̄ ∈ Predecessors(ui′ , j′) do
Relax((u ī , j̄, ui′ , j′))

end for
end if

end for
end for

Algorithm 12The online NOSeqSLAM

Input: the most recent mi ∈ ℳ, ds, η, α
Output: si , j, ∀m j ∈ 𝒟i

for each m j ∈ 𝒟i do
Construct Gi , j

Calculate V∗s.p. with Algorithm11

si , j = ∑
uk , l ∈V∗s.p

zTk z l
∏︁zk∏︁∏︁z l ∏︁

end for

comprising ⋃︀𝒬⋃︀ = 544 and ⋃︀𝒟⋃︀ = 488 images. Since then, execution times have significantly

improved with Algorithm4, enabling us to perform a vast amount of offline experiments. It

turns out, neither this implementation succeeds at providing a real-time performance when

a SLAM evaluation datasetℳ has a far larger number of images, e.g., the KITTI dataset

[10] sequence 00 with 4541 images for a single camera.

The key for the execution time optimization lies in the paradigm of array programming,
also called vectorization. Vectorization refers to the way software executes. Given a data
array, we would like to perform a specific operation on the entire array at once (instead

of performing the operation on a single datum). Colloquially said, by vectorizing a code,

we replace loops and single-datum operations in loops with vectors, matrices, tensors, and

appropriate linear algebra operations. To an end user, programming languages/software

libraries that support array programming should provide as efficient as possible execution

of implemented functionalities.

The goal of the Algorithm11is to calculate all shortest paths from the root of Gi , j to its

leaves. In the achievement of vectorization, and hence, reduced execution time, the first

step was to get rid of the following fashion of iterations: “for each ioffset, for each joffset, do
. . . ”. Moreover, this was done in a loop for each pair comprising a new query measurement
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Figure 4.6: (a) DAGs used in NOSeqSLAM are topologically sorted – from left to right i indices
increase and, from top to bottom, j indices increase. (b) For fixed parameters ds and η,
each DAG will have the same topological structure. This means that a generic DAG with

relative indices can be built in advance.

mi and m j ∈ 𝒟i , which is, fundamentally, the online NOSeqSLAM (Algorithm12). By

exploiting the fact that all online-NOSeqSLAM DAGs, for fixed ds and η, have the same
topological structure – examine in Fig.4.6ahow DAG is sorted topologically from left to

right (i indices increase) and from top to bottom ( j indices increase) – we can, in advance,
create a generic DAG (Fig.4.6b) with relative indices, add a number i to the first component
and add a number j to the second component of relative indices, and this way obtain a DAG
Gi , j. The procedure similar to the Algorithm11is used in order to build such a topologically

sorted graph with relative indices.

The next step towards vectorization is to advancedly construct all paths from the root to

leaves, which is done in the Algorithm13, and put them as rows in the matrix P1 ∈ Rn×(ds−1).

In contrast to P1 which holds dissimilarities as edge weights, the matrix P2 = Jn×(ds−1) − P1 ∈
Rn×(ds−1) holds similarities as weights, where Jn×(ds−1) is the n×(ds− 1)-dimensional all-ones
matrix. Then, the rows of P2 are summed, so the summation yields the vector p ∈ Rn that

holds accumulated similarities in its components. The maximal among such components is

si , j - a value used as the matching score between mi and m j ∈ 𝒟i . In our implementation,

we also vectorized this even further so that si , j, ∀m j ∈ 𝒟i is calculated at once. The trick is

to build the tensor P1 ∈ R
⋃︀D i ⋃︀×n×(ds−1) that has n × (ds − 1)-dimensional matrices of paths on

its first axis, then to build P2 ∈ R
⋃︀D i ⋃︀×n×(ds−1), etc.

And lastly, before we move to the experiments in Sections4.4and4.5, empirical execu-

tion times of an online place matching will be analyzed. We evaluated the conventionally

implemented NOSeqSLAM, the vectorized NOSeqSLAM implementations deployed either

on CPU or GPU, and the vectorized naive matching implementations deployed either on

CPU or GPU. We tweaked the NOSeqSLAM’s hyperparameter ds ∈ {4, 6, 8, 11} while η = 2
and α = 85 remained fixed. For the evaluation dataset, we used the KITTI sequence 00 with
4541 images per camera (only a single stream of images is needed, so we picked the left

RGB camera). Images, originally of size 1241 × 376, are mapped via the original ResNet50

architecture [65] into feature maps and flattened into 100352-dimensional vectors. This

procedure takes (16.59 ± 0.80)ms per single image when the model is deployed on GPU,
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Algorithm 13 Construct Paths
Input: Gi , j = (𝒱i , j, ℰi , j), paths, path, ecurrent, eprevious, ds
Output: all paths from the root ui , j to leaves

procedure ConstructPaths(Gi , j, paths, path, ecurrent, eprevious, ds)
if GoesFromTheRoot(ecurrent) then

path = (︀ecurrent⌋︀ ▷ path is a recently created list with ecurrent as its only element
else

if StartingNode(ecurrent) = EndingNode(eprevious) then
Append(path, ecurrent)

else
return

end if
end if
if Length(path) = ds − 1 then ▷ If there is ds − 1 edges, i.e., ds nodes

Append(paths, path)

return
end if
for each enext ∈ {e ∈ ℰi , j ∶ e starts from the ending node of ec.} do

path_copy← DeepCopy(path)

ConstructPaths(Gi , j, paths, path_copy, enext, ecurrent, ds)
end for

end procedure

and this time is also accounted in the results. Note how each image should be mapped

via DCNN only once, as we can store its feature maps if there is enough memory. As we

iterate through the dataset, an image of the current iteration, considered the most recent

measurement mi , is being mapped into feature maps zi , and then we try to match it with
images in 𝒟i . With each iteration, the reference dataset increases, which means it takes

more and more time to find a loop.

In Table4.1and Fig.4.7we see how the conventional implementation, once considered

very efficient, performs poorly when compared against its vectorized variants. At the begin-

ning of an online place matching experiment – when there are only few reference images –

the conventional NOSeqSLAM, the CPU-deployed vectorized NOSeqSLAM and the CPU-

deployed naive matching behave similarly. It is not surprising that, due to NOSeqSLAM

computational complexity, the execution time of the conventional implementation increases

as the number of to-be-compared reference images increases. Still, surprisingly enough, the

CPU(GPU)-deployed NOSeqSLAM can stand the pace of the CPU(GPU)-deployed naive

matching at smaller sequence lengths. This means that the vectorization was completed

successfully. By looking in Table4.1, the maximum time it takes for NOSeqSLAM to find a

loop is 35.04ms, 40.77ms, 92.76ms and 760.66ms, respectively. The first three times are

feasible and will not be a runtime bottleneck in a multithreaded online SLAM system with

an adequate data acquisition frequency. For example, the data acquisition frequency for the
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Table 4.1: Execution time statistics between the naive matching and the online NOSeqSLAM for

ds ∈ {4, 6, 8, 11} on the KITTI 00 sequence with 4541 images. The conventional, i.e., non-

vectorized implementation compared with vectorized implementations that run on CPU

and GPU, respectively.

ds Setup Min. [ms] Max. [ms] Mean [ms] Total [s]

4

NOSeqSLAM, conventional 66.54 1399.18 587.98 2670.03

NOSeqSLAM, vectorized, CPU 66.04 100.81 91.03 413.35

NOSeqSLAM, vectorized, GPU 20.59 35.04 22.86 103.81

6

NOSeqSLAM, conventional 65.36 2275.19 1153.11 5236.27

NOSeqSLAM, vectorized, CPU 65.68 109.35 93.52 424.69

NOSeqSLAM, vectorized, GPU 20.39 40.77 26.76 121.54

8

NOSeqSLAM, conventional 66.04 3921.22 1917.58 8707.72

NOSeqSLAM, vectorized, CPU 68.48 157.47 119.16 541.12

NOSeqSLAM, vectorized, GPU 20.26 92.76 52.41 238.01

11

NOSeqSLAM, conventional 67.24 7015.14 3438.76 15615.41

NOSeqSLAM, vectorized, CPU 66.42 833.47 433.44 1968.25

NOSeqSLAM, vectorized, GPU 20.45 760.66 362.59 1646.51
- Naive, vectorized, CPU 65.12 99.73 90.24 409.80

Naive, vectorized, GPU 19.88 27.34 21.68 98.43

KITTI dataset is 10Hz, whichmeans, until the next measurement, there will be enough time

for NOSeqSLAM with not especially long sequence lengths to find loop closure candidates.

4.4lidar-based slam in a 2d simulated environment

This is the first of two experiments where NOSeqSLAM is used for loop closing in simulta-

neous localization and mapping. As noticeable from the title of this section, this experiment

is not a visual one with a visual sensor modality. Instead, we have a range sensor-based

measurements in the two-dimensional Euclidean space. And even though the evaluation of

this experiment was successful, as will be presented, we cannot justify the third scientific

contribution of the thesis: “Procedure for adapting sequence-based visual place recognition

method for loop closing in simultaneous localization and mapping algorithms”. In this

section, NOSeqSLAM is a range-based place recognition method rather than a visual place

recognition method.

Extrinsic motivation for this experiment was to have a prototype for the next one. Then

again, by using NOSeqSLAM in non-visual setups adds an additional value to its capability.

Recall from Subsection4.2.1how there are various sensor modalities for odometry. If we are

in the two-dimensional Euclidean space, the odometry output will be in SE(2), and in the
three-dimensional Euclidean space, it will be in SE(3). The way we work with elements in

SE(2) is comparable in certain aspects to the way we work with elements in SE(3). At the
end of the day, any odometry – be it an ICP-based odometry in this experiment or visual

odometry in the next experiment – will provide us with relative transformations between

poses that will ultimately be used for factors in factor graphs. The same applies to loop

closing. Somehow we have to detect an already experienced place – either by having range
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(a) (b)
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(e) (f)
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Figure 4.7: Comparison of execution time in the logarithmic y axis scale (left column) and the linear
y axis scale (right column) between the naive matching and the online NOSeqSLAM
for ds = 4 (a, b), ds = 6 (c, d), ds = 8 (e, f) and ds = 11 (g, h). The conventional, i.e.,

non-vectorized implementation, is compared with vectorized implementations that run

on CPU and GPU, respectively.
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scans of an environment or by having images. Luckily, NOSeqSLAM is invariant to a sensor

modality and can be deployed in both scenarios. Once a loop closure is detected, no matter

how, the relative transformation of matched measurements is obtained with “no matter

what” odometry and is included as a loop closing factor.

By being in a simulated environment, it is easy to specify the simulated robot – its

wheel radius, wheelbase lengths, maximum velocities for motors, cycles per revolution (abbr.
CPR) for wheel encoders, etc. Moreover, it is easy to obtain a ground truth trajectory by

computing the kinematics. It is easy to deliberately corrupt various simulation parts in order

to make an estimation more difficult so that a simulation is more real. As the environment

has to be specified somewhere, we know the ground truth state of it. In conclusion, every

single detail in a simulation of a real-time and real-life physical process can be tweaked and

we will have such a real-time process within our grasp – a real-time ground truth trajectory

and real-time measurements of a ground truth environment.

For the purpose of this experiment, we have developed the SLAM system in Python

dubbed SLAM No 1. Python is perfect for rapid prototyping of robotics applications – it

is easy to code given a pseudocode, there is a lot of libraries, just modified code can start

quickly, etc. However, it is not that great at runtime unless compute-intensive tasks are

outsourced to a “C under-the-hood” implementation. The experience and knowledge we

had been acquiring by developing SLAM No 1 had greatly accelerated the development of

the visual SLAM – dubbed SLAM No 2 – that was developed in C++ for the purpose of the

upcoming experiment in Section4.5.

4.4.1 SLAM No 1

SLAMNo 1 is a simulated robotic environment with the addition of pose graph optimization.

Themajority of code is written in NumPy [120] as it provides a blazingly fast C performance

of linear algebra functionalities in Python. In order to find relative transformations between

scans, iterative closest point library libpointmatcher [121] has been used. To build a factor

graph for pose graph optimization, GTSAM [104] has been used. Both of these libraries

support NumPy’s array structure; therefore, it was not that complicated to communicate

between NumPy, libpointmatcher and GTSAM. NumPy API is exploited in a great extent

resulting in a code that lacks for and while loops in Python, except for a few loops during

the initialization of the vectorized NOSeqSLAM, e.g., for the Algorithm13. It would not

be fair not to mention matplotlib [122], the de facto standard for scientific plotting, whose

animation API, alongside the standard set of functionalities is used for visualization. The

absolute trajectory error results (Table4.2) and position errors with respect to the distance

traveled plots (Figures4.10,4.11) were obtained with the rpg_trajectory_evaluation package

[123].

g world.Theworld in this experiment is a two-dimensional 3m×3m room comprising

a few convex shapes: three squares, a rectangle, a triangle, and two hexagons (Fig.4.8a).

These shapes, as well as the boundaries of the inner space, are specified as linear segments

that are placed in a single tensor. The robot can sense the inner space with its simulated

range sensor.
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(a) (b) (c)

Figure 4.8: In SLAM No 1, (a) we simulate the world as a 2-dimensional planar space, (b) then add

sensors measurements where the simulated range sensor is placed in the center of the

simulated robot (c).

g range sensor & measurements.From a specified 2D point, i.e., from the

sensor center, we radially distribute beams every βstep○ starting from βstart○ to βend○ (e.g., in
Figures4.8b,4.8c: βstep = 3○, βstart = 0○ and βstart = 360○). Each beam has its maximum and

minimum range. Start and end points of a beam, expressed in the local sensor’s frame, make

a segment and all segments are placed in a single tensor. All beams together make a scan.

As beams of the simulated range sensor are of the same type as planar shape sides –

segments – it is easy to calculate their intersections via the line-line intersection formula.
Given two line segments L1 and L2, represented as linear Bézier curves

L1 = (x1, y1) + t(x2 − x1, y2 − y1), t ∈ (︀0, 1⌋︀, (4.13)

L2 = (x3, y3) + u(x4 − x3, y4 − y3), u ∈ (︀0, 1⌋︀, (4.14)

we find their intersection by testing whether

0 ≤ t∗ =
(x1 − x3)(y3 − y4) − (y1 − y3)(x3 − x4)
(x1 − x2)(y3 − y4) − (y1 − y2)(x3 − x4)

≤ 1 (4.15)

and

0 ≤ u∗ =
(x1 − x3)(y1 − y2) − (y1 − y3)(x1 − x2)
(x1 − x2)(y3 − y4) − (y1 − y2)(x3 − x4)

≤ 1. (4.16)

If these conditions hold, then the intersection between L1 and L2 is

(x∗, y∗) = (x1 + t∗(x2 − x1), y1 + t∗(y2 − y1)) = (x3 +u∗(x4 − x3), y3 +u∗(y4 − y3)). (4.17)

We check for intersections between sensor beams and lines in the environment each to

each, which can be done efficiently in a vectorized way. The minimal distance from the

starting point of a beam to a point it intersects with a line segment of the environment is

the “measured” distance for that beam.

In each iteration, the currently measured scan is stored as an n-dimensional vector, i.e.,
as a NumPy array. Each such scan is associated with the corresponding estimated pose

of the robot at the time it is captured. It is important to store scans for ICP odometry and

loop closing. Also, scans that are shown in the map indicate whether the estimation process
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had succeeded. For this purpose we developed an efficient vectorized procedure that will

instantly move scans when pose graph variables are perturbed. Although it is possible to

include a culling policy that will discard redundant scanned points as time passes, we do not
cull any point in order to keep things simple.

g robot.The robot in SLAMN o 1 is a two-wheel differential-drive robot with the wheel

radius rwheel = 5 cm and the wheelbase length l = 10 cm. Local coordinate systems of the
robot and the sensor are aligned, so no additional transformation should be performed

in order to express the sensor in the robot’s local frame. The absolute angular velocity of

wheels is bounded from above with φ̇max = 2π⋅100
60

rad

s
. The robot has a circular frame of the

specified radius rframe = 20 cm so if it is detected that the distance between the robot and an

obstacle is less than or equal to this radius, a collision occurs12 . We run the robot for 3000

iterations with the simulation interval time of ∆t1 = 1

30
s.

Wheel encoders are simulated in the following way. Let cp.r. denote the specified number
of cycles per revolution for an encoder. If φ̇ is an angular velocity we apply to an imaginary
motor, we can calculate the difference of the current and previous number of the encoder’s

cycles, and this way simulate the encoder as

∆c = ck − ck−1 = ⃒
φ̇ ⋅ ∆t ⋅ cp.r.

2π
)︁ (4.18)

where ∆t is the time between two iterations. Then, a measured angular velocity will be

˜̇φ =
∆c ⋅ 2π
∆t ⋅ cp.r.

rad

s
. (4.19)

The simulated “measured” angular velocities of the left and the right wheel, ˜̇φleft and
˜̇φright, are mapped via forward kinematics to the robot’s local frame approximated velocity
˜̇ξR then mapped to the robot’s approximated velocity in the global frame

˜̇ξI , which is used
in order to keep the currently estimated pose ξ̃I,k up to date, i.e.,

ξ̃I,k = ξ̃I,k−1 +
˜̇ξI ⋅ ∆t. (4.20)

The pose obtained with wheel odometry can further be improved with the ICP-based

odometry and loop closing. Additionally, in our experiments, we have specified two different

wheel encoder types:

• good: cp.r. = 4096, drift є ∼ 𝒩(0, 0.05) added to ˜̇φ,

• bad: cp.r. = 300, drift є ∼ 𝒩(0.01, 0.05) added to ˜̇φ,

where, as expected, good encoders ensure significantly lower error.We also checkedmultiple

drift hyperparameters by having cp.r. = 300 fixed, but it was cp.r. that actually affects the
performance.

12A more sophisticated and CPU intensive way to detect collisions is to use a tree structure quadtree [124].
However, this sophistication plays no role in our evaluation.
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g path planning.The path planning system is modeled after the no longer available

Coursera course “Control of Mobile Robots” by Magnus Egerstedt based on his research

[125]. The idea is to specify the robot’s behavior as a finite-state automaton that is going to
act according to its current state. In our setup, we distinguish between three simple states of

the automaton, the robot:

1.“moves towards a goal”,

2.“avoids obstacles”,

3.“stands still”.

Its inputs, measured values, dictate the next state. So if the robot “moves towards a goal”

and an obstacle is spotted near, e.g., the minimal measured distance is sufficiently small,

it switches to the state of obstacle avoidance. While it “avoids obstacles”, a collision could

occur, so the robot “stands still”. Also, it can be sensed that an obstacle is no longer a threat,

and the robot just “moves towards a goal”. The robot will “stand still” once when it reaches a

single goal, or in the case of multiple goals, “moves towards a (next) goal”.

Obstacles are all inner shapes and boundaries of the room, therefore, all imaginary walls

in the simulated space. The reason we have obstacles at all is, not to try out whether the

robot can avoid them, but to make the space as distinguishable as possible. The reason we

have multiple successive goals is to reach an already measured and distinguishable-due-

to-obstacles scene once again so that a place recognition system can be tried out. Goals

are two-dimensional points, one after the other, (−2.5,−2.5), (2.5,−2.5), (2, 2), (−2.5, 2.5),

once again (−2.5,−2.5), once again (2.5,−2.5) and once again (2.0, 2.0). The robot should

successively reach every goal until there are no goals left. As it moves forward, obstacles

should be avoided. To achieve these two tasks, we have implemented two algorithms: the go-
to-goal algorithm and the avoid-obstacles algorithm. These are by no means state-of-the-art

algorithms, and neither they work perfectly – there are situations when a goal cannot be

reached and when a robot crashes into an obstacle. However, these algorithms just serve

their purpose in SLAM No 1 resulting in runs with no collisions and with every goal being

reached.

The algorithm that drives the robot toward a goal, the go-to-goal algorithm, is based on

a proportional–integral–derivative (abbr. PID) controller. Let (xk , yk , θk) = ξ̃I,k denote the
robot’s current pose and (xg , yg) denote the position of a goal. The robot will head toward

a goal if its desired orientation is

θ∗ = atan2(yg − yk , xg − xk) (4.21)

as depicted in Figure4.9a. In reality, its current orientation is θk so we model the error as

e = θ∗ − θk . (4.22)

The PID controller will produce the required orientation velocity θ̇ as

θ̇(t) = kPe(t) + kI ∫ t

0

e(τ)dτ + kD
de(t)
dt

. (4.23)
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(a) (b)

Figure 4.9: (a) The PID controller based go-to-goal algorithm in SLAM No 1. The position of the

goal and the robot itself is used to calculate a vector (green) the robot should follow in

order to reach the goal. (b) The PID controller-based obstacle-avoidance algorithm in

SLAM No 1. All beams that actually sense something are used to find a vector with the

direction the robot should head to.

Then, according to the robot’s kinematics and φ̇max, simple geometric manipulations are
performed in order to obtain the maximum translational velocity ẋ. Put together, these
values define a velocity in the robot’s local frame ξ̇R = (ẋ , 0, θ̇) which is further mapped via
inverse kinematics to the wheel velocities φ̇left and φ̇right we would like to apply.

The pipeline for the avoid-obstacles algorithm is identical up to a way we model the

error. The desired orientation we would like the robot to head to is the average of vectors

depicted in Fig.4.9b. If there are beams that actually sense something, i.e., their measured

values are smaller than the maximum dmaxminus some constant єd , we consider such beams
active. For an active beam bi , we create a vector from its origin to its end point that has just

been measured, then we find a vector (gray vectors in Fig.4.9b) with the opposite direction

and with the magnitude of the maximum range dmax subtracted by a measured value di . All

these vectors are averaged into a vector (a green vector in Fig.4.9b) with the direction θ∗
we would like to obtain with the robot and this way to avoid an obstacle.

g iterative closest point.The libpointmatcher library [ 121] has a twofold role

in SLAM No 1. First, it is used for ICP odometry between an i-th and an (i + 1)-th scan.
Second, it is used to obtain the relative transformation between the most recent i-th scan
and a previous j-th scan from a reference dataset 𝒟i if a loop is detected. We have two

instances of the class PointMatcher.ICPSequence in Python – one for odometry and one

for relative transformations on loop closing. Each instance’s hyperparameters are tuned in

their own way so they fit the specified task.The outcome of both processes are homogeneous

transformations iTi+1 ∈ SE(2) and iTj ∈ SE(2), respectively.
Depending on the quality of wheel odometry, i.e., whether selected wheel encoders are

good or bad, ICP odometry can either improve ATE results (when bad encoders are used)
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or deteriorate ATE results (when good encoders are used). In fact, the preliminary results

were on par for both wheel encoder types if ICP is used; therefore, we decided not to use

ICP odometry, and instead rely on wheel odometry only, when good wheel encoders are

used. If ICP odometry is used, a transformation obtained via wheel odometry serves as an

initial guess for ICP odometry. The quality of odometry does not affect loop closing in any

way. A loop is detected no matter if the robot’s pose estimation is precise or not – we just

compare scans and not their associated poses. However, when a loop is detected, relative

transformation is needed too, so in this case, ICP is critical, and without it, we could not add

a loop closing factor. An initial guess for the transformation of a loop closure is obtained

from the factor graph’s current state of variables.

g place matching.Place matching is used in order to detect loops. We match places

either naively or by using the online NOSeqSLAM. A place is represented with its range scan

si ∈ Rn1 . Although it is easy to further map si with a neural network into a tensor of more
discriminative feature maps zi ∈ Rn2 [126], it was not essential in our experiments because

the bare scan representation also succeeded to represent a place discriminatively enough.

As the most recent scan si is retrieved, it is normalized, stored with all scans retrieved by far,
and in a single matrix operation it is multiplied with scans in 𝒟i that are stacked as rows.

Then we run a place matching procedure which outcome are Boolean variables that say

whether si matches with s j ∈ 𝒟i ,∀ j.

g pose graph optimization.By having all the aforesaid pieces put together, pose

graph optimization can take place. iSAM2 [127] is used as an algorithm for sparse nonlinear

incremental optimization with the relinearization threshold set to β = 0.1. The prior factor

deviation Σp., odometry factor deviations Σod. and loop closing factor deviations Σl.c. are

experimentally set to

Σp. =

⎨
⎝
⎝
⎝
⎝
⎝
⎪

0.3 0 0

0 0.3 0

0 0 π⇑36

⎬
⎠
⎠
⎠
⎠
⎠
⎮

, Σod. = Σl.c. =

⎨
⎝
⎝
⎝
⎝
⎝
⎪

0.2 0 0

0 0.2 0

0 0 π⇑36

⎬
⎠
⎠
⎠
⎠
⎠
⎮

. (4.24)

We assume that the initial pose T1′ is known and equals to the ground truth initial pose

T1 in order to avoid trajectory alignment. Moreover, this way we can clearly see how the

drift is accumulated over the time and how loop closing exterminate it. The first variable T1′

(counting from 1)13 and the prior factor ϕp.(T1′) are set to the pose graph before the robot

starts to move. Measurements are taken on every 10-th iteration, which also entails that

variables, odometry factors and potential loop closing factors are added to the factor graph

then. In the end of a run, both estimated and ground truth trajectories will consist of 300

poses (excluding the initial pose). During each “measurement” iteration i (counting from
0), a variable T(i+2)′ and a factor ϕod.(T(i+1)′ , T(i+2)′) are added to the pose graph.

If the place matching subsystem says there is a match between an i-th a j-th place,
i.e., a loop is detected, and ICP finds the transformation i′Tj′ , then a loop closing factor

ϕl.c.(Ti′ , Tj′) is added to the graph. Right now, we perform pose graph optimization, i.e.,

13In GTSAM examples found inthe official repositiory, variables are indexed from 1.

https://github.com/borglab/gtsam
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Table 4.2: ATE for different SLAM No 1 setups.

Wheel encoders Setup ATEpos. [m] ATErot. [
○]

bad

ICP odometry + NOSeqSLAM 0.02836 0.59485
ICP odometry + Naive 0.07611 1.40690

ICP odometry (w/o place matching) 0.25755 5.01363

Wheel odometry (w/o place matching) 0.58594 12.19906

good

Wheel odometry + NOSeqSLAM 0.01079 0.21707
Wheel odometry + Naive 0.02016 0.39933

Wheel odometry (w/o place matching) 0.15541 3.15750

we call the isam2.updatemethod, only when ϕl.c. is added, otherwise optimization does
not have any effect. In other words, unless a loop closure is detected, we cannot expect

results that are any better than the odometry-only results. For the sake of efficiency, it is

also possible to reduce the frequency of update calls, say on every n-th occurrence of a
loop, however in our scenario with 301 variables, 300 odometry factors and substantially

less loop closing factors this was unnecessary.

4.4.2 Experimental results

The experiments are evaluated quantitatively with the absolute trajectory error for po-

sition and orientation. The correspondence measure (4.12) obtained with NOSeqSLAM

is additionally divided by ds so it is between 0 and 1. Correspondences obtained either

naively or with NOSeqSLAM are then thresholded with τ. The maximal correspondence

greater than or equal to τ is a loop closing candidate. To find the optimal hyperparam-
eters, we run a grid search over the dismissal rate α ∈ {50, 70, 90}, the threshold value
τ ∈ {0.9, 0.92, 0.94, 0.96, 0.98}, the sequence length ds ∈ {6, 8, 11, 16}, while the NOSe-
qSLAM’s η = 2 remained fixed. As already mentioned, we also have two different wheel
encoder types– good and bad. We present the best-performing runs for each wheel encoder

type, further categorized with respect to an odometry type and a loop closing type – wheel

odometry (w/o place matching), ICP odometry (w/o place matching), ICP odometry +

naive and ICP odometry + NOSeqSLAM. For each of these categories,we picked the best

result and present it in Table4.2.

Given the bad wheel encoders, ICP halves an error. Then, with loop closing, error rates

are decreased by a factor of 5 for the naive matching and by a factor of 10 for NOSeqSLAM.

Similarly, given the good wheel encoders, the best odometry-only run performs subpar,

while with loop closing, the performance is significantly better.We omit to use ICP odometry

with good encoders because such obtained results are almost identical to the results obtained

with bad encoders + ICP odometry. Additional insight about how different encoders and

loop closings influence error can be found in Figure4.10for bad encoders and in Figure4.11

for good encoders, respectively. From top to bottom, setups are listed in the same order

as in Table4.2. For each setup, on the left side, the position error (the difference between

estimated and ground truth positions) is shown with respect to the distance traveled. On

the right, it is the orientation error with respect to the distance traveled. The better an

estimation is, the more straight its error curve is, and the error converges to 0.
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Figure 4.10: The position error (left) and the orientation error (right) with respect to the distance

traveled for setups with bad encoders. The more straight an error curve is, the better.

Plots created with [123].
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Figure 4.11: The position error (left) and the orientation error (right) with respect to the distance

traveled for setups with good encoders. The more straight an error curve is, the better.

Plots created with [123].
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Qualitatively, performances can be observed in Figures4.12,4.13and4.14. If estimation

is fine, an estimated state itself (the yellow transparent robot in plots) should be aligned

with the ground truth robot (the gray robot in plots). Due to estimation error, blue range

scan beams are what the ground truth robot senses, while gray range scan beams are what

we think it senses. So, a good estimation implicates that a map that was being built during a

run (red points) is more aligned with the ground truth map. Bad wheel odometry yields the

worst estimated map (Figure4.12d). Things are much better if ICP is added then (Figure

4.12c). As mentioned previously in Section4.2, illustrated in Figure4.3, and right now,

shown for the naive matching (Figure4.12b) and the online NOSeqSLAM (Figure4.12a),

even if a substantial amount of drift exists, loop closing eradicates it.

In the bottom rows of Figures4.12,4.13and4.14, it is shown how loops are proposed

in NOSeqSLAM (Figures4.12e,4.13dand4.14c) and how they are proposed naively (Fig-

ures4.12f,4.13eand4.14d) for their associated runs shown in top rows. The online NOSeqS-

LAM/the cosine similarity is evaluated between the pairs of all measurements by far. The

intersection of an i-th column and a j-th row bears an association measure of the scans si
and s j. Those scans si with indices i less than α could not be matched anyway. Once there
are enough scans, a reference dataset will become non-empty, and will increase by one in

each iteration. Therefore, as we move between association matrix columns from left to right,

each column has more unblacked cells. If a cell value is less than τ, its associated scans si
and s j are not a match, so s j is not a loop closing candidate. We visualize it by additionally

making these cells more dark. Then, we have cells that survived thresholding, and such cells

are undarkened. In a column, among all such cells, we pick the one with the highest value.

Such a cell is a loop closing candidate and is colored green.

We see how NOSeqSLAM is more “shrewd” with loop closing candidates. Also, when

comparing Figure4.12ewith Figure4.12f, NOSeqSLAM proposals follow a straight linear

segment as should be, because this is the way the robot moves – once again through an

already seen environment with same velocities. We also included screenshots of bad runs

with the naive matching (Figures4.14b,4.14d) and with NOSeqSLAM (Figures4.14a,4.14c).

This is due to an inadequate, too low threshold τ. A lower threshold means that a lot of loop

closure candidates can be proposed with a certain number of false matches. Conversely,

a higher threshold means a smaller number of candidates, potentially none. Although

neither NOSeqSLAM nor the naive matching in Figure4.14proposed correct loop closing

candidates, the map obtained in the NOSeqSLAM run is still somewhat “structured”.

4.5visual slam in a 3d real-life environment

In this experiment, we run a visual SLAM system in order to justify the third scientific

contribution of the thesis. Instead, in a simulated environment, the SLAMsystem is evaluated

on a real-world data – the KITTI Visual Odometry dataset. As being reported in [128],

KITTI sequences 00, 02, 05, 06, 07, and 09 contain loops. Also, these sequences, along with

other training sequences, contain ground truth trajectories. Therefore, we can quantify the

performance of the system we have purposefully developed – SLAM No 2.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.12: The best performing runs of different SLAM No 1 setups: (a), (e) ICP odometry +

NOSeqSLAM, (b), (f) ICP odometry + naive matching, (c) ICP odometry (w/o place

matching) and (d) wheel odometry (w/o place matching). The robot has bad encoders.
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(a) (b)

(c)

(d) (e)

Figure 4.13: The best performing runs of different SLAM No 1 setups: (a), (d) wheel odometry +

NOSeqSLAM, (b), (e) wheel odometry + naive matching and (c) wheel odometry (w/o

place matching). The robot has good encoders.
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(a) (b)

(c) (d)

Figure 4.14: Unsuccessful runs with false loop closing proposals of (a), (c) NOSeqSLAM and (b), (d)

the naive matching due to an inadequate threshold τ. Although both runs are inaccurate,
the map obtained with the NOSeqSLAM setup is still more structured.

4.5.1 SLAM No 2

The C++-based SLAM No 2 is a visual SLAM that integrates VISO2 [34] as its visual

odometry subsystem, GTSAM for pose graph optimization, and either NOSeqSLAM or the

naivematching as the loop closing subsystem. Our own code, the loop closing library named

liblc and the code that glues all the subsystems together, was written in libtorch, the C++

implementation of PyTorch [72]. Bearing in mind our further SLAM research, we made

SLAM No 2 subsystems invariant enough between themselves, which means it is already

possible to replace VISO2 with any other visual odometry, to replace GTSAM with another

nonlinear optimization library, etc. The ATE results (Table4.3) and the plots of trajectories

(Figures4.15) were obtained with the evo package [ 129] while position errors with respect to

distance traveled plots (Figures4.16,4.17) were obtained with the rpg_trajectory_evaluation
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package [123].

g visual odometry.By exploring a few visual odometry implementations, we picked

VISO2 as the primary visual odometry choice for SLAM No 2 due to its simplicity and

due to the well written and easily integrable C++ library. VISO2 is a stereo approach to

visual odometry with its specific local image features and their corresponding Sobel-based

[130] descriptors. Given two pairs of stereo images, i.e., the current left and right and the

previous left and right images, features are matched in a “circle” – first, a feature is matched

between the current left and the previous left image, then between the previous left and the

previous right, then between the previous right and the current right, and finally, between

the current right and current left image. Let fi denote a feature that is being matched
between two consecutive frames. fi ’s spatial position in the previous image can be mapped
via triangulation into a 3d point Xi in the 3d Euclidean space. Given all N matched features

between two stereo pairs, egomotion estimation is conducted by minimizing the sum of

reprojection errors

min
T∈SE(3)

N

∑
i=1
∏︁x(l)i − π

(l)(Xi ;T)∏︁2 + ∏︁x
(r)
i − π

(r)(Xi ;T)∏︁2, (4.25)

where π(l) / π(r) maps a 3d point Xi into the current left/right image at position x(l)i / x(r)i
given T ∈ SE(3). Additionally, the obtained relative transformation is, as said by the authors,
“refined” with the Kalman filter. As it was the case with iterative closest point, we use visual

odometry both to obtain a relative transformation between two consecutive stereo image

frames iTi+1 ∈ SE(3) and to obtain a transformation iTj ∈ SE(3) between those frames that
close a loop. Once again, transformations of both categories, as in SLAM No 1, are used to

create factors in the factor graph.

g place matching.Although a stereo odometry pipeline requests a pair that consists

of a left and a right image, left RGB images only (i.e., those images in the subfolder image_2

of a given KITTI sequence) are used for visual place recognition. Place recognition takes

place in the liblc library where we look for a match between the most recent image Ii ∈ ℳ
and the corresponding previously seen images𝒟i by comparing their global descriptors. As

a new image is taken, liblc calculates its global descriptor, runs a place matching method,

and returns a list of candidates according to specified place recognition hyperparameters,

sorted in a downward direction by an association measure.

Ii is preprocessed by resizing a smaller size to 224px, then by center-cropping it to

a 224 px × 224 px image, and finally by normalizing its RGB pixel intensities as required

for PyTorch Imagenet-trained image models. A preprocessed image Ii ∈ ℳ is forward

propagated through a DCNN model into feature maps that are additionally flattened into a

single-axis n-dimensional vector zi ∈ Rn.Themodel is the trained ResNet50 without its fully-

connected layers. Thanks to the TorchScript, a mechanism that allows for communication

between PyTorch in Python and libtorch in C++, in further research it will be relatively

easy to use any other deep model. Once a global descriptor zi is obtained, it will be stored
in the memory, so no additional forward propagations for an image Ii are required. It was
already presented in Section4.3that forward-propagation is done either on a CPU or a GPU
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and how fast it is done. Regarding the place matching implementation itself, it was easy to

implement a C++ variant of the online NOSeqSLAM and the naive matching because these

were already implemented in numpy for SLAM No 1. Required tensor manipulations are

almost the same both in numpy and in libtorch, therefore, the SLAM No 2 C++ code for

place matching has identical functions with identical signatures and the identical number

of lines as the SLAM No 1 code.

g pose graph optimization.By having the visual odometry and place matching

subsystems established, the pose graph optimization subsystem, implemented with the C++

GTSAM, has all that is required for the 3d pose estimation from images taken by a vehicle.

Once again, the iSAM2 algorithm is used for optimization. The prior factor deviation Σp.,

odometry factor deviations Σod. and loop closing factor deviations Σl.c. are experimentally

set to

Σp. = Σod. = Σl.c. =

⎨
⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎪

1e − 6 0 0 0 0 0

0 1e − 6 0 0 0 0

0 0 1e − 6 0 0 0

0 0 0 1e − 4 0 0

0 0 0 0 1e − 4 0

0 0 0 0 0 1e − 4

⎬
⎠
⎠
⎠
⎠
⎠
⎠
⎠
⎠
⎠
⎠
⎠
⎠
⎮

. (4.26)

Factors and variables in the factor graph are added the same way as in SLAM No 1.

4.5.2 Experimental results

Similarly to SLAM No 1, we compare the no-loop-closing VISO2, VISO2 in combination

with the naive matching and VISO2 with NOSeqSLAM. In addition to a standard set of

hyperparameters being tuned, we also tweaked “the occurrence frequency” of optimization,

i.e., how often the isam2.update procedure is called, which means, in SLAM No 2, the

pose graph optimization may occur:

1.at each loop closing,

2.at each 10th loop closing + once at the end of a run, or,

3.once at the end of a run.

Regarding the standard hyperparameters, a grid search is performed over the threshold

value τ ∈ {0.15, 0.20, 0.22, 0.25, 0.28, 0.30, 0.32, 0.35, 0.38, 0.40} and the dismissal rate α ∈
{40, 80}, while the NOSeqSLAM hyperparameters remained fixed and set to ds = 6 and
η = 2.

For each KITTI sequence in Table4.3, VISO2 without loop closing performs worst.Then

again, VISO2 is the backbone for SLAM No 2 and non-VISO2-only setups are surely largely

dependent on its visual odometry. Both NOSeqSLAM and the naive matching perform

on par, with a slight advantage for NOSeqSLAM. Also, plots of errors with respect to

distance traveled (Figures4.16,4.17) suggest that loop closings reduce the drift. Qualitatively,

the proof that loop closing contributed to accuracy, is shown in Figure4.15. VISO2 +

NOSeqSLAM trajectories are totally aligned with the ground truth trajectories, while VISO2-

only trajectories are affected by the drift. VISO2 + Naive trajectories were visually identical
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to their VISO2 + NOSeqSLAM counterparts, so we have omitted them from the plots. A

reason both of these place matching methods perform approximately equal may be the

additional verification of a transformation in VISO2. Certainly, such “loops” are not added

to the factor graph. The occurrence frequency of optimization does not discriminate results

that much. Also, it is noticeable that the visual representation of choice, the ResNet50 feature

maps, makes a fine distinction between different places. Otherwise, it would not be possible

to close loops successfully, and this way, obtain good results.

On the other side of the spectrum, we expected to see bad runs due to suboptimal

hyperparameters, just as in SLAMNo 1. Although we were able to improve the performance

by detecting true positive stereo imagematches as just reported, it is also possible to have false

positives that will completely ruin an estimated trajectory. As an example, in Figure4.18a,

the correspondence between the images I375 and I529 from the KITTI sequence 06 obtained

by the naive matching was above the specified threshold τ. It is visible how these two images

are remarkably similar – the same supports for saplings on the left side of the lane, two

almost identical cars on the right, both dark and both estates, same street lighting elements,

similarly shaped roofs, etc. Not only is it not possible to detect whether this is a true positive

in terms of placematching, but also, due to a substantial amount of common visual elements,

VISO2 gives a relative longitudinal translation of a few meters when in reality, places are

far away from one another. In Figure4.18b, we see how this disastrously affects estimation

when incorrect loop closing factors are added.

4.6summary

The final chapter, in our opinion, the most challenging and, for the same reason, the most

interesting, deals with the adaptation of our sequence-based place matching method for

simultaneous localization and mapping. For this chapter, we purposefully built two different

SLAM systems. Before SLAM No 1 and SLAM No 2 were developed, and their respective

experiments were conducted, we were really concerned if NOSeqSLAM would be effective

in this context at all. In any case, as visible from quantitative and qualitative evaluation as

well as the running times study in Subsection4.3.2, the adaptation of place recognition

methods for loop closing, both NOSeqSLAM and the naive matching, was successful, so

we justified the third scientific contribution of the thesis: Procedure for adapting sequence-

based visual place recognition method for loop closing in simultaneous localization and

mapping algorithms. For further research, it would be interesting to see how different visual

odometries affect results. Also, in addition to other image models we would examine, it

would also be interesting to see how traditional handcrafted image models perform and

whether results between different placematchingmethods would becomemore pronounced.
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Table 4.3: ATE for different SLAM No 2 setups.

KITTI seq. Setup ATEpos. [m] ATErot. [
○
]

00

VISO2 + NOSeqSLAM, optimized at each 10
th
l.c. 2.35143 1.99284

VISO2 + NOSeqSLAM, optimized at each l.c. 2.36887 2.00722

VISO2 + Naive, optimized at each 10
th
l.c. 2.43332 1.99450

VISO2 + Naive, optimized at each l.c. 2.43867 1.99924

VISO2 + NOSeqSLAM, optimized once in the end 2.57337 2.00320

VISO2 + Naive, optimized once in the end 2.68447 2.06434

VISO2 32.11955 7.78634

02

VISO2 + Naive, optimized once in the end 10.38643 3.77741
VISO2 + NOSeqSLAM, optimized once in the end 10.80160 3.79477

VISO2 + Naive, optimized at each 10
th
l.c. 10.83066 3.89191

VISO2 + Naive, optimized at each l.c. 10.84811 3.89597

VISO2 + NOSeqSLAM, optimized at each l.c. 11.46714 3.95923

VISO2 + NOSeqSLAM, optimized at each 10
th
l.c. 11.53330 3.96953

VISO2 34.75933 7.92865

05

VISO2 + NOSeqSLAM, optimized once in the end 2.08566 1.93868

VISO2 + NOSeqSLAM, optimized at each 10
th
l.c. 2.13437 1.79494

VISO2 + Naive, optimized once in the end 2.16836 1.99971

VISO2 + NOSeqSLAM, optimized at each l.c. 2.18852 1.74227
VISO2 + Naive, optimized at each 10

th
l.c. 2.24392 1.94242

VISO2 + Naive, optimized at each l.c. 2.24445 1.97885

VISO2 12.53722 4.76568

06

VISO2 + NOSeqSLAM, optimized at each l.c. 1.04006 1.65912

VISO2 + NOSeqSLAM, optimized at each 10
th
l.c. 1.04270 1.65694

VISO2 + Naive, optimized at each l.c. 1.05863 1.76240

VISO2 + Naive, optimized at each 10
th
l.c. 1.06338 1.76470

VISO2 + NOSeqSLAM, optimized once in the end 1.06446 1.63609
VISO2 + Naive, optimized once in the end 1.09571 1.78365

VISO2 3.84693 3.48457

07

VISO2 + Naive, optimized at each l.c. 0.64489 1.37286

VISO2 + NOSeqSLAM, optimized at each l.c. 0.68947 1.24952

VISO2 + Naive, optimized at each 10
th
l.c. 0.73165 1.16022

VISO2 + NOSeqSLAM, optimized at each 10
th
l.c. 0.73819 1.15006

VISO2 + NOSeqSLAM, optimized once in the end 0.83023 1.33335

VISO2 + Naive, optimized once in the end 0.83401 1.34250

VISO2 5.50098 4.75943

09

VISO2 + NOSeqSLAM, optimized once in the end 3.39437 1.69139

VISO2 + NOSeqSLAM, optimized at each 10
th
l.c. 3.39437 1.69139

VISO2 + NOSeqSLAM, optimized at each l.c. 3.51840 1.67810
VISO2 + Naive, optimized once in the end 3.55512 1.76402

VISO2 + Naive, optimized at each 10
th
l.c. 3.55512 1.76402

VISO2 + Naive, optimized at each l.c. 3.66601 1.74672

VISO2 19.49097 8.32224
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Figure 4.15: The ground truth, VISO2, and VISO2 + NOSeqSLAM trajectories for KITTI sequences

00 (top left), 05 (top right), 02 (middle left), 06 (middle right), 07 (bottom left) and 09

(bottom right).



4.6. Summary 96

0 500 1000 1500 2000 2500 3000 3500

Distance [m]

−50000

0

50000

P
os

it
io

n
D

ri
ft

[m
m

]

x

y

z

(a)

0 500 1000 1500 2000 2500 3000 3500

Distance [m]

−10

−5

0

5

10

O
ri

en
t.

er
r.

[d
eg

]

yaw

pitch

roll

(b)

0 500 1000 1500 2000 2500 3000 3500

Distance [m]

−50000

0

50000

P
os

it
io

n
D

ri
ft

[m
m

]

x

y

z

(c)

0 500 1000 1500 2000 2500 3000 3500

Distance [m]

−10

−5

0

5

10

O
ri

en
t.

er
r.

[d
eg

]

yaw

pitch

roll

(d)

0 500 1000 1500 2000 2500 3000 3500

Distance [m]

−50000

0

50000

P
os

it
io

n
D

ri
ft

[m
m

]

x

y

z

(e)

0 500 1000 1500 2000 2500 3000 3500

Distance [m]

−10

−5

0

5

10

O
ri

en
t.

er
r.

[d
eg

]

yaw

pitch

roll

(f)

Figure 4.16: The position error (left) and the orientation error (right) with respect to distance traveled

for the best performing (top) VISO2 +NOSeqSLAM, (middle) VISO2 +Naive matching,

and (bottom) VISO2 runs. Plotted with the y-axis limits of the worst performing run

(VISO2). Plots created with [123].
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Figure 4.17: The position error (left) and the orientation error (right) with respect to distance traveled

for the best performing (top) VISO2 + NOSeqSLAM, and (bottom) VISO2 + Naive

matching runs where y-axis limits are magnified as much so that curves fit. Plots created

with [123].
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Figure 4.18: The unsuccessful run for a SLAMNo 2 setupwith the naivematching due to a suboptimal

threshold τ. Both place recognition and visual odometry failed to discard this falsely-
detected loop. In turn, not only that a setup was unable to keep an estimation as good as

a VISO2-only baseline estimation, but the estimated trajectory was even dramatically

worse.



5
Conclusion and Outlook

F
or a human, it is an easy task to recognize a previously seen place. It is much more

challenging to accomplish this task for an autonomous vehicle, i.e., its onboard computer.

This task is an extensively investigated robotics problem – visual place recognition – that

can be, as we have seen, incorporated within another robotics problem – simultaneous

localization and mapping – for loop closing detection. Surprisingly, intrinsic properties of

ordinary traffic situations, e.g., a lot of moving objects, different times of the day, different

seasons, etc., impose difficulties for a place to be recognized by a computer program. By

investigating this research problem, it became clear that, firstly, a place should be matched

by taking into account a sequence of neighboring images rather than a single image of

that place, and secondly, a robust image representation should be used. Hopefully, this

would lead us to a viewpoint-invariant and condition-invariant place recognition system

invulnerable to perceptual aliasing. To accomplish all that, three scientific contributions in

the thesis were proposed.

The first scientific contribution of the thesis was to design a method that would success-

fully recognize such already visited places. In order to achieve this objective, by following

patterns of other methods, we knew that a sequence of images, rather than a single image,

should be considered. Particularly, we have been looking to SeqSLAM and then trying

to generalize it, as we did with NOSeqSLAM. By generalizing it, we were able to achieve

better quantitative results, although not without difficulties. Constructs that achieve that

generalization are directed acyclic graphs accompanied with a single source shortest path

algorithm. Once we managed to implement the first version of NOSeqSLAM, it took too

long to run it even on a tiny dataset due to nonlinear data structures that demand dynamic

allocation. By analyzing single source shortest path algorithms, both asymptotically and

empirically where we measured running times, we have come to the optimal algorithm

that is presented here. Our tailor-made algorithm, on-the-fly relaxation, perfectly fits the

topology of directed acyclic graphs used in NOSeqSLAM. This, as it turned out, had a

positive impact on the running time. Although SeqSLAM and its cone-based variant have a

somewhat better asymptotic running time, obviously, because NOSeqSLAM generalizes

SeqSLAM, empirically, NOSeqSLAM runs well for sequences of substantial lengths. Area

under a curve and recall at 100% precision, borrowed from information theory, are two

evaluation measures we use in order to quantize a visual place recognition system perfor-

mance, but before we ventured to do that, an appropriate image representation, obtained by

applying an image model, should have been provided to a place matching method.

98
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Therefore, we put our effort into analyzing different image models. Classic computer

vision models, i.e., gradient-based local features and descriptors in conjunction with ag-

gregation techniques, as well as histogram of oriented gradients, were used in the robotics

community up until recently, albeit, they are newly outperformed by deep image models

– convolutional neural networks. Firstly, we have experimented with classic computer vi-

sion image models and convolutional-neural-network-extracted feature maps that came

with certain datasets out of the box. Then we realized, that if we adapt an image model

according to our needs, better results could be achieved. In the beginning, this was not

an easy task. We thought we would be able to adapt deep image models by fine-tuning

them either with the contrastive loss [131] or triplet loss. Neural networks coupled with these
two losses are referred to as Siamese neural networks. Siamese neural networks can be
considered a neural-network approach to metric learning where a network should map
the same category inputs in a manifold where these inputs are close to each other, and

inversely, inputs of different categories should be mapped away from each other. Although

some authors used them in visual instance retrieval and visual place recognition [81, 82], we

were only able to minimize the contrastive loss on an exemplar ⋃︀𝒬⋃︀ = 70, ⋃︀𝒟⋃︀ = 48 dataset.

We even extracted feature maps with an ResNet101 architecture from [82] and compared

them with feature maps extracted from the original ImageNet-trained ResNet101. These

results were reported in a seminar report of a Ph.D. course and were on par, which meant

we should opt for another approach. For this reason, Siamese neural networks were not

a topic being discussed here, and rather, we switched to softmax regression, an approach

to multinomial classification with neural networks. We tried our best to adapt it in visual

place recognition context, and after that, a lot of optimization experiments were conducted,

which proved to be, according to the results reported, a good decision. Similarly, we had

been lucky with a mutual information-based feature selection technique. Altogether, the

proposed place matching method, in synergy with adapted image representation, achieved

notable quantitative results, and consequently, the first and the second scientific approach

were justified.

Visual place recognition should not be a goal in itself. Instead, we should use it for a

higher purpose – loop closing detection in simultaneous localization and mapping. That

ambition required us, alongside the adaptation of NOSeqSLAM, in which it became an

online place recognition method, to develop two different SLAM systems. The adaptation

started with the online place recognition formulation.Then, by virtue of array programming,

we managed to speed up the online NOSeqSLAM and even make it executable on a graphic

processing unit. This has proven to be a good thing because GPUs are the natural envi-

ronment for deep image models. The not-an-easy task of developing two different SLAM

systems was achieved thanks to the brilliant software libraries that were used. Therefore,

the development of SLAM No 1 and SLAM No 2 came down to the integration of these

libraries. Although it may seem that SLAMNo 1 is more a toy-like system, it was demanding

to develop it because of a real-life process simulation. Also, we had no previous experience,

neither with factor graphs nor with the iterative closest point algorithm. Once things had

been integrated and we had the functional SLAM No 1, it was much clearer how SLAM

No 2 should be developed. Luckily, the absolute trajectory results reported for both SLAM

systems, with loop closing detection turned on, suggest that we have succeeded with the
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third scientific contribution.

In the end, here are a few words about further research. On the foundations of the

proposed place matching method NOSeqSLAM and the adapted deep image models, we

plan to conduct more SLAM experiments on multiple datasets to see how we can further

improve this pipeline. As said, we are interested in trying out out different visual odometries,

but also, different image representations that are, thanks to the popularity of deep learning-

based computer vision, improved on a daily basis. Because the evaluation of SLAM No 1

showed us how NOSeqSLAM goes beyond the scope of visual place recognition, we would

try to use it with real-life LiDAR-based SLAM systems such as [132]. Also, we have an idea

of how to generalize NOSeqSLAM even further, so it is more glued together with deep

image models, but more about it once when, hopefully, good results are attained.
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